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Abstract

Internet radio and television stations require significant bandwidth to support delivery of high quality
audio and video streams to a large number of receivers. IP multicast is an appropriate delivery model
for these applications. However, widespread deployment of IP multicast on the Internet is unlikely in the
near future. An alternative is to build a multicast tree in the application layer. Previous studies have
addressed tree construction in the application layer. However, most of them focus on reducing delay.
Few systems have been designed to achieve a high throughput for bandwidth-intensive applications.
In this paper, we present a distributed algorithm to build an application-layer tree. We prove that
our algorithm finds a tree such that the average incoming rate of receivers in the tree is maximized
(under certain network model assumptions). We also describe protocols that implement the algorithm.
For implementation on the Internet, there is a tradeoff between the overhead of available bandwidth
measurements and fast convergence to the optimal tree. This tradeoff can be controlled by tuning some
parameters in our protocols. Our protocols are also designed to maintain a small number, O(log n), of
soft states per node to adapt to network changes and node failures.

Keywords: optimal distribution tree, streaming media, application-layer multicast, peer-to-peer

1 Introduction

Internet radio and television stations have, in the past, been operated by companies with high-performance
dedicated servers. The availability of broadband access and increasing computing performance of PCs have
made it feasible for individuals to run their own radio stations. As a result, thousands of channels are serving
multimedia on the Internet.1

These applications require one-way data transmission to a large number of receivers, for which IP mul-
ticast is an appropriate delivery model. The availability of IP multicast is, however, extremely limited, and
unlikely to improve much in the near future. An alternative to IP multicast is end-system multicast. In
end-system multicast, participants form an overlay distribution tree in the application layer and perform
multicasting among themselves. The main advantage is that it does not require multicast support from the
underlying network. The overlay multicast tree can be constructed on top of any network that provides a
unicast transport service.

Many end-system multicast systems have been proposed for different target applications. Each of them
has its own way to create a distribution tree. Of the ones that try to perform tree optimization, they

∗Research sponsored by National Science Foundation grant no. ANI–9977267 and Texas Advanced Research Program grant
no. 003658–0439–2001.

1See Icecast (http://yp.icecast.org/) and SHOUTcast (http://www.shoutcast.com/).
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generally fall into one of two categories depending on which metric they emphasize in tree construction, i.e.,
reducing delay or increasing throughput.2

Consider a set of nodes (end systems) that form an overlay on the Internet. In systems with the goal of
reducing delay [1, 3, 4, 14], a mesh consisting of all nodes and a subset of logical links connecting them are
first constructed. Then the nodes measure Internet delays of the logical links, and run a routing algorithm,
such as the distance vector algorithm, to find best paths from each node to others.

In one system with the goal of increasing throughput [11], logical links with high (available) bandwidth3

are first chosen as edges of the distribution tree. Then the system keeps trying to increase the bandwidth
between each pair of nodes by modifying the tree topology. Unlike systems with the goal of reducing delay,
for which the distance vector algorithm is proven to lead to an optimal state, the proposal in [11] lacks an
algorithmic method to achieve an optimal solution. In another proposal [5], a centralized algorithm was
presented to compute, for a given graph, a “maximal bottleneck” spanning tree rooted at a given vertex.

Since increasing throughput is more important than reducing delay in one-way multimedia delivery, it is
desirable to have a distributed algorithm that finds a tree with “maximal throughput.” However, this is not
a straightforward task due to the difficulties described below.

The first is the result of a fundamental limitation of today’s Internet, namely: there is no simple mech-
anism to measure the bandwidth available to a flow between two nodes. Generally, many packets need to
be sent to detect the congestion status of a path as well as how much bandwidth a flow can use without
adversely affecting other flows. In other words, bandwidth measurement requires a lot more traffic than delay
measurement in the Internet. Therefore, in designing the distributed algorithm, we should avoid measuring
the bandwidth of too many logical links. Thus, the first difficulty we encounter is how to choose logical links
that need to be measured. If we choose too few, we may be unable to find an optimal tree due to insufficient
information. On the other hand, if we choose too many, there would be substantial measurement overhead
on the network.

Another difficulty is node failures. Because end-system multicast depends on participating nodes, which
are user machines, rather than routers, it is likely that many nodes leave the multicast group during a session.
Losing some nodes would definitely change the optimal tree; thus the algorithm should be designed to be
adaptive, with the ability to re-compute a new optimal tree without too much additional overhead.

In this paper, we first present a distributed algorithm that builds a tree in which the average receiving
rate, computed over all receivers in the tree, is maximized. Convergence of the tree to an optimal tree is
proved under certain network model assumptions. Protocols that implement our distributed algorithm are
then designed to address the difficulties discussed above. In our protocols, each node measures bandwidth
from at most O(log n) nodes. The distribution tree is continuously updated as it converges towards an
optimal tree. When there is a node failure, our protocols will adapt and the distribution tree will start
converging towards a new optimal tree.

We evaluated our algorithm experimentally by simulation. Our simulation results show that significant
bandwidth gain is obtained within a relatively short time duration. The optimal tree derived achieves an
average receiving rate (per receiver) as much as 30 times that of a random tree depending on the network
configuration. The simulation results also demonstrate how the average receiving rate increases as the
distribution tree evolves. For a topology consisting of 51 end hosts and 100 routers, it takes about eighty
seconds to get close to the maximum. Considering the usual playback time of audio and video streams, we
believe this is reasonably fast.

The remainder of this paper is organized as follows. We introduce our network model and assumptions
in Section 2. In Section 3, we first present a centralized algorithm to find an optimal tree. We then present
a distributed algorithm that is guaranteed to converge to a tree as good as the one found by the centralized
algorithm. These results are stated as two theorems. In Section 4, we present protocols implementing the
distributed algorithm and address various implementation issues in the Internet. An experimental evaluation
of our algorithm is presented in Section 5. We conclude in Section 6.

2The throughput of a distribution tree is a notion we will make more precise later.
3For simplicity, we will use bandwidth and available bandwidth interchangeably.
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2 Network Model

It is difficult to find a simple model capturing all aspects of the Internet. In building a streaming media
distribution tree, however, our main concern is bandwidth. In other words, our goal is to find a tree that
provides the largest (available) bandwidth we can utilize. Accordingly, we develop a network model to focus
on that aspect.

Even when we limit our concern to bandwidth only, there are still many factors to be considered. Available
bandwidth is determined by many parameters. In particular, the available bandwidth between two nodes is
a function of the underlying Internet topology and existing traffic. Based upon the following observations,
we abstract away detailed topology and traffic information in our network model.4

• Usually access links are bottlenecks causing congestion while backbone links are loss-free [16].

• An access link has incoming and outgoing bandwidths that do not affect each other.

An access link means a link that connects a host or its local area network to the network of its ISP. We use
these observations to simplify our model. Since congestion occurs mainly on access links, we assume that
the bandwidth available to a flow between two nodes is determined by the congestion status of the access
links of the nodes. The links in between add delay, but do not limit the bandwidth of the flow. Based on
these observations, we propose an abstract model.

2.1 Abstract Model

A visual representation of our model is shown in Figure 1.

Internet

b i
in

node i

b i
out

Figure 1: Network Model

A node is connected to the Internet through an access
link, which has a pair of parameters: incoming and out-
going bandwidths. The incoming bandwidth of a node is
the bandwidth from the ISP to the node, and the outgo-
ing bandwidth is the bandwidth from the node to its ISP.
In Figure 1, bin

i represents the incoming bandwidth of the
access link of node i, and bout

i the outgoing bandwidth.
A configuration of our network model is defined to be
M = (N,B), where N is a set of nodes and B is the set,
{(bin

i , bout

i ), i ∈ N}. N has n + 1 elements: a sender and
n receivers. For convenience in presenting algorithms,
we assume N = {0, 1, 2, . . . , n}, where 0 represents the
sender, and {1, 2, . . . , n} receivers.

Consider a distribution tree consisting of the nodes in
N . The root of the tree is node 0, the sender. An intermediate node in the tree has one incoming connection
from its parent and one or more outgoing connections to its children. We assume that the outgoing link
bandwidth is allocated equally to its children. Let ci denote the number of children of node i. We make
the following assumption on bi,j , the edge bandwidth from node i to a child node j, for every edge in the
distribution tree.

Edge Bandwidth Assumption Each node i is characterized by bin

i and bout

i such that if node j is a

child of node i in the tree, then bi,j = min
(

1

ci
bout

i , bin

j

)

, where i = 0, 1, . . . , n, j = 1, 2, . . . , n, and i 6= j.

If backbone links are not congested, then the bottleneck between two nodes should be one of the access
links at either end. Therefore, we abstract away Internet topology and traffic by this assumption, and
consider only access link bandwidths in our abstract model. (This abstraction is used by our theorems in
Section 3. In our protocol implementation, described in Section 4, bi,j is obtained by measuring the available
bandwidth from node i to node j.)

The three quantities defined above are determined by access link characteristics. We define two more
quantities in the context of a distribution tree. The incoming (receiving) rate of node i is defined to be the
minimum of edge bandwidths on the path from the root node to node i:

4This abstraction is needed by our theorems in Section 3, but not by our protocol implementation in Section 4.
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Variable Description
bin

i incoming access link bandwidth of node i

bout

i outgoing access link bandwidth of node i

bi,j edge bandwidth from node i to node j

rin

i incoming rate of node i

rout

i outgoing rate of node i

ci number of children of node i

Table 1: Variables

rin

i = min
k=1,...,l

bik−1,ik
(1)

where (0 = i0, i1, . . . , il = i) is a path from the root node 0 to node i. The outgoing (sending) rate of node i

is defined as follows.

rout

i = min

(

rin

i ,
1

ci

bout

i

)

(2)

Table 1 summarizes the variables we have defined in this section.

2.2 Fair Contribution Requirement

The centralized and distributed algorithms presented in Section 3 are “greedy” algorithms. For these algo-
rithms, in order for the distribution tree to converge to a global optimum, rather than a local optimum, the
following condition is needed.5

Fair Contribution Requirement If bin

i > bin

j , then 1

ci
bout

i > 1

cj
bout

j , for i, j ∈ {1, 2, . . . , n}, i 6= j.

This requirement states that a node that receives more should provide more to each of its children.
Suppose this requirement is not satisfied by a node that has a large incoming access link bandwidth and,
relatively, a very small outgoing access link bandwidth. (This is typical of an ADSL access link.) If this
node is placed high (closer to the root) in the distribution tree, selected by the greedy approach on the basis
of its large incoming bandwidth without regard to its small outgoing bandwidth, then it is possible that the
tree would fail to converge to the global optimum. Thus, before using one of the algorithms in Section 3
to find a distribution tree, the values of bin

i and bout

i , for i = 1, 2, . . . , n should be chosen such that the Fair
Contribution Requirement is satisfied.

In particular, for a node with an ADSL access link, the incoming bandwidth should be reduced to a value
such that the node’s incoming and outgoing bandwidth values conform to the Fair Contribution Requirement.
On the other hand, if a node, say i, has a very large outgoing access link bandwidth relative to its incoming
access link bandwidth, it would be desirable to choose a large value for ci so long as the Fair Contribution
Requirement is not violated.

We name this requirement “Fair Contribution” because, assuming that ci is the same, for all i, the
requirement states that a node that receives more from the system should provide more to the system. We
consider this to be a basic fairness principle for peer-to-peer networks.

2.3 Tree Evaluation

The incoming rate of each receiver is a good measure for evaluating a distribution tree, because it represents
the amount of data that can be delivered from the root to the receiver per unit time. Given a network model

5See proof of Theorem 1 in Appendix A.
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Centralized-Optimal-Tree(M)
1 T ← ∅

2 X ← {0}
3 Y ← N − {0}
4 rin

0
←∞

5 while Y 6= ∅

6 do v ← a node in X such that rout

v = maxi∈X rout

i

7 w ← a node in Y such that bin

w = maxi∈Y bin

i

8 T ← T ∪ {(v, w)}
9 X ← X ∪ {w}

10 Y ← Y − {w}
11 if |{x|(v, x) ∈ T}| = cv

12 then X ← X − {v}
13 return T

Figure 2: Centralized Algorithm

M = (N,B) and a tree consisting of the nodes in N , we can compute the incoming rate for every node
except the root. A list of these rates is called a rate vector :

R = (rin

1
, rin

2
, . . . , rin

n ) . (3)

Note that each tree has an associated rate vector.
We can compare distribution trees by comparing their rate vectors. However, it is difficult to determine

which vector is better. The best vector for one receiver is not necessarily the best for another. We can define
a partial order as follows: For rate vectors, R1 = (r1

1
, r1

2
, . . . , r1

n) and R2 = (r2

1
, r2

2
, . . . , r2

n), R1 ≥ R2 if and
only if r1

i ≥ r2

i for all i, 1 ≤ i ≤ n. With the partial order, although we do not know in general which rate
vector is “best,” it should be clear that if there is a best vector, it must be a rate vector that is not less
than any other rate vector. However, for a given network model M , there are usually more than one such
“locally optimum” rate vectors. Trying to find one of these is too conservative a strategy. If we stop after
finding a rate vector that is not less than any other, we may overlook another that increases a large amount
of rate for one receiver by sacrificing a little for another. To take the overall rate increase into account, we
will evaluate a distribution tree by its average incoming rate 1

n

∑n

i=1
rin

i . In the next section, we present a
centralized algorithm and then a distributed algorithm to find a distribution tree that maximizes the average
incoming rate of receivers.

3 Optimal Algorithms

We define an optimal distribution tree to be a tree that maximizes the average incoming rate of a receiver.
Given an abstract network model, M = (N,B), we can find an optimal distribution tree by enumerating
all trees. However, it is an infeasible approach even with a reasonable size N since there are exponentially
many trees. We need more efficient algorithms to find an optimal tree.

In this section, we will first present a centralized algorithm and prove that it computes an optimal tree.
Next we present a distributed version of the algorithm and prove that it converges to a tree that has the
same rate vector as the optimal tree computed by the centralized algorithm. That is, the tree obtained by
the distributed algorithm also maximizes the average incoming rate of a receiver.

3.1 Centralized Algorithm

Figure 2 shows the centralized algorithm to find an optimal distribution tree. X is a set of nodes that can
accommodate more children, and Y a set of nodes that are not added to the tree yet. Initially, only node 0,
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Variable Description
p parent
C set of children
A set of ancestors
bin

x incoming access link bandwidth of node x

bout

x outgoing access link bandwidth of node x

bx,c bandwidth from node x to a child c (c ∈ C)
cx maximum number of children
rin

x incoming rate of node x

rout

x outgoing rate of node x

ba,x bandwidth from an ancestor a to node x (a ∈ A)
rin

a incoming rate of an ancestor a (a ∈ A)

Table 2: State variables of node x

Message Sender Meaning
〈probe; i, rin

i , bin

i , bout

i , cy〉 i or receiver’s parent The receiver is asked to be a new parent of node i.
〈child; i〉 receiver’s parent The receiver is asked to accept node i as a child.
〈accept; i〉 i Node i has accepted the receiver as its child.
〈leave; i〉 i Node i is no longer a child of the receiver.

Table 3: Messages of Distributed-Optimal-Tree (0 ≤ i ≤ n)

the root node, is in X, and all other nodes are in Y . In each iteration, the algorithm selects a node that can
provide the highest outgoing rate in X, and a node that has the highest incoming access link bandwidth in
Y . The edge connecting them is then added to the tree T . If the node selected in X cannot accept a child
any more, it is deleted from X.

This algorithm is similar to the centralized algorithm in [5] in that both algorithms are based upon the
greedy method [6]. However, both our abstract model and objective function for optimization are different
from the ones in [5].

A proof of the following theorem about our centralized algorithm is given in Appendix A.

Theorem 1 With Edge Bandwidth Assumption and Fair Contribution Requirement, Centralized-Optimal-

Tree(M) yields a tree T that maximizes the average incoming rate 1

n

∑n

i=1
rin

i .

3.2 Distributed Algorithm

In a distributed version of our algorithm, each node maintains O(log n) states about its ancestors in the
tree. The distributed algorithm is specified by the actions of each node, presented in Figure 3, where node
x denotes some node in N . State variables maintained by node x are shown in Table 2. Protocol messages
sent and received between nodes are shown in Table 3.

Initially, we assume that the state variables, p and C, in each node have been assigned values such that
the nodes in N form a random tree rooted at node 0. The variables, p and C, are updated as shown in code
for node x in Figure 3. In our abstract network model, bin

i , bout

i , and ci, are known constants, for all i ∈ N ,
and they satisfy the Fair Contribution Requirement. Also, bi,j , for all i, j ∈ N , are known constants, and
they satisfy the Edge Bandwidth Assumption. (In our protocol implementation of the distributed algorithm,
presented in Section 4, we describe several protocols that provide node x with up-to-date values of its
variables.)

The code for node x in Figure 3 consists of five parts. In the first part (Lines 1–4), node x chooses an
ancestor randomly. Random choice does not compromise algorithm correctness as long as the root node has
nonzero probability to be chosen. It only affects how fast a tree converges to an optimal distribution tree.
If the chosen ancestor can be a better parent than its current one, node x sends a 〈probe〉 message to the

6



Distributed-Optimal-Tree

. Code for node x (0 ≤ x ≤ n).
1 periodic probe:
2 choose a random ancestor a ∈ A

3 if min(rin

a , ba,x) > rin

x

4 then send 〈probe; x, rin

x , bin

x , bout

x , cx〉 to a

5 upon receiving 〈probe; y, rin

y , bin

y , bout

y , cy〉:
6 if y 6∈ C and rin

y < rout

x

7 then if |C| < cx or minv∈C rout

v < min
(

rout

x , bin

y , 1

cy
bout

y

)

8 then NewChild ← y

9 else if minv∈C bx,v > rin

y

10 then m← a random child
11 send 〈probe; y, rin

y , bin

y , bout

y , cy〉 to node m

12 else ignore the 〈probe〉 message
13 else ignore the 〈probe〉 message

14 upon receiving 〈child, y〉 or NewChild 6= Nil:
15 if NewChild 6= Nil

16 then y ← NewChild
17 NewChild ← Nil

18 C ← C ∪ {y}
19 if |C| > cx

20 then find l such that bx,l = minv∈C bx,v

21 C ← C − {l}
22 if y 6= l

23 then send 〈accept; x〉 to y

24 find i such that bx,i = maxv∈C bx,v

25 send 〈child; l〉 to node i

26 else send 〈accept; x〉 to y

27 upon receiving 〈accept; y〉:
28 send 〈leave; x〉 to node p

29 p← y

30 upon receiving 〈leave; y〉:
31 C ← C − {y}

Figure 3: Distributed Algorithm

ancestor. The second part (Lines 5–13) describes the actions taken when a node receives a 〈probe〉 message.
If the node cannot provide a higher rate than the current incoming rate of the probing node, the message is
discarded. If it has room for a new child or the probing node is able to provide a higher rate to child nodes
than one of the children of x, it accepts the probing node by setting NewChild to the probing node, which
activates the third part of its code. Otherwise, the 〈probe〉 message is forwarded to a node chosen randomly
among its children. The reception of a 〈child〉 message is handled in the third part (Lines 14–26). The new
node is added to the children set, and the worst child (lowest edge bandwidth) is cut and forwarded to the
best child. The fourth part (Lines 27–29) handles the reception of an 〈accept〉 message from a new parent,
and the last part (Lines 30–31) handles the reception of a 〈leave〉 message from a child.

Theorem 2 With Edge Bandwidth Assumption and Fair Contribution Requirement, Distributed-Optimal-

Tree makes the distribution tree converge to a tree that has the same rate vector as the one obtained with
Centralized-Optimal-Tree(M).
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A proof of Theorem 2 is presented in Appendix B.

4 Protocol Implementation

We have proved that Distributed-Optimal-Tree finds an optimal tree for the abstract network model. To
implement the algorithm, however, several protocols are needed to initialize state variables in each node and
measure up-to-date values of these variables, namely: the Join protocol, the Edge Bandwidth Measurement
protocol, the Bottleneck Discovery protocol, and the Ancestor Token protocol.

4.1 Joins

The distributed algorithm is assumed to begin with a tree consisting of all participating nodes, which is
unrealistic. For implementation, we provide the Join protocol which specifies how a joining node finds an
existing tree node to which it attaches as a child.

For streaming media distribution, we assume that each joining node knows the root (sender) address,
which can be obtained through an out-of-band channel, such as WWW. When the root receives a join
request from a node, say x, the root accepts x as a child if the root has fewer children than c0. Otherwise,
the root replies to the request with the address of one of its children, say node i. Then the joining node
sends a join request to i. The above procedure repeats until the joining node is accepted by some node in
the tree. With this protocol, the processing overhead of a join is distributed over all nodes and the sender’s
load is much reduced. Note that this protocol allows a joining node to join the tree if it knows the address
of any existing node in the tree. Therefore, the sender’s load can be further reduced by simply announcing
addresses of other tree nodes, in addition to the sender, over the out-of-band channel.

When the request of a joining node, say x, is accepted by a tree node, say y, y sends to x a range of
sequence numbers indicating the part of the data stream currently available from y. Then x sends to y a
chosen starting sequence number in the range, and y starts data transmission. After joining the tree, the
state variables of x (1 ≤ x ≤ n) are initialized as follows: p = y, cx = 2, C = ∅, A = ∅, bin

x = bout

x =∞, and
rin

x = rout

x = 0. The root node has the same initial values except one: rin

0
=∞. After initialization, node x

can begin executing the algorithm in Figure 3 to try to find its optimal position in the tree.

4.2 Tree information update

To run Distributed-Optimal-Tree, state variables in node x that were assumed to be up-to-date in the
algorithm should be explicitly measured or calculated. We describe several more protocols and explain below
how to estimate these variables.

Edge bandwidth bx,c The edge bandwidth from a node x to its child node c is measured with the Edge
Bandwidth Measurement protocol. To avoid introducing extra traffic, this protocol measures bandwidth
from actual data transmission. When the data stream is forwarded on the distribution tree from node x

to node c, x transmits data packets using the congestion control mechanism of TCP.6 In the data stream,
there are marker packets, or markers, inserted by the root. In between two consecutive markers, 32 kB of
data are transmitted. A marker has three fields: seq from, seq to, and r in. The last field, r in, is the
incoming rate of the node who sends the marker; this field, updated at every node, is used by the Bottleneck
Discovery protocol to be described below. seq from and seq to are set by the root and they do not change.
They contain the sequence numbers of the data packet following this marker, and the data packet preceding
the next marker.

When node c receives a marker, the time is recorded. Then node c tries to determine when it finishes
receiving the 32 kB of data packets that follow this marker. The finishing time is detected either by the
arrival of the next marker or a data packet whose sequence number is larger than or equal to seq to. Node
c calculates throughput from the amount of data received divided by the elapsed time from receiving the
marker to receiving the last data packet. Node c then sends to x a protocol message containing the smaller
of this throughput value and bin

x . This smaller value is used as an estimate of bx,c at both nodes. Edge

6Our data transport protocol does not use other features of TCP, such as reliability.
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bandwidth measurements are carried out by node c for every data interval in between consecutive markers.
(Note that in node x, until it has receive bx,c from c for the first time, c is excluded whenever node x compares
its children to select one of them in the distributed algorithm.)

Throughput is a convenient metric for available bandwidth, used in some previous studies [11, 9]. Other
available bandwidth estimation methods [8, 10] can also be used instead in our protocols. A disadvantage
of using throughput to estimate bandwidth is that x should have received all of the data packets between
two markers before it forwards the first marker to c. Otherwise, data transmission rate may be limited by
the receiving rate of x, rather than the bandwidth between x and c. It certainly increases latency. Although
we can avoid this latency by using dummy data to measure bx,c, we choose to use the actual data stream
because our protocols are designed for bandwidth-intensive applications.

Outgoing access link bandwidth bout

x bout

x is estimated as follows.

bout

x =

{ cx

|C|

∑

c∈C bx,c if C 6= ∅

∞ otherwise
(4)

where C is x’s set of children. When |C| = cx, the above estimate is simply the total edge bandwidth and
might be inaccurate if the outgoing access link is not saturated. At an intermediate node in a distribution
tree, there is usually more outgoing traffic than incoming traffic because the node has more than one child.
Besides, an access link with more outgoing bandwidth than incoming bandwidth is rare. Therefore outgoing
links are likely to be congested and the total edge bandwidth would be a good estimate for the outgoing
access link bandwidth. When |C| < cx, the above formula tends to overestimate bout

x and accordingly gives
an advantage to x in finding its position in the tree. However, in the case that x is located higher in the
tree than it should be, x has a higher probability to get a new child. Eventually C of x becomes full and the
inaccuracy is corrected.

Number of children cx and incoming access link bandwidth bin

x Initially cx is set to 2. To satisfy
Fair Contribution Requirement, bin

x is assigned to be 1

cx
bout

x . Although this is a stronger condition than that
in Fair Contribution Requirement, it is simple and easy to implement. In this case, if node x is willing to
support more children without reducing its current incoming rate, it can increase cx while not violating Fair
Contribution Requirement so long as the following condition is satisfied.

bin

x =
1

cx

bout

x > rin

x (5)

The reason is as follows. When x increases cx, it should decrease bin

x to the new value of 1

cx
bout

x to satisfy Fair

Contribution Requirement. The reduced bin

x might cause the optimal position of x to be moved to another
position by the algorithm. However, rin

x remains unchanged, since any node y on the path from the root to
x has a higher or equal incoming bandwidth, i.e. bin

y ≥ bin

x . Because 1

cy
bout

y = bin

y ≥ bin

x , the new incoming

rate of x is limited only by its own incoming bandwidth, bin

x , which by Eq. 5 is not smaller than the previous
incoming rate of x.

Incoming rate rin

x The incoming rate of node x is provided by our Bottleneck Discovery protocol as
follows. As mentioned in the presentation of edge bandwidth measurements, the root node sends a marker
packet periodically. The last field of the marker, r in, is set to “infinity” by the root. When a node, say
i, receives the marker from its parent p, it compares r in in the marker and bp,i measured by i. If bp,i is
smaller, i overwrites r in with bp,i; otherwise, it is left unchanged. The updated marker is then forwarded
by i to its child nodes. Thus, after the marker reaches node x and has been updated by x, r in contains the
minimum edge bandwidth on the path from the root to node x, which is rin

x .

Outgoing rate rout

x When node x has rin

x , bout

x , and cx, rout

x is obtained directly from Eq. 2.
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Ancestor information A, rin

a , ba,x State variables containing information about ancestors are used only
in the first part (Lines 1–4) of Distributed-Optimal-Tree, where node x finds an ancestor, say a, to
probe. The edge bandwidth ba,x should be known in Line 3 for x to decide if ancestor a can provide a higher
rate. Since each node knows edge bandwidths from its parent to itself and from itself to its children only
from the Edge Bandwidth Measurement protocol, ba,x needs to be measured separately. A concern is that
measuring ba,x may overwhelm node a if many descendants ask a to perform measurement simultaneously.
So, instead of letting x choose a arbitrarily, we design the Ancestor Token protocol which takes care of
choosing an ancestor in Line 2 and measuring ba,x in Line 3 of the algorithm.

In the Ancestor Token protocol, node a sends out a token (packet) whenever a has one or more children.
The token contains rin

a . The token is passed to a’s descendants as follows. When node a issues a token, it
selects a child randomly, and passes the token to the child. When node x receives a token from a, it also
passes the token to a randomly selected child if a is its parent. Otherwise, it either keeps the token with
probability p, or forwards the token to a randomly selected child with probability 1− p. If x is a leaf node,
it always keeps the token. Keeping the token means that x choose a in Line 2. While x has the token from
a, it is entitled to measure ba,x. Note that x retrieves rin

a from the token, which is needed in Line 3.
The measurement procedure is similar to the one in the Edge Bandwidth Measurement protocol. Each

node is expected to store in its buffer at least two consecutive marker packets and all data packets in between
them. Node x sends a protocol message to a requesting measurement and data transmission to x. Then a

transmits the first marker, data packets, and last marker. (Note that the markers carry rin

a needed by x.)
ba,x is estimated as in the Edge Bandwidth Measurement protocol. One difference is that the end of data
transmission is detected by timeout in case the second marker is lost.

After ba,x has been measured or the token is lost (detected by timeout), a is ready to issue a new one.
By adjusting how often tokens are issued, each node can control the amount of traffic used for bandwidth
measurement from itself to descendants.

After getting rin

a and ba,x, x runs the remaining part (Lines 3–4) of the algorithm. Note that the Ancestor
Token protocol removes the need for keeping information on ancestors. That is, A is no longer needed to run
the algorithm, and rin

a and ba,x are provided or measured when needed. Therefore the amount of information
kept by each node is O(cx).

4.3 Node leaves and failures

In end-system multicast, we should pay more attention to node failures, because end systems are less reliable
than routers in IP multicast. Therefore, it is critical to have address information about ancestor nodes. In
our implementation, an important side effect when a node issues a token packet is propagating the node’s
address to descendant nodes. When a node has lost its parent, it is desirable for the node to contact its
closest ancestor in the tree. We add a field called distance into the token packet to enable each node
to construct a path from the root to itself. distance is initially set to 0 by the node issuing a token, and
incremented by one by every node receiving it. Each node caches a list of ancestors containing their addresses
and distances. Note that these are soft states to help recovery from node failures; with the Ancestor Token
protocol, there is no longer any need for A in our algorithm implementation. If a node detects the loss of its
parent by timeout, it sends a join message to nodes in its ancestor cache starting from the closest one. In
the case of a voluntary leave, a leaving node sends its parent’s address to all its children, so that they can
send join messages to their grandparent.

4.4 Rate adaptation

In an optimal distribution tree, a node farther from the root has a lower incoming rate. Thus it may be
necessary for a node to make the data stream forwarded to its child have a lower rate than the rate of the
data stream it receives. A straightforward way to deal with this situation is to transcode the data stream
whenever its rate should be lowered [13]. However, it may impose too much processing overhead on nodes.
A better solution is to use hierarchical encoding.

Multimedia data are often encoded in layers, such that the sender provides a base layer and many
enhancement layers. A receiver then subscribes to the base layer and upper layers to the extent allowed
by its incoming rate. If a server makes as many layers as receivers, then every receiver can fully utilize its
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available bandwidth. On the other hand, with a small number of layers, a tree topology change might not
lead to quality improvement if the new incoming rate of a node does not exceed the cumulative rate of the
next layer. However, Yang et al. have shown that 80% of the average incoming rate can be utilized with a
few (4 or 5) layers if the rates of layers are chosen carefully [17]. This indicates that available bandwidth
increase is likely to improve quality for receivers when layered encoding is used.

5 Evaluation

To evaluate our protocols, we run simulations using several distributions of access link bandwidths. There
are various types of access links ranging from 56 kbps telephone lines to dedicated high-speed lines with
bandwidth higher than 1 Mbps. Distribution of access link bandwidths also varies. In the simulations, we
use the following distributions that include both slow (< 56 kbps ≈ 0.05Mbps) and fast (≥ 5 Mbps) links.
Similar distributions have been used in previous multicast studies [12, 17].

• A uniform distribution over the interval [0.05, 5).

• A normal distribution with mean 2 and standard deviation 2.

• A bimodal distribution consisting of two normal distributions. The means are 0.05 and 2.5, and the
standard deviations are 0.02 and 2, respectively. In our simulations, twenty percent of the receivers
are selected from the first normal distribution.

5.1 How good is the optimal tree?

The first question to investigate is whether it is worthwhile to compute an optimal tree. Randomly-
constructed trees are compared with optimal trees to show that an optimal tree actually increases the
average incoming rate significantly.

A random tree is a tree built with a given number
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Figure 4: Optimal Trees vs. Random Trees

of nodes, whose access link bandwidths are drawn from
one of the three distributions described above. An opti-
mal tree with the same set of nodes is computed using
Centralized-Optimal-Tree(M). We plot the average
incoming rates of both trees in Figure 4, with the number
of nodes varied from 100 to 800. Each point in the figure
represents the mean over ten simulations.

Though the actual values depend on distributions, an
optimal tree has a much higher average incoming rate than
a random tree. With the bimodal distribution, an opti-
mal tree achieves a rate 30 times higher than the rate of
a random tree. Note that random trees with the bimodal
distribution have lower average incoming rates than those
with the normal distribution, even though the mean of the
bimodal distribution is larger than that of the normal dis-
tribution. The reason is that twenty percent of the nodes drawn from the bimodal distribution have very
small bandwidths. It means that a small fraction of low bandwidth users can significantly slow down a
large part of the tree. In this case, tree improvement is critical for the performance of bandwidth-intensive
multicast applications.

Another thing to notice in Figure 4 is that the average incoming rate decreases (moves toward the origin)
as the number of nodes increases. Such decrease is more noticeable for random trees. The corresponding
decrease for optimal trees is, however, relatively small. Therefore, a tree with more nodes gets more benefit
by computing an optimal tree.

11



 0

 100

 200

 300

 400

 500

 600

 700

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
C

on
ve

rg
en

ce
 T

im
e 

(R
ou

nd
s)

p

100 nodes
200 nodes
400 nodes
800 nodes

Figure 5: Convergence Time vs. p

5.2 Convergence speed

Even when the average incoming rate of an optimal tree is much higher than that of a random tree, how
fast a random tree converges to an optimal tree is more important in practice. In this section, we investigate
factors related to the convergence speed, especially the token keeping probability p and the number of nodes.

The convergence speed is heavily dependent on how tokens are distributed, because they give each node
chances to relocate itself. Token distribution is governed by the Ancestor Token protocol with parameter
p, the probability for a node to keep a token. Figure 5 shows how long it takes to achieve 80% of the
maximum average incoming rate with different p values. Each point represents an average over ten runs.
To measure elapsed time in the simulations, we use a round as a time unit. A round is the period during
which each node issues a token once. We assume that every node issues tokens periodically. One round
should be long enough for token propagation and edge bandwidth measurement. We also assume that
edge bandwidth measurements are accurate in this section. The effect of inaccurate measurements will be
discussed in Section 5.3.

As shown in Figure 5, p should be large in order for fast increase of average incoming rate. With a small
p, most tokens are used by leaf nodes, and the majority of the probe messages caused by those tokens are
discarded in the second part (Lines 5–13) of Distributed-Optimal-Tree. In simulations with p larger
than 0.9, the speed gain in achieving 80% of the maximum becomes negligible. So we use p = 0.9 in later
simulations.

Figure 6 demonstrates how the average incoming rate changes over time when p = 0.9. A tree has 500
nodes, and the average incoming rate of the tree is normalized with respect to the maximum average incoming
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rate. The evolution of average incoming rate looks similar for all bandwidth distributions. Convergence to
the maximum value takes hundreds of rounds. However, most benefits of the algorithm can be achieved
within a short duration, about 50 rounds. To show that convergence time is not sensitive to the number of
nodes, we plot the normalized average incoming rate both at the beginning and after 50 rounds in Figure 7.
The normalized average incoming rate of each point is obtained by taking the average of 10 runs.

Again, all three trees with different bandwidth distributions show similar behaviors. Note that the average
incoming rates after 50 rounds decreases as the number of nodes increases from 100 to 800. However, the
decrease speed is slow. The average incoming rate for 800 nodes is 10% less than that for 100 nodes. Besides,
the initial average incoming rates also decrease as the number of nodes increases; in fact, the amount of
decrease is more than 30% from 100 nodes to 800 nodes. Therefore, the convergence speed is actually higher
for a larger group.

These simulations show that the benefits of an optimal tree are significant and that most of them are
achievable within a relatively short time.

5.3 Bandwidth measurement errors

We assumed that edge bandwidth measurements are accurate in the simulations presented in Section 5.2. In
practice, however, edge bandwidth measurements may contain errors. These errors would adversely affect
our protocols and lead to a sub-optimal tree.

In Figure 8, we investigate the impact of inaccurate bandwidth measurements on the average incoming
rate. The tree has 500 nodes. Whenever a node measures an edge bandwidth, the value is drawn from the
normal distribution with a mean value equal to the accurate edge bandwidth. We change the coefficient of
variation (CoV) of the normal distribution to vary the degree of errors. The ratio of the average incoming
rates (after 50 rounds) for trees with inaccurate and accurate measurement is plotted in Figure 8.

The ratio of the average incoming rates decreases linearly as CoV increases. In order to achieve a ratio
higher than 0.8, CoV should not exceed 0.3. Some congestion control protocols designed to avoid sending rate
fluctuations have sending rate CoV lower than 0.3 [18]; therefore, the throughput of one of these protocols
would be suitable for edge bandwidth estimation in our algorithm implementation. Protocols with larger
CoV like the AIMD (additive increase/multiplicative decrease) protocol of TCP can also be used by having
sufficiently large measurement timescale to decrease CoV [7].

Figure 9 shows the average incoming rate traces using AIMD throughput to estimate edge bandwidths.
The simulations are run using the ns–2.1b9 simulator,7 for a topology generated with the Transit-Stub model
of Georgia Tech Internetwork Topology Models (GT-ITM) [2]. The topology contains 100 routers: 75 stub
routers and 25 transit routers. 51 nodes are added to the topology. One of them is the sender, and the other

7http://www.isi.edu/nsnam/ns/
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nodes are receivers. Access link bandwidths are drawn from the uniform, normal, and bimodal distributions
described at the beginning of this section. Due to large variation in throughput measurements, the average
incoming rate curves show large fluctuations. One thing to notice is that the average incoming rate is much
lower than the average of the bandwidth distribution. The first reason is, as we have mentioned before, that
measurement errors result in a low average incoming rate. The second is that throughput measurements with
32 kB blocks give a significantly lower value than the actual edge bandwidth, especially for those with high
bandwidth; a 32 kB block may fail to saturate such a high bandwidth edge. Due to low link utilization, the
measured edge bandwidth becomes much lower than the actual value, and the average incoming rate is also
lower than it should be. However, the algorithm is still effective because all it needs is relative comparison
among edge bandwidths.

Even with the inaccurate bandwidth measurements, the curves in Figure 9 look similar to those in
Figure 6. In Figure 9, the average incoming rate increases for about eighty seconds and stays at a relatively
stable level. Since the usual playback time of audio and video streams exceeds minutes and even hours, we
believe this is acceptable.

6 Conclusion

Finding a good tree topology is critical for the performance of bandwidth-intensive multicast applications.
We have proposed a distributed algorithm to build a tree in the application layer, and proved that it
finds an optimal tree, which maximizes the average incoming rate of receivers under certain network model
assumptions. Unlike other approaches using heuristics to find a local optimum, our algorithm is always
heading towards the global optimum. We have described protocols to implement the algorithm on the
Internet. Since a node does not keep any hard state in our implementation, it is resilient to membership
changes and failures. Any node can take care of join requests in the same way as the root does, and can
easily recover from leaves or failures of other nodes.

Our protocol implementation has room for improvement, especially in bandwidth measurement. The
AIMD throughput has large variations, caused in part by short-term unfairness of the protocol and in part
by interference from other flows. The former is avoidable by adopting a more fair and smoother protocol such
as TFRC [7] and TEAR [15]. Because a basic assumption of our algorithm is that a node can measure the
bandwidth between another node and itself, we expect that a more accurate and stable estimation technique
will lead to better algorithm performance. This is a topic of our future study.
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A Proof of Theorem 1

Proof Let T be the tree built with Centralized-Optimal-Tree(M) and R = (rin

1
, rin

2
, . . . , rin

n ) its rate
vector. Suppose that T ∗ is a tree that maximizes the average incoming rate and that its rate vector is
R∗ = (rin

1

∗
, rin

2

∗
, . . . , rin

n

∗
). Without loss of generality, we assume that (1, 2, . . . , n) is the order in which

receiver nodes are added to the tree T by Line 8 of the algorithm. We will show by induction that T ∗ can
be transformed into T without reducing any incoming rate, which proves that T also maximizes the average
incoming rate.

The transformation procedure consists of n steps, where n is the number of receivers. At ith step, node i

is relocated in the tree so that nodes 0, 1, . . . , i have the same topology as in T . For example, we start with
T ∗ whose root is node 0. Though node 1 is a child of node 0 in T by the algorithm, it may not be the case in
T ∗. Then, at the first step, we make node 1 a child of node 0, and adjust other child nodes of node 0 not to
exceed the number of children c0. We will explain how to adjust other nodes later. After this step, we have
a tree that has node 0 as its root and node 1 as 0’s child. At the second step, node 2 is relocated so that a
subtree containing node 0, 1, and 2 have the same topology as in T . This transformation is continued until
node n is relocated. At each step, we make sure that the average incoming rate of the transformed tree is
equal to that of T ∗.
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We use induction on the number of steps in transforming T ∗ into T . Let Ti denote the transformed tree
after i steps. Then we are to prove that Ti has the following properties for all i, where 0 ≤ i ≤ n.

1. Nodes 0, 1, . . . , i in Ti have the same topology as in T .

2. The average incoming rate of Ti is equal to that of T ∗.

Note that Ti maximizes the average incoming rate if the second property holds.
The base case is trivial, because after zeroth step, the transformed tree T0 is T ∗ itself, and node 0 is

located at the root of the tree both in T0 and T ∗.
Suppose as induction hypothesis that both properties hold when i = k − 1.
Let the rate vector of Tk−1 be R′ = (rin

1

′
, rin

2

′
, . . . , rin

n

′
). By the induction hypothesis, rin

i

′
= rin

i for all i,

1 ≤ i ≤ k− 1. The comparison of rin

k and rin

k

′
gives two cases: (i) rin

k < rin

k

′
and (ii) rin

k ≥ rin

k

′
. We first show

that (i) leads to a contradiction.
Assume that (i) is true. Let node j be the first node on the path from the root to node k in Tk−1 that

is not in {0, 1, 2, . . . , k − 1}. If j = k, k’s parent in Tk−1 must be in {0, . . . , k − 1} and have an outgoing

rate than k’s parent in T , because rin

k < rin

k

′
. This is impossible because of Line 6. If j > k, then rin

j

′
≥ rin

k

′

because k is j’s descendant. From this and (i), we conclude rin

j

′
> rin

k , which means j should have been
chosen instead of k in building T . It contradicts the assumption that T is obtained by the algorithm.

Now only (ii) can hold.

rin

k ≥ rin

k

′
(6)

Consider k’s position in T . If the position is empty in Tk−1, then moving k’s subtree to that position does
not decreases any incoming rate of nodes in k’s subtree, because k’s position in T is chosen in Line 6 to
maximize k’s incoming rate when Edge Bandwidth Assumption holds.

If the position is not empty in Tk−1, let l be the node occupying the position. The left tree in Figure 10
represents Tk−1, and the right represents Tk. The area surrounded with a dotted line is the common part of
T and Tk−1, and contains nodes 1, 2, . . . , k − 1.

We know

rin

k ≥ rin

l

′
(7)

because k has been chosen in Line 7 of the algorithm. There are two possibilities depending on whether k is
l’s descendant or not. If it is, we exchange k and l, and if it is not, we exchange k’s subtree and l’s subtree.
We will show that neither case decreases any incoming rate.

As for node k, it will have the incoming rate rin

k after exchange since the new position is the position of
node k in T . By Eq. 6, k’s incoming rate does not decrease and neither of its descendants if we exchange
the subtrees.
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To calculate l’s new incoming rate, suppose that p and q are parents of l and k in Tk−1, respectively. Then
rout

p = rout

p
′
≥ rout

q
′
by the algorithm and Fair Contribution Requirement. Because the new incoming rate

of l is to be the minimum of rout

q
′
and bin

l by Edge Bandwidth Assumption, there are two cases depending

on which value is the smaller. If rout

q
′
≥ bin

l , l’s new incoming rate after exchange will be bin

l , which is equal

to bin

l

′
. If rout

q
′
< bin

l , l’s new incoming rate will be rout

q
′
, which is equal to rin

k

′
, since bin

l ≤ bin

k by Line 7.

Therefore, l’s new incoming rate is at least min(bin

l

′
, bin

k

′
).

Then the lower bound of the net effect for k’s and l’s incoming rates is as follows.

(k’s rate change)− (l’s rate change) ≥ (bin

k − bin

k

′
) +

(

min(bin

l

′
, bin

k

′
)− bin

l

′
)

≥ 0 (8)

In the case where k is l’s descendant, any incoming rate of the nodes on the path from l to k does not
decrease after the exchange of k and l, because k’s incoming rate does not decrease. Incoming rates of k’s
descendants also do not decrease because the nodes on the path from the root remain same and thus they
have the same bottleneck. By the arguments above and Eq. 8, the average incoming rate does not decrease
after the exchange of k and l.

When the subtrees of k and l are exchanged, it is clear that incoming rates of k’s descendants do not
decrease because k’s incoming rate does not. Consider l’s descendants. The incoming rate of l decreases if
the new value is rin

k

′
, which happens to be smaller than the previous value rin

l

′
. Before deriving the incoming

rate changes of l’s descendants, we claim rout

q
′
≥ min

(

bin

k , 1

ck
bout

k

)

. If not, there exists a bottleneck node m

on the path from 0 to k such that rout

m

′
is equal to rout

q

′
. It means we can achieve a higher average incoming

rate by exchanging node m and node k, which contradicts that Tk−1 maximizes the average incoming rate.
We know bin

l ≤ bin

k by Line 7, and accordingly 1

cl
bout

l ≤ 1

ck
bout

k by Fair Contribution Requirement. By

this and the previous claim, we get rout

q
′
≥ min

(

bin

l , 1

cl
bout

l

)

. It means that q provides a higher rate than l

can forward to its children. Hence the incoming rates of l’s descendants do not decrease.
Therefore, by exchange, nodes 0, 1, . . . , k have the same topology as in T , and the average incoming rate

of Tk−1 is not less than that of T ∗. It means the average incoming rate should be equal to that of T ∗ because
T ∗ is an optimal tree. Thus two properties hold when i = k.

By induction, Tn maximizes the average incoming rate. Since Tn = T by the first property, T is also a
tree that maximizes the average bandwidth. �

B Proof of Theorem 2

Proof We will show that Distributed-Optimal-Tree makes a tree converge to an optimal tree by
proving (i) that nodes that are already in their optimal positions do not move any more and (ii) that nodes
not in optimal positions move to their optimal positions by the algorithm. We mean by an optimal position
the position where a node is located by Centralized-Optimal-Tree(M).

Without loss of generality, we assume that (1, 2, . . . , n) is the order in which receiver nodes are added
to the tree T by Centralized-Optimal-Tree(M). Then Distributed-Optimal-Tree locates nodes in
their optimal positions in this order.

We use induction on nodes. The base case is trivial. Node 0 is always in its optimal position and never
moves.

Suppose as induction hypothesis that nodes 1, 2, . . . , k − 1 are in their optimal positions, and will not
move any more. For any node i < k, every 〈probe〉 message from i is discarded either in Line 6 or in Line 7 of
Distributed-Optimal-Tree because of the following reasons. Assume i sends a 〈probe〉 message and let p

denote i’s parent. Note that rin

i = rout

p because i sends a 〈probe〉 message only when bin

i is not the bottleneck.

Suppose node j receives the 〈probe〉 message. If the message is not discarded in Line 6, rout

p = rin

i < rout

j ,
which means j must be chosen earlier than p in running Centralized-Optimal-Tree(M). Therefore j

doesn’t have any available slot for a child and all its children have better outgoing rate than i could have if
i were j’s child. Hence the 〈probe〉 message is discarded in Line 7, and node i stays at its optimal position.

If k is already in its optimal position, then it also does not move by the same argument. If k is not in
an optimal position and the incoming rate is less than that in the optimal position, there exist one or more
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ancestors (including 0) that is an ancestor of k in the optimal tree and satisfies the conditions in Line 3.
Since k executes the probe routine periodically, it chooses 0 as a with probability 1. (Choosing a non-root
ancestor can accelerate the convergence, without compromising this proof.) Then k sends a 〈probe〉 message
to a. Since k’s optimal position is in a’s subtree, the 〈probe〉 message eventually reaches the node that is k’s
parent in the optimal tree. Because of the way k is chosen in Line 7 of Centralized-Optimal-Tree(M),
k is accepted as a child in the second part of Distributed-Optimal-Tree. One exception is the case
where k is not accepted in Line 9 due to other nodes tying with k. However, exchanging nodes of the tie
does not change any incoming rate.

By repeating the procedure above, an optimal tree is obtained by induction. �
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