Approximation Algorithms for Hierarchical Location Praohs

C. Greg Plaxton
November 2002

Abstract

We formulate and (approximately) solve hierarchical \arsiof two prototypical problems in dis-
crete location theory, namely, the metric uncapacitétededian and facility location problems. Our
work yields new insights into hierarchical clustering, alaly used technique in data analysis. First, we
show that every metric space admits a hierarchical clugjehiat is within a constant factor of optimal at
every level of granularity with respect to the average (sedjpdistance objective. Second, we provide a
natural solution to the leaf ordering problem encounteneti¢ traditional dendrogram-based approach
to the visualization of hierarchical clusterings.

*Department of Computer Science, University of Texas at idugtustin, TX 78712. This research was supported by NSF
Grant CCR-9821053. Emaihl axt on@s. ut exas. edu.

1 Introduction

Inspired by the recent work of Dasgupta [4] on a hierarchieasion of thek-center problem, we formulate
hierarchical versions of the metric uncapacitatechedian and facility location problems, two prototypical
problems in discrete location theory. Before defining andresking the hierarchical versions of these
problems, we review the definitions of tlikecenter, k-median, and facility location problems. We also
review certain “incremental” versions of tlkecenter and:-median problems, and introduce a corresponding
incremental version of the facility location problem. Tineremental versions of these problems represent
a natural intermediate step towards defining their hiefeativersions, as will be seen in Section 3.

1.1 Prdiminaries

For any realx > 1, we say that a distance functidrdefined over a set of points satisfies thapproximate
triangle inequalityif, for any triple of pointsz, y, andz, d(z,z) < a(d(z,y) + d(y,z)). We define an
«a-approximate metric spacas a set of points with an associated distance funclidimat satisfies posi-
tivity (d(xz,y) > 0 unlessz = y, in which cased(x,y) = 0), symmetry {(x,y) = d(y,z)), and the
«a-approximate triangle inequality. Our motivation for assog such a relaxed triangle inequality is that
squaring each of the distances in a given metric space yadleipproximate metric space. More generally,
raising the distances of a metric space to any constant pgelds ana-approximate metric space for some
constantae > 1. Consequently, the various constant-factor approximadilgorithms that we develop in
this paper fora-approximate metric spaces immediately imply constactisfaapproximation algorithms
for related problems on metric spaces in which the objedtinetion is altered by raising each distance to
some constant power. In keeping with the foregoing motivative will assume throughout the paper that
the parametetr governing the relaxed triangle inequality is a constant.

In this paper we will define approximation versions of vasiayptimization problems. As a convenient
shorthand, throughout this paper we define an approximatgurithm for a given problem to baceif and
only if it is constant-factor approximate and runs in polgmal time. Remark: The constant factor in the
approximation bound is allowed to depend on the constagaverning the relaxed triangle inequality.

Throughout the remainder of the paper, we fix an arbittegpproximate metric space with associated
nonempty point set/ and distance functio@d. We letn denote|U|, we define arindexas an integer
in the rangel to n inclusive, and we define scaling factoras a nonnegative real. Each pointhas an
associated nonnegativeeightw(z) andvaluev(z). For any set of points(, we letw(X) = 3, . x w(z)
andv(X) = Y,e x v(x).

For any pointz, nonempty sets of point& andY’, and scaling factok, we define

d@,Y) = mind(z,y), (1)
yey

radius(X,Y) = me%)(cd(x,Y), 2

error(X,Y) = Zd(w,Y)-w(w), (3)
zeX

costA\(X,Y) = X-error(X,Y) +o(Y). 4)

Remark: We occasionally abuse our notation slightly by fifigng a singleton set with its lone element.
For example, we generally writgror (X, z) instead oferror (X, {z}).

For any nonempty set of poinf§ and integerk, 1 < k < |X|, we letradiusy(X) (resp.,errory(X))
denote the minimum, over all subséfsof X such thalY| = k, of radius(X,Y") (resp.,error(X,Y)).
Similarly, for any nonempty set of point& and scaling factoi, we let cost(X) denote the minimum,
over all nonempty subsel$ of X, of cost\(X,Y).

In Sections 1.2 through 1.5 below, we define a number of loogiroblems and review the prior work
on these problems. In our discussions of prior work, we itstur attention to the important special case
a = 1, since most of the existing work assumes a strict triangdguiality. Section 1.6 gives an outline of
the remainder of the paper.

1.2 Thek-center and k-median problems

A nonempty set of pointsX is said to achieve aadius (resp., error) ratioof a if radius(U, X) (resp.,
error (U, X)) is at mosta timesradius x| (U) (resp.,error| x|(U)). Given an index, the k-center (resp.,
k-median) problemasks us to determine a set bipoints with minimum radius (resp., error) ratio. /A
center (resp.k-median) algorithm ig-approximateif it computes a set of points with radius (resp, error)
ratioa.

We now give a brief overview of the approximability resultsokvn for thek-center andk-median
problems. The farthest point technique of Gonzalez [5]dgeh simple greedg-approximatek-center
algorithm running inO(nk) time. Hochbaum and Shmoys [7] match this factor-of-2 apipnaxon bound
(albeit with a somewhat worse running time) using a more gea@proximation technique that is applicable
to a certain class of “bottleneck” problems that inclulesenter. Hochbaum and Shmoys [7] also show that
no polynomial timek-center algorithm can achieve an approximation factoebdian 2 unles® = NP.
Thus, the approximability of-center is well understood. The situation with respectéd:tmedian problem
is somewhat more complicated. The first nicenedian algorithm is due to Charikat al.[3]. That result
has subsequently been improved in terms of both quality pfagimation and running time. Currently, the
best approximation factor associated with any rikemedian algorithm i + ¢, wheree is an arbitrarily
small positive constant; this result is due to Astal.[1]. Jainet al.[8] show that there is no nicg +2/¢)-
approximatek-median algorithm unledsP C DTIME[nC(°glog)] The reader is referred to [8] for a more
complete survey of prior work on tHemedian problem.

1.3 Theincremental center and median problems

We define aank functionas a numbering of the points frobrto n — 1. A rank functionr is said to achieve
aradius (resp., error) ratioof a if for any indexk, radius(U,{z € U | r(z) < k) (resp.,error(U,{z €

U | r(z) < k)), is at mosta timesradiusy (U) (resp.,error(U)). Theincremental center (resp., median)
problemasks us to determine a rank functierwith minimum radius (resp., error) ratio. An incremental
center (resp., median) algorithmdsapproximate if it computes a rank function with radius fre®rror)
ratioa.

The farthest point technique of Gonzalez [5] provideksapproximateO(n?)-time incremental center
algorithm. Given the hardness result for theenter problem, no polynomial time incremental center al-
gorithm can achieve a better radius ratio unlPss- NP. The incremental median problem is addressed
in [10], where it is motivated within an online framework amderred to as the online median problem. The
incrementak-median algorithm of Mettu and Plaxton [10] runs@{n?) time if the ratio of the maximum
interpoint distance to the minimum interpoint distance®§*), and achieves a cost ratio of approximately
30. More recently, Mettu and Plaxton [11] have presentedasiest (randomized) nidemedian algorithm
known. That algorithm runs i®(nk) time for &k betweenlogn and ; see [11] for the general time
bound.

n
logZ n

1.4 Thefacility location problem

We say that a nonempty set of poirXs has acost ratio ofa with respect to a given scaling factarif
cost (U, X) < a- costy(U). Thefacility location problemasks us to determine a nonempty set of points

with minimum cost ratio with respect to a given scaling factofacility location algorithm is:-approximate
if it computes a set of points with cost ratiovith respect to any given scaling factor.

The first nice facility location algorithm is due to Shmastsal. [12]. That algorithm has subsequently
been improved in terms of both quality of approximation adlwe running time. Currently, the best
approximation bound established for any nice facility tema algorithm is approximately.52; this result
is due to Mahdiaret al. [9]. Guha and Kuller [6] show that there is no nitel63-approximate facility
location algorithm unlesslP C DTIM E[no(Ioglog ")]. The fastest nice facility location algorithm known is
the O(n?)-time greedy algorithm presented in [10], which achieveaggroximation ratio of 3. The reader
is referred to [9] for a more complete survey of prior work be facility location problem.

1.5 Theincremental facility location problem

A threshold sequends a nondecreasing sequence of valiest; <ty < --- < t, drawn fromR U {oo}.
We say that a rank functionand threshold sequenée= t; < ¢ty < --- < t,, achieve aost ratioof a
if for any scaling factor\,

cosi(U,{z €U | r(z) <k}) < a-errorg(U) (5)

wherek is the largest index such thgt < A.

Theincremental facility location problerasks us to determine a rank function and threshold sequence
with minimum cost ratio. An incremental facility locatiotgarithm is said to be-approximate if it com-
putes a rank function and threshold sequence with costdatio

There is no prior work on the incremental facility locatioroplem as we are introducing it for the first
time in the present paper.

1.6 Outlineof theremainder of the paper

The remainder of the paper is organized as follows. Sectipre€ents a nice incremental facility location
algorithm. Section 3 develops hierarchical versions ofitheenter,k-median, and facility location prob-
lems. As discussed in Section 3, the work of Dasgupta [4]idesva nice hierarchical center algorithm. In
Section 4, we present a simple algorithm for converting adgsmution to the incremental median (resp.,
facility location) problem into a good solution for the haechical median (resp., facility location) problem.
This property is captured by our main techincal lemma, Lerdmif. In Section 5, we use Lemma 4.10
and the incremental median result of Mettu and Plaxton [@@stablish our main theorem with respect to
the hierarchical median problem. Similarly, in Section & use Lemma 4.10 and the incremental facility
location result of Section 2 to establish our main theoreith wéspect to the hierarchical facility location
problem.

2 A Nicelncremental Facility Location Algorithm

In this section we prove Theorem 1 below. Theorem 1 providesyduilding block for the nice hierarchical
facility location algorithm of Section 6. (The hierarchi¢acility location problem is defined in Section 3.4.)

Theorem 1 There is a nice incremental facility location algorithm.

Let A be any existing:-approximate nice facility location algorithm, wherés some positive constant.
A number of such algorithms have been presented in thetlitrathough the presentation is typically
restricted to the special case= 1 (i.e., the strict form of the triangle inequality is assumelth order to

make use of such an algorithm in the present context, we meendsiure that it can be modified to yield a
constant factor guarantee for any constantortunately, this is invariably a straightforward exseci For
example, it is easy to verify that the simgl&n?)-time facility location algorithm presented in [10] hassthi
property.

Let Z denote a given instance of the incremental facility locafiooblem. Thus for any scaling factor
A, (Z,) is an instance of the facility location problem.

If |U| = 1, or every point has value zero, or every point has weight,zéen the theorem is straight-
forward to prove. Therefore, in what follows, we assume tiate of these conditions hold. Let and
vT denote the minimum and maximum nonzero point values, réispBc Let w~ denote the minimum
nonzero point weight. Lei” denote the sum of the point weights. ldt andd™ denote the minimum and
maximum interpoint distances.

We will prove Theorem 1 by usingl as a subroutine in aBc-approximate nice incremental facility
location algorithmB. (Remark: The factor o8 can easily be improved tb + ¢, for an arbitrarily small
positive constard, and perhaps further. Our current goal is to simply estalsiisne constant approximation
bound.) We begin by studying optimal or near-optimal solai to the facility location instana&, \) for
various ranges ok.

this case, we claim thaY = {z | w(z) > 0} is an optimal solution to the facility location instanu()ﬁ A).
To see this, le¥” be an arbitrary solution and note thator (U, X) = 0 anderror(U,Y) > error(X,Y) >
~w™-|X\Y|, soX(error(U,Y)—error(U, X)) > vt-|X\Y|. Furthermorey(X)—v(Y) <v'-|X\Y]|.
Thuscosty(U, X) < costA(U,Y)
Now let us consider the case wherés sufficiently small. In particular, let us assume that #
We consider two subcases. For the first subcase, assumesiigiea point: such thaw(z) = 0. In this
subcase we claim thaf = {z | v(x) = 0} is an optimal solution t¢Z,\). To see this, let” be an
arbitrary solution, and observe that¥if C X thenerror(U, X) < error(U,Y) andv(X) = v(Y) =0, so
cost\(U, X) < cost\(U,Y);if |Y \ X| > 0, thenerror (U, X) —error(U,Y) < d*W andv(Y) —v(X) >
v, S0cost (U, X) < cost)(U,Y) by the case assumption. For the second subcase, assuréithat 0
for every pointz. In this subcase we claim that the solutidh = {z}, wherez is a point such that
v(xz) = v, is within a factor of two of optimal. To see this, note thast\(U,Y) > v(Y') > v~ for any
solutionY’, while error (U, z) < dtW, so thatcost \(U,z) < Md™W +v~ <20~ by the case assumption.
We now define a sequence of scaling factprs| 0 < i < ¢), where)\; = 4,d_ — and/ is the least

integer such thak, ; < 5. Thusl = O(log jf:fu‘j‘f), which is bounded by a polynomial in the size
of the input. We compute a solutiaki; for each facility location instancéZ, A;), 0 < i < ¢, as follows.
Fori = 0 we use the approach discussed above for the case WhEr%L Thus Xy has optimal cost
with respect to any scaling factmgreater than or equal ty. Fori = £ — 1 we use the approach discussed
above for the case wheve< ;. ThusX,_; has a cost ratio of 2 with respect to any scaling factor less
than or equal t@\,_,. For eacrn such thal < ¢ < ¢ — 1, we run.A on the instancéZ, \;) to obtain a
solution X; with cost ratioc.

Let \j = oo, A} = 2)\; for 0 < i < ¢, and)\, = 0. Then the claims established in the preceding
paragraph, along with Lemma 2.1 below, immediately impbt flor everyi, 0 < ¢ < ¢, the solutionX; has

cost ratio2c with respect to any scaling factarsuch that\;, ; < A < Al

Lemma2.1 If X is a solution to the facility location instand&, A) with cost ratioa, then for any scaling
factor A’ such that\/2 < X' < 2, X is a solution to the facility location instand€, \’) with cost ratio
2a.

Proof: If A < X < 2) then the result follows sinceost (U) > costy(U) and costy (U, X) <
2 - cost)(U,X). Similarly, if A/2 < X' < A, the result follows sinceosty (U) > costx(U)/2 and

4

costyx (U, X) < cost\(U, X). [

We now inductively define an increasing sequence of intejefsiy < a; < --- < a,, as follows. For
each successive positive integewe definea; as the least integer such that

2- costy, (U, Xq;) < costy, (U, Xq,_,)

if such an integer exists; otherwise, we sgtto £ and terminate the sequence. By the analysis of the
preceding paragraph, coupled with the observation thatdbeof a solution does not increase if the scaling
factor is decreased, we obtain that for every < i < m, the solutionX,, has cost ratidc with respect to
any scaling factoh such that\,, ., <A <A,

Foreach,0 <i < m,letY; = Ui<j<mXa; and note that

v(Yi) <) u(Xq,)
i<j<m
and
error(U,Y;) < error(U, X,,),

SO

cost(U,Y;) < Z cost\(U, Xa,)
i<j<m
< 2-costp(U, Xq,)

for any scaling factoA. Combining this with the claim of the previous paragraph.obv&in that for every,
0 < i < m, the solutionY; has cost rati@c with respect to any scaling factarsuch thal‘A{h_+1 <A,
Thus we have obtained a sequence of solutiBps; C --- C Y, for which Y,,,_; has cost rati®c
with respect to any scaling factarsuch thad = X, < XA < X, |, Y, » has cost ratiGc with respect
to any scaling factoa such that\, ; < XA < XA, ., and so on up tdj, which has cost rati@c with
respect to any scaling factdrsuch that\;, < A < A, = co. Given such a sequence of solutions it is
straightforward to compute a rank function and threshotflieace with cost rati8c. This completes the
proof of Theorem 1.

3 Hierarchical Clustering and Some Related Notions

Hierarchical clustering is a widely used technique in datalysis. In Section 3.1 below, we review the
definition of a hierarchical clustering and describe theddad dendrogram-based approach to depicting
a given a hierarchical clustering. Section 3.2 introducetoaely related structure that we refer to as a
hierarchical assignment. Section 3.3 defines a specialafasbierarchical assignment that we refer to as
a hierarchical ordering. Section 3.4 uses the notion of mfdhical ordering to define several hierarchical
location problems.

3.1 Hierarchical Clustering

A clusteringis a partition ofU into a number of nonempty sets, dusters A k-clustering is a clustering
with k clusters. Theadius (resp., error) of &-clusteringwith associated clustets;, 0 < i < k, is defined
asmaxo<i<k radiusy (X;) (resp.,> o<, error1(Xi)).

A hierarchical clusterings a set ofn clusterings containing orfeclustering for each indek, and such
that for any index: less tham, the (k + 1)-clustering can be transformed into theslustering by merging
some pair of clusters.

Question 3.1 Does every metric space admit a hierarchical clusteringdbrch each associatdeclustering
has radius (resp., error) within a constant factor of optitha

Dasgupta [4] answered the radius version of Question 3.Adaraffirmative. He left open the question
of whether a similar result holds with respect to error. lct®m 3.3 we define the notion of a hierarchcial
ordering and formulate a stronger version of Question 3th wespect to hierarchical orderings.

We remark that there aifg, ;. -, (’2“) = nl(n—1)!2' =" distinct hierarchical clusterings 6f, since there

is a uniquen-clustering and there ar@) different merge operations that can be applied to/aciustering

to obtain a(k — 1)-clustering. Furthermore, the sequence:6f 1 merges performed in successively trans-
forming then-clustering into thd -clustering induce an-leaf binary tree in which each leaf corresponds to
a point and each of the — 1 internal nodes corresponds to a merge. Thus it is naturalrsider depicting

a hierarchical clustering using a standard binary treerdiag The shortcoming of such a representation is
that information regarding the relative order of the merges general, lost. For example, in a binary tree
in which several nodes appear at the same level, we canhiot welhich order the corresponding merges are
performed.

A dendrogramis a drawing of a binary tree that preserves the total ordeheinternal nodes (induced
by the merge operations) by ensuring that no two internaks@gppear at the same height on the page. In
addition, then leaves are normally arranged along a horizontal line at ¢it®im of the tree.

Remark: Sometimes the height of an internal node not onlpda® the relative order of the merges,
but is in fact proportional to some distance measure betwleetwo clusters being merged. This sort of
approach is well-suited to the depiction of hierarchicaisttrings obtained via agglomerative heuristics
(e.g., single, complete, or average linkage) that repgatedrge the two closest clusters (according to some
distance measure such as closest pair, farthest pair, @gevdistance) and for which it can be proven that
the distances associated with successive merges are neasieg.

The primary appeal of the dendrogram representation ofrargigical clustering is that it enables one
to visualize the data at any desired level of granularityvisoalize thek-clustering associated with some
desired value ok, one simply scans the dendrogram for the height at which iadmal line leaveg — 1
internal nodes above amd— & internal nodes below. Note that thdree edges cut by such a horizontal line
lead downwards to the roots éfsubtrees. Thé sets of leaves associated with théssubtrees form the
desiredk-clustering.

An issue that arises in generating a dendrogram repre&gentidta given hierarchical clustering is that
there is more than one dendrogram corresponding to a giexarbhical clustering. More precisely, it is
well known that there arg*~! different dendrograms corresponding to a given hieraatititistering. This
factor arises because exchanging the left and right subtrany internal node in a dendrogram vyields
an alternative encoding of the same hierarchical clugiefTine problem of determining which of tiR&—1
possible dendrograms to use to represent a given hieratdhistering is sometimes called tieaf ordering
problem Various approaches have been proposed for addressingahertiering problem. For example,
Bar-Joseptet al. [2] have recently presented &n?)-time dynamic programming algorithm that can be
used to compute a leaf ordering minimizing the sum of theadists between adjacent points in the ordering.
In Section 3.3 we suggest a natural alternative approadtetteaf ordering problem. We also describe how
our approach can be used in combination with any given labdrarg algorithm.

3.2 Hierarchical Assgnment

An assignments a function fromU to U. A k-assignments an assignment with a range of size The

radius (resp., error) of an assignmentis defined asnax,cy d(z, o(z)) (resp.,>,cp d(z, o(x)) - w(x)).
A hierarchical assignmenis a set ofn assignments containing orieassignment for each indek

and such that for any indek less thamn, there exists a pair of points andy for which the (k + 1)-

6

assignment can be transformed into thassignment by reassigning tall points assigned tg. Note that
this transformation may be viewed as an “oriented mergehefttvo sets of points mapped toandy in
the (k + 1)-assignment. (We consider the merge to be oriented bechesmion of these sets of points is
assigned ta:;, and noty, in the k-assignment.)

A notable difference between a hierarchical assignmentaahikrarchical clustering is that whereas
there is only one possible-clustering ofU, there aren! possiblen-assignments, one corresponding to each
permutation. Furthermore, fdr > 1, there arek(k — 1) different oriented merge operations that can be
applied to any-assignment to obtain @& — 1)-assignment. It follows that there are exadih})?(n — 1)!
distinct hierarchical assignments Gt

We define gparent functionp with respect to a given rank functiahas a mapping frond/ to U such
thatp(z) = z if r(z) = 0 andr(p(x)) < r(x) otherwise.

The foregoing discussion suggests the followpgymutation-rank-parentepresentation in which a
hierarchical assignment with associateéssignment, 1 < k < n is represented by specifying the
following information: (1) The permutation,,; (2) The rank function- such that the range of; is equal to
{z | r(z) < k}; (3) The parent functiop with respect ta- such that for any indek less tham, the oriented
merge operation transforming;, into oy, reassigns t@(x) all points assigned to, wherer(z) = k.

Note that there are! choices for the permutatiar, andn! choices for the rank function Furthermore,
for every choice ofr,, andr, there arén — 1)! choices for the parent functign Thus there arén!)?(n—1)!
possible permutation-rank-parent representations, aneaich hierarchcial assignment.

3.3 Hierarchical Orderings

We define ahierarchical orderingas a hierarchical assignment for which the associatadsignment is
idempotent for allk. Note that the identity assignment is the only idempoteiaissignment on a set af
points. Furthermore, for any indéx< n, if the (k + 1)-assignment associated with a hierarchical assign-
ment is idempotent, then so is tkeassignment. Thus we can equivalently define a hierarchichdring

as a hierarchical assignment for which the associatadsignment is the identity assignment. Thus the
permutation-rank-parent representation for hierard¢lzissignments described in Section 3.2 corresponds to
a rank-parent representation for hierarchical orderiags, there are exactly!(n — 1)! hierarchical order-
ings.

Question 3.2 Does every metric space admit a hierarchical ordering forchiteach associatel-assignment
has radius (resp., error) within a constant factor of optifha

The following view of a hierarchical ordering may be usefubrder to better understand the relationship
between Question 3.2 above and Question 3.1 posed (andraas\iagr the radius case) by Dasgupta [4]. A
hierarchical ordering may be interpreted as a hierarcluicstering in which the points of each cluster are
assigned to a unique “representative” point in the clustdsject to the additional constraint that when two
clustersX andY are merged, the representative of the resulting clustexgsired to be chosen as either
the representative of or the representative &f. If we were to drop the latter constraint, there would be
no difference between the hierarchical ordering questimsed above and the corresponding hierarchical
clustering questions posed by Dasgupta. But by constiithia choice of representative, we only make it
more difficult to remain within a constant factor of optimat &ll indicesk.

For the radius version of the problem, theapproximate triangle inequality implies that for any ¢érs
X and pointz in X, radius(X, z) < 2« - radiusy(X). Given that we are assumingto be a constant, this
implies that a given metric space admits a hierarchicalrargdor which each associatddassignment has
radius within a constant factor of optimal if and only if itraids a hierarchical clustering for which each

associated-clustering has radius within a constant factor of optingal, Dasgupta’s work [4] immediately
provides a positive answer to the radius version of Que&ian

For the error version of the problem, which is the primaryu®of the present paper, note that the
(weighted) sum of distances to the representative of a gikester can vary dramatically (by a factor essen-
tially as large as the diameter of the metric space) depgralinthe choice of cluster representative. Thus
the error version of Question 3.2 is stronger than the emosion of Question 3.1 in that a positive answer
to the former question immediately implies a positive arrsiwéhe latter question, but not vice versa.

In Section 5 we resolve the error version of Question 3.2 edfiirmative, thereby also providing a
positive answer to the error version of Question 3.1. (In,féar any constanty, we provide a positive
answer to Question 3.2 for amyapproximate metric space.)

Let us now briefly return to the leaf ordering problem mergidmt the end of Section 3.1. Earlier we
saw that the leaf ordering problem arises because thei2*atadifferent dendrograms corresponding to a
given hierarchical clustering. But the number of dendrotgds exactly equal to the number of hierarchical
orderings, so if we encode a hierarchical ordering as a ognaim by adopting the convention that the
leftmost leaf in each subtree is the representative of thated corresponding to that subtree, then the leaf
ordering problem goes away.

On the other hand, there may be applications in which thebiléyi associated with the leaf ordering
problem is viewed as advantageous, since it allows us thertppty to optimize some auxiliary objective
function in the choice of the particular dendrogram to beduserepresent a given hierarchical clustering.
In such a context, if we wish to represent a hierarchical mmgenstead of a hierarchical clustering, it may
be preferable to apply a given leaf ordering technique, bad to use the following modified dendrogram
diagram to indicate the representative of each cluster. tiyp&al dendrogram, when two clusters are
merged, a horizontal line is drawn that connects the rooth@two clusters, and a vertical line is drawn
from the center of this horizontal line upward, to represinat root of the merged cluster. Instead, the
vertical line representing the new root can be drawn so thstriply extends the vertical line associated
with the representative. With this modified dendrogram dieg we can apply an arbitrary leaf ordering
heuristic and still represent any given hierarchical drager

3.4 Hierarchical Location Problems

A hierarchical ordering is said to achieveadius (resp., error) ratioof « if each associated-assignment
has radius (resp., error) at mastimes radiusy(U) (resp., error(U)). The hierarchical center (resp.,
median) problermasks us to determine a hierarchical ordering with minimudiusa (resp., error) ratio. A
hierachical center (resp., median) algorithnmuiapproximate if it is guaranteed to return a solution with
radius (resp., error) rati@.

As indicated earlier, Dasgupta’s work provides a nice h@maal center algorithm. (Dasgupta only
considers the case = 1, but his work is easily extended to handle an arbitrary @nist.) In Section 5,
we provide a nice hierarchical median algorithm.

A hierarchical ordering, together with a threshold seqedne- ¢; < t, < --- < t,, achieves &ost
ratio of a if for any scaling factor\, if k is the largest index such that> ¢, then thek-assignment asso-
ciated with the hierarchical ordering has cost at mosimes cost(U). Thehierarchical facility location
problemasks us to determine a hierarchical ordering and threslegjdesice with minimum cost ratio. A
hierarchical facility location algorithm is-approximate if it computes a hierarchical ordering andshold
sequence with cost ratia In Section 6 we present a nice hierarchical facility lomatalgorithm.

In Section 3.3 we discussed two ways to represent a hiecalahidering as a dendrogram. It is worth
remarking that the solution to an instance of the hieraetHacility location problem, that is, a hierarchical
ordering and associated threshold sequence, also hasralmndrogram representation, since we can use

the heights of the internal nodes of the dendrogram to entted#hreshold sequence.

4 An Error-Preserving Parent Function

Throughout this section, we assume a fixed (and arbitrank fianction that numbers the pointsihfrom
0 ton — 1. For the sake of brevity, we use the term “parent functionfetier to any parent function with
respect to this rank function. In order to streamline ouation, throughout this section we identify each
point with its rank. Thus, throughout this section, an egpien such as “point’ refers to the point with
rank ¢, where0 < ¢ < n. As an additional notational convenience, for any natutahber:, we let[:]
denote the sefj | 0 < j < ¢}. For example, in this section we use the expresgigno refer to the set of
pointsU.

As discussed in Section 3.3, once we specify a parent fungtio go along with the rank function fixed
above, we have specified a hierarchical ordering. For argnpdnnctionp and indexk, let o denote the
k-assignment associated with the hierarchical orderingraened byp, and letr} denote the assignment

such that for any point,
() = { i) ctherise. (©)
Lemma4.1 For any parent functiom, o2 is the identity assignment and
op = TI€U€+1'
for any indexk less tham.

Proof: The claim thato? is the identity assignment is immediate. The remainingnctiaiould also be
immediate if the condition < k appearing in Equation 6 were changed tg k. By the definition ofo?,
the range ob? is [k] for any parent functiop and indexk. Thus, for any parent functiomand indexk less
thann, the assignmervt,faiﬂ is not altered if the condition < k appearing in Equation 6 is changed to
i # k, completing the proof. [

For any parent functiop and pointi, we inductively define the s&t in terms of the set$? associated
with pointsj > ¢ as follows:

77 = {i} u{17 | p(5) = i}-
Lemma4.2 For any parent functiorp and indexk, {7 | p(i) < k < i} is a partition of{i | k < i < n}.

Proof: We prove the claim by reverse induction bnThe base casé, = n, is trivial. For the induction
step, letk be any index less tham, and note that

{i[p() <k <i}f=({i|p@) <k+1<i}U{k})\{i|p(i) =k},
so the claim follows by the induction hypothesis and the défimof 7% . [

The following lemma gives a useful recharacterization athef error associated wid, for any parent
functionp and indexk.

Lemma 4.3 For any parent functio and indexk, the error of assignmenty, is equal to

Z error(T?, p(i)).

i:p(3)<k<i

Proof: See Appendix A. [

The remainder of this section is organized as follows. $acfi.1 presents a simple algorithm for
computing a “good” parent function with respect to our agbif fixed choice of rank function. Section 4.2
shows that for any indeX, the parent function computed by this algorithm minimizes érror of the
assignment}, to within a constant factor.

4.1 Algorithm

Our algorithm for determining a “good” parent functignproceeds by computing(¢) for successively
lower values of, ranging fromn — 1 down tol. (Recall thafp(0) = 0 for any parent function.) Hencg”

is fully determined by the time we are ready to compe(tg, so thatZ?” can be used in the computation of
p(7). In particular, we sep(z) to

min{j € [i] [d(i, j) = d(i,[1]) V d(i,]) - w(I7) < 1 - error(I7,)} (7)

wherec; is a sufficiently large constant to be specified later. (Wenaltely choose:; = 2o+ 1.) Itis
straightforward to give a®(n?)-time implementation of the above parent function comorat

4.2 Analysis

Throughout this section, we Igtdenote the particular parent function computed by the dhgorof Sec-
tion 4.1.
The following lemma is a straightforward consequence okttapproximate triangle inequality.

Lemma 4.4 For any pointz and nonempty sets of poinksandY’, we have

d(z,Y) w(X)

a —error(X, z) < error(X,Y) < a[d(z,Y) - w(X) + error(X, z)]

Proof: See Appendix B. [

Lemma 4.5 For any nonzero pointsuch that(z, p(i)) = d(s, [¢]) andd (s, p(z))-w(TF) > e1-error(TF, 1),
we have

a?(e; +1)

eror(T7, p(i)) o

- error (T?, [i]).

Proof: Note that

L [(@)

" — error(T7, 1)

_ d(Z,p(Z))) ’LU(T{”) _ eT’T’OT(T-p Z)

error (17, [z])

where the first inequality follows from Lemma 4.4. Lemma 4sbamplies
eror(T?,p(i)) < old(i,p(i)) - w(TF) + error(I¥,).

The claim of the lemma follows sine&i, p(:)) - w(I}) > c1 - error (17, 7).]

10

Lemma 4.6 For any nonzero point such thatd(z, p(z)) - w(I¥) < ¢; - error(IF,), we have
error(I7,p(i)) < aler + 1) - error(IF)i).

Proof: Immediate from Lemma 4.4.]

Lemma 4.7 For any nonzero point such thatd(i, p(z)) - w(I¥) < c1 - error (T¥,), andp(i) # 0, we have

a?(e; +1)

eror(T7, p(i)) p—

error(T7, [p(3))).

Proof: By the minimality of our choice of(¢) as specified in Equation 7, we have
d(i,j) - w(TF) > e - error(TF, i)}
for all j in [p(¢)], and hence

d(z, [p(d)]) - w(TP) > ¢ - error(TP,4)}.

Thus
error(1?, [p(i)) > Do W) e
o
<C—1 — 1) . error(TZp,i),
(6%
where the first inequality follows from Lemma 4.4. The leminart follows from Lemma 4.6. [

Lemma 4.8 For any pointi such thatp(i) # 0, we have

a?(e; +1)

eror(T7, p(i)) p—

error(T7, [p(3))).

Proof: If d(i,p(i)) = d(3, [i]) andd(i, p(3))-w(TF) > ¢1-error(TY,), then the desired inequality follows

)

from Lemma 4.5 and the observation tha(t)] C [].

Otherwised(i, p(i)) - w(T¥) < ¢1 - error(T?,), and the result follows from Lemma 4.7. [
Let
a?(c; +1)2
cg = —.
] — &

Lemma 4.9 For any nonzero point, we have

error(T?,p(z)) < ca- error(I7,[i]).
Proof: If d(i,p(i)) = d(3, [i]) andd(i, p(¢))-w(I}) > c1-error (I}, 1), then the desired inequality follows
from Lemma 4.5.

Otherwised(i, p(i)) - w(IF) < ¢1 - error(T¥,4), and Lemma 4.6 implies

error(TF,p(1)) < a(er + 1) - error(TF, 7).

11

The result then follows since

error(Tf,i) = eror(i,i)+ > error(T},1)
Jp(d)=1

Z error(T]p, [i])

Jp(§)=i

2 1
arvar’y (e +) error (i, [i]) + Z error (Tp [i])

Cl — &
Jp(j)=t

a?(e; +1)
] — &

IN

IN

= ﬁ - error(T?, [i]).

(The first step follows from the definition &7 and the observation thatror(i,i) = 0. The second step
follows from Lemma 4.8 sincé # 0. The final step follows from the definition at’.) |

Lemma4.10 For any indexk, the error ofg?, is at moste; - error([n], [k]).

Proof: By Lemma 4.3, the error aff is
Z error (TP, p(7)) < Z co - error (TP [4])
i:p(i) <k<i i:p(3)<k<i

< - Y, error(TF,[k])
iip(i)<k<i
= ¢y - error([n],[k]).

(The first step follows from Lemma 4.9. The second step fdl@imcek < i. The third step follows from
Lemma4.2.) [

In order to minimize the approximation ratio ef associated with the preceding lemma, weget
2a + 1 and obtainey = 4a3(a + 1).

5 A NiceHierarchical Median Algorithm
Theorem 2 There is a nice algorithm for the hierarchical median pratle

Proof: Immediate from Lemma 4.10 and the incremental median algorbf Mettu and Plaxton [10].

]
6 A NiceHierarchical Facility Location Algorithm
Theorem 3 There is a nice algorithm for the hierarchical facility lo@an problem.
Proof: Immediate from Theorem 1 and Lemma 4.10. [

1See also the full version of [10], acceptedSbAM Journal on Computingnd available at the author’s website, for details
regarding the extension of the online median result-@pproximate metric spaces for any constant

12

Acknowledgments

The author would like to thank Sanjoy Dasgupta, XiaozhouRlaimgopal Mettu, Yu Sun, and Arun Venkatara-
mani for their valuable comments on earlier drafts of thiswaszript. Also, the author would like to thank
Joydeep Ghosh for suggesting the modified dendrogram diediscussed at the end of Section 3.3.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagaad V. Pandit. Local search heuristics
for k-median and facility location problems. Rroceedings of the 33rd Annual ACM Symposium on
Theory of Computingpages 21-29, July 2001.

Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, A. M. Hamel, 3. Jaakkola, and N. Srebrd{-ary
clustering with optimal leaf ordering for gene expressiated InProceedings of the 2nd Workshop on
Algorithms in BioinformaticsSeptember 2002.

M. Charikar, S. GuhaE. Tardos, and D. B. Shmoys. A constant-factor approximadigorithm for
the k-median problemJournal of Computer and System Sciené&gs129-149, 2002.

S. Dasgupta. Performance guarantees for hierarchlaatering. In J. Kivinen and R. H. Sloan,
editors,Proceedings of the 15th Annual Conference on Computatiosatning Theoryvolume 2375
of Lecture Notes in Computer Scien&pringer, July 2002.

T. F. Gonzéalez. Clustering to minimize the maximum iotester distance.Theoretical Computer
Science38:293-306, 1985.

S. Guha and S. Khuller. Greedy strikes back: Improvedlifadocation algorithms. Journal of
Algorithms 31:228-248, 1999.

D. S. Hochbaum and D. B. Shmoys. A best possible heuffigtithe k-center problemMathematics
of Operations Researci0:180-184, 1985.

K. Jain, M. Mahdian, and A. Saberi. A new greedy approamtfdcility location problems. IrfPro-
ceedings of the 34th Annual ACM Symposium on Theory of Camgppages 731-740, May 2002.

M. Mahdian, Y. Ye, and J. Zhang. Improved approximatidgoathms for metric facility location
problems. InProceedings of the 5th International Workshop on ApproxiomaAlgorithms for Combi-
natorial Optimization September 2002.

R. R. Mettu and C. G. Plaxton. The online median probl&mProceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Sciepages 339-348, November 2000.

R. R. Mettu and C. G. Plaxton. Optimal time bounds forragpnate clustering. IfProceedings of
the 18th Conference on Uncertainty in Artifical Intelligenpages 344—351, August 2002.

D. B. ShmoysE. Tardos, and K. Aardal. Approximation algorithms for feéigilocation problems. In
Proceedings of the 29th Annual ACM Symposium on Theory opQtimg, pages 265274, May 1997.

13

A Proof of Lemma4.3

For any parent functiop and indexk, we now define an associated assignnignas follows. Ifi < k, we
let 5% (i) = i. Otherwise, appealing to Lemma 4.2, we defifj¢i) as the unique point such that belongs
to 77 andp(j) < k < j.

For any parent functiop and indexk, let 77 denote the assignment

%n”:{i' if p(i) <k, @)

p(i) otherwise.

LemmaA.1 For any parent functiom, &2 is the identity assignment and

= Ho

+1

for any indexk less tham.

Proof: The claim tha&?, is the identity assignment is immediate. For the rest of ¢inenha, fix a parent
functionp and an index less tham. We now complete the proof by arguing that

63 (8) = 7 (5% 41(4) 9)

for all pointsi. We consider three cases.

First, suppose that< k. In this case, it is immediate thaf, 77, and&;’c’Jrl all mapi to 4, so Equation 9
holds.

Next, suppose that= k. We claim that}, 7+, and&l,’c’+1 all mapk to k, so Equation 9 holds as in the
preceding case. The claim is immediate &g, ;. Sincep(k) < k, the claim also holds fof. To see that
&% (k) = k, note thatk belongs tdl;, andp(k) < k.

Finally, suppose that > k. Letj denotesy ,,(i). Thusi belongs toI} andp(j) < k + 1 < j, or
equivalently,p(j) < k < j. Also, the RHS of Equation 9 is equal #J(;). We now complete our analysis
by considering two subcases.

For the first subcase, suppose thét) = k. Thean C T} . Furthermorep(k) < k, so the LHS of
Equation 9 is equal té. Furthermore, the subcase assumption implies that the Rd§uial tck.

For the second subcase, suppose gt < k. Theni belongs tdl“f andp(j) < k < j, so the LHS of
Equation 9 is equal tg. Furthermore, the subcase assumption implies that the REQuial to;. [

LemmaA.2 For any parent functiop and indexk such thatt < n, we have
hrh = EH

Proof: For any pointi, 7, (i) = 7 (i) unlessp(i) < k < i, in which casery (i) = p(i) and7y (i) = i.
The lemma follows since the conditigrii) < k& < ¢ implies thatr{ (i) = 7}, (p(z)) = p(7). m

Lemma A.3 For any parent functiop and indexk, we have

o=t

14

Proof: We prove the claim by reverse induction bnThe base casé,= n, holds sinces®?, 72, andé?, are
all equal to the identity assignment. For the induction sasgume that} , = 71 ,6%, , for some index:
less tham, and note that
op = ng’iﬂ
= TTh410%11
= TA 7Okt
= T,f&i.

(The first step follows from Lemma 4.1. The second step falénwm the induction hypothesis. The third
step follows from Lemma A.2. The last step follows from Lemfna.) [

We are now ready to complete the proof of Lemma 4.3. For amgrpdunctionp and indexk, the error
of assignment?, is

> dop(@) - w(i) = Y d(i, 8(54(0))) - wli)
i€ln] i€[n]
= > d(i,i) w(@) + Y d(E T (57(0) - w(i)
ic[k] k<i<n
= > > dG,R(ER()) - w())
ip(i)<k<i jeTP
= > > dG @) - w(l)
ip(i)<k<i jeTP
= D> 2 dU,p@) w(j)
i:p(i)<k<ijeTP
= Z error (TP, p(7)).
i:p(i) <k<i
(The first step follows from Lemma A.3. For the second stepie ibats? (i) = 71 (i) = ¢ for all 7 in
[k]. For the third step, note that the first summation vanishesesi(i, i) = 0, and the second summation
can be rewritten as a double summation using Lemma 4.2. [dfotirth step, note that € 77 where
p(i) < k < iimplies}(j) = i. For the fifth step, note that < ¢ implies}, (¢) = p(7). The last step
follows from Equation 3.)

B Proof of Lemma4.4

In the arguments that follow, let denote an assignment mapping each poirif ito a nearest point ify".
To establish the lower bound emror(X,Y), letx be an arbitrary point id(, and note that

d(z,Y) = d(z,o(z))

d(z,0(z))

> _d(xvz)

o
Y
> 50 g,
(6]
where the first inequality follows from the-approximate triangle inequality. The lower bound nowdals

by multiplying through byw(z) and summing over al in X:

error(X,Y) = Z d(z,Y) - w(zx)
zeX

15

The argument to establish the upper bounceenr(X,Y) is similar. Letz be an arbitrary point ik,
and note that

d(z,Y) d(z,0(z))
ald(z,0(z)) + d(z, 2)]

ald(z,Y)+d(z,2)],

VANVAN

where the second inequality follows from theapproximate triangle inequality. The upper bound now
follows by multiplying through byw(z) and summing over alf in X:

error(X,Y) = Z d(z,Y) - w(x)
zeX
< Y ald(zY) +d(z,2)] - w(z)
zeX
= ald(z,Y) w(X)+ error(X, z)].

16

