
Improving the Performance of Software Distributed Shared Memory
with Speculation

Department of Computer Sciences Technical Report 2002-57

Michael Kistler
���

Lorenzo Alvisi
�

�
IBM Austin Research Laboratory

�
Department of Computer Sciences

Austin, TX 78758 The University of Texas at Austin
http://www.research.ibm.com/arl Austin, TX 78712

http://www.cs.utexas.edu/

Abstract

We study the performance benefits of speculation in a release consistent software distributed shared memory

system. We propose a new protocol, Speculative Home-based Release Consistency, that speculatively updates

data at remote nodes to reduce the latency of remote memory accesses. Our protocol employs a predictor that

uses patterns in past accesses to shared memory to predict future accesses. We have implemented our protocol

in a software distributed shared memory system that runs on commodity hardware. We evaluate our protocol

implementation on a number of software distributed shared memory benchmarks and show that it can result in

significant performance improvements.

1 Introduction

A distributed shared memory (DSM) system allows a collection of computers (nodes), connected by a high-

speed network, to be used as a single computing resource. Applications can use the familiar shared-memory

programming model but still benefit from the additional processing power available in the system. To provide the

illusion of a shared memory, the DSM system intercepts accesses to data that physically resides in the memory of

a remote node and executes a consistency protocol to bring the data to the local node for processing. To improve

performance, DSMs commonly cache data from remote nodes in local memory. The consistency protocol ensures

that all copies of the data remain consistent even though they may be accessed concurrently across multiple nodes

of the system. A memory consistency model specifies the behavior of memory as seen by the application program.

1



It restricts the set of values that may be returned from the memory system at each point in the execution of a

program. The memory consistency model typically assumed is sequential consistency, which requires that a read

operation return the value most recently written, according to some total ordering of memory operations that is

consistent with the program order of each of the nodes [14].

DSM systems can be implemented in hardware, software, or as a hybrid hardware-software system. Software

DSM systems are attractive because they can be implemented using industry standard hardware. Unfortunately,

these systems typically fail to provide performance comparable to either hardware DSM systems or to message-

passing systems [6, 15]. Numerous approaches have been developed to improve the performance of software

DSM systems, most notably the use of memory consistency models that relax the requirement of a total order-

ing of memory accesses in sequential consistency. One of the most popular of these relaxed models is release

consistency, which leverages synchronization operations already present in a correct shared-memory parallel pro-

gram to create a partial ordering of memory operations. Many protocols have been developed to implement the

release consistency memory model, but lazy release consistency (LRC) [2] protocols generally achieve the best

performance for typical DSM-style applications. LRC protocols defer sending updated data until it has been ex-

plicitly requested by other nodes, which greatly reduces data traffic. While LRC protocols do achieve superior

performance in comparison to other software DSM systems, further improvements are still required to make these

systems competitive.

In this paper, we explore whether speculation can be used to narrow this performance gap. Speculation can

improve performance by weakening dependencies in program executions. In particular, it allows critical path

processing to proceed in parallel with subordinate processing on which it depends. Speculation can take one of

two forms: 1) predict the outcome of subordinate processing when the critical path requires this outcome and

then verify this prediction in parallel with continued critical path processing, or 2) predict which subordinate

processing will be required by the critical path and then perform this processing ahead of the point where its

outcome is required. Speculation has been applied in the past to a variety of contexts in computer hardware and

software, including branch prediction [21], value prediction [19], and data prefetching [5, 16].

The focus of our work is to study how speculation can be used to improve the performance of a software DSM

system. Since the primary source of latency in these systems is the time required to obtain a copy of remote data

for access by the local processor, we attempt to identify which remote data will be required by the application. We

then perform the protocol actions to transfer this remote data before the application attempts to access it. Thus,

our approach is an instance of the second form of speculation.

In this paper we make two main contributions. First, we present a new consistency protocol for software DSM

2



called Speculative Home-based Release Consistency (SHRC), which speculatively updates data at remote nodes

based on predictions of future memory accesses made by a memory sharing predictor [12]. Second, we describe

an implementation of our protocol and report on its performance for a suite of eight benchmark DSM applications.

We discover that speculation can reduce the execution time of applications with regular access patterns by 40%

to 50%. For applications with less regular access patterns, our speculative protocol can still achieve significant

performance improvements of up to 30%. Not surprisingly, applications with irregular access patterns do not gain

significantly from speculation and may even experience performance degradations. The substantial performance

gains that can result from speculation suggest that understanding whether an application is amenable to speculation

is well worth the effort.

The rest of this paper is organized as follows. Section 2 provides a brief overview of home-based software DSM

protocols, and Section 3 describes the Speculative Home-based Release Consistency protocol. Section 5 presents

performance results for a prototype implementation of the SHRC protocol on a suite of benchmark programs.

Section 6 summarizes the related work, and Section 7 concludes the paper.

2 Background

Our speculative protocol is a home-based software DSM protocol. Most software DSM protocols use the virtual

memory management (VMM) facilities in the hardware to trap memory accesses, and thus uses a VMM page as

the unit of sharing. Software DSM systems also typically implement a relaxed memory consistency model, such

as release consistency. In a home-based protocol, each page of shared memory is assigned a home node that is

responsible for maintaining and distributing the data stored on the page to other nodes of the system. In this

section we describe the features of home-based software DSM protocols that are important for our purposes—a

comprehensive discussion can be found in Iftode’s dissertation [8].

Program operation on each node is divided into intervals delimited by synchronization operations, such as locks

and barriers. All synchronization operations are classified as either an acquire or a release. Lock acquire and

release operations are classified in the obvious manner. A barrier operation is classified as a release followed by

an acquire. Each node maintains a logical clock [13] which is incremented whenever the node issues a synchro-

nization operation.

For each shared page, the protocol maintains at each node a vector time stamp which contains an entry for each

of the nodes in the system. The vector timestamp maintained by node � for page � specifies the version of the page

that � must access in order to satisfy the memory consistency model. In particular, if � is the value of the � -th entry

of � ’s vector timestamp for � , then � should access a version of � that contains all updates that occurred on node �

3



before � incremented its logical clock to ����� .

In a home-based protocol, the home node stores the most recent version of the page, and provides this version

to other nodes on request. In our system, the first node to access a page becomes the home node of the page. When

a node � that is not the home node requires updated contents of a shared page � , it sends a PAGE request to � ’s

home node. This PAGE request contains the vector time stamp indicating the version of the page required by � .

The home node satisfies these requests by returning the appropriate copy of � to � .

Before letting � modify � , the protocol creates a twin, a copy of the original version of � received from the home

node. When � issues a subsequent release, it sends the changes made to � back to the home node in the form of a

diff, which is a run-length-encoding of the differences between the new version of � and its twin. The diff is sent

in a DIFF message, which also contains � ’s logical clock. When the home node receives the DIFF message, it

applies the changes to the version of � at the home node and updates entry � in its vector timestamp for � . Other

nodes can then request a version of the page containing these updates using a PAGE request. The home node

of page � may directly modify � without first creating a twin or generating a diff. When the home node issues

a subsequent release, the home node’s logical clock value is stored into the proper entry of � vector timestamp,

indicating that a new version of the page has been created.

When a node � issues a release for a synchronization object � , the protocol creates a write notice for the pages

modified by � since � issued its last release. The protocol guarantees that these write notices and previous ones

created by � are sent to any node that subsequently performs an acquire for object � . When a node � receives a

write notice for a page � , it updates its vector time stamp for � . If the version corresponding to the new timestamp

is not already present at � , the protocol uses VMM protection mechanisms to prevent � from accessing � . If �

attempts to do so, an access fault is generated, causing the protocol to fetch the latest version of � from the home

node.

When the home node of a page � modifies the page and issues a subsequent release, the protocol sends write

notices as described above and then places � into exclusive state. Pages in exclusive state remain writable on

the home node and do not generate write notices at a release. A page remains in exclusive state until a remote

node requests an updated copy of the page, which puts the page back into shared state. The exclusive state is an

optimization that allows the home node to modify the page over several intervals without incurring the costs of

multiple page faults or write notice messages. Correctness is preserved because a remote node that needs later

updates must also see the earlier changes, and thus must request a new version of the page from the home node.

The protocol we describe here is a multiple-writer protocol because it allows multiple nodes to update the same

page concurrently. Multiple writer protocols address the issue of false sharing, which occurs when two different

4



nodes simultaneously require write access to separate structures that happen to reside on the same page. If the

program properly serializes writes to shared memory with synchronization operations, all concurrent writes will

operate on different portions of the page. These writes will then be merged into a single version when the diffs are

applied to the page at the home node.

3 A Speculative Protocol for Software DSM

We describe our speculative protocol by discussing how it addresses the three challenges faced by all techniques

based on speculation, namely, 1) how to generate predictions, 2) how to act on predictions, and 3) what to do when

a prediction is wrong.

3.1 How we generate predictions:

Predictions are generated by a memory sharing predictor which uses patterns in past shared memory accesses to

guess future memory accesses. Our predictor, shown in Figure 1, uses a two-level structure similar to that used by

Lai & Falsafi [12] for their memory sharing predictors for hardware DSMs. This two-level structure was inspired

by the two-level adaptive-training branch prediction scheme of Yeh & Patt [21]. Our predictor maintains a history

table and a pattern table for each shared page at the page’s home node. Maintaining predictor state at the home

node is a natural choice for a home-based protocol, since the home node processes all requests for a page.

history table

  ...

0x259

0x25a

0x25b

  ...

history depth = 2

page id pattern table for page 0x25a

variable
length

pattern depth = history depth + 1

−1

1

0

<PAGE, P3> <DIFF, P3>

<PAGE, P3>

<DIFF, P3>

<DIFF, P2>

<DIFF, P3>

<PAGE, P2>

<DIFF, P3>

<PAGE, P2>

<PAGE, P1>

<PAGE, P3>

Figure 1. Two-level predictor for memory accesses

The history table is a record of the � most recent PAGE or DIFF requests processed for each page of shared

memory, where � is the history depth. For each request, the history table records the request type and the node

making the request. For example, the history table in Figure 1 indicates that the last two requests processed for page

0x25a were a PAGE request from node P3 followed by a DIFF request from node P3. Recall that PAGE messages

specify the version of the page required by the requester. If the version of the page requested is not yet available

5



at the home node, the PAGE request must be deferred until the required DIFF messages have been received and

processed. For this reason, PAGE requests are recorded in the history table at the time they are processed, rather

than at the time they are received.

The pattern table is a record of all observed patterns of � � � PAGE or DIFF requests processed for a page.

We maintain a separate pattern table for each shared page. This allows each page to have distinct sharing patterns

at the expense of increased storage cost for pattern tables and longer training time (the time required to observe

enough patterns to be able to predict future memory accesses). The pattern table has a variable length to support

pages with many different request patterns. In Figure 1, the pattern table for page 0x25a contains three request

patterns. The history and pattern tables can be used to predict the next PAGE or DIFF request by finding a pattern

in the pattern table whose initial � requests match the sequence of requests in the history table for the page. If

such a pattern is found, our protocol predicts the � � � st request in the pattern as the next request for the page.

Each pattern table entry also contains a two bit confidence indicator, shown in Figure 1 as a value of 0, 1, or -1.

This confidence indicator is used by the feedback mechanism of our protocol, described in Section 3.3.

Special care must be taken to correctly record the accesses to a page performed by its home node. Since all

updates are eagerly pushed to the home node of a page, no PAGE request is generated when the application on the

home node attempts access to the page. Furthermore, the application can directly update the copy of the page at

the home node, so no DIFF message is needed to make these updates available to other nodes. Still, it is important

that these accesses be recorded in the history and pattern tables so that they can be used to predict future accesses

and trigger speculative actions. Therefore, a page fault on a page at its home node is recorded as a PAGE request,

and updates made at a page’s home node are recorded as a DIFF by the home node.

Note that PAGE requests are the only actions which can be performed speculatively. Therefore, as an opti-

mization, only patterns that end in a PAGE request are placed in the pattern table. This allows the pattern table to

consume less space and also makes pattern table searching more efficient.

We also consider a modified version of our predictor that is capable of recording multiple PAGE requests in a

single request entry by storing requesting node information in a bit string rather than as node ids. This not only

conserves space in the history and pattern tables, it also masks the order of the PAGE requests in the entry, which

reduces predictor training time for applications with high levels of read sharing. Lai & Falsafi use this technique in

their hardware DSM predictors and found it to be highly effective at reducing predictor state and training time. In

the remainder of the paper, we refer to this form of the predictor as the vector predictor as opposed to the original

standard predictor.

6



3.2 How we act on predictions:

Once a history of accesses for a page has been built up in the pattern table, the home node can use this informa-

tion to predict future accesses and speculatively issue protocol operations. Conceptually, the home node should

attempt to issue speculative protocol operations whenever a new version of the page is available. This can occur

when the home node processes a DIFF request from another node, or after the lock release or barrier call that ends

an interval in which the page was modified by the application running on the home node.

For barrier calls, nodes arriving at the barrier early issue speculative protocol operations while waiting for

the remaining nodes to arrive at the barrier. This reduces the effective overhead of speculative processing by

overlapping it with the latency of the barrier synchronization. However, once all nodes reach the barrier, the

barrier synchronization completes, and any remaining speculative processing is performed after all nodes are

allowed to depart from the barrier. This ensures that speculative processing does not increase the latency of barrier

synchronization.

To execute a speculative protocol action, the home node of the page sends the updated version of the page to

the predicted node using a SPEC request message. In addition to the page data, the SPEC request contains the

page address and its current vector time stamp. When speculative actions are performed, the home node records

them in the history table as if they had been triggered by an actual PAGE request from the remote node. Failing to

do so could lead our predictor to observe false patterns. In particular, if a SPEC request were not recorded in the

history table but succeeded in avoiding a remote page miss, the predictor would record this as a pattern in which

the remote node did not require the data, and thus could fail to predict the PAGE request in future iterations.

When the remote node receives a SPEC request, it first checks the timestamp supplied in the request to ensure

the data can be accessed by the application on the remote node. If this check fails, it triggers the feedback

mechanism described in Section 3.3. Otherwise, the local copy of the page is updated with the data supplied in

the SPEC request. The manner in which the update is performed depends on the state of the page at the time

the SPEC request is processed. If the page is not accessible to the application, the data is simply copied into the

page and the page is made readable. If the page is currently readable to the application, but not writable, again the

data is simply copied to the page. As long as the application properly serializes accesses to shared data (a basic

assumption of release consistency), we know that it is not accessing any portions of the page containing updated

data and thus will perceive no changes when the new data is copied into the page.

If the page is currently writeable by the application, special care must be taken in updating the local copy of the

page to ensure that updates made in the local copy are not lost. In this case, we generate a diff between the twin

of the page and the page contents supplied in the SPEC request. This diff is then applied to the local copy of the

7



page. We also update the twin with the page contents supplied in the SPEC request so that only the local node’s

updates are returned to the home node.

Finally, at the time the SPEC request arrives, the remote node may have already issued a PAGE request to

obtain the version of the page provided in the SPEC request. In this case, the predictor correctly predicted the

access, but did not predict it early enough to avoid a page miss by the application at the remote node. However,

our protocol still avoids some portion of the remote access latency by updating the page with the data provided

in the SPEC request and allowing the application to resume processing. When the response to the PAGE request

arrives at the remote node, it is discarded. We refer to these cases as partial page misses, since a page miss is

resolved without incurring a full remote access latency.

3.3 What we do when the prediction is wrong

Our speculative protocol includes a feedback mechanism to identify and suppress incorrect speculative actions.

A speculative protocol action is incorrect if the remote node does not access the supplied data before it is in-

validated by a subsequent write notice. To detect all incorrect speculative actions, we would have to detect any

accesses to data supplied speculatively. This would require read-protecting the data so that an access generates a

VMM protection exception. Read-protecting pages from speculative actions is not required by the memory con-

sistency model, so correct speculative actions would incur unnecessary read-access page faults if this approach

were used to detect incorrect speculative actions. To minimize the impact to correct speculative actions, we use

a different approach that identifies some but not all incorrect speculative actions. Our approach focuses on one

particular category of incorrect speculative actions — when the remote node has already received a write notice

invalidating the data when the SPEC request arrives.

Incorrect speculative actions are detected by the remote node when it verifies the timestamp in a SPEC request

against its local timestamp for the page. If the remote node determines that a SPEC request was incorrect, it sends

a message back to the home node of the page to inform it of the incorrect speculation. When it receives a feedback

message, the home node clears the confidence indicator field of the pattern table entry that triggered the incorrect

action. The confidence indicator acts like a two-bit saturating counter commonly used in hardware predictors by

inhibiting the pattern from triggering speculative operations until the pattern is re-established.

4 Implementation

We modified an existing home-based LRC DSM system, HLRC from Rutgers University [17], to use our new

speculative home-based release consistency protocol, SHRC. In addition to modifying the basic DSM protocol, we

also converted the system to use standard UDP interfaces for network communication instead of Virtual Interface

8



Architecture (VIA) networking. We chose to use UDP over VIA because UDP can be used with commodity

network infrastructures (e.g. ethernet) whereas VIA requires special purpose network interface cards and switches.

Since UDP does not support reliable communication, we added the necessary windowing and retransmission

logic to protect against dropped packets. However, in our evaluation, we increase the socket buffer sizes and

queue lengths to ensure no packet losses, so that performance results are meaningful and repeatable. To ensure

SPEC requests do not delay processing of other, higher priority requests such as PAGE or LOCK requests, all

SPEC messages are sent to a separate socket, and messages from this socket are only processed when there are no

outstanding messages on the socket for the base protocol.

HLRC uses a page table to maintain the state of each shared page on a node. Rather than create a separate

history table, we incorporate the history table entry for each page into its page table entry. We also add a pointer

to the pattern table, which is stored as a list of fixed size segments. With this organization, the pattern tables for

most pages can be small, but can grow to accommodate a large number of patterns for the few pages where this is

required.

Early experiments with our implementation revealed that variations in request orderings could create cycles in

the pattern table that would result in redundant SPEC requests. For example, one pattern might indicate that a

PAGE request from node 2 follows a PAGE request from node 1, and another pattern may have these reversed.

Longer cycles are also possible. Using a larger history depth reduces this problem somewhat, but some applications

still experience this problem for a history depth of 5. We address this problem in our implementation with an

additional field in the page table entry for each page. The uptodate field contains one bit for each node which

indicates if that node has the version of the page currently available at the home node. The uptodate bit for

node � is set for page � if the home node previous sent the current version of � to � , or if � had the previous version

of � and supplied the most recent diff applied to � . Before sending a SPEC request for page � to � , the home node

checks the uptodate field for � , and squashes the SPEC request if � already has the current version of � .

5 Performance Evaluation

5.1 Methodology

Our evaluation environment consists of a cluster of 8 machines, each having an 866 MHz Pentium III processor,

1GB of SDRAM memory, and a gigabit Ethernet adapter. The machines are connected using an Extreme Networks

BlackDiamond gigabit Ethernet switch. All machines are running the RedHat 7.3 Linux OS with a 2.4.18 version

kernel. The performance of certain basic operations of the system are presented in Table 1.

We evaluate SHRC using eight shared-memory benchmark applications. The applications and their relevant

9



remote access miss 370 usecs

local page fault 48 usecs

mprotect of 4K page 0.98 usecs

copy of 4K page 6.9 usecs

Table 1. Performance of basic operations

Application Input Parameters

barnes 4096 bodies, 6 timesteps

cholesky input file tk15.O

em3d 32000 nodes, 15% remote, 50 timesteps

fft 64 x 64 x 64 array, 16 iterations

ocean 130 x 130 array, 60 iterations

radix 8 million integers, max = 16777215, radix 256

tomcatv 128 x 128 array, 50 iterations

water-sp 512 molecules, 12 timesteps

Table 2. Applications and input parameters

input parameters are summarized in Table 2. We use five applications from the SPLASH-2 Benchmark suite [20]

used in the evaluation of the HLRC DSM system [17]. Barnes simulates gravitational forces on a collection

of bodies in three dimensions using the Barnes-Hut hierarchical N-body method. The bodies are assigned to

processors according to their position in three dimensional space, which is represented using a hierarchical data

structure called an octree. Cholesky performs blocked Cholesky Factorization on a sparse matrix. Ocean is the

non-contiguous-partitions version of the SPLASH-2 ocean application. Radix performs the standard radix sort

algorithm on an array of integers. Water-sp is a molecular dynamics application that simulates the motion of

water molecules in three dimensional space.

Two applications come from the suite of benchmarks used by Lai & Falsafi in their work on speculation in

hardware DSMs [12]. Em3d is a shared-memory implementation of the Split-C program to perform 3D modeling

of electromagnetic waves [7], and tomcatv is a shared-memory implementation of the mesh generation program

from the SPEC92 floating-point benchmark suite. The final application is fft, a three-dimensional FFT kernel

from the NAS parallel benchmarks [3]. The version we use comes from the Treadmarks application suite [2].

Selected statistics from executions of these applications on the base HLRC DSM protocol are shown in Table 3.

10



Application memory size (KB) exec time (ms) barriers lock acqs messages traffic (KB)

barnes 4,971 1,385 14 2 3,666 4,684

cholesky 20,296 4,040 3 1,409,004 11,952 9,218

em3d 2,708 3,925 100 0 15,484 31,754

fft 3,082 1,807 31 0 3,460 6,896

ocean 5,883 3,791 1,593 295 11,058 14,207

radix 15,676 1,311 11 24 8,416 14,407

tomcatv 347 382 196 0 342 679

water-sp 546 5,293 63 59 13,707 5,141

Table 3. Application characteristics

For all applications, statistics exclude initialization processing. In addition, statistics for iterative applications

exclude the first iteration. This is the typical approach used for the SPLASH2 benchmarks, where the first iteration

is excluded to eliminate startup effects. In practice, most iterative DSM applications are run for many iterations,

and thus the performance of initial iterations have only a marginal impact on overall run time.

5.2 Performance Results

Figure 2 presents the performance results for our eight benchmark applications. The figure shows application

execution times normalized to the execution time without speculation, indicated by the bar labeled nospec. The

figure presents results for the standard predictor with history depths of 3 and 4, labeled spec hd3 and spec hd4

respectively, and the vector predictor with history depths of 2 and 3, labeled vmsp hd2 and vmsp hd3 respectively.

We also ran experiments for other configurations, but the ones presented achieve the best performance improve-

ments. In Section 5.4 we analyze a broader range of configurations to determine how predictor configuration

affects application performance.

All results in this section are the average of five program executions. Figure 2 indicates the 95% confidence in-

terval for the actual improvement, determined using a paired t-test for unequal means. Using separate experiments,

we determined that statistical confidence was not significantly improved by using ten program executions for each

configuration, indicating that these confidence intervals reflect the inherent variability in execution times for our

benchmark applications. For four of our eight applications, SHRC achieves a statistically significant performance

improvement in all four configurations shown. The vector predictor configurations also achieve statistically sig-

nificant performance improvement for barnes and water-sp. On the other hand, performance is essentially

11



barnes cholesky em3d fft ocean radix tomcatv water−sp

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

barnes cholesky em3d fft ocean radix tomcatv water−sp

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

nospec
spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 2. Performance benefits from SHRC

unchanged for radix and degrades significantly for cholesky.

For three applications, em3d, fft, and tomcatv, execution times are reduced by 40% to 50%. These appli-

cations exhibit very regular access patterns independent of the input data values, and for these cases SHRC works

very well. In em3d, the problem domain is statically partitioned across processors and sharing is coarse grained.

Furthermore, em3d is a single-writer application, meaning that all write accesses to a data item are performed

by a single processor. Our protocol selects the first node to access a page as its home node, which in em3d is

always the only node that writes to the page, and thus em3d exhibits no write sharing in our system. Fft uses

barrier synchronization exclusively, and therefore benefits from our approach to hiding the overhead of speculative

processing within the barrier protocol. Tomcatv is a stencil application in which processors read data produced

by their nearest neighbors in a very regular pattern.

Speculation reduces execution times for ocean by 30% to 40%. Ocean is a single-writer application with

coarse grain sharing. It makes heavy use of barrier synchronization and therefore also benefits from the integration

of speculative actions with barrier processing.

Speculation using the vector predictor configurations also improves the performance of barnes and water-

sp by 20% to 33%. Average execution time for the standard predictor configurations also decrease, but these

results were not statistically significant at the 95% confidence level. Our executions of barnes perform only six

iterations, and data access patterns may vary over the course of an execution since computation is divided across

12



the nodes according to the position of the bodies in the octree, which may change in each iteration. In water-

sp, the set of water molecules is partitioned spatially, and each processor is assigned a spatially contiguous region

to process. Sharing occurs when processors must compute the effect of molecules in neighboring regions on

molecules within their assigned region. Molecules may also move across regions, but this occurs much less

frequently. Therefore, access patterns in water-sp are generally quite regular, with one processor, typically the

home for the page, making updates and all adjacent processors in the grid then reading the updated data.

SHRC is ineffective for improving the performance of radix. This is largely because our executions of

radix make only three passes over the input data, one for each “digit” (base 256) in the values to be sorted. This

means that there is little opportunity to develop a set of patterns that are useful for speculative protocol actions.

Furthermore, the reference patterns in radix are quite irregular since they depend on the values to be sorted.

Finally, execution times actually increase for cholesky. This program uses a task queue to distribute work

to processors, resulting in highly irregular access patterns. Furthermore, synchronization for the task queue is

handled using locks, leading to extremely high lock activity (an average of 500,000 lock acquires per second in

our executions). This combination of factors makes SHRC unsuitable for this application.

For the three applications with the largest performance gains, the vector predictor configurations do not improve

performance over the standard predictors; performance actually degrades slightly for em3d. These applications do

not exhibit high degrees of read-sharing, and therefore do not benefit from the vector predictor. Compared to the

standard predictor, the vector predictor achieves significantly improved performance for barnes and water-sp

because of higher levels of read-sharing in these applications.

Overall, the vector predictor delivers more consistent performance improvement than the standard predictor.

The vector predictor resulted in statistically significant performance improvement for six of our eight applications,

compared to only four for the standard predictor. Furthermore, while the standard predictor does marginally out-

perform the vector predictor for some applications, the vector predictor substantially outperforms the standard

predictor for several others. On this basis, we conclude that the vector predictor achieves better overall perfor-

mance improvements for our benchmark applications.

5.3 Protocol Efficiency and Effectiveness

The primary metric of efficiency of our speculative protocol is accuracy, which is the percentage of speculative

actions that are correct. We measure accuracy using two different approaches. First we measure the accuracy

of the predictor in isolation, that is, without any speculative actions performed by the protocol. We do this by

maintaining the predictor history and pattern tables, but without performing any speculative requests, and com-

paring the predicted PAGE requests to the actual PAGE requests for each page. In this approach, we compute

13



accuracy as the ratio of correct to all page miss predictions. In the second approach, we measure accuracy for the

speculative protocol. Here we estimate the number of correct speculative actions by the reduction in page misses

relative to an execution without speculation, and then compute accuracy as the ratio of correct speculative actions

to all speculative actions.

Figure 3 presents the accuracy achieved by the predictor in isolation. The predictor achieves an accuracy

of 90% or higher for five of our eight applications: em3d, fft, ocean, tomcatv, and water-sp. The

predictor works well for em3d and fft because both exhibit producer/consumer style sharing, where pages are

seldom read-shared by multiple nodes. Coarse-grain sharing also improves accuracy, as illustrated in the results

for ocean, by minimizing false-sharing effects. Prediction accuracy for tomcatv is high in part because the

application carefully aligns and pads its data to minimize false sharing. Prediction accuracy for water-sp is

also high, because of very regular access patterns to the water molecule structures. However, in each iteration

water-sp performs several reductions whose results are accumulated into globally shared variables. Locks are

used to serialize access to these global variables, and the order of access can change depending on the order in

which the nodes arrive at the acquire for the lock. Therefore, access patterns for these global variables could be

somewhat irregular and may account for the incorrect predictions experienced by water-sp.

All predictor configurations achieve accuracy of 55% to 70% for barnes. A significant portion of the incorrect

speculative actions for barnes are caused by the last speculation effect, which refers to the speculative actions

performed in the final phase of the application. Since the application is about to complete, these actions are

unnecessary and are counted as incorrect speculative actions. This effect reduces predictor accuracy for barnes

by 18% to 36% for the configurations shown. Finally, we see that prediction accuracy is poor for cholesky for

all predictor configurations, and varies considerably for radix. For cholesky, this is caused by the inherent

irregularity of access patterns, which are effectively randomized by the task queue mechanism used to distribute

work to processors. As noted above, access patterns in radix are highly data dependent, making them difficult

to predict.

Figure 4 presents the accuracy achieved by the speculative protocol. The hatched portion of each bar indicates

the portion of correct speculative actions that resulted in partial page misses. In comparison with Figure 3, we see

in Figure 4 that accuracy of the speculative protocol is considerably lower for ocean, tomcatv, and water-

sp. We also note that ocean and tomcatv experience the highest occurrence of partial page faults. This

suggests that prediction accuracy is low for these applications because the protocol cannot execute speculative

actions quickly enough to avoid the remaining page misses.

Partial page misses are quite low for water-sp, indicating that there is another factor leading to reduced ac-

14



barnes cholesky em3d fft ocean radix tomcatv water−sp

P
re

di
ct

io
n 

A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

1.0

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
re

di
ct

io
n 

A
cc

ur
ac

y

spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 3. Accuracy of the predictor in isolation

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
re

di
ct

io
n 

A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

1.0

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
re

di
ct

io
n 

A
cc

ur
ac

y

Partial

spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 4. Accuracy of the speculative protocol

15



curacy for the speculative protocol. Detailed instrumentation revealed that water-sp experiences a significantly

higher rate of write faults when speculation is enabled. This clue helps expose the cause of the reduced accuracy

for the speculative protocol, which is that pages in exclusive state are being transitioned to the shared state when

speculative actions are performed. This is necessary to ensure correctness, but defeats the optimization of placing

pages in exclusive state, resulting in unnecessary write faults and write notices. This leads to reduced accuracy

because a new version of the page, and thus new predictions, are generated for each interval in which the page

was modified. In the case of water-sp, molecules are updated by the home node over a series of three intervals

before the updates are actually used by remote nodes. As a result, the speculative protocol generates three times

more SPEC requests than required, effectively reducing accuracy by 66%.

In most applications, our feedback mechanism detected very few incorrect speculative operations. However,

between 6% and 10% of the speculative operations for choleskywere determined to be incorrect. This explains

why the speculative protocol achieves higher accuracy for cholesky than the predictor in isolation. While this

application was clearly the worst performing of those we study, this indicates that performance could well have

been worse without our feedback mechanism. Up to 10% of speculative operations for radix are also found

to be incorrect, but this does not lead to improved predictor accuracy, probably because of extremely low page

miss coverage, as explained below. In the remaining applications, less that 0.1% of speculative operations were

incorrect for all configurations except the standard predictor configurations of ocean, in which approximately

1% of speculative operations were incorrect.

An important measure of the effectiveness of our speculative protocol is page miss coverage, which is the

percentage of page misses that are eliminated by speculation. We measure page miss coverage achieved by the

predictor in isolation and by the speculative protocol as a whole. Figure 5 presents the miss coverage achieved by

four configurations of the predictor, with speculative actions disabled, for our eight benchmarks. The page miss

coverage for em3d, fft, ocean, and tomcatv exceeds 90% for all configurations. These four applications also

experienced the highest performance gains from speculation. Likewise, the two worst performing applications,

cholesky and radix, have the lowest page miss coverage. This demonstrates the importance of page miss

coverage in achieving performance gains from speculation.

Figure 6 presents the page miss coverage of the speculative protocol. Page miss coverage is computed as the

ratio of correct speculative actions to the number of page misses without speculation, where the number of correct

speculative actions is estimated by the reduction in page misses relative to an execution without speculation. The

hatched portion of each bar again represents correct speculative actions that resulted in partial page misses. Results

are generally similar to those achieved by the predictor in isolation.

16



barnes cholesky em3d fft ocean radix tomcatv water−sp

P
ag

e 
M

is
s 

C
ov

er
ag

e

0.0

0.2

0.4

0.6

0.8

1.0

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
ag

e 
M

is
s 

C
ov

er
ag

e

spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 5. Page miss coverage of the predictor in isolation

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
ag

e 
M

is
s 

C
ov

er
ag

e

0.0

0.2

0.4

0.6

0.8

1.0

barnes cholesky em3d fft ocean radix tomcatv water−sp

P
ag

e 
M

is
s 

C
ov

er
ag

e

Partial

spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 6. Page miss coverage of the speculative protocol

17



5.4 Effect of History Depth

Next we consider the effect of the history depth parameter on the operation of our speculative protocol. Recall

that history depth determines the number of access history entries used in predicting a subsequent access for a

page. Figure 7 illustrates the effect of increasing standard predictor history depth on application performance,

prediction accuracy, and miss coverage for four of our benchmark applications. In general, as history depth

increases, we expect predictor accuracy to improve since predictions are based on more information. At the

same time, coverage decreases since the predictor generates more patterns, which increases the training time.

Performance could therefore improve or degrade with increasing history depth, depending on whether increased

accuracy or reduced coverage is the dominant factor. Barnes is a good illustration of these general trends, except

that accuracy drops for history depth greater than three. In applications with irregular access patterns, such as

barnes, increasing history depth may eliminate more correct speculative operations than incorrect ones, leading

to reduced accuracy. The results for fft also follow these general trends, but with a more abrupt rise in accuracy

between history depth of 2 and 3. This indicates that several frequently occurring access patterns share a common

sequence of two accesses, but no common sequences of three accesses, which allows the predictor with a history

depth of 3 to disambiguate these access patterns.

Em3d illustrates another common trend. This application is relatively insensitive to history depth. This is

because the access patterns of em3d are so regular that nearly perfect accuracy can be achieved with a history

depth of one. Furthermore, because of these regular access patterns, the pattern space stays relatively small,

limiting the loss in coverage. Water-sp shows a more unusual trend with increasing history depth, with both

accuracy and coverage decreasing with increasing history depth. As a result, performance for this application is

best for small history depths.

Figure 8 illustrates the effect of history depth for the vector predictor. Here results are much more consistent,

with all four applications performing at or near their best levels for history depth of 2. For barnes, accuracy

improves for larger history depths, but its effect is offset by reduced1 coverage. For em3d and fft, the vector

predictor achieves nearly perfect accuracy at a history depth of 2, so these applications benefit little from larger his-

tory depths. Accuracy is relatively low for water and appears insensitive to history depth, and thus performance

is better for small history depths where coverage is greater.

The conclusion from this analysis is that both the standard predictor and vector predictor can achieve sufficient

accuracy and coverage at low history depths. Over all the applications in our study, the optimal history depth for

the standard predictor appears to be either 3 or 4, and the optimal history depth for the vector predictor is either 2

or 3.

18



barnes

hd=1 hd=2 hd=3 hd=4 hd=5

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

em3d

hd=1 hd=2 hd=3 hd=4 hd=5

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

fft

hd=1 hd=2 hd=3 hd=4 hd=5

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

water−sp

hd=1 hd=2 hd=3 hd=4 hd=5

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

Figure 7. Effect of standard predictor history depth

19



barnes

hd=1 hd=2 hd=3 hd=4

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

em3d

hd=1 hd=2 hd=3 hd=4

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

fft

hd=1 hd=2 hd=3 hd=4

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

water−sp

hd=1 hd=2 hd=3 hd=4

0.0

0.2

0.4

0.6

0.8

1.0

accuracy
coverage
normalized execution time

Predictor Configuration

Figure 8. Effect of vector predictor history depth

20



5.5 Protocol Overhead

Here we briefly report the overheads of our speculative protocol. Figure 9 presents the number of messages sent

by the DSM for each configuration, normalized to the message count of an execution without speculation, and

broken down into DIFF messages, PAGE messages, and SPEC messages. Note that the number of DIFF mes-

sages is identical for all configurations, indicating that SHRC does not generate any additional DIFF messages.

Some applications, most notably tomcatv and water-sp, do experience increased message counts for the

speculative protocols. However, speculation results in greatly reduced message counts for some applications, such

as em3d and fft. This is because PAGE requests always require a PAGE response message, whereas correct

SPEC requests require only an occasional SPEC response for flow control. This reduction in message count is

partly responsible for the significant performance improvement provided by speculation for these two applications.

Even applications that experience large increases in message counts can benefit from speculation, as illustrated by

water-sp, for which speculation using the vector predictor can reduce execution time by 30%.

Figure 10 presents the aggregate size of the protocol messages sent by the DSM for each configuration, nor-

malized to aggregate message size of an execution without speculation, and broken down into DIFF messages,

PAGE messages, and SPEC messages. Again we note that DIFF traffic is not increased by our speculative pro-

tocol. Aggregate message size is virtually unchanged for em3d and fft, because of the high accuracy achieved

by the predictor for these applications. Note however that 80% to 90% of PAGE traffic has been replaced by

SPEC traffic. Aggregate message size for radix is also virtually unchanged, but this is primarily because of

extremely low coverage. At the other extreme are cholesky, ocean, tomcatv and water-sp, which send

much more data in speculative configurations than the non-speculative case. The increase in aggregate message

size consists of incorrect SPEC requests or SPEC requests for partial page misses, which do not eliminate the

corresponding PAGE messages. This further illustrates the importance of predictor accuracy, since the overhead

of speculation increases considerably as predictor accuracy decreases. Note that tomcatv achieves 40%–50%

performance improvement despite a 60% increase in aggregate message size. This indicates that application per-

formance is not constrained by network bandwidth in our environment, and that speculation can be used to trade

available network bandwidth for reduced network latency, thereby improving performance.

Speculation also requires additional storage to maintain history and pattern tables and additional protocol state.

In our implementation, the page table is used to store the history table and per-page protocol state. This adds � � �

words to each page table entry, where � is the history depth. In a 32 node system for ����� , this amounts to less

than a 1% increase in storage for the history table and protocol state.

The amount of storage used by the pattern table depends on the predictor type (standard or vector), the history

21



barnes cholesky em3d fft ocean radix tomcatv water−sp

M
es

sa
ge

 C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

barnes cholesky em3d fft ocean radix tomcatv water−sp

M
es

sa
ge

 C
ou

nt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SPEC
PAGE
DIFF

nospec
spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 9. Message count

barnes cholesky em3d fft ocean radix tomcatv water−sp

A
gg

re
ga

te
 M

es
sa

ge
 S

iz
e

0.0

0.5

1.0

1.5

2.0

barnes cholesky em3d fft ocean radix tomcatv water−sp

A
gg

re
ga

te
 M

es
sa

ge
 S

iz
e

0.0

0.5

1.0

1.5

2.0

SPEC
PAGE
DIFF

nospec
spec_hd3
spec_hd4
vmsp_hd2
vmsp_hd3

Figure 10. Aggregate message size

22



depth, and the application access patterns. The pattern table is stored as a list of fixed size segments, where

segments are allocated only as needed. In applications with irregular access patterns or high levels of read sharing,

the standard predictor can generate very large pattern tables. For example, for water-sp, the pattern tables for

the standard predictor with history depth of 3 increase storage consumption by almost 6%. For the remaining

applications in our study, standard predictor pattern table storage is always less than 1% of additional storage.

The vector predictor encodes multiple PAGE requests in a single entry, thereby consuming less space. Storage

consumption for the vector predictor is consistently less than that for the standard predictor, requiring at most

0.6% of additional storage (again for water-sp with history depth of 3). These storage requirements appear

quite acceptable given the performance gains that can be achieved from speculation.

5.6 Summary of Performance Results

We find that both the standard and vector predictors achieve statistically significant performance improvement

for several of our benchmark applications, have high efficiency and effectiveness for iterative applications with

reasonably regular access patterns, and have low storage overhead. The vector predictor achieves more consistent

performance improvement for our applications, and has substantially lower storage overhead, indicating it should

provide superior results for most applications. Further performance improvement may be possible by reducing

the negative impacts of the last speculation effect, the loss of the exclusive mode optimization, and partial page

misses.

6 Related Work

One area of related work is the use of speculation in the context of hardware DSM systems. Lai & Falsafi de-

veloped Memory Sharing Predictors (MSPs), a technique for predicting future memory accesses based on patterns

of recent application/system memory reference behavior [12]. Simulation studies of MSPs show that they can

achieve high prediction accuracies and reduce execution times for a suite of shared memory benchmark programs

by 12% over the base consistency protocol. The predictor used in SHRC was inspired by MSPs but is designed for

software DSMs implementing a release consistency memory model, which requires new approaches for dealing

with multiple writers, explicit release semantics, large sharing units, and much larger latencies for remote mem-

ory accesses. Other related work in hardware DSM systems includes producer-initiated updates [1] and compiler

generated prefetching [16].

A number of prefetching techniques have been proposed for LRC software DSM systems [4, 9]. The most recent

is Delphi [18], a home-based LRC DSM which speculatively prefetches pages based on a history of previously

accessed pages. Whenever a node must request updated data from another node, the access history is used to

23



predict up to N other pages that might be needed from the target node, where N is a fixed parameter of the

protocol. A study of four applications showed that Delphi could improve performance by up to 14% over the base

protocol without speculation. Our work is similar to Delphi in a number of respects. We implement speculation

in the context of a home-based DSM, and we also employ a pattern-based predictor inspired by hardware-based

mechanisms. However, our speculative protocol predicts which nodes will request a new version of a page, and

then speculatively sends the page to these nodes. The key advantage of our approach is that speculative actions are

triggered when a new version of a page is available, which helps to avoid speculative actions that are performed

before the required version of the page is available.

The Lazy Hybrid (LH) protocol of Keleher in Treadmarks is a form of speculation that has been implemented

within a software DSM system [11]. This protocol uses a history of past accesses to decide whether to update or

invalidate shared data at remote nodes at the time of an acquire. This is a form of speculation since sending updates

to a node is only beneficial if the node actually accesses the data before subsequent updates occur on another node.

Keleher proposed the the Lazy Hybrid (LH) protocol for the Treadmarks DSM system [11]. On an acquire, this

protocol speculatively sends new versions of page contents to any node that previously accessed the page; write

notices are sent to all other nodes to invalidate the page contents. Our protocol is different because we perform

eager update (at the time of a release), and we base our predictions on patterns of access requests rather than

just a single prior access by the remote node. Keleher has also proposed a barrier-only speculative protocol for

applications with extremely regular access patterns [10]. Our protocol supports a wider range of synchronization

mechanisms and more general access patterns.

Finally, the HLRC on VIA system [17] also has as its goal reducing latency of remote accesses, but by using

improved communication mechanisms. The Virtual Interface Architecture (VIA) is specifically designed to reduce

message latency by giving the application direct access to the network interface without context-switches into

the kernel. VIA also provides support for zero-copy messaging and RDMA, further reducing send and receive

overhead on the critical path. While this approach can considerably reduce the latency of remote misses, it does not

eliminate access misses as our approach does, and it requires special hardware support (VIA-compliant network

interface cards and switches), which are not necessary in our approach.

7 Conclusions

We present speculative home-based release consistency (SHRC), a speculative protocol for release consistent

software DSM systems that seeks to improve application performance by reducing the latency of remote accesses.

Our protocol employs a pattern-based predictor to determine what protocol actions to perform speculatively, uses

24



synchronization operations inherent to the RC memory model to trigger these speculative actions, and uses feed-

back to identify and avoid patterns that lead to incorrect speculative actions. Our performance evaluation using a

suite of eight shared-memory benchmark applications demonstrates that performance improvements in the range

of 40% to 50% can be achieved for applications with regular data access patterns. Applications with less regular

access patterns can still achieve significant performance improvements of up to 30%. However, some applications

receive no benefit from speculation and may even experience performance degradations. From these results, we

conclude that software DSM systems should incorporate speculation to allow its use for those applications that

can achieve significant benefits.

Acknowledgments

We would like to thank Liviu Iftode and Murali Rangarajan for making available their HLRC DSM system and

the HLRC application suite. We also thank Babak Falsafi and An-Chow Lai for sharing their application suite

for evaluating Memory Sharing Predictors for hardware DSMs. We also thank Ram Rajamony for many helpful

discussions on the Treadmarks DSM system and software DSMs in general. Equipment for the performance

evaluation was provided by IBM.

References

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An evaluation of fine-grain producer-initiated communication in

cache-coherent multiprocessors. In Proceedings of the 3rd International Symposium on High-Performance Computer

Architecture, pages 204–215, February 1997.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared

memory computing on networks of workstations. IEEE Computer, 29(2):18–28, February 1996.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks. The

International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[4] R. Bianchini, R. Pinto, and C. L. Amorim. Data prefetching for software DSMs. In International Conference on

Supercomputing, pages 385–392, 1998.

[5] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching for high performance processors. IEEE Transac-

tions on Computers, 5(44):609–623, May 1995.

[6] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W. Zwaenepoel. Software versus hardware shared-

memory implementation: A case study. In Proceedings of the 21th Annual International Symposium on Computer

Architecture (ISCA-21), pages 106–117, April 1994.

[7] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. A. Yelick.

Parallel programming in split-c. In Supercomputing, pages 262–273, 1993.

25



[8] L. Iftode. Home-based Shared Virtual Memory. PhD thesis, Princeton University, 1998.

[9] M. Karlsson and P. Stenström. Effectiveness of dynamic prefetching in multiple-writer distributed virtual shared-

memory systems. Journal of Parallel and Distributed Computing, 43(2):79–93, 1997.

[10] P. Keleher. Update protocols and iterative scientific applications. In The 12th International Parallel Processing Sym-

posium (IPPS), March 1998.

[11] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. An evaluation of software-based release consistent protocols.

Journal of Parallel and Distributed Computing, 29(2):126–141, October 1995.

[12] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key to a speculative coherent DSM. In Proceedings of the

26th International Symposium on Computer Architecture (ISCA 26), pages 172–183, June 1999.

[13] L. Lamport. Time, clocks, and the ordering of events in distributed systems. Communication of the ACM, 21(7):558–

565, July 1977.

[14] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Transactions

on Computers, C-28(9):690–691, September 1979.

[15] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message passing versus distributed shared memory on networks

of workstations. In Proceedings of SuperComputing ’95, December 1995.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching. In Fifth

Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS-V), pages 62–73,

October 1992.

[17] M. Rangarajan and L. Iftode. Software distributed shared memory over virtual interface architecture: Implementation

and performance. In Proceedings of 4th Annual Linux Conference, pages 341–352, October 2000.

[18] E. Speight and M. Burtscher. Delphi: Prediction-based page prefetching to improve the performane of shared virtual

memory systems. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques

and Applications, June 2002.

[19] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid predictors. In International Symposium

on Microarchitecture, pages 281–290, 1997.

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization and method-

ological considerations. In Proceedings of the 22th International Symposium on Computer Architecture, pages 24–36,

Santa Margherita Ligure, Italy, June 1995.

[21] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Proceedings of the 24th Annual International

Symposium on Microarchitecture, pages 51–61, November 1991.

26


