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Abstract

An efficient name resolution scheme is the cornerstone of anypeer-to-peer network. The foundation
of an efficient name resolution scheme is a dynamic network topology that determines the neighbor
relationships to be maintained by the nodes in the network. The name resolution scheme proposed by
Plaxton, Rajaraman, and Richa, which we hereafter refer to as the PRR scheme, is a scalable scheme
that also provides provable locality properties on a certain class of growth-restricted metric spaces. On
arbitrary metric spaces, however, some performance boundsof PRR are significantly weakened. In this
paper, we define a class of network topologies calledhyperdelta networksand observe that the PRR
topology may be viewed as a random hyperdelta network. We then propose SPRR (simplified PRR),
a variant of the PRR scheme that performs well on arbitrary metric spaces. SPRR imposes additional
constraints on PRR neighbor selection by placing the nodes on a cycle. Although SPRR does not provide
as strong locality properties as PRR, it exploits locality heuristically yet effectively. Finally, a significant
level of fault tolerance can be achieved in SPRR without adding much complexity.
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1 Introduction

An efficient name resolution scheme is the cornerstone of anypeer-to-peer network. Given a name, the task
of name resolution is to determine the value to which the namemaps. An important use of name resolution
is to find the location of a data item. At a minimum, a name resolution scheme supports the following
operations: (1) name operations: lookup (looking up a name), insert (inserting a name), and delete (deleting
a name); (2) network operations: join (adding a node to the network) and leave (removing a node from the
network). Since a peer-to-peer network can have a large number of nodes, scalability (i.e., efficient support
for the above operations), is a fundamental requirement forname resolution. Furthermore, locality (i.e., the
distance traveled by each hop), is not to be ignored. For example, a 10-hop path in a global peer-to-peer
network in which each hop is intercontinental is likely to bedramatically inferior to a 10-hop path in which
most or all of the hops are “local” (e.g., within a single college campus). Finally, a name resolution scheme
should have strong fault tolerance properties.

Considerable research effort has been invested in the design of efficient name resolution schemes and
several schemes have been proposed, including the PRR scheme proposed by Plaxtonet al.[20], Chord [27],
CAN [23], and Viceroy [16]. The routing method of PRR, which is a variant of hypercubic routing, is later
also used by Tapestry [29], Pastry [25], and Kademlia [17].

The foundation of an efficient name resolution scheme is a dynamic network topology that determines
the neighbor relationships to be maintained by the nodes in the network. For the sake of brevity, we identify
a name resolution scheme with its dynamic network topology in this paper. For example, PRR maintains a
logarithmic number of neighbor pointers at each node, and each neighbor of a nodeu is the nearest node
to u with an ID matching that ofu in a certain number of bit positions. On arbitrary metric spaces, PRR
guarantees logarithmic number of hops between any two nodes. On a certain class of growth-restricted
metric spaces, PRR provides provable locality properties and efficient support for join and leave operations.
Maintaining the PRR neighbor pointers, however, is a nontrivial task, especially if the distance function is
changing, or if nodes are frequently joining or leaving the network. Although recent research results have
reduced the restriction on the metric spaces [11, 12], providing similar locality properties on general metric
spaces remains an open problem.

When applied to arbitrary metric spaces, some performance bounds established by PRR are considerably
weakened. For example, on growth-restricted metric spaces, the in-degree of a node isO(log n) expected
andO(log2 n) with high probability (whp). (We say that an event happenswith high probabilityor whp if it
fails to occur with probability at mostn�, wheren is the number of nodes in the network and is a positive
constant that can be set arbitrarily large by adjusting other constants in the relevant context.) However,
consider a star network withn nodes such that one (special) node is distance1 from all other (non-special)
nodes and the distance between any two non-special nodes is2. Therefore, the special node is a neighbor
of every non-special node, regardless of the values of the individual IDs. This is undesirable because if the
special node leaves the network, all other nodes have to update their neighbor tables. In addition, the special
node carries a disproportionate routing workload because it is a neighbor of many other nodes.

In this paper, we define a class of network topologies calledhyperdelta networksand observe that the
PRR topology may be viewed as a random hyperdelta network. Wethen propose SPRR (simplified PRR),
a simple variant of the PRR scheme that performs well on arbitrary metric spaces. Compared to Chord,
SPRR has matching or improved high probability time bounds and matching or better expected running
times for all name resolution operations. For example, the join operation in SPRR runs inO(lg n) time with
high probability (whp), whereas, given the Chord definitionof fingers, the join operation in Chord requires
(lg2 n) time to succeed whp. (The reason for this is that for any" > 0, there is an�" probability that
(lg2 n) nodes will need to update their fingers as a result of the join.) In a dynamic environment, the ability
to quickly add or remove a node from the network is particularly important.
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We then show that SPRR exploits locality effectively. We argue that SPRR is likely to have good locality
properties on any metric space, and we give the rigorous locality properties on the ring metric. Although
giving up provable locality properties for simplicity may affect performance, we argue that the loss of
performance is likely to be minor, while simplicity not onlyis a desirable feature in system design, but also
helps reasoning about the correctness of a scheme, a point which we will elaborate on in Section 6.

Finally, we show that fault tolerance can be achieved in SPRRwithout adding much complexity. We
propose a novel name replication strategy ensuring names belooked up whp in a random fault model where
each node has a constant probability of being down. We show that lookups remain efficient (i.e., taking
logarithmic number of hops) in this random fault model.

The rest of the paper is organized as follows. Section 2 presents SPRR on uniform metric space. Sec-
tion 3 shows how SPRR exploits locality. Section 4 shows how fault tolerance can be achieved in SPRR.
Section 5 discusses related work. Section 6 discusses future work. Section 7 concludes the paper.

2 Fault-Free Name Resolution on Uniform Metric Space

In this section, we define hyperdelta networks and present a simplified version of SPRR that is suitable for
a basic network model in which nodes are fault-free and the distance between any pair of nodes is equal
(uniform metric space). We show that this version of SPRR notonly greatly simplifies PRR, but also retains
the scalability properties of PRR. Of course, for real peer-to-peer applications, locality and fault tolerance
have to be taken into account. We address locality and fault tolerance issues in Sections 3 and 4, respectively.

We first introduce a few definitions and notations that will beused throughout the paper. Every node
and every object has a random binary string as its identifier (ID). Object IDs are also callednamesin this
paper. For the purpose of analysis, we view an ID as an infinitesequence of random bits, and we assume
that no two IDs are identical. In practice, the length of an IDis chosen to be long enough (say, 128 bits) so
that the chance of having two identical IDs is negligible. IDbits are numbered starting from0. At times,
we identify a node with its ID when no confusion could arise. Let V be the set of nodes in the network;n = jV j be the number of nodes in the network;x[i℄ be bit i of ID x; math(x; y) be the length of the
longest common prefix shared by IDx and IDy; N(�) be the set of nodes prefixed by bit string�; F (u; i)
be the setfv 2 V : math(u; v) = ig; �(u; i) be the setfv 2 V : math(u; v) � ig. Note thatu 2 �(u; i),
for all i. The number of neighbors of a node is called theout-degreeof the node; the number of nodes of
which the node is a neighbor is called thein-degreeof the node.

The rest of this section is organized as follows. Section 2.1defines hyperdelta networks. Section 2.2
presents the basic organization of SPRR. Section 2.3 presents the basic name resolution operations in SPRR.
Section 2.4 discusses several alternative implementations of SPRR. Section 2.5 analyzes the properties of
SPRR.

2.1 Hyperdelta Networks

We begin by reviewing a few standard static network topologies. (See Leighton [14] for a thorough coverage
of these topologies.) Delta networks are a class ofn-input n-output switching networks that have a unique
path from any input to any output, and that the label sequenceof every path to the same output is the same.
A butterfly is an example of a delta network. A hypercube is a topology closely related to a butterfly: a
hypercube can be viewed as a “collapsed” version of a butterfly in which each of then columns in the
butterfly corresponds to a single node in the hypercube. The same collapsing operation can be applied to
any delta network to obtain a hypercube-like network. We call such a collapsed delta network ahyperdelta
network. Although hyperdelta networks have desirable properties in the static setting (e.g., logarithmic
degree and diameter), in a dynamic setting, where nodes keepjoining and leaving the network, it is no
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Figure 1: An example of SPRR.

longer feasible to assign fixed IDs to nodes and follow the strict neighbor rules as in the static setting. To
solve this problem, PRR has every node choose its own ID at random, and the bit-i neighbor of a nodeu is
the nearest node inF (u; i). Therefore, PRR can be viewed as a minimum-cost random hyperdelta network.
As discussed in Section 1, although PRR provides strong locality properties on a certain class of growth-
restricted metric spaces, some of its performance bounds (e.g., in-degree) are considerably weakened on
arbitrary metric spaces. To overcome this weakness, we now propose SPRR, a variant of the PRR scheme
that performs well on arbitrary metric spaces.

2.2 Basic Organization of SPRR

SPRR first places all the nodes on an arbitrarylogical ring which is independent of node IDs, and requires
that nodes choose their neighbors conforming to the logicalring. To be precise, every nodeu maintains the
following three types of neighbors:� Flip neighbors.The bit-i flip neighborof u, denoted byu:ip[i℄, is the first nodev clockwise fromu

such thatv 2 F (u; i). If F (u; i) = ;, thenu:ip[i℄ = nil.� Predecessors.The bit-i predecessorof u, denoted byu:pred [i℄, is the first nodev counterclockwise
from u such thatv 2 �(u; i). If u is the only node in�(u; i), thenu:pred [i℄ = u.� Successor.The bit-0 successor, or simplysuccessor, of u, denoted byu:su, is the “opposite” of
bit-0 predecessor (i.e.,u:pred [0℄ = v iff v:su = u). Note that we only maintain one successor
pointer at each node.

At a high level, the SPRR topology may be termed random cyclichyperdelta network. Apparently,
imposing additional constraints on neighbor selection increases the average edge length. Bounding this
increase is still an open problem and is our future work (see Section 6). Figure 1 shows an example of an
SPRR topology. For simplicity, we only show the neighbor pointers of a single node at the first three bit
positions.

SPRR admits a simple recursive definition: an SPRR network iscomposed of two SPRR networks,
one consisting of the nodes that begin with0 and the other the nodes that begin with1. Such a recursive
definition is a hallmark of hypercubic networks. We believe that this recursive structure will prove crucial
in our future work (see Section 6).

We next discuss how names are handled in SPRR. When a name is inserted, it is stored at a certain node,
called thehandlerof the name, which is responsible for resolving the name. Each nodeu maintains a local
name database, denoted byu:db, to store the names for which it is responsible. Handlers areassigned as
follows. Let thebest match setof a namea, denoted byB(a), be the setfu 2 V : 8v 2 V;math(u; a) � math(v; a)g :
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We callmath(u; a), whereu 2 B(a), thedepthof the best match set. When a namea is inserted, the insert
request is forwarded until a node inB(a) is reached. This node is designated as the handler of the name.
When a name is later looked up or deleted, additional work hasto be done to locate the handler of the name
because there may be multiple nodes in the best match set. We discuss the details of each operation in the
next section. Note that all the nodes in a best match set is organized in a cycle by the predecessor pointers
at a certain bit position.

Although we do not provide rigorous load balance analysis ofSPRR in this technical report, it is clear
from the above description that SPRR achieves load balance properties similar to those established by Chord.
That is, the expected load of every node is the same, althoughthe load of the heaviest node isO(lgn) of
that of the lightest node. While Chord uses “virtual nodes” (i.e., every physical node simulatesO(lgn)
logical nodes) to smooth out the imbalance so that the load ofevery node is within a constant factor of each
other whp, we use name replication to achieve the same goal. (In fact, name replication achieves both load
balance and fault tolerance.) We discuss our name replication strategy in Section 3.1.

2.3 Basic Operations

With the above definitions, we are now ready to present the basic operations of name resolution. Central
to the name operations (lookup, insert, and delete) is finding the handler of a name. The process is divided
into two phases: (1) thebit-correcting phase, during which a node in the best match set is reached; (2)
thewalkingphase, during which the nodes in the best match set are traversed by following the predecessor
pointers until the handler of the name is found. For an insertoperation, only the bit-correcting phase is
needed, while for a lookup or delete operation, both phases are needed. For network operations (join and
leave), existing nodes need to be informed about the arrivalor departure of a node. The predecessor pointers
and the successor pointer enable SPRR to support join and leave efficiently.

We next describe each operation in detail and present our code for these operations. Our code is written
in a style similar to Gouda’s Abstract Protocol Notation [9], with some minor variations. In our code,
keywordyou is only defined when a message is being received and denotes the sender of the message, and
keywordme denotes the current node.� Lookup. To look up a name, a node needs to find the handler of the name. The process of finding the

handler includes both the bit-correcting phase and the walking phase. During the bit-correcting phase,
a node forwards the lookup request to one of its flip neighbors, which matches the name in more bits,
until the lookup request cannot be forwarded further, in which case the current node belongs to the
best match set. The walking phase is needed because the first node reached in the best match set
may not be the handler of the name. Thus, we need to traverse the best match set by following the
predecessor pointers until we locate the handler. The code for lookup is shown in Figure 2.� Insert. When a name is inserted, we only need to find an arbitrary node in the best match set and
hence only the bit-correcting phase is needed. When the lookup request cannot be forwarded any
further through flip neighbors, the current node belongs to the best match set and is the handler of the
name.� Delete.Deleting a name is largely the same as looking up a name, except that when a name is located,
it is deleted from the local name database, instead of being looked up. We omit the code for insert and
delete, because it is largely the same as that for lookup.� Join. When a new node joins, the new node first finds an arbitrary nodein the network through some
external mechanism. We assume that some external mechanismenables the new node to find such a
node, an assumption made by many other schemes. As will be discussed in Section 3.3, to exploit
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2 true! flookupga := arbitrary name;send jump(me; a; 0) to me;2 rv jump(x ; a; i) !do (id [i ℄ = a[i ℄) ! i := i + 1;od;if (ip[i ℄ 6= nil) ! send jump(x ; a; i + 1) to ip[i ℄;2 (ip[i ℄ = nil) ! send walk(x ;me; a; i) to me;�;2 rv walk(x ; y ; a; i) !if (a 62 db ^ pred [i ℄ 6= y) ! send walk(x ; y ; a; i) to pred [i ℄;2 (a 2 db _ pred [i ℄ = y) ! send reply(a; db:�nd(a)) to x ;�;2 rv reply(a; value) !skip;
Figure 2: Code for lookup.

locality, it is desirable for distances on the logical ring to be correlated with actual distances in the
metric space. Thus it is desirable for the external mechanism to determine a node close to the new
node. The new node then sets its successor to be that node (i.e., it places itself on the logical ring
immediately counterclockwise to that node) and generates its own ID. The new node then builds its
own neighbor table by consulting a sequence of nodes, starting from its successor. During this process,
the neighbor pointers of other nodes are also updated. The code for join is shown in Figure 3. The
code used by both join and leave is shown in Figure 4.� Leave.When a node leaves, it needs to inform other nodes to update their neighbor pointers, a process
similar to join. The code for leave, which is largely symmetric to that for join, is shown in Figure 5.

We remark that although we content ourselves with the compactness and clarity of our code, certain
optimizations are possible in actual implementation. For example, messages sent to a node itself can be
replaced by function calls. Therefore, these messages are not counted in our analysis.

2.4 Alternative Implementations

Besides the implementation presented above, SPRR admits several alternative implementations (e.g., the
one presented in our recent workshop paper [15]). Below we mention a few other possibilities.

1. In the implementation presented above, if we are willing to expend a few messages to locate the
successor, then the successor pointer need not be maintained, because it can be located using onlyip[0℄ andpred [0℄ pointers.

2. The most straightforward implementation perhaps is to maintain predecessors and successors, but
not flip neighbors, at all levels. Hence, nodes are organizedinto various doubly-linked cycles. Flip
neighbors are not needed because they can be located by following the successor pointers. Although
this implementation satisfies all the performance bounds stated in the rest of this paper, the constant
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2 true! fjoingsu := arbitrary node in the network,nil if the network is empty;join level(su; 0);2 rv arrive(i ; b) !x ; pred [i ℄ := pred [i ℄;you;if (id [i ℄ 6= b ^ ip[i ℄ = nil) ! ip[i ℄ := you;2 (id [i ℄ = b _ ip[i ℄ 6= nil) ! skip;�;if (id [i ℄ = b) ! y ; z := ip[i ℄;me;2 (id [i ℄ 6= b) ! y ; z := me;ip[i ℄;�;send ak arrive(x ; y ; z ; i) to you;2 rv ak arrive(x ; y ; z ; i) !pred [i ℄;ip[i ℄ := x ; y ;send update ip(me; i ; id [i ℄) to pred [i ℄;join level(z ; i + 1);maro join level(x ; i)if (x 6= me ^ x 6= nil) ! send arrive(i ; id [i ℄) to x ;2 (x = me _ x = nil) ! send update su(me) to pred [0℄;�;
Figure 3: Code for join.

factor in the expected lookup time is doubled. Since lookup is the most important operation, we opt
for an implementation with lower constant factors.

3. Yet another implementation is to maintain predecessors,successors, and flip neighbors at all levels.
The disadvantage of this implementation, however, is higher node degree.

Therefore, in the balance of this paper, we assume the implementation presented in Section 2.2.

2.5 Analysis

In this section, we analyze the properties of SPRR. Our main result is that all operations takeO(lgn)
constant-size messages (or application-level hops) whp. For the two network operations join and leave, this2 rv update ip(x ; i ; b) !if (id [i ℄ 6= b ^ ip[i ℄ 6= x ) ! ip[i ℄ := x ; send update ip(x ; i ; b) to pred [i ℄;2 (id [i ℄ = b _ ip[i ℄ = x ) ! skip;�;2 rv update su(x ) !su := x ;

Figure 4: Common code used by both join and leave.

6



2 true! fleavegleave level(su; 0);2 rv depart(x ; i ; b) !pred [i ℄ := x ;if (ip[i ℄ = you) ! ip[i ℄ := nil;2 (ip[i ℄ 6= you) ! skip;�;if (id [i ℄ = b) ! y := me;2 (id [i ℄ 6= b) ! y := ip[i ℄;�;send ak depart(y ; i) to you;2 rv ak depart(x ; i) !send update ip(x ; i ; id [i ℄) to pred [i ℄;leave level(x ; i + 1);maro leave level(x ; i)if (x 6= me ^ x 6= nil) ! send depart(pred [i ℄; i ; id [i ℄) to x ;2 (x = me _ x = nil) ! send update su(su) to pred [0℄;�;
Figure 5: Code for leave.

represents a significant improvement over theO(lg2 n) message bound established by Chord. With respect
to the name operations, SPRR matches Chord in terms of both expected and whp bounds.

We now present a series of lemmas and theorems. One importantobservation is that given any nodeu and bit i, each of the remaining nodesv independently has a probability of exactly2�i�1 of belonging
to F (u; i). This observation allows us to use Chernoff bounds arguments to establish several of the claims
below.

Lemma 2.1 Whp,jN(�)j = �(lgn), where� is an arbitrary bit string of lengthlgn� lg lgn�, for some
sufficiently large constant.
Proof: Clearly,E [jN(�)j℄ = 2 lgn. Chernoff bounds imply thatjN(�)j lies within a constant factor of
its expectation whp. Thus,jN(�)j = �(lg n) whp.

Lemma 2.2 Both the bit-correcting and the walking phases takeO(lg n) hops whp.

Proof: By Lemma 2.1, when we look up a namea, then within lgn � lg lg n �  bit-correcting hops,
the lookup request reaches a node inN(�), where� is a bit string of lengthlg n � lg lgn � , for some
sufficiently large constant. Subsequent hops only visit the nodes inN(�) and jN(�)j = �(lgn) whp.
Thus, both the bit-correcting and walking phases takeO(lgn) hops whp.

Theorem 1 All name operations takeO(lg n) hops whp.

Proof: Immediate from Lemma 2.2.
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Lemma 2.3 The expected depth of the best match set islgn+O(1).
Proof: LetX denote the depth of the best match set. ThenE [X℄ = Xi�1Pr [X = i℄ � i= Xi�1Pr [X � i℄= Xi�1�1� �1� 12i�n�= lg n�1Xi=1 �1� �1� 12i�n�+ Xi�lg n�1� �1� 12i�n�� lgn� 1 + Xi�lg n�1� �1� 12i�n�= lgn� 1 +Xi�0�1� �1� 12in�n�
We observe �1� 12in�n =  �1� 12in�2in�1 � �1� 12in�!1=2i� �1e �1� 12in��1=2i� � 12e�1=2i :
The first inequality in the above derivation holds because�1� 1n�n � 1e � �1� 1n�n�1 ;
which is implied by the following more general inequality:�1 + xp�p � 1e � �1 + xp�p+x=2 ; for all positive realsx andp:
For a proof of this inequality, see, e.g., [18]. Thus,E [X℄ � (lg n� 1) +Xi�0 1� � 12e�1=2i!� lgn+O(1):
The series

Pi�0 �1� � 12e�1=2i� is bounded by a constant because the ratio between successive terms is1 + � 12e�1=2i , which is at least1 + 12e .
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Lemma 2.4 The expected size of the best match set is constant.

Proof: Without loss of generality, assume the namea to be looked up is all 0’s. LetX be the size of the best
match set and letnj be the number of nodes prefixed byj 0’s. Consider the maximumk such thatnk � i.
In order forX = i, it is necessary thatnk = i andnk+1 = 0. Note thatPr [nk+1 = 0 j nk = i℄ = 12i�1 .
ThusPr [X = i℄ = O(2�i), and henceE [X℄ = O(1).
Theorem 2 The expected number of messages needed by a name operation is12 lgn+O(1).
Proof: The expected number of messages needed in the bit-correcting phase is half of the depth of the best
match set. The expected number of messages needed in the walking phase is bounded by the size of the best
match set. By linearity of expectation and Lemmas 2.3 and 2.4, the number of messages needed by a name
operation is12 lgn+O(1).
Lemma 2.5 Every node has at mostlgn+O(plgn) flip neighbors whp.

Proof: Letu be the node under consideration. Starting from bit0, we divide the ID ofu into three segmentsA,B, andC, such that the lengths ofA andB arelgn and lgn, respectively, where is a sufficiently large
constant. LetXA, XB , andXC be the number of flip neighbors in segmentsA, B, andC, respectively.
Clearly,XA � lgn at all times. To boundXC , we first define setsGi, for all i � 0, asGi = fv 2 V : v 6= u ^math(u; v) � ig :
Then for any nodev, independently,Pr [v 2 Gi℄ = 12i and thus,E [jGij℄ = n�12i � n2i . We observe thatXC � jG(+1) lg nj. Thus, E [XC ℄ � E hjG(+1) lg nji� n2(+1) lg n= n�:
Markov’s inequality impliesPr [XC � 1℄ � E [XC ℄ = n�, that is,XC = 0 whp. To boundXB , we first
observe that for any nodev, independently,Pr [v 2 F (u; i)℄ = 12i+1
andE [jF (u; i)j℄ = n�12i+1 � n2i+1 . Again, by Markov’s inequality, we havePr [F (u; i) 6= ;℄ = Pr [jF (u; i)j � 1℄= E [F (u; i)℄� n2i+1 :
Thus, Pr hXB � 0plgni �   lgn0plgn!Pr264lg n+0plg n�1^i=lg n F (u; i) 6= ;375
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�   lgn0plgn! lg n+0plg n�1Yi=lg n Pr [F (u; i) 6= ;℄� ( lg n)0plg n lg n+0plg n�1Yi=lg n Pr [F (u; i) 6= ;℄= no(1) � 0plg n�1Yi=1 12i= no(1) � 2(0plg n�00 lg n)=2� no(1) � 2(0 lg n�00 lg n)=2= no(1)+0=2�00=2:
The second inequality in the above derivation holds becausethe dependency betweenPr [F (u; i) 6= ;℄ for
differenti’s is in our favor. That is, having a flip neighbor at a certain bit decreases the probability of having
a forward neighbor at a different bit.

Thus,XA +XB +XC � lgn+O(plgn) whp.

Lemma 2.6 For all sufficiently large positive constants, for all i �  lg n, and for all nodesu, u:ip[i℄ =nil whp.

Proof: For all i �  lg n,E [jF (u; i)j℄ = O(n�). The claim of the lemma follows from Markov’s inequal-
ity and Boole’s inequality.

Lemma 2.7 For all sufficiently large positive constants, for all i �  lg n, and for all nodesu, u:pred [i℄ =me whp.

Proof: Similar to that of Lemma 2.6.

Theorem 3 The out-degree of every node isO(lgn) whp.

Proof: By Lemmas 2.6 and 2.7, we have that every node hasO(lg n) flip neighbors and predecessors whp.
Every node also has a single successor. Therefore, the out-degree of every node isO(lg n) whp.

Theorem 4 The in-degree of every node isO(lgn) whp.

Proof: Fix a nodeu. Without loss of generality, assume that the ID ofu is all 0’s. Let the sequence of
nodes that precedeu on the logical ring, starting from the closest one, behv1; v2; : : : ; vn�1i. We start with
inspecting bit 0 of the IDs of this sequence of nodes. Once we see a 0, we start inspecting bit 1 of those
subsequent nodes prefixed by 0, once we see a 0 on bit 1, we startinspecting bit 2 of those subsequent nodes
prefixed by 00, and so forth. We keep inspecting until we return to the nodeu. The key observation is that
the nodes inspected in this process are exactly those that haveu as one of their flip neighbors. Furthermore,
by Lemma 2.6, no node has a flip neighbor at a bit higher than lg n. Since every node inspected has an
independent probability of1=2 to increment the index of the bit to be inspected, a Chernoff bound argument
implies that the number of nodes inspected can be bounded byO(lg n) whp. Moreover, Lemma 2.7 implies
that the number of nodes that haveu as one of their predecessors isO(lgn) whp. Finally, at most one node
hasu as its successor. Hence, the in-degree of every node isO(lg n) whp.
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Theorem 5 A join or leave operation takesO(lgn) messages whp. The number of existing neighbor table
entries that need to be modified isO(lgn) whp.

Proof: Immediate from Theorems 3 and 4.

3 Exploiting Locality

In the previous Section, we have shown that SPRR is simple andefficient on the uniform metric space. To
be useful in real applications, however, locality has to be taken into account. In this section, we show that
locality can be exploited in SPRR without adding much complexity.

The ease of exploiting locality in SPRR comes from the definition of flip neighbors. Unlike Chord,
which defines a finger to point to the first node following a certain point on the ID ring, PRR defines a flip
neighbor to be the “best” node in a set of candidates. It is exactly this freedom of choice that enables SPRR
to exploit locality easily.

Many applications benefit from having multiple copies of a name in the network, for performance or
fault tolerance reasons. For example, a name may be replicated to reduce resolution time. SPRR provides
locality in the following sense: the expected distance traveled by a lookup decreases as the number of copies
increases.

Name replication capability can either be built within a name resolution scheme, or be built as a separate
layer. Although the later approach has its own merits (e.g.,cleaner interface), we favor the former approach
because it provides better lookup performance and better load balance.

Section 3.1 first proposes our name replication strategy; Section 3.2 explains heuristically why SPRR is
likely to have good locality property on any metric space; Section 3.3 rigorously proves this locality property
on the ring metric.

3.1 Name Replication Strategy

Our name replication strategy is as follows. In the process of inserting a namea, when the insert request
reaches a nodeu in the best match set,u replicatesa at r nodes around itself that matcha better than the
rest of the nodes. This replication strategy can be achievedby simply following the predecessor pointers.
We call this set ofr nodes, denoted byR(a), thereplication setof a, In other words,R(a) is a set such thatjR(a)j = r and for allv 2 R(a) andw =2 R(a), math(v; a) � math(w; a). This replication strategy
requires a node check its local name database before forwarding lookup request to a neighbor, because now
a name can be stored at multiple nodes.

A system can choose an appropriater for its desired performance or fault tolerance, or choose differentr for different names. For example, it can setr = 
(lg n) to ensure that at least one node in the replication
set is up whp. If every name is replicated at�(lg n) nodes using the above replication strategy, then the
system is better load balanced, i.e., the load of every node is within a constant factor of each other whp.

3.2 Heuristic Exploitation of Locality

As mentioned above, the ability to exploit locality in SPRR originates from PRR’s flexibility to choose a
good flip neighbor from a set of candidate nodes. For example,consider the process of choosing the bit0 flip
neighbor of a nodeu. On average, there aren=2 nodes with IDs that differ from the ID ofu in bit 0. Among
such a large set of nodes, at least one of them is likely to be close tou. Similarly, E [jF (u; 1)j℄ = n=4,
and so forth. Thus, the number of candidate nodes keeps shrinking with every bit corrected. This implies
that the expected distance traveled in order to correct eachbit grows with every bit corrected. The speed of
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growth, of course, depends on the underlying network topology. If the growth is geometric, then the total
distance of the hops taken in a lookup operation is dominatedby the distance traveled by the last hop in the
bit-correcting phase plus the distance traveled in the walking phase. The reason that SPRR has good locality
properties is that most of the hops in a lookup operation are bit-correcting hops. Moreover, if a name is
replicated at multiple nodes, it is likely to be found beforethe bit-correcting phase is over.

3.3 The Ring Metric

In this section, we analyze the locality property of SPRR on the ring metric, where the distance between two
nodes is the distance between them on a ring, which is also called thelocality ring.

Although the ring metric is somewhat artificially simple, weremark that it is not totally unrealistic. For
example, consider a peer-to-peer network composed of nodeson different universities on different conti-
nents. We can arrange the nodes located in the same university in a contiguous region of the ring, and
arrange the universities located in the same continent in a bigger nearby region, and so forth.

As discussed in Section 2.2, a node chooses a flip neighbor from a set of candidates by imposing a
logical ring on the nodes. Since the logical ring is arbitrary, we can use the locality ring as the logical ring.
Employing the replication strategy described in Section 3.1, we establish the following theorem with respect
to the ring metric.

Theorem 6 If a name is replicated atr nodes using the above replication strategy, then the expected dis-
tance traveled by a lookup operation isO(n=r).
Proof: Let a be the name being looked up. LetX denote the size of the best match set. Letd be the
distance traveled by the entire lookup operation. Letd1 be the distance traveled in the bit-correcting phase.
Let d2 be the distance traveled in the walking phase.

By linearity of expectation,E [d℄ = E [d1℄ + E [d2℄. To boundE [d2℄, we first observe that ifX � r,
thend2 = 0; if X > r, thend2 � n(X � r). By Lemma 2.4, we know thatPr [X = i℄ � 12i�1 . Thus, we
can boundE [d2℄ as follows, E [d2℄ � Xi�r+1n(i� r) � Pr [X = i℄� n Xi�r+1 i� r2i � 1= O(n=2r)= O(n=r):
We next boundd1. Letm to be the smallest integer such that all the nodes that matcha in at leastm prefix
bits are inR, letR0 = fv : math(v; t) � mg, and letY = jR0j. We first observe that, in the bit-correcting
phase, the lookup operation does not travel beyond the node inR0 that is clockwise closest to the originating
node. Thus,E [d1℄ is bounded by the average distance between two nodes inR0, which isO(n=Y ). Thus,E [d1℄ � X1�i�rPr [Y = i℄ �O(n=i)= O(n) � X1�i�r 1i � Pr [Y = i℄= O(n)0� X1�i�r=4 1i � Pr [Y = i℄ + Xr=4<i�r 1i � Pr [Y = i℄1A
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= O(n)0� X1�i�r=4Pr [Y = i℄ + 4r � Pr �Y > r4�1A= O(n) � Pr �Y � r4�+O(n=r)� O(n) � e�r=16 +O(n=r)= O(n=r):
The last inequality above is due to an application of Chernoff bounds.

Therefore,E [d℄ = E [d1℄ + E [d2℄ = O(n=r).
4 Fault-Tolerant SPRR

In the previous section, we have shown how to exploit locality in SPRR. In this section, we show that,
without adding much complexity, a significant level of faulttolerance can be achieved.

We adopt a random fault model where every node has a constant probability q of being down. By
down, we mean fail-stop faults instead of Byzantine faults.We also assume that a node can detect whether
a neighbor is down. With respect to this fault model, our objective is to ensure that fault-tolerant lookup
retains the efficiency and locality properties of fault-free lookup.

The rest of this section is organized as follows. Section 4.1proposes two modifications to the basic
construction of SPRR. Section 4.2 describes the fault-tolerant lookup operation. Section 4.3 establishes
efficiency and locality properties of the fault-tolerant lookup.

4.1 Modifications to the Basic Construction

Clearly, in a random fault model defined above, a name has to bereplicated at
(lgn) nodes, simply to
ensure that at least one node that handles the name is up whp.1 Furthermore, if a node cannot handle a
name, then whp it is able to forward the lookup request to a neighbor that can continue the lookup. One
difficulty associated with achievinglgn-fold replication is that the network is dynamic and a node does not
know the exact network size. Thus, we need to find a way to enable a node to estimate the network size
based on its local state.

For every nodeu, define thedimensionof u, denoted byu:dim , to bemax fi : j�(u; i)j �  � ig, where
is some sufficiently large constant. We letu:similar denote�(u; u:dim) and we call the nodes inu:similar
(exceptu itself) thesimilarity neighborsof u. We modify SPRR as follows in order to achieve fault toler-
ance:

1. A nodeu maintains pointers to all the nodes inu:similar , as well as the order in which they appear
on the locality ring. Thus, we viewu:similar as a circular list and defineu:similar :next(v) to be the
first node inu:similar clockwise fromv.

2. A name is replicated at all the nodes inu:similar , whereu is a node in the best match set of the name.

With these modifications, SPRR provides a significant level of fault tolerance, as is evidenced by Lem-
mas 4.1 and 4.2 below.

1In fact, Chernoff bounds implies that if a name is replicatedat
(lg n) nodes, then
(lg n) of these nodes are up whp.
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Figure 6: Fault-tolerant lookup example.

4.2 Fault-Tolerant Lookup

Fault-tolerant lookup is a simple extension of fault-free lookup. The main augmentation is handling down
nodes. The idea is “bypassing” down neighbors by successively trying higher bit flip neighbors or similarity
neighbors. Roughly speaking, when a nodeu needs to correct biti but detects thatu:ip[i℄ (also denoted
byw for simplicity) is down, it successively tries its higher bit flip neighbors until an up one,u:ip[j℄ (also
denoted byv for simplicity), is found. The lookup request is then forwarded tov, which tries to correct biti. When forwarding the lookup request tov, nodeu piggybacks the pointer tow, so thatv does not need to
reprobew if v:ip[i℄ = w, in which casev tries to forward the request to one of its upper bit flip neighbors,
starting with bitj+1. If a node has exhausted all of its flip neighbors, then it successively tries its similarity
neighbors.

Figure 6 shows an example of correcting a single bit in a fault-tolerant lookup. Figure 7 shows the
code for fault-tolerant lookup. We will show in Section 4.3 that whp this code successfully completes the
lookup operation usingO(lg n) messages. However, this code has the defect that, with (polynomially) small
probability, a fault-tolerant lookup may not terminate. For example, suppose that the bit to be corrected is biti, and the lookup request reaches nodeu, which has exhausted all of its flip neighbors and is about to try its
similarity neighbors. Further assume thatu and its similarity neighbors all have the same dimension value,
and their bit-i neighbors are all down. Under such a circumstance, the lookup request will be forwarded
amongu and its similarity neighbors forever. Here we briefly sketcha few possible remedies to this problem:

1. Before forwarding a lookup request to a similarity neighbor, a node can first query that neighbor to
make sure that it can successfully correct the bit (i.e., both the similarity neighbor and its appropriate
flip neighbor are up). If none of the similarity neighbors cancorrect the bit, then the lookup fails.

2. One can use a TTL (time-to-live) value to control how many times a lookup request can be forwarded
before failure is reported.

3. One can use a TTL value to control how many high messages canbe sent before failure is reported.

4.3 Analysis

We first use standard Chernoff bound arguments to establish the following lemmas.

Lemma 4.1 For every nodeu, u:dim = blgn� lg lgn�O(1) whp.

Lemma 4.2 For every nodeu, ju:similar j = �(lg n) whp.
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Figure 7: Code for fault-tolerant lookup.

Lemma 4.3 For all nodesu andv, ju:dim � v:dim j � 1 whp.

We next prove some efficiency and locality properties of fault-tolerant lookups in SPRR, which are
stated in the following two theorems.

Theorem 7 Every fault-tolerant lookup takesO(lg n) messages whp.

Theorem 8 The expected total distance traveled by all the messages in afault-tolerant lookup isO(n= lgn).
The proofs of these two theorems are significantly more involved than those presented earlier in the

paper. We only sketch our main proof ideas here.
We first introduce a few definitions. A message is said to below if it is from a node to one of its flip

neighbors. A low message is said to bei-low if it is from a node to its biti flip neighbor. A message is said
to behigh if it is from a node to one of its similarity neighbors. A high message is 1-high if it is sent from
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a nodeu to its next node inu:similar , 2-high if it is sent to the next node of the next node inu:similar , et
cetera. A lookup is divided intophases, where phasei consists of the messages associated with correcting
bit i.

Our approach to proving Theorem 7 is as follows. At a high level, when a nodeu wants to correct biti,
it first tries to do so using a path of length one, that is, by forwarding the lookup tou:ip[i℄. If u:ip[i℄ is
down, our fault-tolerant lookup proceeds by successively trying to correct biti by using paths of length two,
where the first hop on the path leads to a node matchingu in bits 0 throughi (or higher) and the second hop
corrects biti. We now state a key technical lemma.

Lemma 4.4 Each successive path considered in a given phase has a constant probability of terminating the
phase.

Proof: We provide a sketch of the proof only. Fix a pathP that we are about to explore. We claim that
with constant probability, all of the nodes inP are up. To establish this claim, first note that the nodes in
pathP have never been previously examined, and hence we can view each of them as having a constant
probability of being up, independent of the previous history of the lookup. Unfortunately, this argument
alone is insufficient to establish the desired lemma. The remaining difficulty is associated with the the case
where the first hop of the path brings us to a nodeu whose biti neighborv is already known to be down
because we previously attempted to terminate phasei by sending ani-low message tov. In such a case,
our algorithm abandons this pathP without attempting to send a message along the second hop; instead,
we initiate a new two-hop path. It remains to prove that we do not expend a large number of messages, and
travels a large distance, due to repeatedly abandoning suchtwo-hop paths at the intermediate nodes.

How can we rule out this scenario? We now argue that there is a constant probability that the biti
neighbor of an intermediate node on a two-hop pathP is a node that we have not previously encountered
in the lookup, from which it follows that the pathP is not abandoned at the intermediate node (sinceu:ip[i℄ 6= w). The intuition underlying this claim is that the first message on any two-hop path in phasei
is either aj-low message for somej > i or a high message. In either case, the expected distance traveled
by such a message is greater than that of ani-low message. This observation can be used to show that
with constant probability, the first message of the two-hop path passes over any nodev that we might have
previously determined to be down when sending ani-low message. (In our formal proof of this claim, we
defer revealing the precise location of the nodev until it is passed over by some message to an up node.)
Hence, there is a constant probability that the biti flip neighbor of the intermediate node of pathP is a node
that we have not previously encountered.

With Lemma 4.4 in hand, it is straightforward to establish Theorem 7 using a standard Chernoff bound
argument.

Lemma 4.4 also gives us a good start on establishing Theorem 8. At a high level, the main difference
between the proofs of Theorems 7 and 8 is that in the latter case we need to account for the different kinds of
messages (i.e.,i-low andi-high messages, for various values ofi) separately, because the expected distances
that they travel vary. Lemma 4.4 can be used to show that a lookup uses expectedO(1) i-low messages for
any giveni, and expectedO(qi) i-high messages for any giveni. Theorem 8 follows easily once we establish
the following claim: the expected distance traveled by anyi-low message isO(2i) and the expected distance
traveled by anyi-high message isO(i � n= lgn). In what follows, we sketch a proof of this claim.

Note that the biti flip neighbor of a given nodeu is the first nodev clockwise fromu such thatmath(u; v) = i. It follows that if each node on the ring has a random ID, then the expected distance
from u to its bit i flip neighbor isO(2i). A similar argument shows that the expected distance traveled by ani-high message isO(i � n= lgn). Unfortunately, there is a technical obstacle that prevents us from directly
applying this simple approach to bound the expected distance of the messages sent during a lookup. The
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difficulty is that as the lookup algorithm unfolds, information concerning the node IDs is revealed. Con-
sequently, when a particular message is sent by the algorithm, we cannot assume that all of the node IDs
are still random. In particular, there are three kinds of information that we learn about the node IDs as the
algorithm proceeds. Below we discuss each of these kinds of information in turn and sketch how to bound
their effect on our analysis.

1. For any nodeu that has received a previous message (or would have receiveda previous message
but was determined to be down), we know that the ID ofu is inconsistent with any prefix that we
will subsequently search for. Thus, if we happen to encounter such a nodeu while searching for the
destination of a subsequent message, the probability thatu is the desired destination is 0 (as opposed
to, e.g.,�(2�i) for an i-low message). Since Theorem 7 tells us that whp there areO(lgn) such
nodesu, it is straightforward to argue that the total extra distance incurred by retraversing these nodes
isO(lg2 n) = o(n= lgn) whp.

2. For any nodeu that has been passed over in a search for the destinations of one or more previous
messages, we know that the ID ofu does not match certain prefixes. Fortunately, this information
only tends to (slightly) increase the probability that sucha nodeu is a match for a subsequent search.

3. Finally, a more subtle issue is that as the algorithm unfolds, we learn information concerning the
dimensions of certain nodes. This information is global in nature as it tells us something about the total
number of nodes matching a nodeu in a certain prefix. For example, if we learn that the dimension
of nodeu is 10, then we know thatj�(u; 10)j � 10 and j�(u; 11)j < 11, where is the constant
appearing in the definition of dimension (see Section 4.1). But note that Lemma 4.3 tells us that for a
given value ofn, every node has the same dimension, to within one, whp. This implies that learning
some (or all) of the node dimensions is unlikely to bias the probability of occurrence of any given
prefix by more than a constant factor.

5 Related Work

Early generations of peer-to-peer networks use unscalableapproaches for name resolution. For example,
Napster [19] uses a central directory, Gnutella [8] uses flooding, and Freenet [5] uses heuristic search.

Besides PRR, other name resolution schemes include Chord [27], CAN [23], and Viceroy [16]. PRR-like
topologies are later also used by Tapestry [29], Pastry [25], and Kademlia [17]. Several systems have been
built on top of these schemes: OceanStore [13] and Bayeux [30] on Tapestry, PAST [7] and SCRIBE [26]
on Pastry, and CFS [6] on Chord.

Besides hypercubes, shuffle-exchange networks [16] or de Bruijn graphs [22] can also be used for name
resolution. For example, Viceroy [16] uses shuffle-exchange networks, in which every node maintains only
a constant, instead of logarithmic, number of neighbors. The advantage of constant degree is reduced cost
for joins and leaves. However, the disadvantages are: (1) locality is exploited less effectively because
there are fewer choices for a neighbor, (2) the network is vulnerable to being partitioned because each
node only has a constant degree, and (3) the constants in the expected running times are higher. However,
an important research issue is ensuring the correctness of concurrent name resolution operations. In this
respect, constant-degree networks may be easier to reason about. Thus, the pros and cons of such constant-
degree constructions merit further investigation.

Chord works by arranging nodes and names on an ID ring. A name is stored at a node immediately
succeeding the name on the ID ring. Apart from a predecessor and successor pointer, each node maintains a
logarithmic number of finger pointers. A finger pointer points to the first node succeeding a certain point on
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the ID ring. The finger pointers enable efficient name resolution, while the (possibly multiple) predecessor
and successor pointers ensure fault tolerance.

CAN works by mapping nodes and names to ad-dimensional unit space. Each node is assigned a region
in the space and is responsible for resolving the names mapped to that region. For a network withn nodes,
a lookup takesO(d �n1=d) hops. Thus, to achieve logarithmic scalability, CAN needs to setd = lgn, which
may not be feasible without a good anticipation ofn or if n changes dramatically during the lifetime of the
network.

The importance of locality is now widely recognized and mostname resolution schemes go to significant
lengths to exploit locality, be it rigorously [11, 12, 20] orheuristically [4, 24, 28]. As discussed in Section 1,
there is a tradeoff between simplicity and effectiveness ofexploiting locality, and SPRR attempts to exploit
locality without sacrificing simplicity.

At a high level, SPRR, especially with the implementation maintaining only predecessors and succes-
sors, bears some resemblance to a skip list [21], a randomized dictionary data structure whose applications
to peer-to-peer computing has recently gained attention. For example, Karger and Ruhl [12] have proposed
a data structure calledmetric skip listto solve the nearest neighbor problem on growth-restrictedmetric
spaces. In the process of finalizing this technical report, we have learned of two other independent research
efforts involving skip-list-like structures: skip graphs[1] and hyperrings [2]. While similar to SPRR at the
high level, the primary design objectives underlying the work in [1] and [2] (e.g., range queries, fault-tolerant
connectivity, and repairability) are different from thoseof the present paper, and consequently the details of
the constructions and analyses differ substantially. Going forward, it would be interesting to exhibit a single
skip-list-like topology that enjoys most or all of the various strong theoretical properties established here
and in [1, 2].

6 Future Work

Compared to PRR, a drawback of SPRR is that the average edge length is increased, due to the additional
constraint on neighbor selection. Bounding this increase is an open problem. Ideally, we would like to
bound it by constructing a ring such that the total edge length of SPRR is only a constant factor larger than
that of PRR.

As discussed in Section 1, simplicity not only is a desirablefeature of system design, but also helps
reasoning about the correctness of a name resolution scheme. Maintaining the neighbor tables is a com-
plicated task. When many joins and leaves happen concurrently, it is not clear whether the neighbor tables
will remain in a “good” state. This problem, however, has notbeen adequately addressed by current re-
search. The problem is much easier if the network is allowed to have some “locking” mechanism. However,
for performance reasons, it is desirable that name resolution operations benon-blocking[10], that is, slow
operations cannot prevent other operations from making progress. We plan to implement a non-blocking
name resolution scheme and to prove the correctness of the implementation. The work of Blumofeet al. [3]
suggests that proving the correctness of such non-blockingconcurrent data structures can be a significant
technical challenge. A simple framework like SPRR is an important starting point for our future work.

7 Concluding Remarks

In this paper, we have defined a class of network topologies called hyperdelta networks, and observed that
the PRR topology is a random hyperdelta network. To overcomesome weaknesses of PRR on arbitrary
metric spaces, we have proposed SPRR, a simple variant of PRR. SPRR is considerably simpler than PRR
and retains most scalability properties of PRR. When specialized to the case of uniform metric space, SPRR
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is comparable to Chord in terms of simplicity, and has matching or improved time bounds on name resolution
operations. In more general metric spaces, SPRR exploits locality effectively. The ease of exploiting locality
comes from the ability to choose neighbors from a set of candidates. In this paper, we have proved the
locality property of SPRR on the ring metric. Fault tolerance can be achieved in SPRR without adding
much complexity. SPRR employs a novel name replication strategy that ensures lookups remain efficient in
a random fault model where each node has a constant probability of being down.
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