
Copyright

by

Emery D. Berger

2002

The Dissertation Committee for Emery D. Berger

certifies that this is the approved version of the following dissertation:

Memory Management for High-Performance Applications

Committee:

Kathryn S. McKinley, Supervisor

James C. Browne

Michael D. Dahlin

Stephen W. Keckler

Benjamin G. Zorn

Memory Management for High-Performance Applications

by

Emery D. Berger, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2002

Memory Management for High-Performance Applications

Publication No.

Emery D. Berger, Ph.D.

The University of Texas at Austin, 2002

Supervisor: Kathryn S. McKinley

Fast and effective memory management is crucial for many applications, including web servers,

database managers, and scientific codes. Unfortunately, current memory managers often do not meet these

requirements. These memory managers also do not provide the support required to avoid memory leaks in

server applications, and prevent multithreaded applications from scaling on multiprocessor systems. In fact,

current memory managers cause some applications to slow down with the addition of more processors.

In this thesis, we address these memory management problems for high-performance applications.

We develop a memory management infrastructure calledheap layersthat allows us to compose efficient

general-purpose memory managers from components. We show that mostcustommemory managers achieve

slight or no performance improvements over current general-purpose memory managers. We build a hybrid

memory manager calledreap that combines region-based and general-purpose memory management, sim-

plifying memory management for server applications. We show that previous memory managers suffer from

serious problems when running on multiprocessors, including allocator-induced false sharing and a blowup

in memory consumption. We present a scalable concurrent memory manager calledHoard that provably

avoids these problems and significantly improves application performance.

iv

Contents

Abstract iv

List of Tables ix

List of Figures xi

Chapter 1 Introduction 1

1.1 Summary of contributions . 3

1.2 Thesis Outline . 3

Chapter 2 Background and Related Work 5

2.1 Basic Concepts . 5

2.2 General-Purpose Memory Management . 6

2.3 Memory Management Infrastructures . 8

2.3.1 Vmalloc . 8

2.3.2 CMM . 8

2.4 Custom Memory Management . 9

2.4.1 Construction and Use of Custom Memory Managers 9

2.4.2 Evaluation of Custom Memory Management . 11

Chapter 3 Experimental Methodology 12

3.1 Benchmarks . 12

v

3.1.1 Memory-Intensive Benchmarks . 12

3.1.2 General-Purpose Benchmarks . 13

3.2 Platforms . 14

3.3 Execution Environment . 15

Chapter 4 Composing High-Performance Memory Managers 16

4.1 Heap Layers . 17

4.1.1 Example: Composing a Per-Class Allocator . 19

4.1.2 A Library of Heap Layers . 21

4.2 Experimental Methodology . 22

4.3 Building Special-Purpose Allocators . 22

4.3.1 197.parser . 23

4.3.2 176.gcc . 24

4.4 Building General-Purpose Allocators . 26

4.4.1 The Kingsley Allocator . 26

4.4.2 The Lea Allocator . 28

4.4.3 Experimental Results . 30

4.5 Software Engineering Benefits . 31

4.6 Heap Layers as an Experimental Infrastructure . 32

4.7 Conclusion . 33

Chapter 5 Reconsidering Custom Memory Management 38

5.1 Benchmarks . 39

5.1.1 Emulating Regions . 40

5.2 Custom Memory Managers . 41

5.2.1 Why Programmers Use Custom Memory Managers 42

5.2.2 A Taxonomy of Custom Memory Managers . 44

5.3 Evaluating Custom Memory Managers . 46

vi

5.3.1 Evaluating Regions . 46

5.4 Results . 48

5.4.1 Runtime Performance . 48

5.4.2 Memory Consumption . 49

5.4.3 Evaluating Region Allocation . 50

5.5 Discussion . 51

5.6 Conclusions . 52

Chapter 6 Memory Management for Servers 54

6.1 Drawbacks of Regions . 55

6.2 Desiderata . 55

6.3 Reaps: Generalizing Regions and Heaps . 56

6.3.1 Design and Implementation . 56

6.4 Results . 58

6.4.1 Runtime Performance . 59

6.4.2 Memory Consumption . 59

6.4.3 Experimental Comparison to Previous Work . 60

6.5 Conclusion . 60

Chapter 7 Scalable Concurrent Memory Management 62

7.1 Motivation . 64

7.1.1 Allocator-Induced False Sharing of Heap Objects 65

7.1.2 Blowup . 66

7.2 Related Work . 68

7.3 Taxonomy of Memory Allocator Algorithms . 68

7.3.1 Single Heap Allocation . 68

7.3.2 Multiple Heap Allocation . 70

7.4 The Hoard Memory Allocator . 72

vii

7.4.1 Bounding Blowup . 73

7.4.2 Example . 74

7.4.3 Avoiding False Sharing . 75

7.5 Analytical Results . 75

7.6 Bounds on Blowup . 77

7.6.1 Proof . 77

7.7 Bounds on Synchronization . 78

7.7.1 Per-processor Heap Contention . 79

7.7.2 Global Heap Contention . 79

7.8 Experimental Results . 80

7.8.1 Speed . 82

7.8.2 Scalability . 83

7.9 False sharing . 86

7.10 Fragmentation . 87

7.10.1 Single-threaded Applications . 88

7.10.2 Multithreaded Applications . 89

7.10.3 Sensitivity Study . 89

7.11 Conclusion . 90

Chapter 8 Conclusion 91

8.1 Future Work . 91

8.2 Contributions . 92

Bibliography 92

Bibliography 93

Vita 101

viii

List of Tables

3.1 Memory-intensive benchmarks. 13

3.2 Statistics for the memory-intensive benchmarks. We divide by runtime with the Lea alloca-

tor to obtain memory operations per second. 13

3.3 General-purpose benchmarks and inputs. Programs not written in C++ are written in C. . . . 14

3.4 Statistics for the General-Purpose Benchmark suite. 14

3.5 Platform characteristics. The number in parenthesis after CPU clock speed indicates the

number of processors. 15

4.1 Executable sizes for variants of 197.parser. 24

4.2 Runtime (in seconds) for the general-purpose allocators described in this paper. 30

4.3 Memory consumption (in bytes) for the general-purpose allocators described in this paper. . 31

4.4 A library of heap layers, divided by category. 35

5.1 Benchmarks and inputs. Programs not written in C++ are written in C. 40

5.2 Characteristics of the custom memory managers in our benchmarks. Performance motivates

all but one of the custom memory managers, while only two were (possibly) motivated

by space concerns (see Section 5.2.1). “Same API” means that the memory manager al-

lows individual object allocation and deallocation, and “chunks” means the custom memory

manager obtains large blocks of memory from the general-purpose memory manager for its

own use (see Section 5.2.2). 43

ix

5.3 Statistics for our custom allocation benchmarks, replacing custom memory allocation by

general-purpose allocation. We compute the runtime percentage of memory operations with

the default Windows allocator. 46

5.4 Peak memory (footprint) for region-based applications, in bytes. Using regions leads to an

increase in footprint from 6% to 63% (average 23%). 51

7.1 A taxonomy of memory allocation algorithms discussed in this chapter. 69

7.2 Multithreaded benchmarks used in this chapter. 81

7.3 Hoard fragmentation results and application memory statistics. We report fragmentation

statistics for 14-processor runs of the multithreaded programs. All units are in bytes. 82

7.4 Uniprocessor runtimes for single- and multithreaded benchmarks. 83

7.5 Possible falsely-shared objects on 14 processors. 87

7.6 Hoard fragmentation results and application memory statistics. We report fragmentation

statistics for 14-processor runs of the multithreaded programs. All units are in bytes. 88

7.7 Runtime on 14 processors using Hoard with different empty fractions. 90

7.8 Fragmentation on 14 processors using Hoard with different empty fractions. 90

x

List of Figures

4.1 The implementation of FreelistHeap. 20

4.2 Runtime comparison of the original 197.parser custom allocator and xallocHeap. 24

4.3 Runtime comparison of gcc with the original obstack and ObstackHeap. 25

4.4 The implementation of SizeHeap. 27

4.5 Runtime and space comparison of the original Kingsley and Lea allocators and their heap

layers counterparts. 29

4.6 A diagram of LeaHeap’s architecture. 30

4.7 The implementation of DebugHeap. 36

4.8 The implementation of StrictSegHeap. 37

5.1 Runtime and space consumption for eight custom allocation benchmarks. 39

5.2 Normalized runtime and memory consumption for our custom allocation benchmarks, com-

paring the original custom memory managers to the Windows and Lea allocators. 47

5.3 The effect on memory consumption of not immediately freeing objects. Programs that use

region allocators are especially draggy. Lcc in particular consumes up to 3 times as much

memory over time as required and 63% more at peak. 50

6.1 A description of the API and implementation of reaps. 57

6.2 Normalized runtime and memory consumption for our custom allocation benchmarks, com-

paring the original allocators to the Windows and Lea allocators and to reaps. 58

xi

6.3 Normalized runtimes (smaller is better). Reaps are almost as fast as the original custom

allocators and much faster than previous allocators with similar semantics. 60

7.1 An example of allocator-induced false sharing of heap objects. The boxes correspond to

allocated objects: the inside color reflects the allocating processor, and the outside color

reflects the processor on which the freed object resides. Here the allocator parceled out one

cache line to two processors (actively-inducedfalse sharing), resulting in cache thrashing. . 65

7.2 This figure demonstrates howpure private heapsallocators can exhibit unbounded memory

consumption. Processor 0 allocates objects that processor 1 frees. However, processor 0

cannot reclaim the memory on processor 1, and sos bytes “leak” on every iteration. 66

7.3 This figure demonstrates howprivate heaps with ownershipallocators can exhibit aP -fold

blowup in memory consumption, where a round-robin producer-consumer pattern spreads

memory across the processors. 67

7.4 Allocation and freeing in Hoard. See Section 7.4.2 for details. 74

7.5 Pseudo-code for Hoard’smalloc andfree . 76

7.6 Speedup graphs. 84

7.7 Speedup graphs that exhibit the effect of allocator-induced false sharing. 86

xii

Chapter 1

Introduction

Memory management is one of the most enduring problems in computer science. The first papers on the

subject appeared in the early sixties. Wilson’s memory management survey papers from the nineties include

over 220 citations [80, 81], and the subject remains an area of active research. Much current research on

memory management focuses on automatic storage allocation (garbage collection). While garbage collec-

tion represents a software engineering advance over explicit storage allocation, the performance of garbage-

collected languages (like Java) continues to lag behind those that use explicit memory management (like C

and C++) [25, 58, 77]. Because we are concerned here with high-performance applications, we will focus

exclusively on explicit memory management (which we hereafter refer to simply as “memory management”

or “memory allocation”).

Despite the long history of memory management research, memory managers continue to be a source

of performance and robustness problems for application software. First, the time spent allocating and freeing

objects accounts for a significant proportion of the runtime of today’s increasingly object-oriented applica-

tions (as high as 40%). In an effort to improve the performance of these allocation-intensive applications,

programmers frequently writead hocor custommemory managers [18, 54, 56] that take advantage of cer-

tain allocation behaviors known to the programmer. Second, lock contention in current memory managers

prevents many multithreaded programs from scaling [48]. In fact, these memory managers cause some

applications toslow downwith additional processors. Finally, general-purpose memory managers do not

1

support theteardownof objects (bulk deletion) associated with cancelled transactions or connections. This

support is crucial in order to avoid memory leaks in some applications [2].

In this thesis, we examine each of these problems in turn. Constructing high-quality memory man-

agers presents a number of significant engineering challenges. We evaluate infrastructures designed to

simplify memory manager construction but find that these incur unnecessary function call and virtual dis-

patch overhead. We develop a C++ infrastructure calledheap layersthat is both fast and flexible [12]. Heap

layers permits the construction of high-quality memory managers by mixing and matching components us-

ing templated classes known as “mixins”. We build both custom and general-purpose allocators using heap

layers and we show that the resultant memory managers match or exceed the performance and memory effi-

ciency of their hand-coded counterparts. Heap layers thus provides a framework for composing high-quality

memory managers from well-tested components.

We then conduct a comprehensive evaluation of the performance of applications that use custom

memory managers. Contrary to popular belief, we find that the Lea allocator [50], a high-quality general-

purpose memory manager, provides nearly the same performance as custom memory managers for most (but

not all) of the applications using custom memory managers that we tested. These results argue for solving

memory management problems in a general-purpose framework.

To address the special needs of server applications, we develop a new memory management ab-

straction calledreaps[13]. Reaps are a hybrid of heaps andregions, which permit only bulk deletion of

all objects within separate areas of memory. We verify that programs using regions can achieve significant

performance gains over general-purpose memory management. We show that our implementation of reaps

nearly matches the performance of regions. More importantly, we show that reaps provide greater flexibility

for managing memory and simplify the coding of server applications and offer the opportunity to reduce

memory consumption.

We then address the problem of scalable concurrent memory management for multiprocessors. For

multiprocessor applications, we find that there are serious problems with current general-purpose memory

managers. We identify three key problems:lock contentionin the memory manager,allocator-induced

false sharingof heap objects, which can signficantly degrade performance, and ablowup in memory con-

2

sumption that can range fromP (the number of processors) tounboundedmemory consumption, which

causes programs to fail by exhausting all available memory.

We developHoard, a fast, highly scalable concurrent memory manager that largely avoids false shar-

ing and is memory efficient [11]. Hoard is the first allocator to simultaneously provide these features. Hoard

combines one global heap and per-processor heaps with a novel discipline that provably bounds memory

consumption and has very low synchronization costs in the common case. Our results on eleven programs

demonstrate that Hoard yields low average fragmentation and improves overall program performance over

the standard Solaris memory manager by up to a factor of 60 on 14 processors, and up to a factor of 18 over

the next best memory manager we tested. These results show that Hoard is a scalable concurrent memory

manager that can dramatically improve application performance.

1.1 Summary of contributions

In this thesis, we both identify and solve a number of memory management problems for high-performance

applications. We develop a memory management infrastructure that allows us to compose efficient general-

purpose memory managers from components. We show that most previous custom memory managers

achieve slight or no performance improvements over current general-purpose memory managers. We build

a hybrid memory manager that allows server applications to easily avoid memory leaks. We show that pre-

vious memory managers suffer from a number of problems when used by concurrent applications running

on multiprocessors, and we present a concurrent memory manager that provably avoids these problems.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we present background material and discuss recent related

work in memory management, describing three modern memory managers and focusing on memory man-

agement infrastructures and custom memory management. We then describe our experimental methodology

in Chapter 3. In Chapter 4, we present the heap layers infrastructure and use it to build two high-performance

general-purpose memory managers that perform comparably to their highly-tuned C counterparts. We then

3

compare custom and general-purpose memory managers in Chapter 5 and demonstrate that using custom

memory managers generally does not yield significant performance improvements for uniprocessor appli-

cations. In Chapter 6, we address the special needs of server applications with reaps, and demonstrate that

these provide increased flexibility and comparable performance to regions. We then focus on multiproces-

sor memory management in Chapter 7. We first discuss previous work and then describe Hoard in detail.

Finally, we summarize our contributions and discuss future research directions in Chapter 8.

4

Chapter 2

Background and Related Work

In this chapter, we first give a brief introduction to general-purpose memory managers. We describe three

representative memory managers in order to introduce some key memory management concepts. We then

present related work in two of the three areas of memory management that are the subject of this thesis:

memory management infrastructures and custom memory managers. We describe related work on concur-

rent memory management in Chapter 7 where we discuss allocator-induced false sharing and blowup in

detail.

2.1 Basic Concepts

Most programs rely on dynamic memory management, the creation and deletion of objects at runtime (as

opposed to static memory management, e.g. for fixed-sized arrays). C programmers callvoid * ptr =

malloc(s) to obtain a pointer tos bytes of memory, and callfree(ptr) to release this memory for

future requests. The C++ interface to the memory manager is type-safe: the programmer callsObject *

p = new Object to simultaneously allocate and construct anObject , and callsdelete p to finalize

and deallocate it.

Programmers expect memory managers to be both fast and memory-efficient, consuming as little

memory as possible while rapidly satisfying all requests for memory. If the memory manager were free

5

to relocate already-allocated objects, it would always be able to tightly bound memory consumption [24].

However, the memory models of languages like C and C++ do not permit the underlying memory manager to

move allocated objects. These languages therefore requirenon-movingmemory managers (often referred to

here and elsewhere in the literature asmemory allocators, or simplyallocators). All such memory managers

can suffer fromfragmentation, or wasted memory. In the worst-case, this fragmentation can be as high as

a factor of the logarithm of the ratio of the largest object size divided by the smallest object size [60]. This

bound means that a program that manages 8-byte and 8K objects could consume 10 times as much memory

as required (log(8192/8) = 10). However, the average fragmentation induced by a number of memory

management algorithms on real applications is low (around 1.1) [46].

Drawing from experience and empirical studies [34, 46, 80], most current memory managers per-

form an approximation ofbest-fit, which provides both speed and reasonably low fragmentation for most

applications. These memory managers attempt to satisfy memory requests with best-fitting chunks of mem-

ory – chunks that are the same size or slightly larger than the requests. In an attempt to maximize memory

utilization, many memory managers performsplitting (breaking large objects into smaller ones) andcoa-

lescing(combining adjacent free objects). Splitting reducesinternal fragmentation, wasted space inside

allocated objects, while coalescing can reduceexternal fragmentation(all other wasted space).

The language specifications of C and C++ impose additional requirements on the memory manager.

Objects must be double-word aligned in order to be able to hold double-precision numbers (a requirement

for many architectures). Therefore, the minimum object size is generally eight bytes. All object requests

from 1 to 8 bytes therefore belong to the samesize class, or range of object sizes that the memory manager

treats identically.

2.2 General-Purpose Memory Management

Rather than discussing the vast number of general-purpose memory management algorithms1, we focus

on three representative memory managers in order to introduce some key concepts. Here we describe the

1See Wilsonet al. for an extensive survey [80].

6

Kingsley allocator used in BSD 4.2 [80], the Windows XP allocator [59], and the Lea allocator [50]. These

allocators are in widespread use2 and span the spectrum between maximizing speed and minimizing mem-

ory consumption.

The Kingsley allocator is a power-of-twosegregated fitsallocator: all allocation requests are rounded

up to the next power of two, and objects from different size classes are never combined. This rounding can

lead to severe internal fragmentation, because in the worst case, it allocates twice as much memory as

requested. Further, an object allocated for a given size cannot be reused for another size: the allocator per-

forms no splitting or coalescing. This algorithm is well known to be among the fastest memory allocators

(avoiding relatively expensive splitting and coalescing operations) although it is among the worst in terms

of fragmentation [46].

The Lea allocator is an approximate best-fit allocator that manages objects differently based on their

size. The Lea allocator manages small objects (smaller than 64 bytes) using exact-size quicklists (one linked

list of freed objects for each multiple of 8 bytes). Requests for a medium-sized object (64 bytes to 128K)

and certain other events trigger the Lea allocator to coalesce all of the objects in these quicklists in the hope

that this reclaimed space can be reused for the medium-sized object. In other words, the coalescing of small

objects isdeferreduntil this trigger condition occurs. The Lea allocator performsimmediatecoalescing and

splitting of medium-sized objects to approximate best-fit. Objects larger than 128K are allocated and freed

using the virtual memory mapping functions. The Lea allocator is the best overall allocator (in terms of the

combination of speed and memory usage) of which we are aware [46].

The Windows XP allocator is a best-fit allocator with 127 exact-size quicklists (one linked list of

freed objects for each multiple of 8 bytes). Objects larger than 1024 bytes are obtained from a sorted linked

list, sacrificing speed for a good fit. When using the multithreaded version of the library, the allocator

manages quicklists using atomic operations rather than locks.

2The Linux allocator (in GNU libc) is based on the Lea allocator[31].

7

2.3 Memory Management Infrastructures

We know of only two previous infrastructures for building memory managers:vmalloc, by Vo, andCMM,

by Attardi, Flagella, and Iglio. We describe the key differences between their systems and ours, focusing on

the performance and flexibility advantages that heap layers provide.

2.3.1 Vmalloc

The most successful customizable memory manager of which we are aware is thevmallocallocator [78].

Vmalloc lets the programmer define multiple regions (distinct heaps) with different disciplines for each.

The programmer performs customization by supplying user-defined functions andstruct s that manage

memory. By chaining these together, vmalloc does provide the possibility of composing heaps. Each ab-

straction layer pays the penalty of a function call. This approach often prevents many useful optimizations,

in particular method inlining. The vmalloc infrastructure limits the programmer to a small set of functions

for memory allocation and deallocation; a programmer cannot add new functionality or new methods as we

describe in Section 4.4.1. Vmalloc does not provide a way to delete heaps and reclaim all of their memory

in one step. These limitations dramatically reduce vmalloc’s usefulness as an extensible infrastructure.

2.3.2 CMM

Attardi, Flagella, and Iglio created an extensive C++-based system called the Customizable Memory Man-

agement (CMM) framework [4, 5]. The primary focus of the CMM framework is garbage collection. The

only non-garbage collected heaps provided by the framework are a single “traditional manual allocation

discipline” heap (whose policy the authors do not specify) called UncollectedHeap and a zone allocator

called TempHeap. A programmer can create separate regions by subclassing the abstract class CmmHeap,

which uses virtual methods to obtain and reclaim memory. For every memory allocation, deallocation, and

crossing of an abstraction boundary, the programmer must thus pay the cost of one virtual method call. As in

vmalloc, this approach often prevents compiler optimizations across method boundaries. The virtual method

approach also limits flexibility. In CMM, subclasses cannot implement functions not already provided by

8

virtual methods in the base heap. Also, since class hierarchies are fixed, it is not possible to have one class

(such as FreelistHeap, described in Section 4.1.1) with two different parent heaps in different contexts.

2.4 Custom Memory Management

2.4.1 Construction and Use of Custom Memory Managers

Most academic research on special-purpose (custom) allocation has focused on profile-based optimization

of general-purpose allocation. Grunwald and Zorn’s CustoMalloc builds memory allocators from alloca-

tion traces, optimizing the allocator based on the range of object sizes and their frequency of usage [34].

Other profile-based allocators use lifetime information to improve performance and reference information

to improve locality for explicit memory management [7, 62].

Two custom memory allocators are especially popular and merit special attention.Freelist-based

allocators[53, 56, 71] keep same-sized objects on a linked-list, yielding very fast allocation and deallocation

of these objects (avoiding splitting, coalescing, and size calculations).Region allocators[29, 30, 37, 61,

73] allocate space for objects from large chunks of memory obtained from the general-purpose memory

manager. Object allocation in regions is very fast, consisting of bumping a pointer and checking to ensure

that the current chunk still has space (getting a new one from the general-purpose memory manager if

needed). A region allocator cannot free objects within a region. Rather, the region allocator deletes all of

the chunks at once when the region as a whole is no longer needed.

Numerous articles and books have appeared in the trade press presenting custom memory alloca-

tors as an optimization technique. Bulka and Mayhew devote two entire chapters to the development of a

number of custom memory allocators [18]. Meyers describes in detail the use of a freelist-based per-class

custom allocator in “Effective C++” [53] and returns to the topic of custom allocators in the sequel [54].

Milewski also discusses per-class allocators as an optimization technique [56]. Hanson devotes a chapter to

an implementation of regions (“arenas”), citing both the speed and software engineering benefits of regions

as motivation [38]. Ellis and Stroustrup describe the syntactic facilities that allow overloadingoperator

new, simplifying the use of custom allocators in C++ [23], and Stroustrup describes per-class allocators

9

that use these facilities [71]. In all but Hanson’s work, the authors present custom memory allocation as a

widely effective optimization, while our results suggest that only regions yield performance improvements.

We present a generalization of custom allocators (reaps) and show that reaps capture the high performance

of region allocators.

Region allocation, variously known as arenas, groups, and zones [37, 61] has recently attracted

attention as an alternative to garbage collection. Tofte and Talpin present a system that provides automatic

region-based memory management for ML [73]. Gay and Aiken describesaferegions which raise an error

when a programmer deletes a region containing live objects and introduce the RC language, an extension to

C that further reduces the overhead of safe region management [29, 30]. While these authors present only

the benefits of regions, we investigate the hidden memory consumption cost and limitations of regions and

present an alternative that avoids these drawbacks and combines individual object deletion with the benefits

of regions.

In addition to the standardmalloc /free interface, Windows also provides a Windows-specific

memory allocation interface that we refer to as Windows Heaps (all function calls begin withHeap). The

Windows Heaps interface is exceptionally rich, including multiple heaps and some region semantics (but

not nested regions) along with individual object deletion [59]. Vmalloc, a memory allocation infrastructure

that we describe above, also provides (non-nested) regions that permit individual object deletion [78]. We

show in Section 5.4.3 that neither of these implementations match the performance of regions or reaps, and

reaps capture the same semantics.

Regions have also been incorporated into Real-Time Java to allow real-time guarantees that cannot

be provided by any existing garbage collector algorithm or implementation [16]. These regions, while

somewhat different from traditional region-based allocators in that they are associated with one or more

computations [10], suffer from the same problems as traditional regions. In particular, threads in a producer-

consumer relationship cannot use region allocation without causing unbounded memory consumption. We

believe that adapting reaps to the setting of Real-Time Java is a fruitful topic for future research.

10

2.4.2 Evaluation of Custom Memory Management

The only previous work evaluating the impact of custom memory allocators is by Zorn. Zorn compared

custom (“domain-specific”) allocators to general-purpose memory allocators [82]. He analyzed the perfor-

mance of four benchmarks (cfrac, gawk, Ghostscript, and Perl) and found that the applications’ custom

allocators only slightly improved performance (from 2% to 7%) except for Ghostscript, whose custom al-

locator was outperformed by most of the general-purpose allocators he tested. Zorn also found that custom

allocators generally had little impact on memory consumption. His study differs from that performed in our

work in a number of ways. Ours is a more comprehensive study of custom allocation, including a bench-

mark suite covering a wide range of custom memory allocators, while Zorn’s benchmarks include essentially

only one variety.3 We also address custom allocators whose semantics differ from those of general-purpose

allocators (e.g., regions), while Zorn’s benchmarks use only semantically equivalent custom allocators.

In this section, we have discussed several general-purpose memory managers, existing memory

management infrastructures, and custom memory managers. In Chapter 4, we present our heap layers

infrastructure and show how it improves on past work. We perform a detailed evaluation of custom memory

managers in Chapter 5, comparing these to general-purpose memory managers, which we find perform

identically or nearly as well in most cases. However, existing general-purpose memory managers do not

provide adequate support for server-style and multithreaded applications, which we address in Chapters 6

and 7. In the next chapter, we present our experimental methodology that we use in the remainder of this

thesis.

3These allocators are all variants of what we call per-class allocators in Section 5.2.2.

11

Chapter 3

Experimental Methodology

To evaluate memory managers, we use analysis whenever possible but also rely on a large number of exper-

iments. Here we describe the different sets of benchmarks we use in this thesis, our hardware platforms and

our experimental methodology.

3.1 Benchmarks

We have gathered two suites of benchmarks that we use to evaluate a wide range of memory management

characteristics. We call these the Memory-Intensive and General-Purpose benchmark suites, and use them

in this thesis to measure different aspects of memory management.

3.1.1 Memory-Intensive Benchmarks

The Memory-Intensive Benchmark suite comprises a number of memory-intensive programs, most of which

were described by Zorn and Wilson [35, 46] and shown in Table 3.1. A memory-intensive program has at

least one of the following characteristics: it allocates and frees many objects, it consumes a significant

amount of memory, or it spends a lot of its time performing memory operations.

The suite includes the following programs:cfrac factors arbitrary-length integers,espressois an

optimizer for programmable logic arrays,lindsay is a hypercube simulator,LRUsimanalyzes locality in

12

Memory-Intensive Benchmarks
Benchmark Description Input
cfrac factors numbers a 36-digit number
espresso optimizer for PLAs test2
lindsay hypercube simulator script.mine
LRUsim a locality analyzer an 800MB trace
Perl Perl interpreter perfect.in
roboop Robotics simulator included benchmark

Table 3.1: Memory-intensive benchmarks.

Memory-Intensive Benchmark Statistics
Benchmark Objects Total memory Max in use Avg. size Memory ops Memory ops/sec
cfrac 10,890,166 222,745,704 176,960 20 21,780,289 1,207,862
espresso 4,477,737 1,130,107,232 389,152 252 8,955,367 218,276
lindsay 108,862 7,418,120 1,510,840 68 217,678 72,300
LRUsim 39,139 1,592,992 1,581,552 41 78,181 94
perl 8,548,435 162,451,960 293,928 19 17,091,308 257,809
roboop 9,268,221 332,058,248 16,376 36 18,536,397 1,701,786

Table 3.2: Statistics for the memory-intensive benchmarks. We divide by runtime with the Lea allocator to
obtain memory operations per second.

reference traces,perl is the Perl interpreter included in SPEC2000 (253.perlbmk), androboopis a robotics

simulator. As Table 3.2 shows, these programs exercise memory allocator performance in both speed and

memory efficiency. This table also includes the number of objects allocated and their average size. The

programs’ footprints range from just 16K (forroboop) to over 1.5MB (forLRUsim). For all of the programs

exceptlindsay and LRUsim, the ratio of total memory allocated to the maximum amount of memory in

use is large, showing that they allocate and free many objects. The programs’ rates of memory allocation

and deallocation (memory operations per second) range from under one hundred to almost two million per

second. Except forLRUsim, memory operations account for a significant portion of the runtime of these

programs.

3.1.2 General-Purpose Benchmarks

The General-Purpose Benchmark suite comprises programs drawn from the integer SPEC95 and SPEC2000

benchmark suites [65]. The SPEC benchmarks are CPU-intensive and so are useful for measuring CPU

13

General Benchmarks
164.gzip GNU zip data compressor [65] test/input.compressed 2
181.mcf Vehicle scheduler [65] test-input.in
186.crafty Chess program [65] test-input.in
252.eon(C++) Ray tracer [65] test/chair.control.cook
253.perlbmk Perl interpreter [65] perfect.pl b 3
254.gap Groups language interpreter [65]test.in
255.vortex Object-oriented DBM [65] test/lendian.raw
300.twolf CAD placement & routing [65] test.net
espresso Optimizer for PLAs [66] test2
lindsay(C++) Hypercube simulator [80] script.mine

Table 3.3: General-purpose benchmarks and inputs. Programs not written in C++ are written in C.

Benchmark Statistics
Benchmark Total objects Max objects Avg obj. size Total memory Max in use Mem. operations

in use (in bytes) (in bytes) (in bytes) (% of runtime)
general-purpose allocation
164.gzip 1,307 72 6108 7,983,304 6,615,288 0.1%
181.mcf 54 52 1,789,028 96,607,514 96,601,049 1.5%
186.crafty 87 86 10,206 887,944 885,520 0.0%
252.eon 1,647 803 31 51,563 33,200 0.4%
253.perlbmk 8,888,870 5,813 16 144,514,214 284,029 12.6%
254.gap 50 48 1,343,614 67,180,715 67,113,782 0.0%
255.vortex 186,483 53,087 357 66,617,881 17,784,239 1.9%
300.twolf 9,458 1,725 56 532,177 66,891 0.9%
espresso 4,483,621 4,885 249 1,116,708,854 373,348 10.8%

Table 3.4: Statistics for the General-Purpose Benchmark suite.

performance. We use these programs as a baseline for understanding the behavior of memory managers on

programs that do not generally make intensive use of the memory allocator.

3.2 Platforms

For uniprocessor experiments, we use Intel-based systems running Windows. Programs were compiled

with Visual C++ 6.0 and run on one of two dedicated personal computers, PC Platform 1 and 2. Table 3.5

describes all of our platforms in detail.

We conducted multiprocessor experiments on the Sun platform, a dedicated Enterprise E5000.

Nearly all programs (including the allocators) were compiled using the GNU C++ compiler version 2.80

14

Platform CPU OS RAM Cache sizes
PC Platform 1 Pentium II, 366 MHz (1) Windows 2000 128 MB L2: 256K (unified), L1: 16K
PC Platform 2 Pentium III, 600 MHz (1) Windows XP 320 MB L2: 256K (unified), L1: 16K
Sun Platform UltraSparc, 400 MHz (14) Solaris 7 2 GB L2: 4MB (unified), L1: 16K

Table 3.5: Platform characteristics. The number in parenthesis after CPU clock speed indicates the number
of processors.

at the highest possible optimization level (-O6). We use GNU C++ because we encountered errors when

we used high optimization levels for the vendor compiler (Sun Workshop compiler version 5.0). However,

we did use the vendor compiler for the one benchmark (Barnes-Hut), which ran considerably faster than the

GNU C++ version.

3.3 Execution Environment

In all cases, we performed experiments on dedicated machines. For runtimes, we report the arithmetic mean

of at least three runs, after one warm-up run. On the PC platforms, we run programs at real-time priority,

preventing all background applications from running at all. These steps ensure that variation in runtime

remains minimal (below 1%).

For most of the experiments in this thesis, we substitute memory allocators in existing applications

by statically linking in replacement allocators. That is, all calls tomalloc , etc., are routed away from the

system library to our replacement allocator. This approach intercepts all memory operations performed by

the application, including those made by library code (e.g.,printf) and initialization code. We link in a

memory allocation tracer that logs all memory operations to gather allocation statistics, including those in

the tables above and subsequently in the remainder of this thesis.

15

Chapter 4

Composing High-Performance Memory

Managers

Building high-quality general-purpose memory managers presents numerous software engineering chal-

lenges. These memory managers must simultaneously be very fast and keep memory consumption as low as

possible. Balancing these goals is difficult. The approach used by the Lea allocator is to implement memory

operations with large, monolithic C functions (hundreds of lines long) and employing heavy use of macros

to avoid function call overhead. This approach yields suitably fast code but at the considerable expense of

sacrificing modularity, extensibility, and maintainability.

To address these problems, we present a flexible and efficient infrastructure for building memory

managers calledheap layers. Heap layers provide a foundation for composing memory managers from a

collection of reusable components. This infrastructure is based on a combination of C++ templates and in-

heritance calledmixins[17]. Mixins are classes whose superclass may be changed. Using mixins allows the

programmer to code memory managers as composable layers that a compiler can implement with efficient

code. Unlike previous approaches, we show that this technique allows programmers to write highly modular

and reusable code with no abstraction penalty. We describe a number of high-performance custom alloca-

tors that we built by mixing and matching heap layers. We show that these allocators match or improve

performance when compared with their hand-tuned, monolithic C counterparts on a selection of C and C++

16

programs.

We demonstrate that this infrastructure can be used effectively to build high-performance, general-

purpose allocators. We evaluate two general-purpose allocators we developed using heap layers over a

period of three weeks, and compare their performance to the Kingsley allocator, one of the fastest general-

purpose allocators, and the Lea allocator, an allocator that is both fast and memory-efficient. While the

current heap layers allocator does not quite achieve the fragmentation and performance of the Lea allocator,

it comes close. The Lea allocator is highly tuned and has undergone many revisions over a period of more

than seven years [50].

The remainder of this chapter is organized as follows. In Section 4.1, we describe how we use

mixins to build heap layers and demonstrate how we can mix and match a few simple heap layers to build

and combine allocators. We briefly discuss our experimental methodology in Section 4.2. In Section 4.3,

we show how we implement some real-world custom allocators using heap layers and present performance

results. Section 4.4 then describes two general-purpose allocators built with heap layers and compares their

runtime and memory consumption to the Kingsley and Lea allocators. We describe some of the software

engineering benefits of heap layers in Section 4.5, and in Section 4.6, we show how heap layers provide a

convenient infrastructure for memory allocation experiments. We use this infrastructure to build and explore

allocator performance and memory utilization in the remainder of the thesis.

4.1 Heap Layers

While programmers often write memory allocators as monolithic pieces of code, they tend to think of them

as consisting of separate pieces. Most general-purpose allocators treat objects of different sizes differently.

The Lea allocator uses one algorithm for small objects, another for medium-sized objects, and yet another

for large objects. Conceptually at least, these heaps consist of a number of separate heaps that are combined

in a hierarchy to form one big heap.

The standard way to build components like these in C++ uses virtual method calls at each abstraction

boundary. The overhead caused by virtual method dispatch is significant when compared with the cost of

17

memory allocation. This implementation style also greatly limits the opportunities for optimization since the

compiler often cannot optimize across method boundaries. Building a class hierarchy through inheritance

also fixes the relationships between classes in a single inheritance structure, making reuse difficult.

To address these concerns, we usemixinsto build our heap layers. Mixins are classes whose super-

class may be changed (they may be reparented) [17]. The C++ implementation of mixins [75] consists of a

templated class that subclasses its template argument:

template <class Super>
class Mixin : public Super {};

Mixins overcome the limitation of a single class hierarchy, enabling the reuse of classes in different hierar-

chies. For instance, we can useChild in two different hierarchies,Child → Parent1 andChild → Parent2

(where the arrow means “inherits from”), by definingChild as a mixin and composing the classes as fol-

lows:

class Composition1 : public Child<Parent1> {};
class Composition2 : public Child<Parent2> {};

A heap layer is a mixin that provides amalloc andfree method and that follows certain coding guide-

lines. Themalloc function returns a memory block of the specified size, and thefree function deal-

locates the block. As long as the heap layer follows the guidelines we describe below, programmers

can easily compose heap layers to build heaps. One layer can obtain memory from its parent by calling

SuperHeap::malloc() and can return it withSuperHeap::free() . Heap layers also implement

thin wrappers around system-provided memory allocation functions likemalloc , sbrk , or mmap. We

term these thin-wrapper layerstop heaps, because they appear at the top of any hierarchy of heap layers.

We require that heap layers adhere to the following coding guidelines in order to ensure compos-

ability. First,malloc must correctly handle NULLs returned bySuperHeap::malloc() to allow an

out-of-memory condition to propagate through a series of layers or to be handled by an exception-handling

layer. Second, the layer’s destructor must free any memory held by the layer. This action allows heaps

18

composed of heap layers to be deleted in their entirety in one step.1

4.1.1 Example: Composing a Per-Class Allocator

One common way of improving memory allocation performance is to allocate all objects from a highly-used

class from a per-class pool of memory. Because all such objects are the same size, memory can be managed

by a simple singly-linked freelist [48]. Programmers often implement these per-class allocators in C++ by

overloading thenew anddelete operators for the class.2

Below we show how we can combine two simple heap layers to implement per-class pools without

changing the source code for the original heap layer class. We first define a utility class called PerClassHeap

that allows a programmer to adapt a class to use any heap layer as its allocator:

template <class Object, class SuperHeap>
class PerClassHeap : public Object {
public:

inline void * operator new (size_t sz) {
return getHeap().malloc (sz);

}
inline void operator delete (void * ptr) {

getHeap().free (ptr);
}

private:
static SuperHeap& getHeap (void) {

static SuperHeap theHeap;
return theHeap;

}
};

We build on the above with a very simple heap layer called FreelistHeap. This layer implements a linked

list of free objects of the same size.Malloc removes one object from the freelist if one is available, and

free places memory on the freelist for later reuse. This approach is a common idiom in allocators because

it provides fast allocation and freeing and reuses the most-recently freed memory which may provide good

locality. However, it is limited to handling only one size of object. The code for FreelistHeap appears in

1This functionality will prove useful for the development of region-like allocators.
2We show in Chapter 5 that such custom memory managers are generally a waste of time but use them only as a simple

demonstration of heap layers.

19

Figure 4.1 without the error checking included in the actual code to guarantee that all objects are the same

size.

template <class SuperHeap>
class FreelistHeap : public SuperHeap {
public:

FreelistHeap (void)
: myFreeList (NULL)

{}
˜FreelistHeap (void) {

// Delete everything on the freelist.
void * ptr = myFreeList;
while (ptr != NULL) {

void * oldptr = ptr;
ptr = (void *) ((freeObject *) ptr)->next;
SuperHeap::free (oldptr);

}
}
inline void * malloc (size_t sz) {

// Check the freelist first.
void * ptr = myFreeList;
if (ptr == NULL) {

ptr = SuperHeap::malloc (sz);
} else {

myFreeList = myFreeList->next;
}
return ptr;

}
inline void free (void * ptr) {

// Add this object to the freelist.
((freeObject *) ptr)->next = myFreeList;
myFreeList = (freeObject *) ptr;

}
private:

class freeObject {
public:

freeObject * next;
};
freeObject * myFreeList;

};

Figure 4.1: The implementation of FreelistHeap.

We can now combine PerClassHeap and FreelistHeap with mallocHeap (a thin layer over the system-

suppliedmalloc andfree) to make a subclass ofFoo that uses per-class pools.

20

class SameSizeFoo :
public

PerClassHeap<Foo, FreelistHeap<mallocHeap> >{};

4.1.2 A Library of Heap Layers

We have built a comprehensive library of heap layers that allows programmers to build a range of memory

allocators with minimal effort by composing these ready-made layers. Figure 4.4 lists a number of these

layers, which we group into the following categories:

Top heaps. A “top heap” is a heap layer that provides memory directly from the system and at least one

appears at the top of any hierarchy of heap layers. These thin wrappers over system-based mem-

ory allocators include mallocHeap (which uses the systemmalloc and free) mmapHeap (which

usesmmapandmunmap), and sbrkHeap (which usessbrk() for UNIX systems and ansbrk()

emulator for Windows).

Building-block heaps. Programmers can use these simple heaps in combination with other heaps described

below to implement more complex heaps. We provide an adapter called AdaptHeap that lets us embed

a dictionary data structure inside freed objects so we can implement variants of FreelistHeap, includ-

ing DLList, a FIFO-ordered, doubly-linked freelist that allows constant-time removal of objects from

anywhere in the freelist. This heap supports CoalesceHeap, which performs splitting and coalescing

of adjacent objects belonging to different freelists into one object.

Combining heaps. These heaps combine a number of heaps to form one new heap. These include two

segregated-fits layers, SegHeap and StrictSegHeap (described in Section 4.4.1), and HybridHeap, a

heap that uses one heap for objects smaller than a given size and another for larger objects.

Utility layers. Utility layers include ANSIWrapper, which provides ANSI-C compliant behavior formalloc

andfree to allow a heap layer to replace the system-supplied allocator. A number of layers supply

multithreaded support, including LockedHeap, whichcode-locksa heap for thread safety (acquires a

21

lock, performs amalloc or free , and then releases the lock), and ThreadHeap and PHOThread-

Heap, which implement finer-grained multithreaded support. Error handling is provided by ThrowEx-

ceptionHeap, which throws an exception when its superheap is out of memory. We also provide heap

debugging support with DebugHeap, which tests for multiple frees and other common memory man-

agement errors.

Object representation. SizeHeap maintains object size in a header just preceding the object. Coalesce-

ableHeap does the same but also records whether each object is free in the header of the next object

in order to facilitate coalescing.

Special-purpose heaps.We provide a number of heaps optimized for managing objects with known life-

times, including two heaps for stack-like behavior (ObstackHeap and XallocHeap, described in Sec-

tions 4.3.1 and 4.3.2) and a region-based allocator (ZoneHeap).

General-purpose heaps.We also implement two heap layers useful for general-purpose memory alloca-

tion: KingsleyHeap and LeaHeap, described in Sections 4.4.1 and 4.4.2.

4.2 Experimental Methodology

We wrote these heap layers in C++ and implemented them as a series of include files. We then used these

heap layers to replace a number of allocators. For C++ programs, we used these heap layers directly (e.g.,

kHeap.free(p)). When replacing custom allocators in C programs, we wrapped the heap layers with

a C API. When replacing the general-purpose allocators, we redefinedmalloc and free and the C++

operatorsnew anddelete to refer to the desired allocator. We executed these programs on PC Platform 1

(see 3.2).

4.3 Building Special-Purpose Allocators

In this section, we investigate the performance implications of building allocators using heap layers. Specif-

ically, we evaluate the performance of two applications (197.parser and 176.gcc from the SPEC2000 bench-

22

mark suite) that make extensive use of custom allocators, as described in Chapter??. We compare the

performance of the original carefully-tuned allocators against versions of the allocators that we wrote with

heap layers. In Section 4.4, we show similar results for general-purpose memory managers.

4.3.1 197.parser

The 197.parser benchmark is a natural-language parser for English written by Sleator and Temperley. It uses

a custom allocator the authors callxalloc which is optimized for stack-like behavior. This allocator uses a

fixed-size region of memory (in this case, 30MB) and always allocates after the last block that is still in use

by bumping a pointer. Freeing a block marks it as free, and if it is the last block, the allocator resets the

pointer back to the new last block in use. Xalloc can free the entire heap quickly by setting the pointer to

the start of the memory region. This allocator is a good example of appropriate use of a custom allocator.

As in most custom allocation strategies, it is not appropriate for general-purpose memory allocation. For

instance, if an application never frees the last block in use, this algorithm would exhibit unbounded memory

consumption.

We replaced xalloc with a new heap layer, XallocHeap. This layer, which we put on top of Mmap-

Heap, is the same as the original allocator, except that we replaced a number of macros by inline static

functions. We did not replace the general-purpose allocator which uses the Windows 2000 heap. We ran

197.parser against the SPEC test input to measure the overhead that heap layers added. Figure 4.2 presents

these results. We were quite surprised to find that using layers actually slightlyreducedruntime (by just

over 1%), although this reduction is barely visible in the graph. The source of this small improvement is due

to the increased opportunity for code reorganization that layers provide. When using layers, the compiler

can schedule code with much greater flexibility. Since each layer is a direct procedure call, the compiler

can decide what pieces of the layered code are most appropriate to inline at each point in the program.

The monolithic implementations ofxalloc /xfree in the original can only be inlined in their entirety.

Table 4.1 shows that the executable sizes for the original benchmark are the smallest when the allocation

functions are not declared inline and the largest when they are inlined, while the version with XallocHeap

lies in between (the compiler inlined the allocation functions with XallocHeap regardless of our use of

23

197.parser variant Executable size
original 211,286
original (inlined) 266,342
XallocHeap 249,958
XallocHeap (inlined) 249,958

Table 4.1: Executable sizes for variants of 197.parser.

Parser: Original vs. xallocHeap

0

2

4

6

8

10

12

14

Original Original (inlined) xallocHeap

Benchmarks

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Figure 4.2: Runtime comparison of the original 197.parser custom allocator and xallocHeap.

inline). Inspecting the assembly output reveals that the compiler made more fine-grained decisions on

what code to inline and thus achieved a better trade-off between program size and optimization opportunities

to yield improved performance.

4.3.2 176.gcc

Gcc usesobstacks, a well-known custom memory allocation library [80]. Obstacks also are designed to

take advantage of stack-like behavior, but in a more radical way than xalloc. Obstacks consist of a number

of large memory “chunks” that are linked together. Allocation of a block bumps a pointer in the current

chunk, and if there is not enough room in a given chunk, the obstack allocator obtains a new chunk from

the system. Freeing an object deallocates all memory allocated after that object. Obstacks also support a

grow() operation. The programmer can increase the size of the current block, and if this block becomes

too large for the current chunk, the obstack allocator copies the current object to a new, larger chunk.

Gcc uses obstacks in a variety of phases during compilation. The parsing phase in particular uses

24

gcc: Obstack vs. ObstackHeap

0

50

100
150

200

250

M
acr

os

No m
acr

os

Obsta
ck

Heap+m
allo

c

Obsta
ck

Heap+Fre
elis

tH
eap

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(a) Complete execution of gcc.

gcc parse: Obstack vs. ObstackHeap

0

2

4

6

8

10

M
acr

os

No m
acr

os

Obsta
ck

Heap+m
allo

c

Obsta
ck

Heap+Fre
elis

tH
eap

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(b) gcc’s parse phase only.

Figure 4.3: Runtime comparison of gcc with the original obstack and ObstackHeap.

obstacks extensively. In this phase, gcc uses the obstack grow operation for symbol allocation in order

to avoid a fixed limit on symbol size. When entering each lexical scope, the parser allocates objects on

obstacks. When leaving scope, it frees all of the objects allocated within that scope by freeing the first

object it allocated.

Obstacks have been heavily optimized over a number of years and make extensive use of macros.

We implemented ObstackHeap in heap layers and provided C-based wrapper functions that implement the

obstack API. This effort required about one week and consists of 280 lines of code (around 100 are to

implement the API wrappers). By contrast, the GNU obstack library consists of around 480 lines of code

and was refined over a period of at least six years.

We ran gcc on one of the reference inputs (scilab.i) and compared two versions of the original gcc

with two versions of gcc with ObstackHeap: the original macro-based code, the original with function calls

instead of macros, the ObstackHeap version layered on top of mallocHeap, and an ObstackHeap version that

uses a FreelistHeap to optimize allocation and freeing of the default chunk size and mallocHeap for larger

chunks:

As with 197.parser, we did not replace the general-purpose allocator. Figure 4.3(a) shows the total execution

time for each of these cases, while Figure 4.3(b) shows only the parse phase. Layering ObstackHeap on top

25

class ObstackType :
public ObstackHeap<4096,

HybridHeap<4096 + 8, // Obstack overhead
FreelistHeap<mallocHeap>,
mallocHeap> {};

of FreelistHeap results in an 8% improvement over the original in the parse phase, although its improvement

over the original for the full execution of gcc is minimal (just over 1%).

4.4 Building General-Purpose Allocators

In this section, we consider the performance implications of building general-purpose allocators using heap

layers. Specifically, we compare the performance of the Kingsley and Lea allocators [50] to allocators

with very similar architectures created by composing heap layers. Our goal is to understand whether the

performance costs of heap layers prevent the approach from being viable for building general-purpose allo-

cators. We map the designs of these allocators to heap layers and then compare the runtime and memory

consumption of the original allocators to our heap layer implementations, KingsleyHeap and LeaHeap. To

evaluate allocator runtime performance and fragmentation, we use the Memory-Intensive benchmark suite

we describe in Section 3.1.1. Memory operations account for a significant portion of their runtime for these

benchmarks except forLRUsim, and exercise both the speed and memory efficiency of memory allocators.

4.4.1 The Kingsley Allocator

We first show how we can build KingsleyHeap, a complete general-purpose allocator using the FreelistHeap

layer described in Section 4.1.1 composed with one new heap layer. We show that KingsleyHeap, built using

heap layers, performs as well as the Kingsley allocator.

The Kingsley allocator needs to know the sizes of allocated objects so it can place them on the

appropriate free list. An object’s size is often kept in metadata just before the object itself, but it can

be represented in other ways. We can abstract away object representation by relying on agetSize()

method that must be implemented by a superheap. SizeHeap is a layer that records object size in a header

26

immediately preceding the object.

template <class SuperHeap>
class SizeHeap : public SuperHeap {
public:

inline void * malloc (size_t sz) {
// Add room for a size field.
freeObject * ptr = (freeObject *)

SuperHeap::malloc (sz + sizeof(freeObject));
// Store the requested size.
ptr->sz = sz;
return (void *) (ptr + 1);

}
inline void free (void * ptr) {

SuperHeap::free ((freeObject *) ptr - 1);
}
inline static size_t getSize (void * ptr) {

return ((freeObject *) ptr - 1)->sz;
}

private:
union freeObject {

size_t sz;
double _dummy; // for alignment.

};
};

Figure 4.4: The implementation of SizeHeap.

StrictSegHeap provides a general interface for implementing strict segregated fits allocation. Segregated fits

allocators divide objects into a number ofsize classes, which are ranges of object sizes that are grouped

together (e.g., all objects between 32 and 36 bytes are treated as 36-byte objects). Memory requests for a

given size are satisfied directly from the “bin” corresponding to the requested size class. The heap returns

deallocated memory to the appropriate bin. StrictSegHeap’s arguments include the number of bins, a func-

tion that maps object size to size class and size class to maximum size, the heap type for each bin, and the

parent heap (for bigger objects). The implementation of StrictSegHeap is 32 lines of C++ code. The class

definition appears in Figure 4.8.

We now build KingsleyHeap using these layers. First, we implement helper functions that sup-

port power-of-two size classes (integerlog function and exponentiation functions). We can now define

KingsleyHeap. We implement KingsleyHeap as a StrictSegHeap with 29 bins and power-of-two size classes

27

(supporting an object size of up to232 − 1 bytes). Each size class is implemented using a FreelistHeap that

gets memory from SbrkHeap (a thin layer oversbrk()).

class KingsleyHeap :
public StrictSegHeap<29, pow2getSizeClass,

pow2getClassMaxSize,
SizeHeap<FreelistHeap<SbrkHeap> >,
SizeHeap<FreelistHeap<SbrkHeap> > > {};

A C++ programmer now uses this heap by declaring it as an object and directly using themalloc and

free calls.

KingsleyHeap kHeap;
void * ptr = kHeap.malloc (20);
kHeap.free (ptr);

4.4.2 The Lea Allocator

Version 2.7.0 of the Lea allocator is a hybrid allocator with different behavior for different object sizes.

For small objects (≤ 64 bytes), the allocator uses quick lists; for large objects (≥ 128K bytes), it uses

virtual memory (mmap), and for medium-sized objects, it performs approximate best-fit allocation [50].

The strategies it employs are somewhat intricate but it is possible to decompose these into a hierarchy of

layers.

Figure 4.6 shows the heap layers representation of LeaHeap, which is closely modeled after the

Lea allocator. The shaded area represents LeaHeap, while the Sbrk and Mmap heaps depicted at the top

are parameters. At the bottom of the diagram, object requests are managed by a SelectMmapHeap, which

routes large size requests to be eventually handled by the Mmap parameter. Smaller requests are routed to

ThresholdHeap, which both routes size requests to a small and medium heap and in certain instances (e.g.,

when a sufficiently large object is requested), frees all of the objects held in the small heap. We implemented

coalescing and splitting using two layers. CoalesceHeap performs splitting and coalescing, while Coalesce-

ableHeap provides object headers and methods that support coalescing. SegHeap is a more general version

28

Runtime: General-Purpose Allocators

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cfrac espresso lindsay LRUsim perl roboop

Benchmark

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Kingsley KingsleyHeap KingsleyHeap + coal. Lea LeaHeap

(a) Runtime normalized to the Lea allocator.

Space: General-Purpose Allocators

0

0.5

1

1.5

2

2.5

cfrac espresso lindsay LRUsim perl roboop

Benchmark

N
o

rm
al

iz
ed

 S
p

ac
e

Kingsley KingsleyHeap KingsleyHeap + coal. Lea LeaHeap

(b) Space (memory consumption) normalized to the
Lea allocator.

Figure 4.5: Runtime and space comparison of the original Kingsley and Lea allocators and their heap layers
counterparts.

of StrictSegHeap described in Section 4.4.1 that searches through all of its heaps for available memory.

Not shown in the picture are AdaptHeap and DLList. AdaptHeap lets us embed a dictionary data structure

within freed objects, and for LeaHeap, we use DLList, which implements a FIFO doubly-linked list. While

LeaHeap is not a complete implementation of the Lea allocator (which includes other heuristics to further

reduce fragmentation), it is a faithful model that implements most of its important features, including the

hierarchy described here.

We built LeaHeap in a total of three weeks. We were able to reuse a number of layers, including

SbrkHeap, MmapHeap, and SegHeap. The layers that implement coalescing (CoalesceHeap and Coalesce-

ableHeap) are especially useful and can be reused to build other coalescing allocators, as we show in Sec-

tion 4.6. The new layers constitute around 500 lines of code, not counting comments or white space, while

the Lea allocator is over 2,000 lines of code. LeaHeap is more flexible than the original Lea allocator. For

instance, a programmer can use multiple instances of LeaHeaps to manage distinct ranges of memory and

thus provide some memory protection, something that is not possible with the original. Similarly, we can

make these heaps thread-safe when needed by wrapping them with a LockedHeap layer. Because of this

flexibility of heap layers, we can easily includebotha thread-safe and non-thread-safe version of the same

29

������� �	��

�

���������
�������

���! #"�$ �
� %'&)(+*

, �
-/. �
0 %'&)(+*

132
#465#798�5#
 � 465;:<5#
��

� 5>=!:<5�

�

132
#465#798�5;:<5�

�

�@?A�CB 8 ?D� 5>=!:<5�

�

EGF � 5#7 F 2 4IHJ:K5#

�

� 5L465#8 ? �	�M

�N:<5#
��

1;2
�465#7�8�5�
 � 4653:<5#

�

Figure 4.6: A diagram of LeaHeap’s architecture.

Runtime for General-Purpose Allocators
Benchmark Kingsley KingsleyHeap KHeap + coal. Lea LeaHeap
cfrac 19.02 19.75 25.94 19.09 20.14
espresso 40.66 40.91 44.56 41.12 46.33
lindsay 3.05 3.04 3.16 3.01 3.03
LRUsim 836.67 827.10 826.44 831.98 828.36
perl 66.94 70.01 73.61 66.32 68.60
roboop 10.81 11.19 17.89 10.89 13.08

Table 4.2: Runtime (in seconds) for the general-purpose allocators described in this paper.

allocator in the same application so that an application only incurs the cost of locking when necessary.

4.4.3 Experimental Results

We ran the benchmarks in Table 3.1 with the Kingsley allocator, KingsleyHeap, KingsleyHeap plus coa-

lescing (which we discuss in Section 4.6), the Lea allocator, and LeaHeap. In Figure 4.5(a) we present

a comparison of the runtimes of our benchmark applications normalized to the original Lea allocator (we

present the data used for this graph in Table 4.2). The average increase in runtime for KingsleyHeap over

the Kingsley allocator is just below 2%. For the two extremely allocation-intensive benchmarks,cfrac and

roboop, the increase in runtime is just over 3%, demonstrating that the overhead of heap layers has minimal

impact. Despite being cleanly decomposed into a number of layers, KingsleyHeap performs nearly as well

30

Memory Consumption for General-Purpose Allocators
Benchmark Kingsley KingsleyHeap KHeap + coal. Lea LeaHeap
cfrac 270,336 280,640 271,944 208,896 241,272
espresso 974,848 992,032 541,696 462,848 448,808
lindsay 2,158,592 2,120,752 1,510,688 1,515,520 1,506,720
LRUsim 2,555,904 2,832,272 1,887,512 1,585,152 1,887,440
perl 425,984 454,024 342,344 331,776 337,408
roboop 45,056 20,760 11,440 20,480 11,616

Table 4.3: Memory consumption (in bytes) for the general-purpose allocators described in this paper.

as the original hand-coded Kingsley allocator. Runtime of LeaHeap is between1/2% faster and 20% slower

than the Lea allocator (an average of 7% slower).

Figure 4.5(b) shows memory consumption for the same benchmarks normalized to the Lea allocator

(we present the data used for this graph in Table 4.3). We define memory consumption as the high-water

mark of memory requested from the operating system. For the Kingsley and Lea allocators, we used the

amount reported by these programs; for the heap layers allocators, we directly measured the amount re-

quested by both SbrkHeap and MmapHeap. KingsleyHeap’s memory consumption is between 54% less and

11% more (on average 5.5% less), while LeaHeap’s memory consumption is between 44% less and 19%

more (on average 2% less) than the Lea allocator. The outlier isroboop, which has an extremely small

footprint (just 16K) that exaggerates the memory efficiency of the heap layers allocators. Excludingroboop,

the average increase in memory consumption for KingsleyHeap is 4% and for LeaHeap is 6.5%.

This investigation provides several insights. First, we have demonstrated that the heap layers frame-

work is sufficiently robust that we can use it to develop quite sophisticated allocator implementations. Fur-

thermore, we have shown that we can quickly (in a matter of weeks) assemble an allocator that is structurally

similar to one of the best general-purpose allocators available. In addition, its performance and fragmenta-

tion are comparable to the original allocator.

4.5 Software Engineering Benefits

Our experience with building and using heap layers has been quite positive. Some of the software engineer-

ing advantages of using mixins to build software layers (e.g., heap layers) have been discussed previously,

31

especially focusing on ease of refinement [8, 19, 64]. We found that using heap layers as a means of step-

wise refinement greatly simplified allocator construction. We also found the following additional benefits of

using layers.

Because we can generally use any single layer to replace an allocator, we are often able to test and

debug layers in isolation, making building allocators a much more reliable process. By adding and removing

layers, we can find buggy layers by process of elimination. To further assist in layer debugging, we built

a simple DebugHeap layer (shown in Figure 4.7) that checks for a variety of memory allocation errors,

including invalid and multiplefree s. During development, we insert this layer between pairs of layers as

a sanity check. DebugHeap is also useful as a layer for finding errors in client applications. By using it with

our heap layers allocators, we discovered a number of serious allocation errors (multiplefree s) in p2c, a

program we had previously planned to use as a benchmark.

The combination of error-checking in heap layers with compiler elimination of layer overhead en-

courages the division of allocators into many layers. When porting our first version of the LeaHeap to

Solaris, we found that one of our layers, CoalesceSegHeap, contained a bug. This heap layer provided

the functionality of SegHeap as well as coalescing, splitting and adding headers to allocated objects. This

bug motivated us to break out coalescing and header management into different layers (CoalesceHeap and

CoalesceableHeap). By interposing DebugHeap, we found the bug quickly.

4.6 Heap Layers as an Experimental Infrastructure

Because heap layers simplify the creation of memory allocators, we can use them to perform a wide range

of memory allocation experiments that previously would have required a substantial programming effort. In

this section, we describe one such experiment that demonstrates the use of heap layers as an experimental

infrastructure.

As Figures 4.5(a) and 4.5(b) demonstrate, the Kingsley allocator is fast but suffers from excessive

memory consumption. Wilson and Johnstone attribute this effect to the Kingsley allocator’s lack of coalesc-

ing or splitting that precludes reuse of objects for different-sized requests [46]. A natural question is to what

32

extent adding coalescing remedies this problem and what impact it has on performance. Using heap layers,

we just add coalescing and splitting with the layers we developed for LeaHeap.

We ran our benchmarks with this coalescing Kingsley heap and report runtime and performance

numbers in the figures and tables as “KHeap + coal.” Coalescing has a dramatic effect on memory consump-

tion, bringing KingsleyHeap fairly close to the Lea allocator. Coalescing decreases memory consumption

by an average of 50% (as little as 3% and as much as 80%). For most of the programs, the added cost

of coalescing has little impact, but on the extremely allocation-intensive benchmarks (cfrac and roboop),

this cost is significant. This experiment demonstrates that coalescing achieves effective memory utilization,

even for an allocator with high internal fragmentation. It also shows that the performance impact of immedi-

ate coalescing is significant for allocation-intensive programs, in contrast to the Lea allocator which defers

coalescing to certain circumstances, as described in Section 2.2.

4.7 Conclusion

In this chapter, we describe a framework in which custom and general purpose allocators can be effectively

constructed from composable, reusable parts. Our framework, heap layers, uses C++ templates and inheri-

tance to allow high-performance memory managers to be rapidly created. Even though heap layers introduce

many layers of abstraction into an implementation, building allocators using heap layers can actually match

or improve the performance of monolithic allocators. This non-intuitive result occurs, as we show, because

heap layers expand the flexibility of compiler-directed inlining.

Based on our design, we implement a library of reusable heap layers: layers specifically designed

to combine heaps, layers that provide heap utilities such as locking and debugging, and layers that support

application-specific semantics such as region allocation and stack-structured allocation. We also demon-

strate how these layers can be easily combined to create special and general purpose allocators.

To evaluate the cost of building allocators using heap layers, we present a performance comparison

of two custom allocators found in SPEC2000 programs (197.parser and 176.gcc) against an equivalent im-

plementation based on heap layers. In both cases, we show that the use of heap layers improves performance

33

slightly over the original implementation. This surprising result demonstrates the software engineering ben-

efits described above have no performance penalty for these programs. We also compare the performance

of a general-purpose allocator based on heap layers against the performance of the Lea allocator, widely

considered to be among the best uniprocessor allocators available. While the allocator based on heap layers

currently requires more CPU time (7% on average), we anticipate that this difference will shrink as we spend

more time tuning our implementation. Furthermore, because our implementation is based on layers, we can

easily provide an efficient scalable version of our allocator for multithreaded programs, whereas the Lea

allocator requires significant effort to rewrite for this case.

Our results suggest a number of additional research directions. First, because heap layers are so

easy to combine and compose, they provide an excellent infrastructure for doing comparative performance

studies. Questions like the cache effect of size tags, or the locality effects of internal or external fragmen-

tation can be studied easily using heap layers. Second, we anticipate growing our library of standard layers

to increase the flexibility with which high-performing allocators can be composed. Finally, we believe that

heap layers greatly simplify the creation of new general-purpose memory managers. In the remainder of

this thesis, we use heap layers as a foundation for building these better general-purpose memory managers.

34

A Library of Heap Layers
Top Heaps

mallocHeap A thin layer overmalloc
mmapHeap A thin layer over the virtual memory manager
sbrkHeap A thin layer oversbrk (contiguous memory)

Building-Block Heaps
AdaptHeap Adapts data structures for use as a heap
BoundedFreelistHeap A freelist with a bound on length
ChunkHeap Manages memory in chunks of a given size
CoalesceHeap Performs coalescing and splitting
FreelistHeap A freelist (caches freed objects)

Combining Heaps
HybridHeap Uses one heap for small objects

and another for large objects
SegHeap A general segregated fits allocator
StrictSegHeap A strict segregated fits allocator

Utility Layers
ANSIWrapper Provides ANSI-malloc compliance
DebugHeap Checks for a variety of allocation errors
LockedHeap Code-locks a heap for thread safety
PerClassHeap Use a heap as a per-class allocator
PHOThreadHeap A private heaps with ownership allocator [11]
ProfileHeap Collects and outputs fragmentation statistics
ThreadHeap A pure private heaps allocator [11]
ThrowExceptionHeap Throws an exception when the parent heap

is out of memory
TraceHeap Outputs a trace of allocations
UniqueHeap A heap type that refers to one heap object

Object Representation
CoalesceableHeap Provides support for coalescing
SizeHeap Records object sizes in a header

Special-Purpose Heaps
ObstackHeap A heap optimized

for stack-like behavior and fast resizing
ZoneHeap A zone (“region”) allocator
XallocHeap A heap optimized for stack-like behavior

General-Purpose Heaps
KingsleyHeap Fast but high fragmentation
LeaHeap Not quite as fast but low fragmentation

Table 4.4: A library of heap layers, divided by category.

35

template <class SuperHeap>
class DebugHeap : public SuperHeap {
private:

// A freed object has a special (invalid) size.
enum { FREED = -1 };
// "Error messages", used in asserts.
enum { MALLOC_RETURNED_ALLOCATED_OBJECT = 0,

FREE_CALLED_ON_INVALID_OBJECT = 0,
FREE_CALLED_TWICE_ON_SAME_OBJECT = 0 };

public:
inline void * malloc (size_t sz) {

void * ptr = SuperHeap::malloc (sz);
if (ptr == NULL)

return NULL;
// Fill the space with a known value.
memset (ptr, ’A’, sz);
mapType::iterator i = allocated.find (ptr);
if (i == allocated.end()) {

allocated.insert (pair<void *, int>(ptr, sz));
} else {

if ((*i).second != FREED) {
assert (MALLOC_RETURNED_ALLOCATED_OBJECT);

} else {
(*i).second = sz;

}
}
return ptr;

}
inline void free (void * ptr) {

mapType::iterator i = allocated.find (ptr);
if (i == allocated.end()) {

assert (FREE_CALLED_ON_INVALID_OBJECT);
return;

}
if ((*i).second == FREED) {

assert (FREE_CALLED_TWICE_ON_SAME_OBJECT);
return;

}
// Fill the space with a known value.
memset (ptr, ’F’, (*i).second);
(*i).second = FREED;
SuperHeap::free (ptr);

}
private:

typedef map<void *, int> mapType;
// A map of tuples (obj address, size).
mapType allocated;

};

Figure 4.7: The implementation of DebugHeap.

36

template <int NumBins,
int (*getSizeClass) (size_t),
size_t (*getClassMaxSize) (int),
class LittleHeap,
class BigHeap>

class StrictSegHeap : public BigHeap {
public:

inline void * malloc (size_t sz) {
void * ptr;
int sizeClass = getSizeClass (sz);
if (sizeClass >= NumBins) {

// This request was for a "big" object.
ptr = BigHeap::malloc (sz);

} else {
size_t ssz = getClassMaxSize(sizeClass);
ptr = myLittleHeap[sizeClass].malloc (ssz);

}
return ptr;

}
inline void free (void * ptr) {

size_t objectSize = getSize(ptr);
int objectSizeClass

= getSizeClass (objectSize);
if (objectSizeClass >= NumBins) {

BigHeap::free (ptr);
} else {

while (getClassMaxSize(objectSizeClass)
> objectSize) {

objectSizeClass--;
}
myLittleHeap[objectSizeClass].free (ptr);

}
}

private:
LittleHeap myLittleHeap[NumBins];

};

Figure 4.8: The implementation of StrictSegHeap.

37

Chapter 5

Reconsidering Custom Memory

Management

Programmers seeking to improve performance often incorporate custom memory managers into their appli-

cations. Custom memory managers aim to take advantage of application-specific patterns of memory usage

to manage memory more efficiently than a general-purpose memory manager. For instance, the SPEC2000

benchmark 197.parser runs over 60% faster with its custom memory manager than with the Windows XP

memory allocator [12]. Numerous books and articles recommend custom memory managers as an opti-

mization technique [18, 54, 56]. The use of custom memory managers is widespread, including the Apache

web server [2], the GCC compiler [28], three of the SPECint2000 benchmarks [65], and the C++ Standard

Template Library [26, 63], all of which we examine here. The C++ language provides language constructs

that directly support custom memory management (overloadingoperator new anddelete) [23].

In this chapter, we perform a comprehensive evaluation of custom allocation. We survey a variety

of applications that use a wide range of custom memory managers. We compare their performance and

memory consumption to general-purpose memory managers. We were surprised to find that, contrary to

conventional wisdom, custom allocation generally does not improve performance, and in one case, actually

leads to a performance degradation. A state-of-the-art general-purpose memory manager (the Lea allocator

[50]) yields performance equivalent to custom memory management for six of our eight benchmarks. These

38

Time Spent in Memory Operations

0

20

40

60

80

100

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Ave
ra

ge

%
 o

f
ru

n
ti

m
e

Memory Operations Other

(a) Time spent in memory operations for eight custom allocation
benchmarks, with their memory managers replaced by the Windows
allocator (see Section 5.1.1). Memory operations account for up to
40% of program runtime (on average, 16%), indicating a substantial
opportunity for optimization.

Space - Custom Allocator Benchmarks

0

1

2

3

4

5

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

S
p

ac
e

(M
B

)

30 91

(b) Memory consumption for eight custom allocation benchmarks,
includingonly memory allocated by the custom memory managers.
Most of these consume relatively small amounts of memory on
modern hardware, suggesting little opportunity for reducing mem-
ory consumption.

Figure 5.1: Runtime and space consumption for eight custom allocation benchmarks.

results suggest that most programmers seeking faster memory allocation should use the Lea allocator rather

than writing their own custom memory manager.

The remainder of this chapter is organized as follows. We describe our benchmarks in Section 5.1. In

Section 5.2, we analyze the structure of custom memory managers used by our benchmark applications. We

describe our experimental infrastructure and methodology in Section 5.3 and present experimental results

in Section 5.4. We discuss our results in Section 5.5, explaining why we believe programmers used custom

memory managers despite the fact that these do not provide the performance they promise.

5.1 Benchmarks

We list the benchmarks we use in this paper in Table 5.1, including general-purpose allocation benchmarks

that we use for comparison with custom allocation in Section 5.4.3. Most of our benchmarks come from

the SPECint2000 benchmark suite [65]. For the custom allocation benchmarks, we include a number of

programs used in prior work on memory allocation. These programs include those used by Gay and Aiken

(Apache, lcc, and mudlle) [29, 30], and boxed-sim, used by Chilimbi [20]. We also use the C-Breeze

39

compiler infrastructure [36]. C-Breeze makes intensive use of the C++ Standard Template Library (STL),

and most implementations of the STL use custom memory managers, including the one we use in this study

(STLport, officially recommended by IBM) [26, 63].

Benchmarks
custom allocation

197.parser English parser [65] test.in
boxed-sim Balls-in-box simulator [20] -n 3 -s 1
c-breeze(C++) C-to-C optimizing compiler [36] espresso.c
175.vpr FPGA placement & routing [65] test placement
176.gcc Optimizing C compiler [65] scilab.i
apache Web server [2] see Section 5.3
lcc Retargetable C compiler [27] scilab.i
mudlle MUD compiler/interpreter [29] time.mud

Table 5.1: Benchmarks and inputs. Programs not written in C++ are written in C.

We use the largest inputs available to us for most of the custom allocation benchmarks, except for

175.vpr and 197.parser. For these and the general-purpose benchmarks from SPEC2000, we used the test

inputs. The overhead imposed by our binary instrumentation made runtimes for the reference inputs and the

resultant trace files intractable. We excluded just one SPEC benchmark, 256.bzip2, because we could not

process even its test inputs.

We describe all of the inputs we used to drive our benchmarks in Table 5.1 except for Apache. To

drive Apache, we follow Gay and Aiken and run on the same computer a program that fetches a large number

of static web pages. While this test is unrealistic, it serves two purposes. First, isolating performance from

the usual network and disk I/O bottlenecks magnifies the performance impact of custom allocation. Second,

using the same benchmark as Gay and Aiken facilitates comparison with their work.

5.1.1 Emulating Regions

Because custom memory managers often support semantics that differ from the C memory allocation inter-

face, we need to emulate them withmalloc /free as the underlying allocation mechanism. We wrote and

tuned a region emulator to provide the full range of region semantics used by our benchmark applications,

including nesting and obstacks (see Section 5.2.2). The region emulator uses the general-purpose memory

40

manager for each allocated object, but records a pointer for each object so that when the application deletes

a region, the region emulator can callfree on each allocated object. We record this pointer information

in an out-of-band dynamic array associated with each region, rather than within the allocated objects. This

method ensures that the last access to any allocated object is by the client program and not by our region em-

ulator. Using this technique means that our region emulator has no impact on object drag, which we measure

in Section 5.4.3. However, region emulation has an impact on space. Every allocated object requires 4 bytes

of memory (for its record in the dynamic array) in addition to per-object overhead (4–8 bytes). Eliminating

this overhead is an advantage of regions, but the inability to free individual objects may have a much greater

impact on space, which we explore in Section 5.3.1.

5.2 Custom Memory Managers

In this section, we explain exactly what we mean by custom memory memory managers. We discuss the

reasons why programmers use them and survey a wide range of custom memory managers, describing briefly

what they do and how they work.

We use the term custom memory allocation in a proscribed way to denote any memory allocation

mechanism that differs from general-purpose allocation in at least one of two ways. First, a custom memory

manager may provide more than one object for every allocated chunk of memory obtained from the general-

purpose memory manager. Second, it may not immediately return objects to the system or to the general-

purpose memory manager.1 For instance, a custom memory manager may obtain large chunks of memory

from the general-purpose memory manager which it carves up into a number of objects. A custom memory

manager might also defer object deallocation, returning objects to the system much later than when the

object is last used or becomes unreachable.

1This definition of custom memory managers excludes, among others, wrappers that perform certain tests (e.g., for
null return values) before returning objects obtained from the general-purpose memory manager.

41

5.2.1 Why Programmers Use Custom Memory Managers

There are a variety of reasons why programmers use custom memory managers. Runtime performance is

the principal reason cited by programmers and authors of books on programming [18, 38, 53, 54, 56, 71].

Because the per-operation cost of most system general-purpose memory managers is an order of magnitude

higher than that of custom memory managers, programs that make intensive use of the memory manager

may see performance improvements by using custom memory managers.

Improving performance.

Figure 5.1(a) shows the amount of time spent in memory operations on eight applications using a wide range

of custom memory managers, with the custom memory manager replaced by the Windows allocator2. Many

of these applications spend a large percentage of their runtime in the memory manager (16% on average),

demonstrating an opportunity to improve performance by optimizing memory memory management.

Nearly all of our benchmarks use custom memory managers to improve performance. This goal

is often explicitly stated in the documentation or source code. For instance, the Apache API (application-

programmer interface) documentation claims that its custom memory managerap palloc “is generally

faster than malloc.” The STLport implementation of STL (used in our runs of C-Breeze) refers to its custom

memory manager as an “optimized node allocator engine”, while 197.parser’s memory manager is described

as working “best for ’stack-like’ operations.” Allocation with obstacks (used by 176.gcc) “is usually very

fast as long as the objects are usually small”3 and mudlle’s region-based memory manager is “fast and easy”.

Because Hanson cites performance benefits for regions in his book [38], we assume that they intended the

same benefit. Lcc also includes a per-class custom memory manager, intended to improve performance,

which had no observable performance impact.4 The per-class freelist-based custom memory manager for

boxed-sim also appears intended to improve performance.

2For 176.gcc, Apache, lcc, and mudlle, we use aregion emulatorthat matches the semantics of the custom memory
manager (see Section 5.1.1).

3From the documentation on obstacks in the GNU C library.
4Hanson, in a private communication, indicated that the only intent of the per-class allocator was performance. In

the results presented here, we disabled this custom memory manager to isolate the impact of its region-based memory
manager.

42

Motivation Policy Mechanism
perf. space s/w same API region- nested multiple chunks stack same-type

Benchmark eng. Delete lifetimes areas optimized optimized

custom pattern
197.parser X X X X
per-class
boxed-sim X X X X
c-breeze(STL) X X X X
region
175.vpr X X X X
176.gcc(obstack) X X X X X X X
apache(nested) X X X X X X
lcc X X X X X
mudlle X X X X X

Table 5.2: Characteristics of the custom memory managers in our benchmarks. Performance motivates
all but one of the custom memory managers, while only two were (possibly) motivated by space concerns
(see Section 5.2.1). “Same API” means that the memory manager allows individual object allocation and
deallocation, and “chunks” means the custom memory manager obtains large blocks of memory from the
general-purpose memory manager for its own use (see Section 5.2.2).

Reducing memory consumption.

While programmers primarily use custom memory managers to improve performance, they also occasion-

ally use them to reduce memory consumption. One of our benchmarks, 175.vpr, uses custom allocation

exclusively to reduce memory consumption, stating that its custom memory manager “should be used for

allocating fairly small data structures where memory-efficiency is crucial.”5 The use of obstacks in 176.gcc

might also be partially motivated by space considerations. While the source documentation is silent on

the subject, the documentation for obstacks in the GNU C library suggests it as a benefit.6 Figure 5.1(b)

shows the amount of memory consumed by custom memory managers in our benchmark applications. Only

197.parser and 176.gcc consume significant amounts of memory on modern hardware (30MB and 91MB,

respectively). However, recall that we use small input sizes in order to be able to process the trace files.

5See the comment formy chunk malloc in util.c .
6“And the only space overhead per object is the padding needed to start each object on a suitable boundary. ”

43

Improving software engineering.

Writing custom code to replace the general-purpose memory manager is generally not a good software

engineering practice. Memory allocated via a custom memory manager cannot be managed later by an-

other custom memory manager or the general-purpose memory manager. Inadvertently callingfree on a

custom-allocated object can corrupt the heap and lead to a segmentation violation. The result is a significant

bookkeeping burden on the programmer to ensure that objects are freed by the correct memory manager.

Custom memory managers also can make it difficult to understand the sources of memory consumption in

a program. Using custom memory managers often precludes the use of memory leak detection tools like

Purify [39].

However, custom memory managers can provide some important software engineering benefits. The

use of region-based custom memory managers in parsers and compilers (e.g., 176.gcc, lcc, and mudlle) sim-

plifies memory management [38]. Regions provide separate memory areas which a single call deletes in its

entirety. Multithreaded server applications use regions to isolate the memory spaces of separate threads

(sandboxing), reducing the likelihood that one thread will accidentally overwrite another thread’s data.

Server applications like the Apache web server also use regions to prevent memory leaks, tearing down

all memory associated with a terminated connection simply by freeing the associated region. However,

regions do not allow individual object deletion, so an entire region must be retained as long as just one

object within it remains live. This policy can lead to excessive memory consumption and prevents the use

of regions for certain usage patterns, as we explore in Section 5.4.3.

5.2.2 A Taxonomy of Custom Memory Managers

In order to outperform the general-purpose memory manager, programmers apply knowledge they have

about some set of objects. For instance, programmers use regions to manage objects that all die at the same

time. Programmers also write custom memory managers to take advantage of object sizes or other allocation

patterns.

We break down the memory managers from our custom allocation benchmarks in terms of several

44

characteristics in Table 5.2. We divide these into three categories: themotivationbehind the programmer’s

use of a custom memory manager, thepolicies they implement, and themechanismsused to implement

these policies. Notice that in all but one case (175.vpr), performance was a motivating factor. We explain

the meaning of each characteristic in the descriptions of the custom memory managers below.

per-class Per-class allocators optimize for allocation of the same type (or size) of object by eliding size

checks and keeping a freelist with objects only of the specific type. They implement the same API as

malloc andfree , i.e., they provide individual object allocation and deletion, but are optimized for

only one type.

region Regions allocate objects by incrementing a pointer into large chunks of memory. Programmers can

only delete regions in their entirety. Allocation and freeing are thus as fast as possible. A region-

based memory manager includes afreeAll function that deletes all memory in one operation and

includes support for multiple allocation areas that may be managed independently. Regions reduce

bookkeeping burden on the programmer and reduce memory leaks, but do not allow individual objects

to be deleted.

nested region Nested regions are an extension of regions that support nested object lifetimes. Apache uses

these to provide regions on a per-connection basis, with sub-regions for execution of user-provided

code. Tearing down all memory associated with a connection requires just oneregionDelete call

on the per-connection memory region.

obstack region An obstackis an extended version of a region-based memory manager that adds deletion

of every object allocated after a certain object [80]. This extension supports object allocation that

follows a stack discipline (hence the name, which comes from “object stack”).

custom pattern This catch-all category refers to what is essentially a general-purpose memory manager

optimized for a particular pattern of object behavior. For instance, 197.parser uses a fixed-size region

of memory (in this case, 30MB) and allocates after the last block that is still in use by bumping a

pointer. Freeing a block marks it as free, and if it is the last block, the allocator resets the pointer back

45

Benchmark Statistics
Benchmark Total objects Max objects Avg obj. size Total memory Max in use Mem. operations

in use (in bytes) (in bytes) (in bytes) (% of runtime)
custom allocation
197.parser 9,334,022 230,919 38 351,772,626 3,207,529 41.8%
boxed-sim 52,203 4,865 15 777,913 301,987 0.2%
c-breeze 5,090,805 2,177,173 23 118,996,917 60,053,789 17.4%
175.vpr 3,897 3,813 44 172,967 124,636 0.1%
176.gcc 9,065,285 2,538,005 54 487,711,209 112,753,774 6.7%
apache 149,275 3,749 208 30,999,123 754,492 0.1%
lcc 1,465,416 92,696 57 83,217,416 3,875,780 24.2%
mudlle 1,687,079 38,645 29 48,699,895 662,964 33.7%

Table 5.3: Statistics for our custom allocation benchmarks, replacing custom memory allocation by general-
purpose allocation. We compute the runtime percentage of memory operations with the default Windows
allocator.

to the new last block in use. This allocator is fast for 197.parser’s stack-like use of memory, but if

object lifetimes do not follow a stack-like discipline, it exhibits unbounded memory consumption.

5.3 Evaluating Custom Memory Managers

We provide allocation statistics for our benchmarks in Tables 3.4 and 5.3. Many of the general-purpose

allocation benchmarks are not allocation intensive, but we include them for completeness. In particular,

181.mcf, 186.crafty, 252.eon and 254.gap allocate only a few objects over their entire lifetime, including

one or more very large objects. Certain trends appear from the data. In general, programs using general-

purpose memory managers spend relatively little time in the memory manager (on average, around 3%),

while programs using custom memory managers spend on average 16% of their time in memory operations.

Programs using custom memory managers also tend to allocate many small objects. This kind of allocation

behavior stresses the memory manager.

5.3.1 Evaluating Regions

By using regions, programmers give up the ability to delete individual objects. When all objects in a region

die at the same time, this restriction does not affect memory consumption. However, the presence of just

46

Runtime - Custom Allocator Benchmarks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Non
-re

gio
ns

Reg
ion

s

Ove
ra

ll

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Original Win32 DLmalloc

non-regions regions averages

(a) Normalized runtimes (smaller is better). Custom memory man-
agers often outperform the Windows allocator, but the Lea allocator
is as fast as or faster than most of the custom memory managers.

Space - Custom Allocator Benchmarks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Non
-re

gio
ns

Reg
ion

s

Ove
ra

ll

N
o

rm
al

iz
ed

 S
p

ac
e

Original DLmalloc

regionsnon-regions averages

(b) Normalized space (smaller is better). We omit the Windows al-
locator because we cannot directly measure its space consumption.
Custom memory managers provide little space benefit and occa-
sionally consume much more memory than general-purpose mem-
ory managers.

Figure 5.2: Normalized runtime and memory consumption for our custom allocation benchmarks, compar-
ing the original custom memory managers to the Windows and Lea allocators.

one live object ties down an entire region, potentially leading to a considerable amount of wasted memory.

We want to explore the impact on memory consumption of this inability to reclaim dead objects.

We do not undertake the rewriting of region-based programs like lcc or Apache (60K – 100K lines of

code) to use explicit object deallocation, which requires considerable application expertise and is very time-

intensive. Instead, we measure the impact of using regions by using a binary instrumentation tool we wrote

using the Vulcan binary instrumentation system [72]. We link the programs with our region emulator and

instrument them using our tool to track both allocations and accesses to every heap object. When an object

is actually deleted (explicitly by afree or by a region deletion), the tool outputs a record indicating when

the object was last touched, in allocation time. We post-process the trace to compute the amount of memory

the program would use if it had freed each individual object as soon as possible. This highly-aggressive

freeing is not unrealistic, as we show below with measurements of programs using general-purpose memory

managers.

47

5.4 Results

In this section, we present our experimental results on runtime and memory consumption, discussing the

programmers’ goals for their custom memory managers and whether they were met. All runtimes are the

best of three runs at real-time priority after one warm-up run; variation was less than one percent. We

executed these programs on PC Platform 2 (see 3.2). We compare the custom memory managers to the

Windows XP allocator, which we refer to in the graphs as “Win32”, to version 2.7.0 of Doug Lea’s memory

manager, which we refer to as “DLmalloc.”

5.4.1 Runtime Performance

To compare runtime performance of custom allocation to general-purpose allocation, we simply reroute cus-

tom memory manager calls to the general-purpose memory manager, using region emulation when needed.

For this study, we compare custom memory managers to the Windows XP allocator, and version 2.7.0 of the

Lea allocator.

In Figure 5.2(a), the second bar shows that the Windows allocator degrades performance consider-

ably for most programs. In particular, 197.parser and mudlle run more than 60% slower when using the

Windows allocator than when using the original custom memory manager. Only boxed-sim, 175.vpr, and

Apache run less than 10% slower when using the Windows allocator. These results, taken on their own,

would more than justify the use of custom memory managers for most of these programs.

However, the picture changes when we look at the third bar, showing the results of replacing the

custom memory managers with the Lea allocator (DLmalloc). For six of the eight applications, the Lea

allocator provides nearly the same performance as the original custom memory managers (less than 2%

slower on average). The Lea allocator actually slightly improved performance for C-Breeze when we turned

off STL’s internal custom memory managers. Only two of the benchmarks, lcc and mudlle, still run much

faster with their custom memory managers than with the Lea allocator. This result shows that a state-of-the-

art general-purpose memory manager eliminates most of the performance advantages of custom memory

managers.

48

5.4.2 Memory Consumption

We measured the memory consumed by the various memory managers by running the benchmarks linked

with a slightly modified version of the Lea allocator. We modified thesbrk andmmapemulation routines

to keep track of the high water mark of memory consumption. We were unable to include the Windows XP

allocator because it does not provide an equivalent way to keep track of memory consumption.

Figure 5.2(b) shows our results for memory consumption, which are quite mixed. Neither custom

memory managers nor the Lea allocator consistently yield a space advantage. 176.gcc allocates many small

objects, so the per-object overhead of the Lea allocator (8 bytes) lead to increased memory consumption.

Despite its overhead, the Lea allocator oftenreducesmemory consumption, as in 197.parser, c-breeze and

Apache. The custom memory manager in 197.parser allocates from a fixed-sized chunk of memory (a

compile-time constant, set at 30MB), while the Lea allocator uses just 15% of this memory. Worse, this

custom memory manager is brittle; requests beyond the fixed limit result in program termination. Apache’s

region allocator is less space-efficient than our region emulator, accounting for the difference in space con-

sumption.

Of the two allocators implicitly or explicitly intended to reduce memory consumption, 176.gcc’s

obstacks achieves its goal, saving 32% of memory compared to the Lea allocator, while 175.vpr’s provides

only an 8% savings. Custom allocation does not necessarily provide space advantages over the Lea allocator,

which is consistent with our observation that programmers generally do not use custom allocation to reduce

memory consumption.

Our results show that most custom memory managers achieve neither performance nor space ad-

vantages. However, region-based allocators can provide both advantages (see lcc and mudlle). These space

advantages are somewhat misleading. While the Lea allocator adds a fixed overhead to each object, regions

can tie down arbitrarily large amounts of memory because programmers must wait until all objects are dead

to free their region. In the next section, we measure this hidden space cost of using the region interface.

49

Total Drag

1

1.1

1.2

1.3

1.4

1.5

19
7.

pa
rs

er

bo
xe

d-
si

m

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lc
c

m
ud

lle

16
4.

gz
ip

18
1.

m
cf

18
6.

cr
af

ty

25
2.

eo
n

25
3.

pe
rlb

m
k

25
5.

vo
rt

ex

30
0.

tw
ol

f

es
pr

es
so

lin
ds

ay

non-regions regions general-purpose

3.34

(a) Drag statistics for applications using general-purpose memory
allocation (average 1.1), non-regions (average 1.0) and region cus-
tom memory managers (average 1.6, 1.1 excluding lcc).

0

200000

400000

600000

800000

1e+006

0 2e+006 4e+006 6e+006 8e+006 1e+007

B
yt

es
 a

llo
ca

te
d

Allocation time

Memory Requirement Profile: lcc

Regions
Free immediately

(b) Memory requirement profile for lcc. The top curve shows mem-
ory required when using regions, while the bottom curve shows
memory required when individual objects are freed immediately.

Figure 5.3: The effect on memory consumption of not immediately freeing objects. Programs that use region
allocators are especially draggy. Lcc in particular consumes up to 3 times as much memory over time as
required and 63% more at peak.

5.4.3 Evaluating Region Allocation

Using the binary instrumentation tool we describe in Section 5.3.1, we obtained two curves over allocation

time [46] for each of our benchmarks: memory consumed by the region allocator, and memory required

when dead objects are freed immediately after their last access. Dividing the areas under these curves gives

ustotal drag, a measure of the average ratio of heap sizes with and without immediate object deallocation. A

program that immediately frees every dead object thus has the minimum possible total drag of 1. Intuitively,

the higher the drag, the farther the program’s memory consumption is from ideal.

Figure 5.3(a) shows drag statistics for a wide range of benchmarks, including programs using

general-purpose memory managers. Programs using non-region custom memory managers have minimal

drag, as do the bulk of the programs using general-purpose allocation, indicating that programmers tend to

be aggressive about reclaiming memory. The drag results for 255.vortex show that either some programmers

are not so careful, or that some programming practices may preclude aggressive reclamation. The programs

with regions consistently exhibit more drag, including 176.gcc (1.16), and mudlle (1.23), and lcc has very

high drag (3.34). This drag corresponds to an average of three times more memory consumed than required.

50

In many cases, programmers are more concerned with the peak memory (footprint) consumed by an

application rather than the average amount of memory over time. Table 5.4 shows the footprint when using

regions compared to immediately freeing objects after their last reference. The increase in peak caused

by using regions ranges from 6% for 175.vpr to 63% for lcc, for an average of 23%. Figure 5.3(b) shows

the memory requirement profile for lcc, demonstrating how regions influence memory consumption over

time. These measurements confirm the hypothesis that regions can lead to substantially increased memory

consumption.

Peak memory
Benchmark With regions Immediate free% Increase
175.vpr 131,274 123,823 6%
176.gcc 67,117,548 56,944,950 18%
apache 564,440 527,770 7%
lcc 4,717,603 2,886,903 63%
mudlle 662,964 551,060 20%
Average 23%

Table 5.4: Peak memory (footprint) for region-based applications, in bytes. Using regions leads to an
increase in footprint from 6% to 63% (average 23%).

5.5 Discussion

We have shown that performance frequently motivates the use of custom memory managers and that they

do not provide the performance they promise. Below we offer some explanations of why programmers used

custom memory managers to no effect.

Recommended practice.

One reason that we believe programmers use custom memory managers to improve performance is because

it is recommended by so many influential practitioners and because of the perceived inadequacies of system-

provided memory managers. Examples of this use of allocators are the per-class allocators used by boxed-

sim and lcc.

51

Premature optimization.

During software development, programmers often discover that custom allocation outperforms general-

purpose allocation in micro-benchmarks. Based on this observation, they may put custom allocators in

place, but allocation may eventually account for a tiny percentage of application runtime.

Drift.

In at least one case, we suspect that programmers initially made theright decision in choosing to use custom

allocation for performance, but that their software evolved and the custom memory manager no longer has

a performance impact. The obstack allocator used by 176.gcc performs fast object reallocation, and we

believe that this made a difference when parsing dominated runtime, but optimization passes now dominate

176.gcc’s runtime.

Improved competition.

Finally, the performance of general-purpose memory managers has continued to improve over time. Both

the Windows and Lea allocators are optimized for good performance for a number of programs and therefore

work well for a wide range of allocation behaviors. For instance, these memory managers perform quite well

when there are many requests for objects of the same size, rendering per-class custom allocators superfluous

(including those used by the Standard Template Library). While there certainly will be programs with

unusual allocation patterns that might lead these allocators to perform poorly, we suspect that such programs

are increasingly rare. We feel that programmers who find their system allocator to be inadequate should try

using a high-quality general-purpose memory manager like the Lea allocator rather than writing a custom

memory manager.

5.6 Conclusions

Despite the widespread belief that custom memory managers should be used in order to improve perfor-

mance, we come to a different conclusion. In this chapter, we examine eight benchmarks using custom

52

memory managers, including the Apache web server and several applications from the SPECint2000 bench-

mark suite. We find that the Lea memory manager is as fast as or even faster than most custom memory

managers. The exceptions are region-based memory managers, which often outperform general-purpose

memory management.

The results in this chapter indicate that, for many applications, a good general-purpose memory

manager can provide excellent performance. However, programmers use region-based memory managers

to achieve both performance and software engineering benefits. We show in the next chapter how to cap-

ture the benefits of both regions and general-purpose memory management in a hybrid memory manager

calledreapthat is especially well-suited for certain types of server applications, including Apache. In Chap-

ter 7, we show that current general-purpose memory managers do not provide satisfactory performance for

applications running on multiprocessors, and present our solution.

53

Chapter 6

Memory Management for Servers

In the previous chapter, we describe region-based custom allocators that some applications use to improve

performance. However, server applications (e.g., Apache) use regions because they need additional memory

management support beyond that provided by the general-purpose memory manager. These applications

requiresandboxing, or isolating the memory spaces of separate threads, in order to reduce the likelihood

of one thread accidentally or maliciously overwriting another thread’s data. Second, and often more im-

portantly, server applications need support for connection (or transaction)teardown. When a connection is

terminated or fails, the server must be able to tear down all memory associated with the connection. By

associating separate regions with every connection or transaction, the programmer can achieve both sand-

boxing and rapid teardown. In addition, regions can also provide higher performance than general-purpose

memory managers. However, regions force the programmer to retain all memory associated with a region

until the last object in the region dies [29, 30, 37, 61, 73]. Beyond the causing drag (see Section 5.4.3), this

limitation has serious software engineering implications for server applications, which we describe in detail

below.

The rest of this chapter is organized as follows. First, we discuss the drawbacks of regions. We

then present a generalization of regions and heaps we callreaps. We show that our implementation of reaps

provides the performance and semantics of regions while allowing programmers to delete individual ob-

jects. We do not undertake the addition of individual object deletion calls to existing region-based programs

54

because it requires both application expertise and a considerable investment of time. However, we show that

reaps nearly match the speed of regions when used in the same way, and provide additional semantics and

generality. We argue that reaps provide a reusable library solution for region allocation with competitive

performance, the potential for reduced memory consumption, and greater flexibility than regions.

6.1 Drawbacks of Regions

In Section 5.4.3, we show that the performance gains of regions (up to 44%) can come at the expense of ex-

cessive memory retention (up to 230%). More importantly, however, the inability to free individual objects

within regions greatly complicates the programming of server applications like Apache which rely on re-

gions to avoid resource leaks. For instance, using regions is not possible for many programs usingmalloc

andfree , producer-consumer allocation patterns, or dynamic arrays because the inability to free individual

objects in regions could lead to unbounded memory consumption. Because programmers cannot reclaim in-

dividual objects within regions, programs using any of these allocation patterns would consume unbounded

amounts of memory. These limitations are a practical problem. For instance, the Apache API manages

memory with regions (“pools”) to prevent resource leaks. Programmers add functionality to Apache by

writing modulescompiled into the Apache server. Regions constrain the way programmers write modules

and prevent them from using natural allocation patterns like producer-consumer. In general, programmers

must rewrite applications that were written using general-purpose allocation. This restriction is an unin-

tended consequence of the adoption of regions to satisfy Apache’s needs of sandboxing, heap teardown, and

high performance.

6.2 Desiderata

Ideally, we would like to combine general-purpose allocation with region semantics, allowing for multiple

allocation areas that can be cheaply deleted en masse. This extension of region semantics with individual

object deletion would satisfy the needs of applications like Apache while increasing their allocation pattern

coverage. This interface comprises all of the semantics provided by the custom allocators we survey in

55

Chapter 5 (excluding obstack deletion). A high-performance implementation would reduce the need for

conventional regions and many other custom allocators. These are the goals of the allocator that we describe

in the next section.

6.3 Reaps: Generalizing Regions and Heaps

We have designed and implemented a generalization of regions and general-purpose memory allocators

(heaps) that we callreaps. Reaps provide a full range of region semantics, including nested regions, but also

include individual object deletion. Figure 6.1(a) depicts a lattice of API’s, showing how reaps combine the

semantics of regions and heaps. We provide a C-based interface to reap allocation, including operations for

reap creation and destruction, deletion (freeing of every object in a reap without destroying the reap data

structure), and individual object allocation and deallocation:

void reapCreate (void ** reap, void ** parent);
void reapDelete (void ** reap);
void reapDestroy (void ** reap);
void * reapAllocate (void ** reap, size_t size);
void reapFree (void ** reap, void * object);

6.3.1 Design and Implementation

Our implementation of reaps, which we built using heap layers, includes both a region-like allocator and

support for nested reaps. Reaps adapt to their use, behaving either like regions or like heaps. Initially,

reaps allocate memory like regions, bumping a pointer through geometrically increasing large chunks of

memory (initially 8K), which are threaded into a doubly-linked list. Unlike regions, however, we add object

headers to every allocated object. These headers (“boundary tags”) contain metadata that allow the object

to be subsequently managed by a heap. Reaps act in this region mode until a call toreapFree deletes an

individual object. Reaps place freed objects onto an associated heap. Subsequent allocations from that reap

use memory from the heap until it is exhausted, at which point we revert to region mode.

Figure 6.1(b) depicts the design of reaps in graphical form, using Heap Layers. Memory requests

56

Garbage collection

malloc

Heaps

malloc
free

Regions

malloc
freeAll

Reaps

malloc
free

freeAll

(a) A lattice of APIs, showing how reaps combine the seman-
tics of regions and heaps.

Sbrk

C l e a rO p t i m i z e d H e a p

N e s t e d H e a p

C o a l e s c e a bl e H e a p

R e g i o n H e a p

L e a H e a p

(b) A diagram of the heap layers that comprise our implementation
of reaps. Reaps adapt to their use, acting either like regions or
heaps (see Section 6.3).

Figure 6.1: A description of the API and implementation of reaps.

(malloc andfree) come in from below and proceed upwards through the class hierarchy. We adapt Lea-

Heap, a heap layer that approximates the behavior of the Lea allocator, in order to take advantage of its high

speed and low fragmentation. In addition, we wrote three new layers: NestedHeap, ClearOptimizedHeap,

and RegionHeap.

The first layer, NestedHeap, provides support for nesting of heaps. The second layer, ClearOpti-

mizedHeap, optimizes for the case when no memory has yet been freed by allocating memory very quickly

by bumping a pointer and adding necessary metadata. ClearOptimizedHeap takes two heaps as arguments

and maintains a boolean flag,nothingOnHeap , which is initially true. While this flag is true, ClearOp-

timizedHeap allocates memory from its first argument, bumping a pointer and adding per-object metadata.

When an object is freed,nothingOnHeap is set to false. ClearOptimizedHeap then allocates memory

from its second heap. When the heap is empty, or when the region is deleted, thenothingOnHeap flag

is set to true. We use ClearOptimizedHeap to obtain memory directly from the system via Coalesceable-

Heap, which adds the necessary header information so we can later free this memory (and coalesce adjacent

free objects). Bypassing the LeaHeap for this case has little impact on general-purpose memory allocation,

57

Runtime - Custom Allocation Benchmarks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Non
-re

gio
ns

Reg
ion

s

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Original Win32 DLmalloc Reaps

non-regions regions averages

(a) Normalized runtimes (smaller is better). Reaps are almost as
fast as or faster than most of the custom memory managers. In par-
ticular, reaps nearly match the performance of region-based custom
memory managers.

Space - Custom Allocator Benchmarks

0

0.5

1

1.5

2

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Non
-re

gio
ns

Reg
ion

s

N
o

rm
al

iz
ed

 S
p

ac
e

Original DLmalloc Reaps

non-regions regions averages

(b) Normalized space (smaller is better). We omit the Windows
allocator because we cannot directly measure its space consump-
tion. Reaps generally consume less memory than non-region cus-
tom memory managers and more than region-based memory man-
agers.

Figure 6.2: Normalized runtime and memory consumption for our custom allocation benchmarks, compar-
ing the original allocators to the Windows and Lea allocators and to reaps.

speeding up only the initial allocation of heap items, but it dramatically improves the performance of region

allocation.

The last layer, RegionHeap, maintains a linked list of allocated objects and provides a region deletion

operation (clear()) that iterates through this list and frees the objects. We use the RegionHeap layer to

manage memory in geometrically-increasing chunks of at least 8K, makingreapDelete efficient.

6.4 Results

In this section, we present our experimental results on runtime and memory consumption for reaps. All

runtimes are the best of three runs at real-time priority after one warm-up run; variation was less than one

percent. All programs were compiled with Visual C++ 6.0 and run on a 600 MHz Pentium III system with

320MB of RAM, a unified 256K L2 cache, and 16K L1 data and instruction caches, under Windows XP.

We compare reaps to the Windows XP memory allocator, which we refer to in the graphs as “Win32”, to

version 2.7.0 of Doug Lea’s allocator, which we refer to as “DLmalloc.”

58

6.4.1 Runtime Performance

As in Section 5.4.1, we compare runtime performance of allocators simply by rerouting custom memory

manager calls to reaps, using region emulation when needed. For this study, we compare reaps to the

Windows XP memory manager and to version 2.7.0 of the Lea allocator. For the non-region applications

and 176.gcc, we use reaps as a substitute formalloc andfree (with region emulation for 176.gcc). For

the remaining benchmarks, we use reaps as a direct replacement for regions.

The fourth bar in Figure 5.2(a) shows the results for reaps. The results show that even when reaps

are used for general-purpose allocation, which is not their intended role, they perform quite well, nearly

matching the Lea allocator for all but 197.parser and c-breeze. However, for the two remaining benchmarks

(lcc and mudlle), reaps nearly match the performance of the original custom allocators, running under 8%

slower (as compared with the Lea allocator, which runs 21–47% slower). These results show that reaps

achieve performance comparable to region-based allocators while providing the flexibility of individual

object deletion.

6.4.2 Memory Consumption

As in Chapter 5, we measure the memory consumed by the various memory allocators by running the

benchmarks, with custom allocation, the Lea allocator and with reaps, all linked with a slightly modified

version of the Lea allocator. We modify thesbrk andmmapemulation routines to keep track of the high

water mark of memory consumption. We do not include the Windows XP allocator because it does not

provide an equivalent way to keep track of memory consumption.

Figure 5.2(b) shows our results for memory consumption. On average, reaps consume less memory

than non-region custom memory managers and somewhat more than region-based memory managers. The

per-object overhead of reaps (8 bytes) leads to increased memory consumption in applications that allocate

many small objects, like 176.gcc. Despite this overhead, reaps oftenreducememory consumption, as in

197.parser, c-breeze and Apache. On the other hand, our use of geometrically-increasing chunk sizes in

reaps causes increased memory consumption for mudlle.

59

Runtime - Region-Based Benchmarks

0

0.5

1

1.5

2

2.5

lcc mudlle

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Original WinHeap Vmalloc Reaps

4.3

Figure 6.3: Normalized runtimes (smaller is better). Reaps are almost as fast as the original custom alloca-
tors and much faster than previous allocators with similar semantics.

6.4.3 Experimental Comparison to Previous Work

In Figure 6.3, we present results comparing reaps to the previous allocators that provide similar semantics

(see Section 2.3). Windows Heaps are a Windows-specific interface providing multiple (but non-nested)

heaps, and Vmalloc is a custom allocation infrastructure that provides the same functionality. We present

results for lcc and mudlle, which are the most allocation intensive of our region benchmarks. Using Windows

Heaps in place of regions makes lcc take twice as long, and makes mudlle take almost 68% longer to run.

Using Vmalloc slows execution for lcc by four times and slows mudlle by 43%. However, reaps slow

execution by just under 8%, showing that reaps are the best implementation of this functionality of which

we are aware.

6.5 Conclusion

In this chapter, we show that regions can come at an increased cost in memory consumption and do not

support common programming idioms. With our implementation of reaps, we demonstrate a memory al-

locator that provides region performance and extended region semantics. Using reaps imposes a runtime

penalty from 0% to 8% compared to the original region-based allocators. In addition, reaps provide a more

flexible interface than regions that permits programmers to reclaim unused memory. We believe that, for

60

most applications, the greater flexibility of reaps justifies their small overhead. However, reaps are not a

panacea. In particular, reaps do not address the particular needs of applications running on multiprocessors,

which we discuss in the next chapter.

61

Chapter 7

Scalable Concurrent Memory Management

While the general-purpose and custom allocators we have described so far are suitable for single-threaded

applications, they do not provide effective support for multithreaded applications running on multiproces-

sors. In this chapter, we discuss general-purpose memory allocation for multithreaded applications, describe

problems with existing memory allocators and present Hoard, a fast, scalable allocator that largely avoids

false sharing and is memory efficient.

Parallel, multithreaded programs are becoming increasingly prevalent. These applications include

web servers, database managers, news servers, as well as more traditional parallel applications such as

scientific applications. For these applications, high performance is critical. They are generally written in

C or C++ to run efficiently on modern shared-memory multiprocessor servers. Many of these applications

make intensive use of dynamic memory allocation. Unfortunately, the memory allocator is often a bottleneck

that severely limits program scalability on multiprocessor systems [11, 48].

Existing allocators suffer from problems that include poor performance and scalability, and heap

organizations that introduce false sharing. Worse, many allocators exhibit a dramatic increase in memory

consumption when confronted with a producer-consumer pattern of object allocation and freeing. This in-

crease in memory consumption can range from a factor ofP (the number of processors) to unbounded

memory consumption. These problems combine and often result in allocators that prevent applications from

scaling on multiprocessors. For instance, British Telecom reports that for a proprietary middleware appli-

62

cation, increasing the number of CPUs in their server from 1 to 6 reduced throughput from 500 orders per

hour to 300 orders per hour. Replacing the default Solaris memory allocator with Hoard raised throughput

to over 1,600 orders per hour [79].

In order to achieve scalable and memory-efficient memory allocator performance, all of the follow-

ing features are required:

Speed.A memory allocator should perform memory operations (i.e.,malloc andfree) about as fast as

a state-of-the-art serial memory allocator. This feature guarantees good allocator performance even

when a multithreaded program executes on a single processor.

Scalability. As the number of processors in the system grows, the performance of the allocator must scale

linearly with the number of processors to ensure scalable application performance.

False sharing avoidance.The allocator should not introduce false sharing of cache lines in which threads

on distinct processors inadvertently share data on the same cache line.

Low fragmentation. We definefragmentationas the maximum amount of memory allocated from the op-

erating system divided by the maximum amount of memory required by the application. Excessive

fragmentation can degrade performance by causing poor data locality, leading to paging.

Certain classes of memory allocators (described in Section 7.2) exhibit a special kind of fragmenta-

tion that we callblowup. Intuitively, blowup is the increase in memory consumption caused when a concur-

rent allocator reclaims memory freed by the program but fails to use it to satisfy future memory requests. We

define blowup as the maximum amount of memory allocated by a given allocator divided by the maximum

amount of memory allocated by an ideal uniprocessor allocator. As we show in Section 7.1.2, the common

producer-consumer programming idiom can cause blowup. In many allocators, blowup ranges from a factor

of P (the number of processors) to unbounded memory consumption (the longer the program runs, the more

memory it consumes). Such a pathological increase in memory consumption can be catastrophic, resulting

in premature application termination due to exhaustion of swap space.

63

We have developed an allocator called Hoard that enables parallel multithreaded programs to achieve

scalable performance on shared-memory multiprocessors [11]. Hoard achieves this result by simultaneously

solving all of the above problems. In particular, Hoard solves the blowup and false sharing problems, which,

as far as we know, have never been addressed in the literature. As we demonstrate, Hoard also achieves

nearly zero synchronization costs in practice.

Hoard maintains per-processor heaps and one global heap. When a per-processor heap’s usage drops

below a certain fraction, Hoard transfers a large fixed-size chunk of its memory from the per-processor heap

to the global heap, where it is then available for reuse by another processor. We show that this algorithm

bounds blowup and synchronization costs to a constant factor. This algorithm avoids false sharing by making

it difficult for processors to allocate from the same cache line. Results on eleven programs demonstrate that

Hoard scales linearly as the number of processors grows and that its fragmentation costs are low. On 14

processors, Hoard improves performance over the standard Solaris allocator by up to a factor of 60 and a

factor of 18 over the next best allocator we tested. These features have led to its incorporation in a number of

high-performance commercial applications, including the Twister, Typhoon, Breeze and Cyclone chat and

USENET servers [9] and BEMSolver, a high-performance scientific code [21].

The remainder of this chapter is organized as follows. We describe the false sharing and blowup

problems in previous work in Section 7.1. In Section 7.2, we classify previous work into a taxonomy

of memory allocators, focusing on speed, scalability, false sharing, and fragmentation. We describe the

algorithms used in the Hoard allocator in Section 7.4, provide a summary of analytical results in Section 7.5,

and we demonstrate Hoard’s scalable performance empirically in Section 7.8.

7.1 Motivation

In this section, we focus special attention on the issues of allocator-induced false sharing of heap objects

and blowup to motivate our work. As we show in Section 7.8, these issues must be addressed to achieve

efficient memory allocation for scalable multithreaded applications but have been neglected in the memory

allocation literature.

64

����������

������ ������

����������	�
��

��������	�

���������

�����������

����������	�
��

��������	�

���������

����������	

	�
�

������	

����

���
���

����	

����

���
���

Figure 7.1: An example of allocator-induced false sharing of heap objects. The boxes correspond to allo-
cated objects: the inside color reflects the allocating processor, and the outside color reflects the processor
on which the freed object resides. Here the allocator parceled out one cache line to two processors (actively-
inducedfalse sharing), resulting in cache thrashing.

7.1.1 Allocator-Induced False Sharing of Heap Objects

False sharingoccurs when multiple processors share words in the same cache line without actually sharing

data and is a notorious cause of poor performance in parallel applications [42, 47, 74]. Allocators can cause

false sharing of heap objects by dividing cache lines into a number of small objects that distinct processors

then write. A program may introduce false sharing by allocating a number of objects within one cache line

and passing an object to a different thread. It is thus impossible to completely avoid false sharing of heap

objects unless the allocator pads out every memory request to the size of a cache line. However, no user-level

allocator we know of pads memory requests to the size of a cache line, and with good reason; padding could

cause a dramatic increase in memory consumption (for instance, objects would be padded to a multiple of

64 bytes on a SPARC) and thus significantly degrade spatial locality and cache utilization.

Unfortunately, an allocator canactively inducefalse sharing even on objects that the program does

not pass to different threads. Active false sharing is due tomalloc satisfying memory requests by different

threads from the same cache line. For instance, single-heap allocators can give many threads parts of the

same cache line. Figure 7.1 demonstrates this splitting of cache lines, leading to false sharing. Here, the

allocator divides a cache line into 8-byte chunks. The allocator gives each processor one chunk in turn,

generating false sharing because both are on the same cache line.

65

������

���������

���������

���������

�����������

��	�
���
������

��	�
���
������

��	�
���
������

����������	

����

������	

����

���
���

����	

����

���
���

������ ������

Figure 7.2: This figure demonstrates howpure private heapsallocators can exhibit unbounded memory
consumption. Processor 0 allocates objects that processor 1 frees. However, processor 0 cannot reclaim the
memory on processor 1, and sos bytes “leak” on every iteration.

Allocators may alsopassively inducefalse sharing. Passive false sharing occurs whenfree allows

a futuremalloc to produce false sharing. If aprogramintroduces false sharing by spreading the pieces of

a cache line across processors, the allocator may then passively induce false sharing after afree by letting

each processor reuse pieces it freed, which then leads to false sharing.

7.1.2 Blowup

Many previous allocators suffer from blowup. As we show in Section 7.4.1, Hoard keeps blowup to a

constant factor. To the best of our knowledge, papers in the literature do not address this problem, and

many existing concurrent allocators suffer from a blowup problem. The worst of these is thepure private

heapsalgorithm, used by the Cilk and STL allocators [15, 63]. This memory manager reserves one heap for

each processor: all memory allocations and frees are performed on the local heap. Except when objects are

initially allocated, this approach eliminates heap contention.

Unfortunately, the pure private heaps algorithm can exhibitunboundedblowup: memory consump-

tion can grow without bound, even though the memory required is fixed. Figure 7.2 shows how this blowup

can occur. In this example, two processors are in a producer-consumer relationship. The producer thread

allocates a block of memory and gives it to the consumer thread, which frees it. Using a pure private heaps

allocator, the memory freed by the consumer is unavailable to the producer, so the program consumes more

66

������

���������	

�
����
��������	

�����������

������
��������	

���������	

����������	

������ ������

�������
�	

������
��������	

����������

Figure 7.3: This figure demonstrates howprivate heaps with ownershipallocators can exhibit aP -fold
blowup in memory consumption, where a round-robin producer-consumer pattern spreads memory across
the processors.

and more memory as it runs.

Other concurrent memory allocators suffer from a less dramatic but still serious blowup problem.

Private heaps with ownershipallocators return memory to the originating processor (e.g., Ptmalloc and

LKmalloc [31, 49]). This approach avoids the unbounded blowup of pure private heaps allocators, but we

show that it can cause memory consumption to grow linearly withP , the number of processors. Figure 7.3

demonstrates how such blowup can occur. Here the processors are in a round-robin producer-consumer

relationship (processori modP allocates, processor(i + 1) modP frees). The program requires onlys

blocks, but the memory manager will allocateP ∗ s blocks (s on allP heaps) because the ownership policy

makes memory systematically unavailable for reuse.

ThisP -fold increase in memory consumption is a cause for concern. On 32-bit architectures, mul-

tiplying memory consumption by a factor ofP can cause many programs to exhaust all available address

space. A program that uses more than 128MB of memory could not run on a 16-processor machine. Further,

the scheduling of multithreaded programs on multiple processors can cause these programs to requiremuch

more memory when run on one processor [15, 57]. Consider a program withP threads. Each thread calls

x=malloc(s); free(x) . If these threads are serialized, the total memory required iss. However, if

they execute onP processors and each call tomalloc runs in parallel, the memory requirement increases

to P ∗ s. If the allocator multiplies this consumption by another factor ofP , then memory consumption

67

increases toP 2 ∗ s.

7.2 Related Work

While dynamic storage allocation is one of the most studied topics in computer science, there has been

relatively little work on concurrent memory allocators. In this section, we place past work into a taxonomy

of memory allocator algorithms. We address the blowup and allocator-induced false sharing characteristics

of each of these algorithms and compare them to Hoard.

7.3 Taxonomy of Memory Allocator Algorithms

Our taxonomy consists of the following five categories:

Serial single heap.Only one processor may access the heap at a time (Solaris, Windows NT/2000 [48]).

Concurrent single heap. Many processors may simultaneously operate on one shared heap ([14, 43, 44,

40, 41]).

Pure private heaps. Each processor has its own heap (STL [63], Cilk [15]).

Private heaps with ownership. Each processor has its own heap, but memory is always returned to its

“owner” processor (MTmalloc, Ptmalloc[31], LKmalloc[49]).

Private heaps with thresholds.Each processor has its own heap which can hold a limited amount of free

memory (DYNIX kernel allocator [52], Vee and Hsu [76]).

Below we discuss these single and multiple-heap algorithms, focusing on the false sharing and

blowup characteristics of each.

7.3.1 Single Heap Allocation

Serial single heapallocators often exhibit extremely low fragmentation over a wide range of real programs

[46] and are quite fast on uniprocessors [50]. Since they typically protect the heap with a single lock

68

Allocator algorithm fast? scalable? avoids avoids
false sharing? blowup?

serial single heap X X
concurrent single heap maybe X
pure private heaps X X unbounded
private heaps w/ownership:

Ptmalloc[31] X X O(P)
MTmalloc X O(P)

LKmalloc[49] X X X O(P)
private heaps w/thresholds X X X
Hoard X X X X

Table 7.1: A taxonomy of memory allocation algorithms discussed in this chapter.

which serializes memory operations and introduces contention, they are inappropriate for use with most

parallel multithreaded programs. In multithreaded programs, contention for the lock prevents allocator

performance from scaling with the number of processors. Many modern operating systems provide such

memory allocators in the default library, including Solaris and IRIX. Windows NT/2000/XP uses 64-bit

atomic operations on freelists rather than locks [48] which is also unscalable because the head of each

freelist is a central bottleneck1. These allocators all actively induce false sharing.

Concurrent single heapallocation implements the heap as a concurrent data structure, such as a

concurrent B-tree [32, 33, 40, 41, 43, 44] or a freelist with locks on each free block [14, 22, 70]. This

approach reduces to a serial single heap in the common case when most allocations are from a small number

of object sizes. Johnstone and Wilson show that for every program they examined, the vast majority of

objects allocated are of only a few sizes [45]. Each memory operation on these structures requires either

time linear in the number of free blocks orO(logC) time, whereC is the number ofsize classesof allocated

objects. A size class is a range of object sizes that are grouped together (e.g., all objects between 32 and 36

bytes are treated as 36-byte objects). Like serial single heaps, these allocators actively induce false sharing.

Another problem with these allocators is that they make use of many locks or atomic update operations (e.g.,

compare-and-swap), which are quite expensive on modern architectures.

State-of-the-art serial allocators are so well engineered that most memory operations involve only

1The Windows allocator and some of Iyengar’s allocators use one freelist for each object size or range of sizes [40, 41, 48]

69

a handful of instructions [50]. Anuncontendedlock acquisition and release accounts for about half of the

total runtime of these memory operations. In order to be competitive, a memory allocator can only acquire

and release at most two locks in the common case, or incur three atomic operations. Hoard requires only

one lock for eachmalloc and two for eachfree .

7.3.2 Multiple Heap Allocation

In this section, we discuss multiple-heap allocators as if heaps were directly associated with processors.

However, because operating systems are generally free to switch processors at any time, user-space memory

allocators cannot guarantee a one-to-one connection between heaps and executing processors.

Multiple heap allocators therefore use a variety of techniques to map threads onto heaps. These

techniques include assigning one heap for each thread using thread-specific data [63], by using a currently

unused heap from a collection of heaps [31], round-robin heap assignment (as inMTmalloc, provided with

Solaris 7 as a replacement allocator for multithreaded applications), or by providing a mapping function

that maps threads onto a collection of heaps (LKmalloc [49], Hoard). For simplicity of exposition in the

remainder of the thesis, we assume that there is exactly one thread bound to each processor and one heap

for each of these threads. We describe Hoard’s mapping strategy in Section 7.4.

We group existing multiple-heap allocators into three categories, which we describe in detail below:

pure private heaps, private heaps with ownership, andprivate heaps with thresholds. STL’s (Standard

Template Library)pthreadalloc, Cilk 4.1, and many ad hoc allocators usepure private heapsallocation [15,

63]. Each processor has its own per-processor heap that it uses for every memory operation (the allocator

malloc s from its heap andfree s to its heap). Each per-processor heap is “purely private” because each

processor never accesses any other heap for any memory operation. After one thread allocates an object, a

second thread can free it; in pure private heaps allocators, this memory is placed in the second thread’s heap.

Since parts of the same cache line may be placed on multiple heaps, pure private-heaps allocators passively

induce false sharing. Worse, pure private-heaps allocators exhibit unbounded memory consumption given a

producer-consumer allocation pattern, as described in Section 7.1.2. Hoard avoids this problem by returning

freed blocks to the heap that owns them.

70

Private heaps with ownershipallocators return free blocks to the heap that allocated them. This

algorithm, used byMTmalloc, Ptmalloc[31] andLKmalloc [49], yieldsO(P) blowup, whereas Hoard has

O(1) blowup. PtmallocandMTmalloccan actively induce false sharing (different threads may allocate

from the same heap).LKmalloc’s permanent assignment of large regions of memory to processors and its

immediate return of freed blocks to these regions, while leading toO(P) blowup, should have the advantage

of eliminating allocator-induced false sharing, although the authors did not explicitly address this issue.

Hoard explicitly takes steps to reduce false sharing, while maintainingO(1) blowup.

Both PtmallocandMTmallocalso suffer from scalability bottlenecks. InPtmalloc, eachmalloc

chooses the first heap that is not currently in use (caching the resulting choice for the next attempt). This heap

selection strategy causes substantial bus traffic which limitsPtmalloc’s scalability to about 6 processors, as

we show in Section 7.8.MTmallocperforms round-robin heap assignment by maintaining a “nextHeap”

global variable that is updated by every call tomalloc . This variable is a source of contention that makes

MTmallocunscalable and actively induces false sharing. Hoard has no centralized bottlenecks except for

the global heap, which is not a frequent source of contention for reasons described in Section 7.7.1.

The DYNIX kernel memory allocator by McKenney and Slingwine [52] and the single object-size

allocator by Vee and Hsu [76] employ aprivate heaps with thresholdsalgorithm. These allocators are

efficient and scalable because they move large blocks of memory between a hierarchy of per-processor

heaps and heaps shared by multiple processors. When a per-processor heap has more than a certain amount

of free memory (the threshold), some portion of the free memory is moved to a shared heap. This strategy

bounds blowup to a constant factor, since no heap may hold more than some fixed amount of free memory.

The mechanisms that control this motion and the units of memory moved by the DYNIX and Vee and Hsu

allocators differ significantly from those used by Hoard. Both of these allocators passively induce false

sharing by making it very easy for pieces of the same cache line to be recycled. As long as the amount of

free memory does not exceed the threshold, pieces of the same cache line spread across processors will be

repeatedly reused to satisfy memory requests. Also, these allocators are forced to synchronize every time

the threshold amount of memory is allocated or freed, while Hoard can avoid synchronization altogether

while the emptiness of per-processor heaps is within the empty fraction. On the other hand, these allocators

71

do avoid the two-fold slowdown that can occur in the worst-case described for Hoard in Section 7.7.1.

Table 7.1 presents a summary of the above allocator algorithms, along with their speed, scalability,

false sharing and blowup characteristics. As can be seen from the table, the algorithms closest to Hoard

are Vee and Hsu, DYNIX, andLKmalloc. The first two fail to avoid passively-induced false sharing and

are forced to synchronize with a global heap after each threshold amount of memory is consumed or freed,

while Hoard avoids false sharing and is not required to synchronize until the emptiness threshold is crossed

or when a heap does not have sufficient memory.LKmallochas similar synchronization behavior to Hoard

and avoids allocator-induced false sharing, but hasO(P) blowup.

7.4 The Hoard Memory Allocator

This section describes Hoard in detail. Hoard can be viewed as an allocator that generally avoids false

sharing and that trades increased (but bounded) memory consumption for reduced synchronization costs.

Hoard augments per-processor heaps with aglobal heapthat every thread may access (similar to

Vee and Hsu [76]). Each thread can access only its heap and the global heap. We designate heap 0 as

the global heap and heaps 1 throughP as the per-processor heaps. In the implementation we actually use

2P heaps (without altering our analytical results) in order to decrease the probability that concurrently-

executing threads use the same heap; we use a simple hash function to map thread id’s to per-processor

heaps that can result in collisions. We need such a mapping function because in general there is not a one-

to-one correspondence between threads and processors, and threads can be reassigned to other processors.

On Solaris, however, we avoid collisions of heap assignments to threads by hashing on the light-weight

process (LWP) id. The number of LWP’s is usually set to the number of processors [51, 69], so each heap is

generally used by no more than one LWP.

Hoard maintainsusage statisticsfor each heap. These statistics areui, the amount of memory in

use (“live”) in heapi, andai, the amount of memory allocated by Hoard from the operating system held in

heapi.

Hoard allocates memory from the system in chunks we callheap blocks. Each heap block is an

72

array of some number of blocks (objects) and contains a free list of its available blocks maintained in LIFO

order to improve locality. All heap blocks are the same size (S), a multiple of the system page size. Hoard

manages objects larger than half the size of a heap block directly using the virtual memory system (i.e.,

Hoard allocates them viammapand frees them usingmunmap). All of the blocks in a heap block are in the

same size class. By using size classes that are a power ofb apart (whereb is greater than 1) and rounding

the requested size up to the nearest size class, we bound worst-caseinternal fragmentation within a block to

a factor ofb. In order to reduceexternalfragmentation, werecyclecompletely empty heap blocks for re-use

by any size class. For clarity of exposition, we assume a single size class in the discussion below.

7.4.1 Bounding Blowup

Each heap “owns” a number of heap blocks. When there is no memory available in any heap block on a

thread’s heap, Hoard obtains a heap block from the global heap if one is available. If the global heap is also

empty, Hoard creates a new heap block by requesting virtual memory from the operating system and adds it

to the thread’s heap. Hoard does not currently return empty heap blocks to the operating system. It instead

makes these heap blocks available for reuse.

Hoard moves heap blocks from a per-processor heap to the global heap when the per-processor

heap crosses theemptiness threshold: i.e., more thanf , the empty fraction, of its blocks are not in use

(ui < (1 − f)ai), and there are more than some numberK of heap blocks’ worth of free memory on the

heap (ui < ai −K ∗ S). As long as a heap is not more thanf empty, and containsK or fewer heap blocks,

Hoard will not move heap blocks from a per-processor heap to the global heap. Whenever a per-processor

heap does cross the emptiness threshold, Hoard transfers one of its heap blocks that is at leastf empty to the

global heap. Always removing such a heap block whenever we cross the emptiness threshold maintains the

following invariant on the per-processor heaps:(ui ≥ ai −K ∗ S) ∨ (ui ≥ (1− f)ai). When we remove a

heap block, we reduceui by at most(1− f)S but reduceai by S, thus restoring the invariant. Maintaining

this invariant bounds blowup to a constant factor, as we show in Section 7.5.

Hoard findsf -empty heap blocks in constant time by dividing heap blocks into a number of bins

that we call “fullness groups”. Each bin contains a doubly-linked list of heap blocks that are in a given

73

��

���

�������	

���������������������	

���
�������	

���������������������	

��

��

�������	

����������	

���
�������	

����������	

�����������

�����������

���
����
�

���
����
�

���
����
�

���
����
�

Figure 7.4: Allocation and freeing in Hoard. See Section 7.4.2 for details.

fullness range (e.g., all heap blocks that are between3/4 and completely empty are in the same bin). Hoard

moves heap blocks from one group to another when appropriate, and always allocates from the fullest heap

blocks. To improve locality, we order the heap blocks within a fullness group using a move-to-front heuristic.

Whenever we free a block in a heap block, we move the heap block to the front of its fullness group. If we

then need to allocate a block, we will be likely to reuse a heap block that is already in memory; because we

maintain the free blocks in LIFO order, we are also likely to reuse a block that is already in cache.

7.4.2 Example

Figure 7.4 illustrates, in simplified form, how Hoard manages heap blocks. For simplicity, we assume there

are two threads and heaps (threadi maps to heapi). In this example, the empty fractionf is 7/8 andK is

0. Initially, all heaps are empty.

The top left diagram shows the heaps after thread 1 allocatesx1 . Hoard allocates a new heap block

74

and assigns it to heap 1. The next diagram (upper right), shows the state of the heaps after thread 1 has

allocatedx2 throughx8 and has freedx1 throughx7 . The next free causes heap 1 to cross the emptiness

threshold, resulting in a transfer of ownership of the empty heap block to the global heap (lower left). In

the final diagram, thread 2 causes ownership of the heap block to transfer from the global heap to heap 2 by

allocating one object.

7.4.3 Avoiding False Sharing

Hoard uses the combination of heap blocks and multiple heaps described above to avoid most active and

passive false sharing. Only one thread may allocate from a given heap block since only one heap owns a

heap block at any time. When multiple threads make simultaneous requests for memory, the requests will

always be satisfied from different heap blocks, avoiding actively induced false sharing. When a program

deallocates a block of memory, Hoard returns the block to its heap block. This coalescing prevents multiple

threads from reusing pieces of cache lines that were passed to these threads by a user program, avoiding

passively-induced false sharing.

While this strategy greatly reduces allocator-induced false sharing, it can not guarantee it will never

cause false sharing. Because Hoard may move heap blocks from one heap to another, it is possible for

two heaps to share cache lines. In practice, fortunately, heap block transfer is a relatively infrequent event

– it occurs only when a per-processor heap drops below the emptiness threshold. We have observed that

heap blocks released to the global heap are usually completely empty, eliminating the possibility of false

sharing. A simple mechanism to prevent false sharing altogether prohibits allocation from partially-allocated

cache lines in transferred heap blocks. This mechanism provably avoids all false sharing of heap objects.

Implementing this mechanism remains future work.

7.5 Analytical Results

In this section, we prove bounds on blowup and synchronization for Hoard. We first define some useful

notation. LetA(t) andU(t) denote themaximumamount of memory allocated and in use by the program

75

malloc (sz)
1. If sz> S/2, allocate the heap block from the OS

andreturn it.
2. i← hash(the current thread).
3. Lock heapi.
4. Scan heapi’s list of heap blocks from most full to least

(for the size class corresponding to sz).
5. If there is no heap block with free space,
6. Check heap 0 (the global heap) for a heap block.
7. If there is none,
8. AllocateS bytes as heap blocks

and set the owner to heapi.
9. Else,
10. Transfer the heap blocks to heapi.
11. u0 ← u0 − s.u
12. ui ← ui + s.u
13. a0 ← a0 − S
14. ai ← ai + S
15. ui ← ui + sz.
16. s.u← s.u+ sz.
17. Unlock heapi.
18. Return a block from the heap block.

free (ptr)
1. If the block is “large”,
2. Free the heap block to the operating system andreturn.
3. Find the heap blocks this block comes from and lock it.
4. Lock heapi, the heap block’s owner.
5. Deallocate the block from the heap block.
6. ui ← ui − block size.
7. s.u← s.u− block size.
8. If i = 0, unlock heapi and the heap block

andreturn.
9. If ui < ai −K ∗ S andui < (1− f) ∗ ai,
10. Transfer a mostly-empty heap blocks1

to heap 0 (the global heap).
11. u0 ← u0 + s1.u, ui ← ui − s1.u
12. a0 ← a0 + S, ai ← ai − S
13. Unlock heapi and the heap block.

Figure 7.5: Pseudo-code for Hoard’smalloc andfree .

76

(“live memory”) after memory operationt. Leta(t) andu(t) denote thecurrentamount of memory allocated

and in use by the program after memory operationt. We add a subscript for a particular heap (e.g.,ui(t))

and add a caret (e.g.,â(t)) to denote the sum for all heapsexceptthe global heap.

7.6 Bounds on Blowup

We formally define the blowup for an allocator as its worst-case memory consumption divided by the ideal

worst-case memory consumption for a serial memory allocator (a constant factor times its maximum mem-

ory required [60]):

Definition 1 blowup= O(A(t)/U(t)).

By maintaining no more than a constant fraction of unused memory on each heap and moving free

memory to the global heap, we can prove the following theorem:

Theorem 1 A(t) = O(U(t) + P).

By the definition of blowup above, and assuming thatP << U(t), Hoard’s blowup isO((U(t) +

P)/U(t)) = O(1). This result shows that Hoard’s worst case memory consumption is at worst a con-

stant factor overhead that does not grow with the amount of memory required by the program. This result

dramatically improves on the blowup for non-threshold allocators, which isO(P).

7.6.1 Proof

We make use of the following lemma:

Lemma 1 A(t) = Â(t).

This lemma holds because these quantities are maxima, and any memory in the global heap was

originally allocated into a per-processor heap. Now we prove the bounded memory consumption theorem

77

above (A(t) = O(U(t) + P)).

Proof. We restate the invariant from Section 7.4.1 that we maintain over all the per-processor heaps:

(ai(t)−K ∗ S ≤ ui(t)) ∨ ((1− f)ai(t) ≤ ui(t)).
The first inequality is sufficient to prove the theorem. Summing over allP per-processor heaps gives us

Â(t) ≤ ∑P
i=1 ui(t) + P ∗K ∗ S . def. ofÂ(t)

≤ Û(t) + P ∗K ∗ S . def. ofÛ(t)

≤ U(t) + P ∗K ∗ S. . Û(t) ≤ U(t)

Since by the above lemmaA(t) = Â(t), we haveA(t) = O(U(t) + P).

Because the number of size classes is constant, this theorem holds over all size classes. By the

definition of blowup above, and assuming thatP << U(t), Hoard’s blowup isO((U(t)+P)/U(t)) = O(1).

This result shows that Hoard’s worst case memory consumption is at worst a constant factor overhead that

does not grow with the amount of memory required by the program.

Our discipline for using the empty fraction (f) enables this proof, so it is clearly a key parame-

ter for Hoard. For reasons we describe and validate with experimental results in Section 7.10.3, Hoard’s

performance is robust with respect to the choice off .

7.7 Bounds on Synchronization

We now analyze Hoard’s worst-case and discuss expected synchronization costs. Synchronization costs

come in two flavors: contention for a per-processor heap and acquisition of the global heap lock. We argue

that the first form of contention is not a scalability concern, and that the second form is rare. Further, for

common program behavior, the synchronization costs are low over most of the program’s lifetime.

78

7.7.1 Per-processor Heap Contention

The worst-case contention for Hoard arises when one thread allocates memory from the heap and all other

threads free it (thus all contending for the same heap lock). If an application allocates memory in such a

manner and the amount of work between allocations is so low that heap contention is an issue, then the

application itself is fundamentally unscalable. Even if heap access were to be completely independent, the

application itself could only achieve a two-fold speedup, no matter how many processors are available.

Since we are concerned with providing a scalable allocator for scalable applications, we can bound

Hoard’s worst case for such applications, which occurs when pairs of threads exhibit producer-consumer

behavior. Eachmalloc and eachfree will be serialized. Modulo context-switch costs, this pattern results

in at most a two-fold slowdown. This slowdown is not desirable but it is scalable as it does not grow with

the number of processors (as it does for allocators with one heap protected by a single lock).

It is difficult to establish an expected case for per-processor heap contention. In our own and

others’ experience with multithreaded applications [49], the allocating thread exclusively uses most of its

dynamically-allocated memory, and only a small fraction of allocated memory is freed by another thread.

We thus find and expect per-processor heap contention to be quite low.

7.7.2 Global Heap Contention

Global heap contention arises when heap blocks are first created, when heap blocks are transferred to and

from the global heap, and when blocks are freed from heap blocks held by the global heap. We simply

count the number of times the global heap’s lock is acquired by each thread, to develop an upper-bound

on global heap contention. We analyze two cases: a growing phase and a shrinking phase. We show that

worst-case synchronization for the growing phases is inversely proportional to the heap block size and the

empty fraction. We show that the worst-case for the shrinking phase is expensive but only for a pathological

case that is unlikely to occur in practice. Empirical evidence from Section 7.8 suggests that Hoard will incur

low synchronization costs.

Two key parameters control the worst-case global heap contention while a per-processor heap is

79

growing: f , the empty fraction, andS, the size of a heap block. When a per-processor heap is growing,

a thread can acquire the global heap lock at mostk/(f ∗ S/s) times fork memory operations, wheres is

the object size. Whenever the per-processor heap is empty, the thread will lock the global heap and obtain

a heap block with at leastf ∗ S/s free blocks. If the thread then callsmalloc k times, it will exhaust its

heap and acquire the global heap lock at mostk/(f ∗ S/s) times.

When a per-processor heap is shrinking, a thread will first acquire the global heap lock when the

release threshold is crossed. The release threshold could then be crossed on every single call tofree if

every heap block is exactlyf empty. Completely freeing each heap block in turn will cause the heap block

to first be released to the global heap and every subsequentfree to a block in that heap block will therefore

acquire the global heap lock. Luckily, this pathological case is highly unlikely to occur since it requires an

improbable sequence of operations: the program must systematically free(1 − f) of each heap block and

then free every block in a heap block in round-robin order.

For the common case, Hoard will incurvery lowcontention costs for any memory operation. This

situation holds when the amount of live memory remains within the empty fraction of the maximum amount

of memory allocated (and when allfree s are local). Johnstone [45] and Stefanović [68] show in their

empirical studies of allocation behavior that for nearly every program they analyzed, the memory in use

tends to vary within a range that is within a fraction of total memory currently in use, and this amount often

grows steadily. Thus, in the steady state case, Hoard incurs no contention, and in gradual growth, Hoard

incurs low contention.

7.8 Experimental Results

In this section, we investigate Hoard’s performance experimentally. We performed experiments on unipro-

cessors and multiprocessors to demonstrate Hoard’s speed, scalability, false sharing avoidance, and low

fragmentation. We used the dedicated 14-processor Sun Enterprise 5000 described in Table 3.2. In the ex-

periments below, the size of a heap blockS is 8K, the empty fractionf is 3/4, the number of heap blocks

K that must be free for heap blocks to be released is 4, and the base of the exponential for size classesb is

80

multithreaded benchmarks
threadtest each thread repeatedly allocates

and then deallocates 100,000/P objects
shbench [55] each thread allocates and randomly frees

random-sized objects
Larson [49] simulates a server: each thread allocates

and deallocates objects, and then transfers
some objects to other threads to be freed

active-false tests active false sharing avoidance
passive-false tests passive false sharing avoidance
BEMengine [21] object-oriented PDE solver
Barnes-Hut [1, 6] n-body particle solver

Table 7.2: Multithreaded benchmarks used in this chapter.

1.2 (bounding internal fragmentation to 1.2).

We compare Hoard (version 2.0.2) to the following single and multiple-heap memory allocators:

Solaris, the default allocator provided with Solaris 7,Ptmalloc[31], the Linux allocator included in the GNU

C library that extends a traditional allocator to use multiple heaps, andMTmalloc, a multiple heap allocator

included with Solaris 7 for use with multithreaded parallel applications. (Section 7.2 includes extensive

discussion ofPtmalloc, MTmalloc, and other concurrent allocators.) The latter two are the only publicly-

available concurrent allocators of which we are aware for the Solaris platform (for example,LKmalloc is

Microsoft proprietary and does not work under Solaris). We use the Solaris allocator as the baseline for

calculating speedups.

To measure Hoard’s performance and memory utilization for uniprocessor memory allocation, we

ran several of the Memory-Intensive benchmarks (see Section 3.1.1). These include the following programs:

espresso, an optimizer for programmable logic arrays;Ghostscript, a PostScript interpreter, andLRUsim, a

locality analyzer. We chose these programs because they are allocation-intensive and have widely varying

memory usage patterns. We used the same inputs for these programs as Wilson and Johnstone [46].

There is as yet no standard suite of benchmarks for evaluating multithreaded allocators. We know of

no benchmarks that specifically stress multithreaded performance of server applications like web servers2

2Memory allocation becomes a bottleneck when most pages served are dynamically generated. Unfortunately, the SPECweb99
benchmark [67] performs very few requests for completely dynamically-generated pages (0.5%), and most web servers exercise
dynamic memory allocation only when generating dynamic content.

81

Benchmark Fragmentation max in use (U) max allocated (A) total memory # objects average
applications (A/U) requested requested object size

multithreaded benchmarks
threadtest 1.24 1,068,864 1,324,848 80,391,016 9,998,831 8
shbench 3.17 556,112 1,761,200 1,650,564,600 12,503,613 132
Larson 1.22 8,162,600 9,928,760 1,618,188,592 27,881,924 58
BEMengine 1.02 599,145,176 613,935,296 4,146,087,144 18,366,795 226
Barnes-Hut 1.18 11,959,960 14,114,040 46,004,408 1,172,624 39

Table 7.3: Hoard fragmentation results and application memory statistics. We report fragmentation statistics
for 14-processor runs of the multithreaded programs. All units are in bytes.

and database managers. We chose benchmarks described in other papers and otherwise published: theLar-

sonbenchmark from Larson and Krishnan [49] and theshbenchbenchmark from MicroQuill, Inc. [55].

We use two multithreaded applications:BEMengine[21] andbarnes-hut[1, 6], and we wrote some mi-

crobenchmarks of our own to stress different aspects of memory allocation performance (threadtest, active-

false, passive-false). Table 7.2 describes all of the benchmarks. Table 7.6 includes their allocation behavior:

fragmentation, maximum memory in use (U) and allocated (A), total memory requested, number of objects

requested, and average object size.

7.8.1 Speed

Table 7.4 lists the uniprocessor runtimes for our applications when linked with Hoard and the Solaris allo-

cator. Hoard causes a slight increase in the runtime of these applications (harmonic mean = 4.3%), but this

loss is primarily due to its performance onshbench. Hoard performs poorly onshbenchbecauseshbench

uses a wide range of size classes (spreading out objects across many heap blocks) but allocates very little

memory (see Section 7.10.2 for more details). Excludingshbench, Hoard performs nearly identically to the

Solaris allocator when running on one processor (harmonic mean = 0.5%). The longest-running applica-

tion, LRUsim, runs almost 3% faster with Hoard. Hoard also performs well onBEMengine(10.3% faster

than with the Solaris allocator), which allocates more memory than any of our other benchmarks (nearly

600MB).

82

program runtime (sec) change
Solaris Hoard

single-threaded benchmarks
espresso 6.806 7.887 +15.9%
Ghostscript 3.610 3.993 +10.6%
LRUsim 1615.413 1570.488 -2.9%

multithreaded benchmarks
threadtest 16.549 15.599 -6.1%
shbench 12.730 18.995 +49.2%
active-false 18.844 18.959 +0.6%
passive-false 18.898 18.955 +0.3%
BEMengine 678.30 614.94 -10.3%
Barnes-Hut 192.51 190.66 -1.0%
harmonic mean +4.3%

Table 7.4: Uniprocessor runtimes for single- and multithreaded benchmarks.

7.8.2 Scalability

In this section, we present our experiments to measure scalability. We measurespeedupwith respect to the

Solaris allocator. These applications vigorously exercise the allocators as revealed by the large difference

between the maximum in use and the total memory requested (see Table 7.6).

Figure 7.6 shows that Hoard matches or outperforms all of the allocators we tested. The Solaris

allocator performs poorly overall because serial single heap allocators do not scale.MTmallocoften suffers

from a centralized bottleneck.Ptmalloc scales well only when memory operations are fairly infrequent

(theBarnes-Hutbenchmark in Figure 7.6(d)); otherwise, its scaling peaks at around 6 processors. We now

discuss each benchmark in turn.

In threadtest, t threads do nothing but repeatedly allocate and deallocate100, 000/t 8-byte objects

(the threads do not synchronize or share objects). As seen in Figure 7.6(a), Hoard exhibits linear speedup,

while the Solaris andMTmallocallocators exhibit severe slowdown. For 14 processors, the Hoard version

runs 278% faster than thePtmallocversion. UnlikePtmalloc, which uses a linked-list of heaps, Hoard does

not suffer from a scalability bottleneck caused by a centralized data structure.

The shbenchbenchmark is available on MicroQuill’s website and is shipped with the SmartHeap

SMP product [55]. This benchmark is essentially a “stress test” rather than a realistic simulation of appli-

83

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

threadtest - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(a) The Threadtest benchmark.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

shbench - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(b) The SmartHeap benchmark (shbench).

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

Larson - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(c) Speedup using the Larson benchmark.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

Barnes-Hut - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(d) Barnes-Hut speedup.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

BEMengine - Speedup

Hoard
Ptmalloc

Solaris

(e) BEMenginespeedup. Linking withMTmalloccaused an
exception to be raised.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

BEMengine - Speedup (Solver)

Hoard
Ptmalloc

Solaris

(f) BEMenginespeedup for the system solver only.

Figure 7.6: Speedup graphs.

84

cation behavior. Each thread repeatedly allocates and frees a number of randomly-sized blocks in random

order, for a total of 50 million allocated blocks. The graphs in Figure 7.6(b) show that Hoard scales quite

well, approaching linear speedup as the number of threads increases. The slope of the speedup line is less

than ideal because the large number of different size classes hurts Hoard’s raw performance. For 14 proces-

sors, the Hoard version runs 85% faster than the next best allocator (Ptmalloc). Memory usage inshbench

remains within the empty fraction during the entire run so that Hoard incurs very low synchronization costs,

while Ptmallocagain runs into its scalability bottleneck.

The intent of theLarsonbenchmark, due to Larson and Krishnan [49], is to simulate a workload

for a server. A number of threads are repeatedly spawned to allocate and free 10,000 blocks ranging from

10 to 100 bytes in a random order. Further, a number of blocks are left to be freed by a subsequent thread.

Larson and Krishnan observe this behavior (which they call “bleeding”) in actual server applications, and

their benchmark simulates this effect. The benchmark runs for 30 seconds and then reports the number

of memory operations per second. Figure 7.6(c) shows that Hoard scales linearly, attaining nearly ideal

speedup. For 14 processors, the Hoard version runs 18 times faster than the next best allocator, thePtmalloc

version. After an initial start-up phase,Larsonremains within its empty fraction for most of the rest of its

run (dropping below one-eighth empty only a few times over a 30-second run and over 27 millionmalloc s)

and thus Hoard incurs very low synchronization costs. Despite the fact thatLarsontransfers many objects

from one thread to another, Hoard performs quite well. All of the other allocators fail to scale at all, running

slower on 14 processors than on one processor.

Barnes-Hutis a hierarchicaln-body particle solver included with the Hood user-level multiprocessor

threads library [1, 6], run on 32,768 particles for 20 rounds. This application performs a small amount of

dynamic memory allocation during the tree-building phase. With 14 processors, all of the multiple-heap

allocators provide a 10% performance improvement, increasing the speedup of the application from less

than 10 to just above 12 (see Figure 7.6(d)). Hoard performs only slightly better thanPtmallocin this case

because this program does not exercise the allocator much. Hoard’s performance is probably somewhat

better simply becauseBarnes-Hutnever drops below its empty fraction during its execution.

TheBEMenginebenchmark uses the solver engine from Coyote Systems’ BEMSolver [21], a 2D/3D

85

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

Active-False - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(a) Speedup for theactive-falsebenchmark, which fails to
scale with memory allocators thatactivelyinduce false shar-
ing.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ee

du
p

Number of processors

Passive-False - Speedup

Hoard
Ptmalloc

MTmalloc
Solaris

(b) Speedup for thepassive-falsebenchmark, which fails to
scale with memory allocators thatpassivelyor actively in-
duce false sharing.

Figure 7.7: Speedup graphs that exhibit the effect of allocator-induced false sharing.

field solver that can solve electrostatic, magnetostatic and thermal systems. We report speedup for the

three mostly-parallel parts of this code (equation registration, preconditioner creation, and the solver). Fig-

ure 7.6(e) shows that Hoard provides a significant runtime advantage overPtmallocand the Solaris allocator

(MTmalloccaused the application to raise a fatal exception)3. During the first two phases of the program,

the program’s memory usage dropped below the empty fraction only 25 times over 50 seconds, leading to

low synchronization overhead. This application causesPtmallocto exhibit pathological behavior that we do

not understand, although we suspect that it derives from false sharing. During the execution of the solver

phase of the computation, as seen in Figure 7.6(f), contention in the allocator is not an issue, and both Hoard

and the Solaris allocator perform equally well.

7.9 False sharing

We designed two test programs,active-falseandpassive-false, to induce active and passive false sharing

to reveal the performance impact on the memory allocators. The active-false benchmark tests whether an

allocator avoids actively inducing false sharing. Each thread allocates one small object, writes on it a number

of times, and thenfree s it. The rate of memory allocation is low compared to the amount of work done, so

3The author of BEMEngine confirms that its algorithms do not scale linearly (Martin Bächtold, personal communication)

86

program falsely-shared objects
threadtest 0
shbench 0
Larson 0
BEMengine 0
Barnes-Hut 0

Table 7.5: Possible falsely-shared objects on 14 processors.

this benchmark only tests contention caused by the cache coherence mechanism (cache ping-ponging) and

not allocator contention. While Hoard scales linearly, showing that it avoids actively inducing false sharing,

bothPtmallocandMTmalloconly scale up to about 4 processors because they actively induce some false

sharing. The Solaris allocator does not scale at all because it actively induces false sharing for nearly every

cache line.

Thepassive-falsebenchmark tests whether an allocator avoids both passive and active false sharing

by allocating a number of small objects in one thread and giving one to each other thread, which immediately

free s the object. The benchmark then continues in the same way as theactive-falsebenchmark. If the

allocator does not coalesce the pieces of the cache line initially distributed to the various threads, it passively

induces false sharing. Figure 7.7(b) shows that Hoard scales nearly linearly; the gradual slowdown after 12

processors is due to program-induced bus traffic. NeitherPtmallocnor MTmallocavoid false sharing here,

but the cause could be either active or passive false sharing.

In Table 7.5, we present measurements for our multithreaded benchmarks of the number of objects

that could have been responsible for allocator-induced false sharing in Hoard (i.e., those objects already in a

heap block acquired from the global heap). In every case, when the per-processor heap acquired heap blocks

from the global heap, the heap blocks were empty. These results demonstrate that Hoard successfully avoids

allocator-induced false sharing.

7.10 Fragmentation

We showed in Section 7.4.1 that Hoard has bounded blowup. In this section, we measure Hoard’s average

case fragmentation. We use a number of single- and multithreaded applications to evaluate Hoard’s average-

87

Benchmark Fragmentation max in use (U) max allocated (A) total memory # objects average
applications (A/U) requested requested object size

multithreaded benchmarks
threadtest 1.24 1,068,864 1,324,848 80,391,016 9,998,831 8
shbench 3.17 556,112 1,761,200 1,650,564,600 12,503,613 132
Larson 1.22 8,162,600 9,928,760 1,618,188,592 27,881,924 58
BEMengine 1.02 599,145,176 613,935,296 4,146,087,144 18,366,795 226
Barnes-Hut 1.18 11,959,960 14,114,040 46,004,408 1,172,624 39

Table 7.6: Hoard fragmentation results and application memory statistics. We report fragmentation statistics
for 14-processor runs of the multithreaded programs. All units are in bytes.

case fragmentation.

Collecting fragmentation information for multithreaded applications is problematic because frag-

mentation is a global property. Updating the maximum memory in use and the maximum memory allocated

would serialize all memory operations and thus seriously perturb allocation behavior. We cannot simply use

the maximum memory in use for a serial execution because a parallel execution of a program may lead it to

require much more memory than a serial execution.

We solve this problem by collecting traces of memory operations and processing these traces off-

line. We modified Hoard so that (when collecting traces) each per-processor heap records every memory

operation along with a timestamp (using the SPARC high-resolution timers viagethrtime()) into a

memory-mapped buffer and writes this trace to disk upon program termination. We then merge the traces in

timestamp order to build a complete trace of memory operations and process the resulting trace to compute

maximum memory allocated and required. Collecting these traces results in nearly a threefold slowdown in

memory operations but does not excessively disturb their parallelism, so we believe that these traces are a

faithful representation of the fragmentation induced by Hoard.

7.10.1 Single-threaded Applications

In order to measure Hoard’s impact on space for uniprocessor applications, we measure fragmentation for the

Memory-Intensive benchmark suite (see Section 3.1.1). We follow Wilson and Johnstone [46] and report

memory allocated without counting overhead (like per-object headers) to focus on the allocationpolicy

rather than themechanism. Hoard’s fragmentation for these applications is between 1.05 and 1.2, except for

88

espresso, which consumes 46% more memory than it requires.Espressois an unusual program since it uses

a large number of different size classes for a small amount of memory required (less than 300K), and this

behavior leads Hoard to waste space within each 8K heap block.

7.10.2 Multithreaded Applications

Table 7.6 shows that the fragmentation results for the multithreaded benchmarks are generally quite good,

ranging from nearly no fragmentation (1.02) forBEMengineto 1.24 forthreadtest. The anomaly isshbench.

This benchmark uses a large range of object sizes, randomly chosen from 8 to 100, and many objects remain

live for the duration of the program (470K of its maximum 550K objects remain in use at the end of the

run cited here). These unfreed objects are randomly scattered across heap blocks, making it impossible to

recycle them for different size classes. This extremely random behavior is not likely to be representative of

real programs [46] but it does show that Hoard’s method of maintaining one size class per heap block can

yield poor memory efficiency for certain behaviors, although Hoard still attains good scalable performance

for this application (see Figure 7.6(b)).

7.10.3 Sensitivity Study

We also examined the effect of changing the empty fraction on runtime and fragmentation for the multi-

threaded benchmarks. Because heap blocks are returned to the global heap (for reuse by other threads) when

the heap crosses the emptiness threshold, the empty fraction affects both synchronization and fragmentation.

We varied the empty fraction from1/8 to 1/2 and saw very little change in runtime and fragmentation. We

chose this range to exercise the tension between increased (worst-case) fragmentation and synchronization

costs. The only benchmark which is substantially affected by these changes in the empty fraction is theLar-

sonbenchmark, whose fragmentation increases from 1.22 to 1.61 for an empty fraction of1/2. Table 7.7

presents the runtime for these programs on 14 processors (we report the number of memory operations per

second for the Larson benchmark, which runs for 30 seconds), and Table 7.8 presents the fragmentation

results. Hoard’s runtime is robust with respect to changes in the empty fraction because programs tend to

reach a steady state in memory usage and stay within even as small an empty fraction as1/8, as described

89

program runtime (sec)
f = 1/8 f = 1/4 f = 1/2

threadtest 1.27 1.28 1.19
shbench 1.45 1.50 1.44
BEMengine 86.85 87.49 88.03
Barnes-Hut 16.52 16.13 16.41

throughput (memory ops/sec)
Larson 4,407,654 4,416,303 4,352,163

Table 7.7: Runtime on 14 processors using Hoard with different empty fractions.

program fragmentation
f = 1/8 f = 1/4 f = 1/2

threadtest 1.22 1.24 1.22
shbench 3.17 3.17 3.16
Larson 1.22 1.22 1.61
BEMengine 1.02 1.02 1.02
Barnes-Hut 1.18 1.18 1.18

Table 7.8: Fragmentation on 14 processors using Hoard with different empty fractions.

in Section 7.7.2.

7.11 Conclusion

In this chapter, we have introduced the Hoard memory allocator. Hoard improves on previous memory allo-

cators by simultaneously providing four features that are important for scalable application performance:

speed, scalability, false sharing avoidance, and low fragmentation. Hoard’s novel organization of per-

processor and global heaps along with its discipline for moving heap blocks across heaps enables Hoard

to achieve these features and is the key contribution of this work. Our analysis shows that Hoard has prov-

ably bounded blowup and low expected case synchronization. Our experimental results on eleven programs

demonstrate that in practice Hoard has low fragmentation, avoids false sharing, and scales very well. In

addition, we show that Hoard’s performance and fragmentation are robust with respect to its primary param-

eter, the empty fraction. Since scalable application performance clearly requires scalable architecture and

runtime system support, Hoard thus takes a key step in this direction.

90

Chapter 8

Conclusion

8.1 Future Work

The research presented in this thesis points to several areas for future work. First, heap layers are an enabling

technology for experimentation. Most design decisions in memory managers are made early and would be

difficult to change. Using heap layers, these design decisions can be isolated in individual layers, facilitating

experimentation with different policies and mechanisms. We believe that we can use heap layers to solve

numerous open questions in memory management.

Heap layers can also be used to develop richer application-specific memory managers. Using profile

information, it is possible to discover allocation and access patterns and produce custom memory managers

that exploit these. While we show that most custom memory managers do not provide significant perfor-

mance gains, we believe that exploiting richer profiles and adapting to more complex application behavior

can provide improved performance, especially on multiprocessors. Such optimizations include padding

out allocations to avoid false sharing and using atomic deques [3] to manage memory between threads in

producer-consumer relationships.

We have developed two different memory managers, Hoard and reaps, to address two aspects of

memory management. Hoard provides scalable concurrent general-purpose memory management, and reaps

provide extra semantics for server applications. We believe that combining these two into one memory

91

manager would simultaneously address the needs of most high-performance applications.

8.2 Contributions

Despite its long history, memory management remains a significant performance and scalability bottle-

neck for modern high-performance applications. Programmers currently build custom memory managers

by hand in order to achieve high performance or semantics they cannot obtain with the system-provided

general-purpose allocator. This process is difficult, error-prone, precludes code reuse and results in sub-

optimal memory usage. Because of scalability problems in system-provided general-purpose allocators,

multithreaded applications often do not scale on multiprocessors. These problems prevent many applica-

tions from achieving high performance.

We present heap layers, a software infrastructure that simplifies construction and reuse of high-

performance memory managers. We show that heap layers allow programmers to build memory managers

that match or exceed the performance of their monolithic hand-tuned counterparts. We show that the use

of custom memory managers is generally a mistake, yielding no significant gains in performance. We

present reaps, a generalization of regions and heaps that provides high performance while addressing the

special needs of server applications on uniprocessors. To address the additional problems posed by multi-

threaded applications, we develop Hoard, a scalable concurrent memory manager. Our experimental results

demonstrate that Hoard achieves its goals of scalability, false-sharing avoidance, and bounded memory con-

sumption.

The key contribution of this thesis is the development of a framework for understanding and con-

structing high-performance, scalable memory managers. We show that, despite the long history of work on

memory management, we can still build much better memory managers.

92

Bibliography

[1] Umut Acar, Emery Berger, Robert Blumofe, and Dionysios Papadopoulos. Hood: A threads library

for multiprogrammed multiprocessors.http://www.cs.utexas.edu/users/hood, September 1999.

[2] Apache Foundation. Apache Web server.http://www.apache.org.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprogrammed

multiprocessors. InProceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA), pages 119–129, Puerto Vallarta, Mexico, June 1998.

[4] G. Attardi and T. Flagella. A customizable memory management framework. InProceedings of the

USENIX C++ Conference, Cambridge, Massachussetts, 1994.

[5] Giuseppe Attardi, Tito Flagella, and Pietro Iglio. A customizable memory management framework for

C++. InSoftware Practice & Experience, number 28(11), pages 1143–1183. Wiley, 1998.

[6] J. Barnes and P. Hut. A hierarchicalO(N logN) force-calculation algorithm.Nature, 324:446–449,

1986.

[7] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve memory allocation

performance. InProceedings of the 1993 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 187–196, Albuquerque, New Mexico, June 1993.

[8] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder. Achieving extensibility through

93

product-lines and domain-specific languages: A case study. InProceedings of the International Con-

ference on Software Reuse, Vienna, Austria, 2000.

[9] bCandid.com, Inc.http://www.bcandid.com.

[10] William S. Beebee and Martin C. Rinard. An implementation of scoped memory for real-time java. In

EMSOFT, pages 289–305, 2001.

[11] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A scalable

memory allocator for multithreaded applications. InInternational Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-IX), pages 117–128, Cambridge, MA,

November 2000.

[12] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-performance mem-

ory allocators. InProceedings of the 2001 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), Snowbird, Utah, June 2001.

[13] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsidering custom memory allo-

cation. InProceedings of the Conference on Object-Oriented Programming: Systems, Languages, and

Applications (OOPSLA) 2002, Seattle, Washington, November 2002.

[14] B. Bigler, S. Allan, and R. Oldehoeft. Parallel dynamic storage allocation.International Conference

on Parallel Processing, pages 272–275, 1985.

[15] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work steal-

ing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS),

pages 356–368, Santa Fe, New Mexico, November 1994.

[16] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and Mark Turnbull.The

Real-Time Specification for Java. Addison-Wesley, 2000.

[17] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Meyrowitz, editor,Proceedings

of the Conference on Object-Oriented Programming: Systems, Languages, and Applications (OOP-

94

SLA) / Proceedings of the European Conference on Object-Oriented Programming (ECOOP), pages

303–311, Ottawa, Canada, 1990. ACM Press.

[18] Dov Bulka and David Mayhew.Efficient C++. Addison-Wesley, 2001.

[19] Richard Cardone and Calvin Lin. Comparing frameworks and layered refinement. InProceedings of

the 23rd International Conference on Software Engineering (ICSE), May 2001.

[20] Trishul Chilimbi. Efficient representations and abstractions for quantifying and exploiting data ref-

erence locality. InProceedings of the 2001 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), Snowbird, Utah, June 2001.

[21] Coyote Systems, Inc.http://www.coyotesystems.com.

[22] Carla Schlatter Ellis and Thomas J. Olson. Algorithms for parallel memory allocation.International

Journal of Parallel Programming, 17(4):303–345, 1988.

[23] Margaret A. Ellis and Bjarne Stroustrop.The Annotated C++ Reference Manual. Addison-Wesley,

1990.

[24] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage collector for virtual memory computer

systems.Communications of the ACM, 12(11):611–612, November 1969.

[25] Robert P. Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David Tarditi. Marmot: an

optimizing compiler for java.Software - Practice and Experience, 30(3):199–232, 2000.

[26] Boris Fomitchev. STLport.http://www.stlport.org/.

[27] Christopher W. Fraser and David R. Hanson.A Retargetable C Compiler: Design and Implementation.

Addison-Wesley, 1995.

[28] Free Software Foundation. GCC Home Page.http://gcc.gnu.org/.

95

[29] David Gay and Alex Aiken. Memory management with explicit regions. InProceedings of the 1998

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages

313 – 323, Montreal, Canada, June 1998.

[30] David Gay and Alex Aiken. Language support for regions. InProceedings of the 2001 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pages 70 – 80, Snowbird,

Utah, June 2001.

[31] Wolfram Gloger. Dynamic memory allocator implementations in Linux system libraries.

http://www.dent.med.uni-muenchen.de/˜ wmglo/malloc-slides.html.

[32] A. Gottlieb and J. Wilson. Using the buddy system for concurrent memory allocation. Technical

Report System Software Note 6, Courant Institute, 1981.

[33] A. Gottlieb and J. Wilson. Parallelizing the usual buddy algorithm. Technical Report System Software

Note 37, Courant Institute, 1982.

[34] Dirk Grunwald and Benjamin Zorn. CustoMalloc: Efficient synthesized memory allocators. InSoft-

ware Practice & Experience, number 23(8), pages 851–869. Wiley, August 1993.

[35] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache locality of memory

allocation. InProceedings of the 1993 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pages 177–186, New York, NY, June 1993.

[36] Sam Guyer, Daniel A. Jiḿenez, and Calvin Lin. The C-Breeze compiler infrastructure. Technical

Report UTCS-TR01-43, The University of Texas at Austin, November 2001.

[37] David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes. InSoftware

Practice & Experience, number 20(1), pages 5–12. Wiley, January 1990.

[38] David R. Hanson.C Interfaces and Implementation. Addison-Wesley, 1997.

[39] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. InProceed-

ings of the Winter USENIX 1992 Conference, pages 125–136, December 1992.

96

[40] Arun K. Iyengar. Dynamic Storage Allocation on a Multiprocessor. PhD thesis, MIT, 1992. MIT

Laboratory for Computer Science Technical Report MIT/LCS/TR–560.

[41] Arun K. Iyengar. Parallel dynamic storage allocation algorithms. InFifth IEEE Symposium on Parallel

and Distributed Processing. IEEE Press, 1993.

[42] T.E. Jeremiassen and S.J. Eggers. Reducing false sharing on shared memory multiprocessors through

compile time data transformations. InACM Symposium on Principles and Practice of Parallel Pro-

gramming (PPOPP), pages 179–188, July 1995.

[43] T. Johnson. A concurrent fast-fits memory manager. Technical Report TR91-009, University of

Florida, Department of CIS, 1991.

[44] Theodore Johnson and Tim Davis. Space efficient parallel buddy memory management. Technical

Report TR92-008, University of Florida, Department of CIS, 1992.

[45] Mark S. Johnstone.Non-Compacting Memory Allocation and Real-Time Garbage Collection. PhD

thesis, University of Texas at Austin, December 1997.

[46] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem: Solved? InInternational

Symposium on Memory Management, Vancouver, B.C., Canada, 1998.

[47] K. Kennedy and K. S. McKinley. Optimizing for parallelism and data locality. InProceedings of

the Sixth International Conference on Supercomputing, pages 323–334, Distributed Computing, July

1992.

[48] Murali R. Krishnan. Heap: Pleasures and pains. Microsoft Developer Newsletter, February 1999.

[49] Per-Åke Larson and Murali Krishnan. Memory allocation for long-running server applications. In

International Symposium on Memory Management, Vancouver, B.C., Canada, 1998.

[50] Doug Lea. A memory allocator.http://g.oswego.edu/dl/html/malloc.html.

[51] Bil Lewis. comp.programming.threads FAQ. http://www.lambdacs.com/newsgroup/FAQ.html.

97

[52] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation on shared-memory mul-

tiprocessor. In USENIX Association, editor,Proceedings of the Winter 1993 USENIX Conference:

January 25–29, 1993, San Diego, California, USA, pages 295–305, Berkeley, CA, USA, Winter 1993.

USENIX.

[53] Scott Meyers.Effective C++. Addison-Wesley, 1996.

[54] Scott Meyers.More Effective C++. Addison-Wesley, 1997.

[55] MicroQuill, Inc. http://www.microquill.com.

[56] Bartosz Milewski. C++ In Action: Industrial-Strength Programming Techniques. Addison-Wesley,

2001.

[57] Girija J. Narlikar and Guy E. Blelloch. Space-efficient scheduling of nested parallelism.ACM Trans-

actions on Programming Languages and Systems, 21(1):138–173, January 1999.

[58] Lutz Prechelt. An empirical comparison of seven programming languages.IEEE Computer,

33(10):23–29, 2000.

[59] Jeffrey Richter.Advanced Windows: the developer’s guide to the Win32 API for Windows NT 3.5 and

Windows 95. Microsoft Press.

[60] J. M. Robson. Worst case fragmentation of first fit and best fit storage allocation strategies.ACM

Computer Journal, 20(3):242–244, August 1977.

[61] D. T. Ross. The AED free storage package.Communications of the ACM, 10(8):481–492, 1967.

[62] Matthew L. Seidl and Benjamin G. Zorn. Segregating heap objects by reference behavior and lifetime.

In International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VIII), pages 12–23, October 1998.

[63] SGI. The Standard Template Library for C++: Allocators.http://www.sgi.com/tech/stl/Allocators.html.

98

[64] Yannis Smaragdakis and Don Batory. Implementing layered design with mixin layers. In Eric Jul, ed-

itor, Proceedings of the European Conference on Object-Oriented Programming (ECOOP ’98), pages

550–570, Brussels, Belgium, 1998.

[65] Standard Performance Evaluation Corporation. SPEC2000.http://www.spec.org.

[66] Standard Performance Evaluation Corporation. SPEC95.http://www.spec.org.

[67] Standard Performance Evaluation Corporation. SPECweb99.http://www.spec.org/osg/web99/.

[68] Darko Stefanovíc. Properties of Age-Based Automatic Memory Reclamation Algorithms. PhD thesis,

Department of Computer Science, University of Massachusetts, Amherst, Massachusetts, December

1998.

[69] D. Stein and D. Shah. Implementing lightweight threads. InProceedings of the 1992 USENIX Summer

Conference, pages 1–9, 1992.

[70] H. Stone. Parallel memory allocation using the FETCH-AND-ADD instruction. Technical Report RC

9674, IBM T. J. Watson Research Center, November 1982.

[71] Bjarne Stroustrup.The C++ Programming Language, Second Edition. (Addison-Wesley), 1991.

[72] Suzanne Pierce. PPRC: Microsoft’s Tool Box.http://research.microsoft.com/research/pprc/mstoolbox.asp.

[73] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.Information and Computa-

tion, 132(2):109–176, 1997.

[74] Josep Torrellas, Monica S. Lam, and John L. Hennessy. False sharing and spatial locality in multipro-

cessor caches.IEEE Transactions on Computers, 43(6):651–663, 1994.

[75] Michael VanHilst and David Notkin. Using role components to implement collaboration-based de-

signs. InProceedings of OOPSLA 1996, pages 359–369, October 1996.

99

[76] Voon-Yee Vee and Wen-Jing Hsu. A scalable and efficient storage allocator on shared-memory mul-

tiprocessors. InInternational Symposium on Parallel Architectures, Algorithms, and Networks (I-

SPAN’99), pages 230–235, Fremantle, Western Australia, June 1999.

[77] Ronald Veldema, Thilo Kielmann, and Henri E. Bal. Optimizing java-specific overheads: Java at the

speed of c? InHPCN Europe, pages 685–692, 2001.

[78] Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator. InSoftware Practice & Experi-

ence, number 26, pages 1–18. Wiley, 1996.

[79] Olivier Wall. Private communication. February 2001.

[80] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A survey and

critical review.Lecture Notes in Computer Science, 986, 1995.

[81] Paul R. Wilson. Uniprocessor garbage collection techniques. InProc. Int. Workshop on Memory

Management, number 637, Saint-Malo (France), 1992. Springer-Verlag.

[82] Benjamin G. Zorn. The measured cost of conservative garbage collection.Software Practice and

Experience, 23(7):733–756, 1993.

100

Vita

Emery Berger was born in New York City to George and Sharon Berger, and has two younger brothers,

Ryan and Doug. He grew up in Florida and received a B.S. in Computer Science from the University of

Miami. He received a Master’s degree in Computer Sciences from the University of Texas at Austin in 1991.

He and his wife Elayne then taught at the Benjamin Franklin International School in Barcelona, Spain for

two years. He returned to the University of Texas to pursue a Ph.D. and spent two summers as a research

intern at Microsoft Research in Redmond, Washington. In September, he will be joining the faculty of the

Department of Computer Science at the University of Massachusetts, Amherst.

Emery has been married to his lovely wife Elayne Robin Shields since 1989, and has two delightful

children, Sophia Alexandra Berger (born in 1997), and Benjamin Charles Berger (born in 1999).

Permanent Address: 1802 Burbank St.

Austin, TX 78757

USA

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the American Mathematical
Society. The macros used in formatting this dissertation were written by Dinesh Das, Department of Computer Sciences, The
University of Texas at Austin, and extended by Bert Kay and James A. Bednar.

101

