
A Fault-Tolerant Java Virtual MahineJe� Napper Lorenzo Alvisi Harrik VinDepartment of Computer SienesThe University of Texas at AustinAbstratThe Java programming language was designedfor portability and safe ode distribution, notfor fault-tolerane. We modify the Sun JDK1.2to provide transparent fault-tolerane for manyJava appliations under the rash failure model.Our approah is to log non-deterministi eventsat the JVM interfae using a primary-bakup ar-hiteture. In partiular, we identify the souresof non-determinism in the JVM due to asyn-hronous exeptions and multi-threaded aessto shared data, as well as the non-determinismpresent at the native method interfae. We ana-lyze the overhead introdued in our system byeah of these soures of non-determinism andompare the performane of di�erent tehniquesfor handling multi-threading.1 IntrodutionThe Java programming language and its exe-ution environment are designed for portabilityand safe ode distribution. Java provides manyfeatures|suh as strong typing, remote methodinvoations (RMI), monitors, and sandboxing|that allow programmers to develop omplex dis-tributed systems; today, Java is used in a widevariety of distributed appliations, inludinghat servers [LLC01℄, web servers [Cor01℄, andsienti� appliations [WS01℄. Unfortunately,the Java Runtime Environment (JRE) providesno diret support for fault-tolerane; hene, dis-tributed appliations written in Java either ig-nore failures, or ahieve fault-tolerane throughapproahes|suh as transational databases orgroup tehnology [MDB01℄|that are outside thesope of the JRE.

In this paper, we take a fundamentally di�er-ent approah; we present the design and imple-mentation of a fault-tolerant Java Runtime Envi-ronment that tolerates fail-stop failures [Sh84℄.Our tehnique is based on the well-known statemahine approah [Lam78, Sh90℄. This teh-nique involves (1) de�ning a deterministi statemahine as the unit of repliation, (2) imple-menting independently failing replias of thestate mahine, (3) ensuring that all replias startfrom idential states and perform the same se-quene of state transitions, and (4) guarantee-ing that the repliation introdued to make thestate mahine fault-tolerant is transparent: eahoutput-produing transition should result in asingle output to the environment, rather than aolletion of outputs, one for eah replia.The state mahine that we hoose to implementand repliate is de�ned by the Java Virtual Ma-hine (JVM) spei�ation [LY99℄. The JVM iskey to the portability of Java. Beause the JVMis de�ned independently of the hardware plat-form that implements it, Java programs an rununmodi�ed on any platform that implements aJVM. Hene, there are two advantages to model-ing the JVM as a state mahine: �rst, Java ap-pliations an be made fault-tolerant transpar-ently; seond, modifying JVMs implemented ondi�erent platforms allows to keep Java's \WriteOne, Run Anywhere" promise even in the pres-ene of failures.State mahines must be deterministi. Unfortu-nately, the JVM is not. For instane, the spe-i�ation of the JVM requires support for multi-ple threads of exeution, whose interleaving is ingeneral non deterministi. Therefore, the sameprogram, when run on two di�erent JVMs withidential initial states, may ause the JVMs to go

through di�erent sequenes of state transitions,depending on the spei� interleaving enforedat eah JVM. We systematially identify andeliminate the e�ets of non-determinism withinthe JVM.Managing output to the environment is a hal-lenge in any state mahine implementation. Theobjetive is to guarantee that the output pro-dued by a set of replias is indistinguishablefrom one produed by a single state mahinethat never fails. Unfortunately, ahieving thisobjetive in general is impossible [Gra78℄, al-though it an be attained in speial irum-stanes, e.g., when output ations are idempo-tent or when the environment an be queried todetermine whether a spei� output ompleted(testable output ations). Repliating the JVM'sexeution engine adds a new twist to this prob-lem. The state mahine does not produe outputto the environment diretly: instead, the exeu-tion engine invokes external proedures, allednative methods, that are not ompiled to byte-odes. Therefore, it is impossible for our statemahine to reognize whih output ations areidempotent or testable. To address this prob-lem, we provide a mehanism by whih nativemethods an be annotated so that the state ma-hine an reognize the properties of the nativemethods and take appropriate ation.Our repliation sheme is based on a primary-bakup arhiteture. We use a \old" bakup,whih simply logs the reovery information pro-vided by the primary and starts proessingit only if the primary fails. We implementand evaluate two tehniques for eliminating thenon-determinism introdued by multi-threading.The �rst tehnique allows the threads at thebakup to reprodue the exat sequene of mon-itor aquisitions performed by the threads atthe primary. The seond tehnique repliates atthe bakup the thread sheduling deisions per-formed at the primary.Using the original implementation of the JVMfrom SunMirosystems as our performane base-line, we measure the overhead inurred by eahtehnique in exeuting SPEC JVM98, a suite ofrepresentative Java appliations. We �nd that

repliating the lok aquisitions results in 100%overhead on average, while repliating threadsheduling requires only 40% overhead on aver-age.The rest of the paper is organized as follows.We provide bakground in Setion 2 and anoverview of the hallenges involved in designinga fault-tolerant JVM in Setion 3. Setion 4 de-sribes our implementation, and Setion 5 evalu-ates the performane of our fault-tolerant JVM.We disuss the related work in Setion 6, and �-nally, Setion 7 summarizes our onlusions andpresents some diretions for future researh.2 BakgroundJava is an objet-oriented programming lan-guage with support for multi-threading, mo-bile ode, and seure ode exeution [GJS96℄.Java programs are ompiled into an arhiteture-independent byteode instrution set. The om-piled ode is organized into lass�les ontaininglass de�nitions and methods aording to theJava Virtual Mahine spei�ation [LY99℄. TheJVM also de�nes standard libraries that providesupporting lasses for various tasks (e.g., generidata ontainers, �le and network I/O, and win-dowing omponents). The JVM and standard li-braries omprise the Java Runtime Environment(JRE).Java provides language-level support for multi-threading; it provides primitives for mutualexlusion (synhronized methods) and ondi-tional synhronization (wait and notify meth-ods). Threads share data objets using eitherthread objet methods or stati lass data mem-bers that are shared among all instanes of thelass. Both the standard libraries and the or-der in whih threads aess shared data objetsintrodue non-determinism in the exeution ofprograms that, as we will see, ompliates thetask of building a fault-tolerant JVM.A popular approah to implementing a fault-tolerant servie is to use a set of servers (alledreplias) that fail independently. The state ma-hine approah [Lam78, Sh90℄ is a general teh-nique that allows to oordinate the replias and

provide the abstration of a single, fault-tolerantservie. A state mahine is a set of state vari-ables and ommands, whih respetively enodeand modify the mahine's state. Eah ommandreads a subset of the state variables, alled theread set, plus, possibly, other inputs obtainedfrom the environment; it then modi�es a sub-set of state variables alled the write set, andpossibly produes some output to the environ-ment. The state mahine approah requires tostart eah replia from the same initial stateand to exeute at eah replia an idential se-quene of deterministi ommands. A determin-isti ommand produes the same output andwrite set when given the same read set (regard-less of any environmental input). Under theseonditions, eah orret replia goes through thesame sequene of state transitions and produesthe same outputs.3 The JVM as a State MahineModeling the JVM as a state mahine raises sev-eral hallenges. First, not all ommands exe-uted by a JVM are deterministi. Seond, repli-as of a JVM do not in general exeute iden-tial sequenes of ommands. Third, the readset for a given ommand is not guaranteed toontain idential values at all replias. Typi-ally state mahines are used to model a singlethread of exeution. However, the JVM is intrin-sially multi-threaded, resulting in muh addedomplexity. Our approah to address these hal-lenges is to renoune modeling the JVM as asingle state mahine: rather, we model the JVMas a set of ooperating state mahines, eah or-responding to one of the JVM's threads. In par-tiular, we hoose as our state mahines a setof byteode exeution engines (BEE) inside theJVM. Though BEEs do not expliitly exist asomponents of the JVM, we an oneptuallyassoiate a BEE with the set of funtions thatperform byteode exeution and trak the stateof eah thread. We onsider the set of exeutingBEEs as the set of state mahines omprising areplia of our fault-tolerant JVM.The ommands of the BEE state mahine are

byteodes, and the state variables are the val-ues of memory loations aessible to the BEE.Eah BEE has exlusive aess to its own loalstate variables and may share with other BEEsaess to shared state variables. Our task is toensure that eah BEE replia proesses the samesequene of deterministi ommands. We list be-low the soures of non-determinism that ompli-ate this task, and disuss how we address eahof them.3.1 Asynhronous CommandsA ommand is asynhronous if it an appear ina non-deterministi position in the sequene ofommands proessed by a BEE. Replias of thesame BEE may enounter an asynhronous om-mand at di�erent points in their ommand se-quenes. In some state mahines (e.g., [BS95℄),asynhronous ommands orrespond to hard-ware interrupts. Although there are interruptsin the JVM, they do not orrespond to asyn-hronous ommands. For example, the JVM per-forms I/O synhronously, and any I/O omple-tion interrupt that orresponds to a given byte-ode is delivered before the exeution of thatbyteode ompletes.In the JVM, asynhronous ommands orre-spond to asynhronous Java exeptions that arenot interesting soures of non-determinism. Allbut one of these exeptions are raised by fatal er-rors in the run-time environment (e.g., resoureexhaustion) or in the implementation of the JVM(e.g., loks in inonsistent states). Suh errorsare intrinsi to the run-time environment of theappliation and would repeat themselves if allreplia environments were idential. Our imple-mentation must take are not to repliate theseexeptions beause repliation would obviouslyause all replias to fail. We assume that eithersuh errors do not our or that the replias'run-time environments are suÆiently di�erent:R0 Environment and JVM implementation ex-eptions are not raised at all replias.The standout non-fatal asynhronous exeptionis delivered to a thread when it is killed by an-other thread. However, use of this exeption

is depreated beginning with the Java Develop-ment Kit version 1.2. We therefore plae thefollowing restrition upon appliations:R1 A thread may not invoke thejava.lang.Thread.stop method.3.2 Non-deterministi CommandsA ommand is non-deterministi if its write setor its output to the environment are not uniquelydetermined by its read set. The only non-deterministi byteode exeuted by the JVM in-vokes a native method. Java inludes the JavaNative Interfae (JNI) [Lia99℄ to invoke meth-ods that exeute platform-spei� ode writtenin languages other than Java. Native methodshave diret aess to the underlying operatingsystem and other libraries. By aessing theoperating system, for instane, native methodsimplement windowing omponents, �le and net-work I/O, and read the hardware lok.Native methods therefore, in addition to the readset, may take as input values from the environ-ment. It is in general impossible to have thereplias agree on these input values, sine inputis performed outside the ontrol of the JVM. In-stead, we make sure that di�erenes in input val-ues (e.g., di�erent lok values) do not result indi�erent write sets for the ommand. In the on-ventional state mahine approah, replias runan agreement protool to make their write setsidential. In our ase, this protool simply foresthe bakup to adopt the write set produed bythe primary. However, sine native methods ex-eute beyond the purview of the JVM, an agree-ment protool annot ensure that replias exe-uting a native method will behave identially.We thus restrit the behavior of native methodsas follows to ahieve idential results at all repli-as:R2 Native methods must not produe non-deterministi output to the environment.R3 Native methods must not non-deterministially invoke other methods.R2 restrits the native method behavior visibleto the environment; however, it is often possi-ble to irumvent this restrition and still obtain

the same funtionality provided by the o�endingmethod. For example, a method that reads theurrent time and then prints it ould be split intotwo methods. The �rst method reads in the loaltime and writes it to some loal variable l, whihonstitutes the method's write set. Our agree-ment protool will ensure that exeuting the �rstmethod at the primary and the bakup results inthe same value for l. The seond method, whihprints the value of l, now produes deterministioutput to the environment.R3 restrits the ways in whih a native methodmay invoke other methods. While exeuting out-side of the state mahine, a native method aninvoke Java methods, ausing the BEE to ex-eute ommands. If a native method alls aJava method non-deterministially (e.g., if thenative method deides to aquire a lok depend-ing on the value of the loal lok) the sequeneof ommands proessed by a BEE may be dif-ferent at eah replia. We rule out this possibil-ity by forbidding native methods from makingnon-deterministi alls to Java methods. We donot onsider R3 to be a restrition, but rathera better programming paradigm: to avoid de-bugging nightmares, it is wise to restrit non-determinism in native methods to input meth-ods.3.3 Non-deterministi Read SetsMulti-threaded aess to data reates the pos-sibility of deterministi ommands reading dif-ferent read sets at di�erent replias of a givenBEE. We all a read-set non-deterministi if itontains at least one shared variable.Java allows data to be shared both expliitly, byinvoking methods on a shared objet, and impli-itly, through stati data referenes. In general,the bookkeeping neessary to determine whihobjets are atually shared an result in a signif-iant soure of overhead.One way to make this problem more manage-able is to assume that every aess to a sharedvariable is proteted by a monitor:R4A All aess to shared data is wrappedby orret use of monitors (i.e., Java's

1 lass Example {// Aessible from all threads.2 stati Formatter shared_data = null;3 String toString() {// Guard is not proteted by a// monitor, resulting in data rae.4 if(null == shared_data) {5 shared_data = new Formatter();6 synhronized_method();7 }8 }9 }Figure 1: A ommon data rae in Java. If theonstrutor and synhronized method are idem-potent the data rae has no semanti e�et.synhronized keyword).A Java monitor guarantees exlusive aess toshared variables: in pratie, the monitor allowsthe invoking BEE to transform temporarily ashared variable into a loal variable. To a BEEthat invokes a monitor and aquires its assoi-ated lok, however, the values stored in thesetemporary loal variables appear to be non-deterministi, sine they have been last modi�edby some arbitrary BEE.One way to eliminate this non-determinismwould be for the replias to agree on the val-ues of the variables assoiated with every lokthey aquire. This approah is hard to imple-ment, however, beause Java does not express orenfore the assoiation between a lok and thevariables it protets, leaving this responsibilityto the programmer.Our �rst approah is instead to ahieve agree-ment on the sequene of BEEs that aquire eahlok. Reahing agreement on a lok aquisitionsequene ensures that the orresponding BEEsat the primary and the bakup aess the vari-ables assoiated with the lok in idential order,thereby guaranteeing that all ommands exe-uted by orresponding BEEs have idential readsets.Unfortunately, many real programs do not sat-isfy R4A: even the JRE provided by Sun doesnot orretly aquire loks on all shared data. Inpartiular, stati data members are often sharedbetween threads without expliit shared methodinvoations. As we try to reah agreement on

the sequene of lok aquisitions, these rae on-ditions may ause the state of the primary andthe bakup to diverge, even when they do nota�et the semantis of the program in whihthey appear. Figure 1 shows an improper useof stati data members. Objet shared data,a stati data member, is shared by all Exam-ple objets. Beause the guard on line 4 is notproteted by a monitor, di�erent thread shed-ules at the primary and the bakup may resultin a di�erent number of invoations of synhro-nized method, preventing agreement on the se-quene of lok aquisitions. Indeed, to test ourimplementation of repliated lok aquisitionswe had to �nd and remove these rae onditionsin the JRE by hand! Though ode given in Fig-ure 1 is tehnially inorret, we wanted to �nda less labor-intensive way to handle this ommon(mal)pratie.Our seond approah does not rely on R4A, butinstead eliminates non-deterministi read sets byrepliating at the bakup the order in whihthreads aquire the sheduling lok at the pri-mary. This approah requires a run-time envi-ronment that enfores the following restrition:R4B Aquiring the sheduler lok ensures ex-lusive aess to all state variables.When R4B holds (e.g on a uniproessor), aBEE that aquires the sheduler lok e�etivelyhanges all its shared variables to loal variables,beause no other BEE is allowed to exeute om-mands. By repliating the sheduling of threads,this implementation orretly repliates aessto all shared data even when loks are inorretlyused by the programmer (the JVM automati-ally and orretly uses the sheduling lok).3.4 Output to the EnvironmentThe state mahine approah strives to hide repli-ation from the environment by requiring theoutput to the environment to be indistinguish-able from what a single orret state mahinewould produe. To meet this requirement, wedistinguish between output to the environmentthat a�ets volatile state (i.e., state that does notsurvive failure of the state mahine) and stable

state (i.e., state that does). A partiular om-mand an produe multiple outputs to the envi-ronment, eah of whih is either volatile or stabledepending upon the a�eted state.Hiding repliation of output that modi�es stablestate is easy if the output is either idempotent ortestable. In the former ase, the output is inde-pendent of the number of times the orrespond-ing ommand is exeuted, while in the latter theenvironment an be tested to asertain whetherthe output ourred prior to failure. Exept forthese ases, it is impossible to maintain the \sin-gle orret mahine" abstration in the preseneof failures [Gra78℄. For instane, in a primary-bakup system a bakup annot in general deter-mine whether the primary failed before or afterperforming an output ommand and exeutingthe ommand again ould produe di�erent re-sults. We therefore introdue a further restri-tion:R5 All native method output to the environ-ment is either idempotent or testable.Ensuring repliation of volatile output may beneessary for orret operation. For example,the OS underneath the JVM is onsidered partof the environment of our system. Opening a�le at the primary reates OS state that disap-pears when the primary fails and that the bakupmust repliate if it is to exeute orretly. Somevolatile state may be restored simply by replay-ing the output (i.e., if the methods are idempo-tent), but in general volatile state may requirespeial treatment. For instane, replaying mes-sages on a soket will not reover the state atthe bakup beause sending messages in generalis not an idempotent operation. In fat, an extralayer must be added to make sending messageseither an idempotent or testable operation.Our protool uses a speial interfae, alled sidee�et handlers, to repliate the lost volatile stateof the primary. Native methods may reatevolatile state as an e�et of produing outputto the environment. Using JNI, any applia-tion may all native methods supplied by theappliation. Our interfae allows an appliationprogrammer to inlude methods to repliate the

volatile state of the primary reated by the ad-ditional native methods. For example, we haveinluded through the interfae methods to han-dle �le I/O in the standard JRE libraries. Werequire appliations to use this interfae when-ever they invoke a native method that reatesvolatile state in the environment, leading to ourlast restrition:R6 If a native method produes volatile statein the environment, a side e�et handler isprovided to reover the state.4 ImplementationOur fault-tolerant JVM is based on the JVMfrom the Solaris Java Development Kit (JDK)1.2 ommunity soure release. Sun's JVM pro-vides Just-In-Time (JIT) ompiling of byteodesand two implementations of multi-threading.The native threads version provides threadsheduling in the underlying OS, while the greenthreads version implements multi-threading in-side the JVM. To maximize portability, our im-plementation modi�es the green threads version.To implement primary-bakup, we add two sys-tem threads to the JVM. One performs failuredetetion to allow the bakup to initiate reov-ery, and the other is responsible for sending orreeiving logging information at the primary orbakup, respetively. These additional threadsjoin the several pre-existing system threads thatperform tasks suh as garbage olletion and�nalizing objets. We now disuss how ourimplementation addresses the hallenges (non-deterministi ommands, non-deterministi readsets, and output to the environment) that weidenti�ed in Setion 3.4.1 Nondeterministi CommandsWe heked by diret inspetion and ategorizedall native methods in the standard libraries ofthe JRE: fewer that 100 native methods are non-deterministi. We store the signature of thesemethods (i.e., their lass name, method name,and argument types) in a hash table. Everytime a native method is invoked at the primary,

its signature is heked against those stored inthe hash table. If there is a math, then themethod's return values (inluding arguments, ifthey are modi�ed) and the exeptions it raisesare sent to the bakup, whih keeps an identi-al hash table. If during reovery the bakupis about to exeute a method whose signatureis stored in its hash table, then the bakup usesthe return values and exeptions provided by theprimary. Note that the bakup may still elet toinvoke the method, in order to reprodue volatileoutput. However, in this ase the return valuesand exeptions generated at the bakup are ig-nored in favor of those logged by the primary.4.2 Nondeterministi Read SetsData raes and di�erenes in sheduling amongthe JVM's threads an make read sets that on-tain shared variables return di�erent values atthe primary and the bakup. We use two di�er-ent approahes to make read sets deterministi.Repliated Lok Synhronization The�rst approah relies on the assumption thatall shared data is proteted by loks that, iforretly aquired and released, ensure mutualexlusion. Under this assumption, we reate amehanism that guarantees that threads aquireloks in the same order at the primary and atthe bakup.Repliating the order in whih threads aquireloks requires identifying the loking thread, thelok, and the relative order of eah lok aquisi-tion. We store this information in a lok aqui-sition reord, whih is a tuple of the form (t id,t asn, l id, l asn) where:t id is the thread id of the loking thread.t asn is the thread aquire sequene number.The value of t asn reords the number ofloks aquired so far by thread t id.l id is the lok id.l asn is the lok aquire sequene number. Thevalue of l asn reords the number of timeslok l id has been aquired so far.

These reords are reated by the primary, butare used during reovery by the bakup. There-fore, for eah thread and lok, the primary needsto generate virtual t ids and l ids that are unam-biguous aross replias. For instane, althoughin the JVM eah lok is uniquely assoiated withan objet, the primary annot simply use theobjet's address as the lok's l id, beause thisaddress is meaningless at the bakup. Further,any sheme that assigns ids aording to theorder in whih events|suh as thread and ob-jet reation|our at the primary is dangerous,sine these events may be sheduled di�erentlyat the primary and the bakup.We then de�ne reursively the id of a thread tas onsisting of two values: i) the id of the par-ent thread of t (the parent of the �rst thread hasby onvention t id = 0) and ii) an integer thatrepresents the relative order in whih t is re-ated with respet to its siblings. This de�nitionis well founded beause, although the absoluteorder in whih t is reated does depend on theorder in whih threads are sheduled, t's parentspawns its desendants in the same relative or-der at the primary and the bakup, independentof sheduling.To assign a lok its l id, we observe that threadsexeute deterministi programs. Hene, the se-quene of loks aquired by a thread with a givenvirtual t id is idential at the primary and thebakup. We an then uniquely identify a lokby speifying the t id and the t asn of the �rstthread that aquires the lok at the primary. Weget an even simpler l id as follows. When the pri-mary aquires a lok for the �rst time, it assignsto the lok a loally unique value (our l id is sim-ply an integer); it then reates an id map, whihis a tuple of the form (l id, t id, t asn) that as-soiates the l id with the appropriate t id andt asn. Eah map is then logged at the bakup.During failure-free exeution, whenever the pri-mary aquires lok l id, it generates a orre-sponding lok aquisition reord, and logs it atthe bakup. If the primary fails, the bakup'sthreads use the logged id maps and aquisitionreords to reprodue the sequene of lok aqui-sitions performed by the orresponding threads

at the primary.When a bakup thread t tries to aquire a lokwith id l, it heks if the log ontains a lok a-quisition reord with t id = t and l id = l, andt asn equal to the urrent value of t's aquire se-quene number. If suh a reord r exists, t thenwaits for its turn for aquiring lok l|that is, twaits until l's aquire sequene number is equalto the value of l asn stored in r, aquires thelok, and removes r from the log. If the log on-tains no suh reord, then t waits until the logontains no more lok aquisition reords (indi-ating the end of reovery at the bakup) beforeit proeeds with aquiring lok l.The ase in whih a bakup thread t attempts toaquire a lok that still has no l id requires spe-ial treatment. First, t heks if it is its respon-sibility to assign the id to the lok. The threadlooks for an id map with t id = t and mathingt asn; a math implies that, before the primaryfailed, thread t at the primary assigned to thatlok the l id stored in the id map. If a math isfound, the orresponding map is removed fromthe log and the id of the lok is set to l id.If a math is not found, then either (i) the lokwas assigned its l id at the primary by a di�er-ent thread t0, or (ii) no primary thread loggedan id map for the lok before the primary failed.Thread t handles these two ases by waiting, re-spetively, until either t0 assigns the l id at thebakup or until the log ontains no more maps,in whih ase t an safely assign a new l id tothe lok.Repliated Thread Sheduling. The se-ond approah relies on the assumption that thesheduling lok protets all shared data. Wemodi�ed the green-threads version of the JVMthat implements a user-level thread library for auniproessor, where only one thread exeutes ata time and all aessible data is impliitly loalduring its exeution.Whenever the primary interrupts the exeutionof a thread t to shedule a new thread, it re-ates a thread sheduling reord (br nt, p o�,mon nt, l asn, t id), where:

br nt is a ount of the ontrol ow hanges(e.g., branhes, jumps, and method invoa-tions) exeuted by t.p o� is the byteode o�set of the PC withinthe method urrently exeuted by t.mon nt is a ount of the monitor aquisitionsand releases performed by t.l asn is de�ned when t is resheduled whilewaiting on a lok and reords the lok's a-quisition sequene number.t id is the thread id of the next sheduledthread.These reords are logged at the bakup, whihuses them during reovery to enfore the pri-mary's shedule.The basi sheme for traking how muh Javaode t exeuted before being resheduled is sim-ple and it is implemented by the �rst two entriesin the shedule reord. Rather than ounting thenumber of byteodes, whih would add overheadto every instrution, we instrumented the JVMto inrement br nt for eah branh, jump, andmethod invoation [SE98℄. Further, sine theprogram ounter address is meaningless arossreplias, we store in p o� the last byteode ex-euted by t as an o�set within the last methodexeuted by t. Unfortunately, in our implemen-tation this requires an update to the thread ob-jet after exeuting every byteode beause it ishard to determine, when t is resheduled, wherethe JVM is storing its program ounter, whosevalue is needed to alulate p o�.A �rst ompliation over this simple shemearises when t is resheduled while exeuting anative method. Native methods are opaque tothe JVM: we have no way of determining pre-isely when t is resheduled. Often this is not aproblem: when repeating t's shedule during re-overy, the bakup reshedules t right before thenative method is invoked. This is unaeptable,however, if t, while exeuting within the nativemethod, aquires one or more loks: reprodu-ing the lok aquisition sequene is neessary fororret reovery, beause it is this sequene that

determines the value of shared variables. Fortu-nately, whenever a lok is aquired or released,ontrol is transferred bak inside the JVM. Ourimplementation interepts all suh events, inde-pendent of their origin, allowing us to orretlyupdate the value stored in mon nt. In this ase,instead of resheduling t during reovery beforeinvoking the native method, we allow t to exe-ute within the native method until it performsthe number of lok aquisitions stored by theprimary in mon nt.Further ompliations ome from the interationof appliation threads and system threads. Sys-tem threads do not orrespond to a BEE exeut-ing appliation ode, and several do not exeuteJava ode at all (e.g., the garbage olletor). Aswas the ase for native threads, we annot re-produe sheduling events that involve systemthreads 1. Ignoring system thread shedulingreates problems when appliation and systemthreads share resoures, suh as the heap, be-ause both types of threads may ontend for thesame loks.In partiular, interation with system threadsmay result in the following two events ourringduring the reovery of an appliation thread t:t is fored to wait at the bakup for a lok thatwas aquired without ontention at the primary.In this ase, t runs the risk of being resheduledby the bakup before it an omplete thesequene of instrutions exeuted by its oun-terpart at the primary. We solve this problemby adding a separate sheduler thread and aprivate runnable queue (as in user-level threadlibraries) to guarantee that t will ontinue to besheduled, without being interleaved with otherappliation threads, until neessary.t aquires without ontention at the bakupa lok for whih it was fored to wait at theprimary. So, while t was resheduled at theprimary, it may not be resheduled at the1Repliating thread sheduling at the OS level inthe native threads library would allow us to handle allthreads, but at the ost of redued portability. Further,we would still have to modify the JVM to handle othersoures of non-determinism.

bakup. It is easy to use mon nt to enfore theorret sheduling.Threads may also perform wait operationson a monitor, bloking the thread until aorresponding notify or notifyAll is performed.If multiple threads are awakened, we need toguarantee that they will aquire the monitor inthe same order at the primary and the bakup.To do so, we store the l asn of the monitor lokas part of the thread sheduling reord.A �nal subtle point arises when the bakup om-pletes reovery, i.e. when it �nishes proessingthe sequene of thread sheduling reords loggedby the primary before failing. The last shedul-ing reord in this sequene ontains the t id t0of the next thread that the primary intended toshedule|the primary failed before reording atthe bakup the sheduling reord for t0. Never-theless, the bakup must shedule t0 beause atthe primary t0 may have interated with the en-vironment. t0 will exeute at the bakup untilthese interations are reprodued.4.3 Garbage ColletionGarbage olletion in Sun's JVM is both asyn-hronous and synhronous. Any thread may syn-hronously ollet garbage by invoking a Javasystem library native method. Asynhronousgarbage olletion is performed periodially bya separate olletor thread and during memoryalloation when memory pressure indiates ol-letion is needed. Sine garbage is by de�ni-tion unused memory, we initially thought thatwe ould safely avoid repliating the behavior ofthe asynhronous olletor thread. Surprisingly,however, asynhronous garbage olletion an bea soure of nondeterministi read sets. Indeed,both soft referenes and �nalizer methods reatepaths for nondeterministi input to appliationthreads.Soft referenes are referenes to objets used toimplement ahes. By fudging the de�nitionof garbage, the referenes are guaranteed to begarbage olleted before an out-of-memory erroris returned to the appliation. Beause R0 pre-vents suh an error from being raised at all repli-

as, olletion of soft referenes may our at dif-ferent times at di�erent replias. For instane,the primarymay �nd an objet in its ahe, whilethe bakup may not, leading the exeution ofprimary and bakup to diverge 2. Although weould repliate the behavior of the asynhronousgarbage olletor by reording when it loks theheap, our urrent implementation uses a sim-pler solution: we just treat all soft referenes asstrong referenes, whih represent ative objetsand are therefore never olleted. This shortuthas no e�et on our experiments beause theynever reated enough memory pressure to di-tate the olletion of soft referenes.Another possible soure of nondeterminism isimproper use of �nalizer methods. These meth-ods are intended to allow objets to free mem-ory that annot be freed automatially by thegarbage olletor (e.g., if memory was alloatedin a native method). The Java language spe-i�ation states that �nalizer methods are in-voked on objets before the memory alloatedto the objet is reused, but does not spe-ify exatly when, leaving open the possibilityof di�erent behaviors at the primary and thebakup. Our urrent implementation assumesthat �nalizer methods only free unused mem-ory: hene, sine no data is shared between thethread that runs the �nalizer on dead objetsand any threads that previously used those ob-jets, no new soure of non-determinism is intro-dued. However, it is possible to write improper�nalizer methods that do more than free unusedmemory: in fat, they may perform arbitraryations, possibly with non-deterministi side ef-fets. Although we don't urrently repliate theinvoation of �nalizers, it would be easy to doso using one of the approahes disussed in Se-tion 4.2.4.4 Environment OutputWe have developed a generi approah to outputommands in native methods that we all sidee�et handlers (SE handlers). The SE handlersare used to store and reover volatile state of the2Similar arguments also apply to weak referenes [℄,whih we treat similarly.

environment and to ensure exatly-one seman-tis for output ommands. A handler onsists of�ve separate methods that are alled at variousstages of exeution at eah replia.register This method is used to register withthe JVM information about the nativemethods that the handler will manage,inluding the signature of the method,whether the method is a nondeterminis-ti ommand and/or an output ommand,and whether its arguments should be logged(i.e., if they are also output arguments).test This method is alled at the bakup to testduring reovery whether an output om-mand sueeded. For example, the �rstoutput ommand after reovery is termi-nated is unertain|we annot in general de-ide whether the ommand has ompleted[Gra78℄. test is alled on an unertainommand to determine whether a testableoutput ompleted before failure, guarantee-ing exatly-one semantis. Commands forwhih the test method is not de�ned areonsidered idempotent and are simply re-played.log This method is alled at the primary afterexeuting an output ommand. The sys-tem provides log with the arguments to thenative method that performed the output(inluding the lass instane objet), the re-turn value from the native method, and ex-tra information about the internal state ofthe JVM. log saves and returns in a messageall state neessary to reover the output ofthe ommand. For example, on a �le writethis message may store the �le desriptorand the amount written (or the urrent �lepointer o�set).reeive This method is alled at the bakupto reeive the state stored by the primarythrough the log method. Before saving thestate, reeive may ompress it: for example,reeive ould ompress the results of several�le writes into one o�set for the �le pointer.restore This method is alled at the bakupduring reovery. It is invoked only one.

