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Abstract

Scientific simulations and measurements often involve time de-
pendent processes and produce time dependent data sets. Isosur-
face extraction is an important tool for visualizing three or two-
dimensional time varying scalar fields defined by such data. Never-
theless, the size of the data and the dynamic nature impose difficulty
in devising efficient and effective time dependent isosurface extrac-
tion techniques. In this paper, we describe a progressive algorithm
for time dependent isosurface extraction. The algorithm maintains
efficiency in time and space by exploiting coherency in both tem-
poral and spatial dimensions of the data, as well as in the function
values domain. It creates the isosurface of consecutive time steps
progressively from previous time steps allowing time critical uti-
lization. In addition, it can track evolving isosurface components
and identify topology change events such as merge, split, vanish
and create. This information is used to define several visualization
techniques such as tracking of individual components, which help
gain better understanding of the dynamic structure of the data.

1 Introduction

Isosurface extraction is an important visualization technique. By
displaying the regions of constant value in scalar fields one can at-
tain insight into the structure of the data. In many senses isosur-
face extraction can be viewed as a form of feature extraction from
raw data, which helps discover significant characteristics inside the
data. This is ever more true when time dependent data is concerned.
Many scientific simulation and measurements are time dependent
in nature and produce data sets of time-varying fields. Isosurface
extraction and their tracking over time can greatly assist in under-
standing the dynamic behavior of the data. Nevertheless, often such
time dependent data sets are very large and difficult to handle using
conventional methods devised for static data. Moreover, any algo-
rithm working on time-dependent data should be able to exploit the
temporal nature of the data on the one hand, and to emphasize it on
the other. Toward this end we present an efficient time-progressive
isosurface extraction algorithm that enables isosurface components
topology tracking.

We will assume that the input data is a two or three-dimensional
mesh with scalar values on the nodes. The mesh has some pre-
defined connectivity between the nodes, which imposes a spatial
decomposition into cells. Some interpolation function is used to
define a scalar field inside each cell, which is usually at least C0

across cell boundaries. In such conditions, the process of isosur-
face extraction can be divided into two main stages:

Finding isosurface cells This stage involves the search for all cells
in the mesh that contain the function iso-value, indicating that
the isosurface must pass through them. We will call these cells
isosurface cells.

Constructing the surface This stage involves the construction of

an actual surface representation for the isosurface by extract-
ing surface mesh elements from the isosurface cells (most
commonly triangles).

In this paper we concentrate on the first stage in the extraction
and rely on known techniques to build a triangular surface from the
isosurface cells [9, 11, 15]. The classical algorithms for finding
the isosurface cells involve marching through the whole mesh [9],
hence maintaining a complexity of the order of the size of the
mesh. More recent algorithms move the search to the function
value domain, rearranging the data according to function space co-
herency [8, 14, 3, 5]. By building a suitable search structure these
algorithms achieve complexity of the order of the size of the sur-
face (the number of isosurface cells). Nevertheless, most of those
techniques sacrifice spatial coherency (which is inherent in most
data sets where C0 continuity is assumed) by trading it with range
space coherency. In addition, they rely on data-structures which
sometimes are too heavy, particularly for time dependent data.

A hybrid approach is based on dividing the search for isosurface
cells into range-space and geometric phases, taking advantage of
coherence in both domains [2]. A preprocessing stage determines
a subset S of all the cells which are maintained as candidate seed
cells. For an arbitrary input iso-value, it is guaranteed that every
connected component of the isosurface will intersect at least one
cell in S (see Figure 1). A second preprocessing step constructs a
range query structure for the cells in S. In the surface extraction
phase, a surface propagation algorithm constructs the surface com-
ponent (using e.g. breadth first search) from each selected cell in
the seed set. Thus, the search for isosurface cells takes advantage
of spatial coherence by using surface propagation, and range-space
coherence through the utilization of a range-space search structure
for seed cells.

Time dependent data presents an additional temporal dimension
where high coherency is present. Techniques for time-dependent
iso-surface extraction which use range space search either create
very large structures, which become critical in out-of-core situa-
tions [13], or sacrificed temporal coherency in order to maintain
disk access efficiency [18]. The key observation in temporal co-
herency utilization for isosurface extraction is that the isosurface at
time t (It) is very close spatially to the isosurface at time t+1(It+1).
This means that It can be used as an initial guess for It+1, and re-
fined progressively using spatial marching methods to reach It+1
(see Figure 3).

Isosurface extraction optimization is essential for efficient visu-
alization. Nevertheless, other considerations are important as well
for improved data analysis. Finding and visualizing the structural
correlation between isosurfaces at successive times can improve the
perception of the data dynamics. An isosurface often has many dif-
ferent connected components which gradually deform their shape
over time. New components can be created, old components may
move, merge, split, or vanish as time progresses. Identifying and
tracking these changes may sometimes be crucial for understand-
ing the data. Nevertheless, correlation between isosurface compo-



nents and topology tracking remains challenging when the data set
is considered mainly as a collection of separate static time steps.

Our proposed algorithm begins by constructing the isosurface
from a pre-generated seed set, identifying each individual com-
ponent of the isosurface. Once the components are constructed,
we trace their evolution over time by progressively marching the
isosurface. To extract newly created isosurface components which
cannot be traced from the isosurface of the previous time step, we
use the pre-generated seed set again. This algorithm is fast enough
for interactive visualization of time-dependent isosurfaces, can be
used progressively when time limit constraints are imposed, and al-
lows topology tracking over time with no demand for complex cor-
respondence matching tests. The algorithm presents the following
main contributions:

1. Efficiency by means of exploiting coherency � 3: Our al-
gorithm extracts time dependent isosurface with minimal time
complexity, and at low storage cost. This is achieved through
the exploitation of all three coherencies: temporal, spatial and
functional. Function value coherency is used by the search
structure on the seed sets; temporal coherency is used by the
time progressive update of isosurface components; spatial co-
herency is used by surface marching and propagation. All
these guarantee near optimal time complexity (an order of the
surface size). In terms of storage cost, the overhead is low
since the search structures are used only for seed sets of all
time steps.

2. Progressive temporal extraction solution: Using marching
of isosurface components provides the ability to use temporal
approximations of the real isosurface. The isosurface of time
It+1 is not extracted from scratch, but rather refined from the
isosurface of It using two stages: temporal propagation of
old components, and seed set generation of new components.
These two stages rely on simple atomic operations that may
easily be interrupted. In time critical situations, partially re-
fined surfaces may be rendered as approximations. Moreover,
skipping of time steps may also be employed easily, since
holding the seed set for each time step allows full synchro-
nization at any point in time (nevertheless, such synchroniza-
tion can loose the topology tracking information).

3. Effective topology tracking: Topology changes such as cre-
ation, disappearing, merging and splitting of surface compo-
nents may easily be tracked for dynamic structure analysis and
component interaction. Moreover, when the isosurface has
many evolving components including possibly some noise,
the user can find and follow only a subset of important iso-
surface components. This can reduce distraction; provide in-
formative statistics on the interaction among the components,
and increase efficiency.

The rest of this paper is organized as follows. In Section 2,
we present related work on isosurface extraction and volume fea-
ture tracking. In Section 3, we give definitions and explain some
concepts used later in the text. Section 4 gives an overview of the
algorithm for time dependent isosurface extraction, and the tempo-
ral propagation part is detailed in Section 5. Implementation details
are given in Section 6, and some results in Section 7. We conclude
and discuss future extensions in Section 8.

2 Related Work

Isosurface Extraction in Static Data Sets

A large amount of research has been devoted in the past for fast
isosurface extraction from 3D static volume data. Marching Cubes

Figure 1: A two-dimensional scalar field (color indicates value),
and a group of cells forming a seed set. For any iso-value, every
connected component of the isosurface will intersect at least one
cell in the set.

algorithm [9] searches for isosurface cells by visiting all cells in the
volume. An improvement is gained by using octrees [21] to skip
cells not contributing to isosurface. Near optimal and optimal al-
gorithms [8, 14, 3, 5] mostly use search structures on the function
value domain. Contour propagation is used for efficient isosurface
extraction [3, 7, 6]. Given an initial cell that contains the isosurface,
the whole surface can be traced by contour propagation. This prop-
erty is utilized (e.g. in the seed sets) to significantly reduce the space
and time for searching isosurface cells. In addition, it allows iden-
tifying connected component of the isosurface by regarding each
connected surface as a separate object.

Although those algorithms accelerate searching time, a signifi-
cant amount of memory is required to construct and maintain asso-
ciating data structures. The hybrid approach presented by the seed
set algorithm tends to keep the search data structures small. Sev-
eral algorithms for seed set generation and spatial contour propa-
gation, also called mesh propagation [7, 6], are described in [3].
The spatial contour propagation traces and constructs an isosur-
face component from a single cell by iterating breadth-first traversal
through the face-adjacencies and triangulating until the whole con-
nected surface is constructed. Other marching methods and level
sets were also defined and used for many applications such as im-
age enhancement and classification in [10, 12]. There, the under-
lying field changes over time according to some partial differential
equation, pushing the interface in the direction of the field gradient.

Isosurface Extraction in Time Dependent Data Sets

Weigle et al. [20] considers time dependent data in 4-dimensional
space. They first extract a 3-dimensional solid mesh on which the
function value is the same as the iso-value. Then, a 2-dimensional
isosurface is extracted from the solid mesh when time constraint t
is specified. Although smoothly changing time-varying isosurface
can be constructed, this technique is highly demanding in terms
of space and time. Shen [13] proposed Temporal Hierarchical In-
dex (THI) Tree as the extension of ISSUE algorithm [14]. Cells
are adaptively coalesced based on temporal variation reducing the
amount of space needed for the search structure. However, since
data access pattern is not predictable, the entire data of each time
step needs to be loaded to main memory. In order to minimize
unnecessary I/O access, Sutton et.al. [18] proposed the Temporal
Branch-on-Need tree. Neglecting temporal coherency, they con-
sider each time step independently constructing a branch-on-need



octree. Each node contains min and max values of its sub-volume.
When given (time step, iso-value) as a query, only data blocks cor-
responding to the octree nodes which intersect isosurface in a given
time step are loaded from disk.

Feature & Component Tracking

Silver [17, 16] defines a feature in a volume as a region of interests
which consist of cells satisfying predefined criteria. After features
extraction, they perform correspondence matching test of features
based on the degree of overlap to track the movement of features
over time. Feature events are classified as continuation, creation,
dissipation, bifurcation and amalgamation. Then, individual fea-
tures can be isolated and quantified to give more information on
the dataset. Although they provide enhanced visualization possibil-
ities for time varying datasets, the correspondence-matching test is
complex and not optimized for isosurfaces.

The contour tree is a graph that captures the global changes in
contour topology of a static scalar field. The contour tree has been
used mainly for finding minimal seed set [19, 4] or capturing the
global structural information in contour topology of static scalar
fields [1]. Tracking contour trees can be used to trace component
topology accurately in a time sequence. Nevertheless, our algo-
rithm tracks the contour topology while also extracting the isosur-
face itself.

3 Definitions and Concepts

A time dependent scalar field will be defined asF : IRn
�IR! IR.

In discrete form we will have a sampling of this field as a finite
sequence of scalar fields F0;F1; : : :Fm, each of which is a simple
scalar field Fi : IRn

! IR, and all of them are defined on the
same domain. When dealing with meshes and imposed scalar fields,
this means we assume the geometry and connectivity of the mesh
does not change over time, only the function values defined on the
mesh nodes change over time. Similar to the continuity assumption
in space inside mesh cells, we assume the changes over time are
continuous. Hence, one can view time as an additional discrete
sampling of a mesh with one higher dimension (time).

Given an iso-value scalar � 2 IR and a scalar field F : IRn ! IR
an isosurface I(�) is defined as I(�) = fx 2 IRnjF (x)� � = 0g.
A time dependent isosurface of a time-dependent scalar field F

will be a sequence of isosurfaces I0(�); I1(�); : : : ; Im(�), where
Ii(�) = fx 2 IRn

jFi(x)� � = 0g. The basic query we support in
time-dependent isosurface extraction is: ”given a time interval [i; j]
and an iso-value �, return Ii;j(�) = fIi(�); Ii+1(�); : : : ; Ij(�)g”.
In the following discussion we will drop the parameter � and as-
sume we are dealing with the same � value when we refer to an
isosurface unless explicitly stated otherwise. Also, in order to dis-
tinguish between the input mesh and the isosurface mesh we use
the term node for mesh 0-dimension elements and vertices for iso-
surface 0-dimension elements.

Each isosurface It can be broken into several separate connected
components It = fCt

1; C
t
2; :::; C

t
mt
g, each of which can be consid-

ered as a separate object. We will use the term component (denoted
by Ci) as a general term for a connected component of an isosur-
face. The challenge in topology tracking of components over time
is to find a correspondence  t between the components of consecu-
tive isosurfaces It and It+1,  t : It ! It+1, for all t in the time se-
quence. This correspondence can map many components at time t
to one component at time t+1, it can map one component at time t to
many at time t+1, it can map a component at time t to no component
at t+1, and leave components at time t+1without any components
mapped to them. However, using such a correspondence, a classifi-
cation of the modifications a component can undergo through time
can be provided as follows:

a b c d

Time

Figure 2: Overview of the time dependent isosurface extraction al-
gorithm: (a) the first isosurface is extracted using the seed set al-
gorithm, (b) and (c) temporal contour propagation is used to track
components over time, along with (d) new components identifica-
tion and creation using the seed set.
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disappear A component Ct
k 2 It disappears at time t+1if
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t
k) = ;.

merge A component Ct
k 2 It is merged at time t+1if  t(Ct

k) 6= ;

and there exists at least one other component Ctj 2 It; C
t
j 6=

Ct
k such that  t(Ct

k) =  t(C
t
j).

split A component Ct
k 2 It is split at time t+1if j t(Ct

k)j >

1, i.e. if there exist fCt+1

k1
; : : : ; Ct+1

km
g � It+1 such that

 �1t (Ct+1

ki
) = Ct

k for 1 � i � m and m > 1.

continue A component Ct
k 2 It continues at time t+1if there

exists one and only one component Ct+1
k

2 It+1 such that
 t(C

t
k) = Ct+1

k .

Depending on the direction we view time (from t to t+1or vice
verse), merge and split and similarly create and disappear are oppo-
site descriptions of the same phenomenon. This means each com-
ponent of the isosurface at time t can either be a merged or a con-
tinued component from time t � 1, or it must be a newly created
component. Hence, we separate the components of It to mapped
components IMt , and new components INt . The mapped compo-
nents contain all merged and continued components IMt = fCt

2

Itj9C
t�1

2 It�1;  t(C
t�1

) = Ct
g, while the new components

are all other components INt = It n I
M
t .

Our primary goal is to efficiently produce time dependent isosur-
faces Ii;j = fIi; Ii+1; : : : ; Ijg and a sequence of correspondence
maps  i;  i+1; : : : ;  j such that the topology change of all com-
ponents can be tracked and visualized over time.

4 Extraction Algorithm

The key idea in our algorithm is to perform a temporal contour (or
surface) propagation TP : It ! fIt+1[;g on each component of
the isosurface and track through time its evolution and interaction
with other components. This propagation (see Section 5) will define
the components correspondence between consecutive time steps,
and allow us to track the topology events of components according
to our classification. Hence, we define (Ct

k; C
t+1
j ) 2  t if and only

if TP (Ct
k) � Ct+1

j and if TP (Ct
k) = ; then  t(Ct

k) = ; (Ct
k

disappears). However, there are still components Ct+1

k
at time step

t+1where  �1t (Ct+1

k ) = ;. These components are created at time
step t+1and temporal propagation fails to find them. In turn, they
are found and created using usual function domain search methods
along with spatial propagation.



Figure 2 depicts the two basic types of contour propagation we
use in the extraction algorithm: spatial contour propagation from
seed cell and temporal contour propagation. At the starting time
step i, all components are identified and constructed using the seed
set (Figure 2(a)). Later, temporal contour propagations trace the
movements of components and progressively approximate succeed-
ing components by iterative local update in the surface neighbor-
hood (Figure 2(b,c,d)). Seed sets along with spatial contour prop-
agation locate and create new contours (red component in Fig-
ure 2(d)). It is important to note that the seed set propagation algo-
rithm as well as temporal propagation will sometimes identify two
different connected components of the surface as one component
if they pass through the same isosurface cell. This situation means
that the two components are in fact very close and probably are
in the process of merging or splitting over time. Nevertheless this
situation can be corrected by post processing of the components.

As a preprocessing step we construct for each time step i, 0 �
i � m, the seed set Si of the fieldFi and build the associated inter-
val tree ITi for indexing the Si. Given the run-time query searching
for isovalue � in a time range [i; j], the extraction algorithm is spec-
ified as follows:

1. Extract isosurface Ii(�) for time step i using the seed set
Si. More specifically, After identifying seed cells which
contain � by traversing the interval tree ITi, perform spa-
tial contour propagation for each identified seed cell. This
will construct all isosurface components of time step i: Ii =
fCi

1; ; C
i
2; :::; C

i
ng.

2. For each time step t from i to j � 1 perform the following:

(a) After It is constructed, perform temporal contour prop-
agation on each component to construct the correspond-
ing components IMt+1 of next time step t+1.

(b) Use the seed set St+1 to find all newly created compo-
nents INt+1. For each seed cell whose value range con-
tains �, check if that seed cell intersects some Ct+1

k 2

IMt+1. If not, perform spatial contour tracking from the
seed cell to construct the newly created isosurface com-
ponent Ct+1

j 2 INt+1.

This approach exploits the high temporal coherency in time de-
pendent data, resulting in near optimal performance in average case.
It tracks the topology of isosurface components through time, al-
lowing to trace, classify and quantify each component for enhanced
visualization and query processing. The approach is applicable
to any structured and unstructured grid of cells on which a scalar
field is defined. In addition, it demands no complex correspon-
dence matching test between components. Lastly, since the isosur-
face It+1 is constructed progressively from It, time critical envi-
ronments can display and use temporal isosurface-approximations
using this algorithm.

5 Temporal Propagation

In this section, we describe the temporal surface propagation TP
which is the basis of our isosurface tracking algorithm over time.
As shown in Figure 2, TP is a method for tracing the deforma-
tion of individual isosurface component while the underlying field
values change over time. Given the isosurface component Ctk at
time step t, the propagation algorithm traces the path of the sur-
face movements incrementally accounting also for changes in the
connectivity of Ct

k. This process gradually deforms Ct
k to the cor-

responding isosurface components Ct+1j at time step t+1, which are
temporally continuous with Ct

k.

for each isosurface cell of time t

enqueue and mark every node in the cell
while the queue is not empty f

dequeue a node n

apply function value change to n

if signt(n) 6= signt+1(n) f

update the local isosurface connectivity change
(local means around n)

check and update components merges
g else if valt(n) 6= valt+1(n)

update the local surface geometry change
loop on neighboring cells to n

if the cell is a new isosurface cell
enqueue and mark all its unmarked nodes

g

check for disappearing or split components
track topology changes of each component

Figure 4: Outline of the temporal contour propagation algorithm.

Given a scalar field defined on a mesh and an iso-value �, the
sign of a node in the mesh is ”+” if the function value on the node is
above �, otherwise it is ”-”. If the function value is exactly �, we use
perturbation on the function value. Similar to previous isosurface
extraction algorithms, we can identify all vertices of the isosurface
as edges of the input mesh where the two end nodes have opposite
signs. These edges are intersected by the isosurface creating the
isosurface vertices. The position of which are found by interpola-
tion on the edges between the nodes. Connecting the vertices of the
isosurface inside the mesh cells will create the isosurface elements
(e.g. triangles).

Let Nt be the union of all nodes of all isosurface cells at time
t. At time t+1if the sign of a node n 2 Nt changes, the local
connectivity of the isosurface related to n changes and should be
updated. Additionally, some components might merge and others
may be split by this update and this should be tracked. If the sign
does not change but the value of n changes, we must update only
the geometry of the isosurface by moving the position of isosurface
vertices along the edges. If we apply these value changes gradually
to all nodes in the isosurface cells, the isosurface of time t will
gradually deform towards the isosurface of time t+1(see Figure 3).
After the local updates, new isosurface cells can be formed around
n. Any node in such cell which is not in Nt is added to Nt. This
process continues until no more nodes are left at Nt (for example
using a queue and iterating until the queue is empty). Figure 4
presents an outline of the TP algorithm.

5.1 Topology Tracking

Using temporal propagation we can identify four out of the five
possible topological events of components. A merge occurs if dur-
ing contour propagation a new isosurface cell is reached, which is
already a cell of another component. Therefore this check is per-
formed after updating local connectivity. In contrast, the split and
disappearance check for all components is performed after all prop-
agation is done. Continuing event occurs simply when no other
event took place. The only event which is not identified using TP
is the component creation event, for which the seed set is needed.

6 Implementation details

Time dependent scalar fields often imply very large data sizes. In
such cases representation and storage layout become an important
issue. This becomes more crucial when the data is too large to fit in
memory and out-of-core accesses must be used.



Time t1 Time t0 Time t0+1 Time t0+2

Time t0+3 Time t0+4 Time t0+5 Time t1

Figure 3: A 2D example of temporal contour propagation process for one isosurface component: in the top left the function values of nodes
change at time t1 imposing some changes of node signs (black nodes depict + sign and white nodes � sign). This makes the isosurface
of time t0 invalid. The t0 isosurface is gradually propagated (top row to the right and bottom row from left to right) by applying the value
change of nodes leaving the queue (green nodes) and updating the contour locally.

6.1 Mesh Representation

Our temporal isosurface extraction algorithm can be applied to both
structured and unstructured meshes. We assume the mesh connec-
tivity does not change over time. In structured meshes the indices
and adjacency information can be automatically determined on the
fly. The format of a 3D structured data set can therefore be seen as
an array of function values for each time step. Unstructured meshes
require some extra storage for node, edge, face and cell adjacency
information (not all of them are in fact used). However, in time de-
pendent data this overhead is not so significant since it is not time
varying, and needs to be stored only once.

The real question is how to store the time dependent scalar func-
tion values for each node. The two simplest choices are to store
the whole mesh values for each time step together (favoring spa-
tial coherency) or to store the whole sequence of values for each
node together (favoring temporal coherency). Previous work [18]
seem to suggest that especially in out-of-core situations, the former
is more efficient. In our algorithm it is also preferable due to the
heavy use of marching methods on the mesh (both for TP and for
seed set contour creation), which benefit from spatial coherency.

More complex techniques or data arrangements for out-of-core
situations can be combined with our basic approach. For instance,
instead of loading the whole mesh for time step t+1, the TP al-
gorithm only needs node function values in a small spatial range
around It. Assuming the function has some Lifshitz bound, we can
pre-fetch only cells in a certain distance from It isosurface cells,
and march inside them. Similar to [18], one can collect these cell
access requests and fetch all blocks containing the required cells
together from disk. Note however that unlike [18, 13], the cells col-
lected are not necessarily isosurface cells for It+1, but only cells
that might be encountered during contour propagation.

In addition to the mesh structure and function values, we need to
store the seed set and an interval tree for each time step. However
in practice the number of seed cells does not exceed one or two
percent of total number of cells. Therefore, the total size of this
information storage is negligible.

6.2 Surface Representation

As presented earlier we represent an isosurface by a collection of
components: It = fCt

1; :::; C
t
mg. Each component holds a list of

isosurface cells so that dynamic insertion and deletion during tem-

poral contour tracking can be efficiently performed. Merging two
or more components is performed by merging all their cell lists. In
addition, this data structure can record the history of each compo-
nent for visualizing the interaction among components (Figure 5).

Usually a surface triangle is composed of three vertices positions
or indices. We represent each triangle vertex as a mesh edge index
and an iso-value. This has several advantages. First, it relieves
the need to actually calculate intersections many times. Second, it
simplifies geometry update, for instance, when only the function
values of the two end nodes of an edge change, but the signs do
not change, no real update is needed at all. Third, it connects the
isosurface representation to the mesh and supports tracing of cells
and edges intersecting with the isosurface using the isosurface it-
self. The isosurface triangles can be extracted from the cells using
known methods [9, 11, 15].

6.3 Complexity

Several seed set generation algorithms given in [2], have a tradeoff
between the size of the set jSj = ns and the generation time (O(nc)
where nc is the number of cells in the mesh). In practice, the seed
set size is one or more orders of magnitude smaller than nc and the
set generation algorithm is performed as a preprocessing stage. Let
the number of unique minimum and maximum function values in
jSj be nu (nu � 2ns). The storage cost of the interval tree for S is
O(ns + nu) and a search for the seeds of a specific iso-value takes
O(k + log(nu)) time where k is the size of output. Using contour
propagation from seed cells takes O(ni), where ni is the number
of isosurface cells. Temporal propagation may in fact take O(nc)
depending on how far It+1 is from It, nevertheless assuming the
function is Lifshitz, we can bound the range of propagation and
visit O(ni) cells.

7 Results

We have tested several time dependent data sets querying different
iso-values and using different visualization techniques. Preprocess-
ing for generating seed set is performed on each time step. Ta-
ble 1 provides information on our test data sets. Results were com-
puted on a Silicon Graphics ONYX2 InfiniteReality2 system with
24 R12000 processors and 25GB main memory.
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Figure 5: Left: the data structure for isosurface representation as an array of components. Each component holds a list of mesh cells where
the iso-surface lays. The surface triangles can easily be extracted from the cells. Right: over time component 3 disappears and component 4
is merged with component 1. Using this data structure such topological events can easily be tracked.

Data Resolution Time steps Avg. #seeds

Vorticity
magnitude 128 � 128� 128 30 1.05%

Ocean
speed 512 � 256 � 30 112 1.11%
Gas

dynamics 256 � 256� 256 144 0.90%

Table 1: Information on time-varying test data sets.

Table 2 gives some timing results and the relationship with the
number of extracted triangles for different iso-values. The timings
are dependent on the iso-value because the number of triangles
in the isosurface varies with the iso-value. These timings include
finding isosurface cells, topology tracking and surface extraction
(which includes computing vertex positions and normals and tri-
angulation within the cells). As can be seen from figure 6, our
isosurface extraction algorithm scales approximately linearly with
respect to the number of triangles extracted. This means the search
for isosurface cells and the topology tracking do not impose any
overhead on the triangulation, and implies near optimal complexity
(the order of the size of the isosurface).

Component tracking and identification becomes most significant
when there are many evolving components in a single isosurface,
and it is difficult to distinguish between them (see Figure 7). More-
over, component separation can be used to identify interesting com-
ponents based on their quantified information such as surface area,
volume or gradients. More advanced visualization primitives can
be defined to trace and interrogate dynamic data such as tracking
isolated components movements with gradual decay of history po-
sitions (Figure 8). More efficient visualizations may be created
by rendering only sub groups of more interesting components (in
terms of number of triangles, a single or a few components may
take only a small percent of a whole isosurface), and mixing com-
ponents from different iso-values may be carried out more easily
(Figure 9). Moreover, in time-critical situations the surface propa-
gation may be interrupted and approximations of the real isosurface
may still be rendered (Figure 10).

8 Conclusion and Future Work

We have presented a fast and progressive algorithm for extract-
ing time dependent isosurfaces and tracking their components over
time. Observed average time complexity is linear in the number
of isosurface triangles. The algorithm tracks the evolution of each
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Figure 6: Number of surface triangle vs. extraction time in different
data sets. Each line represents plots for different iso-values in one
time step. All tests show that extraction time scales linearly with
the number of triangles and implies near optimal solution.

Figure 8: Isolated component tracking over time using gradual de-
cay of history positions.



Vorticity magnitude data (#triangles and seconds)

Isovalue timestep 1 timestep 2 timestep 3 timestep 4 timestep 5
4.0 255156 4.750 259974 3.955 264465 4.068 266357 3.617 269059 4.216
5.0 135284 2.568 140214 2.213 146360 2.195 147558 1.958 144532 2.212
6.0 70480 1.297 74604 1.058 78666 1.170 79214 1.070 80532 1.173
7.0 30330 0.547 36096 0.506 38928 0.474 39678 0.540 38940 0.536

Ocean speed data (#triangles and seconds)

Isovalue timestep 1 timestep 2 timestep 3 timestep 4 timestep 5
0.3 224012 4.371 225442 2.643 225188 2.644 222106 2.652 222682 2.683
0.4 135316 2.524 134650 1.537 136222 1.488 133450 1.531 132826 1.469
0.5 87620 1.688 87004 1.058 86734 1.035 87154 1.037 86416 1.042
0.6 57488 1.060 56166 0.663 56180 0.637 57524 0.666 56954 0.649

Table 2: Isosurface extraction performance and number of triangles from vorticity magnitude and ocean speed data sets for different iso-
values.

Figure 7: Standard time dependent isosurface visualization (vorticity magnitude top) vs. visualization using isosurface component identifi-
cation and tracking (vorticity and gas dynamics middle and bottom). Note for example, how the long green surface at the top frame of the
middle series changes its color when merging with a blue component.



Figure 9: Two isosurface components of different iso-value isolated and tracked over time. Note how the blue component deforms much less
than the red component.

Figure 10: An isosurface component of time t gradually evolves to the component at time t+1. Although it may create serious artifacts, this
process can be interrupted at any point and the approximated surface used for rendering.

contour component and finds useful structural information by track-
ing their topology changes. This is used to create enhanced visual-
izations of complex time-varying data set, and assist data analysis.

Future directions include the definition of other interrogative vi-
sualization techniques which would employ the tracking and topo-
logical information gathered by this algorithm. Incorporating this
technique in a more strenuous time-critical environment and in a
more general scheme to support out-of-core situations. We believe
the benefits of exploiting all three coherencies inherent to the data
(time, space and function value) by this algorithm would be demon-
strated in those situations further.
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