
On Redu
ing TLB Misses in Matrix Multipli
ationFLAME Working Note #9Kazushige GotoRobert van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712fkgoto,rvdgg�
s.utexas.eduNovember 1, 2002Abstra
tDuring the last de
ade, a number of proje
ts have pursued the high-performan
e implemen-tation of matrix multipli
ation. Typi
ally, these proje
ts organize the 
omputation around an\inner kernel," C = ATB +C, that keeps one of the operands in the L1 
a
he, while streamingparts of the other operands through that 
a
he. Variants in
lude approa
hes that extend thisprin
iple to multiple levels of 
a
he or that apply the same prin
iple to the L2 
a
he whileessentially ignoring the L1 
a
he. The intent is to optimally amortize the 
ost of moving databetween memory layers.The approa
h proposed in this paper is fundamentally di�erent. We start by observing thatfor 
urrent generation ar
hite
tures, mu
h of the overhead 
omes from Translation Look-asideBu�er (TLB) table misses. While the importan
e of 
a
hes is also taken into 
onsideration, it isthe minimization of su
h TLB misses that drives the approa
h. The result is a novel approa
hthat a
hieves highly 
ompetitive performan
e on a broad spe
trum of 
urrent high-performan
ear
hite
tures.1 Introdu
tionIt is somewhat surprising that after de
ades of resear
h into the optimal implementation of matrixmultipli
ation, papers on the subje
t still appear with great regularity. Matrix multipli
ation
ontinues to be of importan
e be
ause a broad range of high-performan
e pa
kages that supportdire
tly or indire
tly s
ienti�
 
omputation depend, to a large degree, on the performan
e of thematrix multipli
ation kernel [3, 13, 28, 5℄. New 
ontributions 
ontinue to be made be
ause thegap between the performan
e of the CPU and the bandwidth to the memory 
ontinues to widenand new ar
hite
tural features are introdu
ed into 
omputers, whi
h require new te
hniques orre�nements of old te
hniques, for matrix multipli
ation.Two observations are fundamental to our approa
h:1



� The ratio between the rate at whi
h 
oating point 
omputation 
an be performed by the
oating point unit(s) and the rate at whi
h 
oating point numbers 
an be streamed from theL2 
a
he is typi
ally relatively small.� Thus, it is the 
ost for starting the streaming of data from the L2 
a
he that represents asigni�
ant overhead.� A large 
omponent of the startup 
ost of the streaming of data 
ames from TranslationLook-aside Bu�er (TLB) misses sin
e these inherently stall the CPU.By taking these observations into a

ount, the 
ontribution of this paper is that by 
asting thematrix multipli
ation in terms of an inner kernel that performs the operation C = ÂTB+C, whereÂ �lls most of memory addressable by the TLB table and C and B are 
omputed a few 
olumnsat a time,� TLB misses 
an be largely avoided,� the 
ost of the TLB misses that do o

ur 
an be amortized of a large amount of 
omputation,and� the 
ost of transposing submatri
es so that the overall matrix multipli
ation 
an be 
ast intothis inner kernel is amortized over a large amount of 
omputation.In pra
ti
e, these observations lead to implementations that attain extremely high performan
e.It 
an be argued that the exa
t nature of the new 
ontribution of this paper is hard to identify.Mu
h of what we present has been in
orporated in one form or another in other implementationsof matrix multipli
ation. It 
an also be argued that it is already known as street-wisdom and/oris in
orporated in proprietary libraries that keep the details of the implementation a trade-se
ret.We would like to think that at the very least this paper exposes some of the issues expli
itly andthereby makes a 
ontribution the body of knowledge in this area. The fa
t that the method leadsto 
onsistently higher performan
e than a
hieved by 
ompeting implementations provides somesupport for this view.The stru
ture of this paper is as follows: In Se
tion 2 we dis
uss resear
h related to the high-performan
e implementation of matrix multipli
ation. Basi
 ar
hite
tural 
onsiderations are givenin Se
tion 3. Observations that show the importan
e of the TLB are given in Se
tion 4. Theseobservations are translated to a pra
ti
al implementation in Se
tion 5. In Se
tion 6 we reportperforman
e results from implementations on various ar
hite
tures. Con
luding remarks follow inthe �nal se
tion.2 Related WorkThe addition of a 
a
he memory to ve
tor ar
hite
tures required library developers to reformulatelinear algebra libraries that had been written in terms of ve
tor operations.. To obtain high per-forman
e on these new ma
hines, both ve
tor operations and blo
king to take advantage of the
a
he was ne
essary. IBM's ESSL library in
luded blo
k-based ve
tor algorithms for a number of2



linear equation solvers that were part of LINPACK [7℄, in
luding LU and Cholesky based solversfor dense and banded matri
es [21℄. These implementations were based on highly optimized linearalgebra routines that performed blo
king together with an inner kernel that ve
torized the linearalgebra operation on blo
ks that �t in the 
a
he memory.It wasn't until the late 1980s that, with the introdu
tion of the Cray 2, whi
h also 
ombinedve
tor pro
essing with a 
a
he memory, there was a strong impetus in the linear algebra library
ommunity to standardize a new interfa
e to a set of matrix-matrix operations, the level-3 BLAS [8℄.The primary purpose of this new set of routines was to support newly proposed libraries su
h asLAPACK [6, 2, 3℄. By 
asting the bulk of 
omputation in terms of matrix-matrix operations,whi
h perform O(n3) operations on O(n2) data, blo
ks of data 
ould be moved in and out of thedata 
a
he while amortizing the 
ost of this movement over a large number of 
omputations. Thesubstantial task of providing all levels of BLAS was pushed onto the vendors. The reward was thatnumeri
ally stable libraries like LAPACK then provided high-performan
e a
ross a large variety ofar
hite
tures.By the early 1990s, it was re
ognized that as ar
hite
tures were be
oming in
reasingly 
omplexthe task of providing a 
omplete set of (espe
ially level-3) BLAS was be
oming a substantial burdenon the vendors. Fortunately, it was shown that high-performan
e level-3 BLAS 
ould be 
oded to beportable by 
asting these operations in terms of matrix multipli
ation [23, 16, 24, 13℄. This redu
edthe 
ost of implementing the level-3 BLAS to the 
ost of implementing matrix multipli
ation.Next, it was re
ognized that by 
ombining a blo
king strategy with a 
arefully 
rafted inner kernel,whi
h performs matrix multipli
ation with blo
ks that are roughly of a size so that they �t inthe 
a
he memory, the 
ost of implementing the level-3 BLAS 
ould be redu
ed to the 
ost ofimplementing this inner kernel. At IBM the idea of designing the ar
hite
ture for this approa
h to
oding the matrix multiply and other algorithms, referred to as Algorithms and Ar
hite
tures, wasboth expounded and applied to the development of the IBM POWER2 ar
hite
ture in 
onjun
tionwith the ESSL library for that ar
hite
ture [1℄. By also designing 
ompilers spe
i�
ally for this
ombination of algorithms and ar
hite
ture, the implementations of the BLAS 
ould be 
oded inFORTRAN rather than in assembly 
ode.By the late 1990s ar
hite
tures with multiple levels of 
a
he memory were being introdu
ed.With it 
ame a re
ognition that the implementation of matrix multipli
ation for a given ar
hite
turehad be
ome, and would remain, a formidable task [12℄. Based on the work at IBM that 
oded su
hoperations in FORTRAN, the PHiPAC proje
t at Berkeley pursued the portable implementationof matrix multipli
ation in a high-level language, C [4℄. The idea behind that proje
t was toautomati
ally generate 
ode so that in 
ombination with an exhaustive sear
h, the optimal blo
kingof the operands and optimal ordering of the loops 
ould be dis
overed. The di�erent blo
kings
hemes were intended to automati
ally dete
t optimal blo
kings for the di�erent 
a
hes while thedi�erent loop orderings would automati
ally dete
t how the movement of blo
ks between memorylayers 
ould be best amortized over 
omputation. In addition, the inner kernel was automati
allygenerated so that the number of registers and depth of pipelines 
ould be dete
ted. At the expenseof an optimization pro
ess that often took days or even weeks to 
omplete, remarkable performan
ewas observed.The ATLAS [29℄ proje
t at the University of Tennessee re�ned the te
hniques developed as part3



fast
slow?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 
a
heL2 
a
he...RAMdisk

expensive

heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 
a
heTLB addr.L2 
a
he...RAMdiskOld Model New ModelFigure 1: The hierar
hi
al memories viewed as a pyramid. Under the new model, the memory thatis addressable by the TLB is expli
itly exposed.of the PHiPAC proje
t by 
onstraining the number of di�erent implementations that are generatedas part of the sear
h pro
ess. As a result, the optimization pro
ess 
ompletes more qui
kly, typi
allyin a matter of hours.In a re
ent paper [14℄ a family of algorithms based on a model of the memory hierar
hy wasintrodu
ed. The model predi
ts, and preliminary experiments with an implementation for the IntelPentium (R) III pro
essor show, that at a given level of the memory the blo
king of the matri
esand order of the loops is di
tated by the shapes of the operands together with the size of memorylayer one level above (in the pyramid).Re
ently, algorithms that automati
ally blo
k for 
a
hes by formulating the algorithms to bere
ursive have re
eived a great deal of attention for matrix multipli
ation and many other important
omputations su
h as matrix fa
torizations [11, 17, 29, 22, 15, 26, 19℄. Others have fo
used on(also) applying \re
ursion" to produ
e new data formats for matri
es, instead of the traditionalFORTRAN and C data stru
tures [27℄. Our view is that re
ursion is very powerful and ex
ellentresults are obtainable. The te
hniques presented in this paper are in some sense orthogonal tothose addressed by re
ursion in data storage and algorithm implementation.3 Basi
 Ar
hite
tural ConsiderationsIn this se
tion we present, at a high level of abstra
tion, some of the ar
hite
tural features of atypi
al modern mi
ropro
essor.The memory hierar
hy of a modern mi
ropro
essor is often viewed as the pyramid given inFig. 1. At the top of the pyramid, there are the pro
essor registers, with extremely fast a

ess. Atthe bottom, there are disks and even slower media. As one goes down the pyramid, the amount ofmemory in
reases as does the time required to a

ess that that memory, while the �nan
ial 
ost ofmemory de
reases. 4



A se
ond ar
hite
tural 
onsideration relates to the page management system. A typi
al modernar
hite
ture uses virtual memory so that the size of usable memory is not 
onstrained by the sizeof the physi
al memory. Memory is partitioned in pages of some (often �xed) pres
ribed size. Atable, referred to as the page table maps virtual addresses to physi
al addresses and keeps tra
kof whether as page is in memory or on disk. The problem is that this table itself 
ould be large(many Mbytes) whi
h hampers speedy translation of virtual addresses to physi
al addresses. Toover
ome this, a smaller table, the Translation Look-aside Bu�er (TLB), that stores informationabout the most re
ently used pages, is kept. Whenever a virtual address is found in the TLB, thetranslation is fast. Whenever it is not found (a TLB miss o

urs), the page table is 
onsulted andthe resulting entry is moved from the page table to the TLB.The most signi�
ant di�eren
e between a 
a
he miss and a TLB miss is that a 
a
he miss doesnot ne
essarily stall the CPU. A small number of 
a
he misses 
an be tolerated by using algorithmi
prefet
hing te
hniques as long as the data 
an be read fast enough from the memory where it doesexist and arrives at the CPU by the time it is needed for 
omputation. A TLB miss, by 
ontrast,
auses the CPU to stall until the TLB has been updated with the new address. In other words,prefet
hing 
an mask a 
a
he miss but not a TLB miss.4 Emphasizing the TLBConsider the multipli
ation C = AB + C. PartitionC = 0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA(1)where the partitionings are 
onformal so thatCij = KXp=1AipBpj + Cij :The following loop ordering will 
ompute the multipli
ation:Algorithm 1for i = 1 :Mfor p = 1 : Kfor j = 1 : NCij = AipBpj + CijendforendforendforA typi
al approa
h to optimizing matrix multipli
ation starts by writing an inner kernel to
ompute Cij = AipBpj + Cij . This approa
h has the property that the CPU attains near-optimal5



performan
e when Aip remains in the L1 
a
he and elements of Cij and Bpj are streamed for a lowerlevel in the memory pyramid. The dimensions of Aip are optimized so that this inner kernel attainsthe best performan
e. Finally, Some loop is 
reated to 
ompute all submatri
es of C. Beyond thisbasi
 approa
h, there are some options. It is often bene�
ial, espe
ially if Aip is embedded in amatrix with a large leading dimension, to pa
k it into 
ontiguous memory so that TLB misses areredu
ed. Also, it is often bene�
ial to transpose Aip so that a

esses to memory are 
ontiguouswhen inner-produ
ts of 
olumns of ATip and Bpj are 
omputed to update elements of Cij .Let us present Algorithm 1 asAlgorithm 2for i = 1 :Mfor p = 1 : K� Ci1 � � � CiN � = Aip � Bp1 � � � BpN �+ � Ci1 � � � CiN �endforendforLet us make the following assumptions and observations. Noti
e that we do not pro
laim theseassumptions and observations to re
e
t the absolute truth. They will provide a point of departurefor dis
ussion.1. If we 
an optimize the individual 
omputation� Ci1 � � � CiN � = Aip � Bp1 � � � BpN �+ � Ci1 � � � CiN � ;(2)we are in good shape.2. In order to optimize (2) it is bene�
ial to transpose Â = ATip and 
ompute� Ci1 � � � CiN � = ÂT � Bp1 � � � BpN �+ � Ci1 � � � CiN �instead. This observation 
omes from the fa
t that this allows inner produ
ts of 
olumns ofAip and Bpj to be 
omputed while a

essing memory 
ontiguously. It also prevents severethrashing of the L1 
a
he.3. It is important to be able to 
omplete a loop through all entries of Â without 
reating a majorbubble in the stream of data and 
omputation. One way to satisfy this assumption is to storeÂ 
ontiguously while ensuring that a

essing Â does not 
reate a TLB miss.4. A prominent overhead 
omes from the 
ost of a

essing Cij and Bpj the �rst time as partof the 
omputation Cij = ÂTBpj + Cij . We will assume that this 
ost in
ludes a startup(laten
y) 
ost as well as a 
ost proportional to the size of Bpj. A large part of the laten
y
ost lies with the 
ost of the TLB misses asso
iated with the �rst time that Cij and Bpj area

essed. By pi
king Bpj and Cij to have a relatively large row dimension, this startup 
ostis amortized over many elements of Cij and Bpj. However, it is important to ensure that Bpj�ts in the L1 
a
he so that the streaming of data from6



5. If data is streamed so that the CPU does not stall, a se
ond overhead that redu
es performan
e
omes from transposing (or pa
king) Aip into Â .The 
on
lusion is that Â should be relatively square and �ll most of the L2 
a
he. Submatri
esCij and Bpj should be relatively narrow sin
e this means fewer entries of the TLB are devoted tothose submatri
es.5 A Pra
ti
al Approa
hLet us examine how the above 
onsiderations a�e
t the implementation of matrix multipli
ationon a 
urrent generation mi
ropro
essor like the Intel Pentium (R) 4.We observe that on su
h ar
hite
ture the bandwidth between the L2 
a
he and the registers issu
h that in the time it takes to load a 
oating point number from the L2 
a
he into a register,only a few 
oating point operations (often only a single one) 
an be performed on
e a pipeline hasbeen established. Let us, for the sake of argument, assume that on
e pipelines are �lled, the ratiobetween the 
ost of su
h a load and 
omputation is a
tually one. Now, provided pipelines 
an bekept full, the following approa
h will attain high performan
e:1. Partition C, A, and B as in (1), but pi
k Cij and Bpj to be 
omprised of only a single 
olumn:C = 0BB� 
11 � � � 
1n... ...
M1 � � � 
Mn 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� b11 � � � b1n... ...bK1 � � � bKn 1CCA :(3)Noti
e that elements of 
ij and bpj will be 
ontiguous in memory.2. Consider the 
omputation� 
i1 � � � 
in � = Aip � bp1 � � � bpn �+ � 
i1 � � � 
in � :Let us implement this by �rst transposing Â = ATip and then 
omputing� 
i1 � � � 
in � = ÂT � bp1 � � � bpn �+ � 
i1 � � � 
in � :(4)3. If(a) Â is pa
ked to be in 
ontiguous memory,(b) The transposition of Aip, Â = ATip, is 
arefully ordered,(
) The �rst element of Â is aligned to a page,(d) Â and, for all j, 
ij , 
i(j+1), bpj, and bp(j+1) together do not over
ow the TLB table,(e) Â �ts in the L2 
a
he, and(f) (4) is 
omputed by the loop 7



for j = 1 : n
ij = ÂT bpj + 
ijendforthen, in prin
iple,� Â will be loaded into the L2 
a
he, and the TLB, during the transposition Â = ATip.� On
e the pages 
orresponding to Â have been loaded into the L2 
a
he and TLB theywill remain there during the duration of the 
omputation in (4).� The streaming of the data should allow the 
omputation of ea
h individual ÂT bpj + 
ijto a
hieve optimal performan
e.In pra
ti
e, a few modi�
ation may have be made to the approa
h. For example, some TLBentries may be used by data asso
iated with indexing or the 
ode being exe
uted.Note 1 If the number of 
oating point operations that 
an be performed during the loading of a
oating point operation (on
e streaming is established) is greater than two, the bandwidth betweenthe L2 
a
he and the registers be
omes a bottlene
k. Let us assume the ratio equals the integer R.Then the above s
heme must be modi�ed so that bpj and 
ij 
onsist of R 
olumns. In this 
ase,for every element of Â that is loaded, 2 � R 
ops 
an be performed on
e that element rea
hes theregisters. Noti
e that as R in
reases, the number of TLB entries devoted to Bpj and Cij in
reases,whi
h means that the size of Â may have to be redu
ed. More spe
i�
ally, the R should be 
hosenso that R � Rate in 
ops per 
y
le2� Bandwidth in double words per 
y
le between L2 and registers(5)Note 2 The number of registers that 
an be used for 
omputation and prefet
hing play an importantrole in the proposed s
heme. If there aren't enough registers to support pipeline streaming the s
hemebreaks down.Note 3 The following steps 
an be used to determine approximations for the various parameters:1. Determine the size of the TLB table, T .2. Determine R of Note 1.3. The number of TLB entries used for Â should not ex
eed T � 4R. The reason for this is thatgenerally, Cij and Bpj have, together, 2R 
olumns, whi
h typi
ally require 2R TLB entries(provided a 
olumn isn't split between two pages). In order to not 
orrupt any TLB entriesdevoted to Â another 2R entries are required for when Ci(j+1) and Bp(j+1) are �rst a

essed.4. The size (footprint) of Â is now pi
ked to not ex
eed T � 4R pages of memory.5. Under the 
onstraint given in Item 4, the row and 
olumn dimensions of Â are determinedexperimentally. 8


