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Abstract

During the last decade, a number of projects have pursued the high-performance implemen-
tation of matrix multiplication. Typically, these projects organize the computation around an
“inner kernel,” C'= AT B + C, that keeps one of the operands in the L1 cache, while streaming
parts of the other operands through that cache. Variants include approaches that extend this
principle to multiple levels of cache or that apply the same principle to the L2 cache while
essentially ignoring the L1 cache. The intent is to optimally amortize the cost of moving data
between memory layers.

The approach proposed in this paper is fundamentally different. We start by observing that
for current generation architectures, much of the overhead comes from Translation Look-aside
Buffer (TLB) table misses. While the importance of caches is also taken into consideration, it is
the minimization of such TLB misses that drives the approach. The result is a novel approach
that achieves highly competitive performance on a broad spectrum of current high-performance
architectures.

1 Introduction

It is somewhat surprising that after decades of research into the optimal implementation of matrix
multiplication, papers on the subject still appear with great regularity. Matrix multiplication
continues to be of importance because a broad range of high-performance packages that support
directly or indirectly scientific computation depend, to a large degree, on the performance of the
matrix multiplication kernel [3, 13, 28, 5]. New contributions continue to be made because the
gap between the performance of the CPU and the bandwidth to the memory continues to widen
and new architectural features are introduced into computers, which require new techniques or
refinements of old techniques, for matrix multiplication.

Two observations are fundamental to our approach:



e The ratio between the rate at which floating point computation can be performed by the
floating point unit(s) and the rate at which floating point numbers can be streamed from the
L2 cache is typically relatively small.

e Thus, it is the cost for starting the streaming of data from the L2 cache that represents a
significant overhead.

e A large component of the startup cost of the streaming of data cames from Translation
Look-aside Buffer (TLB) misses since these inherently stall the CPU.

By taking these observations into account, the contribution of this paper is that by casting the
matrix multiplication in terms of an inner kernel that performs the operation C = A" B+ C, where
A fills most of memory addressable by the TLB table and C' and B are computed a few columns
at a time,

e TLB misses can be largely avoided,

e the cost of the TLB misses that do occur can be amortized of a large amount of computation,
and

e the cost of transposing submatrices so that the overall matrix multiplication can be cast into
this inner kernel is amortized over a large amount of computation.

In practice, these observations lead to implementations that attain extremely high performance.

It can be argued that the exact nature of the new contribution of this paper is hard to identify.
Much of what we present has been incorporated in one form or another in other implementations
of matrix multiplication. It can also be argued that it is already known as street-wisdom and/or
is incorporated in proprietary libraries that keep the details of the implementation a trade-secret.
We would like to think that at the very least this paper exposes some of the issues explicitly and
thereby makes a contribution the body of knowledge in this area. The fact that the method leads
to consistently higher performance than achieved by competing implementations provides some
support for this view.

The structure of this paper is as follows: In Section 2 we discuss research related to the high-
performance implementation of matrix multiplication. Basic architectural considerations are given
in Section 3. Observations that show the importance of the TLB are given in Section 4. These
observations are translated to a practical implementation in Section 5. In Section 6 we report
performance results from implementations on various architectures. Concluding remarks follow in
the final section.

2 Related Work

The addition of a cache memory to vector architectures required library developers to reformulate
linear algebra libraries that had been written in terms of vector operations.. To obtain high per-
formance on these new machines, both vector operations and blocking to take advantage of the
cache was necessary. IBM’s ESSL library included block-based vector algorithms for a number of



linear equation solvers that were part of LINPACK [7], including LU and Cholesky based solvers
for dense and banded matrices [21]. These implementations were based on highly optimized linear
algebra routines that performed blocking together with an inner kernel that vectorized the linear
algebra operation on blocks that fit in the cache memory.

It wasn’t until the late 1980s that, with the introduction of the Cray 2, which also combined
vector processing with a cache memory, there was a strong impetus in the linear algebra library
community to standardize a new interface to a set of matrix-matrix operations, the level-3 BLAS [8].
The primary purpose of this new set of routines was to support newly proposed libraries such as
LAPACK [6, 2, 3]. By casting the bulk of computation in terms of matrix-matrix operations,
which perform O(n3) operations on O(n?) data, blocks of data could be moved in and out of the
data cache while amortizing the cost of this movement over a large number of computations. The
substantial task of providing all levels of BLAS was pushed onto the vendors. The reward was that
numerically stable libraries like LAPACK then provided high-performance across a large variety of
architectures.

By the early 1990s, it was recognized that as architectures were becoming increasingly complex
the task of providing a complete set of (especially level-3) BLAS was becoming a substantial burden
on the vendors. Fortunately, it was shown that high-performance level-3 BLAS could be coded to be
portable by casting these operations in terms of matrix multiplication [23, 16, 24, 13]. This reduced
the cost of implementing the level-3 BLAS to the cost of implementing matrix multiplication.
Next, it was recognized that by combining a blocking strategy with a carefully crafted inner kernel,
which performs matrix multiplication with blocks that are roughly of a size so that they fit in
the cache memory, the cost of implementing the level-3 BLAS could be reduced to the cost of
implementing this inner kernel. At IBM the idea of designing the architecture for this approach to
coding the matrix multiply and other algorithms, referred to as Algorithms and Architectures, was
both expounded and applied to the development of the IBM POWER2 architecture in conjunction
with the ESSL library for that architecture [1]. By also designing compilers specifically for this
combination of algorithms and architecture, the implementations of the BLAS could be coded in
FORTRAN rather than in assembly code.

By the late 1990s architectures with multiple levels of cache memory were being introduced.
With it came a recognition that the implementation of matrix multiplication for a given architecture
had become, and would remain, a formidable task [12]. Based on the work at IBM that coded such
operations in FORTRAN, the PHiPAC project at Berkeley pursued the portable implementation
of matrix multiplication in a high-level language, C [4]. The idea behind that project was to
automatically generate code so that in combination with an exhaustive search, the optimal blocking
of the operands and optimal ordering of the loops could be discovered. The different blocking
schemes were intended to automatically detect optimal blockings for the different caches while the
different loop orderings would automatically detect how the movement of blocks between memory
layers could be best amortized over computation. In addition, the inner kernel was automatically
generated so that the number of registers and depth of pipelines could be detected. At the expense
of an optimization process that often took days or even weeks to complete, remarkable performance
was observed.

The ATLAS [29] project at the University of Tennessee refined the techniques developed as part
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Figure 1: The hierarchical memories viewed as a pyramid. Under the new model, the memory that
is addressable by the TLB is explicitly exposed.

of the PHiPAC project by constraining the number of different implementations that are generated
as part of the search process. As a result, the optimization process completes more quickly, typically
in a matter of hours.

In a recent paper [14] a family of algorithms based on a model of the memory hierarchy was
introduced. The model predicts, and preliminary experiments with an implementation for the Intel
Pentium (R) IIT processor show, that at a given level of the memory the blocking of the matrices
and order of the loops is dictated by the shapes of the operands together with the size of memory
layer one level above (in the pyramid).

Recently, algorithms that automatically block for caches by formulating the algorithms to be
recursive have received a great deal of attention for matrix multiplication and many other important
computations such as matrix factorizations [11, 17, 29, 22, 15, 26, 19]. Others have focused on
(also) applying “recursion” to produce new data formats for matrices, instead of the traditional
FORTRAN and C data structures [27]. Our view is that recursion is very powerful and excellent
results are obtainable. The techniques presented in this paper are in some sense orthogonal to
those addressed by recursion in data storage and algorithm implementation.

3 Basic Architectural Considerations

In this section we present, at a high level of abstraction, some of the architectural features of a
typical modern microprocessor.

The memory hierarchy of a modern microprocessor is often viewed as the pyramid given in
Fig. 1. At the top of the pyramid, there are the processor registers, with extremely fast access. At
the bottom, there are disks and even slower media. As one goes down the pyramid, the amount of
memory increases as does the time required to access that that memory, while the financial cost of
memory decreases.



A second architectural consideration relates to the page management system. A typical modern
architecture uses virtual memory so that the size of usable memory is not constrained by the size
of the physical memory. Memory is partitioned in pages of some (often fixed) prescribed size. A
table, referred to as the page table maps virtual addresses to physical addresses and keeps track
of whether as page is in memory or on disk. The problem is that this table itself could be large
(many Mbytes) which hampers speedy translation of virtual addresses to physical addresses. To
overcome this, a smaller table, the Translation Look-aside Buffer (TLB), that stores information
about the most recently used pages, is kept. Whenever a virtual address is found in the TLB, the
translation is fast. Whenever it is not found (a TLB miss occurs), the page table is consulted and
the resulting entry is moved from the page table to the TLB.

The most significant difference between a cache miss and a TLB miss is that a cache miss does
not necessarily stall the CPU. A small number of cache misses can be tolerated by using algorithmic
prefetching techniques as long as the data can be read fast enough from the memory where it does
exist and arrives at the CPU by the time it is needed for computation. A TLB miss, by contrast,
causes the CPU to stall until the TLB has been updated with the new address. In other words,
prefetching can mask a cache miss but not a TLB miss.

4 Emphasizing the TLB

Consider the multiplication C = AB + C. Partition

Cii |- | Cin A || Ak By |-+ | Bin
(1) C= : : VA= : : , and B = :

Cui | | Cun Aai |- | Ak Bri |-+ | Bkn

where the partitionings are conformal so that

K
Cz'j = Z Aipoj + Cij.
p=1

The following loop ordering will compute the multiplication:

Algorithm 1

fori=1:M
forp=1:K
forj=1:N
Cij = AipBypj + Cyj
endfor
endfor
endfor

A typical approach to optimizing matrix multiplication starts by writing an inner kernel to
compute C;; = A, Byj + C;j. This approach has the property that the CPU attains near-optimal



performance when A;, remains in the L1 cache and elements of C;; and B); are streamed for a lower
level in the memory pyramid. The dimensions of A;, are optimized so that this inner kernel attains
the best performance. Finally, Some loop is created to compute all submatrices of C. Beyond this
basic approach, there are some options. It is often beneficial, especially if A;, is embedded in a
matrix with a large leading dimension, to pack it into contiguous memory so that TLB misses are
reduced. Also, it is often beneficial to transpose A;, so that accesses to memory are contiguous
when inner-products of columns of Az;, and B,; are computed to update elements of Cj;.
Let us present Algorithm 1 as

Algorithm 2

fori=1: M
forp=1:K
(Cil""‘CiN):Aip(Bpl""‘BpN )+(Ci1""‘CiN)
endfor
endfor

Let us make the following assumptions and observations. Notice that we do not proclaim these
assumptions and observations to reflect the absolute truth. They will provide a point of departure
for discussion.

1. If we can optimize the individual computation

(2) (Cil""‘CiN):Aip(Bpl""‘BpN )‘i‘(cil""‘CiN )7
we are in good shape.

2. In order to optimize (2) it is beneficial to transpose A = Ag;, and compute

(Cil""‘CiN)=AT(Bp1""‘BpN)-i-(Cz'l""‘CiN)

instead. This observation comes from the fact that this allows inner products of columns of
Ajp and B,; to be computed while accessing memory contiguously. It also prevents severe
thrashing of the L1 cache.

3. It is important to be able to complete a loop through all entries of A without creating a major
bubble in the stream of data and computation. One way to satisfy this assumption is to store
A contiguously while ensuring that accessing A does not create a TLB miss.

4. A prominent overhead comes from the cost of accessing Cj; and Bp; the first time as part
of the computation Cj; = ATBpj + Cjj. We will assume that this cost includes a startup
(latency) cost as well as a cost proportional to the size of B,;. A large part of the latency
cost lies with the cost of the TLB misses associated with the first time that C;; and B,; are
accessed. By picking B,; and Cj; to have a relatively large row dimension, this startup cost
is amortized over many elements of Cj; and B,;. However, it is important to ensure that B);
fits in the L1 cache so that the streaming of data from



5. If data is streamed so that the CPU does not stall, a second overhead that reduces performance
comes from transposing (or packing) A4;, into A .

The conclusion is that A should be relatively square and fill most of the L2 cache. Submatrices
C;j and Bp; should be relatively narrow since this means fewer entries of the TLB are devoted to
those submatrices.

5 A Practical Approach

Let us examine how the above considerations affect the implementation of matrix multiplication
on a current generation microprocessor like the Intel Pentium (R) 4.

We observe that on such architecture the bandwidth between the L2 cache and the registers is
such that in the time it takes to load a floating point number from the L2 cache into a register,
only a few floating point operations (often only a single one) can be performed once a pipeline has
been established. Let us, for the sake of argument, assume that once pipelines are filled, the ratio
between the cost of such a load and computation is actually one. Now, provided pipelines can be
kept full, the following approach will attain high performance:

1. Partition C, A, and B as in (1), but pick Cj; and By, to be comprised of only a single column:
cr || an Ay || Ak bir |-+ | bin
@)= = A= : : , and B =

cvi | o0 | Cun Ayt |- | Auk b1 |-+ | bxn

Notice that elements of ¢;; and b,; will be contiguous in memory.

2. Consider the computation
(Cil ‘ ""Cin):Aip( bpr | -+ | bpn )+(Cil""‘cin )

Let us implement this by first transposing A= Ag; and then computing

(4) (Cil""‘cin )ZAT( byt | -+ | bpn )+(Cil |-+ | cin )
3. If
(a) A is packed to be in contiguous memory,
(b) The transposition of A, A= Az;,, is carefully ordered,
(c) The first element of A is aligned to a page,
(d) A and, for all j, Cij» Ci(j+1), Dpj, and by 11y together do not overflow the TLB table,
)
)



forj=1:n
cij = ATby; + cij
endfor

then, in principle,
o A will be loaded into the L2 cache, and the TLB, during the transposition A= Az;.

e Once the pages corresponding to A have been loaded into the L2 cache and TLB they
will remain there during the duration of the computation in (4).

e The streaming of the data should allow the computation of each individual Aprj + ¢ij
to achieve optimal performance.

In practice, a few modification may have be made to the approach. For example, some TLB
entries may be used by data associated with indexing or the code being executed.

Note 1 If the number of floating point operations that can be performed during the loading of a
floating point operation (once streaming is established) is greater than two, the bandwidth between
the L2 cache and the registers becomes a bottleneck. Let us assume the ratio equals the integer R.
Then the above scheme must be modified so that b,; and c;j consist of R columns. In this case,
for every element of A that is loaded, 2« R flops can be performed once that element reaches the
registers. Notice that as R increases, the number of TLB entries devoted to By,; and Cjj increases,

which means that the size of A may have to be reduced. More specifically, the R should be chosen
so that

5 R>
() — 2 X Bandwidth in double words per cycle between L2 and registers

Rate in flops per cycle

Note 2 The number of registers that can be used for computation and prefetching play an important

role in the proposed scheme. If there aren’t enough registers to support pipeline streaming the scheme
breaks down.

Note 3 The following steps can be used to determine approzimations for the various parameters:
1. Determine the size of the TLB table, T'.

2. Determine R of Note 1.

3. The number of TLB entries used for A should not exceed T — 4R. The reason for this is that
generally, Ci; and B,; have, together, 2R columns, which typically require 2R TLB entries
(provided a column isn’t split between two pages). In order to not corrupt any TLB entries
devoted to A another 2R entries are required for when Cijy1y and Byjy1) are first accessed.

4. The size (footprint) of A is now picked to not exceed T — 4R pages of memory.

5. Under the constraint given in Item 4, the row and column dimensions offi are determined
experimentally.



