On Name Resolution in Peer-to-Peer Networks

Xiaozhou Li C. Greg Plaxton
November 2002

Abstract

An efficient name resolution scheme is the cornerstone opary-to-peer network. The foundation
of an efficient name resolution scheme is a dynamic netwgklemy that determines the neighbor
relationships to be maintained by the nodes in the netwohe ffame resolution scheme proposed by
Plaxton, Rajaraman, and Richa, which we hereafter refes tin@ PRR scheme, is a scalable scheme
that also provides provable locality properties on a certtass of growth-restricted metric spaces. On
arbitrary metric spaces, however, some performance bafrfRR are significantly weakened. In this
paper, we define a class of network topologies caligderdelta networkand observe that the PRR
topology may be viewed as a random hyperdelta network. We pinepose SPRR (simplified PRR),
a variant of the PRR scheme that performs well on arbitrarfrimspaces. SPRR imposes additional
constraints on PRR neighbor selection by placing the nodasoycle. Although SPRR does not provide
as strong locality properties as PRR, it exploits localgyhistically yet effectively. Finally, a significant
level of fault tolerance can be achieved in SPRR without@gldiuch complexity.

*Department of Computer Science, University of Texas at idugtustin, TX 78712. This research was supported by NSF
Grant CCR-9821053. Emai{xli, plaxton} @cs.utexas.edu

1 Introduction

An efficient name resolution scheme is the cornerstone opary-to-peer network. Given a hame, the task
of name resolution is to determine the value to which the naraps. An important use of name resolution
is to find the location of a data item. At a minimum, a name ng#mh scheme supports the following
operations: (1) name operations: lookup (looking up a namsgrt (inserting a name), and delete (deleting
a name); (2) network operations: join (adding a node to theark) and leave (removing a node from the
network). Since a peer-to-peer network can have a large auofmodes, scalability (i.e., efficient support
for the above operations), is a fundamental requirementdare resolution. Furthermore, locality (i.e., the
distance traveled by each hop), is not to be ignored. For pkama 10-hop path in a global peer-to-peer
network in which each hop is intercontinental is likely todramatically inferior to a 10-hop path in which
most or all of the hops are “local” (e.g., within a single egke campus). Finally, a name resolution scheme
should have strong fault tolerance properties.

Considerable research effort has been invested in therdesigfficient name resolution schemes and
several schemes have been proposed, including the PRRe@neposed by Plaxtaegt al.[20], Chord [27],
CAN [23], and Viceroy [16]. The routing method of PRR, whiaha variant of hypercubic routing, is later
also used by Tapestry [29], Pastry [25], and Kademlia [17].

The foundation of an efficient name resolution scheme is amhjyn network topology that determines
the neighbor relationships to be maintained by the noddwimétwork. For the sake of brevity, we identify
a name resolution scheme with its dynamic network topologyis paper. For example, PRR maintains a
logarithmic number of neighbor pointers at each node, actl eaighbor of a node is the nearest node
to » with an ID matching that of; in a certain number of bit positions. On arbitrary metriccgm PRR
guarantees logarithmic number of hops between any two no@esa certain class of growth-restricted
metric spaces, PRR provides provable locality propertekedficient support for join and leave operations.
Maintaining the PRR neighbor pointers, however, is a naiairtask, especially if the distance function is
changing, or if nodes are frequently joining or leaving tle¢éwork. Although recent research results have
reduced the restriction on the metric spaces [11, 12], diogisimilar locality properties on general metric
spaces remains an open problem.

When applied to arbitrary metric spaces, some performangeds established by PRR are considerably
weakened. For example, on growth-restricted metric spdlsesn-degree of a node @(logn) expected
andO(log? n) with high probability (whp). (We say that an event happeits high probabilityor whpif it
fails to occur with probability at most—¢, wheren is the number of nodes in the network anid a positive
constant that can be set arbitrarily large by adjusting rotle@stants in the relevant context.) However,
consider a star network with nodes such that one (special) node is distanfrem all other (non-special)
nodes and the distance between any two non-special noded lserefore, the special node is a neighbor
of every non-special node, regardless of the values of tigittual IDs. This is undesirable because if the
special node leaves the network, all other nodes have tdeipfuzir neighbor tables. In addition, the special
node carries a disproportionate routing workload becauseaineighbor of many other nodes.

In this paper, we define a class of network topologies cdllgaerdelta networkand observe that the
PRR topology may be viewed as a random hyperdelta networkth@éfepropose SPRR (simplified PRR),
a simple variant of the PRR scheme that performs well onrargitmetric spaces. Compared to Chord,
SPRR has matching or improved high probability time bounuts matching or better expected running
times for all name resolution operations. For example,alregperation in SPRR runs @i(1g n) time with
high probability (whp), whereas, given the Chord definitafrfingers, the join operation in Chord requires
Q(1g% n) time to succeed whp. (The reason for this is that for any 0, there is an ¢ probability that
Q(1g? n) nodes will need to update their fingers as a result of the)jtina dynamic environment, the ability
to quickly add or remove a node from the network is partidulamportant.

We then show that SPRR exploits locality effectively. Waugrthat SPRR is likely to have good locality
properties on any metric space, and we give the rigorouditypgmoperties on the ring metric. Although
giving up provable locality properties for simplicity mayfext performance, we argue that the loss of
performance is likely to be minor, while simplicity not orik/a desirable feature in system design, but also
helps reasoning about the correctness of a scheme, a paait wh will elaborate on in Section 6.

Finally, we show that fault tolerance can be achieved in SRRRout adding much complexity. We
propose a hovel name replication strategy ensuring namiesked up whp in a random fault model where
each node has a constant probability of being down. We shatdbkups remain efficient (i.e., taking
logarithmic number of hops) in this random fault model.

The rest of the paper is organized as follows. Section 2 ptes®PRR on uniform metric space. Sec-
tion 3 shows how SPRR exploits locality. Section 4 shows hamit ftolerance can be achieved in SPRR.
Section 5 discusses related work. Section 6 discusse&fwnk. Section 7 concludes the paper.

2 Fault-Free Name Resolution on Uniform Metric Space

In this section, we define hyperdelta networks and preseimlied version of SPRR that is suitable for
a basic network model in which nodes are fault-free and tetadce between any pair of nodes is equal
(uniform metric space). We show that this version of SPRRonbt greatly simplifies PRR, but also retains
the scalability properties of PRR. Of course, for real gegpeer applications, locality and fault tolerance
have to be taken into account. We address locality and faleltance issues in Sections 3 and 4, respectively.

We first introduce a few definitions and notations that willused throughout the paper. Every node
and every object has a random binary string as its identifi#:. Object IDs are also calledamesn this
paper. For the purpose of analysis, we view an ID as an infagitpience of random bits, and we assume
that no two IDs are identical. In practice, the length of aridl@hosen to be long enough (say, 128 bits) so
that the chance of having two identical IDs is negligible. bis are numbered starting frofn At times,
we identify a node with its ID when no confusion could ariseet I be the set of nodes in the network;
n = |V| be the number of nodes in the networkj;] be biti of ID z; match(x,y) be the length of the
longest common prefix shared by band IDy; N(53) be the set of nodes prefixed by bit strifgF (u, 7)
be the se{v € V : match(u,v) = i}; I'(u,i) be the se{v € V' : match(u,v) > i}. Note thatu € I'(u,),
for all i. The number of neighbors of a node is called thw-degreeof the node; the number of nodes of
which the node is a neighbor is called thedegreeof the node.

The rest of this section is organized as follows. Sectiond2fines hyperdelta networks. Section 2.2
presents the basic organization of SPRR. Section 2.3 pgeetbembasic name resolution operations in SPRR.
Section 2.4 discusses several alternative implementatdiSPRR. Section 2.5 analyzes the properties of
SPRR.

2.1 Hyperdelta Networks

We begin by reviewing a few standard static network top@sg(See Leighton [14] for a thorough coverage
of these topologies.) Delta networks are a class-ofput n-output switching networks that have a unique
path from any input to any output, and that the label sequehegery path to the same output is the same.
A butterfly is an example of a delta network. A hypercube is@okogy closely related to a butterfly: a
hypercube can be viewed as a “collapsed” version of a buyttarflvhich each of the: columns in the
butterfly corresponds to a single node in the hypercube. &l <ollapsing operation can be applied to
any delta network to obtain a hypercube-like network. Wésiath a collapsed delta networkhgperdelta
network Although hyperdelta networks have desirable propertiethé static setting (e.g., logarithmic
degree and diameter), in a dynamic setting, where nodes jkgepg and leaving the network, it is no

pred flip

g
N
o
A
o
\i
o

=3

[EY
o
o
o

\/
o
o
o

succ

Figure 1: An example of SPRR.

longer feasible to assign fixed IDs to nodes and follow thietstieighbor rules as in the static setting. To
solve this problem, PRR has every node choose its own ID dbrapand the bii-neighbor of a node is

the nearest node ifi(u, 7). Therefore, PRR can be viewed as a minimum-cost random tigjtemetwork.

As discussed in Section 1, although PRR provides stronditipgaoperties on a certain class of growth-
restricted metric spaces, some of its performance bounds (e-degree) are considerably weakened on
arbitrary metric spaces. To overcome this weakness, we mopope SPRR, a variant of the PRR scheme
that performs well on arbitrary metric spaces.

2.2 Basic Organization of SPRR

SPRR first places all the nodes on an arbitdagical ring which is independent of node IDs, and requires
that nodes choose their neighbors conforming to the logicgl To be precise, every nodemaintains the
following three types of neighbors:

¢ Flip neighbors.The bit+ flip neighborof u, denoted by.flip[i], is the first node clockwise fromu
such thaw € F(u,q). If F(u,t) = 0, thenu.flip[i] = nil.

e PredecessorsThe bit4 predecessoof «, denoted byu.pred|[i], is the first noder counterclockwise
from u such that € I'(u, 7). If w is the only node if'(u, 7), thenu.pred[i] = u.

e Successor.The bit) successor, or simplguccessqrof u, denoted byu.succ, is the “opposite” of
bit-0 predecessor (i.ey.pred[0] = v iff v.succ = w). Note that we only maintain one successor
pointer at each node.

At a high level, the SPRR topology may be termed random cyulieerdelta network. Apparently,
imposing additional constraints on neighbor selectiorréases the average edge length. Bounding this
increase is still an open problem and is our future work (seti@ 6). Figure 1 shows an example of an
SPRR topology. For simplicity, we only show the neighbornpais of a single node at the first three bit
positions.

SPRR admits a simple recursive definition: an SPRR netwodoligposed of two SPRR networks,
one consisting of the nodes that begin witland the other the nodes that begin withSuch a recursive
definition is a hallmark of hypercubic networks. We belielvattthis recursive structure will prove crucial
in our future work (see Section 6).

We next discuss how names are handled in SPRR. When a narserigh it is stored at a certain node,
called thehandlerof the name, which is responsible for resolving the namehBacdeu maintains a local
name database, denoted dylb, to store the names for which it is responsible. Handlersaasggned as
follows. Let thebest match setf a names, denoted byB(a), be the set

{u € V :Yv € V,match(u,a) > match(v,a)} .

3

We callmatch(u, a), whereu € B(a), thedepthof the best match set. When a namis inserted, the insert
request is forwarded until a node B\(a) is reached. This node is designated as the handler of the.name
When a name is later looked up or deleted, additional workdnae done to locate the handler of the name
because there may be multiple nodes in the best match setisé¥essl the details of each operation in the
next section. Note that all the nodes in a best match set @nagd in a cycle by the predecessor pointers
at a certain bit position.

Although we do not provide rigorous load balance analysiSPRR in this technical report, it is clear
from the above description that SPRR achieves load balaonpeies similar to those established by Chord.
That is, the expected load of every node is the same, alththegload of the heaviest node (¥1gn) of
that of the lightest node. While Chord uses “virtual node.(every physical node simulatéXlgn)
logical nodes) to smooth out the imbalance so that the loada@rfy node is within a constant factor of each
other whp, we use name replication to achieve the same dodhat, name replication achieves both load
balance and fault tolerance.) We discuss our name rejglicatrategy in Section 3.1.

2.3 Basic Operations

With the above definitions, we are now ready to present thie logerations of name resolution. Central
to the name operations (lookup, insert, and delete) is fiqnthe handler of a name. The process is divided
into two phases: (1) thbit-correcting phase, during which a node in the best match set is reachgd; (2
thewalking phase, during which the nodes in the best match set areseléy following the predecessor
pointers until the handler of the name is found. For an inspération, only the bit-correcting phase is
needed, while for a lookup or delete operation, both phaseseeded. For network operations (join and
leave), existing nodes need to be informed about the aoivdéparture of a node. The predecessor pointers
and the successor pointer enable SPRR to support join avel édfeciently.

We next describe each operation in detail and present o@rfondhese operations. Our code is written
in a style similar to Gouda’s Abstract Protocol Notation, [@]ith some minor variations. In our code,
keywordyou is only defined when a message is being received and denetesitder of the message, and
keywordme denotes the current node.

e Lookup. To look up a name, a node needs to find the handler of the nanegprohess of finding the
handler includes both the bit-correcting phase and theimghase. During the bit-correcting phase,
a node forwards the lookup request to one of its flip neighbehéch matches the name in more bits,
until the lookup request cannot be forwarded further, inchtdase the current node belongs to the
best match set. The walking phase is needed because theofiestreached in the best match set
may not be the handler of the name. Thus, we need to travezdeest match set by following the
predecessor pointers until we locate the handler. The awdedkup is shown in Figure 2.

e Insert. When a name is inserted, we only need to find an arbitrary nodleei best match set and
hence only the bit-correcting phase is needed. When thaufpoquest cannot be forwarded any
further through flip neighbors, the current node belongsédadest match set and is the handler of the
name.

e Delete.Deleting a name is largely the same as looking up a name, ettapvhen a name is located,
itis deleted from the local name database, instead of bewiget up. We omit the code for insert and
delete, because it is largely the same as that for lookup.

¢ Join. When a new node joins, the new node first finds an arbitrary imotlee network through some
external mechanism. We assume that some external mechanates the new node to find such a
node, an assumption made by many other schemes. As will basdisd in Section 3.3, to exploit

4

O true — {lookup}
a := arbitrary name
send jump(me, a,0) to me;

Orev jump(z, a,1) —
do (id[i] = a[i]) = i:=1+ 1,
od;
if (flip[i] # nil) — send jump(z, a, + 1) to flip[i];
O (flip[¢] = nil) — send walk(z, me, a, i) to me;
fi;
Orev walk(z,y,a,i) —
if (a & db A pred[i] # y) — send walk(z, y, a,1) to pred[i];
O (a € dbV pred|i] = y) — send reply(a, db.find(a)) to z;
fi;

Orev reply(a, value) —
skip;

Figure 2: Code for lookup.

locality, it is desirable for distances on the logical rirghte correlated with actual distances in the
metric space. Thus it is desirable for the external mechamisdetermine a node close to the new
node. The new node then sets its successor to be that nodét (@aces itself on the logical ring
immediately counterclockwise to that node) and generéseann ID. The new node then builds its
own neighbor table by consulting a sequence of nodes,rggdrtom its successor. During this process,
the neighbor pointers of other nodes are also updated. Tdee foo join is shown in Figure 3. The

code used by both join and leave is shown in Figure 4.

e Leave.When a node leaves, it needs to inform other nodes to updatengighbor pointers, a process
similar to join. The code for leave, which is largely symneto that for join, is shown in Figure 5.

We remark that although we content ourselves with the coimpas and clarity of our code, certain
optimizations are possible in actual implementation. B@mgple, messages sent to a node itself can be
replaced by function calls. Therefore, these messageammuanted in our analysis.

2.4 Alternative Implementations

Besides the implementation presented above, SPRR admdgakalternative implementations (e.g., the
one presented in our recent workshop paper [15]). Below waiorea few other possibilities.

1. In the implementation presented above, if we are williogxpend a few messages to locate the
successor, then the successor pointer need not be mathtaieeause it can be located using only

flip[0] andpred[0] pointers.

2. The most straightforward implementation perhaps is tintaim predecessors and successors, but
not flip neighbors, at all levels. Hence, nodes are organiziedvarious doubly-linked cycles. Flip
neighbors are not needed because they can be located hyifglthe successor pointers. Although
this implementation satisfies all the performance bouratedtin the rest of this paper, the constant

O true — {join}
succ := arbitrary node in the networhkil if the network is empty
join_level(succ,0);

Orev arrive(i, b) —
T, pred[t] := pred[i], you,
if (id[i] # b A flip[i] = nil) — flip[i] := you;
O (id[¢] = bV flip[i] # nil) — skip;
fi;
if (id[i] = b) — y,z := flip[i], me;
O (1d[] # b) — y, 2z := me, flip[i];
fi;
send ack_arrive(z,y, z, i) to you,

Orev ack_arrive(z,y, z,i) —
pred[i], flip[i] ==z, y;
send update_flip(me, 1, id[i]) to pred][i];
join_level(z,1 + 1);

macro join_level(z, 1)
if (z # me A z # nil) — send arrive(s, id[i]) to z;
O (z = me V z = nil) — send update_succ(me) to pred[0];
fi;

Figure 3: Code for join.
factor in the expected lookup time is doubled. Since loolaushé@ most important operation, we opt
for an implementation with lower constant factors.

3. Yet another implementation is to maintain predecessus;essors, and flip neighbors at all levels.
The disadvantage of this implementation, however, is higbde degree.

Therefore, in the balance of this paper, we assume the ingpition presented in Section 2.2.

2.5 Analysis

In this section, we analyze the properties of SPRR. Our mesnlt is that all operations tak@(lgn)
constant-size messages (or application-level hops) whipthé two network operations join and leave, this

O rev update_flip(z,i,b) —
if (id[i] # b A flip[t] # =) — flip[i] := z; send update_flip(z, i, b) to pred[i];
O (¢d[i] = bV flip[i] = =) — skip;
fi;

O rev update_succ(z) —
succ = w;

Figure 4: Common code used by both join and leave.

O true — {leave
leave_level(succ,0);

Orcv depart(z,i,b) —
pred[i] == z;
if (flip[i] = you) — flip[i] := nil,
O (flip[i] # you) — skip;
fi;
if (id[:] = b) — y := me;
O (id[] # b) — y := flip[i];
fi;
send ack_depart(y, i) to you,

Orev ack_depart(z,i) —
send update_flip(z, i, id[t]) to pred[i];
leave_level(z, i + 1);

macro leave_level(z, 1)
if (z # me A z # nil) — send depart(pred|i], i, id[i]) to z;
O (z = me V z = nil) — send update_succ(succ) to pred|[0];
fi;

Figure 5: Code for leave.

represents a significant improvement over éh@g® n) message bound established by Chord. With respect
to the name operations, SPRR matches Chord in terms of bpétd and whp bounds.

We now present a series of lemmas and theorems. One impotiaatvation is that given any node
u and biti, each of the remaining nodesindependently has a probability of exacfly*~! of belonging
to F(u,?). This observation allows us to use Chernoff bounds argusrtergstablish several of the claims
below.

Lemma 2.1 Whp,|N(3)| = ©(lgn), whereg is an arbitrary bit string of lengthig n —1g 1g n — ¢, for some
sufficiently large constant

Proof: Clearly,E[|N(5)|] = 2¢1gn. Chernoff bounds imply thgtV(3)| lies within a constant factor of
its expectation whp. ThugN ()| = ©(lgn) whp. [

Lemma 2.2 Both the bit-correcting and the walking phases tékgg n) hops whp.

Proof: By Lemma 2.1, when we look up a namethen withinlgn — lglgn — ¢ bit-correcting hops,
the lookup request reaches a nodeNifg), whereg is a bit string of lengtign — 1glgn — ¢, for some
sufficiently large constant. Subsequent hops only visit the nodesNii3) and | N (5)| = ©(lgn) whp.
Thus, both the bit-correcting and walking phases @k n) hops whp. [

Theorem 1 All name operations tak€(lg n) hops whp.

Proof: Immediate from Lemma 2.2.]

Lemma 2.3 The expected depth of the best match skfis+ O(1).

Proof: Let X denote the depth of the best match set. Then

E[X] = ;Pr[X:i]-i
= ;Pr[XZi]
- 5 0-0-3))
- S0 05)) 2 - 05)
< n1e X (1-(1-3))

= 1gn—1+2<1—<1—2}n>n>

i>0

We observe

n 2ipn—1 1/2i
(1_.i) - ((pi) .(1_.i)>
2tn 2in 2'n
1 1 1/2i
(c(-5))
1\ 1/2
> <_) .
- 2e

The first inequality in the above derivation holds because

n n—1
(1-2) =e=(-2)
n e n

which is implied by the following more general inequality:

v

z\? 1 z\Pre/2 ..
<1 + —) <-=-Z <1 + —) , for all positive realse andp.
p € p

For a proof of this inequality, see, e.qg., [18]. Thus,

1/2¢
E[X] < (lgn—l)—f—Z(l—(Z—le))

i>0
< lgn+ O(1).

1/2¢
The seriesy”;~, (1 — (%) /) is bounded by a constant because the ratio between sueéssivs is

1/2¢
1+ (2%) / , which is at least + . n

Lemma 2.4 The expected size of the best match set is constant.

Proof: Without loss of generality, assume the nadrte be looked up is all 0's. LeX be the size of the best
match set and let; be the number of nodes prefixed pP’'s. Consider the maximurh such thatq;, > i.
In order forX = i, it is necessary that; = i andny; = 0. Note thatPr[nj1 =0 | np = 1] = 5.
ThusPr[X =] = O(2%), and henc& [X] = O(1). "

Theorem 2 The expected number of messages needed by a name opera}tlrgmisr O(1).

Proof: The expected number of messages needed in the bit-cogedtase is half of the depth of the best
match set. The expected number of messages needed in thegyatiase is bounded by the size of the best
match set. By linearity of expectation and Lemmas 2.3 andtBednumber of messages needed by a name
operation is; lgn 4+ O(1). m

Lemma 2.5 Every node has at mokt n + O(+/Ign) flip neighbors whp.

Proof: Letw be the node under consideration. Starting fron®jive divide the ID ofu into three segments
A, B, andC, such that the lengths of and B arelg n andclg n, respectively, whereis a sufficiently large
constant. LetX 4, Xg, and X be the number of flip neighbors in segments B, andC, respectively.
Clearly, X4 < lgn at all times. To bound{, we first define set&;, for all i > 0, as

Gi={v eV :v#uAmatch(u,v) >i}.

Then for any node, independentlyPr [v € G;] = & and thusE[|G;]] = %% < Z. We observe that
Xc < |G(c+l)lgn|' Thus,

E[Xc] < B[|G(i1)gnl]

n
2(c+1)Ign

IN

= n °

Markov’s inequality impliePr [X¢ > 1] < E[X¢] = n~¢, that is,X¢ = 0 whp. To boundX g, we first
observe that for any node independently,

Prijve F(u,i)] = 51

andE [|F (u,4)|] = 25t < 5&¢. Again, by Markov's inequality, we have

Pr[F(u,i) #0) = Pr[|F(u,i)| >1]
= E[F(u,i)]
< ot
Thus,

lgn+c'/lgn—1
|
(clgn)Pr

Pr[Xp > c'vlgn| < o igw N Flwi)#0

II Pr[F (u,i) # 0]

i=lgn

1 'v/Ign—1
clgn gn-+c gn
dvlgn

lgn+c’\/lg_nfl
(clgn)’VE" [Pr[F(u,i) #0]

i=lgn

IN

cl

[
N
2
=
—
N2

=1
no(l) . 2(c’\/1g n—c'c'lgn)/2
no(l) . 2(0’ Ign—c'c'lgn)/2
no(1)+c’/2—c’c’/2'

IN

The second inequality in the above derivation holds bectheseéependency betweét [F(u,7) # (] for
differenti’s is in our favor. That is, having a flip neighbor at a certairdecreases the probability of having
a forward neighbor at a different bit.

Thus,X4 + X + X¢ < lgn + O(v/Ign) whp. N

Lemma 2.6 For all sufficiently large positive constantsfor all i > clgn, and for all nodes, u.flip[i] =
nil whp.

Proof: Foralli > clgn, E[|F(u,7)|] = O(n™°). The claim of the lemma follows from Markov’s inequal-
ity and Boole’s inequality. [

Lemma 2.7 For all sufficiently large positive constantsfor all i > clgn, and for all nodes, u.pred[i] =
me whp.

Proof: Similar to that of Lemma 2.6.]

Theorem 3 The out-degree of every node(glg n) whp.

Proof: By Lemmas 2.6 and 2.7, we have that every node(hdg) flip neighbors and predecessors whp.
Every node also has a single successor. Therefore, theegutel of every node i8(1gn) whp. [

Theorem 4 The in-degree of every node(Xlgn) whp.

Proof: Fix a nodeu. Without loss of generality, assume that the IDuois all 0’'s. Let the sequence of
nodes that precedeon the logical ring, starting from the closest one,(bg vs, ..., v,_1). We start with
inspecting bit 0 of the IDs of this sequence of nodes. Onceereas0, we start inspecting bit 1 of those
subsequent nodes prefixed by 0, once we see a 0 on bit 1, winsfgertting bit 2 of those subsequent nodes
prefixed by 00, and so forth. We keep inspecting until we retarthe node:. The key observation is that
the nodes inspected in this process are exactly those thautes one of their flip neighbors. Furthermore,
by Lemma 2.6, no node has a flip neighbor at a bit higher tHgm. Since every node inspected has an
independent probability df/2 to increment the index of the bit to be inspected, a Cherrmffll argument
implies that the number of nodes inspected can be boundétlgy) whp. Moreover, Lemma 2.7 implies
that the number of nodes that havas one of their predecessorglglg n) whp. Finally, at most one node
hasu as its successor. Hence, the in-degree of every no@¢lisn) whp. [

10

Theorem 5 A join or leave operation take®(lg n) messages whp. The number of existing neighbor table
entries that need to be modified@glg n) whp.

Proof: Immediate from Theorems 3 and 4. n

3 Exploiting Locality

In the previous Section, we have shown that SPRR is simplefiinient on the uniform metric space. To
be useful in real applications, however, locality has todkeh into account. In this section, we show that
locality can be exploited in SPRR without adding much comipfe

The ease of exploiting locality in SPRR comes from the dédiniof flip neighbors. Unlike Chord,
which defines a finger to point to the first node following a aeripoint on the ID ring, PRR defines a flip
neighbor to be the “best” node in a set of candidates. It istixthis freedom of choice that enables SPRR
to exploit locality easily.

Many applications benefit from having multiple copies of aneain the network, for performance or
fault tolerance reasons. For example, a name may be reqgitatreduce resolution time. SPRR provides
locality in the following sense: the expected distancedied by a lookup decreases as the number of copies
increases.

Name replication capability can either be built within a marasolution scheme, or be built as a separate
layer. Although the later approach has its own merits (elganer interface), we favor the former approach
because it provides better lookup performance and betierbdalance.

Section 3.1 first proposes our name replication strategstid®®e3.2 explains heuristically why SPRR is
likely to have good locality property on any metric space;t®a 3.3 rigorously proves this locality property
on the ring metric.

3.1 Name Replication Strategy

Our name replication strategy is as follows. In the procdsaserting a name, when the insert request
reaches a node in the best match set, replicatesa at » nodes around itself that matehbetter than the
rest of the nodes. This replication strategy can be achibyesimply following the predecessor pointers.
We call this set of nodes, denoted bi(a), thereplication setof a, In other wordsR(a) is a set such that
|R(a)] = rand for allv € R(a) andw ¢ R(a), match(v,a) > match(w,a). This replication strategy
requires a node check its local name database before fangdmbkup request to a neighbor, because now
a name can be stored at multiple nodes.

A system can choose an appropriati®r its desired performance or fault tolerance, or choofferént
r for different names. For example, it can set Q(lgn) to ensure that at least one node in the replication
set is up whp. If every name is replicated@flg n) nodes using the above replication strategy, then the
system is better load balanced, i.e., the load of every reodathin a constant factor of each other whp.

3.2 Heuristic Exploitation of Locality

As mentioned above, the ability to exploit locality in SPREgmates from PRR’s flexibility to choose a
good flip neighbor from a set of candidate nodes. For exaropleider the process of choosing the(diip
neighbor of a node. On average, there arg'2 nodes with IDs that differ from the ID af in bit 0. Among
such a large set of nodes, at least one of them is likely to ¢edou. Similarly, E[|F(u,1)|] = n/4,
and so forth. Thus, the number of candidate nodes keepkstgiwith every bit corrected. This implies
that the expected distance traveled in order to correct kignows with every bit corrected. The speed of

11

growth, of course, depends on the underlying network tapoldf the growth is geometric, then the total
distance of the hops taken in a lookup operation is dominaydtie distance traveled by the last hop in the
bit-correcting phase plus the distance traveled in the wglghase. The reason that SPRR has good locality
properties is that most of the hops in a lookup operation #redorecting hops. Moreover, if a name is
replicated at multiple nodes, it is likely to be found beftie bit-correcting phase is over.

3.3 The Ring Metric

In this section, we analyze the locality property of SPRRanring metric, where the distance between two
nodes is the distance between them on a ring, which is altexidalelocality ring.

Although the ring metric is somewhat artificially simple, veeark that it is not totally unrealistic. For
example, consider a peer-to-peer network composed of ramlelifferent universities on different conti-
nents. We can arrange the nodes located in the same unjvierstcontiguous region of the ring, and
arrange the universities located in the same continent iggebnearby region, and so forth.

As discussed in Section 2.2, a node chooses a flip neighbor &reet of candidates by imposing a
logical ring on the nodes. Since the logical ring is arbitrare can use the locality ring as the logical ring.
Employing the replication strategy described in Sectidn ®e establish the following theorem with respect
to the ring metric.

Theorem 6 If a name is replicated at nodes using the above replication strategy, then the ezgedis-
tance traveled by a lookup operationG¥n /).

Proof: Let a be the name being looked up. L&t denote the size of the best match set. Hdde the
distance traveled by the entire lookup operation. d;etbe the distance traveled in the bit-correcting phase.
Let d; be the distance traveled in the walking phase.

By linearity of expectationE [d] = E [d1] + E [d2]. To boundE [d], we first observe that iX < r,
thendy; = 0; if X > r, thendy < n(X — r). By Lemma 2.4, we know thadr [X = i] < ﬁ Thus, we
can boundE [ds] as follows,

Eld] < > n(i—r) Pr[X =i

IN
3
02| .
[]!
—| =

= O(n/2")
= O(n/r).

We next boundl;. Letm to be the smallest integer such that all the nodes that naaitclat leastm prefix
bits are inR, let R' = {v : match(v,t) > m}, and letY” = |R'|. We first observe that, in the bit-correcting
phase, the lookup operation does not travel beyond the mafethat is clockwise closest to the originating
node. ThusE [d;] is bounded by the average distance between two nodR$ imhich isO(n/Y’). Thus,

Eldi]] < > Pr[Y =i]-0(n/i)
1<i<r
= O(n)- Y. %-Pr[Y:i]

1<i<r

= O(n)(3 1,-Pr[Y:i]+ > l.-Pr[YZi]>

2 7
1<i<r/4 r/4<i<r

12

= O(n)(> Pr[Y:i]+§-Pr[Y>£])
1<i<r/4

~ O(n)-Pr [Y < g] +O(m/r)

O(n) - e /16 4 O(n/r)
= O(n/r).

The last inequality above is due to an application of Chérpoafinds.
ThereforeE [d] = E[d1] + E[d2] = O(n/r).]

4 Fault-Tolerant SPRR

In the previous section, we have shown how to exploit logahit SPRR. In this section, we show that,
without adding much complexity, a significant level of fatadkerance can be achieved.

We adopt a random fault model where every node has a constaiodlplity ¢ of being down. By
down, we mean fail-stop faults instead of Byzantine fallte also assume that a node can detect whether
a neighbor is down. With respect to this fault model, our otdye is to ensure that fault-tolerant lookup
retains the efficiency and locality properties of faultefleokup.

The rest of this section is organized as follows. Sectionptdboses two modifications to the basic
construction of SPRR. Section 4.2 describes the faultdotelookup operation. Section 4.3 establishes
efficiency and locality properties of the fault-toleranvhkoip.

4.1 Modifications to the Basic Construction

Clearly, in a random fault model defined above, a name has tegieated at2(lgn) nodes, simply to
ensure that at least one node that handles the name is up \Wapthermore, if a node cannot handle a
name, then whp it is able to forward the lookup request to ghter that can continue the lookup. One
difficulty associated with achievinig n-fold replication is that the network is dynamic and a nodesdoot
know the exact network size. Thus, we need to find a way to eralplode to estimate the network size
based on its local state.

For every node:, define thedimensiorof «, denoted by:.dim, to bemax {i : |['(u,4)| > ¢- i}, wherec
is some sufficiently large constant. Wedetimilar denotel’(u, u.dim) and we call the nodes i similar
(exceptu itself) thesimilarity neighborsof . We modify SPRR as follows in order to achieve fault toler-
ance:

1. A nodeu maintains pointers to all the nodes:insimilar, as well as the order in which they appear
on the locality ring. Thus, we view.similar as a circular list and define similar.nezt(v) to be the
first node inu.similar clockwise fromw.

2. Aname is replicated at all the nodesuirimilar, whereu is a node in the best match set of the name.

With these modifications, SPRR provides a significant let&huwlt tolerance, as is evidenced by Lem-
mas 4.1 and 4.2 below.

!In fact, Chernoff bounds implies that if a name is replicaie@(Ig) nodes, thef2(Ig) of these nodes are up whp.

13

0 - 1
bit i to be corrected 4
1 - 1
2 ("w down") bit i corrected
0 = 1 1
3 (not tried) 6
biti | O 0 0 - 1

v

flipfi]

Figure 6: Fault-tolerant lookup example.

4.2 Fault-Tolerant Lookup

Fault-tolerant lookup is a simple extension of fault-freeldup. The main augmentation is handling down
nodes. The idea is “bypassing” down neighbors by succdggiying higher bit flip neighbors or similarity
neighbors. Roughly speaking, when a naedeeeds to correct bit but detects that.flip[i] (also denoted
by w for simplicity) is down, it successively tries its highet flip neighbors until an up one.fiip[j] (also
denoted bw for simplicity), is found. The lookup request is then fordiad tov, which tries to correct bit

i. When forwarding the lookup requestdpnodeu piggybacks the pointer t@, so thatv does not need to
reprobew if v.flip[¢] = w, in which case tries to forward the request to one of its upper bit flip nemish
starting with bitj + 1. If a node has exhausted all of its flip neighbors, then it essiwely tries its similarity
neighbors.

Figure 6 shows an example of correcting a single bit in a fldrant lookup. Figure 7 shows the
code for fault-tolerant lookup. We will show in Section 4ttt whp this code successfully completes the
lookup operation usin@(lg n) messages. However, this code has the defect that, withr@alially) small
probability, a fault-tolerant lookup may not terminate.r Erample, suppose that the bit to be corrected is bit
i, and the lookup request reaches nagdehich has exhausted all of its flip neighbors and is aboutytad
similarity neighbors. Further assume thaénd its similarity neighbors all have the same dimensionesal
and their bité neighbors are all down. Under such a circumstance, the fpoiguest will be forwarded
amongu and its similarity neighbors forever. Here we briefly skeddew possible remedies to this problem:

1. Before forwarding a lookup request to a similarity neighta node can first query that neighbor to
make sure that it can successfully correct the bit (i.eh lieé similarity neighbor and its appropriate
flip neighbor are up). If none of the similarity neighbors camrect the bit, then the lookup fails.

2. One can use a TTL (time-to-live) value to control how mamges a lookup request can be forwarded
before failure is reported.

3. One can use a TTL value to control how many high messagedsecaent before failure is reported.

4.3 Analysis

We first use standard Chernoff bound arguments to estabksfolowing lemmas.
Lemma 4.1 For every nodes, u.dim = |lgn — lglgn — O(1) | whp.

Lemma 4.2 For every nodeu, |u.similar| = ©(lgn) whp.

14

O true — {fault-tolerant lookup
a := arbitrary name
send resolve(me, a,0) to me;

Orev resolve(z, a,i) —

do (id[i] = a[i]) = i :=1+ 1,

od;

if (a € db V flip[t] = nil) — send reply(a, db.find(a)) to z;

O (a & db A flip[i] # nil) —
if (up(flip[i])) — send resolve(z, a,i + 1) to flip[i];
O (—up(flip[i])) — send low(z, flip[i], a, i, i + 1) to me;
fi;

fi;

Orev low(z,y,a,i,5) —

if (flipli] # y) >
if (up(flip[i])) — send resolve(z, a,i + 1) to flip[i];
3 (~up(flip[i)) — send low(s, flipli], i, §) to me;
fi;

O (flip[i] =y Nj < dim) —
if (up(flip[j])) — send low(z, y, a, 1,5 + 1) to flip[j];
O (mup(flip[j])) — send low(z,y, a,%,j + 1) to me;
fi;

O (flip[i] = y N j > dim) — send high(z, y, me, a,,7) to me;

fi;

Orev high(z,y,z,a,1,j) —
z := similar.next(z);
(z = me) — send reply(a,nil) to z;
(z # me A up(z)) — send low(z,y, a,i,j) to z;
(

if
O
O (z # me A —up(z)) — send high(z,y, 2, a,i,j) to me;
fi;

Figure 7: Code for fault-tolerant lookup.

Lemma 4.3 For all nodesu andv,

u.dim —v.dim| < 1 whp.

We next prove some efficiency and locality properties oftfénlerant lookups in SPRR, which are
stated in the following two theorems.

Theorem 7 Every fault-tolerant lookup take3(lg n) messages whp.
Theorem 8 The expected total distance traveled by all the messagefiritatolerant lookup i (n/ lgn).

The proofs of these two theorems are significantly more iaalthan those presented earlier in the
paper. We only sketch our main proof ideas here.

We first introduce a few definitions. A message is said téoleif it is from a node to one of its flip
neighbors. A low message is said tosew if it is from a node to its bit flip neighbor. A message is said
to behighif it is from a node to one of its similarity neighbors. A highessage is 1-high if it is sent from

15

a nodeu to its next node in.similar, 2-high if it is sent to the next node of the next node:igimsilar, et
cetera. A lookup is divided intphaseswhere phase consists of the messages associated with correcting
bit .

Our approach to proving Theorem 7 is as follows. At a highllewben a node; wants to correct bit,
it first tries to do so using a path of length one, that is, byaoding the lookup ta.flip[i]. If u.flip[i] is
down, our fault-tolerant lookup proceeds by successivging to correct bit by using paths of length two,
where the first hop on the path leads to a node matchingits 0 through (or higher) and the second hop
corrects biti. We now state a key technical lemma.

Lemma 4.4 Each successive path considered in a given phase has a obpsthability of terminating the
phase.

Proof: We provide a sketch of the proof only. Fix a paththat we are about to explore. We claim that
with constant probability, all of the nodes ia are up. To establish this claim, first note that the nodes in
path P have never been previously examined, and hence we can vidwofdhem as having a constant
probability of being up, independent of the previous higtof the lookup. Unfortunately, this argument
alone is insufficient to establish the desired lemma. Theaneimg difficulty is associated with the the case
where the first hop of the path brings us to a nadehose biti neighborv is already known to be down
because we previously attempted to terminate phdsesending an-low message t@. In such a case,
our algorithm abandons this pafh without attempting to send a message along the second hstpaih

we initiate a new two-hop path. It remains to prove that we ofoexpend a large number of messages, and
travels a large distance, due to repeatedly abandoningtaachop paths at the intermediate nodes.

How can we rule out this scenario? We now argue that there @natant probability that the bit
neighbor of an intermediate node on a two-hop p@tls a node that we have not previously encountered
in the lookup, from which it follows that the patR is not abandoned at the intermediate node (since
u.flip[i] # w). The intuition underlying this claim is that the first megsan any two-hop path in phase
is either aj-low message for somg > i or a high message. In either case, the expected distanetetliav
by such a message is greater than that of-bow message. This observation can be used to show that
with constant probability, the first message of the two-hathpasses over any nodehat we might have
previously determined to be down when sending-éow message. (In our formal proof of this claim, we
defer revealing the precise location of the nadentil it is passed over by some message to an up node.)
Hence, there is a constant probability that the Hip neighbor of the intermediate node of pdthis a node
that we have not previously encountered. [

With Lemma 4.4 in hand, it is straightforward to establistedtem 7 using a standard Chernoff bound
argument.

Lemma 4.4 also gives us a good start on establishing Theoref 8 high level, the main difference
between the proofs of Theorems 7 and 8 is that in the latterwaseed to account for the different kinds of
messages (i.ei;low andi-high messages, for various valueg)separately, because the expected distances
that they travel vary. Lemma 4.4 can be used to show that aifpakes expecte@(1) i-low messages for
any giveni, and expected(q') i-high messages for any givenTheorem 8 follows easily once we establish
the following claim: the expected distance traveled by aloyv message i€ (2¢) and the expected distance
traveled by any-high message i©(i - n/lgn). In what follows, we sketch a proof of this claim.

Note that the biti flip neighbor of a given node: is the first nodev clockwise fromu such that
match(u,v) = i. It follows that if each node on the ring has a random ID, thHemn éxpected distance
from w to its bit; flip neighbor isO(2?). A similar argument shows that the expected distance &euay an
i-high message i©(i - n/lgn). Unfortunately, there is a technical obstacle that pressestfrom directly
applying this simple approach to bound the expected distafthe messages sent during a lookup. The

16

difficulty is that as the lookup algorithm unfolds, inforrmat concerning the node IDs is revealed. Con-
sequently, when a particular message is sent by the alggrite cannot assume that all of the node IDs
are still random. In particular, there are three kinds obinfation that we learn about the node IDs as the
algorithm proceeds. Below we discuss each of these kinds@fnation in turn and sketch how to bound
their effect on our analysis.

1. For any node: that has received a previous message (or would have recaipeevious message
but was determined to be down), we know that the IDud§ inconsistent with any prefix that we
will subsequently search for. Thus, if we happen to encawueh a node:. while searching for the
destination of a subsequent message, the probability:tisthe desired destination is 0 (as opposed
to, e.g.,0©(27%) for ani-low message). Since Theorem 7 tells us that whp thereDglen) such
nodesu, it is straightforward to argue that the total extra diseimcurred by retraversing these nodes
is O(lg?n) = o(n/ lgn) whp.

2. For any node: that has been passed over in a search for the destinatiomgeadromore previous
messages, we know that the ID ©fdoes not match certain prefixes. Fortunately, this infoionat
only tends to (slightly) increase the probability that saatmodeu is a match for a subsequent search.

3. Finally, a more subtle issue is that as the algorithm wisfolve learn information concerning the
dimensions of certain nodes. This information is globalatune as it tells us something about the total
number of nodes matching a noden a certain prefix. For example, if we learn that the dimemsio
of nodew is 10, then we know thdl(u, 10)| > 10c and |I'(u, 11)| < 11¢, wherec is the constant
appearing in the definition of dimension (see Section 4.1i}.rdte that Lemma 4.3 tells us that for a
given value ofn, every node has the same dimension, to within one, whp. Tpéies that learning
some (or all) of the node dimensions is unlikely to bias thabpbility of occurrence of any given
prefix by more than a constant factor.

5 Related Work

Early generations of peer-to-peer networks use unscabgipeoaches for name resolution. For example,
Napster [19] uses a central directory, Gnutella [8] useddftapy and Freenet [5] uses heuristic search.

Besides PRR, other name resolution schemes include ChgrdJA&N [23], and Viceroy [16]. PRR-like
topologies are later also used by Tapestry [29], Pastry, @t Kademlia [17]. Several systems have been
built on top of these schemes: OceanStore [13] and Bayeof3Tapestry, PAST [7] and SCRIBE [26]
on Pastry, and CFS [6] on Chord.

Besides hypercubes, shuffle-exchange networks [16] or dgnByraphs [22] can also be used for name
resolution. For example, Viceroy [16] uses shuffle-excleangtworks, in which every node maintains only
a constant, instead of logarithmic, number of neighborse ddivantage of constant degree is reduced cost
for joins and leaves. However, the disadvantages are: €Hlitg is exploited less effectively because
there are fewer choices for a neighbor, (2) the network isenalble to being partitioned because each
node only has a constant degree, and (3) the constants ibeted running times are higher. However,
an important research issue is ensuring the correctnessnolirent name resolution operations. In this
respect, constant-degree networks may be easier to rebsah ahus, the pros and cons of such constant-
degree constructions merit further investigation.

Chord works by arranging nodes and names on an ID ring. A namstoied at a node immediately
succeeding the name on the ID ring. Apart from a predecessbswiccessor pointer, each node maintains a
logarithmic number of finger pointers. A finger pointer psita the first node succeeding a certain point on

17

the ID ring. The finger pointers enable efficient name regmtytwhile the (possibly multiple) predecessor
and successor pointers ensure fault tolerance.

CAN works by mapping nodes and names t@dimensional unit space. Each node is assigned a region
in the space and is responsible for resolving the names rddpghat region. For a network with nodes,

a lookup take®(d - nl/d) hops. Thus, to achieve logarithmic scalability, CAN needsdtd = 1g n, which
may not be feasible without a good anticipatiomodr if n changes dramatically during the lifetime of the
network.

The importance of locality is now widely recognized and mmaghe resolution schemes go to significant
lengths to exploit locality, be it rigorously [11, 12, 20]leeuristically [4, 24, 28]. As discussed in Section 1,
there is a tradeoff between simplicity and effectivenesasxploiting locality, and SPRR attempts to exploit
locality without sacrificing simplicity.

At a high level, SPRR, especially with the implementationmnteaning only predecessors and succes-
sors, bears some resemblance to a skip list [21], a randdndizéonary data structure whose applications
to peer-to-peer computing has recently gained attentionekample, Karger and Ruhl [12] have proposed
a data structure calleahetric skip listto solve the nearest neighbor problem on growth-restriotetric
spaces. In the process of finalizing this technical repcetheve learned of two other independent research
efforts involving skip-list-like structures: skip grapfld and hyperrings [2]. While similar to SPRR at the
high level, the primary design objectives underlying thekano [1] and [2] (e.g., range queries, fault-tolerant
connectivity, and repairability) are different from thasfethe present paper, and consequently the details of
the constructions and analyses differ substantially. G@nward, it would be interesting to exhibit a single
skip-list-like topology that enjoys most or all of the var®strong theoretical properties established here
andin[1, 2].

6 Future Work

Compared to PRR, a drawback of SPRR is that the average augjt Is increased, due to the additional
constraint on neighbor selection. Bounding this increasani open problem. Ideally, we would like to
bound it by constructing a ring such that the total edge le§SPRR is only a constant factor larger than
that of PRR.

As discussed in Section 1, simplicity not only is a desirdblgture of system design, but also helps
reasoning about the correctness of a name resolution schigl@iataining the neighbor tables is a com-
plicated task. When many joins and leaves happen conclyréns not clear whether the neighbor tables
will remain in a “good” state. This problem, however, has heen adequately addressed by current re-
search. The problem is much easier if the network is allowdtite some “locking” mechanism. However,
for performance reasons, it is desirable that name resalujperations baon-blocking[10], that is, slow
operations cannot prevent other operations from makingrpes. We plan to implement a non-blocking
name resolution scheme and to prove the correctness of gilerimentation. The work of Blumofet al.[3]
suggests that proving the correctness of such non-bloakamgurrent data structures can be a significant
technical challenge. A simple framework like SPRR is an irtgot starting point for our future work.

7 Concluding Remarks

In this paper, we have defined a class of network topologiksdchyperdelta networks, and observed that
the PRR topology is a random hyperdelta network. To overceome weaknesses of PRR on arbitrary
metric spaces, we have proposed SPRR, a simple variant of BIRRR is considerably simpler than PRR
and retains most scalability properties of PRR. When speeihto the case of uniform metric space, SPRR

18

is comparable to Chord in terms of simplicity, and has maiglor improved time bounds on name resolution
operations. In more general metric spaces, SPRR explogditpeffectively. The ease of exploiting locality
comes from the ability to choose neighbors from a set of claids. In this paper, we have proved the
locality property of SPRR on the ring metric. Fault tolerargan be achieved in SPRR without adding
much complexity. SPRR employs a novel name replicationiegjyathat ensures lookups remain efficient in
a random fault model where each node has a constant prapaibibeing down.

Acknowledgments

The authors would like to thank Frans Kaashoek for bringmgur attention the work of Awerbuch and
Scheideler [2], and thank Christian Scheideler for brigdimour attention the work of Aspnes and Shah [1].

References

[1] J. Aspnes and G. Shah. Skip graphs.Phoceedings of the 14th Annual ACM-SIAM Symposium on

2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

[11]

Discrete AlgorithmsJanuary 2003. To appear.

B. Awerbuch and C. Scheideler. Self-repairing and deatote distributed data structures, November
2002. Under submission.

R. D. Blumofe, C. G. Plaxton, and S. Ray. Verification ofancurrent deque implementation. Tech-
nical Report TR-99-11, Department of Computer Scienceyadsity of Texas at Austin, June 1999.

M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exphaitnetwork proximity in peer-to-peer over-
lay networks. Ininternational Workshop on Future Directions in Distribdt€omputing (FuDiCaq)
June 2002.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freengtdistributed anonymous information
storage and retrieval system. Rroceedings of the Workshop on Design Issues in Anonymdidy an
Unobservability pages 46—66, July 2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. 8&0i Wide-area cooperative storage with
CFS. InProceedings of the 18th ACM Symposium on Operating Systanggies pages 202-215,
October 2001.

P. Druschel and A. Rowstron. Storage management andngaithPAST, a large-scale, persistent peer-
to-peer storage utility. IfProceedings of the 18th ACM Symposium on Operating Systanpies,
pages 188-201, October 2001.

Gnutella. Available at http://gnutella.wego.com.
M. G. Gouda.Elements of Network Protocol Desighiohn Wiley & Sons, 1998.

M. P. Herlihy. Wait-free synchronizatiodCM Transactions on Programming Languages and Systems
13:124-149, 1991.

K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao. Dibtrted data location in a dynamic network.
In Proceedings of the 14th Annual ACM Symposium on Paralledilgns and Architecturegpages
41-52, August 2002.

19

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Karger and M. Ruhl. Finding nearest neighbors in gtevestricted metrics. IRroceedings of the
34th Annual ACM Symposium on Theory of Computrages 741-750, May 2002.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.t&ia D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceasstan architecture for global-scale
persistent storage. IRroceedings of the 9th International Conference on Architeal Support for
Programming Languages and Operating Systems (ASPLOS,3iifhs 190-201, November 2000.

F. T. Leighton.Introduction to Parallel Algorithms and Architectures: rays, Trees, and Hypercuhes
Morgan-Kaufmann, San Mateo, CA, 1991.

X. Liand C. G. Plaxton. On name resolution in peer-tepeetworks. InProceedings of the 2nd
Workshop on Principles of Mobile Computinmages 82—89, October 2002.

D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalaldnd dynamic emulation of the butterfly. In
Proceedings of the 21st ACM Symposium on Principles of iDiged ComputingJune 2002.

P. Maymounkov and D. Maziéres. Kademlia: A peer-tempi@formation system. IRroceedings of
the 1st International Workshop on Peer-to-Peer SystemBRE) March 2002.

D. S. Mitrinovi€. Analytic Inequalities Springer-Verlag, Berlin, 1970.
Napster. Available at http://www.napster.com.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessiegrioy copies of replicated objects in a
distributed environmentTheory of Computing Systen®2:241-280, 1999.

W. Pugh. Skip lists: A probabilistic alternative to bated trees.Communications of the ACM
33(6):668-676, 1990.

R. Rajaraman, A. W. Richa, B. Vocking, and G. Vuppulu#i data tracking scheme for general net-
works. InProceedings of the 13th Annual ACM Symposium on Parallediigns and Architectures
pages 247-254, July 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni&e A scalable content addressable net-
work. In Proceedings of the 2001 ACM SIGCOMM Conference on ApptieatiTechnologies, Archi-
tectures, and Protocols for Computer Communicatigaiges 161-172, 2001.

S. Ratnasamy, M. Hanley, R. Karp, and S. Shenker. Tgpcddly-aware overlay construction and
server selection. IfProceedings of the 21st Annual Joint Conference of the IEEBmLiter and
Communications Societies (INFOCOMune 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, deakn#d object location and routing for large-scale
peer-to-peer systems. Rroceedings of the 18th IFIP/ACM International ConferewnceDistributed
Systems Platforms (Middleware 200Movember 2001.

A. Rowstron, A. Kermarrec, M. Castro, and P. Druschetrit®: The design of a large-scale event-
notification infrastructure. lProceedings of the 3rd International Workshop on NetworguprCom-
munications pages 30-43, November 2001.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balkhnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. Rroceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computem@iunicationspages 149-160, 2001.

20

[28]

[29]

[30]

B. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Kulviata. Brocade: Landmark routing on
overlay networks. IfProceedings of the 1st International Workshop on PeerderSystems (IPTPS)
March 2002.

B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry.idrastructure for fault-tolerant wide-area
location and routing. Technical Report UCB/CSD-01-1144mputer Science Division, University of
California at Berkeley, April 2001.

S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. KubiatowiBayeux: An architecture for scalable
and fault-tolerant wide-area data disseminatiorPioceedings of the 11th International Workshop on
Network and OS Support for Digital Audio and Video (NOSSDpa&Yyes 11-20, July 2001.

21

