
Approximation Algorithms for Hierarchical Location Problems�
C. Greg Plaxton

November 2002

Abstract

We formulate and (approximately) solve hierarchical versions of two prototypical problems in dis-
crete location theory, namely, the metric uncapacitatedk-median and facility location problems. Our
work yields new insights into hierarchical clustering, a widely used technique in data analysis. First, we
show that every metric space admits a hierarchical clustering that is within a constant factor of optimal at
every level of granularity with respect to the average (squared) distance objective. Second, we provide a
natural solution to the leaf ordering problem encountered in the traditional dendrogram-based approach
to the visualization of hierarchical clusterings.

�Department of Computer Science, University of Texas at Austin, Austin, TX 78712. This research was supported by NSF
Grant CCR–9821053. Email:plaxton@cs.utexas.edu.

1 Introduction

Inspired by the recent work of Dasgupta [4] on a hierarchicalversion of thek-center problem, we formulate
hierarchical versions of the metric uncapacitatedk-median and facility location problems, two prototypical
problems in discrete location theory. Before defining and addressing the hierarchical versions of these
problems, we review the definitions of thek-center,k-median, and facility location problems. We also
review certain “incremental” versions of thek-center andk-median problems, and introduce a corresponding
incremental version of the facility location problem. The incremental versions of these problems represent
a natural intermediate step towards defining their hierarchical versions, as will be seen in Section 3.

1.1 Preliminaries

For any real� � 1, we say that a distance functiond defined over a set of points satisfies the�-approximate
triangle inequalityif, for any triple of pointsx, y, andz, d(x; z) � �(d(x; y) + d(y; z)). We define an�-approximate metric spaceas a set of points with an associated distance functiond that satisfies posi-
tivity (d(x; y) > 0 unlessx = y, in which cased(x; y) = 0), symmetry (d(x; y) = d(y; x)), and the�-approximate triangle inequality. Our motivation for assuming such a relaxed triangle inequality is that
squaring each of the distances in a given metric space yieldsa2-approximate metric space. More generally,
raising the distances of a metric space to any constant poweryields an�-approximate metric space for some
constant� � 1. Consequently, the various constant-factor approximation algorithms that we develop in
this paper for�-approximate metric spaces immediately imply constant-factor approximation algorithms
for related problems on metric spaces in which the objectivefunction is altered by raising each distance to
some constant power. In keeping with the foregoing motivation, we will assume throughout the paper that
the parameter� governing the relaxed triangle inequality is a constant.

In this paper we will define approximation versions of various optimization problems. As a convenient
shorthand, throughout this paper we define an approximationalgorithm for a given problem to benice if and
only if it is constant-factor approximate and runs in polynomial time. Remark: The constant factor in the
approximation bound is allowed to depend on the constant� governing the relaxed triangle inequality.

Throughout the remainder of the paper, we fix an arbitrary�-approximate metric space with associated
nonempty point setU and distance functiond. We let n denotejU j, we define anindex as an integer
in the range1 to n inclusive, and we define ascaling factoras a nonnegative real. Each pointx has an
associated nonnegativeweightw(x) andvaluev(x). For any set of pointsX, we letw(X) = Px2X w(x)
andv(X) =Px2X v(x).

For any pointx, nonempty sets of pointsX andY , and scaling factor�, we defined(x; Y) = miny2Y d(x; y); (1)radius(X;Y) = maxx2X d(x; Y); (2)error (X;Y) = Xx2X d(x; Y) � w(x); (3)ost�(X;Y) = � � error (X;Y) + v(Y): (4)

Remark: We occasionally abuse our notation slightly by identifying a singleton set with its lone element.
For example, we generally writeerror (X;x) instead oferror (X; fxg).

For any nonempty set of pointsX and integerk, 1 � k � jXj, we letradiusk(X) (resp.,error k(X))
denote the minimum, over all subsetsY of X such thatjY j = k, of radius(X;Y) (resp.,error (X;Y)).
Similarly, for any nonempty set of pointsX and scaling factor�, we letost�(X) denote the minimum,
over all nonempty subsetsY of X, of ost�(X;Y).

1

In Sections 1.2 through 1.5 below, we define a number of location problems and review the prior work
on these problems. In our discussions of prior work, we restrict our attention to the important special case� = 1, since most of the existing work assumes a strict triangle inequality. Section 1.6 gives an outline of
the remainder of the paper.

1.2 The k-center and k-median problems

A nonempty set of pointsX is said to achieve aradius (resp., error) ratioof a if radius(U;X) (resp.,error (U;X)) is at mosta timesradius jXj(U) (resp.,error jXj(U)). Given an indexk, thek-center (resp.,k-median) problemasks us to determine a set ofk points with minimum radius (resp., error) ratio. Ak-
center (resp.,k-median) algorithm isa-approximateif it computes a set ofk points with radius (resp, error)
ratioa.

We now give a brief overview of the approximability results known for thek-center andk-median
problems. The farthest point technique of Gonzalez [5] yields a simple greedy2-approximatek-center
algorithm running inO(nk) time. Hochbaum and Shmoys [7] match this factor-of-2 approximation bound
(albeit with a somewhat worse running time) using a more general approximation technique that is applicable
to a certain class of “bottleneck” problems that includesk-center. Hochbaum and Shmoys [7] also show that
no polynomial timek-center algorithm can achieve an approximation factor better than 2 unlessP = NP.
Thus, the approximability ofk-center is well understood. The situation with respect to thek-median problem
is somewhat more complicated. The first nicek-median algorithm is due to Charikaret al. [3]. That result
has subsequently been improved in terms of both quality of approximation and running time. Currently, the
best approximation factor associated with any nicek-median algorithm is3 + ", where" is an arbitrarily
small positive constant; this result is due to Aryaet al.[1]. Jainet al.[8] show that there is no nice(1+2=e)-
approximatek-median algorithm unlessNP � DTIME[nO(log log n)℄. The reader is referred to [8] for a more
complete survey of prior work on thek-median problem.

1.3 The incremental center and median problems

We define arank functionas a numbering of the points from0 ton� 1. A rank functionr is said to achieve
a radius (resp., error) ratioof a if for any indexk, radius(U; fx 2 U j r(x) < k) (resp.,error (U; fx 2U j r(x) < k)), is at mosta timesradiusk(U) (resp.,error k(U)). The incremental center (resp., median)
problemasks us to determine a rank functionr with minimum radius (resp., error) ratio. An incremental
center (resp., median) algorithm isa-approximate if it computes a rank function with radius (resp., error)
ratioa.

The farthest point technique of Gonzalez [5] provides a2-approximateO(n2)-time incremental center
algorithm. Given the hardness result for thek-center problem, no polynomial time incremental center al-
gorithm can achieve a better radius ratio unlessP = NP. The incremental median problem is addressed
in [10], where it is motivated within an online framework andreferred to as the online median problem. The
incrementalk-median algorithm of Mettu and Plaxton [10] runs inO(n2) time if the ratio of the maximum
interpoint distance to the minimum interpoint distance is2O(n), and achieves a cost ratio of approximately
30. More recently, Mettu and Plaxton [11] have presented thefastest (randomized) nicek-median algorithm
known. That algorithm runs inO(nk) time for k betweenlogn and nlog2 n ; see [11] for the general time
bound.

1.4 The facility location problem

We say that a nonempty set of pointsX has acost ratio ofa with respect to a given scaling factor� ifost�(U;X) � a � ost�(U). The facility location problemasks us to determine a nonempty set of points

2

with minimum cost ratio with respect to a given scaling factor. A facility location algorithm isa-approximate
if it computes a set of points with cost ratioa with respect to any given scaling factor.

The first nice facility location algorithm is due to Shmoyset al. [12]. That algorithm has subsequently
been improved in terms of both quality of approximation as well as running time. Currently, the best
approximation bound established for any nice facility location algorithm is approximately1:52; this result
is due to Mahdianet al. [9]. Guha and Kuller [6] show that there is no nice1:463-approximate facility
location algorithm unlessNP � DTIME[nO(log log n)℄. The fastest nice facility location algorithm known is
theO(n2)-time greedy algorithm presented in [10], which achieves anapproximation ratio of 3. The reader
is referred to [9] for a more complete survey of prior work on the facility location problem.

1.5 The incremental facility location problem

A threshold sequenceis a nondecreasing sequence of values0 = t1 � t2 � � � � � tn drawn fromR[f1g.
We say that a rank functionr and threshold sequence0 = t1 � t2 � � � � � tn achieve acost ratioof a

if for any scaling factor�,

cost�(U; fx 2 U j r(x) < kg) � a � error k(U) (5)

wherek is the largest index such thattk � �.
The incremental facility location problemasks us to determine a rank function and threshold sequence

with minimum cost ratio. An incremental facility location algorithm is said to bea-approximate if it com-
putes a rank function and threshold sequence with cost ratioa.

There is no prior work on the incremental facility location problem as we are introducing it for the first
time in the present paper.

1.6 Outline of the remainder of the paper

The remainder of the paper is organized as follows. Section 2presents a nice incremental facility location
algorithm. Section 3 develops hierarchical versions of thek-center,k-median, and facility location prob-
lems. As discussed in Section 3, the work of Dasgupta [4] provides a nice hierarchical center algorithm. In
Section 4, we present a simple algorithm for converting a good solution to the incremental median (resp.,
facility location) problem into a good solution for the hierarchical median (resp., facility location) problem.
This property is captured by our main techincal lemma, Lemma4.10. In Section 5, we use Lemma 4.10
and the incremental median result of Mettu and Plaxton [10] to establish our main theorem with respect to
the hierarchical median problem. Similarly, in Section 6, we use Lemma 4.10 and the incremental facility
location result of Section 2 to establish our main theorem with respect to the hierarchical facility location
problem.

2 A Nice Incremental Facility Location Algorithm

In this section we prove Theorem 1 below. Theorem 1 provides akey building block for the nice hierarchical
facility location algorithm of Section 6. (The hierarchical facility location problem is defined in Section 3.4.)

Theorem 1 There is a nice incremental facility location algorithm.

LetA be any existing-approximate nice facility location algorithm, where is some positive constant.
A number of such algorithms have been presented in the literature, though the presentation is typically
restricted to the special case� = 1 (i.e., the strict form of the triangle inequality is assumed). In order to

3

make use of such an algorithm in the present context, we need to ensure that it can be modified to yield a
constant factor guarantee for any constant�. Fortunately, this is invariably a straightforward exercise. For
example, it is easy to verify that the simpleO(n2)-time facility location algorithm presented in [10] has this
property.

Let I denote a given instance of the incremental facility location problem. Thus for any scaling factor�, (I; �) is an instance of the facility location problem.
If jU j = 1, or every point has value zero, or every point has weight zero, then the theorem is straight-

forward to prove. Therefore, in what follows, we assume thatnone of these conditions hold. Letv� andv+ denote the minimum and maximum nonzero point values, respectively. Let w� denote the minimum
nonzero point weight. LetW denote the sum of the point weights. Letd� andd+ denote the minimum and
maximum interpoint distances.

We will prove Theorem 1 by usingA as a subroutine in an8-approximate nice incremental facility
location algorithmB. (Remark: The factor of8 can easily be improved to4 + ", for an arbitrarily small
positive constant", and perhaps further. Our current goal is to simply establish some constant approximation
bound.) We begin by studying optimal or near-optimal solutions to the facility location instance(I; �) for
various ranges of�.

First let us consider the case where� is sufficiently large. In particular, let us assume that� � v+d�w� . In
this case, we claim thatX = fx j w(x) > 0g is an optimal solution to the facility location instance(I; �).
To see this, letY be an arbitrary solution and note thaterror (U;X) = 0 anderror (U; Y) � error (X;Y) �d�w� �jXnY j, so�(error (U; Y)�error (U;X)) � v+ �jXnY j. Furthermore,v(X)�v(Y) � v+ �jXnY j.
Thusost�(U;X) � ost�(U; Y) for � � v+d�w� .

Now let us consider the case where� is sufficiently small. In particular, let us assume that� � v�d+W .
We consider two subcases. For the first subcase, assume thereexists a pointx such thatv(x) = 0. In this
subcase we claim thatX = fx j v(x) = 0g is an optimal solution to(I; �). To see this, letY be an
arbitrary solution, and observe that: ifY � X thenerror (U;X) � error (U; Y) andv(X) = v(Y) = 0, soost�(U;X) � ost�(U; Y); if jY nXj > 0, thenerror (U;X)�error (U; Y) � d+W andv(Y)�v(X) �v�, soost�(U;X) � ost�(U; Y) by the case assumption. For the second subcase, assume thatv(x) > 0
for every pointx. In this subcase we claim that the solutionX = fxg, wherex is a point such thatv(x) = v�, is within a factor of two of optimal. To see this, note thatost�(U; Y) � v(Y) � v� for any
solutionY , while error (U; x) � d+W , so thatost�(U; x) � �d+W + v� � 2v� by the case assumption.

We now define a sequence of scaling factorsh�i j 0 � i < `i, where�i = v+4id�w� and` is the least

integer such that�`�1 � v�2d+W . Thus` = �(log d+v+Wd�v�w�), which is bounded by a polynomial in the size
of the input. We compute a solutionXi for each facility location instance(I; �i), 0 � i < `, as follows.
For i = 0 we use the approach discussed above for the case where� � v+d�w� . ThusX0 has optimal cost
with respect to any scaling factor� greater than or equal to�0. Fori = `� 1 we use the approach discussed
above for the case where� � v�d+W . ThusX`�1 has a cost ratio of 2 with respect to any scaling factor less
than or equal to2�`�1. For eachi such that0 < i < ` � 1, we runA on the instance(I; �i) to obtain a
solutionXi with cost ratio.

Let �00 = 1, �0i = 2�i for 0 < i < `, and�0̀ = 0. Then the claims established in the preceding
paragraph, along with Lemma 2.1 below, immediately imply that for everyi, 0 � i < `, the solutionXi has
cost ratio2 with respect to any scaling factor� such that�0i+1 � � < �0i.
Lemma 2.1 If X is a solution to the facility location instance(I; �) with cost ratioa, then for any scaling
factor �0 such that�=2 � �0 � 2�, X is a solution to the facility location instance(I; �0) with cost ratio2a.

Proof: If � � �0 � 2� then the result follows sinceost�0(U) � ost�(U) and ost�0(U;X) �2 � ost�(U;X). Similarly, if �=2 � �0 � �, the result follows sinceost�0(U) � ost�(U)=2 and

4

ost�0(U;X) � ost�(U;X).
We now inductively define an increasing sequence of integers0 = a0 < a1 < � � � < am as follows. For

each successive positive integeri, we defineai as the least integer such that2 � ost�ai (U;Xai) � ost�ai�1 (U;Xai�1)
if such an integer exists; otherwise, we setai to ` and terminate the sequence. By the analysis of the
preceding paragraph, coupled with the observation that thecost of a solution does not increase if the scaling
factor is decreased, we obtain that for everyi, 0 � i < m, the solutionXai has cost ratio4 with respect to
any scaling factor� such that�0ai+1 � � < �0ai .

For eachi, 0 � i < m, let Yi = [i�j<mXaj and note thatv(Yi) � Xi�j<m v(Xaj)
and error (U; Yi) � error (U;Xai);
so

cost�(U; Yi) � Xi�j<m ost�(U;Xaj)� 2 � ost�(U;Xai)
for any scaling factor�. Combining this with the claim of the previous paragraph, weobtain that for everyi,0 � i < m, the solutionYi has cost ratio8 with respect to any scaling factor� such that�0ai+1 � � < �0ai .

Thus we have obtained a sequence of solutionsYm�1 � � � � � Y0 for which Ym�1 has cost ratio8
with respect to any scaling factor� such that0 = �0am � � < �0am�1 , Ym�2 has cost ratio8 with respect
to any scaling factor� such that�0am�1 � � < �0am�2 , and so on up toY0, which has cost ratio8 with
respect to any scaling factor� such that�0a1 � � < �0a0 = 1. Given such a sequence of solutions it is
straightforward to compute a rank function and threshold sequence with cost ratio8. This completes the
proof of Theorem 1.

3 Hierarchical Clustering and Some Related Notions

Hierarchical clustering is a widely used technique in data analysis. In Section 3.1 below, we review the
definition of a hierarchical clustering and describe the standard dendrogram-based approach to depicting
a given a hierarchical clustering. Section 3.2 introduces aclosely related structure that we refer to as a
hierarchical assignment. Section 3.3 defines a special caseof a hierarchical assignment that we refer to as
a hierarchical ordering. Section 3.4 uses the notion of a hierarchical ordering to define several hierarchical
location problems.

3.1 Hierarchical Clustering

A clusteringis a partition ofU into a number of nonempty sets, orclusters. A k-clustering is a clustering
with k clusters. Theradius (resp., error) of ak-clusteringwith associated clustersXi, 0 � i < k, is defined
asmax0�i<k radius1(Xi) (resp.,

P0�i<k error 1(Xi)).
A hierarchical clusteringis a set ofn clusterings containing onek-clustering for each indexk, and such

that for any indexk less thann, the(k + 1)-clustering can be transformed into thek-clustering by merging
some pair of clusters.

5

Question 3.1 Does every metric space admit a hierarchical clustering forwhich each associatedk-clustering
has radius (resp., error) within a constant factor of optimal?

Dasgupta [4] answered the radius version of Question 3.1 in the affirmative. He left open the question
of whether a similar result holds with respect to error. In Section 3.3 we define the notion of a hierarchcial
ordering and formulate a stronger version of Question 3.1 with respect to hierarchical orderings.

We remark that there are
Q2�k�n �k2� = n!(n�1)!21�n distinct hierarchical clusterings ofU , since there

is a uniquen-clustering and there are
�k2� different merge operations that can be applied to anyk-clustering

to obtain a(k � 1)-clustering. Furthermore, the sequence ofn� 1 merges performed in successively trans-
forming then-clustering into the1-clustering induce ann-leaf binary tree in which each leaf corresponds to
a point and each of then� 1 internal nodes corresponds to a merge. Thus it is natural to consider depicting
a hierarchical clustering using a standard binary tree diagram. The shortcoming of such a representation is
that information regarding the relative order of the mergesis, in general, lost. For example, in a binary tree
in which several nodes appear at the same level, we cannot tell in which order the corresponding merges are
performed.

A dendrogramis a drawing of a binary tree that preserves the total order onthe internal nodes (induced
by the merge operations) by ensuring that no two internal nodes appear at the same height on the page. In
addition, then leaves are normally arranged along a horizontal line at the bottom of the tree.

Remark: Sometimes the height of an internal node not only encodes the relative order of the merges,
but is in fact proportional to some distance measure betweenthe two clusters being merged. This sort of
approach is well-suited to the depiction of hierarchical clusterings obtained via agglomerative heuristics
(e.g., single, complete, or average linkage) that repeatedly merge the two closest clusters (according to some
distance measure such as closest pair, farthest pair, or average distance) and for which it can be proven that
the distances associated with successive merges are nondecreasing.

The primary appeal of the dendrogram representation of a hierarchical clustering is that it enables one
to visualize the data at any desired level of granularity. Tovisualize thek-clustering associated with some
desired value ofk, one simply scans the dendrogram for the height at which a horizontal line leavesk � 1
internal nodes above andn�k internal nodes below. Note that thek tree edges cut by such a horizontal line
lead downwards to the roots ofk subtrees. Thek sets of leaves associated with thesek subtrees form the
desiredk-clustering.

An issue that arises in generating a dendrogram representation of a given hierarchical clustering is that
there is more than one dendrogram corresponding to a given hierarchical clustering. More precisely, it is
well known that there are2n�1 different dendrograms corresponding to a given hierarchical clustering. This
factor arises because exchanging the left and right subtrees of any internal node in a dendrogram yields
an alternative encoding of the same hierarchical clustering. The problem of determining which of the2n�1
possible dendrograms to use to represent a given hierarchical clustering is sometimes called theleaf ordering
problem. Various approaches have been proposed for addressing the leaf ordering problem. For example,
Bar-Josephet al. [2] have recently presented anO(n3)-time dynamic programming algorithm that can be
used to compute a leaf ordering minimizing the sum of the distances between adjacent points in the ordering.
In Section 3.3 we suggest a natural alternative approach to the leaf ordering problem. We also describe how
our approach can be used in combination with any given leaf ordering algorithm.

3.2 Hierarchical Assignment

An assignmentis a function fromU to U . A k-assignmentis an assignment with a range of sizek. The
radius (resp., error) of an assignment� is defined asmaxx2U d(x; �(x)) (resp.,

Px2U d(x; �(x)) � w(x)).
A hierarchical assignmentis a set ofn assignments containing onek-assignment for each indexk,

and such that for any indexk less thann, there exists a pair of pointsx and y for which the(k + 1)-
6

assignment can be transformed into thek-assignment by reassigning tox all points assigned toy. Note that
this transformation may be viewed as an “oriented merge” of the two sets of points mapped tox andy in
the(k + 1)-assignment. (We consider the merge to be oriented because the union of these sets of points is
assigned tox, and noty, in thek-assignment.)

A notable difference between a hierarchical assignment anda hierarchical clustering is that whereas
there is only one possiblen-clustering ofU , there aren! possiblen-assignments, one corresponding to each
permutation. Furthermore, fork > 1, there arek(k � 1) different oriented merge operations that can be
applied to anyk-assignment to obtain a(k � 1)-assignment. It follows that there are exactly(n!)2(n� 1)!
distinct hierarchical assignments ofU .

We define aparent functionp with respect to a given rank functionr as a mapping fromU to U such
thatp(x) = x if r(x) = 0 andr(p(x)) < r(x) otherwise.

The foregoing discussion suggests the followingpermutation-rank-parentrepresentation in which a
hierarchical assignment with associatedk-assignment�k, 1 � k � n is represented by specifying the
following information: (1) The permutation�n; (2) The rank functionr such that the range of�k is equal tofx j r(x) < kg; (3) The parent functionpwith respect tor such that for any indexk less thann, the oriented
merge operation transforming�k+1 into �k reassigns top(x) all points assigned tox, wherer(x) = k.

Note that there aren! choices for the permutation�n andn! choices for the rank functionr. Furthermore,
for every choice of�n andr, there are(n�1)! choices for the parent functionp. Thus there are(n!)2(n�1)!
possible permutation-rank-parent representations, one for each hierarchcial assignment.

3.3 Hierarchical Orderings

We define ahierarchical orderingas a hierarchical assignment for which the associatedk-assignment is
idempotent for allk. Note that the identity assignment is the only idempotentn-assignment on a set ofn
points. Furthermore, for any indexk < n, if the (k + 1)-assignment associated with a hierarchical assign-
ment is idempotent, then so is thek-assignment. Thus we can equivalently define a hierarchicalordering
as a hierarchical assignment for which the associatedn-assignment is the identity assignment. Thus the
permutation-rank-parent representation for hierarchical assignments described in Section 3.2 corresponds to
a rank-parent representation for hierarchical orderings,and there are exactlyn!(n� 1)! hierarchical order-
ings.

Question 3.2 Does every metric space admit a hierarchical ordering for which each associatedk-assignment
has radius (resp., error) within a constant factor of optimal?

The following view of a hierarchical ordering may be useful in order to better understand the relationship
between Question 3.2 above and Question 3.1 posed (and answered, for the radius case) by Dasgupta [4]. A
hierarchical ordering may be interpreted as a hierarchicalclustering in which the points of each cluster are
assigned to a unique “representative” point in the cluster,subject to the additional constraint that when two
clustersX andY are merged, the representative of the resulting cluster is required to be chosen as either
the representative ofX or the representative ofY . If we were to drop the latter constraint, there would be
no difference between the hierarchical ordering questionsposed above and the corresponding hierarchical
clustering questions posed by Dasgupta. But by constraining the choice of representative, we only make it
more difficult to remain within a constant factor of optimal for all indicesk.

For the radius version of the problem, the�-approximate triangle inequality implies that for any clusterX and pointx in X, radius(X;x) � 2� � radius1(X). Given that we are assuming� to be a constant, this
implies that a given metric space admits a hierarchical ordering for which each associatedk-assignment has
radius within a constant factor of optimal if and only if it admits a hierarchical clustering for which each

7

associatedk-clustering has radius within a constant factor of optimal.So, Dasgupta’s work [4] immediately
provides a positive answer to the radius version of Question3.2.

For the error version of the problem, which is the primary focus of the present paper, note that the
(weighted) sum of distances to the representative of a givencluster can vary dramatically (by a factor essen-
tially as large as the diameter of the metric space) depending on the choice of cluster representative. Thus
the error version of Question 3.2 is stronger than the error version of Question 3.1 in that a positive answer
to the former question immediately implies a positive answer to the latter question, but not vice versa.

In Section 5 we resolve the error version of Question 3.2 in the affirmative, thereby also providing a
positive answer to the error version of Question 3.1. (In fact, for any constant�, we provide a positive
answer to Question 3.2 for any�-approximate metric space.)

Let us now briefly return to the leaf ordering problem mentioned at the end of Section 3.1. Earlier we
saw that the leaf ordering problem arises because there are2n�1 different dendrograms corresponding to a
given hierarchical clustering. But the number of dendrograms is exactly equal to the number of hierarchical
orderings, so if we encode a hierarchical ordering as a dendrogram by adopting the convention that the
leftmost leaf in each subtree is the representative of the cluster corresponding to that subtree, then the leaf
ordering problem goes away.

On the other hand, there may be applications in which the flexibility associated with the leaf ordering
problem is viewed as advantageous, since it allows us the opportunity to optimize some auxiliary objective
function in the choice of the particular dendrogram to be used to represent a given hierarchical clustering.
In such a context, if we wish to represent a hierarchical ordering instead of a hierarchical clustering, it may
be preferable to apply a given leaf ordering technique, and then to use the following modified dendrogram
diagram to indicate the representative of each cluster. In atypical dendrogram, when two clusters are
merged, a horizontal line is drawn that connects the roots ofthe two clusters, and a vertical line is drawn
from the center of this horizontal line upward, to representthe root of the merged cluster. Instead, the
vertical line representing the new root can be drawn so that it simply extends the vertical line associated
with the representative. With this modified dendrogram diagram, we can apply an arbitrary leaf ordering
heuristic and still represent any given hierarchical ordering.

3.4 Hierarchical Location Problems

A hierarchical ordering is said to achieve aradius (resp., error) ratioof a if each associatedk-assignment
has radius (resp., error) at mosta times radiusk(U) (resp.,errork(U)). The hierarchical center (resp.,
median) problemasks us to determine a hierarchical ordering with minimum radius (resp., error) ratio. A
hierachical center (resp., median) algorithm isa-approximate if it is guaranteed to return a solution with
radius (resp., error) ratioa.

As indicated earlier, Dasgupta’s work provides a nice hierarchical center algorithm. (Dasgupta only
considers the case� = 1, but his work is easily extended to handle an arbitrary constant�.) In Section 5,
we provide a nice hierarchical median algorithm.

A hierarchical ordering, together with a threshold sequence 0 = t1 � t2 � � � � � tn, achieves acost
ratio of a if for any scaling factor�, if k is the largest index such that� � tk, then thek-assignment asso-
ciated with the hierarchical ordering has cost at mosta timesost�(U). Thehierarchical facility location
problemasks us to determine a hierarchical ordering and threshold sequence with minimum cost ratio. A
hierarchical facility location algorithm isa-approximate if it computes a hierarchical ordering and threshold
sequence with cost ratioa. In Section 6 we present a nice hierarchical facility location algorithm.

In Section 3.3 we discussed two ways to represent a hierarchical ordering as a dendrogram. It is worth
remarking that the solution to an instance of the hierarchical facility location problem, that is, a hierarchical
ordering and associated threshold sequence, also has a natural dendrogram representation, since we can use

8

the heights of the internal nodes of the dendrogram to encodethe threshold sequence.

4 An Error-Preserving Parent Function

Throughout this section, we assume a fixed (and arbitrary) rank function that numbers the points inU from0 to n � 1. For the sake of brevity, we use the term “parent function” torefer to any parent function with
respect to this rank function. In order to streamline our notation, throughout this section we identify each
point with its rank. Thus, throughout this section, an expression such as “pointi” refers to the point with
rank i, where0 � i < n. As an additional notational convenience, for any natural numberi, we let [i℄
denote the setfj j 0 � j < ig. For example, in this section we use the expression[n℄ to refer to the set of
pointsU .

As discussed in Section 3.3, once we specify a parent function p to go along with the rank function fixed
above, we have specified a hierarchical ordering. For any parent functionp and indexk, let �pk denote thek-assignment associated with the hierarchical ordering determined byp, and let�pk denote the assignment
such that for any pointi, �pk (i) = (i if i < k,p(i) otherwise.

(6)

Lemma 4.1 For any parent functionp, �pn is the identity assignment and�pk = �pk�pk+1:
for any indexk less thann.

Proof: The claim that�pn is the identity assignment is immediate. The remaining claim would also be
immediate if the conditioni < k appearing in Equation 6 were changed toi 6= k. By the definition of�pn,
the range of�pn is [k℄ for any parent functionp and indexk. Thus, for any parent functionp and indexk less
thann, the assignment�pk�pk+1 is not altered if the conditioni < k appearing in Equation 6 is changed toi 6= k, completing the proof.

For any parent functionp and pointi, we inductively define the setT pi in terms of the setsT pj associated
with pointsj > i as follows: T pi = fig [fT pj j p(j) = ig:
Lemma 4.2 For any parent functionp and indexk, fT pi j p(i) < k � ig is a partition offi j k � i < ng.
Proof: We prove the claim by reverse induction onk. The base case,k = n, is trivial. For the induction
step, letk be any index less thann, and note thatfi j p(i) < k � ig = (fi j p(i) < k + 1 � ig [fkg) n fi j p(i) = kg;
so the claim follows by the induction hypothesis and the definition of T pk .

The following lemma gives a useful recharacterization of ofthe error associated with�pk for any parent
functionp and indexk.

Lemma 4.3 For any parent functionp and indexk, the error of assignment�pk is equal toXi:p(i)<k�i error (T pi ; p(i)):
9

Proof: See Appendix A.

The remainder of this section is organized as follows. Section 4.1 presents a simple algorithm for
computing a “good” parent function with respect to our arbitrary fixed choice of rank function. Section 4.2
shows that for any indexk, the parent function computed by this algorithm minimizes the error of the
assignment�pk to within a constant factor.

4.1 Algorithm

Our algorithm for determining a “good” parent functionp proceeds by computingp(i) for successively
lower values ofi, ranging fromn� 1 down to1. (Recall thatp(0) = 0 for any parent function.) HenceT pi
is fully determined by the time we are ready to computep(i), so thatT pi can be used in the computation ofp(i). In particular, we setp(i) tominfj 2 [i℄ j d(i; j) = d(i; [i℄) _ d(i; j) � w(T pi) � 1 � error (T pi ; i)g (7)

where1 is a sufficiently large constant to be specified later. (We ultimately choose1 = 2� + 1.) It is
straightforward to give anO(n2)-time implementation of the above parent function computation.

4.2 Analysis

Throughout this section, we letp denote the particular parent function computed by the algorithm of Sec-
tion 4.1.

The following lemma is a straightforward consequence of the�-approximate triangle inequality.

Lemma 4.4 For any pointz and nonempty sets of pointsX andY , we haved(z; Y) � w(X)� � error (X; z) � error (X;Y) � � [d(z; Y) � w(X) + error (X; z)℄
Proof: See Appendix B.

Lemma 4.5 For any nonzero pointi such thatd(i; p(i)) = d(i; [i℄) andd(i; p(i))�w(T pi) > 1�error (T pi ; i),
we have

error(T pi ; p(i)) < �2(1 + 1)1 � � � error (T pi ; [i℄):
Proof: Note that

error(T pi ; [i℄) � d(i; [i℄) � w(T pi)� � error (T pi ; i)= d(i; p(i)) � w(T pi)� � error (T pi ; i);
where the first inequality follows from Lemma 4.4. Lemma 4.4 also implies

error(T pi ; p(i)) � �[d(i; p(i)) � w(T pi) + error (T pi ; i)℄:
The claim of the lemma follows sinced(i; p(i)) � w(T pi) > 1 � error (T pi ; i).

10

Lemma 4.6 For any nonzero pointi such thatd(i; p(i)) � w(T pi) � 1 � error (T pi ; i), we have

error(T pi ; p(i)) � �(1 + 1) � error (T pi ; i):
Proof: Immediate from Lemma 4.4.

Lemma 4.7 For any nonzero pointi such thatd(i; p(i)) �w(T pi) � 1 � error (T pi ; i), andp(i) 6= 0, we have

error(T pi ; p(i)) < �2(1 + 1)1 � � � error (T pi ; [p(i)℄):
Proof: By the minimality of our choice ofp(i) as specified in Equation 7, we haved(i; j) � w(T pi) > 1 � error (T pi ; i)g
for all j in [p(i)℄, and hence d(i; [p(i)℄) � w(T pi) > 1 � error (T pi ; i)g:
Thus

error(T pi ; [p(i)℄) � d(i; [p(i)℄) � w(T pi)� � error (T pi ; i)> �1� � 1� � error (T pi ; i);
where the first inequality follows from Lemma 4.4. The lemma then follows from Lemma 4.6.

Lemma 4.8 For any pointi such thatp(i) 6= 0, we have

error(T pi ; p(i)) � �2(1 + 1)1 � � � error (T pi ; [p(i)℄):
Proof: If d(i; p(i)) = d(i; [i℄) andd(i; p(i))�w(T pi) > 1 �error (T pi ; i), then the desired inequality follows
from Lemma 4.5 and the observation that[p(i)℄ � [i℄.

Otherwise,d(i; p(i)) � w(T pi) � 1 � error (T pi ; i), and the result follows from Lemma 4.7.

Let 2 = �3(1 + 1)21 � � :
Lemma 4.9 For any nonzero pointi, we have

error(T pi ; p(i)) � 2 � error (T pi ; [i℄):
Proof: If d(i; p(i)) = d(i; [i℄) andd(i; p(i))�w(T pi) > 1 �error (T pi ; i), then the desired inequality follows
from Lemma 4.5.

Otherwise,d(i; p(i)) � w(T pi) � 1 � error (T pi ; i), and Lemma 4.6 implies

error(T pi ; p(i)) � �(1 + 1) � error (T pi ; i):
11

The result then follows since

error(T pi ; i) = error(i; i) + Xj:p(j)=i error (T pj ; i)� �2(1 + 1)1 � � � Xj:p(j)=i error (T pj ; [i℄)� �2(1 + 1)1 � � �0�error (i; [i℄) + Xj:p(j)=i error (T pj ; [i℄)1A= 2�(1 + 1) � error (T pi ; [i℄):
(The first step follows from the definition ofT pi and the observation thaterror (i; i) = 0. The second step
follows from Lemma 4.8 sincei 6= 0. The final step follows from the definition ofT pi .)

Lemma 4.10 For any indexk, the error of�pk is at most2 � error ([n℄; [k℄).
Proof: By Lemma 4.3, the error of�pk isXi:p(i)<k�i error (T pi ; p(i)) � Xi:p(i)<k�i 2 � error (T pi ; [i℄)� 2 � Xi:p(i)<k�i error (T pi ; [k℄)= 2 � error ([n℄; [k℄):
(The first step follows from Lemma 4.9. The second step follows sincek � i. The third step follows from
Lemma 4.2.)

In order to minimize the approximation ratio of2 associated with the preceding lemma, we set1 =2�+ 1 and obtain2 = 4�3(�+ 1).
5 A Nice Hierarchical Median Algorithm

Theorem 2 There is a nice algorithm for the hierarchical median problem.

Proof: Immediate from Lemma 4.10 and the incremental median algorithm of Mettu and Plaxton [10].1

6 A Nice Hierarchical Facility Location Algorithm

Theorem 3 There is a nice algorithm for the hierarchical facility location problem.

Proof: Immediate from Theorem 1 and Lemma 4.10.

1See also the full version of [10], accepted toSIAM Journal on Computingand available at the author’s website, for details
regarding the extension of the online median result to�-approximate metric spaces for any constant�.

12

Acknowledgments

The author would like to thank Sanjoy Dasgupta, Xiaozhou Li,Ramgopal Mettu, Yu Sun, and Arun Venkatara-
mani for their valuable comments on earlier drafts of this manuscript. Also, the author would like to thank
Joydeep Ghosh for suggesting the modified dendrogram diagram discussed at the end of Section 3.3.

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala,and V. Pandit. Local search heuristics
for k-median and facility location problems. InProceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 21–29, July 2001.

[2] Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, A. M. Hamel, T. S. Jaakkola, and N. Srebro.K-ary
clustering with optimal leaf ordering for gene expression data. InProceedings of the 2nd Workshop on
Algorithms in Bioinformatics, September 2002.

[3] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for
thek-median problem.Journal of Computer and System Sciences, 65:129–149, 2002.

[4] S. Dasgupta. Performance guarantees for hierarchical clustering. In J. Kivinen and R. H. Sloan,
editors,Proceedings of the 15th Annual Conference on ComputationalLearning Theory, volume 2375
of Lecture Notes in Computer Science. Springer, July 2002.

[5] T. F. González. Clustering to minimize the maximum intercluster distance.Theoretical Computer
Science, 38:293–306, 1985.

[6] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. Journal of
Algorithms, 31:228–248, 1999.

[7] D. S. Hochbaum and D. B. Shmoys. A best possible heuristicfor thek-center problem.Mathematics
of Operations Research, 10:180–184, 1985.

[8] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. InPro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 731–740, May 2002.

[9] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric facility location
problems. InProceedings of the 5th International Workshop on Approximation Algorithms for Combi-
natorial Optimization, September 2002.

[10] R. R. Mettu and C. G. Plaxton. The online median problem.In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science, pages 339–348, November 2000.

[11] R. R. Mettu and C. G. Plaxton. Optimal time bounds for approximate clustering. InProceedings of
the 18th Conference on Uncertainty in Artifical Intelligence, pages 344–351, August 2002.

[12] D. B. Shmoys,́E. Tardos, and K. Aardal. Approximation algorithms for facility location problems. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 265–274, May 1997.

13

A Proof of Lemma 4.3

For any parent functionp and indexk, we now define an associated assignment~�pk as follows. Ifi < k, we
let ~�pk(i) = i. Otherwise, appealing to Lemma 4.2, we define~�pk(i) as the unique pointj such thati belongs
to T pj andp(j) < k � j.

For any parent functionp and indexk, let ~�pk denote the assignment~�pk (i) = (i if p(i) < k,p(i) otherwise.
(8)

Lemma A.1 For any parent functionp, ~�pn is the identity assignment and~�pk = ~�pk ~�pk+1
for any indexk less thann.

Proof: The claim that~�pn is the identity assignment is immediate. For the rest of the lemma, fix a parent
functionp and an indexk less thann. We now complete the proof by arguing that~�pk(i) = ~�pk (~�pk+1(i)) (9)

for all pointsi. We consider three cases.
First, suppose thati < k. In this case, it is immediate that~�pk, ~�pk , and~�pk+1 all mapi to i, so Equation 9

holds.
Next, suppose thati = k. We claim that~�pk, ~�pk , and~�pk+1 all mapk to k, so Equation 9 holds as in the

preceding case. The claim is immediate for~�pk+1. Sincep(k) < k, the claim also holds for~�pk . To see that~�pk(k) = k, note thatk belongs toT pk andp(k) < k.
Finally, suppose thati > k. Let j denote~�pk+1(i). Thusi belongs toT pj andp(j) < k + 1 � j, or

equivalently,p(j) � k < j. Also, the RHS of Equation 9 is equal to~�pk (j). We now complete our analysis
by considering two subcases.

For the first subcase, suppose thatp(j) = k. ThenT pj � T pk . Furthermore,p(k) < k, so the LHS of
Equation 9 is equal tok. Furthermore, the subcase assumption implies that the RHS is equal tok.

For the second subcase, suppose thatp(j) < k. Theni belongs toT pj andp(j) < k < j, so the LHS of
Equation 9 is equal toj. Furthermore, the subcase assumption implies that the RHS is equal toj.
Lemma A.2 For any parent functionp and indexk such thatk < n, we have�pk �pk+1 = �pk ~�pk :
Proof: For any pointi, �pk+1(i) = ~�pk (i) unlessp(i) < k < i, in which case�pk+1(i) = p(i) and~�pk (i) = i.
The lemma follows since the conditionp(i) < k � i implies that�pk (i) = �pk (p(i)) = p(i).
Lemma A.3 For any parent functionp and indexk, we have�pk = �pk ~�pk:

14

Proof: We prove the claim by reverse induction onk. The base case,k = n, holds since�pn, �pn, and~�pn are
all equal to the identity assignment. For the induction step, assume that�pk+1 = �pk+1~�pk+1 for some indexk
less thann, and note that �pk = �pk�pk+1= �pk �pk+1~�pk+1= �pk ~�pk ~�pk+1= �pk ~�pk:
(The first step follows from Lemma 4.1. The second step follows from the induction hypothesis. The third
step follows from Lemma A.2. The last step follows from LemmaA.1.)

We are now ready to complete the proof of Lemma 4.3. For any parent functionp and indexk, the error
of assignment�pk isXi2[n℄d(i; �pk(i)) � w(i) = Xi2[n℄ d(i; �pk (~�pk(i))) � w(i)= Xi2[k℄d(i; i) � w(i) + Xk�i<nd(i; �pk (~�pk(i))) � w(i)= Xi:p(i)<k�i Xj2T pi d(j; �pk (~�pk(j))) � w(j)= Xi:p(i)<k�i Xj2T pi d(j; �pk (i)) � w(j)= Xi:p(i)<k�i Xj2T pi d(j; p(i)) � w(j)= Xi:p(i)<k�i error (T pi ; p(i)):
(The first step follows from Lemma A.3. For the second step, note that~�pk(i) = �pk (i) = i for all i in[k℄. For the third step, note that the first summation vanishes sinced(i; i) = 0, and the second summation
can be rewritten as a double summation using Lemma 4.2. For the fourth step, note thatj 2 T pi wherep(i) < k � i implies ~�pk(j) = i. For the fifth step, note thatk � i implies �pk (i) = p(i). The last step
follows from Equation 3.)

B Proof of Lemma 4.4

In the arguments that follow, let� denote an assignment mapping each point inU to a nearest point inY .
To establish the lower bound onerror (X;Y), letx be an arbitrary point inX, and note thatd(x; Y) = d(x; �(x))� d(z; �(x))� � d(x; z)� d(z; Y)� � d(x; z);
where the first inequality follows from the�-approximate triangle inequality. The lower bound now follows
by multiplying through byw(x) and summing over allx in X:

error(X;Y) = Xx2X d(x; Y) � w(x)
15

� Xx2X �d(z; Y)� � d(x; z)� � w(x)= d(z; Y)� � w(X) � error (X; z):
The argument to establish the upper bound onerror (X;Y) is similar. Letx be an arbitrary point inX,

and note that d(x; Y) � d(x; �(z))� � [d(z; �(z)) + d(x; z)℄= � [d(z; Y) + d(x; z)℄ ;
where the second inequality follows from the�-approximate triangle inequality. The upper bound now
follows by multiplying through byw(x) and summing over allx in X:

error(X;Y) = Xx2X d(x; Y) � w(x)� Xx2X � [d(z; Y) + d(x; z))℄ � w(x)= � [d(z; Y) � w(X) + error (X; z)℄ :

16

