A Fault-Tolerant Java Virtual Machine

Jeff Napper

Lorenzo Alvisi

Harrick Vin

Department of Computer Sciences
The University of Texas at Austin

Abstract

The Java programming language was designed
for portability and safe code distribution, not
for fault-tolerance. We modify the Sun JDK1.2
to provide transparent fault-tolerance for many
Java applications under the crash failure model.
Our approach is to log non-deterministic events
at the JVM interface using a primary-backup ar-
chitecture. In particular, we identify the sources
of non-determinism in the JVM due to asyn-
chronous exceptions and multi-threaded access
to shared data, as well as the non-determinism
present at the native method interface. We ana-
lyze the overhead introduced in our system by
each of these sources of non-determinism and
compare the performance of different techniques
for handling multi-threading.

1 Introduction

The Java programming language and its exe-
cution environment are designed for portability
and safe code distribution. Java provides many
features—such as strong typing, remote method
invocations (RMI), monitors, and sandboxing—
that allow programmers to develop complex dis-
tributed systems; today, Java is used in a wide
variety of distributed applications, including
chat servers [LLCO1], web servers [Cor0l], and
scientific applications [WS01]. Unfortunately,
the Java Runtime Environment (JRE) provides
no direct support for fault-tolerance; hence, dis-
tributed applications written in Java either ig-
nore failures, or achieve fault-tolerance through
approaches—such as transactional databases or
group technology [MDBO01]—that are outside the
scope of the JRE.

In this paper, we take a fundamentally differ-
ent approach; we present the design and imple-
mentation of a fault-tolerant Java Runtime Envi-
ronment that tolerates fail-stop failures [Sch84].
Our technique is based on the well-known state
machine approach [Lam?78, Sch90]. This tech-
nique involves (1) defining a deterministic state
machine as the unit of replication, (2) imple-
menting independently failing replicas of the
state machine, (3) ensuring that all replicas start
from identical states and perform the same se-
quence of state transitions, and (4) guarantee-
ing that the replication introduced to make the
state machine fault-tolerant is transparent: each
output-producing transition should result in a
single output to the environment, rather than a
collection of outputs, one for each replica.

The state machine that we choose to implement
and replicate is defined by the Java Virtual Ma-
chine (JVM) specification [LY99]. The JVM is
key to the portability of Java. Because the JVM
is defined independently of the hardware plat-
form that implements it, Java programs can run
unmodified on any platform that implements a
JVM. Hence, there are two advantages to model-
ing the JVM as a state machine: first, Java ap-
plications can be made fault-tolerant transpar-
ently; second, modifying JVMs implemented on
different platforms allows to keep Java’s “Write
Once, Run Anywhere” promise even in the pres-
ence of failures.

State machines must be deterministic. Unfortu-
nately, the JVM is not. For instance, the spec-
ification of the JVM requires support for multi-
ple threads of execution, whose interleaving is in
general non deterministic. Therefore, the same
program, when run on two different JVMs with
identical initial states, may cause the JVMs to go



through different sequences of state transitions,
depending on the specific interleaving enforced
at each JVM. We systematically identify and
eliminate the effects of non-determinism within

the JVM.

Managing output to the environment is a chal-
lenge in any state machine implementation. The
objective is to guarantee that the output pro-
duced by a set of replicas is indistinguishable
from one produced by a single state machine
that never fails. Unfortunately, achieving this
objective in general is impossible [Gra78], al-
though it can be attained in special circum-
stances, e.g., when output actions are idempo-
tent or when the environment can be queried to
determine whether a specific output completed
(testable output actions). Replicating the JVM’s
execution engine adds a new twist to this prob-
lem. The state machine does not produce output
to the environment directly: instead, the execu-
tion engine invokes external procedures, called
native methods, that are not compiled to byte-
codes. Therefore, it is impossible for our state
machine to recognize which output actions are
idempotent or testable. To address this prob-
lem, we provide a mechanism by which native
methods can be annotated so that the state ma-
chine can recognize the properties of the native
methods and take appropriate action.

Our replication scheme is based on a primary-
backup architecture. We use a “cold” backup,
which simply logs the recovery information pro-
vided by the primary and starts processing
it only if the primary fails. We implement
and evaluate two techniques for eliminating the
non-determinism introduced by multi-threading.
The first technique allows the threads at the
backup to reproduce the exact sequence of mon-
itor acquisitions performed by the threads at
the primary. The second technique replicates at
the backup the thread scheduling decisions per-
formed at the primary.

Using the original implementation of the JVM
from Sun Microsystems as our performance base-
line, we measure the overhead incurred by each
technique in executing SPEC JVMO98, a suite of
representative Java applications. We find that

replicating the lock acquisitions results in 100%
overhead on average, while replicating thread
scheduling requires only 40% overhead on aver-
age.

The rest of the paper is organized as follows.
We provide background in Section 2 and an
overview of the challenges involved in designing
a fault-tolerant JVM in Section 3. Section 4 de-
scribes our implementation, and Section 5 evalu-
ates the performance of our fault-tolerant JVM.
We discuss the related work in Section 6, and fi-
nally, Section 7 summarizes our conclusions and
presents some directions for future research.

2 Background

Java is an object-oriented programming lan-
guage with support for multi-threading, mo-
bile code, and secure code execution [GJS96].
Java programs are compiled into an architecture-
independent bytecode instruction set. The com-
piled code is organized into classfiles containing
class definitions and methods according to the
Java Virtual Machine specification [LY99]. The
JVM also defines standard libraries that provide
supporting classes for various tasks (e.g., generic
data containers, file and network I/O, and win-
dowing components). The JVM and standard li-
braries comprise the Java Runtime Environment

(JRE).

Java provides language-level support for multi-
threading; it provides primitives for mutual
exclusion (synchronized methods) and condi-
tional synchronization (wait and notify meth-
ods). Threads share data objects using either
thread object methods or static class data mem-
bers that are shared among all instances of the
class. Both the standard libraries and the or-
der in which threads access shared data objects
introduce non-determinism in the execution of
programs that, as we will see, complicates the
task of building a fault-tolerant JVM.

A popular approach to implementing a fault-
tolerant service is to use a set of servers (called
replicas) that fail independently. The state ma-
chine approach [Lam78, Sch90] is a general tech-
nique that allows to coordinate the replicas and



provide the abstraction of a single, fault-tolerant
service. A state machine is a set of state vari-
ables and commands, which respectively encode
and modify the machine’s state. Each command
reads a subset of the state variables, called the
read set, plus, possibly, other inputs obtained
from the environment; it then modifies a sub-
set of state variables called the write set, and
possibly produces some output to the environ-
ment. The state machine approach requires to
start each replica from the same initial state
and to execute at each replica an identical se-
quence of deterministic commands. A determin-
istic command produces the same output and
write set when given the same read set (regard-
less of any environmental input). Under these
conditions, each correct replica goes through the
same sequence of state transitions and produces
the same outputs.

3 The JVM as a State Machine

Modeling the JVM as a state machine raises sev-
eral challenges. First, not all commands exe-
cuted by a JVM are deterministic. Second, repli-
cas of a JVM do not in general execute iden-
tical sequences of commands. Third, the read
set for a given command is not guaranteed to
contain identical values at all replicas. Typi-
cally state machines are used to model a single
thread of execution. However, the JVM is intrin-
sically multi-threaded, resulting in much added
complexity. Our approach to address these chal-
lenges is to renounce modeling the JVM as a
single state machine: rather, we model the JVM
as a set of cooperating state machines, each cor-
responding to one of the JVM’s threads. In par-
ticular, we choose as our state machines a set
of bytecode execution engines (BEE) inside the
JVM. Though BEEs do not explicitly exist as
components of the JVM, we can conceptually
associate a BEE with the set of functions that
perform bytecode execution and track the state
of each thread. We consider the set of executing
BEEs as the set of state machines comprising a
replica of our fault-tolerant JVM.

The commands of the BEE state machine are

bytecodes, and the state variables are the val-
ues of memory locations accessible to the BEE.
Each BEE has exclusive access to its own local
state variables and may share with other BEEs
access to shared state variables. Our task is to
ensure that each BEE replica processes the same
sequence of deterministic commands. We list be-
low the sources of non-determinism that compli-
cate this task, and discuss how we address each
of them.

3.1 Asynchronous Commands

A command is asynchronous if it can appear in
a non-deterministic position in the sequence of
commands processed by a BEE. Replicas of the
same BEE may encounter an asynchronous com-
mand at different points in their command se-
quences. In some state machines (e.g., [BS95]),
asynchronous commands correspond to hard-
ware interrupts. Although there are interrupts
in the JVM, they do not correspond to asyn-
chronous commands. For example, the JVM per-
forms I/O synchronously, and any I/O comple-
tion interrupt that corresponds to a given byte-
code is delivered before the execution of that
bytecode completes.

In the JVM, asynchronous commands corre-
spond to asynchronous Java exceptions that are
not interesting sources of non-determinism. All
but one of these exceptions are raised by fatal er-
rors in the run-time environment (e.g., resource
exhaustion) or in the implementation of the JVM
(e.g., locks in inconsistent states). Such errors
are intrinsic to the run-time environment of the
application and would repeat themselves if all
replica environments were identical. Our imple-
mentation must take care not to replicate these
exceptions because replication would obviously
cause all replicas to fail. We assume that either
such errors do not occur or that the replicas’
run-time environments are sufficiently different:

RO Environment and JVM implementation ex-
ceptions are not raised at all replicas.

The standout non-fatal asynchronous exception
is delivered to a thread when it is killed by an-
other thread. However, use of this exception



is deprecated beginning with the Java Develop-
ment Kit version 1.2. We therefore place the
following restriction upon applications:

R1 A thread may not invoke the
java.lang.Thread.stop method.

3.2 Non-deterministic Commands

A command is non-deterministic if its write set
or its output to the environment are not uniquely
determined by its read set. The only non-
deterministic bytecode executed by the JVM in-
vokes a native method. Java includes the Java
Native Interface (JNI) [Lia99] to invoke meth-
ods that execute platform-specific code written
in languages other than Java. Native methods
have direct access to the underlying operating
system and other libraries. By accessing the
operating system, for instance, native methods
implement windowing components, file and net-
work I/O, and read the hardware clock.

Native methods therefore, in addition to the read
set, may take as input values from the environ-
ment. It is in general impossible to have the
replicas agree on these input values, since input
is performed outside the control of the JVM. In-
stead, we make sure that differences in input val-
ues (e.g., different clock values) do not result in
different write sets for the command. In the con-
ventional state machine approach, replicas run
an agreement protocol to make their write sets
identical. In our case, this protocol simply forces
the backup to adopt the write set produced by
the primary. However, since native methods ex-
ecute beyond the purview of the JVM, an agree-
ment protocol cannot ensure that replicas exe-
cuting a native method will behave identically.
We thus restrict the behavior of native methods
as follows to achieve identical results at all repli-
cas:

R2 Native methods must not produce non-
deterministic output to the environment.

R3 Native methods
deterministically invoke other methods.

must not non-

R2 restricts the native method behavior visible
to the environment; however, it is often possi-
ble to circumvent this restriction and still obtain

the same functionality provided by the offending
method. For example, a method that reads the
current time and then prints it could be split into
two methods. The first method reads in the local
time and writes it to some local variable lc, which
constitutes the method’s write set. Our agree-
ment protocol will ensure that executing the first
method at the primary and the backup results in
the same value for lc. The second method, which
prints the value of lc, now produces deterministic
output to the environment.

R3 restricts the ways in which a native method
may invoke other methods. While executing out-
side of the state machine, a native method can
invoke Java methods, causing the BEE to ex-
ecute commands. If a native method calls a
Java method non-deterministically (e.g., if the
native method decides to acquire a lock depend-
ing on the value of the local clock) the sequence
of commands processed by a BEE may be dif-
ferent at each replica. We rule out this possibil-
ity by forbidding native methods from making
non-deterministic calls to Java methods. We do
not consider R3 to be a restriction, but rather
a better programming paradigm: to avoid de-
bugging nightmares, it is wise to restrict non-
determinism in native methods to input meth-

ods.

3.3 Non-deterministic Read Sets

Multi-threaded access to data creates the pos-
sibility of deterministic commands reading dif-
ferent read sets at different replicas of a given
BEE. We call a read-set non-deterministic if it
contains at least one shared variable.

Java allows data to be shared both explicitly, by
invoking methods on a shared object, and implic-
itly, through static data references. In general,
the bookkeeping necessary to determine which
objects are actually shared can result in a signif-
icant source of overhead.

One way to make this problem more manage-
able is to assume that every access to a shared
variable is protected by a monitor:

R4A All access to shared data is wrapped
by correct use of monitors (i.e., Java’s



1 class Example {
// Accessible from all threads.
static Formatter shared_data = null;

w N

String toString() {
// Guard is not protected by a
// monitor, resulting in data race.
if (null == shared_data) {
shared_data = new Formatter();
synchronized_method();
}
}
}

O©OON OO

Figure 1: A common data race in Java. If the
constructor and synchronized method are idem-
potent the data race has no semantic effect.

synchronized keyword).

A Java monitor guarantees exclusive access to
shared variables: in practice, the monitor allows
the invoking BEE to transform temporarily a
shared variable into a local variable. To a BEE
that invokes a monitor and acquires its associ-
ated lock, however, the values stored in these
temporary local variables appear to be non-
deterministic, since they have been last modified
by some arbitrary BEE.

One way to eliminate this non-determinism
would be for the replicas to agree on the wal-
ues of the variables associated with every lock
they acquire. This approach is hard to imple-
ment, however, because Java does not express or
enforce the association between a lock and the
variables it protects, leaving this respounsibility
to the programmer.

Our first approach is instead to achieve agree-
ment on the sequence of BEEs that acquire each
lock. Reaching agreement on a lock acquisition
sequence ensures that the corresponding BEEs
at the primary and the backup access the vari-
ables associated with the lock in identical order,
thereby guaranteeing that all commands exe-
cuted by corresponding BEEs have identical read
sets.

Unfortunately, many real programs do not sat-
isfy R4A: even the JRE provided by Sun does
not correctly acquire locks on all shared data. In
particular, static data members are often shared
between threads without explicit shared method
invocations. As we try to reach agreement on

the sequence of lock acquisitions, these race con-
ditions may cause the state of the primary and
the backup to diverge, even when they do not
affect the semantics of the program in which
they appear. Figure 1 shows an improper use
of static data members. Object shared data,
a static data member, is shared by all Exam-
ple objects. Because the guard on line 4 is not
protected by a monitor, different thread sched-
ules at the primary and the backup may result
in a different number of invocations of synchro-
nized method, preventing agreement on the se-
quence of lock acquisitions. Indeed, to test our
implementation of replicated lock acquisitions
we had to find and remove these race conditions
in the JRE by hand! Though code given in Fig-
ure 1 is technically incorrect, we wanted to find
a less labor-intensive way to handle this common
(mal)practice.

Our second approach does not rely on R4A, but
instead eliminates non-deterministic read sets by
replicating at the backup the order in which
threads acquire the scheduling lock at the pri-
mary. This approach requires a run-time envi-
ronment that enforces the following restriction:

R4B Acquiring the scheduler lock ensures ex-
clusive access to all state variables.

When R4B holds (e.g on a uniprocessor), a
BEE that acquires the scheduler lock effectively
changes all its shared variables to local variables,
because no other BEE is allowed to execute com-
mands. By replicating the scheduling of threads,
this implementation correctly replicates access
to all shared data even when locks are incorrectly
used by the programmer (the JVM automati-
cally and correctly uses the scheduling lock).

3.4 Output to the Environment

The state machine approach strives to hide repli-
cation from the environment by requiring the
output to the environment to be indistinguish-
able from what a single correct state machine
would produce.
distinguish between output to the environment
that affects volatile state (i.e., state that does not
survive failure of the state machine) and stable

To meet this requirement, we



state (i.e., state that does). A particular com-
mand can produce multiple outputs to the envi-
ronment, each of which is either volatile or stable
depending upon the affected state.

Hiding replication of output that modifies stable
state is easy if the output is either idempotent or
testable. In the former case, the output is inde-
pendent of the number of times the correspond-
ing command is executed, while in the latter the
environment can be tested to ascertain whether
the output occurred prior to failure. Except for
these cases, it is impossible to maintain the “sin-
gle correct machine” abstraction in the presence
of failures [Gra78]. For instance, in a primary-
backup system a backup cannot in general deter-
mine whether the primary failed before or after
performing an output command and executing
the command again could produce different re-
sults. We therefore introduce a further restric-
tion:

R5 All native method output to the environ-
ment is either idempotent or testable.

Ensuring replication of volatile output may be
necessary for correct operation. For example,
the OS underneath the JVM is considered part
of the environment of our system. Opening a
file at the primary creates OS state that disap-
pears when the primary fails and that the backup
must replicate if it is to execute correctly. Some
volatile state may be restored simply by replay-
ing the output (i.e., if the methods are idempo-
tent), but in general volatile state may require
special treatment. For instance, replaying mes-
sages on a socket will not recover the state at
the backup because sending messages in general
is not an idempotent operation. In fact, an extra
layer must be added to make sending messages
either an idempotent or testable operation.

Our protocol uses a special interface, called side
effect handlers, to replicate the lost volatile state
of the primary. Native methods may create
volatile state as an effect of producing output
Using JNI, any applica-
tion may call native methods supplied by the
application. Our interface allows an application
programmer to include methods to replicate the

to the environment.

volatile state of the primary created by the ad-
ditional native methods. For example, we have
included through the interface methods to han-
dle file I/O in the standard JRE libraries. We
require applications to use this interface when-
ever they invoke a native method that creates
volatile state in the environment, leading to our
last restriction:

R6 If a native method produces volatile state
in the environment, a side effect handler is
provided to recover the state.

4 TImplementation

Our fault-tolerant JVM is based on the JVM
from the Solaris Java Development Kit (JDK)
1.2 community source release. Sun’s JVM pro-
vides Just-In-Time (JIT) compiling of bytecodes
and two implementations of multi-threading.
The native threads version provides thread
scheduling in the underlying OS, while the green
threads version implements multi-threading in-
side the JVM. To maximize portability, our im-
plementation modifies the green threads version.

To implement primary-backup, we add two sys-
tem threads to the JVM. One performs failure
detection to allow the backup to initiate recov-
ery, and the other is responsible for sending or
receiving logging information at the primary or
backup, respectively. These additional threads
join the several pre-existing system threads that
perform tasks such as garbage collection and
finalizing objects. We now discuss how our
implementation addresses the challenges (non-
deterministic commands, non-deterministic read
sets, and output to the environment) that we
identified in Section 3.

4.1 Nondeterministic Commands

We checked by direct inspection and categorized
all native methods in the standard libraries of
the JRE: fewer that 100 native methods are non-
deterministic. We store the signature of these
methods (i.e., their class name, method name,
and argument types) in a hash table. Every
time a native method is invoked at the primary,



its signature is checked against those stored in
the hash table. If there is a match, then the
method’s return values (including arguments, if
they are modified) and the exceptions it raises
are sent to the backup, which keeps an identi-
cal hash table. If during recovery the backup
is about to execute a method whose signature
is stored in its hash table, then the backup uses
the return values and exceptions provided by the
primary. Note that the backup may still elect to
invoke the method, in order to reproduce volatile
output. However, in this case the return values
and exceptions generated at the backup are ig-
nored in favor of those logged by the primary.

4.2 Nondeterministic Read Sets

Data races and differences in scheduling among
the JVM’s threads can make read sets that con-
tain shared variables return different values at
the primary and the backup. We use two differ-
ent approaches to make read sets deterministic.

Replicated Lock Synchronization The
first approach relies on the assumption that
all shared data is protected by locks that, if
correctly acquired and released, ensure mutual
exclusion. Under this assumption, we create a
mechanism that guarantees that threads acquire
locks in the same order at the primary and at
the backup.

Replicating the order in which threads acquire
locks requires identifying the locking thread, the
lock, and the relative order of each lock acquisi-
tion. We store this information in a lock acqui-
sition record, which is a tuple of the form (¢_id,
t_asn, l_id, l_asn) where:

t_id is the thread id of the locking thread.

t_asn is the thread acquire sequence number.
The value of t_asn records the number of
locks acquired so far by thread ¢_id.

l_id is the lock d.

l_asn is the lock acquire sequence number. The
value of [_asn records the number of times
lock I_id has been acquired so far.

These records are created by the primary, but
are used during recovery by the backup. There-
fore, for each thread and lock, the primary needs
to generate virtual {_i¢ds and [_ids that are unam-
biguous across replicas. For instance, although
in the JVM each lock is uniquely associated with
an object, the primary cannot simply use the
object’s address as the lock’s [_itd, because this
address is meaningless at the backup. Further,
any scheme that assigns ids according to the
order in which events—such as thread and ob-
ject creation—occur at the primary is dangerous,
since these events may be scheduled differently
at the primary and the backup.

We then define recursively the id of a thread ¢
as consisting of two values: i) the id of the par-
ent thread of ¢ (the parent of the first thread has
by convention t_id = 0) and ii) an integer that
represents the relative order in which ¢ is cre-
ated with respect to its siblings. This definition
is well founded because, although the absolute
order in which ¢ is created does depend on the
order in which threads are scheduled, t’s parent
spawns its descendants in the same relative or-
der at the primary and the backup, independent
of scheduling.

To assign a lock its [_id, we observe that threads
execute deterministic programs. Hence, the se-
quence of locks acquired by a thread with a given
virtual t_id is identical at the primary and the
backup. We can then uniquely identify a lock
by specifying the t_id and the t_asn of the first
thread that acquires the lock at the primary. We
get an even simpler [_id as follows. When the pri-
mary acquires a lock for the first time, it assigns
to the lock a locally unique value (our /_id is sim-
ply an integer); it then creates an id map, which
is a tuple of the form (l_id, t_id, t_asn) that as-
sociates the [_td with the appropriate t_id and
t_asn. Each map is then logged at the backup.

During failure-free execution, whenever the pri-
mary acquires lock [_id, it generates a corre-
sponding lock acquisition record, and logs it at
the backup. If the primary fails, the backup’s
threads use the logged id maps and acquisition
records to reproduce the sequence of lock acqui-
sitions performed by the corresponding threads



at the primary.

When a backup thread ¢ tries to acquire a lock
with id [, it checks if the log contains a lock ac-
quisition record with t_id =t and [_id = [, and
t_asn equal to the current value of t’s acquire se-
quence number. If such a record r exists, ¢ then
waits for its turn for acquiring lock [—that is, ¢
waits until I’s acquire sequence number is equal
to the value of [_asn stored in 7, acquires the
lock, and removes r from the log. If the log con-
tains no such record, then ¢ waits until the log
contains no more lock acquisition records (indi-
cating the end of recovery at the backup) before
it proceeds with acquiring lock [.

The case in which a backup thread t attempts to
acquire a lock that still has no [_id requires spe-
cial treatment. First, ¢ checks if it is its respon-
sibility to assign the id to the lock. The thread
looks for an id map with t_id = ¢ and matching
t_asn; a match implies that, before the primary
failed, thread t at the primary assigned to that
lock the [_i¢d stored in the id map. If a match is
found, the corresponding map is removed from
the log and the id of the lock is set to [_id.

If a match is not found, then either (i) the lock
was assigned its [_id at the primary by a differ-
ent thread ¢, or (ii) no primary thread logged
an id map for the lock before the primary failed.
Thread ¢ handles these two cases by waiting, re-
spectively, until either ¢’ assigns the [_id at the
backup or until the log contains no more maps,
in which case ¢ can safely assign a new [_id to
the lock.

Replicated Thread Scheduling. The sec-
ond approach relies on the assumption that the
scheduling lock protects all shared data. We
modified the green-threads version of the JVM
that implements a user-level thread library for a
uniprocessor, where only one thread executes at
a time and all accessible data is implicitly local
during its execution.

Whenever the primary interrupts the execution
of a thread ¢ to schedule a new thread, it cre-
ates a thread scheduling record (br_cnt, pc_off,
mon_cnt, l_asn, t_id), where:

br_cnt is a count of the control flow changes
(e.g., branches, jumps, and method invoca-
tions) executed by ¢.

pc_off is the bytecode offset of the PC within
the method currently executed by ¢.

mon_cnt is a count of the monitor acquisitions
and releases performed by t.

l_asn is defined when ¢ is rescheduled while
waiting on a lock and records the lock’s ac-
quisition sequence number.

t_2d is the thread id of the next scheduled
thread.

These records are logged at the backup, which
uses them during recovery to enforce the pri-
mary’s schedule.

The basic scheme for tracking how much Java
code t executed before being rescheduled is sim-
ple and it is implemented by the first two entries
in the schedule record. Rather than counting the
number of bytecodes, which would add overhead
to every instruction, we instrumented the JVM
to increment br_cnt for each branch, jump, and
method invocation [SE98]. Further, since the
program counter address is meaningless across
replicas, we store in pc_off the last bytecode ex-
ecuted by t as an offset within the last method
executed by t. Unfortunately, in our implemen-
tation this requires an update to the thread ob-
ject after executing every bytecode because it is
hard to determine, when ¢ is rescheduled, where
the JVM is storing its program counter, whose
value is needed to calculate pc_off.

A first complication over this simple scheme
arises when t is rescheduled while executing a
native method. Native methods are opaque to
the JVM: we have no way of determining pre-
cisely when ¢t is rescheduled. Often this is not a
problem: when repeating t’s schedule during re-
covery, the backup reschedules ¢ right before the
native method is invoked. This is unacceptable,
however, if ¢, while executing within the native
method, acquires one or more locks: reproduc-
ing the lock acquisition sequence is necessary for
correct recovery, because it is this sequence that



determines the value of shared variables. Fortu-
nately, whenever a lock is acquired or released,
control is transferred back inside the JVM. Our
implementation intercepts all such events, inde-
pendent of their origin, allowing us to correctly
update the value stored in mon_cnt. In this case,
instead of rescheduling ¢ during recovery before
invoking the native method, we allow ¢ to exe-
cute within the native method until it performs
the number of lock acquisitions stored by the
primary in mon_cnt.

Further complications come from the interaction
of application threads and system threads. Sys-
tem threads do not correspond to a BEE execut-
ing application code, and several do not execute
Java code at all (e.g., the garbage collector). As
was the case for native threads, we cannot re-
produce scheduling events that involve system
threads !. Ignoring system thread scheduling
creates problems when application and system
threads share resources, such as the heap, be-
cause both types of threads may contend for the
same locks.

In particular, interaction with system threads
may result in the following two events occurring
during the recovery of an application thread t:

t is forced to wait at the backup for a lock that
was acquired without contention at the primary.
In this case, t runs the risk of being rescheduled
by the backup before it can complete the
sequence of instructions executed by its coun-
terpart at the primary. We solve this problem
by adding a separate scheduler thread and a
private runnable queue (as in user-level thread
libraries) to guarantee that ¢ will continue to be
scheduled, without being interleaved with other
application threads, until necessary.

t acquires without contention at the backup
a lock for which it was forced to wait at the
primary. So, while ¢ was rescheduled at the
primary, it may not be rescheduled at the

'Replicating thread scheduling at the OS level in
the native threads library would allow us to handle all
threads, but at the cost of reduced portability. Further,
we would still have to modify the JVM to handle other
sources of non-determinism.

backup. It is easy to use mon_cnt to enforce the
correct scheduling.

Threads may also perform wait operations
on a monitor, blocking the thread until a
corresponding notify or notifyAll is performed.
If multiple threads are awakened, we need to
guarantee that they will acquire the monitor in
the same order at the primary and the backup.
To do so, we store the [_asn of the monitor lock
as part of the thread scheduling record.

A final subtle point arises when the backup com-
pletes recovery, i.e. when it finishes processing
the sequence of thread scheduling records logged
by the primary before failing. The last schedul-
ing record in this sequence contains the t_id ¢’
of the next thread that the primary intended to
schedule—the primary failed before recording at
the backup the scheduling record for ¢'. Never-
theless, the backup must schedule ¢’ because at
the primary ¢’ may have interacted with the en-
vironment. t will execute at the backup until
these interactions are reproduced.

4.3 Garbage Collection

Garbage collection in Sun’s JVM is both asyn-
chronous and synchronous. Any thread may syn-
chronously collect garbage by invoking a Java
system library native method. Asynchronous
garbage collection is performed periodically by
a separate collector thread and during memory
allocation when memory pressure indicates col-
lection is needed. Since garbage is by defini-
tion unused memory, we initially thought that
we could safely avoid replicating the behavior of
the asynchronous collector thread. Surprisingly,
however, asynchronous garbage collection can be
a source of nondeterministic read sets. Indeed,
both soft references and finalizer methods create
paths for nondeterministic input to application
threads.

Soft references are references to objects used to
implement caches. By fudging the definition
of garbage, the references are guaranteed to be
garbage collected before an out-of-memory error
is returned to the application. Because RO pre-
vents such an error from being raised at all repli-



cas, collection of soft references may occur at dif-
ferent times at different replicas. For instance,
the primary may find an object in its cache, while
the backup may not, leading the execution of
primary and backup to diverge 2. Although we
could replicate the behavior of the asynchronous
garbage collector by recording when it locks the
heap, our current implementation uses a sim-
pler solution: we just treat all soft references as
strong references, which represent active objects
and are therefore never collected. This shortcut
has no effect on our experiments because they
never created enough memory pressure to dic-
tate the collection of soft references.

Another possible source of nondeterminism is
improper use of finalizer methods. These meth-
ods are intended to allow objects to free mem-
ory that cannot be freed automatically by the
garbage collector (e.g., if memory was allocated
in a native method). The Java language spec-
ification states that finalizer methods are in-
voked on objects before the memory allocated
to the object is reused, but does not spec-
ify exactly when, leaving open the possibility
of different behaviors at the primary and the
backup. Our current implementation assumes
that finalizer methods only free unused mem-
ory: hence, since no data is shared between the
thread that runs the finalizer on dead objects
and any threads that previously used those ob-
jects, no new source of non-determinism is intro-
duced. However, it is possible to write improper
finalizer methods that do more than free unused
memory: in fact, they may perform arbitrary
actions, possibly with non-deterministic side ef-
fects. Although we don’t currently replicate the
invocation of finalizers, it would be easy to do
so using one of the approaches discussed in Sec-
tion 4.2.

4.4 Environment Output

We have developed a generic approach to output
commands in native methods that we call side

effect handlers (SE handlers). The SE handlers
are used to store and recover volatile state of the

2Similar arguments also apply to weak references [|,
which we treat similarly.

environment and to ensure ezactly-once seman-
tics for output commands. A handler consists of
five separate methods that are called at various
stages of execution at each replica.

register This method is used to register with
the JVM information about the native
methods that the handler will manage,
including the signature of the method,
whether the method is a nondeterminis-
tic command and/or an output command,
and whether its arguments should be logged
(i.e., if they are also output arguments).

test This method is called at the backup to test
during recovery whether an output com-
mand succeeded. For example, the first
output command after recovery is termi-
nated is uncertain—we cannot in general de-
cide whether the command has completed
[Gra78]. test is called on an uncertain
command to determine whether a testable
output completed before failure, guarantee-
ing exactly-once semantics. Commands for
which the test method is not defined are
considered idempotent and are simply re-
played.

log This method is called at the primary after
executing an output command. The sys-
tem provides log with the arguments to the
native method that performed the output
(including the class instance object), the re-
turn value from the native method, and ex-
tra information about the internal state of
the JVM. log saves and returns in a message
all state necessary to recover the output of
the command. For example, on a file write
this message may store the file descriptor
and the amount written (or the current file
pointer offset).

recetve This method is called at the backup
to receive the state stored by the primary
through the log method. Before saving the
state, recetve may compress it: for example,
recetve could compress the results of several
file writes into one offset for the file pointer.

restore This method is called at the backup

during recovery. It is invoked only once.



