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Abstract: Motivation: Clustering genes based upon their exsalues over a wide range of experiments. Given enough inde-
pression patterns allows us to define cellular pathways aediqi  pendent experiments, genes clustered in this fashion telpel t
gene function. Most existing clustering algorithms clusienes fynctionally related (Eisen et al., 1998; Marcotte et &999).
together when their expression patterns show high postibree-  There js already a wealth of work in cluster analysis of
lation. However, it has been observed that genes whosessipne o oq  ranging from hierarchical clustering (Eisen et al.,
patterns are strongly anti-correlated can also be funatipsimilar. . . .

o g T . 1998), k-means (Tavazoie et al., 1999; Herwig et al., 1999),
Biologically, this is not unintuitive — genes respondingtihe same .. .

self-organizing maps (Tamayo et al., 1999), algorithmebtas

stimuli, regardless of the nature of the response, are nikely to e . :
operate in the same pathways. on principal components analysis (Hastie et al., 2000) and

Results: We present a newliametrical clusteringalgorithm that graph-based algorithms (Sharan and Shamir, 2000). Most of
explicitly identifies anti-correlated clusters of genesur@igorithm these algorithms use some measure of correlation between ex
proceeds by iteratively (i) re-partitioning the genes aiidoom- pression vectors, such as correlation coefficient, and tend
puting the dominant singular vector of each gene clustech egut those genes in one cluster that show strong positive-corr
singular vector serving as the prototype of a “diametricistér. We |ation between their expression vectors. However, as ubder

empirically show the effectiveness of the algorithm in ilymg py (Shatkay et al., 2000):
diametrical or anti-correlated clusters. Testing the @lgm on yeast

cell cycle data, fibroblast gene expression data, and DNAaaicay “Genes that are functionally related may demon-
data from yeast mutants reveals that opposed cellular pahw strate strong anti-correlation in their expression lev-
can be discovered with this method. We present systems whose els, (a gene may be strongly suppressed to allow

mMRNA expression patterns, and likely their functions, cggpthe another to be expressed), thus clustered into sepa-
yeast ribosome and proteosome, along with evidence fontrerse rate groups, blurring the (functional) relationship be-
transcriptional regulation of a number of cellular systems tween them.”

Availability: Seehttp://iwww.cs.utexas.edu/users/usman/diametrical

for the experimental results. Software is available on estju In general, we often expect the genes in a given cellular
Contact: inderjit@cs.utexas.edu pathway to be co-expressed (positively correlated) to some

extent. Genes whose expression is anti-correlated witkethe
Keywords: DNA microarrays, gene expression, clustering, antmight include members of a pathway whose action is opposed
correlated clusters. to that of the first pathway (Qian et al., 2001). As an example,
the yeast amino acid bio-synthesis genes (CPA2, HIS4, HIS5,
LYS1, ARG4, HOM3, etc.) are strongly co-expressed (cor-
relation coefficients> 0.7 over 300 microarray experiments

. . Hughes et al., 2000) with the SER3 gene, which catalyzes
DNA microarrays simultaneously measure the mRNA expres- & . : . .
. . . . e first committed step in serine synthesis. The CHAL gene,
sion of thousands of genes in a single experiment (Lashkari : . . .
] . ) . encoding the serine/threonine deaminase which breaks down
et al., 1997); current generation microarrays typicallyamee

. serine in the opposed catabolic pathway, shows strongly ant
expression of every gene encoded by a genome. From Sets . ; SO
: . . correlated expression (correlation coefficient = -0.7hwifte
of DNA microarray experiments, an expression vector f

ER3 gene. So, genes involved in the synthesis of serine show
each gene can be constructed, where the vector descri es 9 9 y
[

. . i-correlated expression with genes involved in the lbrea
the expression of a given gene under a range of cellu : .
- ; .-down of serine. A second category of genes we might expect
conditions, cell types, genetic backgrounds, etc. Analg§i ) -
to show anti-correlated expression patterns are gene$ahic

such.data can greatly help in gnderstandmg and predlcmgepress the expression of other genes. Again, we exmct th
functions of genes, many of which have been sequenced but : : ) ; .

: these genes will be generally involved in the same bioldgica
are as yet of unknown function.

A key step in the analysis of gene expression data is 1%athway, but will show anti-correlated expression patiern

; : o .~ 1In this paper, we pose the goal of detecting anti-correlated
clusteringof genes into groups that show similar expression : ; e
gene clusters. This provides us a wagiplicitly look for op-
*Department of ~Computer ~ Sciences,  University of Texaposed systems of genes, and also to investigate functidn sim
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1 Introduction & Motivation




genes into the same “diametric” cluster. A simple post seen to simply equal the inner product between the (trans-
processing step can then separate the positively cordeldtemed) gene vectors. More precisely, by making the transfo
genes from the ones that are negatively correlated. Our cloations
tering algorithm bears some resemblance toktneeans pro- o
cedure (Duda et al., 2000), in that it iteratively alterisabe- Gi = ,19'7“32, 1<i<n,
tween (i) reallocation of cluster members and (ii) compatat 27-1(9) — Ho)

of “prototypes” of the new clusters. lkmeans, each clus-, eyery gene vector, the correlation coefficient in (1) may b
ter's “prototype” is the centroid (or mean) of its constittie \y iten as the inner product between two unit vectors, i.e.,
members. However, this simple strategy would breakdown for

our goal since each cluster contains positively and negjstiv S(g,h) = §"h.

correlated genes. In our diametrical clustering algorjteath

cluster’s prototype turns out to be the dominant singular ven this paper, we perform such data transformations before

tor of the matrix whose rows comprise the cluster membeg#ustering. The inner product has been used previously as a

This strategy proves to be successful in identifying diaimetmeasure of similarity, for example see (Sharan and Shamir,

clusters. More details are given in the Algorithm section. 2000) and (Brown et al., 2000). Note that each trans-
We now give a brief outline of the paper. First we discu$grmed gene vectog resides on the unit (hyper)sphererin

some similarity measures used in clustering after which winensional space.

introduce our algorithm to detect anti-correlated clustdn

the experimental part of the paper, we apply the method to .

three sets of MRNA expression data and present results frém Algorlthm

the analyses. Finally, we present conclusions and futurk.woO i find cl . h ith
A word about notation: small letters such@sh, x andv ur goal is to find clusters containing genes that are either

will denote vectors, capital letters such AsG denote ma- Nghly positively correlated or highly negatively correé.
trices. Also,||g|| denotes the.2 norm of vectorg while g™h Hence, an obvious similarity measure to use is the square of

denotes the usual inner product between vectors. the correlation coefficient, i.e.,
S(g,h) = (g"h)?, 2)

2 Similarity Measures whereg and h are gene vectors with mean 0 and norm 1.
Clearly this measure is high (close to 1) if the genes have hig

Gene expression data from a set of microarray experimentgdsitive or negative correlation.

typically presented as anx nmatrixGin which the rows cor- = Having defined a similarity measure, we need an appropri-

respond to genes, the columns to experiments, an@,theen-  ate clustering algorithm. Two choices are to either use & hie

try in the matrix corresponds to the expression level of géme 5rchical clustering algorithm or a graph partitioning aygmh.

the j-th experiment. Note than s the total number of genesHowever, we reject these choices since the complexity sithe

while nis the number of experiments. algorithms is at least quadratic in the number of genes. We
Most clustering algorithms require a similarity (or distall want to be able to process all yeast geres$5(000) and all

measure. A popular gene similarity measure is the coreglathuman genesy 35,000) and so it would be desirable for our

coefficient (Eisen et al., 1998). Fordimensional gene vectorsclustering algorithm to scale linearly with the number ofigs.

g andh, the correlation coefficient is defined as: The populak-means algorithm is efficient; however it is not
N suitable for our measure of similarity. Given a cluster vbhic
S(g,h) = 1 Zl (g. — ”9> (h' _ “h> (1) contains genes that have high positive as well as negative co
nj Og Oh relation, it would be incorrect to compute the cluster ceidtr

_ _ _ _ ~ (or mean) as the “cluster prototype” as is done in the tradi-
whereg; is the expression level of gergein thei-th experi-  tionalk-means algorithm. Thus we need a different definition
ment, g is @ number usually taken to be the mean of all eyf “cluster prototype” that is suitable for the squared eta¥

pression levels 0f, andog = /151 (g — pg)2. Whenyg tion coefficient.

andpy, are taken as the means of valueg andh respectively, Given a clusteC; of genes, the natural question to ask is:

thenS(g, h) is exactly equal to the Pearson correlation coeffiNat cluster prototype (or representative) veoois closest,

cient, which is a measure that captures the linear reldiipns" @verage, to all the gene vectors in the cluster using the si

between the observatiogsandh;, i = 1,...,n. Whenyy is ilarity measure in (2). The mathematical formulation is tadfi
set to 0, therS(g, h) equals the cosine of the angle between !Nt VECto; such that the sum
vectorsg andh.

By shifting each gene vector by its mean and then normal- (9xj)2 = xI (gg")xj =x! " xi
T . : L Z: i Z: i i =X Z: 99 | Xj
izing it to have unit norm, the Pearson correlation coeffitie e 4ET; 4T,



Algorithm Diametrical Clustering(G,k) singular vectors for this new clustering. The_ QOminant Bing
lar vector of each of the clusters can be efficiently computed
Input: G is them x n gene-expression matrix whemeis the| by using power iteration or the faster converging Lanczes al
no. of genes and s the no. of experiments, gorithm (Golub and Loan, 1996). Our diametrical algorithm
k is the number of desired diametric clusters. has the pleasing property that each iteration always iseea
the quality measure given in (3) (a proof is given in the ap-
pendix). Thus the quality measure will converge to a lingjtin
1. Initialize the k clusters, and compute the dominal@lue and the iteration is guaranteed to terminate with an ap

right singular vectorsv,...,vc of each cluster sul propriate convergence criterion. Formor_e details, sedI@dh
matrix Gy, ... , Gy respectively. and Modha, 2001) and (Sellm and Ismail, 1984). _
Phase Il of the algorithm separates each diametric cluster
2. Re-compute all clusters: for each geyfind its new clus+ into a pair of anti-correlated clusters. As shown in Figure 1
ter index as this is done by simply separating the genes in each diametric
clusterC; according to whether they have positive or negative
j*(9) = argmax(g'vi)?, inner product with the cluster's singular vector, i.gTv; is
. . o positive or negative. Note that our algorithshoes not force
resolving ties a}rbltrar|ly. Thus compute the new 9FY%iametric or anti-correlated structure on the data. Iddie
clustersCj, 1< j <k as the data set does not have anti-correlated clusters thenfone
Ci={g:i"(@) =i} the clusters found in Phase Il will be empty.

The time taken by the algorithm ®(mnkr) wheret is the
number of iterations required — experimental results show
Afhat 15-20 iterations are typical. Detailed analysis andn
results are given in Section 4.

An interesting point to note is that our diametric cluster-
4. If “converged” go to Phase I, else go to step 2 above.iNg algorithm proceeds by clustering together gene veetors
cording to their closeness to thi@es described by the sin-
Phase Il gular vectors. These lines are 1-dimensional objects — on
the other hand, traditional clustering algorithms likeneans
cluster vectors based on their proximity to points, which ar

Co = {geG& g'v > 0}, 0-dimensional objects.
Ci = {geG&g'vi<0},

Phase I:

3. Re-computers,..., vk to be the dominant right singul
vectors of the new cluster sub-matric@s,...,Gx re-
spectively.

1. For each diametric clustéy output the 2 clusters:

and their normalized centroid (mean) vectors as the :ﬁs- Expe”mental Results

ter “fingerprints”. 4.1 Datasets

Human Fibroblasts: First, we analyzed the human fibroblast
data set of (lyer et al.,, 1999), which reports the response
is maximized. Using linear algebra, it is well-known thag thof human fibroblasts following the addition of serum to
optimal solution is achieved wheq equals the dominant rightthe growth media. This data set (available frgenome-
singular vector of the matri&; whose rows comprise all thewww.stanford.edu/serum) contains the expression levels of
gene vectors in the cluster (Golub and Loan, 1996). For #&13 human genes which were obtained by depriving human
sake of Comp|eteness, we give a proof in the Appendix_ Thﬂg!‘OblaStS of serum for 48 hours and then stimulating them by

given a clustering1,Co, ... ,Cx we can measure its quality bythe addition of serum. Expression levels were measured at 12
time points after the stimulation, and an additional datayp

was obtained from a separate unsynchronized sample. We
analyzed the subset of 517 genes reported in (lyer et al9)199
whose expression levels changed substantially across the
wherev;j is the dominant singular vector of clustg;. Our samples. The data was preprocessed by dividing each entry by
goal of findingk diametricclusters can be posed as the seartie expression level at time zero, taking the log of the tesul
for clusters that maximize this quality. and then normalizing each 12-element expression vector to
Figure 1 gives an algorithm that searches for such a clisve unit_? norm.

tering. Phase | of the algorithm alternates between twasstep Yeast Cell Cycle: Next, we analyzed the set of gene
(a) obtain a new clustering based on the closeness of genexxfiression data measured from synchronized yeast cultures
the current set of singular vectors, (b) re-compute the Gettlirough several phases of the cell cyclatg://cellcycle-

Figure 1: Algorithm for diametrical clustering

k

C1,Co,...,Ck) = Tvi)?, 3
Q(Cy,C2 ) glg;j(g vj) )
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www.stanford.edu; (Spellman et al., 1998)). This data setcc ..

tains data from yeast cultures synchronized by four indef 7+ T T
dent methodsa factor based (samples taken every 7 minu _ . .
over 119 minutes), arrest of a cdc15 temperature sensitive L ass o AL \ /?/&H\/&
tant (samples taken every 10 minutes over 290 minutesta 5. /| < ¢ " | 5 =2
of a cdc28 temperature sensitive mutant taken from (Cho,e ™

1998, Section 3.1), and elutriation data (30 minute sam - Samen]l

—+ Cluster 1

taken over 6.5 hours). In addition it contains experiment: o % s iko w0 Tio zio cio 210 30 3% %00 5% o W w w0 w10 7o 20 7 0 9 =

which G1 cyclin CIn3p and B-type cyclin Clb2 were induced. (@) (b)

Spellman et al. (1998) identified 800 genes that are cellec

regulated, out of which we used a subset of 696 genes w  "| #et.¢t S-S Me Gl s oMol

have at most four missing values. The data was normalize - /L oL

have mean 0 and norm 1. H D\ X \\/,\/&B l 5 -
Rosetta yeast:Lastly, we analyzed the Rosetta Inpharm | | se—< /" ATV

ics yeast data set of (Hughes et al., 2000). This data ceris ° -/ ¢

300 experiments measuring expression of 6,048 yeast gt )

in which transcript levels of a mutant or compound-trea L. [ d=i -

culture were compared to those of a wild-type or mock-tre. . e Tme )

culture. 276 deletion mutants, 11 tetracycline-regulatab © (d)

leles of essential genes, and 13 well-characterized congsou

were profiled. We examined the subset of 5,246 genes whiiure 2: Expression profiles of the mean of the clusters ob-

had no missing expression measurements, and normaligéded on the yeast cell cycle dataset (only elutriatioreexp

each 300-element expression vector to haveliitorm. ments shown). (a), (b), and (c) each display the mean vectors
of the two opposed clusters obtained from Phase Il of the-algo
4.2 Validation of diametrical clusters rithm. The phases of the cell cycle are plotted in (d), inttida

with the expression profiles of 5 genes with phase-specific ex
We first present the diametrical clusters obtained for theession.

yeast cell cycle dataset (Spellman et al., 1998), where we se

how our algorithm separates genes with opposing expresgigfotation in the KEGG database (Kanehisa and Goto, 2000),
profiles, and which also tend to peak in diametrically opgosthen measured the correlation coefficients between thesxpr
phases of the cell cycle. Secondly we provide evidence $an vectors of all pairs of the annotated yeast genes. Fbr ea
the Rosetta (Hughes et al., 2000) dataset that anti-ctecelgiene pair, we then represented each gene’s function with a se

genes are functionally related. containing KEGG keywords, which allowed us to compute
the Jaccard coefficients between the gene’'s KEGG categories
M tt d M tte, 2002). The J d fficients of

4.2.1 Yeast Cell Cycle (Marcotte and Marcotte Aﬂ!)3\ e Jaccard coefficients o

_ _ _ _ two setsA andB is defined a AE -

We applied our clustering algorithm on this dataset to peedu | Figure 3, we have plotted the functional similarity (mean
12 clusters. Our clustering algorithm clusters the gense®ajaccard coefficient of the KEGG categories) versus the cor-
on all the experiments performed in this dataset. Howewer, fa|ation coefficient of the expression vectors. As expected
ease of analysis and better visual representation we AregRimes with co-expression (high positive correlation coeffi
the results on just th_e elutriation (30 minute samples tak&@nts)show strong functional similarity. However, genéth
over 6.5 hours) experiments. anti-correlated expression (high negative correlatioaffgo

We observe that the diametric clusters represent genes \@ights) also show functional similarity, validating theaseh

opposed expression patterns. As genes in this data sevall sfyr anti-correlated gene expression clusters.
cyclic expression changes as the cell cycle progressesdj-the

ametric clusters also tend to contain genes whose expmssii 3 Analvsis of di ical cl
levels peak in opposed times in the cell cycle, as plottedgn F nalysis of diametrical clusters
ure 2. The rest of the clusters (not plotted) from this ddtase3 1 Human Fibroblasts

show similar behaviour.
We applied our algorithm to obtain 5 diametric clusters in

Phase | which were separated into 10 clusters in Phase Il. We
chose 10 clusters so that we could compare our results to pre-
viously published results on this dataset. An examination o
To evaluate if anti-correlated genes shared some degre¢hefexpression profiles of the centroid of each clusterteguiot
functional relatedness, we took all yeast genes with foneti in Figure 4, shows that the diametrical clustering algonith

4.2.2 Relationship between correlation coefficients and
functional annotation



tems turned off in a synchronized manner are considerably

under-studied. The asymmetry in knowledge of the cellular

systems is especially obvious for the diametric clusterad® a

7 (Figure 4d). Cluster 7 includes a number of genes involvedi

inter-cellular signaling, as well as inflammation, angioggis

and re-epithelialization, including IL1beta, thrombombd,

1 = . . . IL8, heparin binding growth factor, ICAM1, monocyte chemo-
Corslation coeffiient tactic protein 1, and heparin growth factor 2. These genes ar

induced shortly after the addition of serum, only to be tdrne

off again after a few hours.

Figure 3: Genes with both highly correlated and highly anti- 1€ diametric cluster 6 contains 80 genes, which are ex-

correlated MRNA expression patterns tend to operate in siffieSS€d in the GO resting state, down-regulated following a
lar cellular pathways. short interval after serum addition, only to be expressedrag

shortly after. These genes include stress response gewes, s
nicely identifies genes with opposed expression patterns. as heat shock factor 2, and genes inhibitory of cell growth,
such as the cdk6 inhibitor. However, the genes in this clus-

Functional similarity (%)

oe A © Geero oot chmrt L ter are remarkably poorly studied, and of the 80 genes in this
o / R o e \ | cluster, 73 are of entirely unknown function.
1ol / \\/ _ Cluster 3 (Figure 4b) includes a number of genes involved
g |/ —— /S\S\ / in cytoskeletal reorganization, such as the G-protein salip
90% uncharacterized §j:: ~— receptor EDG-1 and desmoplakin, as well as genes such as
l osf 8156 uncharacterz metallothionein, the GTP-binding protein RAN and the RAN-
b specific GTPase activating protein. These genes show quite
R s e © P ™™ Jow expression initially, gradually rising in expressi@vels
(@) (b) through the course of the experiment. The diametric cluster
. . . shows exactly the opposite pattern: genes expressed High at
o se%uncwmd//_\g T ey D€QINNING OF the experiment whose expression levels fatligr
- v I / \Eummaeceizdo - Ually over time. The 57 genes in this cluster include fibilli
S E ( farnesyl diphosphate farnesyltransferase, carnitinenipay!-
Lo LR <51 transferase, and 46 genes of unknown function.
o / New relationships: Analyzing this data for diametrical
o] 88% uncharacteized mmh@ > clusters reveals two clusters whose means are differemt fro
those in (lyer et al., 1999). First, cluster 9 (Figure 4e)-con

025 05 1 2 4 _6 8 12 16 20 24 UNSYN 025 05 1 2 4 6 8 12 16 20 24 UNSYN
) s

tains a number of genes related to DNA replication and cell
cycle progression, including the G2/M-specific cyclin A and
=4 DNA replcation the cyclin dependent kinases regulatory subunit, as well as

and cell cycle——— ~+

0 (77% uncharacterizeg genes such as importin 1, proliferating cell nuclear amtjge
[\‘f’/@/\/\ centromeric protein E, and ribonucleotide reductase. @hes
S genes all show minimal expression in the GO resting state, bu
N are induced following a considerable time lag after serum ad
dition. The diametric cluster 8 shows a set of genes with the
opposite expression pattern, initially expressed in GOften
S L g P M turning off with a timing well synchronized to the genes of
© cluster 9. In this cluster are 9 genes, only 4 of known func-
tion: apolipoprotein D, complement C1S, lipoprotein lipas

nd connective tissue growth factor. Thus, it would appear

Figure 4: Expression profiles of the mean of the clusters qahét in a fashion coordinated with the reentry into the cgll ¢

tained on the human fibroblast dataset. Each figure contals - nes are downreaulated for serum linid trans orpfibr
the means of the two clusters obtained from Phase Il of the aF—’ 9 - 9 L P P
enesis, and complement activation.

gorllthm, and identifies opposmg-systems. Systems which tlgrA second novel diametric cluster is shown in Figure 4a:
off in reponse to serum stimulation can be seen to be systeép— . > .
uster 1 represents those genes showing a transient induc-

atically understudied. tion immediately following the addition of serum, such as

K lationshios: | | find th ‘ ._endothelin 1, interleukin 6, tropomyosin alpha, and theéyear
nown relationsnips. - In general, we ind e Systems Ing, ., 4, response protein 1. Genes in the diametric cluster
duced by serum addition are partly characterized, but the s?/

56% uncharacterized—="




expressed, including proteasomal proteins alpha 5 andt@, be
o2 ?S““R“"C) 02 1,3,4,6,and 7, SNX4, RPN 1, 2, 7, 11, and 12, RPT 2, 4, and

SER3 (YER081W)

\ &A% T j\*F ETETMROSB? ?Rl(/YERm ' 6, and the proteasome maturation factor UMP1. The diamet-
/ s (RS, ?gg'\//; meﬁ B ol ric cluster contains genes involved in carbohydrate andhami
Yo ¥ by, \f e \/ V™ acid synthesis, including acetate coA ligase, ILV5, MET, d
“‘\CHAWCLWC) / y hydrofolate reductase DFR1. We speculate that the amino
acids produced by proteosomal degradation relieve the cell
E o 5 S o P from having to synthesize the amino acids. Therefore, the
(a) Clusters 4, 5 (b) Clusters 46, 47 Protein degradation and amino acid synthesis genes can be in
versely regulated, as we observe.
As a fourth example (Figure 5d), cluster 8 contains more
02 NGR1 (YBR212W)

RPNZ\(}ILWSC) /RPTZ(YDLOO7W) ¢/f than 50 ribosomal genes. The diametric cluster contains
P e E /\ | V\| a set of genes of unknown function, including YJL149W,
5 olsefa y/*,\&&;\ 7 \VA e VR \l g g

Ravaa vivast i % YNL116W, YNROO5C, YMR184W, ECM37, MLF3,
o ) Y| E . - # YBRO16W, YJR120W, YDL172C, YDLO53C, YMRL40W,
RPL35A (YDL191!

CCC1 (YLR220W)

02 MET6 (YER091C)

02 pLase (OLIIBM) YNL140C, YMR141C, YBR273C, as well as BMH2, a ho-

0s . . N . . . . . molog of the mammalian 14-3-3 protein which interacts with
ety ExpEment ey expermens the proteasome, NGR1, a gene possibly involved in growth

(c) Clusters 28, 29 (d)Clusters 8,9 regulation, and AAP, a gene which represses translatiomeof t

arginine bio-synthetic gene CPAL in the presence of excess
Figure 5: Expression profiles of specific genes from someainine. It is possible that these uncharacterized genes,
the diametric clusters on the Rosetta yeast dataset. Tsieu Whose expression patterns oppose that of the ribosome, may
show genes known (a-c) or proposed (d) to work in functiorepresent systems which regulate translation (such as AAP)
ally related, but opposing, cellular systems, whose exjwas protein degradation (such as BMH2).
profiles show inverse relationships.

0 show a transient decrease in expression, recovering atﬁ)'ﬁli Comparison to other methods

16-20 hours following serum addition. However, unlike thg this section we compare the diametrical clustering t@oth
transiently activated genes, of which just less than haf @lustering methods. We evaluate the quality of the clustgri
characterized, 26 of the 29 genes in this diametric clus&r gsingHaye andSave measures (Sharan and Shamir, 2000). Let

of unknown function. ¢i be the normalized centroid (mean) vector of clu§eiThen
1 k

4.3.2 Rosetta yeast Have = _21 ;QTCh
m.4& £

Known relationships: We applied our clustering al- . ie

gorithm to this dataset to produce 40 diametric clusters, Save = 7;|Q||CJ|CiTCJ-

thus giving a total of 80 clusters. Our analysis reveals i [GlICil ]

a number of opposed cellular systems, listed in ful Tar%tuitively, Have measures the average cohesiveness of clusters

http://www.cs.utexas.edu/users/usman/diametrical. Four pairs . .
. . I hile Save measures the average separation between clusters.
of diametric clusters are shown in Figure 5. For example, the

) . . . . . ; n-general, we desire higher valuestdf,ec and lower values
amino acid synthesis genes mentioned in the introductigs cl f Sae We first present results comparing tHaye and S
ter together, with the opposed serine catabolism gene CHAL,"® P paring Mave ve

. . . . 0 other methods followed by a comparison of running times.
occurring in the diametric cluster (see Figure 5a). y P 9

New relationships: In cluster 46 (Figure 5b) we observe
that a large number of iron and copper uptake and acquisitfbﬁ'l

genes are co-expressed, including FIT1, FIT2, FIT3, théderye implemented the diametrical clustering algorithm in C++

reductase FRE2, FRES, the iron permease FTR1, the ferrguing the LEDA library, and used the Expander v1.0 software
dase FETS, the copper transporter CTR2, and the enterobagjhtained from Roded Sharan) to conduct the experiments on
transporter ENB1. The diametric cluster contains the CC@1 |cK (Sharan and Shamir, 2000). We used a 600 MHz Pen-

gene, which is known to transport excess iron from the cytogim machine running Debian Linux to run our experiments.
to store it in the vacuole(Li et al., 2001). Thus, the systems

iron acquisition and handling of excess iron are in oppositi
and show diametric expression.

A third example of opposed systems is shown in Figure 58l datasets were preprocessed in the same manner as in the
a number of proteasomal and vesicular transport genes arestadies we compared against. We first applied the diametrica

Implementation and Platform

4.4.2 Comparison ofHaye and Save



clustering algorithm on the yeast cell cycle data (Spellm& Conclusions and Future Work
et al., 1998) to obtain 6 clusters and compared our results to

ones published in (Sharan et al., 2002). We then applied qrconclusion, we have explicitly searched for genes with
algorithm on the human fibroblast dataset (lyer et al., 1999)posite patterns of gene expression. To do this efficiently
and compared our results to those published in (Sharan @rdhave introduced a diametrical clustering algorithm,olhi
Shamir, 2000). Finally we ran CLICK on the Rosetta yeaglentifies pairs of gene clusters, each cluster with an expre
dataset using the Expander v1.0 software and compareddia@ profile opposite that of the other. We show that genes
results to our algorithm. with anti-correlated expression patterns are often foneily
related, and often encode systems with related, but omgosit
functions in the cell. Using this algorithm we discover sys-

Program #Clusters| Have | Save ) )
Yeast cell cycle tems opposing th_e_ yeast rlbosom_e and proFeasome, we dem_on-
Diametrical 6 0.6 | -0.13 strate the opposition of expression of amino acid “synthesi
CLICK 6 0.66| -0.1 and degradation” system and of iron acquisition and storage
K-Means 49 0.63| 0.09 systems, and we show that genes turning off following serum
GeneCluster (SOM 6 0.62 | -0.07 stimulation of fibroblasts are systematically under-stddi
CAST 5 06 | -0.15 A number of improvements to our analysis are apparent.
Human fibrobiast Foremost, there are problems wkimeans like strategies —
Diametrical 10 0.88 | -0.09 for example, empty clusters, initialization strategié® heed
CLICK 10 0.88 | -0.34 to specify the number of clusters, etc., which could be im-
Hierarchical 10 0.87 | -0.13 proved. _Second, in the algorithm we describe, we have de-
Rosetta yeast tected diametrical clusters by looking at closeness to one-

Diametrical 60 057 | -0.02 dimensional opjects, .i.e. Iines. In _general, we can look for
CLICK (Expander) 59 055 | -0.03 c_Ioseness to h|gh_er dimensional objects, which rmght sstgge
linear dependencies between clusters and may give even more
insight into the organization and regulation of genes. IBina
it would be very interesting to look for conserved regulgitor
motifs upstream of the genes in diametrical clusters. lbis n
. immediately apparent if the genes would be expected to share
The results in Table 1 show that théwe and Swe values ¢ommon motifs, but as they seem to be responding to common
produced by our algorithm are quite good and compare favgfiin i, albeit in opposite directions, it is not unreasblezto
ably with other methods. Note that our algorithm does ngkpect to find common control elements, possibly even those
explicitly try to optimize these values; instead its foce®n egponsible for the general response, while elements mespo
finding opposed gene clusters. ble for the specific direction of response might be found & th
separated clusters.

Table 1: Comparison dfiaye and Saye Of various methods on
all the datasets

4.4.3 Comparison of running time
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7 Appendix

Dataset CLICK Diametrical
Human fibroblast 88.28 (5) 1.58 (6)
Yeast cell cycle | 60.75(12) | 6.55(12)

Rosetta 401.67 (59)| 663.02 (60)

Lemma 1 (Golub and Loan, 1996) Supposg @, ... ,dm are
n-dimensional real vectors that form the rows of th& mma-
trix G. Then the unit vector x that maximizes

gorithm against CLICK on all the datasets. Next to the time,

we also show the number of clusters created by each meth%dt'he dominant right singular vectorof G (or equivalently,

the dominant eigenvector of'G). The optimal value equals

Table 2: Comparison of running times (in seconds) of our al- f(x) = xT (Zgig-T) x = xTGTGx
= | =
|



f(v1) = VI (EI gig;r) vy = of, wherea; is the largest singular Duda, R. O., Hart, P. E., and Stork, D. G. (200@attern
value of G and, > 0>. Classification John Wiley & Sons, 2nd edition.

Proof. Let x be an arbitrary unit vector and express itxas Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D.
yi0ivi, wherey;a? = 1 andy;'s are the (orthonormal) right (1998). Cluster analysis and display of genome-wide ex-
singular vectors o6. SinceG' Gy, = crizvi, pression pattern®roc. Natl. Acad. Scj95:14863-14868.

f(x) =x' GTGx= zaizciz_ Golub, G. H. and Loan, C. F. V. (1996)Matrix computa-
! tions Johns Hopkins Studies in the Mathematical Sciences.
The above quantity is maximized when = 1 and all other The Johns Hopkins University Press, Baltimore, MD, USA,
ai's are 0, Hence, the optimalequalsv; and the maximum  third edition.

value attained equalgG' Gv; = o%.
qualg ! 1 Hastie, T., Tibshirani, R., Eisen, M. B., Alizadeh, A., LeR/,

Theorem 1 Phase 1 of AlgorithmDiametrical_Clustering Staudt, I., Chan, W. C., Botstein, D., and Brown, P. (2000).

given in Figure 1 never decreases the quality measure ‘Gene shaving’ as a method for identifying distinct sets of
. genes with similar expression pattern&enome Biology
Q.G = 3 5 (@) t-2
J=1oet Herwig, R., Poutska, A. J., Mueler, C., Lehrach, H., and Brie
from one iteration to the next. J. 0. (1999). Large scale clustering of cDNA-fingerprinting
data.Genome Research(11):1093-1105.
Proof. Let CS), . ,CS) be the clusters at iteratidn and let
wW.... WY be the corresponding singular vectors. Then Hffﬁ;:'b'waéfnnﬁgf{' dongi}fé; I:‘I;Obggis”l_ic"l_sl;m#gh&?galq
® ® k T2 M., King, A., Meyer, M., Slade, D., Lum, P., Stepania}nts,
QC--- .G = S > (@Vv)) S., Shoemaker, D., Gachotte, D., Chakraburtty, K., Simon,
J=1gectt J., Bard, M., and Friend, S. (2000). Functional discoveay vi
K a compendium of expression profilé3ell, 102:109-126.
< Y (@) -
=Wl lyer, V., Eisen, M., Ross, D., Schuler, G., Moore, T., Leg, J.
] Trent, J., Staudt, L., Hudson, J., Boguski, M., Lashkarj, D.
K T (t41)\2 Shalon, D., Botstein, D., and Brown, P. (1999). The tran-
S (9 Vi ) scriptional program in the response of human fibroblasts to
=lgecy serum.Science283(1):83-87.
_ Q(C(t+1) CSH)) ) .
1 Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclope-

where the first inequality is due to step 2 of the algorithne (se dia of genes and genomesucleic Acids Researcla8:27—-
Figure 1), and the second inequality follows from Lemma 1.
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