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Abstract

We examine the organizational impact on phylogenetic databases of the increasing sophistication in

the need and use of phylogenetic data. A primary issue is the use of the unnormalized representation of

phylogenies in Newick format as a primitive data type in existing phylogenetic databases.

In particular, we identify and enumerate a list of potential applications of such databases and queries

(use-cases) that biologists may wish to see integrated into a phylogenetic database management system.

We show there are many queries that would best be supported by a normalized data model where phylo-

genies are stored as lists of edges. Since many of the queries require transitive traversals of the phyloge-

nies we demonstrate, constructively, that complex phylogenetic queries can be conveniently constructed

as Datalog programs. We address concerns with respect to the cost and performance of the normalized

representation by developing and empirically evaluating a feasibility prototype.

1 Introduction

Phylogenies, i.e., evolutionary histories of groups of organisms, play a major role in representing the inter-

relationships among biological entities. A phylogeny is a rooted, leaf-labeled tree, whose leaves represent a

set of operational taxa, and whose internal nodes represent the (hypothetical) ancestral taxa. A phylogeny

on a set � of taxa represents the evolutionary history of the taxa in � from their most recent ancestor (at the

root of the tree).

Reconstructing the evolutionary history of a set of taxa is of great significance in many areas, including

molecular biology, population genetics, historical linguistics, to name a few. Using phylogenetic knowledge
�
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is important in studying protein-protein interactions and gene functions, predicting nucleic acid structure and

function, discovering the origin of emerging viruses, understanding co-evolution and the adaptive nature of

morphological and behavioral traits, and studying the history of families of languages (for example, see [4]).

The growth of phylogenetic information and the need for on-line archival storage and retrieval led to the

establishment of TreeBASE [13, 7, 9, 11]. As Genbank [1] serves as a searchable, archival repository of

sequence data with little or no built-in analytic services, TreeBASE serves as a place to store phylogenies,

and search for scientific results. In both Genbank and TreeBASE a primary service is to connect esoteric

structural information to individual scientific articles which detail the investigation that leads to the deposited

result.

TreeBASE is built using an underlying relational database platform and thus embodies flexible and

scalable query facilities for many needs. However, the phylogenies themselves are stored as a text field

storing strings structured in the Newick format [8, 5].

One drawback of using the Newick format is that the database can not directly support queries concern-

ing the relationships between the taxa and the structure of the phylogeny. In TreeBASE, queries specific to

the structure of the individual phylogenies are done outside the database [18]. An initial query may derive a

subset of the phylogenies, but then each of those phylogenies is exported and handled outside the database.

This is not too unlike the coupling of GenBANK with BLAST.

Rapid growth in the publication of new phylogenies, and integration of sequence data and various evolu-

tionary models are leading to much broader implication and application of phylogenies [13]. A proliferation

of methods for reconstructing phylogenies further underscores the need to index and qualify individual phy-

logenies within a database and not merely as an external post-processing utility.

The application with the current highest profile in the systematics community is to reconstruct the Tree

of Life, i.e., a phylogenetic tree that represents the evolutionary history of all species in the world. It is

expected that when finished, the Tree of Life will contain millions of species, and since most of the phylo-

genetic reconstruction criteria are NP-hard, phylogeneticists use approximation methods. On the whole, the

accuracy and speed of current phylogenetic reconstruction methods decrease as the number of taxa in the

reconstructed phylogeny grows, while the memory requirements of the methods grows with the number of

taxa. Also, usually there are trade-offs among these three factors when designing new methods. Obtaining

a method that can reconstruct the entire Tree of Life in one pass seems farfetched – at least at this stage.

One alternative would be to reconstruct phylogenies of various groups of species, and eventually “assemble”

those subphylogenies into one big phylogeny – the Tree of Life. Those subphylogenies need to be stored
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in an appropriate database and available for methods that will assemble them into the Tree of Life. Once

a phylogenetic database is available, then finding those subphylogenies and assembling them into a bigger

one can be achieved by a series of database queries, such as the ones we will detail in Section 4.

These efforts further suggest that individual phylogenies stored in a database are becoming larger and

subsume larger subsets of the known taxa. Thus, one can anticipate that simple queries that divide the

database into a candidate set for additional processing will not scale.

In [10], W.H. Piel writes: “Despite the growth of phylogenetic data, methods for organizing, data mining,

and inferring a synthesis of phylogenetic knowledge are poorly developed. Storing phylogenies in a database

is, by itself, a challenging task, as the data elements are diverse and complex. The essential information that

needs to be stored is recorded in the topology of hierarchically nested nodes, the distance between them,

and their identities. Consequently, the usual data searching methods, such as pattern recognition as used in

sequence databases, are not useful here: a whole new conceptual approach is in order.”

In this paper, we analyze the requirements of a phylogenetic database management system. In Section 2

we briefly describe the TreeBASE phylogenetic database and its limitations due to the fact that it uses the

Newick format for storing phylogenies. In Section 3, we identify the users of phylogenetic databases and

categorize them based on the applications they may use the database for. In Section 4 we list the potential

queries that a phylogenetic DBMS needs to be able to handle. In Section 5 we describe a basic data model

of storing the phylogenies as lists of their edges as an alternative to the Newick format that is currently

used in TreeBASE. In Subsection 5.2 we demonstrate the recursive nature of handling phylogenies when

they are stored in the proposed basic data model by describing some of the queries of Section 4 in Datalog.

In Subsection 5.3 we assess the empirical performance of phylogenetic databases assuming our basic data

model by running a few SQL queries on the database. We conclude in Section 6 with final remarks and

directions for future research.

2 TreeBASE

TreeBASE [3, 7, 9, 11] is a database that provides free, web-based access to phylogenetic data from pub-

lished articles. TreeBASE stores three types of data: bibliographic information of published phylogenetic

studies, their corresponding datasets, and their resulting phylogenetic trees, population trees, or gene trees.

Started in 1993 by Michael Donoghue and Michael Sanderson, TreeBASE has a variety of research and

educational purposes that include (1) locating information on phylogenies of specific groups of interest, (2)

obtaining datasets for studies of character evolution, (3) retrieving trees with representatives in particular
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geographic areas, (4) studying co-evolution, (5) studying congruence and combination of data, (6) studying

phylogenetic methods, (7) discovering understudied groups, and (8) retrieving phylogenetic information for

use in conservation biology and the management of natural resources.

While most current users of TreeBASE find it convenient in terms of obtaining descriptions of trees,

this database is also crucial for those who seek to download the data matrices associated with the trees.

TreeBASE is the only database that reliably stores alignments – GenBANK’s PopSet and EMBL-align have

their own problems and so fall short of the task. Data matrices are usually not straight DNA alignments –

they involve deletions of unalignable sections, recoding and gap-coding, concatenation of different genes,

and inclusion of non-DNA/protein data (e.g., restriction fragments, morphology, etc.) – which are all anath-

ema to the mission of Genbank and EMBL, and so such data are refused. Consequently, TreeBASE fills an

important gap in bioinformatic resources.

The TreeBASE database can be searched in six ways: (1) by taxon: search is based on the taxonomic

name; those names can be of taxa at the leaves of the phylogeny or of internal nodes, (2) by author: search

is based on the last name of authors of phylogenetic studies, (3) by citation: search is based on words that

appear in the full reference, such as the title or journal name, (4) by study accession number: search is based

on a unique code that is assigned to a phylogenetic study, (5) by matrix accession number: search is based

on a unique code that is assigned to a particular matrix, or (6) by structure: search is based on the topology

and names of taxa; the query retrieves all trees in which either all or parts of these trees match the query

tree for both the taxa and the pattern of relationships among them (wildcards can be used here as part of the

query tree: ‘*’ denotes zero or more branches, and ‘?’ denotes zero or one branches).

In TreeBASE, names can also be applied to individual internal nodes, which then allow searches on

these internal names.

2.1 The Newick Format and Its Drawbacks in Phylogenetic Databases

The Newick format [8, 5] for representing trees makes use of the correspondence between trees and nested

parentheses. The leaves of the tree are represented by their names, whereas the interior nodes of the tree

are represented by a pair of matched parentheses. Commas are used to separate siblings, and real numbers

preceded by colons (those are optional) are used to denote branch lengths (See Figure 1 for an example of a

tree and its representation in the Newick format; the tree does not have branch lengths).

The Newick format representation of trees is not unique since the order of the descendants of a node

affects the representation. Furthermore, the Newick format represents a rooted tree; however, for many
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((A,B,C),(D,(E,F)))
(a) (b)

A B C D E F

Figure 1: (a) A tree and (b) its representation in the Newick format.

biological purposes we may not be able to infer the position of the root.

There are two major drawbacks to using the Newick format in phylogenetic databases. First, in Newick

format, the database can not directly support queries concerning the relationships between the taxa and the

structure of the phylogeny. Second, when processes such as hybridization and horizontal gene transfer occur

during the evolutionary history of a set of species, that history can not be modeled as a tree, but rather as a

network, which is a rooted, directed, acyclic graph. Phylogenetic networks can not be represented using the

Newick format. These drawbacks, coupled with the growing need for more sophisticated queries that relate

the taxa and structure of the phylogeny, make it imperative to design alternative data models for phylogenetic

databases in order to answer the growing needs of the systematics community. In order to achieve this goal,

we first identify the potential users (or, applications) of phylogenetic databases and what queries they may

desire.

3 Users

Biological applications of phylogenetics include, but are not limited to, predicting nucleic acid structure

and function, discovering the origin of emerging viruses, and understanding co-evolution and the adaptive

nature of morphological and behavioral traits [4].

Based on the applications they desire of a phylogenetic DMBS, users of phylogenetic databases can be

grouped into at least six categories:

1. General Use. Users in this category include those who periodically seek on-line representations

of individual phylogenies for research and educational purposes. Most of the original impetus for

developing phylogenetic databases fall into this category [13].

2. Visualization. Using computer data visualization helps explain the biological meaning of analysis

results. Users in this category are interested in either obtaining single trees to visualize the relation-

ships of taxa inside those trees, or in retrieving many trees and then clustering them – a method that
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shows the distribution of trees and the relationships among them. Methods such as Maximum Parsi-

mony usually return many trees on the same dataset, and post-processing of those trees by means of

clustering is of much interest to the systematics community.

3. Study Development. This is the category of users who contribute to the database by storing phylo-

genies, updating existing ones (in rare cases), or studying the performance of the database.

4. Super-tree algorithms. With reconstructing the Tree of Life being a major challenge, and with the

limitation of current phylogenetic methods, big trees are usually built by “assembling” smaller ones

– an application of super-tree algorithms [16, 17]. Users of super-tree algorithms are interested in

retrieving trees over various sets of taxa.

5. Simulation Studies and Contests. Although still in its organizational phase, phylogeneticists are set-

ting up contests similar to the ones conducted in the protein structure community [2]. In these contests

it is anticipated that large phylogenies will be created through simulation [12], and the simulated ex-

tant data given to participants. It is anticipated that contestant results will be posted to a database and

the database used to critically compare the results help analyze the relative strengths and weaknesses

of their technical approaches.

Simulation studies are commonly used to assess the performance of phylogenetic methods. These

studies involve using tree topologies along with their parameters (substitution matrices on the edges);

those parameters reflect the evolutionary model under which the sequences have evolved down the

tree. Predicting the correct evolutionary model under which a set of sequences had evolved is one

of the biggest challenges in systematics. Current simulation studies use simple models, such as the

Kimura 2-Parameter and Jukes-Cantor that are not believed to be biologically realistic. Finding realis-

tic evolutionary models, simulating evolution, and carrying out simulation studies under these models

are of great significance. Retrieving published phylogenies from the database, along with their pa-

rameters, allows scholars to study those parameters and develop more realistic models.

6. Comparative Genomics. With the technological advances that led to the sequencing of whole

genomes, understanding the functions of genes and other parts of the genome, as well as relating

different genomes are very important. Researchers will be interested in retrieving phylogenies that

relate different genes/genomes, constructing bigger ones from them, and analyzing current ones.

It is important to mention that the above is by no means an exhaustive list of possible uses, but it does

capture the main categories of users and applications.
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4 Queries

In this section, we list queries that users of phylogenetic databases would want a DMBS to support. Table 1

illustrates which queries are relevant to each category of users. We now describe each of the eleven queries

Table 1: Queries required by users.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Casual Users 	 	 	 	 	
Visualization 	 	 	 	 	 	

Study Development 	 	
Super-tree algorithms 	 	 	 	

Simulation Studies 	 	 	 	 	 	 	 	
Comparative Genomics 	 	 	 	 	

in Table 1.

Q1: Given a set � of taxa, find a minimum spanning clade for it. Phylogenies provide information about

the evolutionary history of sets of taxa. Given a phylogenetic study over a large set of taxa, one might be

interested in the evolutionary history of only a subset of the taxa, rather than the entire set. Additionally,

applying super-tree algorithms requires knowledge about overlapping subphylogenies that entail computing

the minimum spanning clade of a given set of taxa.

Q2: Given three sets of taxa, ��
 , �
� and �
� , and based upon all the phylogenies in the database, find

the relationships between those three sets. Grouping or clustering sets of taxa is important in phylogenet-

ics. One method of grouping sets of taxa is by finding the relationships among these taxa based upon the

published phylogenies that pertain to these taxa.

Q3: Given a set � of taxa, return all phylogenies that contain � . In cladistics, for example, biologists

may be interested in finding how and where a set of species fits in the already published phylogenies. Re-

lating sets of genes from different species helps in understanding the functions of genes of various species

without directly testing them, which also helps in drug design.

Q4: Given a phylogenetic method � , return all phylogenies that were reconstructed using � . Sander-

son et al. [13] showed the the majority of the published phylogenies were constructed using parsimony and

likelihood methods, which agrees with the common knowledge that those two methods are superior in ac-

curacy to other methods. Researchers may want to retrieve all phylogenies that were reconstructed using
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specific methods due to their confidence in those methods, or to compare their newly devised methods

against them.

Q5: Given an integer � , representing a number of taxa, return all phylogenies on a set � of taxa,

where ��������������� . This query is essential for users in the simulation studies and contests category. The

number of taxa affects the accuracy, running time, and space requirements of methods. Consequently, to

assess the performance of phylogenetic methods, especially for large scale phylogenies, users would want

to retrieve phylogenies with a given number of leaves. In contests, phylogenies with different numbers of

leaves give various levels of challenge to contestants.

Q6: Given a date/author/tool, return all phylogenies reconstructed on/before/after the given date, by

the given author, using the given tool. Phylogenetic tools are just programs written by human beings,

which are naturally prone to error. At any given point in time, a bug might be found in a tool, and the need

to remove/update all the phylogenies reconstructed using the buggy tool on and before a given date may

be imperative. Authors might need to use phylogenies that were reported in some study by a given author;

running times of different tools need to be compared, etc.

Q7: Given a certain characteristic � , return all phylogenies with that characteristic. The accuracy of

many phylogenetic methods seem to depend on certain characteristics of the dataset, such as the length of

the shortest and longest edges in the tree, the diameter of the tree, the width of the tree, etc., and therefore it

is imperative that we are able to retrieve phylogenies of a given characteristic(s). Also, some settings might

prove to be a big challenge for some or all of the phylogenetic methods, and thus it is important to be able

to return phylogenies with such settings to perform a comparative study of methods.

Q8: Given a type of data, and possibly a set of taxa, return all phylogenies on the set of taxa that were

built using the given type of data.

Building a phylogeny on a set of taxa can be performed using various types of data, such as DNA sequences,

amino acid sequences, whole-genome data, genes, etc., and comparing two phylogenies on the same set of

taxa, yet built using different types of data, might be important for various reasons, including relating the

functions of the different types of data (certain genes and proteins might be linked some way through these

phylogenies). Furthermore, some methods might return more accurate trees using a certain type of data

rather than another type. Sanderson and Donoghue showed in [14, 15] that, contrary to common wisdom,

RFLP data produce better supported trees (corrected for the number of taxa in the tree) than DNA sequences

or morphology.

Q9: Given a phylogeny � , a measure � and a quantity � , return all phylogenies that are � units dis-
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tant from � using the measure � .

Clustering phylogenies is of great significance to systematists, and it is important to have a mechanism by

which one retrieves all trees that are close to a given tree, so that they are clustered together. For exam-

ple, given a number of points (representing some “consensus” trees) in the space, we can retrieve the trees

around each point and cluster them.

Q10: Given a model of evolution � , return all the phylogenies that were reconstructed under the �
assumptions.

Many phylogenies are reconstructed under simplistic models of evolution, such as Kimura 2-Parameter and

Jukes-Cantor, and revisiting this data under other more realistic models might be important. To investigate

the performance of phylogenetic methods as a function of the model of evolution is important, and thus is

retrieving trees that were built under those models.

Q11: Given some measures, return statistics about the database that correspond to those measures.

Obtaining information about the published phylogenies significantly helps the authors of simulators en-

hance their tools and make them produce more realistic models. For example, obtaining statistics about the

distribution of the edge lengths and/or diameter of all stored phylogenies, help guide simulation tools that

generate random trees.

5 A Basic Data Model and Feasibility Prototype

We are not the first to identify that phylogenies may be stored in normalized databases by disassembling each

tree into its component nodes [10]. Given the extensive research effort on computing transitive closures and

Datalog starting circa 1980 through the mid 90’s, some of which has made it into commercial embodiment in

both Oracle and DB2, most database researchers will probably consider this mapping to be obvious [19, 6].

Despite the popularity of transitive closures and Datalog as a topic virtually all prototype Datalog sys-

tems were main-memory based. In anticipation of Tree of Life phylogenies of millions of taxa many authors

of important phylogenetic software systems are skeptical that relational databases will adequately support a

properly normalized model. We now dispel that notion.

In this section we propose a basic data model for storing phylogenetic trees, where we disassemble each

phylogeny into its component nodes and edges, and then store those nodes and edges as records in a table.

In Subsection 5.2 we show that using this approach, phylogenies can be reassembled recursively, and we

demonstrate that by describing Datalog queries.
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We now describe a simple schema of a database assuming this basic model. Then, in Subsection 5.3 we

assess the empirical performance of phylogenetic databases when using this data model.

5.1 The Schema

(1) The taxa-scheme: Taxa = (TaxonName, TaxonId)

The TaxonName is the name of the taxon, and the TaxonId is a unique identification number assigned to

each taxon.

(2) The tree-taxa-scheme: TreeTaxon = (TaxonId, TreeId, ChildId)

Each taxon is associated with the tree nodes in which it appears.

(3) The tree-scheme: Tree = (AnalysisId, TreeId, TreeType)

The AnalysisId is a unique identification number assigned to the analysis that resulted in the described tree.

TreeId is the unique identification number of the tree, and TreeType is the type of the tree (binary, rooted,

etc.).

(4) The edge-scheme: Edge = (ParentId, ChildId, Weight, TreeId)

Each edge is identified by EdgeId, and is defined by the parent node, identified by ParentId, and the child

node, identified by ChildId. The weight of the edge is given by Weight, and the tree to which the edge

belongs is identified by TreeId.

(5) The author-scheme: Author = (AuthorId, LastName, Initials)

Each author of a study is assigned a unique identification number, that is associated with his/her last name

and initials.

(6) The study-scheme: Study = (StudyId, Abstract, MatrixNumber)

Each study is given a unique identification number, and associated with it are an abstract of the study and

the number of data matrices pertaining to the study.

(7) The study-author-scheme: StudyAuthor = (StudyId, AuthorId)

Each study is associated with the author(s) who conducted it.

(8) The matrix-scheme: Matrix = (MatrixId, DataType, Alignment)

A matrix contains the sequence information that was used to reconstruct a tree. Each matrix is assigned a

unique identification number, and associated with it are the data type of the characters and the alignment of

the sequences.

(9) The matrix-taxa-scheme: MatrixTaxa = (MatrixId, TaxonId, Sequence)

Each taxon is associated with a matrix that contains the sequence that characterizes the taxon.
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(10) The study-matrix-scheme: StudyMatrix = (StudyId, MatrixId)

Each study has a data matrix associated with it.

(11) The analysis-scheme: Analysis = (StudyId, AnalysisId, Algorithm, Software)

Each analysis of a dataset is associated with a study, and is obtained using a specific algorithm, possibly

implemented in a specific software.

5.2 Datalog Queries

In the list of queries in Section 4, queries Q1, Q2, and Q7 are important queries that concern the structure and

parametric details of the phylogenies. Following we develop a Datalog program embodying those queries.

Relations are represented in Datalog by predicates. Each predicate takes a fixed number of arguments,

and a predicate followed by its arguments is called an atom. Operations in Datalog are described by rules,

which consist of

1. A relational atom called the head, followed by

2. The symbol “  "! ”, which we often read “if”, followed by

3. A body consisting of one or more atoms, called subgoals which may be either arithmetic or rela-

tional. Subgoals are connected by commas (which denote “and”), and any subgoal may optionally be

preceded by “ # ” which denoted the logical operator “not”.

We define the predicate $&%(')$*��+-,/.0+�12� to be true if there is a directed edge from “parent” node 3 (labeled

by integer +4, ) to “child” node 5 (labeled by integer +61 ).

7 Atomic predicates.

$8%9')$:�<;>=@?9$8�BA6C/DE.0�&F"+G�H%:C:DE� , for every edge in the tree.

7 Transitive Closure of the predicate $&%(')$ . =/�
�I$8J8ALKM?)��+N.4OP� is TRUE iff there is a path from + to O .

=@�
�I$8J8A6K9?)��+N.4OP�2 P!Q$8%9')$:��+N.4O)�
=@�
�I$8J8A6K9?)��+N.4OP�2 P!Q$8%9')$:��+N.SRT�0.0=/�
�I$UJ&ALK9?@�4R>.4OP�

7 Least Common Ancestor of two leaf nodes. �H�V=>��+N.4O*.SRT� is TRUE iff R is the least common ancestor of

+ and O .

�V=W��+N.0+N.0+L�
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�V=W��+N.4O(.SRT�X P!Y=@�
�I$8J8A6K9?)�4R>.0+L�0.0=@�
�I$8J8A6K9?)�4R>.4O)�
�
�H�V=W��+N.4O(.SRT�Z "!Y�V=W��+N.4O(.SRT�0.0�V=W��+N.4O(.0�-�0.0=@�
�V$UJ&ALK9?)�4R>.0�4�
�H�V=W��+N.4O(.SRT�Z "!Y�V=W��+N.4O(.SRT�0.S#��
�H�V=W��+N.4O(.SRT�

7 Minimum Spanning Clade of two leaf nodes. [\JU�9��+N.4O(.SRT� is TRUE iff R is in the minimum spanning

clade of + and O .

[\JU�9��+N.4O(.SRT�Z P!Y�H�V=>��+0.4O(.SRT�
[\JU�9��+N.4O(.SRT�Z P!Y�H�V=>��+0.4O(.0�-�0.0=/�
�I$UJ&ALK9?@���6.SRT�

7 Basal node of a minimum spanning clade of two leaf nodes. ]^=)J8=@�L��+N.4O(.SRT� is TRUE iff R is the basal

node of the minimum spanning clade of + and O .

]^=)J8=@�L��+N.4O(.SRT�Z P!Y�H�V=>��+0.4O(.SRT�

7 Length of path between two nodes. ;>=:A0FP��$8�>'/ANF_��+N.4O(.H;�� is TRUE iff the topological path length from +
to O is ; .

;W=:A0FP��$&�>'@ANF_��+N.4O(.&`M�X "!Q$8%9')$:��+N.4O)�
;W=:A0FP��$&�>'@ANF_��+N.4O(.H;_�Z "!a;W=:A0FP��$&�>'@ANF_�bO(.0+N.H;_�
;W=:A0FP��$&�>'@ANF_��+N.4O(.H;_�Z "!Y=@�
�I$8J8A6K9?)��+N.SRT�0.c$8%9')$:�4R>.4O)�0.H;>=/ANF"��$&�>'/A0F
��+N.VR>.0[d�0.c[feg;h!i`

7 Distance between two leaves. %:+4J8A6=@�
�I$*��+N.4O*.H;_� is TRUE iff the topological distance between + and O
is ; .

%/+4J8A6=@�
�I$*��+N.4O*.H;_�j T!Y�H�^=W��+N.4O*.SRT�0.H;>=:A0FP��$8�>'/ANF_�4R>.0+N.0[d�0.H;>=/ANF"��$&�>'/A0F
�4RW.4O:.0���0.H;kel[nmo�

7 Given 3 leaf nodes + , O , and R , which of the two leaves + and O is closer to R . �V�HK(JU$:��+N.4O(.SRT� is TRUE iff

+ is closer than O to R .

�V�HK(JU$:��+N.4O(.SRT�Z "!Y%/+4J8A6=@�
�I$*��+N.SR>.0[d�0.0%/+4J&AL=@�
�V$:�bO(.SR>.0���0.0[qpr�

5.3 Experimental Study

Phylogenetic trees in the Newick format are expressed as parenthesized character strings. Storing that

tree structure information in the database using the edge-based schema of the Edge relation would allow

expanding the current set of functionalities offered by phylogenetic databases. Given a set of common

cladistics queries, our conjecture is that such a scheme is computationally feasible for current trees found in
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TreeBASE as well as for potentially very large super-trees which might need to be stored in the future, such

as the Tree of Life.

We implemented a prototype database using Oracle and populated it with phylogenies generated by the

r8s software package [12]. Simulation data generated by r8s will allow us to best achieve our precise goals:

(1) quantify the storage overhead when representing phylogenies in a normalized database compared to the

compact representation in the Newick format, and (2) determine if Oracle’s implementation of transitive

closure would produce acceptable execution times in anticipation of the databases created by the Tree of

Life efforts.

5.3.1 Implementing Datalog with Transitive Closure

Implementing recursive Datalog queries is possible in Oracle SQL by using the transitive closure primitive.

Transitive closure implementations are available in the major commercial databases, yet are not part of the

SQL standard. Thus the syntax will vary from Oracle SQL to DB2 SQL.

Transitive closure is a form of iteration which allows a query to fetch all the descendants of a given node

(descendant axis) or all the ancestors of a given node (ancestor axis). Item (1) in the Appendix illustrates the

transitive closure primitive by showing the very simple query which fetches the ancestors of a given node A.

This query is equivalent to the one shown in recursive Datalog notation in Subsection 5.2. Note that Oracle

transitive closure syntax uses the START WITH clause to initialize the iteration. The CONNECT BY clause

defines the increment: prior ParentID = ChildID, and can also include additional filters such as termination

conditions.

Least Common Ancestor Finding the least common ancestor of two nodes is done by recursion in Dat-

alog. The transitive closure primitive allows us to perform exactly the same computation in SQL. Item (2)

in the Appendix shows the Oracle SQL which yields the least common ancestor of two nodes A and B.

Computing the least common ancestor of s nodes can be reduced to successive iterations of the LCA2

computation for two nodes.

Minimum Spanning Clade Finding the minimum spanning clade for s nodes can be performed by com-

puting their least common ancestor and returning the subtree originating at that node. Item (3) in the Ap-

pendix shows the Oracle SQL query which yields the minimum spanning clade for two nodes A and B and

their least common ancestor LCA2(A,B).
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Path Length The path length between two nodes A and B is the sum of the path length from A to

LCA2(A,B), and the path length from LCA2(A,B) to B. Item (4) in the Appendix shows the Oracle SQL

queries which yield the path length between two nodes A and B.

5.3.2 Database Loading

We generated trees using the r8s software [12]. Two populations were simulated. Population 1 is com-

posed of trees with small numbers of taxa and small numbers of internal nodes. There are 50,000 trees in

population 1 and the average tree size is 18 nodes (including both leaves and internal nodes). The role of

population 1 is to account for the current mix of trees found in TreeBASE (at the time of writing this paper,

TreeBASE stores about 2,000 trees and 27,000 taxa). For population 1, default generation parameters for

the Yule forward generation process were chosen and the speciation rate was set to 1.0.

Population 2 is composed exclusively of extremely large trees containing millions of nodes. The role

of population 2 is to account for potentially very large trees created by the Tree of Life project. There are

10 trees in population 2, all of identical size � . For the purpose of our experiments, � will vary from 1

million to 5.2 million nodes (including both leaves and internal nodes). For population 2, default generation

parameters for the Yule forward generation process were chosen and the speciation rate was also set to 1.0.

Statistical summaries for both populations are shown in Table 2. While there are many more trees

in population 1, most of the database is used to store population 2 trees, which completely dominate the

database.

Table 2: Statistical summary of the two populations used in our experimental study.

Population 1 Population 2

Number of trees 50,000 10

Number of nodes per tree 18 5,200,000

Total number of taxa 450,000 26,000,000

Total number of nodes 899,999 51,999,999

5.3.3 Storage Requirements

We measure the space required by the database to store primary and secondary indexes, in addition to the

space required to store the Edge relation itself. We compare the cost of storing phylogenetic trees in the
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proposed database schema, versus the cost incurred by using the Newick format.

For our study, we model the storage cost required by the taxa and tree portion of the Newick format.

We model the required size for storing a tree as a result of two components: the storage of the taxon

information, and the cost of storing the tree itself as a character string. For a binary tree with s taxa, the

file size is tZuwv 1Wx<y-z e{s}|:�4tim�~Qm�� �Q+4%W��� , where t is the record size for an individual taxon, � �Q+G%W� is the

size of a taxon identifier, and 2 is the size for a pair of parenthesis.

On the other hand, if we store phylogenies as lists of their edges, using the Edge relation, the size of the

database containing one tree of size s is tY���c���^�H�^�4v�e�s�|(t�m�����m�� ���Um����Y� , where s�|9t is the table

space for the Taxa relation, � ���Y� is the table space for the Edge relation, � ��� is the size of the primary index,

and ����� is the size of the secondary index. Table 3 shows the actual values of these parameters for trees of

different sizes, and Table 4 compares the sizes of the database when the Newick format is used and when

the edge representation is used.

Table 3: Experimental values of the various parameters that affect the file and database sizes.

Size of trees in Population 2 s ��� � ��� ����� s�|Ut s�|*�G~Ym�� ��+G%W���
5,200,000 2,600,000 1,281M 949M 1,146M 333M 83M

4,000,000 2,000,000 1,007M 813M 955M 256M 64M

3,000,000 1,500,000 754M 612M 729M 192M 48M

2,000,000 1,000,000 503M 772M 487M 128M 32M

1,000,000 500,000 252M 210M 260M 64M 16M

Table 4: Sizes of the database when the Newick format and edge representation are used.

Size of trees in Population 2 s t����c���^�H�^�4v tju2v 1>x�y4z
5,200,000 2,600,000 3,709M 416M

4,000,000 2,000,000 3,174M 320M

3,000,000 1,500,000 2,287M 240M

2,000,000 1,000,000 1,890M 160M

1,000,000 500,000 786M 80M

We conservatively estimate the cost of storing taxon information, t , to be 64 bytes (or, 64 characters),
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and � ��+G%W� to be 14 bytes. We show that the proposed database solution (the edge-based representation)

requires a 10-fold improvement in storage capacity. In particular, 3.7 GB would be required to store our

largest Tree of Life database population using the edge-based representation, versus 416 MB for a file in

the Newick format. While this may seem large, in Oracle terms this represents a tiny database. To illustrate

this, consider that at a conservative cost of 0.2cents/MB the extra disk space required to store the Tree of

Life database population would be around $7.40!

5.3.4 Experimental Setup and Database Tuning

Our validating experiment tests the robustness of our least common ancestor query (LCA2) against large

volumes of data. We measure the execution time of LCA2 on a database populated with our simulated tree

populations. The role of these measurements is to accurately reflect the performance of the Oracle transitive

closure implementation. Also, LCA2 is the basic operation in computing both minimum spanning clade and

path length queries.

Cladistics computations on phylogenetic trees are possible using the Edge relation. A natural primary

index for this relation is the index on the primary key (TreeID, ChildID). However loading the database with

this default primary index alone is not sufficient. The impact of introducing the secondary index on (TreeID,

ParentID) can be felt by a reduction of several orders of magnitude in the speed of cladistic queries.

Thus it is imperative to construct two indexes on the Edge relation in order to make cladistics com-

putations possible: Primary Index (TreeID, ChildID) and Secondary Index (TreeID, ParentID). These two

indexes allow edges in the trees to be fetched through either of their ChildID or ParentID values, thus guar-

anteeing that even very large trees can be traversed quickly by transitive closure along both the descendant

or the ancestor axis.

5.3.5 Measurements for LCA2 queries

Our experiments were conducted on a 866MHz Pentium III desktop computer with 512MB of RAM, and

the Oracle 9i Personal Edition database. The Edge relation was loaded with the trees from both populations.

We timed LCA2 with a cold cache for a first 30 random pairs of taxa chosen from Population 2 trees. We

then measured the execution times for LCA2 for the next 30 random pairs of taxa to simulate a warm cache.

Table 5 shows the results.

Using the primary and secondary (B-Tree) indexes, looking up any edge (ParentID, ChildID, Weight,

TreeID) in the Edge relation given its TreeID along with either the ParentID or ChildID, should follow a
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Table 5: Execution times of the LCA2 query in seconds.

Size of M (nodes) Size of M (taxa) ` �4� execution Average 1-30 Average 31-60

5,200,000 2,600,000 0,78 0.289 0.253

4,000,000 2,000,000 0.77 0.278 0.246

3,000,000 1,500,000 0.80 0.239 0.233

2,000,000 1,000,000 0.81 0.266 0.221

1,000,000 500,000 0.70 0.220 0.181

logarithmic law. We do observe experimentally that the impact of the size of the database on the execution

time for LCA2 is insignificant, even for large values of M.

6 Conclusions and Future Research

Sanderson et al. [13] wrote about the need for phylogenetic databases which have since come to be [9, 11]. In

this paper, we examined the organizational impact on phylogenetic databases of the increasing sophistication

in the need and use of phylogenetic data.

We identified and enumerated a list of potential applications and queries that biologists might wish to see

integrated into a phylogenetic database. We then described the only existing phylogenetic database – Tree-

BASE, and showed that the limitations of this database stem from using the Newick format for representing

trees as a means for storing the phylogenies.

We then showed that most queries would best be supported by a normalized data model where phyloge-

nies are stored as lists of edges. We were not the first ones to propose this data model; Piel [10] proposed an

alternative to the Newick format by disassembling the phylogenetic tree into its nodes and then storing each

child node and the identity of its parent node as records in a table. In this approach, each node receives a

unique node ID number that can then identify both parent and child. This approach has several advantages:

(1) it can store lots of auxiliary information about each node and edge, which is harder to do when using the

Newick format, and (2) storing each node separately means the database has access to nested sets of clades,

and therefore ultimately to the topologies of stored trees.

Since many of the queries require transitive traversals of the phylogenies, we demonstrated, construc-

tively, that complex phylogenetic queries could be conveniently constructed as Datalog programs.
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Finally, to empirically assess the quality of our basic data model, we ran experiments which showed that

it takes less than a second to execute a sophisticated query on a database that contains trees of millions of

nodes. We empirically demonstrated the significance of having a secondary index and its impact on reducing

the speed of executing the queries. Having the primary as well as the secondary indexes guarantee that even

large trees can be traversed quickly by transitive closure.

For future work we intend to experiment with the other queries that we described in Section 4, and

investigate the use of compression techniques on the indexes of phylogenetic databases when the basic data

model that we proposed is used.

“The bottom line is that phyloinformatic databases need to move beyond acting as highly specialized

literature databases, and instead take on the role of actively building a synthesis of accumulated phylogenetic

knowledge” [10].
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7 Appendix
(1) Oracle SQL Transitive Closure query retrieving all the ancestors of Node A:

Select *
From Edge
Start with ChildID = A
Connect by (prior ParentID = ChildID);

(2) Oracle SQL query for retrieving Least Common Ancestor of A and B (LCA2(A,B)):

Select X.ChildID
From (Select ChildID, TreeID

From Edge
Start With (ChildID=A and TreeID=ID)
Connect By (Prior ParentID=ChildID)

And (Prior TreeID=TreeID)) X
Where X.ChildID in (Select ChildID From (

Select ChildID, TreeID
From Edge
Start With (ChildID=B and TreeID=ID)
Connect By (Prior ParentID=ChildID )
And (Prior TreeID=TreeID)))

And not exists (
Select Y.ChildID
From Edge Y
Where Y.ParentID=X.ChildID And Y.TreeID=X.TreeID

And Y.ChildID in (Select ChildID from
(Select ChildID, TreeID
From Edge
Start With (ChildID=A and TreeID=ID)
Connect By (Prior ParentID=ChildID )
And (Prior TreeID=TreeID)))

And Y.ChildID in (Select ChildID from (Select ChildID, TreeID
From Edge
Start With (ChildID=B and TreeID=ID)
Connect By (Prior ParentID=ChildID)
And (Prior TreeID=TreeID))));

(3) Oracle SQL query for retrieving Minimum Spanning Clade of A and B (using LCA2(A,B)):

Select ChildID
From Edge
Start With (ChildID in LCA2(A,B) and TreeID=ID)
Connect By (Prior ChildID=ParentID)

And (Prior TreeID=TreeID);

(4) Oracle SQL query for retrieving Path Length from A to B (using LCA2(A,B)):

Select Count (*)
From Edge
Start With (ChildID=LCA2(A,B) and TreeID=ID)
Connect By (Prior ChildID=ParentID) And (Prior TreeID=TreeID)

And (ChildID in (Select ChildID
From Edge
Start With (ChildID=A and TreeID=ID)
Connect By (Prior ParentID=ChildID )

And (Prior TreeID=TreeID)));
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