
 1

Formal Specifications of Traceback Marking Protocols

Chun He

An Honors Thesis

The University of Texas at Austin
Department of Computer Sciences

Austin, Texas 78712

May, 2002

Supervisor: Dr. Mohamed. G. Gouda

Abstract

Denial-of-Service attacks and Distributed Denial-of-Service attacks are serious security
problems over the Internet due to their nature. They are easy to implement, hard to
prevent, and very difficult to trace. This paper describes Denial-of-Service attacks and
Distributed Denial-of-Service attacks and presents various traceback that are proposed to
identify the sources of theses attackers in the Internet. Finally it gives formal
specifications for a class of these traceback protocols called marking protocols.

1. Introduction

1.1 Denial-of-service Attack

 A "denial-of-service" attack (DoS for short) is characterized by an explicit attempt by

attackers to prevent legitimate users of a service from using that service [1]. For example,

a computer on the Internet can be victimized as follow, one or few attacker(s) can attack

this computer by sending million meaningless messages to this victim contiguously,

normally message has a spoofed source address to hide the identify of the attacker(s). The

victim computer use resource to process the messages sent by the attacker(s), eventually

it will discard these meaningless messages, but the victim computer already took a long

period of time out to handle these messages. Eventually, the attack will block the victim

computer from accepting the legitimate messages send by other computers. The examples

of DoS attacks include,

 2

� Attempts to "flood" a network with vacuous messages, thereby preventing

legitimate network traffic

� Attempts to disrupt connections between two machines, thereby preventing access

to a service

� Attempts to prevent a particular individual from accessing a service

� Attempts to disrupt service to a specific system or person

There are mainly three modes of the attacks,

� Attacking a victim computer by consuming resources of that computer

� Attacking a victim computer by destructing or altering of configuration

information.

� Attacking a victim computer by physical destructing or altering of network

components.

1.2 Distributed Denial-of-service Attack

 An attack that is more malicious than a mere denial-of-service attack and a lot harder

to deal with is called distributed denial-of-service attack, DDoS for short. A distributed

denial-of-service attack is a denial-of-service launched from many sites to the victim

computer at the same time. On the Internet, a distributed denial-of-service (DDoS) attack

is one in which a multitude of compromised systems attack a single target, thereby

causing denial-of-service for users of the targeted system. The flood of incoming

messages to the target system essentially forces it to shut down, thereby denying any

service at the system to legitimate users [11]. The attacker can use tools to develop and

coordinate the attack easily. The attacker can even use random computers on the internet

to perform the attack without the owners of these computers aware of the attack, like

many “zombie” computers ganging up on one computer, directed by one “master”, which

is controlled by the attacker.

1.3 History of Denial-of-service Attack

 Because denial-of-service attacks are simple to implement and difficult to prevent, in

the recent years the attacks have increased dramatically in frequency, severity and

 3

sophistication. Traditional DoS attacks typically have generated a large amount of traffic

to a victim computer and it is possible for a victim computer to detect such an attack in

progress and defend itself. For example, year 1996, Hackers use "SYN floods" to take

down several web servers by overwhelming and disabling them. The method was a

simple form of denial-of-service attack, and its success increases the popularity of

hacking [2].

 Distributed denial-of-service attacks are a much more nefarious extension of DoS

attacks because they are designed as a coordinated attack from many sources against one

or more targets. Early February 2000, a teenager using very simple distributed denial-of-

service tools [3] managed to bring down the high profile web sites of large companies

like Yahoo, ebay, CNN, Buy.com, Amazon, ZDNet, E#Trade and Excite during a series

of attacks [4]. Unfortunately, mechanisms for dealing with denial-of-service attack have

not yet developed to counter DDoS attacks at the same level.

1.4 Ping Attack

 Denial-of-service attacks come in a variety of forms and aim at a variety of services,

TCP flood, UDP flood, ICMP echo request / reply, the most popular attack is the ping

attack. Later in October 1996, a public newsgroup discussion started regarding a “ fat

ping” or “ ping of death” DoS attack [12]. This particular ping DoS attack uses a ping

packet of an abnormal size exceeding the TCP/IP specification to either cause a system

crash or network programs to stop processing in the targeted computer. In an IP network,

any computer can send any other computer a “ ping” message and that computer replies

by sending back a “ pong” message to the source of the “ ping” message [13]. An attacker

can attack a computer v in a network using the following methods, an attacker inserts a

“ ping” message to the network, with the spoofed source v and whose ultimate destination

is every computer on the network. Then every computer on the network will reply a

“ pong” message to this compute v, v will be flooded with all the “ pong” messages and

cause denial-of-service on v.

2. Approaches to Deal with DoS Attacks

 4

 In most DoS attacks, the attacking messages carry wrong information about the

identity of their sources in order to protect the true source of these messages. Therefore,

there are two approaches to deal with DoS attacks. The first approach is to detect the true

source of the attacking messages by collecting additional information from the attacking

messages. This approach is called IP traceback. The Second approach is to detect and

discard all messages with wrong sources and discard them away as they approach the

victim. The following are more detailed description and examples of each approach, see

figure 1 about the relations of these protocols.

 I. Detect the true sources of most messages by collection additional information,

called IP traceback

 There four types of IP traceback protocols in this approach.

1. Traceback Marking Protocol

This protocol requires all routers in the network to add information in the

messages that pass through them. Then the victim computer can figure out

the route of attack from the information in the messages it received. We will

discuss in great details about this protocol in later sections.

2. Traceback Logging Protocol

This protocol doesn’t require routers to mark any message, but require

routers to remember for a short period of time, all the messages that pass

through them. This approach suggested in [5] and [6] is to log packets at key

routers and then use data mining techniques to determine the path that

packets traveled. It can trace the attack long after the attack, however it

requires enormous resource.

3. Link Testing Protocol

It starts from the router closest to the victim and interactively tests its

upstream links until it finds out which one is used to carry attackers’

packets. This approach does not work with attacks detected after the fact,

 5

attacks that occur intermittently or attacks that modulate their behavior in

response to a traceback, since it assumes that an attack remains active until

the completion of a trace. Refer to [14] and [15] for examples of this

approach.

4. ICMP Traceback Protocol

This approach is based on explicit router-generated ICMP traceback

messages. The idea is for every router, with a low probability, to forward a

copy of the contents into a special ICMP traceback message [7]. The

approach could be quite effective, but an attacker can forge the ICMP

traceback messages and send them to the victim.

 II. Detect and discard fake messages and discard them as it travel over the network

 The hop integrity protocol in [13] is an example of this approach. Two computers

are called adjacent iff both computer are connected to the same subnetwork (so that

they can send message directly to each other). A network is said to provide hop

integrity iff the following two conditions hold for every pair of adjacent routers p and

q in the network.

� Detection of Message Modification

 Whenever router p receives a message over the subnetwork connecting

routers p and q, and determines that message has modified by an attacker

after it was sent by q and before received by p.

� Detection of Message Replay

 Whenever router p receives a message over the subnetwork connecting

routers p and q, and determines that message has not been modified, then p

can determine correctly whether that message is another copy of a message

that is received earlier by p.

 6

 The goal of the hop integrity protocol is to detect and discard the messages

inserted by attacker, and report the physical location in the network where the

attacker inserts the messages. This approach is effective and can identify the locations

where the attackers break into the local network. However, this approach requires the

participation of all routers in the Internet.

 In this paper we will describe four IP traceback protocols in great details. They are

node sampling protocols, edge sampling protocols, compressed edge sampling protocols

and algebraic polynomial protocols (see figure 1). The purpose of IP traceback protocols

is to trace the source of attacks back toward their true origins, and ideally stopping an

attack at its source. When a message passes through a router, that router might mark the

 7

message in the IP header. The victim computer uses the information from the messages

that have been marked to trace an attack back to its true origin. This approach has shown

some potential advantages. It does not require interactive cooperation with Internet

Server Providers (ISPs) and therefore avoids the high management overhead of input

debugging. It does not require significant additional network traffic since it only modifies

the IP field of the original messages. Moreover, just like logging, it can trace attacks long

after the attacks have stopped. However, most of the IP traceback methods do not deal

with DDoS attacks effectively. The effectiveness is reduced because the most significant

method of traceback protocols to distinguish attack messages and regular messages is the

large volumes of the attack messages, but in DDoS attacks, the attack messages came

from many sources, therefore it loses the distinction between attack messages and regular

messages. Therefore, in this paper, we are not going to deal with DDoS attacks, and just

to describe them as they existed.

3. The Node Sampling Protocol

 This protocol is suggested in [8] by Savage, et al. A node is a computer on the

Internet; it can be a host or a router. In order to detect the true source of an attack, when

messages travel through the computers on the network, each computer on the network

marks messages with its IP address using a probability p. While a messages pass a

computer, that computer chooses a random number x, if x < p that computer adds its IP

address to this message, otherwise it will simply pass this message to the next computer.

Here we will assume these computers can aware whether they are under attack. If a

computer finds out it is under attack it will start gathering the IP addresses from the

messages and keeps a counter for each unique IP address, it will count how many

messages it has received from each unique IP addresses. When the victim computer

gathered enough information it will sort each IP address by its counter. The IP addresses

of computers at a shorter distance on the path of attack will be marked more often than

the computers at a greater distance. As a result of sorting the IP addresses’ counter by

descending order we can reveal all the computers on the path of attack in a way from the

nearest computer to the farthest. In the following sections we will give the formal

 8

specification of this protocol in Abstract Protocol (AP) notation and also talk about the

advantage and disadvantage of this protocol.

 First we will introduce some terms are used in the following specification. In this

notation we will use the term “ packet” for message. A computer sends out messages is a

source of the messages, the computer where the message is delivered to is the destination.

p[i:0..n] is an array of processes (computers) on the network, where i is in between 0 to n

(0 to n are the indices of computers on the network). Here we use i as computer’ s IP

address or its ID. In order to simplify this protocol, we will make no distinguish in

between routers and hosts. Also we will use two constants p and m, which the probability

for a message to get marked is p/m. There are three inputs for this protocol. N is a set,

each element in set N is a neighbor computers of process p[i]. Array rtb is a routing table,

which gives a destination process as index and returns the best next computer to route as

the content of the array. attack here is a boolean to indicate whether the current process is

in attack mode. The variables are x, dst, node and count. x is a variable in between 0 to

m. dst and node are in between 0 to n. count is an array which takes process i as index

and return how any times that process i has received with message reached to the

destination computer. j is a parameter, which is in the set N. Each packet, pkt, needs to

carry two fields, node (the IP Address marked by routers) and dst (destination computer’ s

IP Address) where dst will not be change as the message travels in the network, but node

might be overwritten by some routers.

The following is the AP notation of this protocol:

process p[i: 0..n]

const p, m { probability to mark the packet is p/m }

inp N: set { g | g is a neighbor of p[i] },
 rtb: array[0..n] of N
 attack: boolean

var x: 0..m,
 dst, node: 0..n,
 count: array[0..n] of integer {init all 0’ s}

 9

par j: N

begin
 true Å
 dst := any;
 if i = dst Å skip
 � i � dst Å node := i;
 send pkt(node, dst) to p[rtb[dst]]
 fi

 � rcv pkt(node, dst) from p[j] Å
 if dst � i Å x := random;

 if x < p Å node := i
 � x � p Å skip
 fi
 send pkt(node, dst) to p[rtb[dst]]
 � dst = i Å
 count[node] := count[node] + 1;
 if ~attack Å skip
 � attack Å { use “ count” to detect location of attacker }
 fi
 fi

end

 This protocol includes two actions. Within process i, at any given time, first action

generates a destination, dst, at random. Then it will check whether the dst it just

generated equals to its own IP address, i. If it does, this action will do nothing else,

otherwise it marks the node field with its own IP address, and generates a packet, pkt,

with node and dst, then routes this packet to the next computer according to the routing

table rtb. The second action receives a packet from p[j]. This action will first check

whether itself, i is the ultimate destination. If it is not the destination it will randomly

choose an x (where x is in between 0 to m), if x<p it will overwrite field node in the

packet with its own IP address, i; if x�p, it will skip which means do nothing. Finally i

sends out the packet again to the next computer, p[rtb[dst]]. If it is the destination, the

process increments the count[node] by 1, then check whether it is in attack mode. If it is

not under attack, it does not do anything. If it is under attack, it use the information stored

in count to detect the location of attacker by sorting the number of each node in array

count.

 10

 This protocol is easy to implement in IP network because it only requires the addition

of a write and checksum update to the forwarding path as additional operations for the

routers. It needs to add a 32-bit field, node, to the IP header of each packet. It also need

authentication between all routers and victim computer to make sure the victim computer

can trust all the routers. If p > 0.5 then this protocol is robust against a single attacker

since there is no way for an attacker to insert a “ false” router into the paths by

contributing more samples than the downstream router. However, there are two serious

limitations of this approach. First, inferring the total router order from the distribution of

samples is a slow process. Routers far away from the victims contribute few samples, it

requires receiving a large amount of packets from the attackers to reconstruct the path,

especially when p is larger than 0.5. For instance, if h = 15 and p = 0.51, the receiver

must receive more than 42000 packets on average before it receive a single sample form

the farthest router. To insure the order is correct with 95% certainty requires more than

seven times of that number [8]. Second, if there are multiple attackers, the multiple

routers may exist at the same distance and sampled with the same probability, so that we

can not simply find the full attack path by sorting the marked IP addresses. Therefore,

this technique is not robust against multiple attackers.

4. The Edge Sampling Protocol

This protocol is also presented by [8]. An alternative to the node sampling protocol is

the edge sampling protocol. The edge sampling protocol explicitly marks the edges of the

attack paths, instead of a single node. An edge represent one hop from one computer to

another in the network, it includes a starting computer (here we will call it start) and

ending computer (here we will call it finish, since end conflict with our keyword end in

AP notation). For this protocol, we need to reserve two static address-sized fields in each

message, start and finish, and also at least 5 bits for h (distance of the destination

computer to the finish that carried by the message, we say 5-bit here since most of the

messages travels in the Internet take no more than 20 hops) in the IP header of each

message. This protocol requires computers on the network to add its IP address as start

into a message as that message travels through the computers at a small probability, p.

 11

When a computer receives a message, it chooses a random number x. If x<p, then it

marks its IP address into the start field, marks the next computer’ s IP address, where this

message will be routed to, into the finish field and assign h to be 0 (hop). If x�p, that

computer will simply increment h by one hop. The destination computer will collect these

edges once it discovers it is under attack, and will start using these edges to construct a

tree with the destination computer as the root of the tree.

 In the following section we will present the formal specification of the edge sampling

protocol in AP notation. This protocol has the same i, n, p[i:0..n], p, m, N, rtb, attack, x,

dst and j with the node sampling protocol. It has an additional input array len which takes

any process as indices and returns the distance between i and that process, assume it is

possible for us to find out this information. Also, it have variables start (the starting IP

address of an edge), finish (the ending IP address of an edge), h (the distance from finish

to the current process) where they are all in the range from 0 to n. It also has a two-

dimensional array edge of integer takes start and finish as indices, edge starts with all 0’ s,

adds one if there is a sampled edge between start and finish. For each packet, pkt, in this

protocol, it requires to carry four fields, start, finish, h and dst.

 The victim computer uses the edges sampled in these packets to create a graph, which

leads back to the true source of the attack. Here we denote T be a tree with root v, each

edge in T is a tuple of (start, finish, h). For each packet pkt from attacker, if h = 0 then

insert edge (start, v, 0) into T, else insert edge (start, finish, h) into T. Note that any

packets sent by the attacker will necessarily have a distance greater or equal to the length

of than the routers on the path of attack. Therefore we can prevent a single attacker forge

sampled edges by removing any edge which its h doesn’ t equal to distance from end to v

in T. Finally, extract path by enumerating acyclic paths in T.

The following is the AP notation of this protocol:

process p[i:0..n]

const p, m

inp N: set { g | g is a neighbor of p[i] }

 12

 rtb: array[0..n] of N
 attack: boolean

len: array[0..n] of 0..n
{ len[x]=shortest length between node x and node i }

var x: 0..m
 start, finish, dst, h: 0..n
 edge: array[0..n, 0..n] of integer { init all 0’ s }

par j: N

begin
 true Å
 dst := any;
 if i = dst Å skip
 � i �dst Å start, finish, h := i, rtb[dst], 0;
 send pkt (start, finish, h, dst) to p[rtb[dst]]
 fi

 � rcv pkt(start, finish, h, dst) from p[j] Å
 if dst � i Å

x := random;
 if x < p Å start, finish, h := i, rtb[dst], 0
 � x � p Å h := h + 1
 fi;
 send pkt(start, finish , h, dst) to p[rtb[dst]]

� dst = i Å
 if len[finish] = h Å
 edge[start, edge] := edge[start, finish] + 1

 � len[finish] � h Å
 { incorrect edge }
 skip

 fi;

 if ~attack Å skip

 � attack Å { use “ edge” to detect location of attacker }
 fi

 fi
end

 This protocol includes two actions. Within process i, at any given time, first action

generates a destination, dst, at random. Then it will check whether the dst it just

generated equals to its own IP address, i. If it does, this action will do nothing else,

 13

otherwise it marks the start field with its own IP address, i, marks the finish field with the

next computer’ s IP address, rtb[dst], where the message routes to next, and assigns h to

0. Then it generates a packet, pkt, with start, finish, h and dst, and routes this packet to

the next computer according to the routing table rtb. The second action receives a packet

from p[j]. This action will check whether i is the ultimate destination first. If it is not the

destination, the computer i will choose a random x. If x<p, this computer marks the start

field with its own IP address, i, marks the finish field with the next computer’ s IP

address, rtb[dst], where the message routes to next, and assigns h equals to 0. If x � p, it

just increments h by one hop. Finally this computer will send out the packet to the next

computer, p[rtb[dst]]. If i is the destination, the process start to store data in array edge

using that start and edge it just received. It sets edge[start, finish] = true, , iff h equals to

the distance from i to finish, since len[finish] does equal h is impossible to be the correct

data. Then this action checks whether computer i is in attack mode. If i is not under

attack, it does not do anything. If i is under attack, we detect the attacker by enumerating

acyclic paths from array edge and len.

 This protocol is better than the node sampling protocol in the sense it doesn’ t relay on

sampling rank approach to distinguish “ false” samples, we can choose an arbitrary values

for the marking probability p. Now say the farthest router is h hops away, it is efficient to

choose p=1/d. By reducing p, we will not need as many as packets needed by node

sampling protocol to identify the path of attack. Edge sampling is also robust against DoS

attack by single attacker, because it is impossible for any edge closer than the closest

attacker to be spoofed, due to the distance determination we discussed in the previous

section of how to construct the attack path. Conversely, this is also means in a distributed

attack that is impossible to trust the content of any edge farther away from the closest

attacker. Therefore, it is not robust against DDoS. Another significant limitation of this

approach is that it requires 72 bits additional space in the IP header of a packet and

therefore it is not backward compatible. It is expensive to append additional bit to IP

header on the fly. An idea to solve the backward compatible problem base on this idea is

to compress the data, which is we will next introduce Compressed Edge Sampling

Protocol.

 14

5. The Compressed Edge Sampling Protocol

The idea of this protocol is presented in [9] by Song and Perrig (it was called

Advanced Marking Scheme I in [9]). To compress the size of extra field required in the

IP header of the edge sampling protocol we introduce the compressed edge sampling

protocol. Instead of keep three fields start, finish and h, now we only need to keep two

fields, cedge (stands for compressed edge) and h in the IP header. This protocol requires

computers on the network to add cedge into a message as that message travels through

the computers at a probability, p. In this protocol we will use the operation of XOR, ª.

After a computer receives a message, it chooses a random number x. If x<p, then it uses

its IP address XOR with the next computer’ s IP address, where this message will be

routed to, then marks the XOR result into the cedge field and assigns h to be 0 (hop). If

x�p, at computer simply increments the h by one hop. As a requirement of this protocol

we need to have an upstream router map available as a road-map to the victim computer

to perform a breadth-first search from the victim computer. It was shown in [9] section

5.1, that is possible to construct such a map. Recall bª aª b = a, then the cedge receives

at the destination computer can be used to decode the previous cedge, and so on, hop-by-

hop until we reach the attacker. Then we can construct a tree in the similar matter with

edge sampling protocol. In the original design of this protocol [9], Song and Perrig used

a hash functions to apply on cedge in order to reduce the bit-size of cedge, but here for

simplification we will omit the usage of hash function.

 In the following section we will present the formal specification of this protocol in

AP notation. This protocol has the same i, n, p[i:0..n], p, m, N, rtb, attack, len, x, dst,

edge and j with the edge sampling protocol. Input array connt takes two processes as

indices, it returns true if there is a direct connection in between these two processes. In

addition, it has variables cedge (the XOR value of a starting computer’ s IP address and

the next computer’ s, IP address, where the message will route to) as an integer, h (the

distance from start computer of an end point of cedge to the current process), t and z

variables in the range from 0 to n. For each packet, pkt, in this protocol, it requires to

carry three field cedge, h and dst.

 15

The following is the AP notation of this protocol:

process p[i:0..n]

const p, m

inp N: set { g | g is a neighbor of p[i] }
 rtb: array[0..n] of N
 attack: boolean

len array[0..n] of 0..n
{ len[x]=shortest length between node x and node i }

var x: 0..m { compressed edge }
 cedge: integer
 dst, h: 0..n
 edge: array[0..n, 0..n] of integer { init all 0’s }
 u, v: 0..n
 z: 0..n + 1

par j: N

begin
 true Å
 dst := any;
 if i = dst Å skip
 � i �dst Å cedge, h := i ª rtb[dst], 0;
 send pkt (cedge, h , dst) to p[rtb[dst]]
 fi

 � rcv pkt(cedge, h, dst) from p[j] Å
 if dst � i Å

x := random;
 if x < p Å cedge, h := i ª rtb[dst], 0
 � x � p Å h := h + 1
 fi;
 send pkt(cedge , h, dst) to p[rtb[dst]]

� dst = i Å
 CMPEDG (in cedge, h, out u, v);
 edge[u,v] := edge[u,v] + 1;
 if ~attack Å skip

 � attack Å { use array “ edge” to detect the location of attacker }
 fi

 fi
end

 16

CMPEDG (in cedge, h, out u, v) ::

 For every edge (u, v) in the network
 if len[u] = h¾ u ª v = cegde Å return u, v
 � len[u] � h ¿ u ª v � cedge Å { incorrect edge }
 skip
 fi

 This protocol includes two actions. Within process i, at any given time, first

action generates a destination, dst, at random. Then it will check whether the dst it just

generated equals to its own IP address, i. If it does, this action will do nothing else,

otherwise it marks the cedge field with the XOR value of its own IP address, i, and the

next computer’ s IP address, rtb[dst], where the message routes to next, and assigns h to

0. Then it generates a packet, pkt, with cedge, h and dst, and routes this packet to the

next computer according to the routing table rtb. The second action receives a packet

from p[j]. This action will check whether i is the ultimate destination first. If it is not the

destination, computer i will choose a random x. If x<p, this computer marks the cedge

field with the XOR value its own IP address, i, and the next computer’ s IP address,

rtb[dst], where the message routes to next, and assigns h to 0. If x � p, it just increments

h by one hop. Finally this computer will send out the packet to the next computer,

p[rtb[dst]]. If i is the destination, the process will run a function CMPEDG. CMPEDG

takes input cedge and h, outputs start point u, end point v of all the edges that have len[u]

= h. Then process i will increment edge[u,v] by 1 with the data outputs from CMPEDG.

This process i will also check whether it is in attack mode. When the destination is not

under attack, it simply does nothing more. If it is under attack, it uses array edge to detect

location of attackers.

 This protocol is more robust than the previous protocols, with not much complex

computation, it need a lot less packets to reconstruct the attack path. It is also better in

dealing with DDoS ([9] section 3.3). If we take the hash value of each edge, the hashed

addresses will fit into the fragmentation field of the IP header, which is not been used

very often, this solves the backward compatibility problem.

 17

6. The Algebraic Polynomial Protocol

 The algebraic polynomial protocol is suggested in [10] (see section 4.1, Fall Path

Encoding). This protocol uses a scheme of algebraic approach for encoding traceback

information. The basic idea is that for any polynomial f(y) of degree h-1 in the prime field

GF(p), we can recover the coefficients of f(y) given the values of f(y) evaluated at h

distinct points. Let the coefficients of f(y) denoted A1, A2, … Ah, be the 32-bit IP addresses

of routers on a path. We associate a random id yj with the jth packet (we need to use

different id for each packet). We can evaluate fi(yj) as the packet travels along the path,

accumulating the result of the computation in a running total along the way. At the first

router along the path, let f1(yj) = A1, each of the router Ai along the path calculates fi(yj) =

(fi-1(yj)* yj + Ai) mod r, where r is the smallest prime larger than 232 – 1, the mod

operation ensures that the size of f(y) won’ t excess 32 bits. At the packet’ s destination f(y)

will equal to A1y(h-1) + A2y(h-2) + … + Ah-1y + Ah mod r. When enough packets from the

same path reach the destination, then f(y) can be reconstructed by interpolation. The

interpolation calculation might be a simple set of linear equations (see figure 2). To make

this protocol easy to write, by Horner’ s rule, (((A1y + A2)y + A3)y + A4 = A1y3 + A2y2 +

A3y + A4. A router doesn’ t need to know the total length of the path of its position in the

path for this computation of f(y).

ßß
ßß
ß

à

Þ

ÏÏ
ÏÏ
Ï

Ð

Î

�

�

�

12

1
2

2
22

1
1

2
11

...1

...1

...1

h
hhh

h

h

yyy

yyy

yyy

MOMMM ßß
ßß

à

Þ

ÏÏ
ÏÏ

Ð

Î
=

ßß
ßß

à

Þ

ÏÏ
ÏÏ

Ð

Î

)(

)(

)(

2

1

2

1

hh

h

h

h yf

yf

yf

A

A

A

MM

 Figure 2. Path A1, A2, …An can be reconstructed by solving this matrix equation over GF(p)

 In the following section we will present the formal specification of this protocol in

AP notation. This protocol has the same i, n, p[i:0..n], N, rtb, attack, x and dst with the

previous protocol discussed. Constant r is the smallest prime larger than 232 -1. Variable

h is the degree of each polynomial f(y), y is packet id used to computer f(y) and z is f(y).

bff is a set to store triple of (h, y, z). txt is the text part of the message carried by packet. g

 18

is a parameter to represent all the processes in the network. Each packet requires to carry

five fields dst, txt, h, y and z.

The following is the AP notation of this protocol:

process p[i:0..n]

const r: integer {r is the smallest prime larger than 232 -1}

inp N: set {g | g is a neighbor of p[i]},
 rtb: array[0..n] of N,
 attack: boolean,

var x: 0..m

dst: 0..n,
 txt: 1..n,
 h: 1..n-1
 y: 0..r-1,
 z: 0..r-1, {init 0}
 bff: set{ (h, y, z) }
 node: 0..n
 count: array [0..n] of integer {init all 0’ s}

par g: N

begin
 true Å dst := any;

 if dst = i Å skip
 � dst � i Å txt, h, y, z := any, 1, random, i;

 send pkt(dst, txt, h, y, z) to p[rtb[dst]]
 fi

 ê rcv pkt(dst, txt, h, y, z) from p[g] Å
 if dst � i Å
 x := random;
 if x < p Å
 h, y, z := 1, random, i;
 ê x � p Å
 h, z := h+1, ((z*y)+i) mod r;
 fi;
 send packet(dst, txt, h, y, z) to p[rtb[dst]]

 ê dst = i Å
 bff := bff ­ { (h, y, z) }
 CMPNOD(in bff, out node);
 count[node]:=count[node]+1;

 19

 if ~attack Å skip
ê attack Å { use array “ count” to detect location

of attacker }
fi

 fi
end

CMPNOD(in bff, out node)::

for every h triples of the form {(h, y1, z1), (h, y2, z2), …, (h, yh , zh)} in bff,
solve the h equations: (A1 + A2y1 + … + Ah(y1)h-1)mod r = z1

 (A1 + A2y2 + … + Ah(y2)h-1)mod r = z2

 M

 (A1 + A2yh + … + Ah(yh)h -1)mod r = zh

If the computed A1, A2, …, Ah correspond to a path from node i to a node u, then
return node u.

 This protocol includes two actions. Within process i, at any given time, first action

generates a destination, dst, at random. Then it will check whether the dst it just

generated equals to its own IP address, i. If it does, this action will do nothing else,

otherwise it assigns txt to any, h to 1, y to random and z to i, then it will generate packet

with dst, txt, h, y and z and route it to the next computer according to the routing table.

The second action receives a packet, first it checks whether the current process is the

destination. If the current process is not the destination, the process assign x to a random

integer. If x<p, this process assigns h to 1, y to random and z to i. If x � p, this process

needs to recomputed z by assigning z to (z * y + i) mod r, and increment h by 1. Then

resend the packet with new z and h to the next computer. If it is the destination, it inserts

triple (h, y, z) in set bff and run function CMPNOD(in bff, out node). Then it increments

count[node] by 1 with the node return from CMPNOD. Also this process checks whether

it is under attack mode. If this process is not under attack, then it simply does nothing

else. If it is under attack, it uses array count to detect the location of attackers.

 This protocol shows a good approach to the traceback marking protocol. It requires

very low computation overhead on the routers but it is not easy to compute the attack

path. But a draw back to this protocol is that adding additional field to store the

polynomial value could be difficult. Also, it is impossible for a router to know whether it

 20

is the first router on the attack path, therefore it would be easy for an attacker to forge

that information.

5. Conclusion

 In this paper, I have given some knowledge of Denial-of-Service Attacks and

Distributed Denial-of-Service Attacks. I also have talked about the history of Denial-of-

Service Attack and the various approaches to encounter with this attack. Finally, I have

presented four traceback marking protocols in detail and provided formal specifications

of each protocol. Although, each of these protocols still has limitations to deal with

Distributed Denial-of-Service Attacks and also requires modification of the routers on the

Internet, they have improved the effectiveness on dealing with Denial-of-Service Attacks.

6. Reference

[1] CERT® Coordination Center, “ Denial of Service Attack” ,
 url: http://www.cert.org/tech_tips/denial_of_service.html#1.

[2] Macu Networks, “ The Brief but Disturbing History of DDoS Attacks” ,
 url: http://www.mazunetworks.com/ddos_library/chronology_print.html.

[3] CNN.com, “ Cyber-attacks batter Web heavyweights” , February 9, 2000
 url: http://www.cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/index.html.

[4] Advanced Networking Management Lab (ANML) Distributed Denial of Service

Attacks(DDoS) Resources, “ DDoS History in Brief” ,
 url: http://www.anml.iu.edu/ddos/history.html.

[5] G. Sager, “ Security Fun with OCxmon and cflowd” , presented at the Internet 2

Working Group, Novmber1998.

[6] R. Stone, “ CenterTrack: An IP overlay network for tracing DoS floods” , in Proc,

2000 USENIX Security Symp., July 2000, pp.199-212.

[7] S. M. Bellovin, “ ICMP traceback messages” , Internet Draft: draft-bellovin-itrace-

00.txt, 2000.

[8] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “ Network Support for IP
Traceback” , IEEE/ACM transactions on networking, vol. 9, No. 3, June 2001.

 21

[9] D. Song and A. Perrig, “ Advanced and authenticated marking schemes for IP

Traceback” , in Proc. IEEE INFOCOM, vol. 2, April 2001, pp. 878-886.

[10] D. Dean, Matt Franklin, and Adam Stubblefield, “ An Algebraic Approach to IP

Traceback” ,
 url: http://www.isoc.org/isoc/conferences/ndss/01/2001/papers/dean01.pdf.

[11] searchSecurity.com, “ distributed denial-of-service attack” ,
 url: http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci557336,00.html.

[12] Silicon Graphics Inc. Security Advisory, “ TCP SYN and Ping Denial of Service

Attacks” , CERT(sm) Advisory CA-96.21, CERT(sm) Advisory, CA-96.26, Silicon
Graphics Advisory 19960901, December 24, 1996.

[13] M. G. Gouda, E. N. Elnozahy, C.-T. Huang, and T. M. McGuire, “ Hop Integrity in

Computer Networks” , Eighth International Conference on Network Protocols,
November 2000,

 url: http://www.research.ibm.com/arl/projects/papers/hopintegrity.pdf.

[14] J. Glave, “ Smurfing cripples ISPs” , Wired Technology News, 1998,
 url: http://www/wired.com/news/technology/story/9506.html.

[15] H. Burch and B. Cheswick, “ Tracing Anonymous Packets to Their Approximate

Source” , in Proc. 2000 USENIX LISA Conf. December 2000, pp319-327.

