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Figure 1: A series of adaptive tetrahedral meshes with different error tolerance are extracted from UNC Head (CT). Isovalues αin = 1000.0,
αout = 120.0; error tolerance εin = 0.0001, (εout , the number of elements) = leftmost: (0.0001, 715892), middle left: (2.627, 579834), middle
right: (4.817, 365215), rightmost: (9.999, 166271).

Abstract

This paper presents an algorithm to extract adaptive and quality
3D meshes directly from volumetric imaging data - primarily Com-
puted Tomography (CT) and Magnetic Resonance Imaging (MRI).
The extracted tetrahedral and hexahedral meshes are extensively
used in the Finite Element Method (FEM). Our comprehensive ap-
proach combines bilateral and anisotropic (feature specific) diffu-
sion filtering, with contour spectrum based, relevant isosurface and
interval volume selection. Then, a top-down octree subdivision
coupled with the dual contouring method is used to rapidly extract
adaptive and multiresolution 3D finite element (tetrahedral and hex-
ahedral) meshes from volumetric imaging data. The main contri-
butions are extending the dual contouring method to interval vol-
ume tetrahedralization and hexahedralization with curvilinear fea-
ture sensitive adaptation. Compared to other tetrahedral extraction
methods from interval volumes (Marching Cubes and Marching
Tetrahedra), our method generates high quality adaptive multires-
olution 3D meshes without introducing any hanging nodes. Our
method has the properties of crack prevention, feature preservation
and feature sensitivity.

CR Categories: I.3.5 [Computation Geometry and Object Model-
ing]: CSG—Curve, surface, solid and object representations

Keywords: 3D meshes, adaptive, multiresolution, high quality,
feature preservation, feature sensitive, crack prevention, hanging
nodes
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The development of finite element simulations in medicine, molec-
ular biology, engineering and geosciences has increased the need
for high quality finite element meshes. Although there has been
tremendous progresses in the area of surface reconstruction and 3D
geometric modeling, it still remains a challenging process to gen-
erate 3D geometric models directly from imaging data, such as CT,
MRI and signed distance function data (SDF). The image data can
be represented as V = {F(i, j,k)|i, j,k are indices of x,y,z coordi-
nates in a rectilinear grid}. V is the volume containing function
values F(i, j,k) at the indices i, j,k.

Figure 2: Different Topology for Inner and Outer Surfaces

For accurate and efficient FEM calculations, it is important to
have accurate and high quality models, minimize the number of el-
ements and preserve features. The studied object may have compli-
cated topologies. Figure 2 shows an interval volume between two
isosurfaces in a SDF volumetric data of a knee. The two surfaces
have the same topology in the left picture, while the topology of the
inner surface may be different from the topology of the outer one
(the right picture). In this paper, we present a comprehensive ap-



proach to extract tetrahedral and hexahedral meshes directly from
imaging data.

SF (c) = {(x,y,z) : F(x,y,z) = c} (1)
IF (α1,α2) = {(x,y,z) : α1 < F(x,y,z) < α2} (2)

Given volumetric imaging data and two isovalues α1, α2 (α1 <

α2), each of which corresponds to an isosurface (Equation (1)). The
algorithm to extract tetrahedral/hexahedral meshes from the interval
volume, IF , between the two isosurfaces is as follows:

1. Smoothing – Bilateral prefiltering and anisotropic diffusion.

2. Contour Spectrum based isosurface selection.

3. Adaptive multiresolution 3D meshing (tetrahedralization and
hexahedralization) with feature preservation.

4. Quality improvement

Noise often exists in imaging data, especially in CT and MRI
data. In order to reduce noise, the bilateral prefiltering and
anisotropic diffusion methods [Bajaj et al. 2002] are used to smooth
the volumetric data. Accurate gradient estimation can also be ob-
tained. The Contour Spectrum [Bajaj et al. 1997] provides quanti-
tative metrics of a volume to help us select two suitable isovalues
for the interval volume.

In this paper, we extend the idea of dual contouring to interval
volume tetrahedralization and hexahedralization from volumetric
Hermite data (position and normal information). Dual Contouring
[Ju et al. 2002] analyzes those edges that have endpoints which lie
on different sides of the isosurface, called sign change edge. Each
edge is shared by four (uniform case) or three (adaptive case) cells,
and one minimizer is calculated for each of them by minimizing a
predefined Quadratic Error Function (QEF) [Garland and Heckbert
1998].

QEF[x] = ∑
i
(ni · (x− pi))

2 (3)

where pi, ni represent the position and unit normal vectors of the
intersection point respectively. For each sign change edge, a quad
or a triangle is constructed by connecting the minimizers. These
quads and triangles provide an approximation of the isosurface.

Each sign change edge belongs to a boundary cell. In our tetra-
hedral mesh extracting process, we give a systematic way to tetra-
hedralize the volume in the boundary cell at the same time as isosur-
face extraction. For uniform grids, it is easy to deal with the interior
cells. We only need to decompose each cell into five tetrahedra in a
certain way. For the adaptive case, it is more complicated. In order
to avoid introducing hanging nodes, which are strictly prohibited in
finite element meshes, we design an algorithm to tetrahedralize the
interior cell depending on the resolution levels of all its neighbors.
As a by product, the uniform hexahedral mesh extraction algorithm
is simpler. We analyze each interior vertex (a grid point inside the
interval volume) which is shared by eight cells. One minimizer is
calculated for each of them, and those eight minimizers construct a
hexahedron.

In Dual Contouring, QEF is used for isosurface extraction and
sharp features can be preserved. But what is a feature? How to
identify features such as sharp edges and facial features (like nose,
eyes, mouth and ears)? This paper introduces a different error func-
tion to identify those features sensitively.

The tetrahedral or hexahedral mesh extracted from volume data
can not be used for finite element calculation directly, since some
elements have bad quality. In order to satisfy the finite element
requirements, the edge contraction method is used to improve the
mesh quality.

The remainder of this paper is organized as the following: Sec-
tion 2 summarizes the previous related tetrahedral and hexahedral
extraction work; Section 3 introduces the outline of our comprehen-
sive 3D mesh extracting method, and reviews the two preprocesses

– noise smoothing (bilateral prefiltering and anisotropic diffusion)
and isosurface selection (contour spectrum and contour tree). Sec-
tion 4 explains the detailed algorithm of how to extract tetrahedra
from the interval volume and how to hexahedralize the interval vol-
ume; Section 5 talks about the feature sensitive error function. Sec-
tion 6 uses the edge contraction method to improve the mesh qual-
ity. Section 7 shows some results by applying our algorithm. The
final section presents our conclusion.

2 Previous Work

In the last twenty years, the techniques of CT, MRI and ultrasound
imaging (UI) have developed rapidly. Computer visualization, and
engineering calculation (finite/boundary element analysis) require
certain kinds of mesh extracted from these scanned volume data.

Anisotropic Diffusion The isotropic diffusion method can re-
move noise, but blurs features such as edges and corners. In or-
der to preserve features during the process of noise smoothing,
anisotropic diffusion [Weickert 1998] was proposed by introducing
a diffusion tensor. Generally, a Gaussian filter is used to calculate
the anisotropic diffusion tensor before smoothing, but it also blurs
features. Bilateral filtering [Tomasi and Manduchi 1998], which is
a nonlinear filter combining domain and range filtering, was intro-
duced to solve this problem. Anisotropic diffusion can be used for
fairing out noise both in surface meshes and functions defined on
the surface [Bajaj and Xu 2002], [Clarenz et al. 2000].

Progressive Multiresolution Isosurface Extraction The
predominant algorithm for isosurface extraction from volume data
is Marching Cubes (MC) [Lorensen and Cline 1987], which com-
putes a local triangulation within each cube to approximate the iso-
surface by using a case table of edge intersections. Furthermore,
the asymptotic decider [Nielson and Hamann 1991] was proposed
to avoid ambiguities existing in MC. For efficient isosurface extrac-
tion, [Bajaj et al. 1996b] starts from seed cells and traces the rest of
the isosurface components by contour propagation.

Meshes extracted from uniform grids are usually dense, and
adaptive meshes are preferable. When the adjacent cubes have
different resolution levels, the cracking problem will happen. To
keep the face compatibility, the gravity center of the coarser tri-
angle is inserted, and a fan of triangles are used to approximate
the isosurface [Westermann et al. 1999]. The chain-gang algorithm
[Laramee and Bergeron 2002] was presented for isosurface render-
ing of super adaptive resolution (SAR) and resolves discontinuities
in SAR data sets. Progressive multiresolution representation and
recursive subdivision are combined effectively, and isosurfaces are
constructed and smoothed by applying the edge bisection method
[Pascucci and Bajaj 2000]. A surface wave-front propagation tech-
nique [Wood et al. 2000] is used to generate multiresolution meshes
with good aspect ratio. By combining SurfaceNets [Gibson 1998]
and the extended Marching Cubes algorithm [Kobbelt et al. 2001],
octree based Dual Contouring [Ju et al. 2002] can generate adap-
tive multiresolution isosurfaces with good aspect ratio and preserve
sharp features.

Quality and Feature Preserving Isosurface MC can not
detect sharp features of the extracted isosurface, and severe alias
artifacts appear. The enhanced distance field representation and the
extended MC algorithm [Kobbelt et al. 2001] were introduced to
extract feature sensitive isosurfaces from volume data. In order to
improve the representation of the surface inside each cell, a trilinear
function is used to modify the MC algorithm by identifying a small
number of key points inside the cell that are critical to the surface
definition [Lopes and Brodlie 2000].

Elements in the extracted mesh often have bad aspect ratio.
These elements then can not be used for finite element calcula-
tions. The grid snapping method reduces the number of elements
in an approximated isocontour and also improves the aspect ratio



of the elements [Moore 1992]. [Bern et al. 1990] studied how to
generate triangular meshes with bounded aspect ratios from a pla-
nar point set. [Mitchell and Vavasis 2000] proposed an algorithm,
called QMG, to triangulate a d-dimensional region with a bounded
aspect ratio.

Quality Tetrahedral Mesh MC is extended to extract tetrahe-
dral meshes between two isosurfaces directly from volume data,
and a Branch-on-Need Octree is used as an auxiliary data structure
to accelerate the extraction process [Fujishiro et al. 1996]. A dif-
ferent and systematic algorithm, Marching Tetrahedra (MT), was
proposed for interval volume tetrahedralization [Nielson and Sung
1997]. A multiresolution framework [Zhou et al. 1997] was gener-
ated by combining recursive subdivision and edge-bisection meth-
ods. Since many 3D objects are sampled in terms of slices, Ba-
jaj et. al introduced an approach to construct triangular surface
meshes from the slice data [Bajaj et al. 1996a], and tetrahedralize
the solid region bounded by planar contours and the surface mesh
[Bajaj et al. 1999].

Poor quality tetrahedra called slivers are notoriously common in
3D Delaunay triangulations. Sliver exudation [Cheng et al. 2000]
is used to eliminate those slivers. A deterministic algorithm [Cheng
and Dey 2002] was presented for generating a weighted Delaunay
mesh with no poor quality tetrahedra including slivers. Shewchuk
[Shewchuk 2002a] solved the problem of enforcing boundary con-
formity by constrained Delaunay triangulation (CDT). Delaunay re-
finement [Shewchuk 1998], edge removal and multi-face removal
optimization algorithm [Shewchuk 2002b] are used to improve the
tetrahedral quality. Shewchuk [Shewchuk 2002c] gives some valu-
able conclusions on quality measures for finite element method.

Hexahedral Mesh Generation Hexahedral Mesh generation
is a challenging problem. Eppstein [Eppstein 1996] starts from a
tetrahedral mesh to decompose each tetrahedral into four hexahe-
dra. Although this method avoids many difficulties, it increases the
number of elements. Whisker Weaving [Folwell and Mitchell 1998]
is an advancing front algorithm for hexahedral mesh construction,
which is based on a global interpretation of the geometric dual of an
all-hexahedral mesh. A trivariate subdivision scheme [Bajaj et al.
2001], consisting of a simple split and average algorithm, is de-
scribed for hexahedral meshes.

3 Volumetric Imaging Pre-processing
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Figure 3: The Overview of the Comprehensive Method

Our comprehensive tetrahedral and hexahedral meshing method
is displayed in Figure 3. We first use the anisotropic diffusion
method coupled with bilateral prefiltering to remove noise from
imaging data. Depending on the application, suitable isosurfaces
are selected for the interval volume by using the contour spectrum
and the contour tree. We then begin to extract tetrahedral or hex-
ahedral meshes from the interval volume. In the process of 3D
meshing, a feature sensitive error function is introduced to reduce
the number of elements while preserving features. Finally, the edge
contraction method is used to improve the quality of the extracted
mesh.

Since noise in imaging data influences the accuracy of the ex-
tracted meshes, it is important to remove it before the mesh ex-
tracting process. We use the anisotropic diffusion method [Bajaj

et al. 2002] to smooth noise. In order to obtain more accurate com-
putation of curvature and gradient for anisotropic diffusion tensor,
the bilateral prefiltering combining the domain and range filtering
together is chosen instead of Gaussian filtering because it can pre-
serve features such as edges and corners.

Figure 4: The Contour Spectrum of the UNC Human Head

Mesh extraction from imaging data requires selection of suit-
able boundary isosurfaces. We use a user interface called Contour
Spectrum [Bajaj et al. 1997], to find isosurfaces of interest. The
Contour Spectrum computes quantitative properties such as surface
area, volume, and gradient integral of contours in real time, and
helps to choose suitable isosurfaces by showing the related spec-
trum in a 2D plane. For instance, we can obtain isosurfaces of a
skin and a bone in CT scanned human head data (Figure 4) by tak-
ing isovalues having the local maximum of the gradient integral.

In the case of interval volumes, the topology of inner and outer
isosurfaces may need to be controlled depending on the application.
A contour tree [Carr et al. 2003] can be used to capture the topo-
logical information on each isosurface and help choose isosurfaces
with desirable topology. For example, we can choose the inner and
outer isosurfaces with exactly same topology by taking isovalues
lying on the same edges in a contour tree.

4 3D Mesh Extraction

In this section, our goal is to tetrahedralize or hexahedralize the
interval volume between two isosurfaces by using an octree-based
data structure. We describe in detail how to extract adaptive mul-
tiresolution tetrahedral meshes from volume data. First, we discuss
triangulation in 2D problems, then we extend it to 3D tetrahedral-
ization. A hexahedral mesh generation algorithm is presented at the
end of this section.

4.1 Uniform Tetrahedral Extraction

For isosurface extraction, we only need to analyze boundary cells –
those cells that contain sign change edges, or those cells that contain
the isosurface. There are four neighbor cubes which share the same
sign change edge. Uniform Dual Contouring generates one minimal
vertex for each neighbor cube by minimizing the QEF, and then
connects them to generate a quad. By marching all the sign change
edges, the isosurface is obtained.

For tetrahedral mesh extraction, cells inside the interval volume
should also be set as leaves besides the boundary cells.

DEFINITION 1 (Sign Change Edge): A sign change edge is
an edge whose one vertex lies inside the interval volume (we call it
the interior vertex of this sign change edge), while the other vertex
lies outside.



DEFINITION 2 (Interior Edge in Boundary Cell): In a
boundary cell, those edges with both vertices lying inside the in-
terval volume are called interior edges.

DEFINITION 3 (Interior Cell): different from the boundary
cell, all the eight vertices of an interior cell lie interior to the in-
terval volume.

Figure 5: Uniform Triangulation - the red curve represents the iso-
contour, and green points represent minimizers.

4.1.1 Uniform 2D Triangulation

Figure 5 is a uniform triangulation example of the area interior to
the isocontour in two dimensions. There are three different cases
which need to be dealt with separately.

1. Sign change edge – find the minimizers of the two cells which
share the edge, then the two minimizers and the interior vertex
of the edge construct a triangle (blue triangles).

2. Interior edge in boundary cell – find the QEF minimizer of
the boundary cell, then the minimizer and this interior edge
construct a triangle (yellow triangles).

3. Interior cell – decompose each interior cell into two triangles
(pink triangles).

4.1.2 Uniform 3D Tetrahedralization

DEFINITION 4 (Interior Face in Boundary Cell) : in the
boundary cell, those faces with all four vertices lying inside the
interval volume are called interior faces.

Compared to 2D triangulation, three dimensional tetrahedral
meshing is more complicated.

1. Sign change edge – decompose the quad into two triangles,
then each triangle and the interior vertex of this edge construct
a tetrahedron. In Figure 6(a), the red line represents the sign
change edge, and two blue tetrahedra are constructed.

2. Interior edge in boundary cell – find the QEF minimizers of
the boundary cell and its boundary neighbor cells, then two
adjacent minimizers and the interior edge construct a tetrahe-
dron. In Figure 6(b)(c), the red cube edge represents the inte-
rior edge. (b) gives four minimizers to construct four edges,
each of which construct a tetrahedron with the interior edge,
so totally four tetrahedra are constructed. While (c) assumes
the cell below this boundary cell is interior the interval vol-
ume, so there is no minimizer for it. Therefore we obtain
three minimizers, and only two tetrahedra are constructed.

3. Interior face in boundary cell – find the QEF minimizer of the
boundary cell, then the interior face and the minimizer con-
struct a pyramid, which can be decomposed into two tetrahe-
dra (Figure 6(f)). Figure 6(d)(e)(f) give a sequence how to

(h)

(d) (e) (f)

(b) (c)

(g)

(a)

�����������������

Figure 6: Case Table of Uniform Tetrahedralization - the red vertex
means it lies interior to the interval volume, otherwise, it is out-
side. Green points represent minimizers. (a) - Sign Change Edge;
(b)(c) - Interior Edge in Boundary Cell; (d)(e)(f) - Interior Face in
Boundary Cell; (g)(h) - Interior Cell.

generate tetrahedra when there is only one interior face in the
boundary cell. (d) analyzes four sign change edges, (e) deals
with four interior edges and (f) fills the gap.

4. Interior cell – decompose the interior cube into five tetrahedra.
There are two different decomposition ways (Figure 6(g)(h)).
For two adjacent cells, we choose a different decomposition
method to avoid the diagonal choosing conflict problem.

If two isosurfaces pass across the same sign change edge, we
need analyze the sign change edge twice. In 2D case (Figure 7,
Left picture) two minimizers are obtained for the inner surface, and
similarly two minimizers are calculated for the outer surface. They
construct a quad, which can be decomposed into two triangles (yel-
low ones). For 3D case (Figure 7, Right picture), a hexahedron is
built between the two surfaces for the sign change edge. The hexa-
hedron can be split into five tetrahedra.

Two different isosurfaces can not intersect with each other, since
one point can not have two isovalues. However, the two quads ap-
proximating the two isosurfaces may intersect because of bad gradi-
ent information. This case needs to be detected carefully, otherwise
the extracted tetrahedra will intersect with each other. This can be
solved by splitting the cell into eight cubes in the octree data struc-
ture, and then analyzing those cells separately.

4.2 Adaptive Tetrahedral Extraction

Uniform tetrahedralization usually gives an over-sampled mesh.
Adaptive tetrahedral meshing is a good and effective way to reduce
the number of elements while preserving the accuracy requirement.

First, we split the volume data by using the octree data structure
to obtain denser cells along the boundary, and coarser cells inside
the interval volume. The QEF value is calculated for each octree
cell, and a much more efficient octree is built by comparing the
QEF value with a given error tolerance ε and using the bottom-up



Figure 7: Sign Change Edge Passed Across by Two Isosurfaces -
Left (2D) : the cyan and blue curves represent the two isocontour;
Right (3D): the cyan and blue quads approximate the two isosur-
faces. The red edges are sign change edges and green points repre-
sent minimizers.

algorithm. Leaves of the octree have different resolution levels. The
next step is to analyze each leaf.

Each leaf cell may have neighbors at different levels. An edge in
a leaf cell may be divided into several edges in its neighbor cells.
Therefore it is important to decide which edge should be analyzed.
The Dual Contouring isosurface method gives a good rule to fol-
low – we always choose the minimal edges. Minimal edges are
those edges of leaf cubes that do not properly contain an edge of a
neighboring leaf.

Similar to uniform tetrahedral mesh extraction, we need to ana-
lyze the sign change edge, the interior edge and the interior face in
the boundary cell, and the interior cell. When we analyze boundary
cells, only minimal edges and minimal faces are analyzed. Com-
pared to the uniform case, the only difference is in how to decom-
pose the interior cell into tetrahedra without hanging nodes.

DEFINITION 5 (Hanging Node) : a hanging node is one that
is attached to the corner of one triangle but does not attach to the
corners of the adjacent triangles. Generally, a hanging node is a
point that is a vertex for some elements (e.g., triangle, quad, tetra,
hexa), but it is not for its other neighbor elements that share it. It lies
on one edge or one face of its neighbors, for example, a T-Vertex.

Figure 8: Hanging Node Removal - the red point is a hanging node.
Left - T-vertex; Middle - merging two triangles; Right - splitting
method.

Figure 8 shows two methods to remove hanging nodes - splitting
and merging. In the T-vertex example (left picture), only the right
triangle has hanging nodes removal problem if we use the merging
method; while only the left one has hanging nodes removal problem
if we tend to split the mesh. In order to maintain accuracy, we adopt
the splitting method in our algorithm.

LEMMA: Only the interior cell has the hanging nodes re-
moval problem if the splitting method is adopted.

Proof: All the leaf cells can be divided into two groups: the bound-
ary cell and the interior cell.

1. interior cell – Since its neighbor cells may have higher reso-
lution level, hanging nodes are unavoidable.

2. boundary cell – There are two rules for the sign change edge,
the interior edge and the interior face. The two rules guaran-
tee that there are no hanging nodes removal problem for the
boundary cell if only the splitting method is chosen.

• Minimal Edge/Face Rule - only minimumal edges/faces
are chosen. This rule keeps the analyzed edges/faces
owning the highest resolution level compared with its
neighbors.

• Only one minimizer is generated for each leaf cell.

4.2.1 Adaptive 2D Triangulation

Figure 9: Adaptive Triangulation. The red curve represents the iso-
contour, green points represent minimizers.

Figure 10: Case Table for Decomposing the Interior Cell into Trian-
gles. Suppose the resolution level of this cell is κ, and middle points
appear on the shared edges if its neighbors has higher level than κ.
Red points and red lines mean its neighbors have level (κ+1); green
points and green lines mean its neighbors have higher level than
(κ+1).

Figure 9 gives an example of how to triangulate the interior area
of an isocontour. Similarly, we need to analyze the following three
problems:

1. Sign change edge – if the edge is minimal, deal with it as in
the uniform case (blue triangles). Otherwise, skip it.

2. Interior edge in the boundary cell – if the edge is minimal, deal
with it as in the uniform case (yellow triangles). Otherwise,
skip it.

3. Interior cell – Figure 10 lists all the cases of how to decom-
pose the interior cell into triangles.

Compared to the uniform case, the triangulation of interior cells
is more complicated. All neighbors of an interior cell need to be
checked because the neighbor cells are used to decide if there are
any middle points on the shared edge. Suppose the resolution level
of this cell is κ, we group into five cases according to the number of
edges whose level is greater than κ. The ith group means there are
number i edges whose level is greater than κ, where i = 0, . . . , 4.
For each subdivided edge, it may be subdivided more than once, or
the neighbor cell may have higher level than (κ+1). So we need to
search all the middle points on this edge. Top-down or bottom-up
algorithm can be used here to find the resolution level of its neigh-
bors, and find out all the middle points on the edge. Figure 10 gives



all the cases of how to decompose the interior cell into triangles ac-
cording to its neighbors’ resolution levels. If all the four edges have
already been subdivided, then we can use the recursion method to
march each of the four smaller cells with the same algorithm. In
this way, hanging nodes are removed effectively.

(a)

(b) (c)

(d)

(e)

Figure 11: Case Table for Decomposing the Interior Cell into tetra-
hedra – in (a ∼ e), the left picture gives the triangulation format of
one face according to Figure (10); the right one shows how to de-
compose the cell into tetrahedra without hanging nodes. (a) - one
subdivided edge; (b)(c) - two subdivided edges; (d) - three subdi-
vided edges; (e) - four subdivided edges.

4.2.2 Adaptive 3D Tetrahedralization

For three dimensional adaptive tetrahedralization, we use the same
algorithm with the uniform case when we deal with the boundary
cell.

1. Sign change edge – if the edge is minimal, deal with it as in
the uniform case. Otherwise, skip it.

2. Interior edge in the boundary cell – if the edge is minimal,
deal with it as in the uniform case. Otherwise, skip it.

3. Interior face in boundary cell – identify all the middle points
on the four edges, and decompose the face into triangles by
applying the same algorithm as in the adaptive 2D case, then
calculate the minimizer of this cell, each triangle and this min-
imizer construct a tetrahedron.

4. Interior cell – decompose each face of the cube into triangles,
just as how to deal with the interior cell for the adaptive 2D
triangulation (Figure 10), then insert a Steiner point at the cell
center. Each triangle and the Steiner point construct a tetra-
hedron. Figure 11 shows how to construct tetrahedra. Some-
times pyramids are constructed, in order to avoid the diago-
nal choosing conflict, we decide which diagonal is chosen to
decompose one pyramid into two tetrahedra according to the
odd-even property of the cell index.

By using the above algorithm, we extract tetrahedral meshes
from volumetric imaging data successfully. Figure 12 (Upper Row)

gives one example – the tetrahedral mesh of the human head model
extracted from 65*65*65 volume data. The volume inside the skin
isosurface is tetrahedralized.

Figure 12: Tetrahedral/Hexahedral Meshes of the Human Head
Model - The upper row shows an adaptive tetrahedral mesh; the
lower row gives the hexahedral meshes, Left: hexahedralization of
the volume inside the head, Right: hexahedralization of the volume
between the human head and a sphere boundary.

4.3 Hexahedral Extraction

Finite element calculations sometimes require hexaderal meshes in-
stead of tetrahedral meshes.

Each hexahedron has eight points. In the tetrahedralization pro-
cess we deal with edges shared by at most four cells. This means
that we can not get eight minimizers for each edge. But, each vertex
is shared by eight cells, and we can calculate a minimizer for each
of them. These eight minimizers can then be used to construct a
hexahedron.

Figure 12 (lower row) shows two hexahedral meshes for the head
model, which is used to solve electromagnetic problems.

5 Feature Sensitive Error Function

For a geometric object, a feature appears where the local shape of
some area changes (the geometric gradient vector is nontrivial). A
clear feature is generated by a rapid shape change (large gradient
vector). For example, the gradient in the sharp edge area is large,
so the sharp edge is a feature; For the human head model, in the
areas where the nose, eyes, mouth and ears are located, the shape
changes a lot locally and the gradient is nontrivial, so they are ob-
vious features.

For efficiency and accuracy during calculations, finite element
applications require the number of elements to be as small as pos-
sible, while preserving necessary features. For a given precision
requirement, the uniform mesh is always over-sampled with unnec-
essary small elements. Adaptive meshes are therefore preferable.

For the adaptive mesh, an error function and an error tolerance
ε are required, which set the criteria to identify where we should



select higher level (denser mesh) and where lower level (coarser
mesh) should be chosen. In order to minimize the number of ele-
ments and preserve features at the same time, it is important to have
a feature sensitive error function.

The Dual Contouring algorithm can preserve sharp features by
using the QEF error function. Examples show that it is not sen-
sitive to the gradient based features, for example, facial features,
like the nose, eyes, mouth and ears of the human head model in
Figure 14. We know that the local gradient vector influences the
feature directly. Since we work with Hermite imaging data, we
have not only the grid positions but also the information of the first
derivatives. Therefore we choose a different error function related
to the gradient information in order to identify features.

Figure 13: Sampling Points for Feature Sensitive Error Function -
red points are eight vertices of the cell and green points are edge
middle points. Left - Level (i); Right - Level (i+1).

In Figure 13, the left picture gives eight red vertices for resolu-
tion level (i), and the right picture gives thirteen green middle points
besides those eight red vertices, which represents level (i+1). For
level (i), the eight red vertices’ function values are given, and a tri-
linear function is defined in Equation (4) , from which the function
values of edge middle points (green ones) and face middle points
(not shown in Figure 13) can be obtained. For level (i+1), the func-
tion values of all vertices and edge/face middle points are given.
The error function is defined in Equation (5).

f i(x,y,z) = f000(1− x)(1− y)(1− z) (4)
+ f001(1− x)(1− y)z
+ f010(1− x)y(1− z)
+ f011(1− x)yz
+ f100x(1− y)(1− z)
+ f101x(1− y)z
+ f110xy(1− z)
+ f111xyz

EDerror = ∑ | f i+1 − f i|

|∇ f i|
(5)

The two error functions are compared in Figure 14. It is obvi-
ous that our error function can preserve sharp edges, and is more
sensitive to the areas where nose, eyes, mouth and ears are located
on the human head model. In our error function, we use the gra-
dient to normalize the difference of function values between two
levels. Thus the error function can reflect the gradient information,
or the features. This is why the error function identifies features
sensitively.

6 Quality Improvement

The above 3D mesh extraction algorithm can tetrahedralize the in-
terval volume, and the extracted meshes have better quality than
meshes from other methods such as MC and MT. However, it can
not guarantee that all the elements have good quality. For example,
sliver triangles or tetrahedra exist. In this section, we focus on how
to improve the quality of tetrahedral meshes.

In order to measure tetrahedra’s quality, three quality parameters
are borrowed from ABAQUS document (a FEM software).

Figure 14: Upper Row – sharp edge features; Lower Row – facial
features: comparison of QEF (left picture, 2952 triangles) and the
euclidean distance error (EDerror) function (right picture, 2734 tri-
angles).

• Tetrahedral Quality Measure = volume of tetrahedron / vol-
ume of equilateral tetrahedron with same circum-sphere ra-
dius (> 0.02)

• Min/Max Angles (Figure 16) – with minimum angle α > 10◦
and maximum angle β < 160◦, where

αA = min(α1,α2,α3) (6)
βA = max(α1,α2,α3) (7)
α = min(αA,αB,αC,αD) (8)
β = max(βA,βB,βC,βD) (9)

where, αB, αC, αD, βB, βC and βD have the similar definition
as αA and βA.

• Right-hand-side principle

In the process of improving the mesh quality, edge contraction is
a direct method to eliminate sliver tetrahedra. The mesh modifica-
tion process can be divided into three steps. For each tetrahedron,

1. Calculate the three quality parameters.

2. If the tetrahedron’s orientation is Left-hand-side, swap any
two vertices’ index number.

3. If Tetrahedral Quality Measure ≤ 0.02 or Min Angle ≤ 10◦
or Max Angle ≥ 160◦, e.g., in Fig. 16, αA ≤ 10◦. Find the
shortest edge among AB, AC and AD, then merge vertex A
with the closest point.

If sliver tetrahedra still exist, repeat steps 1 – 3. Figure 17 shows
an example.



Data Set Type Resolution Number of Tetrahedra (Extraction Time (unit : ms) )

(a) (b) (c) (d)
UNC Head (Skull) CT 129×129×129 715892 (12985) 579834 (10203) 365215 (7922) 166271 (3063)
UNC Head (Skin) CT 129×129×129 – 935124 (17406) 545269 (10468) 69351 (312)

Poly CT 257×257×257 – 276388 (5640) 63325 (1672) 14204 (672)
Head SDF 65×65×65 143912 (2547) 76218 (1391) 40913 (766) 10696 (203)
Knee SDF 65×65×65 70768 (1360) 94586 (1782) 93330 (1750) 72366 (1406)

Figure 15: Data Sets and Test Results. The CT data sets are re-sampled to fit into the octree representation. Rendering results for each case
is shown in Figure 18, 19, 20, 21.

A

B D

C

a1 a3

a2

Figure 16: Definition of Min/Max Angles for Tetrahedra

Figure 17: Quality Improvement - Left: no edge contraction, circles
mark triangles with bad aspect ratio; Right: poor quality triangles
disappear after edge contraction.

7 Results

We developed an interactive program for 3D mesh extraction and
rendering from volumetric data sets. In the program, the error tol-
erance and the isovalues can be changed interactively. The results
were computed on a PC equipped with a Pentium III 800 MHz pro-
cessor and 1 GB main memory.

We tested our algorithm on volumetric data from CT scans, the
UNC Human Head and Poly (heart valve), and signed distance vol-
umes generated from the polygonal surfaces of a human head and a
knee.

Figure 15, 18, 19, 20, 21 provide information about data sets
and test results. The results consist of the number of tetrahedra,
extraction time, and corresponding images with respect to differ-
ent isovalues and error tolerance. As a preprocessing, we calculate
min/max values for each octree cell to visit only cells contributing
to mesh extraction and to compute QEF values only in those cells at
run time. Extraction time in the table includes octree traversal, QEF
computation and actual mesh extraction, given isovalues and error
tolerance values for inner and outer surfaces as run time parame-
ters. If we fix isovalues, and change error tolerance interactively,
the computed QEF is reused and thus the whole extraction process
is accelerated.

To extract 3D meshes from the surface data, we computed signed
distance function from the surface and performed mesh extraction.
Figure 18 and 19 shows the resulting tetrahedral meshes extracted
from two signed distance function data with the size of 653. The
results from CT data are shown in Figure 1 (head skull), 20 (head
skin) and 21 (heart valve). The number of elements in the extracted

mesh is controlled by changing error tolerance. It is clear to see that
adaptive tetrahedral meshes are extracted from the interval volume,
and features are identified sensitively and preserved (Figure 18). In
Figure 19, the sequence of images are generated by changing the
isovalue of the inner isosurface. The topology of the inner isosur-
face can change arbitrarily.

8 Conclusion

We have presented an algorithm to extract adaptive and high qual-
ity 3D meshes directly from volumetric imaging data. By extend-
ing the dual contouring method described in [Ju et al. 2002], our
method can generate 3D meshes with good properties such as mul-
tiresolution with no hanging nodes, sharp feature preservation and
good aspect ratio. Using an error metric which is normalized by the
function gradient, the resolution of the extracted mesh is adapted to
the features sensitively. The resulting meshes are useful for efficient
and accurate FEM calculations.
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Figure 18: Head (SDF) – Isovalues αin = -9,17464, αout = 0.0001; error tolerances εin = 1.7, εout are listed below each picture

Figure 19: Knee (SDF) – Error tolerances εin = εout = 0.0001; isovalues αout = -0.02838, αin are listed below each picture

Figure 20: UNC Head Skin (CT) – Isovalues αin = 1000.0, αout = 50.0; error tolerances εin = 0.0001, εout are listed below each picture

Figure 21: Heart Valve (Poly) – Isovalues αin = 1000.0, αout = 75.0; error tolerances εin = 0.0001, εout are listed below each picture


