
On Reduing TLB Misses in Matrix MultipliationFLAME Working Note #9Kazushige GotoRobert van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712fkgoto,rvdgg�s.utexas.eduNovember 1, 2002AbstratDuring the last deade, a number of projets have pursued the high-performane implemen-tation of matrix multipliation. Typially, these projets organize the omputation around an\inner kernel," C = ATB +C, that keeps one of the operands in the L1 ahe, while streamingparts of the other operands through that ahe. Variants inlude approahes that extend thispriniple to multiple levels of ahe or that apply the same priniple to the L2 ahe whileessentially ignoring the L1 ahe. The intent is to optimally amortize the ost of moving databetween memory layers.The approah proposed in this paper is fundamentally di�erent. We start by observing thatfor urrent generation arhitetures, muh of the overhead omes from Translation Look-asideBu�er (TLB) table misses. While the importane of ahes is also taken into onsideration, it isthe minimization of suh TLB misses that drives the approah. The result is a novel approahthat ahieves highly ompetitive performane on a broad spetrum of urrent high-performanearhitetures.1 IntrodutionIt is somewhat surprising that after deades of researh into the optimal implementation of matrixmultipliation, papers on the subjet still appear with great regularity. Matrix multipliationontinues to be of importane beause a broad range of high-performane pakages that supportdiretly or indiretly sienti� omputation depend, to a large degree, on the performane of thematrix multipliation kernel [3, 13, 28, 5℄. New ontributions ontinue to be made beause thegap between the performane of the CPU and the bandwidth to the memory ontinues to widenand new arhitetural features are introdued into omputers, whih require new tehniques orre�nements of old tehniques, for matrix multipliation.Two observations are fundamental to our approah:1



� The ratio between the rate at whih oating point omputation an be performed by theoating point unit(s) and the rate at whih oating point numbers an be streamed from theL2 ahe is typially relatively small.� Thus, it is the ost for starting the streaming of data from the L2 ahe that represents asigni�ant overhead.� A large omponent of the startup ost of the streaming of data ames from TranslationLook-aside Bu�er (TLB) misses sine these inherently stall the CPU.By taking these observations into aount, the ontribution of this paper is that by asting thematrix multipliation in terms of an inner kernel that performs the operation C = ÂTB+C, whereÂ �lls most of memory addressable by the TLB table and C and B are omputed a few olumnsat a time,� TLB misses an be largely avoided,� the ost of the TLB misses that do our an be amortized of a large amount of omputation,and� the ost of transposing submatries so that the overall matrix multipliation an be ast intothis inner kernel is amortized over a large amount of omputation.In pratie, these observations lead to implementations that attain extremely high performane.It an be argued that the exat nature of the new ontribution of this paper is hard to identify.Muh of what we present has been inorporated in one form or another in other implementationsof matrix multipliation. It an also be argued that it is already known as street-wisdom and/oris inorporated in proprietary libraries that keep the details of the implementation a trade-seret.We would like to think that at the very least this paper exposes some of the issues expliitly andthereby makes a ontribution the body of knowledge in this area. The fat that the method leadsto onsistently higher performane than ahieved by ompeting implementations provides somesupport for this view.The struture of this paper is as follows: In Setion 2 we disuss researh related to the high-performane implementation of matrix multipliation. Basi arhitetural onsiderations are givenin Setion 3. Observations that show the importane of the TLB are given in Setion 4. Theseobservations are translated to a pratial implementation in Setion 5. In Setion 6 we reportperformane results from implementations on various arhitetures. Conluding remarks follow inthe �nal setion.2 Related WorkThe addition of a ahe memory to vetor arhitetures required library developers to reformulatelinear algebra libraries that had been written in terms of vetor operations.. To obtain high per-formane on these new mahines, both vetor operations and bloking to take advantage of theahe was neessary. IBM's ESSL library inluded blok-based vetor algorithms for a number of2



linear equation solvers that were part of LINPACK [7℄, inluding LU and Cholesky based solversfor dense and banded matries [21℄. These implementations were based on highly optimized linearalgebra routines that performed bloking together with an inner kernel that vetorized the linearalgebra operation on bloks that �t in the ahe memory.It wasn't until the late 1980s that, with the introdution of the Cray 2, whih also ombinedvetor proessing with a ahe memory, there was a strong impetus in the linear algebra libraryommunity to standardize a new interfae to a set of matrix-matrix operations, the level-3 BLAS [8℄.The primary purpose of this new set of routines was to support newly proposed libraries suh asLAPACK [6, 2, 3℄. By asting the bulk of omputation in terms of matrix-matrix operations,whih perform O(n3) operations on O(n2) data, bloks of data ould be moved in and out of thedata ahe while amortizing the ost of this movement over a large number of omputations. Thesubstantial task of providing all levels of BLAS was pushed onto the vendors. The reward was thatnumerially stable libraries like LAPACK then provided high-performane aross a large variety ofarhitetures.By the early 1990s, it was reognized that as arhitetures were beoming inreasingly omplexthe task of providing a omplete set of (espeially level-3) BLAS was beoming a substantial burdenon the vendors. Fortunately, it was shown that high-performane level-3 BLAS ould be oded to beportable by asting these operations in terms of matrix multipliation [23, 16, 24, 13℄. This reduedthe ost of implementing the level-3 BLAS to the ost of implementing matrix multipliation.Next, it was reognized that by ombining a bloking strategy with a arefully rafted inner kernel,whih performs matrix multipliation with bloks that are roughly of a size so that they �t inthe ahe memory, the ost of implementing the level-3 BLAS ould be redued to the ost ofimplementing this inner kernel. At IBM the idea of designing the arhiteture for this approah tooding the matrix multiply and other algorithms, referred to as Algorithms and Arhitetures, wasboth expounded and applied to the development of the IBM POWER2 arhiteture in onjuntionwith the ESSL library for that arhiteture [1℄. By also designing ompilers spei�ally for thisombination of algorithms and arhiteture, the implementations of the BLAS ould be oded inFORTRAN rather than in assembly ode.By the late 1990s arhitetures with multiple levels of ahe memory were being introdued.With it ame a reognition that the implementation of matrix multipliation for a given arhiteturehad beome, and would remain, a formidable task [12℄. Based on the work at IBM that oded suhoperations in FORTRAN, the PHiPAC projet at Berkeley pursued the portable implementationof matrix multipliation in a high-level language, C [4℄. The idea behind that projet was toautomatially generate ode so that in ombination with an exhaustive searh, the optimal blokingof the operands and optimal ordering of the loops ould be disovered. The di�erent blokingshemes were intended to automatially detet optimal blokings for the di�erent ahes while thedi�erent loop orderings would automatially detet how the movement of bloks between memorylayers ould be best amortized over omputation. In addition, the inner kernel was automatiallygenerated so that the number of registers and depth of pipelines ould be deteted. At the expenseof an optimization proess that often took days or even weeks to omplete, remarkable performanewas observed.The ATLAS [29℄ projet at the University of Tennessee re�ned the tehniques developed as part3



fast
slow?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 aheL2 ahe...RAMdisk

expensive
heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 aheTLB addr.L2 ahe...RAMdiskOld Model New ModelFigure 1: The hierarhial memories viewed as a pyramid. Under the new model, the memory thatis addressable by the TLB is expliitly exposed.of the PHiPAC projet by onstraining the number of di�erent implementations that are generatedas part of the searh proess. As a result, the optimization proess ompletes more quikly, typiallyin a matter of hours.In a reent paper [14℄ a family of algorithms based on a model of the memory hierarhy wasintrodued. The model predits, and preliminary experiments with an implementation for the IntelPentium (R) III proessor show, that at a given level of the memory the bloking of the matriesand order of the loops is ditated by the shapes of the operands together with the size of memorylayer one level above (in the pyramid).Reently, algorithms that automatially blok for ahes by formulating the algorithms to bereursive have reeived a great deal of attention for matrix multipliation and many other importantomputations suh as matrix fatorizations [11, 17, 29, 22, 15, 26, 19℄. Others have foused on(also) applying \reursion" to produe new data formats for matries, instead of the traditionalFORTRAN and C data strutures [27℄. Our view is that reursion is very powerful and exellentresults are obtainable. The tehniques presented in this paper are in some sense orthogonal tothose addressed by reursion in data storage and algorithm implementation.3 Basi Arhitetural ConsiderationsIn this setion we present, at a high level of abstration, some of the arhitetural features of atypial modern miroproessor.The memory hierarhy of a modern miroproessor is often viewed as the pyramid given inFig. 1. At the top of the pyramid, there are the proessor registers, with extremely fast aess. Atthe bottom, there are disks and even slower media. As one goes down the pyramid, the amount ofmemory inreases as does the time required to aess that that memory, while the �nanial ost ofmemory dereases. 4



A seond arhitetural onsideration relates to the page management system. A typial modernarhiteture uses virtual memory so that the size of usable memory is not onstrained by the sizeof the physial memory. Memory is partitioned in pages of some (often �xed) presribed size. Atable, referred to as the page table maps virtual addresses to physial addresses and keeps trakof whether as page is in memory or on disk. The problem is that this table itself ould be large(many Mbytes) whih hampers speedy translation of virtual addresses to physial addresses. Tooverome this, a smaller table, the Translation Look-aside Bu�er (TLB), that stores informationabout the most reently used pages, is kept. Whenever a virtual address is found in the TLB, thetranslation is fast. Whenever it is not found (a TLB miss ours), the page table is onsulted andthe resulting entry is moved from the page table to the TLB.The most signi�ant di�erene between a ahe miss and a TLB miss is that a ahe miss doesnot neessarily stall the CPU. A small number of ahe misses an be tolerated by using algorithmiprefething tehniques as long as the data an be read fast enough from the memory where it doesexist and arrives at the CPU by the time it is needed for omputation. A TLB miss, by ontrast,auses the CPU to stall until the TLB has been updated with the new address. In other words,prefething an mask a ahe miss but not a TLB miss.4 Emphasizing the TLBConsider the multipliation C = AB + C. PartitionC = 0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA(1)where the partitionings are onformal so thatCij = KXp=1AipBpj + Cij :The following loop ordering will ompute the multipliation:Algorithm 1for i = 1 :Mfor p = 1 : Kfor j = 1 : NCij = AipBpj + CijendforendforendforA typial approah to optimizing matrix multipliation starts by writing an inner kernel toompute Cij = AipBpj + Cij . This approah has the property that the CPU attains near-optimal5



performane when Aip remains in the L1 ahe and elements of Cij and Bpj are streamed for a lowerlevel in the memory pyramid. The dimensions of Aip are optimized so that this inner kernel attainsthe best performane. Finally, Some loop is reated to ompute all submatries of C. Beyond thisbasi approah, there are some options. It is often bene�ial, espeially if Aip is embedded in amatrix with a large leading dimension, to pak it into ontiguous memory so that TLB misses areredued. Also, it is often bene�ial to transpose Aip so that aesses to memory are ontiguouswhen inner-produts of olumns of ATip and Bpj are omputed to update elements of Cij .Let us present Algorithm 1 asAlgorithm 2for i = 1 :Mfor p = 1 : K� Ci1 � � � CiN � = Aip � Bp1 � � � BpN �+ � Ci1 � � � CiN �endforendforLet us make the following assumptions and observations. Notie that we do not prolaim theseassumptions and observations to reet the absolute truth. They will provide a point of departurefor disussion.1. If we an optimize the individual omputation� Ci1 � � � CiN � = Aip � Bp1 � � � BpN �+ � Ci1 � � � CiN � ;(2)we are in good shape.2. In order to optimize (2) it is bene�ial to transpose Â = ATip and ompute� Ci1 � � � CiN � = ÂT � Bp1 � � � BpN �+ � Ci1 � � � CiN �instead. This observation omes from the fat that this allows inner produts of olumns ofAip and Bpj to be omputed while aessing memory ontiguously. It also prevents severethrashing of the L1 ahe.3. It is important to be able to omplete a loop through all entries of Â without reating a majorbubble in the stream of data and omputation. One way to satisfy this assumption is to storeÂ ontiguously while ensuring that aessing Â does not reate a TLB miss.4. A prominent overhead omes from the ost of aessing Cij and Bpj the �rst time as partof the omputation Cij = ÂTBpj + Cij . We will assume that this ost inludes a startup(lateny) ost as well as a ost proportional to the size of Bpj. A large part of the latenyost lies with the ost of the TLB misses assoiated with the �rst time that Cij and Bpj areaessed. By piking Bpj and Cij to have a relatively large row dimension, this startup ostis amortized over many elements of Cij and Bpj. However, it is important to ensure that Bpj�ts in the L1 ahe so that the streaming of data from6



5. If data is streamed so that the CPU does not stall, a seond overhead that redues performaneomes from transposing (or paking) Aip into Â .The onlusion is that Â should be relatively square and �ll most of the L2 ahe. SubmatriesCij and Bpj should be relatively narrow sine this means fewer entries of the TLB are devoted tothose submatries.5 A Pratial ApproahLet us examine how the above onsiderations a�et the implementation of matrix multipliationon a urrent generation miroproessor like the Intel Pentium (R) 4.We observe that on suh arhiteture the bandwidth between the L2 ahe and the registers issuh that in the time it takes to load a oating point number from the L2 ahe into a register,only a few oating point operations (often only a single one) an be performed one a pipeline hasbeen established. Let us, for the sake of argument, assume that one pipelines are �lled, the ratiobetween the ost of suh a load and omputation is atually one. Now, provided pipelines an bekept full, the following approah will attain high performane:1. Partition C, A, and B as in (1), but pik Cij and Bpj to be omprised of only a single olumn:C = 0BB� 11 � � � 1n... ...M1 � � � Mn 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� b11 � � � b1n... ...bK1 � � � bKn 1CCA :(3)Notie that elements of ij and bpj will be ontiguous in memory.2. Consider the omputation� i1 � � � in � = Aip � bp1 � � � bpn �+ � i1 � � � in � :Let us implement this by �rst transposing Â = ATip and then omputing� i1 � � � in � = ÂT � bp1 � � � bpn �+ � i1 � � � in � :(4)3. If(a) Â is paked to be in ontiguous memory,(b) The transposition of Aip, Â = ATip, is arefully ordered,() The �rst element of Â is aligned to a page,(d) Â and, for all j, ij , i(j+1), bpj, and bp(j+1) together do not overow the TLB table,(e) Â �ts in the L2 ahe, and(f) (4) is omputed by the loop 7



for j = 1 : nij = ÂT bpj + ijendforthen, in priniple,� Â will be loaded into the L2 ahe, and the TLB, during the transposition Â = ATip.� One the pages orresponding to Â have been loaded into the L2 ahe and TLB theywill remain there during the duration of the omputation in (4).� The streaming of the data should allow the omputation of eah individual ÂT bpj + ijto ahieve optimal performane.In pratie, a few modi�ation may have be made to the approah. For example, some TLBentries may be used by data assoiated with indexing or the ode being exeuted.Note 1 If the number of oating point operations that an be performed during the loading of aoating point operation (one streaming is established) is greater than two, the bandwidth betweenthe L2 ahe and the registers beomes a bottlenek. Let us assume the ratio equals the integer R.Then the above sheme must be modi�ed so that bpj and ij onsist of R olumns. In this ase,for every element of Â that is loaded, 2 � R ops an be performed one that element reahes theregisters. Notie that as R inreases, the number of TLB entries devoted to Bpj and Cij inreases,whih means that the size of Â may have to be redued. More spei�ally, the R should be hosenso that R � Rate in ops per yle2� Bandwidth in double words per yle between L2 and registers(5)Note 2 The number of registers that an be used for omputation and prefething play an importantrole in the proposed sheme. If there aren't enough registers to support pipeline streaming the shemebreaks down.Note 3 The following steps an be used to determine approximations for the various parameters:1. Determine the size of the TLB table, T .2. Determine R of Note 1.3. The number of TLB entries used for Â should not exeed T � 4R. The reason for this is thatgenerally, Cij and Bpj have, together, 2R olumns, whih typially require 2R TLB entries(provided a olumn isn't split between two pages). In order to not orrupt any TLB entriesdevoted to Â another 2R entries are required for when Ci(j+1) and Bp(j+1) are �rst aessed.4. The size (footprint) of Â is now piked to not exeed T � 4R pages of memory.5. Under the onstraint given in Item 4, the row and olumn dimensions of Â are determinedexperimentally. 8


