
A Fault-Tolerant Java Virtual Ma
hineJe� Napper Lorenzo Alvisi Harri
k VinDepartment of Computer S
ien
esThe University of Texas at AustinAbstra
tThe Java programming language was designedfor portability and safe 
ode distribution, notfor fault-toleran
e. We modify the Sun JDK1.2to provide transparent fault-toleran
e for manyJava appli
ations under the 
rash failure model.Our approa
h is to log non-deterministi
 eventsat the JVM interfa
e using a primary-ba
kup ar-
hite
ture. In parti
ular, we identify the sour
esof non-determinism in the JVM due to asyn-
hronous ex
eptions and multi-threaded a

essto shared data, as well as the non-determinismpresent at the native method interfa
e. We ana-lyze the overhead introdu
ed in our system byea
h of these sour
es of non-determinism and
ompare the performan
e of di�erent te
hniquesfor handling multi-threading.1 Introdu
tionThe Java programming language and its exe-
ution environment are designed for portabilityand safe 
ode distribution. Java provides manyfeatures|su
h as strong typing, remote methodinvo
ations (RMI), monitors, and sandboxing|that allow programmers to develop 
omplex dis-tributed systems; today, Java is used in a widevariety of distributed appli
ations, in
luding
hat servers [LLC01℄, web servers [Cor01℄, ands
ienti�
 appli
ations [WS01℄. Unfortunately,the Java Runtime Environment (JRE) providesno dire
t support for fault-toleran
e; hen
e, dis-tributed appli
ations written in Java either ig-nore failures, or a
hieve fault-toleran
e throughapproa
hes|su
h as transa
tional databases orgroup te
hnology [MDB01℄|that are outside thes
ope of the JRE.

In this paper, we take a fundamentally di�er-ent approa
h; we present the design and imple-mentation of a fault-tolerant Java Runtime Envi-ronment that tolerates fail-stop failures [S
h84℄.Our te
hnique is based on the well-known statema
hine approa
h [Lam78, S
h90℄. This te
h-nique involves (1) de�ning a deterministi
 statema
hine as the unit of repli
ation, (2) imple-menting independently failing repli
as of thestate ma
hine, (3) ensuring that all repli
as startfrom identi
al states and perform the same se-quen
e of state transitions, and (4) guarantee-ing that the repli
ation introdu
ed to make thestate ma
hine fault-tolerant is transparent: ea
houtput-produ
ing transition should result in asingle output to the environment, rather than a
olle
tion of outputs, one for ea
h repli
a.The state ma
hine that we 
hoose to implementand repli
ate is de�ned by the Java Virtual Ma-
hine (JVM) spe
i�
ation [LY99℄. The JVM iskey to the portability of Java. Be
ause the JVMis de�ned independently of the hardware plat-form that implements it, Java programs 
an rununmodi�ed on any platform that implements aJVM. Hen
e, there are two advantages to model-ing the JVM as a state ma
hine: �rst, Java ap-pli
ations 
an be made fault-tolerant transpar-ently; se
ond, modifying JVMs implemented ondi�erent platforms allows to keep Java's \WriteOn
e, Run Anywhere" promise even in the pres-en
e of failures.State ma
hines must be deterministi
. Unfortu-nately, the JVM is not. For instan
e, the spe
-i�
ation of the JVM requires support for multi-ple threads of exe
ution, whose interleaving is ingeneral non deterministi
. Therefore, the sameprogram, when run on two di�erent JVMs withidenti
al initial states, may 
ause the JVMs to go



through di�erent sequen
es of state transitions,depending on the spe
i�
 interleaving enfor
edat ea
h JVM. We systemati
ally identify andeliminate the e�e
ts of non-determinism withinthe JVM.Managing output to the environment is a 
hal-lenge in any state ma
hine implementation. Theobje
tive is to guarantee that the output pro-du
ed by a set of repli
as is indistinguishablefrom one produ
ed by a single state ma
hinethat never fails. Unfortunately, a
hieving thisobje
tive in general is impossible [Gra78℄, al-though it 
an be attained in spe
ial 
ir
um-stan
es, e.g., when output a
tions are idempo-tent or when the environment 
an be queried todetermine whether a spe
i�
 output 
ompleted(testable output a
tions). Repli
ating the JVM'sexe
ution engine adds a new twist to this prob-lem. The state ma
hine does not produ
e outputto the environment dire
tly: instead, the exe
u-tion engine invokes external pro
edures, 
allednative methods, that are not 
ompiled to byte-
odes. Therefore, it is impossible for our statema
hine to re
ognize whi
h output a
tions areidempotent or testable. To address this prob-lem, we provide a me
hanism by whi
h nativemethods 
an be annotated so that the state ma-
hine 
an re
ognize the properties of the nativemethods and take appropriate a
tion.Our repli
ation s
heme is based on a primary-ba
kup ar
hite
ture. We use a \
old" ba
kup,whi
h simply logs the re
overy information pro-vided by the primary and starts pro
essingit only if the primary fails. We implementand evaluate two te
hniques for eliminating thenon-determinism introdu
ed by multi-threading.The �rst te
hnique allows the threads at theba
kup to reprodu
e the exa
t sequen
e of mon-itor a
quisitions performed by the threads atthe primary. The se
ond te
hnique repli
ates atthe ba
kup the thread s
heduling de
isions per-formed at the primary.Using the original implementation of the JVMfrom SunMi
rosystems as our performan
e base-line, we measure the overhead in
urred by ea
hte
hnique in exe
uting SPEC JVM98, a suite ofrepresentative Java appli
ations. We �nd that

repli
ating the lo
k a
quisitions results in 100%overhead on average, while repli
ating threads
heduling requires only 40% overhead on aver-age.The rest of the paper is organized as follows.We provide ba
kground in Se
tion 2 and anoverview of the 
hallenges involved in designinga fault-tolerant JVM in Se
tion 3. Se
tion 4 de-s
ribes our implementation, and Se
tion 5 evalu-ates the performan
e of our fault-tolerant JVM.We dis
uss the related work in Se
tion 6, and �-nally, Se
tion 7 summarizes our 
on
lusions andpresents some dire
tions for future resear
h.2 Ba
kgroundJava is an obje
t-oriented programming lan-guage with support for multi-threading, mo-bile 
ode, and se
ure 
ode exe
ution [GJS96℄.Java programs are 
ompiled into an ar
hite
ture-independent byte
ode instru
tion set. The 
om-piled 
ode is organized into 
lass�les 
ontaining
lass de�nitions and methods a

ording to theJava Virtual Ma
hine spe
i�
ation [LY99℄. TheJVM also de�nes standard libraries that providesupporting 
lasses for various tasks (e.g., generi
data 
ontainers, �le and network I/O, and win-dowing 
omponents). The JVM and standard li-braries 
omprise the Java Runtime Environment(JRE).Java provides language-level support for multi-threading; it provides primitives for mutualex
lusion (syn
hronized methods) and 
ondi-tional syn
hronization (wait and notify meth-ods). Threads share data obje
ts using eitherthread obje
t methods or stati
 
lass data mem-bers that are shared among all instan
es of the
lass. Both the standard libraries and the or-der in whi
h threads a

ess shared data obje
tsintrodu
e non-determinism in the exe
ution ofprograms that, as we will see, 
ompli
ates thetask of building a fault-tolerant JVM.A popular approa
h to implementing a fault-tolerant servi
e is to use a set of servers (
alledrepli
as) that fail independently. The state ma-
hine approa
h [Lam78, S
h90℄ is a general te
h-nique that allows to 
oordinate the repli
as and



provide the abstra
tion of a single, fault-tolerantservi
e. A state ma
hine is a set of state vari-ables and 
ommands, whi
h respe
tively en
odeand modify the ma
hine's state. Ea
h 
ommandreads a subset of the state variables, 
alled theread set, plus, possibly, other inputs obtainedfrom the environment; it then modi�es a sub-set of state variables 
alled the write set, andpossibly produ
es some output to the environ-ment. The state ma
hine approa
h requires tostart ea
h repli
a from the same initial stateand to exe
ute at ea
h repli
a an identi
al se-quen
e of deterministi
 
ommands. A determin-isti
 
ommand produ
es the same output andwrite set when given the same read set (regard-less of any environmental input). Under these
onditions, ea
h 
orre
t repli
a goes through thesame sequen
e of state transitions and produ
esthe same outputs.3 The JVM as a State Ma
hineModeling the JVM as a state ma
hine raises sev-eral 
hallenges. First, not all 
ommands exe-
uted by a JVM are deterministi
. Se
ond, repli-
as of a JVM do not in general exe
ute iden-ti
al sequen
es of 
ommands. Third, the readset for a given 
ommand is not guaranteed to
ontain identi
al values at all repli
as. Typi-
ally state ma
hines are used to model a singlethread of exe
ution. However, the JVM is intrin-si
ally multi-threaded, resulting in mu
h added
omplexity. Our approa
h to address these 
hal-lenges is to renoun
e modeling the JVM as asingle state ma
hine: rather, we model the JVMas a set of 
ooperating state ma
hines, ea
h 
or-responding to one of the JVM's threads. In par-ti
ular, we 
hoose as our state ma
hines a setof byte
ode exe
ution engines (BEE) inside theJVM. Though BEEs do not expli
itly exist as
omponents of the JVM, we 
an 
on
eptuallyasso
iate a BEE with the set of fun
tions thatperform byte
ode exe
ution and tra
k the stateof ea
h thread. We 
onsider the set of exe
utingBEEs as the set of state ma
hines 
omprising arepli
a of our fault-tolerant JVM.The 
ommands of the BEE state ma
hine are

byte
odes, and the state variables are the val-ues of memory lo
ations a

essible to the BEE.Ea
h BEE has ex
lusive a

ess to its own lo
alstate variables and may share with other BEEsa

ess to shared state variables. Our task is toensure that ea
h BEE repli
a pro
esses the samesequen
e of deterministi
 
ommands. We list be-low the sour
es of non-determinism that 
ompli-
ate this task, and dis
uss how we address ea
hof them.3.1 Asyn
hronous CommandsA 
ommand is asyn
hronous if it 
an appear ina non-deterministi
 position in the sequen
e of
ommands pro
essed by a BEE. Repli
as of thesame BEE may en
ounter an asyn
hronous 
om-mand at di�erent points in their 
ommand se-quen
es. In some state ma
hines (e.g., [BS95℄),asyn
hronous 
ommands 
orrespond to hard-ware interrupts. Although there are interruptsin the JVM, they do not 
orrespond to asyn-
hronous 
ommands. For example, the JVM per-forms I/O syn
hronously, and any I/O 
omple-tion interrupt that 
orresponds to a given byte-
ode is delivered before the exe
ution of thatbyte
ode 
ompletes.In the JVM, asyn
hronous 
ommands 
orre-spond to asyn
hronous Java ex
eptions that arenot interesting sour
es of non-determinism. Allbut one of these ex
eptions are raised by fatal er-rors in the run-time environment (e.g., resour
eexhaustion) or in the implementation of the JVM(e.g., lo
ks in in
onsistent states). Su
h errorsare intrinsi
 to the run-time environment of theappli
ation and would repeat themselves if allrepli
a environments were identi
al. Our imple-mentation must take 
are not to repli
ate theseex
eptions be
ause repli
ation would obviously
ause all repli
as to fail. We assume that eithersu
h errors do not o

ur or that the repli
as'run-time environments are suÆ
iently di�erent:R0 Environment and JVM implementation ex-
eptions are not raised at all repli
as.The standout non-fatal asyn
hronous ex
eptionis delivered to a thread when it is killed by an-other thread. However, use of this ex
eption



is depre
ated beginning with the Java Develop-ment Kit version 1.2. We therefore pla
e thefollowing restri
tion upon appli
ations:R1 A thread may not invoke thejava.lang.Thread.stop method.3.2 Non-deterministi
 CommandsA 
ommand is non-deterministi
 if its write setor its output to the environment are not uniquelydetermined by its read set. The only non-deterministi
 byte
ode exe
uted by the JVM in-vokes a native method. Java in
ludes the JavaNative Interfa
e (JNI) [Lia99℄ to invoke meth-ods that exe
ute platform-spe
i�
 
ode writtenin languages other than Java. Native methodshave dire
t a

ess to the underlying operatingsystem and other libraries. By a

essing theoperating system, for instan
e, native methodsimplement windowing 
omponents, �le and net-work I/O, and read the hardware 
lo
k.Native methods therefore, in addition to the readset, may take as input values from the environ-ment. It is in general impossible to have therepli
as agree on these input values, sin
e inputis performed outside the 
ontrol of the JVM. In-stead, we make sure that di�eren
es in input val-ues (e.g., di�erent 
lo
k values) do not result indi�erent write sets for the 
ommand. In the 
on-ventional state ma
hine approa
h, repli
as runan agreement proto
ol to make their write setsidenti
al. In our 
ase, this proto
ol simply for
esthe ba
kup to adopt the write set produ
ed bythe primary. However, sin
e native methods ex-e
ute beyond the purview of the JVM, an agree-ment proto
ol 
annot ensure that repli
as exe-
uting a native method will behave identi
ally.We thus restri
t the behavior of native methodsas follows to a
hieve identi
al results at all repli-
as:R2 Native methods must not produ
e non-deterministi
 output to the environment.R3 Native methods must not non-deterministi
ally invoke other methods.R2 restri
ts the native method behavior visibleto the environment; however, it is often possi-ble to 
ir
umvent this restri
tion and still obtain

the same fun
tionality provided by the o�endingmethod. For example, a method that reads the
urrent time and then prints it 
ould be split intotwo methods. The �rst method reads in the lo
altime and writes it to some lo
al variable l
, whi
h
onstitutes the method's write set. Our agree-ment proto
ol will ensure that exe
uting the �rstmethod at the primary and the ba
kup results inthe same value for l
. The se
ond method, whi
hprints the value of l
, now produ
es deterministi
output to the environment.R3 restri
ts the ways in whi
h a native methodmay invoke other methods. While exe
uting out-side of the state ma
hine, a native method 
aninvoke Java methods, 
ausing the BEE to ex-e
ute 
ommands. If a native method 
alls aJava method non-deterministi
ally (e.g., if thenative method de
ides to a
quire a lo
k depend-ing on the value of the lo
al 
lo
k) the sequen
eof 
ommands pro
essed by a BEE may be dif-ferent at ea
h repli
a. We rule out this possibil-ity by forbidding native methods from makingnon-deterministi
 
alls to Java methods. We donot 
onsider R3 to be a restri
tion, but rathera better programming paradigm: to avoid de-bugging nightmares, it is wise to restri
t non-determinism in native methods to input meth-ods.3.3 Non-deterministi
 Read SetsMulti-threaded a

ess to data 
reates the pos-sibility of deterministi
 
ommands reading dif-ferent read sets at di�erent repli
as of a givenBEE. We 
all a read-set non-deterministi
 if it
ontains at least one shared variable.Java allows data to be shared both expli
itly, byinvoking methods on a shared obje
t, and impli
-itly, through stati
 data referen
es. In general,the bookkeeping ne
essary to determine whi
hobje
ts are a
tually shared 
an result in a signif-i
ant sour
e of overhead.One way to make this problem more manage-able is to assume that every a

ess to a sharedvariable is prote
ted by a monitor:R4A All a

ess to shared data is wrappedby 
orre
t use of monitors (i.e., Java's



1 
lass Example {// A

essible from all threads.2 stati
 Formatter shared_data = null;3 String toString() {// Guard is not prote
ted by a// monitor, resulting in data ra
e.4 if(null == shared_data) {5 shared_data = new Formatter();6 syn
hronized_method();7 }8 }9 }Figure 1: A 
ommon data ra
e in Java. If the
onstru
tor and syn
hronized method are idem-potent the data ra
e has no semanti
 e�e
t.syn
hronized keyword).A Java monitor guarantees ex
lusive a

ess toshared variables: in pra
ti
e, the monitor allowsthe invoking BEE to transform temporarily ashared variable into a lo
al variable. To a BEEthat invokes a monitor and a
quires its asso
i-ated lo
k, however, the values stored in thesetemporary lo
al variables appear to be non-deterministi
, sin
e they have been last modi�edby some arbitrary BEE.One way to eliminate this non-determinismwould be for the repli
as to agree on the val-ues of the variables asso
iated with every lo
kthey a
quire. This approa
h is hard to imple-ment, however, be
ause Java does not express orenfor
e the asso
iation between a lo
k and thevariables it prote
ts, leaving this responsibilityto the programmer.Our �rst approa
h is instead to a
hieve agree-ment on the sequen
e of BEEs that a
quire ea
hlo
k. Rea
hing agreement on a lo
k a
quisitionsequen
e ensures that the 
orresponding BEEsat the primary and the ba
kup a

ess the vari-ables asso
iated with the lo
k in identi
al order,thereby guaranteeing that all 
ommands exe-
uted by 
orresponding BEEs have identi
al readsets.Unfortunately, many real programs do not sat-isfy R4A: even the JRE provided by Sun doesnot 
orre
tly a
quire lo
ks on all shared data. Inparti
ular, stati
 data members are often sharedbetween threads without expli
it shared methodinvo
ations. As we try to rea
h agreement on

the sequen
e of lo
k a
quisitions, these ra
e 
on-ditions may 
ause the state of the primary andthe ba
kup to diverge, even when they do nota�e
t the semanti
s of the program in whi
hthey appear. Figure 1 shows an improper useof stati
 data members. Obje
t shared data,a stati
 data member, is shared by all Exam-ple obje
ts. Be
ause the guard on line 4 is notprote
ted by a monitor, di�erent thread s
hed-ules at the primary and the ba
kup may resultin a di�erent number of invo
ations of syn
hro-nized method, preventing agreement on the se-quen
e of lo
k a
quisitions. Indeed, to test ourimplementation of repli
ated lo
k a
quisitionswe had to �nd and remove these ra
e 
onditionsin the JRE by hand! Though 
ode given in Fig-ure 1 is te
hni
ally in
orre
t, we wanted to �nda less labor-intensive way to handle this 
ommon(mal)pra
ti
e.Our se
ond approa
h does not rely on R4A, butinstead eliminates non-deterministi
 read sets byrepli
ating at the ba
kup the order in whi
hthreads a
quire the s
heduling lo
k at the pri-mary. This approa
h requires a run-time envi-ronment that enfor
es the following restri
tion:R4B A
quiring the s
heduler lo
k ensures ex-
lusive a

ess to all state variables.When R4B holds (e.g on a unipro
essor), aBEE that a
quires the s
heduler lo
k e�e
tively
hanges all its shared variables to lo
al variables,be
ause no other BEE is allowed to exe
ute 
om-mands. By repli
ating the s
heduling of threads,this implementation 
orre
tly repli
ates a

essto all shared data even when lo
ks are in
orre
tlyused by the programmer (the JVM automati-
ally and 
orre
tly uses the s
heduling lo
k).3.4 Output to the EnvironmentThe state ma
hine approa
h strives to hide repli-
ation from the environment by requiring theoutput to the environment to be indistinguish-able from what a single 
orre
t state ma
hinewould produ
e. To meet this requirement, wedistinguish between output to the environmentthat a�e
ts volatile state (i.e., state that does notsurvive failure of the state ma
hine) and stable



state (i.e., state that does). A parti
ular 
om-mand 
an produ
e multiple outputs to the envi-ronment, ea
h of whi
h is either volatile or stabledepending upon the a�e
ted state.Hiding repli
ation of output that modi�es stablestate is easy if the output is either idempotent ortestable. In the former 
ase, the output is inde-pendent of the number of times the 
orrespond-ing 
ommand is exe
uted, while in the latter theenvironment 
an be tested to as
ertain whetherthe output o

urred prior to failure. Ex
ept forthese 
ases, it is impossible to maintain the \sin-gle 
orre
t ma
hine" abstra
tion in the presen
eof failures [Gra78℄. For instan
e, in a primary-ba
kup system a ba
kup 
annot in general deter-mine whether the primary failed before or afterperforming an output 
ommand and exe
utingthe 
ommand again 
ould produ
e di�erent re-sults. We therefore introdu
e a further restri
-tion:R5 All native method output to the environ-ment is either idempotent or testable.Ensuring repli
ation of volatile output may bene
essary for 
orre
t operation. For example,the OS underneath the JVM is 
onsidered partof the environment of our system. Opening a�le at the primary 
reates OS state that disap-pears when the primary fails and that the ba
kupmust repli
ate if it is to exe
ute 
orre
tly. Somevolatile state may be restored simply by replay-ing the output (i.e., if the methods are idempo-tent), but in general volatile state may requirespe
ial treatment. For instan
e, replaying mes-sages on a so
ket will not re
over the state atthe ba
kup be
ause sending messages in generalis not an idempotent operation. In fa
t, an extralayer must be added to make sending messageseither an idempotent or testable operation.Our proto
ol uses a spe
ial interfa
e, 
alled sidee�e
t handlers, to repli
ate the lost volatile stateof the primary. Native methods may 
reatevolatile state as an e�e
t of produ
ing outputto the environment. Using JNI, any appli
a-tion may 
all native methods supplied by theappli
ation. Our interfa
e allows an appli
ationprogrammer to in
lude methods to repli
ate the

volatile state of the primary 
reated by the ad-ditional native methods. For example, we havein
luded through the interfa
e methods to han-dle �le I/O in the standard JRE libraries. Werequire appli
ations to use this interfa
e when-ever they invoke a native method that 
reatesvolatile state in the environment, leading to ourlast restri
tion:R6 If a native method produ
es volatile statein the environment, a side e�e
t handler isprovided to re
over the state.4 ImplementationOur fault-tolerant JVM is based on the JVMfrom the Solaris Java Development Kit (JDK)1.2 
ommunity sour
e release. Sun's JVM pro-vides Just-In-Time (JIT) 
ompiling of byte
odesand two implementations of multi-threading.The native threads version provides threads
heduling in the underlying OS, while the greenthreads version implements multi-threading in-side the JVM. To maximize portability, our im-plementation modi�es the green threads version.To implement primary-ba
kup, we add two sys-tem threads to the JVM. One performs failuredete
tion to allow the ba
kup to initiate re
ov-ery, and the other is responsible for sending orre
eiving logging information at the primary orba
kup, respe
tively. These additional threadsjoin the several pre-existing system threads thatperform tasks su
h as garbage 
olle
tion and�nalizing obje
ts. We now dis
uss how ourimplementation addresses the 
hallenges (non-deterministi
 
ommands, non-deterministi
 readsets, and output to the environment) that weidenti�ed in Se
tion 3.4.1 Nondeterministi
 CommandsWe 
he
ked by dire
t inspe
tion and 
ategorizedall native methods in the standard libraries ofthe JRE: fewer that 100 native methods are non-deterministi
. We store the signature of thesemethods (i.e., their 
lass name, method name,and argument types) in a hash table. Everytime a native method is invoked at the primary,



its signature is 
he
ked against those stored inthe hash table. If there is a mat
h, then themethod's return values (in
luding arguments, ifthey are modi�ed) and the ex
eptions it raisesare sent to the ba
kup, whi
h keeps an identi-
al hash table. If during re
overy the ba
kupis about to exe
ute a method whose signatureis stored in its hash table, then the ba
kup usesthe return values and ex
eptions provided by theprimary. Note that the ba
kup may still ele
t toinvoke the method, in order to reprodu
e volatileoutput. However, in this 
ase the return valuesand ex
eptions generated at the ba
kup are ig-nored in favor of those logged by the primary.4.2 Nondeterministi
 Read SetsData ra
es and di�eren
es in s
heduling amongthe JVM's threads 
an make read sets that 
on-tain shared variables return di�erent values atthe primary and the ba
kup. We use two di�er-ent approa
hes to make read sets deterministi
.Repli
ated Lo
k Syn
hronization The�rst approa
h relies on the assumption thatall shared data is prote
ted by lo
ks that, if
orre
tly a
quired and released, ensure mutualex
lusion. Under this assumption, we 
reate ame
hanism that guarantees that threads a
quirelo
ks in the same order at the primary and atthe ba
kup.Repli
ating the order in whi
h threads a
quirelo
ks requires identifying the lo
king thread, thelo
k, and the relative order of ea
h lo
k a
quisi-tion. We store this information in a lo
k a
qui-sition re
ord, whi
h is a tuple of the form (t id,t asn, l id, l asn) where:t id is the thread id of the lo
king thread.t asn is the thread a
quire sequen
e number.The value of t asn re
ords the number oflo
ks a
quired so far by thread t id.l id is the lo
k id.l asn is the lo
k a
quire sequen
e number. Thevalue of l asn re
ords the number of timeslo
k l id has been a
quired so far.

These re
ords are 
reated by the primary, butare used during re
overy by the ba
kup. There-fore, for ea
h thread and lo
k, the primary needsto generate virtual t ids and l ids that are unam-biguous a
ross repli
as. For instan
e, althoughin the JVM ea
h lo
k is uniquely asso
iated withan obje
t, the primary 
annot simply use theobje
t's address as the lo
k's l id, be
ause thisaddress is meaningless at the ba
kup. Further,any s
heme that assigns ids a

ording to theorder in whi
h events|su
h as thread and ob-je
t 
reation|o

ur at the primary is dangerous,sin
e these events may be s
heduled di�erentlyat the primary and the ba
kup.We then de�ne re
ursively the id of a thread tas 
onsisting of two values: i) the id of the par-ent thread of t (the parent of the �rst thread hasby 
onvention t id = 0) and ii) an integer thatrepresents the relative order in whi
h t is 
re-ated with respe
t to its siblings. This de�nitionis well founded be
ause, although the absoluteorder in whi
h t is 
reated does depend on theorder in whi
h threads are s
heduled, t's parentspawns its des
endants in the same relative or-der at the primary and the ba
kup, independentof s
heduling.To assign a lo
k its l id, we observe that threadsexe
ute deterministi
 programs. Hen
e, the se-quen
e of lo
ks a
quired by a thread with a givenvirtual t id is identi
al at the primary and theba
kup. We 
an then uniquely identify a lo
kby spe
ifying the t id and the t asn of the �rstthread that a
quires the lo
k at the primary. Weget an even simpler l id as follows. When the pri-mary a
quires a lo
k for the �rst time, it assignsto the lo
k a lo
ally unique value (our l id is sim-ply an integer); it then 
reates an id map, whi
his a tuple of the form (l id, t id, t asn) that as-so
iates the l id with the appropriate t id andt asn. Ea
h map is then logged at the ba
kup.During failure-free exe
ution, whenever the pri-mary a
quires lo
k l id, it generates a 
orre-sponding lo
k a
quisition re
ord, and logs it atthe ba
kup. If the primary fails, the ba
kup'sthreads use the logged id maps and a
quisitionre
ords to reprodu
e the sequen
e of lo
k a
qui-sitions performed by the 
orresponding threads



at the primary.When a ba
kup thread t tries to a
quire a lo
kwith id l, it 
he
ks if the log 
ontains a lo
k a
-quisition re
ord with t id = t and l id = l, andt asn equal to the 
urrent value of t's a
quire se-quen
e number. If su
h a re
ord r exists, t thenwaits for its turn for a
quiring lo
k l|that is, twaits until l's a
quire sequen
e number is equalto the value of l asn stored in r, a
quires thelo
k, and removes r from the log. If the log 
on-tains no su
h re
ord, then t waits until the log
ontains no more lo
k a
quisition re
ords (indi-
ating the end of re
overy at the ba
kup) beforeit pro
eeds with a
quiring lo
k l.The 
ase in whi
h a ba
kup thread t attempts toa
quire a lo
k that still has no l id requires spe-
ial treatment. First, t 
he
ks if it is its respon-sibility to assign the id to the lo
k. The threadlooks for an id map with t id = t and mat
hingt asn; a mat
h implies that, before the primaryfailed, thread t at the primary assigned to thatlo
k the l id stored in the id map. If a mat
h isfound, the 
orresponding map is removed fromthe log and the id of the lo
k is set to l id.If a mat
h is not found, then either (i) the lo
kwas assigned its l id at the primary by a di�er-ent thread t0, or (ii) no primary thread loggedan id map for the lo
k before the primary failed.Thread t handles these two 
ases by waiting, re-spe
tively, until either t0 assigns the l id at theba
kup or until the log 
ontains no more maps,in whi
h 
ase t 
an safely assign a new l id tothe lo
k.Repli
ated Thread S
heduling. The se
-ond approa
h relies on the assumption that thes
heduling lo
k prote
ts all shared data. Wemodi�ed the green-threads version of the JVMthat implements a user-level thread library for aunipro
essor, where only one thread exe
utes ata time and all a

essible data is impli
itly lo
alduring its exe
ution.Whenever the primary interrupts the exe
utionof a thread t to s
hedule a new thread, it 
re-ates a thread s
heduling re
ord (br 
nt, p
 o�,mon 
nt, l asn, t id), where:

br 
nt is a 
ount of the 
ontrol 
ow 
hanges(e.g., bran
hes, jumps, and method invo
a-tions) exe
uted by t.p
 o� is the byte
ode o�set of the PC withinthe method 
urrently exe
uted by t.mon 
nt is a 
ount of the monitor a
quisitionsand releases performed by t.l asn is de�ned when t is res
heduled whilewaiting on a lo
k and re
ords the lo
k's a
-quisition sequen
e number.t id is the thread id of the next s
heduledthread.These re
ords are logged at the ba
kup, whi
huses them during re
overy to enfor
e the pri-mary's s
hedule.The basi
 s
heme for tra
king how mu
h Java
ode t exe
uted before being res
heduled is sim-ple and it is implemented by the �rst two entriesin the s
hedule re
ord. Rather than 
ounting thenumber of byte
odes, whi
h would add overheadto every instru
tion, we instrumented the JVMto in
rement br 
nt for ea
h bran
h, jump, andmethod invo
ation [SE98℄. Further, sin
e theprogram 
ounter address is meaningless a
rossrepli
as, we store in p
 o� the last byte
ode ex-e
uted by t as an o�set within the last methodexe
uted by t. Unfortunately, in our implemen-tation this requires an update to the thread ob-je
t after exe
uting every byte
ode be
ause it ishard to determine, when t is res
heduled, wherethe JVM is storing its program 
ounter, whosevalue is needed to 
al
ulate p
 o�.A �rst 
ompli
ation over this simple s
hemearises when t is res
heduled while exe
uting anative method. Native methods are opaque tothe JVM: we have no way of determining pre-
isely when t is res
heduled. Often this is not aproblem: when repeating t's s
hedule during re-
overy, the ba
kup res
hedules t right before thenative method is invoked. This is una

eptable,however, if t, while exe
uting within the nativemethod, a
quires one or more lo
ks: reprodu
-ing the lo
k a
quisition sequen
e is ne
essary for
orre
t re
overy, be
ause it is this sequen
e that



determines the value of shared variables. Fortu-nately, whenever a lo
k is a
quired or released,
ontrol is transferred ba
k inside the JVM. Ourimplementation inter
epts all su
h events, inde-pendent of their origin, allowing us to 
orre
tlyupdate the value stored in mon 
nt. In this 
ase,instead of res
heduling t during re
overy beforeinvoking the native method, we allow t to exe-
ute within the native method until it performsthe number of lo
k a
quisitions stored by theprimary in mon 
nt.Further 
ompli
ations 
ome from the intera
tionof appli
ation threads and system threads. Sys-tem threads do not 
orrespond to a BEE exe
ut-ing appli
ation 
ode, and several do not exe
uteJava 
ode at all (e.g., the garbage 
olle
tor). Aswas the 
ase for native threads, we 
annot re-produ
e s
heduling events that involve systemthreads 1. Ignoring system thread s
heduling
reates problems when appli
ation and systemthreads share resour
es, su
h as the heap, be-
ause both types of threads may 
ontend for thesame lo
ks.In parti
ular, intera
tion with system threadsmay result in the following two events o

urringduring the re
overy of an appli
ation thread t:t is for
ed to wait at the ba
kup for a lo
k thatwas a
quired without 
ontention at the primary.In this 
ase, t runs the risk of being res
heduledby the ba
kup before it 
an 
omplete thesequen
e of instru
tions exe
uted by its 
oun-terpart at the primary. We solve this problemby adding a separate s
heduler thread and aprivate runnable queue (as in user-level threadlibraries) to guarantee that t will 
ontinue to bes
heduled, without being interleaved with otherappli
ation threads, until ne
essary.t a
quires without 
ontention at the ba
kupa lo
k for whi
h it was for
ed to wait at theprimary. So, while t was res
heduled at theprimary, it may not be res
heduled at the1Repli
ating thread s
heduling at the OS level inthe native threads library would allow us to handle allthreads, but at the 
ost of redu
ed portability. Further,we would still have to modify the JVM to handle othersour
es of non-determinism.

ba
kup. It is easy to use mon 
nt to enfor
e the
orre
t s
heduling.Threads may also perform wait operationson a monitor, blo
king the thread until a
orresponding notify or notifyAll is performed.If multiple threads are awakened, we need toguarantee that they will a
quire the monitor inthe same order at the primary and the ba
kup.To do so, we store the l asn of the monitor lo
kas part of the thread s
heduling re
ord.A �nal subtle point arises when the ba
kup 
om-pletes re
overy, i.e. when it �nishes pro
essingthe sequen
e of thread s
heduling re
ords loggedby the primary before failing. The last s
hedul-ing re
ord in this sequen
e 
ontains the t id t0of the next thread that the primary intended tos
hedule|the primary failed before re
ording atthe ba
kup the s
heduling re
ord for t0. Never-theless, the ba
kup must s
hedule t0 be
ause atthe primary t0 may have intera
ted with the en-vironment. t0 will exe
ute at the ba
kup untilthese intera
tions are reprodu
ed.4.3 Garbage Colle
tionGarbage 
olle
tion in Sun's JVM is both asyn-
hronous and syn
hronous. Any thread may syn-
hronously 
olle
t garbage by invoking a Javasystem library native method. Asyn
hronousgarbage 
olle
tion is performed periodi
ally bya separate 
olle
tor thread and during memoryallo
ation when memory pressure indi
ates 
ol-le
tion is needed. Sin
e garbage is by de�ni-tion unused memory, we initially thought thatwe 
ould safely avoid repli
ating the behavior ofthe asyn
hronous 
olle
tor thread. Surprisingly,however, asyn
hronous garbage 
olle
tion 
an bea sour
e of nondeterministi
 read sets. Indeed,both soft referen
es and �nalizer methods 
reatepaths for nondeterministi
 input to appli
ationthreads.Soft referen
es are referen
es to obje
ts used toimplement 
a
hes. By fudging the de�nitionof garbage, the referen
es are guaranteed to begarbage 
olle
ted before an out-of-memory erroris returned to the appli
ation. Be
ause R0 pre-vents su
h an error from being raised at all repli-




as, 
olle
tion of soft referen
es may o

ur at dif-ferent times at di�erent repli
as. For instan
e,the primarymay �nd an obje
t in its 
a
he, whilethe ba
kup may not, leading the exe
ution ofprimary and ba
kup to diverge 2. Although we
ould repli
ate the behavior of the asyn
hronousgarbage 
olle
tor by re
ording when it lo
ks theheap, our 
urrent implementation uses a sim-pler solution: we just treat all soft referen
es asstrong referen
es, whi
h represent a
tive obje
tsand are therefore never 
olle
ted. This short
uthas no e�e
t on our experiments be
ause theynever 
reated enough memory pressure to di
-tate the 
olle
tion of soft referen
es.Another possible sour
e of nondeterminism isimproper use of �nalizer methods. These meth-ods are intended to allow obje
ts to free mem-ory that 
annot be freed automati
ally by thegarbage 
olle
tor (e.g., if memory was allo
atedin a native method). The Java language spe
-i�
ation states that �nalizer methods are in-voked on obje
ts before the memory allo
atedto the obje
t is reused, but does not spe
-ify exa
tly when, leaving open the possibilityof di�erent behaviors at the primary and theba
kup. Our 
urrent implementation assumesthat �nalizer methods only free unused mem-ory: hen
e, sin
e no data is shared between thethread that runs the �nalizer on dead obje
tsand any threads that previously used those ob-je
ts, no new sour
e of non-determinism is intro-du
ed. However, it is possible to write improper�nalizer methods that do more than free unusedmemory: in fa
t, they may perform arbitrarya
tions, possibly with non-deterministi
 side ef-fe
ts. Although we don't 
urrently repli
ate theinvo
ation of �nalizers, it would be easy to doso using one of the approa
hes dis
ussed in Se
-tion 4.2.4.4 Environment OutputWe have developed a generi
 approa
h to output
ommands in native methods that we 
all sidee�e
t handlers (SE handlers). The SE handlersare used to store and re
over volatile state of the2Similar arguments also apply to weak referen
es [℄,whi
h we treat similarly.

environment and to ensure exa
tly-on
e seman-ti
s for output 
ommands. A handler 
onsists of�ve separate methods that are 
alled at variousstages of exe
ution at ea
h repli
a.register This method is used to register withthe JVM information about the nativemethods that the handler will manage,in
luding the signature of the method,whether the method is a nondeterminis-ti
 
ommand and/or an output 
ommand,and whether its arguments should be logged(i.e., if they are also output arguments).test This method is 
alled at the ba
kup to testduring re
overy whether an output 
om-mand su

eeded. For example, the �rstoutput 
ommand after re
overy is termi-nated is un
ertain|we 
annot in general de-
ide whether the 
ommand has 
ompleted[Gra78℄. test is 
alled on an un
ertain
ommand to determine whether a testableoutput 
ompleted before failure, guarantee-ing exa
tly-on
e semanti
s. Commands forwhi
h the test method is not de�ned are
onsidered idempotent and are simply re-played.log This method is 
alled at the primary afterexe
uting an output 
ommand. The sys-tem provides log with the arguments to thenative method that performed the output(in
luding the 
lass instan
e obje
t), the re-turn value from the native method, and ex-tra information about the internal state ofthe JVM. log saves and returns in a messageall state ne
essary to re
over the output ofthe 
ommand. For example, on a �le writethis message may store the �le des
riptorand the amount written (or the 
urrent �lepointer o�set).re
eive This method is 
alled at the ba
kupto re
eive the state stored by the primarythrough the log method. Before saving thestate, re
eive may 
ompress it: for example,re
eive 
ould 
ompress the results of several�le writes into one o�set for the �le pointer.restore This method is 
alled at the ba
kupduring re
overy. It is invoked only on
e.


