
Phase Analysis of Program Memory BehaviorKartik K. Agaram Stephen W. Ke
klerCalvin Lin Kathryn S. M
KinleyDepartment of Computer S
ien
esTe
h Report TR2002-67The University of Texas at Austin
ABSTRACTThis paper des
ribes a methodology for measuring and analyzing a program's memory performan
e.This method
an both identify phase behavior and analyze the behavior of individual data stru
tures.Our approa
h uses a new tool that
ombines
ompile-time annotation of memory allo
ation sites witha detailed mi
ropro
essor simulator. Using this infrastru
ture, we de
ompose the
omplex a

esspatterns of four SPEC-2000 ben
hmarks by phase and by data stru
ture. We study how di�erent datastru
tures
oexist in a
ommon memory system and we distinguish data stru
tures that miss be
auseof external
on
i
ts from those that miss be
ause of poor intrinsi
 lo
ality. These results provide ari
her understanding of the appli
ation than those delivered by tools that simply aggregate memorybehavior into a single miss-rate statisti
. These results also suggest e�e
tive optimizations for ea
hdata stru
ture and phase of an appli
ation. In various phases of the exe
ution of the ben
hmarks weidentify optimizations, su
h as data-stru
ture spe
i�

a
hing, stati
 layout transformations, softwareprefet
hing and streaming, that are likely to be most e�e
tive. We show that the set of e�e
tiveoptimizations vary by appli
ation and program exe
ution phase.

1 Introdu
tionThe memory hierar
hy of
omputer systems has a substantial, if not dominant, e�e
t on appli
ationperforman
e. It is not surprising then that many resear
hers are atta
king memory laten
y at all levelsof
omputer systems. Ar
hite
ts redu
e memory laten
y and in
rease bandwidth by implementingand optimizing hardware
a
hing algorithms;
ompilers improve the e�e
tiveness of
a
hes throughoptimizations su
h as
a
he blo
king, sele
tive
a
hing, and prefet
hing; and appli
ation writers oftentune their appli
ations to the size of the
a
hes, either by hand or in an automated fashion [21, 5℄.Tools for analyzing
a
he behavior in
lude
a
he simulators, su
h as the sim-
a
he [3℄ simulator fromthe SimpleS
alar tool suite, and hardware performan
e monitors [2℄. These tools have an ar
hite
turalpoint of view and do not des
ribe performan
e problems in terms that are familiar to the programmer'sor
ompiler's view of the program. Several program analysis tools [20, 8, 11, 14℄
ome
loser to thisview and
apture aggregate data stru
ture, pro
edure, and/or loop nesting
a
he behavior for arrayprograms. They do not, however, examine phase behavior|how data stru
ture behavior varies overthe exe
ution of the program. These tools also do not analyze dynami
ally allo
ated pointer datastru
tures, whi
h are responsible for poor
a
he behavior in many programs.This paper introdu
es DTra
k, an automated tool that tra
ks a program's memory behavior interms of individual data stru
tures a
ross the exe
ution of the program. DTra
k monitors a

essesto the sta
k, heap and global segment, and
ategorizes ea
h a

ess to the spe
i�
 data stru
ture itbelongs to. Ea
h a

ess is tra
ked through the
a
he memory hierar
hy, and the system provides
a
he hierar
hy statisti
s, su
h as a

ess
ounts, hits, misses, and miss rates, on a per data stru
turebasis. DTra
k also reports the time-varying behavior of these statisti
s a
ross the exe
ution of theprogram. These statisti
s identify subtle (and not so subtle) program
hara
teristi
s su
h as hot datastru
tures, data stru
ture interferen
e in the
a
he hierar
hy, and performan
e bottlene
ks due to layoutor a

ess patterns of individual data stru
tures. These new
apabilities provide better insight intoprogram behavior than prior tools that aggregate statisti
s a
ross both data stru
tures and time. Asa result, DTra
k identi�es opportunities for hardware and software optimizations at many levels. Thisanalysis will be more important in future ar
hite
tures as memory laten
y in
reases and partitionedar
hite
tures be
ome more
ommon. For instan
e, the use of re
ently proposed hardware su
h aspartitioned
a
hes and re
on�gurable
a
hes [16, 10℄
alls for the data-stru
ture phase analysis thatDTra
k provides.DTra
k in
ludes two main
omponents: a
ompile-time data stru
ture analyzer and a mi
roar
hite
-tural simulator that gathers the runtime statisti
s for ea
h data stru
ture. The
ompile-time analyzerannotates all dynami
 memory allo
ation
all sites (e.g., mallo
) and generates a map of the addressspa
e. The simulator reads the map and assigns ea
h a

ess, hit, and miss to the
orresponding datastru
ture. The simulator also reports the data in exe
ution time intervals, thus
apturing phase be-havior in the program. To illustrate the
apabilities of DTra
k, we use it to analyze the behavior offour frequently missing SPEC-2000 ben
hmarks, ea
h of whi
h illustrates di�erent data-stru
ture basedmemory system performan
e. Our analysis suggests opportunities for optimization in
luding: redu
inginterferen
e between two hot data stru
tures, data stru
ture reorganization to improve lo
ality, datastru
ture partition sharing for partitioned
a
hes, and data stru
tures that should be streamed dire
tlyinto the pro
essor, bypassing the
a
he hierar
hy.The main
ontributions of this paper are a new methodology and supporting tools for
ombininginformation about program phase and individual data stru
ture behavior, whi
h yields new insightsfor ar
hite
ts,
ompiler writers, and appli
ation writers to use in memory system optimizations.The remainder of this paper is organized as follows. Se
tion 2 des
ribes prior memory system anal-ysis tools and details the di�eren
es between them and DTra
k. Se
tion 3 des
ribes the
omponents ofDTra
k, explains the me
hanisms employed to minimize the invasiveness of the annotations, and mea-1

asm ("mop") ;

struct foo bar ;

void main () {

 NAME = "f2" ;
 PTR = f2 ;
 SIZE = sizeof (struct foo) ;

 f2 = malloc (sizeof (struct foo)) ;

}

asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

 addLayout () ;
}

if (inst == mop) {
}

struct foo bar ;

void main () {
 f2 = malloc (struct foo) ;

c−breeze

sim−alpha

cc

Figure 1: DTra
k s
hemati
.sures both the invasiveness and the impa
t on simulation time. Se
tion 4 demonstrates the
apabilitiesof DTra
k on the four ben
hmarks, highlighting the additional insight gained by the per data stru
tureand time-based statisti
s. Se
tion 5 dis
usses performan
e te
hniques motivated by the results andinsights of Se
tion 4. Finally, Se
tion 6 summarizes and suggests further uses of DTra
k.2 Related WorkA
ommon method of produ
ing aggregate memory statisti
s is through simulation, of whi
h we
ite afew representative samples [1, 7, 19, 3℄. More sophisti
ated
a
he memory behavior analysis tools havebeen developed [20, 8, 11, 12, 13, 14℄, and this se
tion
ompares DTra
k to this prior work. Our workdi�ers from these tools in that we
onsider pointer data stru
tures in addition to arrays, and show thataggregate statisti
s obs
ure possible optimization opportunities revealed by phase behavior. Of
ourse,the in
reased detail
omes at a
ost of in
reased simulation time.Most tools [8, 11, 12℄ have fo
used on aggregate data stru
ture and pro
edure-level information forarrays. Lebe
k et al. [8℄ and Martonosi et al. [11℄ present data stru
ture and pro
edure level aggregatemiss information, and
lassify misses as
ompulsory,
apa
ity, and
on
i
t. Both papers also presenta number of software optimizations for improving
a
he performan
e. While these tools point users tothe
ode and arrays that
ause problems, they examine the behavior of an array within the
ontext of asingle pro
edure, resulting in two weaknesses. First, be
ause they do not perform
ross data stru
tureanalysis, it is not dire
tly apparent from their aggregate data statisti
s whi
h data stru
tures interferewith themselves or with others. Se
ond, sin
e they do not perform
ross-pro
edure analysis, optimiza-tions
hosen to improve performan
e of one array/pro
edure
ombination may diminish performan
ein another pro
edure. Finally, both tools handle only regular array-based data stru
tures rather thanpointer-based data stru
tures. M
Kinley and Temam analyze the
omplementary dimension of inter-nest and intra-nest loop lo
ality [13, 14℄, but again
onsider only arrays and aggregate informationbetween loop nests.The tool
losest to ours is the Ca
he Visualization Tool [20℄ whi
h demonstrates the time-varyingbehavior or arrays as they mar
h through the
a
he. The graphi
al
omponent of this tool
olors
a
helines a

ording to their lo
ality and misses by data stru
tures, so the user
an see whi
h
a
he lines
ause
on
i
t misses. This level of detail supports analyzing a single loop nest at a time, whereaswe
ompute and present data stru
ture phase behavior for mu
h longer periods. In addition, we alsoanalyze pointer
odes whose data is not well stru
tured.
2

3 DTra
kThis se
tion des
ribes DTra
k, our tool for performing detailed analyses of appli
ations from a memorysystem perspe
tive. Figure 1 shows a s
hemati
 of the tool
hain. DTra
k
onsists of an extension tothe C-Breeze C-to-C translator [6℄, forming the front-end, and an extension to a detailed mi
ropro
essorsimulator
alled sim-alpha [4℄. We use sim-alpha to asso
iate memory system behavior, su
h as memorya

esses and
a
he misses, with sour
e-level data stru
tures, and we use C-Breeze to instrument theappli
ation sour
e so that the simulator
an map addresses to appli
ation-level data stru
tures.3.1 Identifying Data Stru
turesIdentifying the appropriate mapping from address to data stru
ture is hard in the
ase of re
ursive datastru
tures su
h as lists and trees. S
alar and array data stru
tures are easily identi�ed at
ompile-time be
ause their allo
ations are
oupled with their de
larations. Pointer-based data stru
tures,however, are allo
ated dynami
ally and often in a pie
emeal fashion, so a method of relating dynami
allyallo
ated memory to individual data stru
tures is ne
essary. We use a simple heuristi
 that
onsidersall allo
ations from the same program lo
ation to belong to the same data stru
ture. In general,this approa
h
ould fail to distinguish allo
ation to di�erent instan
es of the same type, e.g. twodistin
t trees. For the SPEC ben
hmarks that we
onsider in this work, we �nd that the predominantdata stru
tures do not have multiple instan
es, and are usually allo
ated from a single lo
ation. Inthe rare
ase where multiple lo
ations in the program allo
ate nodes to the same data stru
ture, wemanually
oales
e nodes allo
ated at these lo
ations. Other languages and ben
hmarks may requiremore elaborate heuristi
s.3.2 Communi
ating Data Stru
ture Layout to the SimulatorThe goal of the sour
e-level translator is to
ommuni
ate to the simulator information about theextents of di�erent data stru
tures in simulated memory. In parti
ular, the translator instruments theappli
ation to
ompute the name, address, and size of ea
h data stru
ture and provide them to thesimulator. The simulator maintains this information in a tabular layout by address range. To minimizethe invasiveness of the tool on the underlying appli
ation in di�erent
ontexts, the translator uses twote
hniques to
ommuni
ate layout information.� For global variables, the names and addresses of variables are written to a prede
ided �le. These�le operations, though expensive, are one-time
osts during program initialization that are amor-tized a
ross all global variables.� A more eÆ
ient solution is needed for heap-allo
ated variables, sin
e the simulator needs toasso
iate a data stru
ture name with ea
h dynami
 allo
ation or deallo
ation. The translatorinserts instrumentation
ode that stores the name (a numeri
al en
oding of the fun
tion it is foundin), the address of the allo
ated data, the size of the allo
ated memory, and the type of memoryoperation (allo
ation or deallo
ation). All of this information is stored in a predetermined set ofvariables so that the simulator
an extra
t it from the appli
ation's memory during simulation.To redu
e the impa
t of these extra variables, we simulate perfe
t memory for them, and neverfet
h them into the simulated
a
he.In both
ases, when the new additions to the layout are in pla
e the front-end instru
ts the simulatorto extra
t them by inserting a spe
i�
 rarely used op
ode. When the simulator en
ounters this op
odein the simulated instru
tion stream, it pro
esses the instru
tion and then takes additional measures3

to either read a �le or import variables from the appli
ation's memory. With these me
hanisms, thesimulator is able to add or remove entries from the layout as memory is allo
ated or freed on theheap, to always maintain an a

urate pi
ture of the appli
ation's data stru
tures. This knowledge ofthe
urrent layout of the program throughout its exe
ution enables it to
olle
t statisti
s on a perdata stru
ture basis. The
ode fragment in Figure 1 illustrates the entire pro
ess. Two details meritattention:� Sta
k variables would be expensive to instrument, sin
e they are allo
ated and deallo
ated onevery
hange in s
ope. We
hoose to treat the sta
k as a monolithi
 entity. Dete
t a

esses tothe sta
k requires no instrumentation by the translator, sin
e it
orresponds to a well-delineatedregion in memory. We show in the next se
tion that
ombining sta
k variables does not redu
eDTra
k's e�e
tiveness.� All instrumentation is performed by transforming the appli
ation sour
e so variables within pre-
ompiled libraries need to be handled spe
ially. The basi
 idea is to assume that ea
h libraryallo
ates exa
tly one data stru
ture. Thus, when the simulator en
ounters an allo
ation insideof a library routine, it names the data stru
ture by the name of the library routine. Our systemdoes not tra
k any global variables de
lared by library routines. We �nd su
h variables to berare.We measure the overhead introdu
ed by DTra
k in instrumenting dynami
 allo
ations and deallo
a-tions, by
omparing, for ea
h of our ben
hmarks, the instru
tion
ounts exe
uted both with and withoutinstrumentation, to rea
h a spe
i�
 point in the sour
e
ode past initialization and in
luding one toten iterations of the top-level loop of the ben
hmark. This
omparison shows that our instrumentationin
reases the instru
tion
ount of the ben
hmarks by a maximum of 0.3%.3.3 Full Appli
ation SimulationAfter the front-end instruments a program's sour
es, we
ompile them in the normal manner using

on the alpha platform and simulate the resulting binary on sim-alpha. Details of the pro
essor andmemory
on�guration we simulate are presented in Table 1. The
on�guration we simulate is similarto the Alpha 21264 pro
essor
urrently in the market. Previous resear
h [15℄ has shown that, for a
ommon program, an out-of-order pro
essor provides a very di�erent sequen
e of memory a

esses toits
a
hes, when
ompared to an in-order pro
essor. We
hoose to performed detailed out-of-ordersimulation, so as to more a

urately model the behavior of our ben
hmarks on
ontemporary
omputersystems. We modify the simulator to
orre
tly pro
ess the instrumentation provided by the front-end,and to
orre
tly
lassify all memory a

esses based on them. Classifying all loads and stores in thismanner and keeping tra
k of statisti
s on a data stru
ture basis slows down the simulation by anaverage of 60%.In order to
apture the important phase behavior in our ben
hmarks, we simulate them for 40billion instru
tions ea
h from the start. This large simulation e�ort is required to obtain a

urateand
omprehensive results on the phase behavior of these programs. Sherwood et al. [18, 17℄ re
entlydeveloped a tool
alled SimPoint that breaks up a program's exe
ution into sli
es,
lusters exe
utionsli
es on the basis of a
ode similarity metri
, and predi
ts the sli
e in ea
h
luster that is mostrepresentative with respe
t to the miss-rates and IPC (instru
tions per
lo
k
y
le). Simulating asmall number of thin sli
es of the whole program and weighting them appropriately provides resultswith very low error. While this methodology has been validated with respe
t to aggregate statisti
s, itis not
lear how mu
h error it introdu
es when studying phase behavior. We
hoose, for this reason,to simulate large parts of the exe
ution of all our ben
hmarks. To ensure that the �rst 40 billion4

Feature Size/ValueOut-of-order Pro
essorFet
h width 4De
ode width 4Issue width 4Int ALUs 4Int multipliers 4FP ALUs 1FP multipliers 1Bran
h predi
tor Tournament, 1 KB x 1 KB lo
al,4 KB global, 4 KB
hoi
eMemory Hierar
hyLevel 1 Data Ca
he (DL1) 64 KB, blo
ksize 64 bytes, 2-wayDL1 laten
y 3
y
lesLevel 1 Instru
tion Ca
he (IL1) 64 KB, blo
ksize 64 bytes, 2-wayIL1 laten
y 1
y
leUni�ed Level 2 Ca
he (L2) 512 KB, blo
ksize 64 bytes, dire
t-mappedL2 laten
y 12
y
lesTranslation Look-aside Bu�ers (TLBs) 128 entriesLaten
y to DRAM 62
y
lesTable 1: Details of the simulated pro
essor and memory hierar
hy.instru
tions provide representative results, we ran all the ben
hmarks to
ompletion in an earlierexperiment. Comparing those results with those of SimPoint, we �nd that while SimPoint predi
tsaggregate miss-rates with 0.0% error for three of the four ben
hmarks, it shows signi�
ant error in themean miss-rate within a
luster, with an average of 11%, and as high as 47.7% for some
lusters in ourben
hmarks.To simulate large intervals of many billions of instru
tions, we partition ea
h simulation into multipleruns and simulate them in parallel on a
luster of Linux workstations managed by Condor [9℄. Ea
hof these runs performs fun
tional simulation (fast-forwards) to a spe
i�
 point and then simulates abillion instru
tions. Di�erent runs fast-forward di�erent distan
es. The results from these staggeredruns are post-pro
essed o�ine to provide results for the entire simulation.Our parallel approa
h introdu
es errors due to the
old
a
hes that appear every billion instru
tions.Sin
e ea
h billion-instru
tion sample �nds at least 10 million misses in the DL1 and 1 million missesin the L2, the error due to extra
ompulsory misses is a maximum of 512 misses in the DL1 and 8192misses in the L2 in every billion instru
tions, whi
h is an a

eptable level of error.4 ResultsIn this se
tion, we use DTra
k to examine the memory hierar
hy behavior of four SPEC-2000 ben
h-marks, highlighting the types of insight gained �rst by the aggregate per data stru
ture analysis andthen by temporal analyses of phase behavior. We then use these insights to suggest and explore stati
and dynami
 methods of improving performan
e in Se
tion 5. We expe
t that the same analysiswill be useful beyond our example ben
hmarks, and
ould, in fa
t, suggest additional performan
eoptimizations tailored to ea
h parti
ular appli
ation.5

DL1 L2Ben
hmark A

esses Misses Miss-rate Misses Miss-rate IPCammp 14.9G 1.7G 11.1% 0.6G 36.7% 0.82art 20.3G 7.1G 34.9% 4.6G 64.2% 0.54equake 19.3G 2.9G 14.1% 0.8G 29.4% 0.58m
f 18.9G 8.8G 46.4% 4.0G 44.4% 0.22Table 2: Aggregate memory hierar
hy behavior.4.1 Aggregate Data Stru
ture AnalysisTable 2 summarizes the aggregate behavior of four example ben
hmarks taken from the SPEC-2000suite. Ea
h ben
hmark was run for 40 billion instru
tions. The high DL1 and L2 miss rates indi
ate thatthese appli
ations are memory intensive. Figure 2 shows the aggregate per data stru
ture behavior ofthese ben
hmarks produ
ed by DTra
k. The �ve most important dynami
ally allo
ated data stru
tures(ordered by miss
ount) are shown for ea
h ben
hmark, along with the bars for sta
k a

esses and allremaining a

esses (\Others").In the level-1 data
a
he (DL1) more than 60% of the misses result from referen
es to a single datastru
ture, while three of the ben
hmarks show a signi�
ant se
ond data stru
ture (middle row). Thedata stru
tures that have the most misses have signi�
ant a

ess
ounts (top row). In art, 10% of allDL1 a

esses are data stru
tures that almost always miss. More than half of the
riti
al data stru
tureshave higher-than-aggregate DL1 miss-rates, often signi�
antly higher.To examine ea
h appli
ation in further detail, we used the results of DTra
k as a guide to the sour
e
ode. Table 3 summarizes the top data stru
tures from Figure 2, showing the total size of the stru
ture,the size of ea
h element, and the way in whi
h the stru
ture is a

essed (type). Note that 2-D arraysthat are implemented as arrays of arrays are shown as separate data stru
tures. For example, bu is anarray of pointers, ea
h of whi
h point to data arrays that are represented by bu[℄. The type indi
atesthe whether the data stru
ture is a

essed in a regular fashion (array), or sometimes in a regular andother times in an irregular fashion. In the paragraphs that follow, we des
ribe further details of theappli
ations and their most signi�
ant data stru
tures.ammp models the mole
ular dynami
s of a protein in water. It tra
ks the motion of a set ofapproximately 10,000 atoms from an initial
on�guration by repeatedly solving a system of di�erentialequations for ea
h atom. The set of atoms to be modeled is maintained as a linked list that is repeatedlytraversed as for
es and velo
ities are
omputed. To model intera
tions, ea
h atom maintains an arrayof 200 neighboring atoms. This array of neighboring atoms must be periodi
ally re
omputed for ea
hatom, as it moves through the spa
e. In addition to the list of atoms, the program maintains severalauxiliary lists that
ontain information about bonds between atoms, angle
omputations, torsionalfor
es and tetrahedral stru
tures. The length of ea
h of these lists is roughly proportional to thenumber of atoms. The interlo
king nature of these di�erent data stru
tures makes it diÆ
ult tostati
ally determine the
riti
al ones.Using DTra
k, we determine that the list of atoms (atoms)
auses the most misses, more than fourtimes that of any other data stru
ture. The large size of the data stru
ture (80 MB) and the
ommonpattern of traversing it from end to end
ontributes to its poor
a
he behavior,
ausing a large numberof
apa
ity misses. Surprisingly, the auxiliary lists of physi
al relationships between atoms, su
h asangles and torsion,
reate few misses in the memory hierar
hy. Instead, almost 24% of all missesare
aused by 4 temporary arrays whi
h are repeatedly re-allo
ated during during program exe
utionand used in only one of the 150 fun
tions in the
all-graph of ammp. Determining that these data6

ammp art equake mcf

Benchmark

0

20

40

60

80

100

D
L

1
A

cc
es

se
s

(N
or

m
al

iz
ed

)

#1
#2
#3
#4
#5
Stack
Others

ammp art equake mcf

Benchmark

0

20

40

60

80

100

L
2

A
cc

es
se

s
(N

or
m

al
iz

ed
)

#1
#2
#3
#4
#5
Stack
Others

ammp art equake mcf

Benchmark

0

20

40

60

80

100

D
L

1
M

is
se

s
(N

or
m

al
iz

ed
)

#1
#2
#3
#4
#5
Stack
Others

ammp art equake mcf

Benchmark

0

20

40

60

80

100

L
2

M
is

se
s

(N
or

m
al

iz
ed

)

#1
#2
#3
#4
#5
Stack
Others

ammp art equake mcf

Benchmark

0

20

40

60

80

100

D
L

1
M

is
s-

ra
te

#1
#2
#3
#4
#5
Stack
Others

ammp art equake mcf

Benchmark

0

20

40

60

80

100

L
2

M
is

s-
ra

te

#1
#2
#3
#4
#5
Stack
Others

Figure 2: De
omposition of DL1 and L2 behavior by data stru
ture, showing a

esses, misses, and missrate. The horizontal bars on the bottom graphs indi
ate the total aggregate miss rate on all of thedata stru
tures.
7

Data Stru
ture Type A

ess Pattern Size Element size(KB) (bytes)Ben
hmark: ammp#1: atoms Pointer Both 41322 2208#2: nodelist Array Regular 76 232#3: atomlist Array Regular 4342 232#4: ve
tor Array Regular 599 8#5: atomall Array Regular 150 8Ben
hmark: art#1: f1 layer Array Regular 625 64#2: bu[℄ Array Regular 859 8#3: bu Array Regular 78 8#4: td[℄ Array Regular 859 8#5: f1 layer[℄:I Array Regular 156 8Ben
hmark: equake#1: K Array Regular 22399 8#2: disp Array Regular 2828 8#3: V23 Array Regular 943 8#4: C23 Array Regular 943 8#5: M23 Array Regular 943 8Ben
hmark: m
f#1: nodes Array Both 7071 120#2: ar
s Array Irregular 188416 64#3: dummy ar
s Array Irregular 3771 120#4: basket Array Regular 3.13 8#5: perm Array Regular 3.13 8Table 3: The most
riti
al data stru
tures by miss
ount.stru
tures are more
riti
al than the persistent auxiliary arrays of similar length would be diÆ
ultwithout DTra
k, whi
h highlights them in an automated manner.art performs image re
ognition using an unsupervised neural network
lassi�er. This ben
hmark
onsists of regular loops traversing large 2-dimensional arrays. The major data stru
tures, shown inFigure 2, are the array of neurons (f1 layer) and the arrays of bottom-up and top-down weights, buand td. These two-dimensional arrays are organized as arrays of arrays, and fewer misses are due tothe array of row pointers than from the subsidiary arrays holding the data. Further examination ofthe data stru
tures pro�led by DTra
k shows that ea
h iteration of the inner loop of art a

esses 1-2spe
i�
 �elds in the array of neurons.This pattern suggests �eld-splitting - breaking up the array of neuron data stru
tures into smallerarrays, ea
h
ontaining �elds of the neuron. This optimization will eliminate fet
hing of unused neuron�elds.equake simulates the propagation of seismi
 waves in large valleys, determining the history of groundmotion during an earthquake. It uses a �nite-element
omputation on an unstru
tured grid topology,whi
h involves regular traversal of large 2-D and 3-D arrays with a

ess patterns similar to art. DTra
kshows that the most
ommonly missing data stru
tures are portions of two large 3-D arrays, K anddisp. The innermost loop repeatedly multiplies the matri
es in K with the
orresponding ve
tors of a8

matrix in disp. K is never written after initialization, while disp is frequently modi�ed. The remaining3 top data stru
tures are part of a group of 5 data stru
tures that are a

essed in interleaved fashionto update an element in disp. K displays a miss rate of 37%, far ex
eeding the aggregate miss rate of14.1%, while C23, M23 and V23 have miss rates ex
eeding 28%.m
f implements the network simplex algorithm to minimize the number of vessels required in a
eetto traverse a graph of destinations with �xed arrival/departure s
hedules and preplanned routes. Theprin
iple data stru
tures are the nodes and ar
s shown in Figure 2, whi
h
olle
tively represent thegraph of destinations. Ea
h node
ontains a linked list of pointers to in
oming and outgoing ar
s, andea
h ar

ontains pointers to the nodes it
onne
ts. Ea
h node also
ontains pointers to its parent andlinked lists of
hildren and siblings. In
ertain phases of the program nodes are a

essed in regularorder,
orresponding to a depth-�rst sear
h of a subtree of the graph, while in others node a

ess isirregular as the nodes are a

essed in the sequen
e of the ar
s that they are
onne
ted to. The arrayof ar
s is a

essed in sequential order. Some loops insert a new ar
 at the beginning of the ar
 array,whi
h triggers a

esses that employ re
ursive doubling of the array indi
es (2 � n or 2 � n + 1) untilan empty ar
 position is found. Other loops traverse the ar
s and sele
t a subset, pla
ing them into atemporary bu�er where they are sorted using a qui
ksort algorithm. The unstru
tured a

ess patternsto nodes (850KB) and ar
s (12MB) results in DL1 miss rates for ea
h that ex
eed the aggregate missrate.4.2 Temporal AnalysisWe now examine the behavior of the data stru
tures over the exe
ution time of the appli
ations.DTra
k exposes phase behavior on a data stru
ture basis and shows
orrelation between di�erent datastru
tures within the phases.ammp: As shown in the previous se
tion, the
a
he misses in ammp are
aused primarily by its linkedlist of atoms, and to a lesser extent by various temporary arrays based on this list and the 3-D gridthat models the spa
e around the atoms. Figure 3 plots the number of DL1 misses per 0.5 billion
y
lesfor ea
h of these data stru
tures. The graph shows 110 time steps simulated by the outermost loop.The number of misses to the linked list of atoms and to the arrays based on it peaks approximatelyevery 4 billion
y
les. These 4 billion
y
le periods
orrespond exa
tly with 10-12 iterations of theoutermost loop. However, the time spent by the iterations within ea
h period is not uniform. Whilemost of the iterations take
omparitively less time to exe
ute, one iteration in every 10-12 exe
utes afun
tion
alled mm fv update nonbon, whi
h updates the neighbors for ea
h atom. Over 80% of thetime in ea
h period is spent within this fun
tion. This fun
tion is solely responsible for the misses to4 of the 5
riti
al data stru
tures in ammp, and the traversals in the neighbor pointers in the �fthand most important data stru
ture. Thus, DTra
k is able to highlight in an automated fashion thatoptimization e�orts should be fo
ussed on the traversal of the neighbor array.Figure 4 shows a magni�ed se
tion of Figure 3 to demonstrate how a temporal analysis without datastru
ture de
omposition
an miss important aspe
ts of the program memory behavior. During a singlephase, the miss
ounts for both nodelist and ve
tor data stru
tures initially rise, but the miss
ountfor ve
tor soon falls in the latter part of the phase. Tools that simply measure the phase behaviorin aggregate miss
ount without separating the di�erent data stru
tures would observe a mu
h
atter
urve, and not expose the more dramati
 shift in the fra
tion of misses
ontributed by ea
h.m
f: The exe
ution of m
f is
omposed of alternating phases that perform an iteration of the simplexalgorithm followed by insertion of new ar
s into the graph. Figure 5 shows the DL1 miss
ount per0.5 billion
y
les for the top �ve data stru
tures a
ross the exe
ution of the entire program on the9

20 40 60 80 100

Cycles (0.5 billions)

0

5

10

15

D
L

1
m

is
se

s
(m

ill
io

ns
)

/ 0
.5

 B
ill

io
n

cy
cl

es

atoms
atomlist
nodelist
vector

Figure 3: Misses by data stru
ture per 0.5 billion
y
les inammp.

40 60 80 100

Cycles (0.5 billions)

0

2

4

6

D
L

1
m

is
se

s
(m

ill
io

ns
)

/ 0
.5

 B
ill

io
n

cy
cl

es

nodelist
vector

Figure 4: Magni�ed view of Figure 3.
10

100 200 300 400

Cycles (0.5 billions)

0

5

10

15

20

25

D
L

1
M

is
se

s
(m

ill
io

ns
)

/ 0
.5

 B
ill

io
n

cy
cl

es

nodes
arcs
dummy_arcs
basket
perm

Figure 5: Misses by data stru
ture per 0.5 billion
y
les inm
f.

100 200 300 400

Cycles (0.5 billions)

0

20

40

60

80

100

M
is

s-
ra

te
 (

%
)

nodes
arcs

Figure 6: Miss-rates of the node and ar
 arrays in m
f.
11

referen
e input set. Misses to nodes and ar
s tend to tra
k one another ex
ept for spikes in the ar
s
urve. These peaks in misses to the ar
 array
orrespond to the start of the simplex phase in whi
h asubset of the ar
s are sele
ted and sorted. The end of the simplex phase
orresponds with the dramati
in
rease in misses to nodes. These misses
orrespond to the ar
 insertion phase in whi
h the ar
 arrayis traversed sequentially with a stride of three. This phase periodi
ally inserts new ar
s into the array,
ausing some irregular a

ess to the array and the se
ondary spikes in the miss
ount for ar
s. In
onjun
tion with the mostly regular a

esses to ar
s is the near random a

esses to the nodes thatthe ar
s
onne
t. Figure 6 shows the
orresponding miss rate for ea
h sample point. The spikes in themiss rate for nodes o

ur at the same time as the spikes in the miss
ount.art and equake: As shown in Figures 7 and 8, these two ben
hmarks show similar behavior
hara
-terized by only a single transition in memory system behavior, rather than the repeated phases in ammpand m
f. Note, however, that the transition o

urs at between 15 and 30 billion
y
les, points well be-yond the simulation intervals traditionally pi
ked by most resear
hers, prior to the re
ent developmentof SimPoint [18℄.5 Memory Optimization OpportunitiesBy
olle
ting statisti
s of the memory hierar
hy behavior a
ross the axes of data stru
tures and time,DTra
k exposes opportunities in the hardware and software to improve performan
e, whi
h would oth-erwise be less obvious or invisible. The aggregate statisti
s on a data-stru
ture basis alone immediatelydisplays the data stru
tures whi
h have the poorest
a
hing
hara
teristi
s. As shown in Table 3, theseare not always the largest data stru
tures. This data qui
kly fo
uses the attention of the appli
ationprogrammer on the major bottlene
ks in performan
e, and shows ar
hite
ts and
ompiler writers theareas that would most bene�t from new
a
hing strategies. The further detail provided by the time-based statisti
s exposes the stru
ture and phases of the appli
ation, and indi
ates how a given datastru
ture is a

essed in di�erent ways and frequen
ies over time. These observations inspire appli
a-tion,
ompile-time, and runtime optimizations that
ould exploit the time-varying a

ess patterns tothe
riti
al data stru
tures. The remainder of this se
tion des
ribes spe
i�
 optimization opportunitiesexposed by DTra
k.Data stru
ture reorganization: As shown in Figure 2, the bottom-up weight matrix bu in arta

ounts for a large number of misses and a parti
ularly high miss rate in both the DL1 and L2
a
hes.Based on these statisti
s, we examined the referen
es in the sour
e
ode and dis
overed that this matrixis organized in row-major order, but a

essed in
olumn-major order. Sin
e the rows are too large to�t in the
a
he, a

esses to this matrix have neither spatial nor temporal lo
ality. By transposingthe matrix, we redu
ed its miss rate in the DL1
a
he from 100% to 12.5% and improved overall IPCby 34% from 0.47 to 0.63. Not surprisingly, the miss rate shows that one in eight
ontiguous 8-bytea

esses
auses a miss in the DL1 with with 64-byte blo
ks.Avoiding
a
hing
on
i
ts: Figure 2 shows that Equake's se
ond data stru
ture disp is referen
edmore frequently than K, yet in
urs fewer misses, indi
ating the possibility of
ross-data stru
ture
on-
i
ts. This suggests that a te
hnique to partition the
a
he between the data stru
tures would beuseful. A more
omprehensive way to dete
t su
h
on
i
t is under development.Sele
ting data stru
ture a

ess method: The aggregate data of Figure 2 shows extremely highmiss rates in the DL1 and L2
a
hes (approa
hing 100%) for two data stru
tures in art. Su
h poor12

50 100

Cycles (0.5 billions)

0

10

20

30

D
L

1
m

is
se

s
(m

ill
io

ns
)

/ 0
.5

 B
ill

io
n

cy
cl

es

f1_layer
bu[]
bu
td

Figure 7: Misses by data stru
ture per 0.5 billion
y
les inart.

50 100

Cycles (0.5 billions)

0

5

10

15

D
L

1
m

is
se

s
(m

ill
io

ns
)

/ 0
.5

 B
ill

io
n

cy
cl

es

K
disp

Figure 8: Misses by data stru
ture per 0.5 billion
y
les inequake.
13

a
he behavior indi
ates that little spatial or temporal lo
ality may exist and that a

esses to these datastru
tures would be better served by bypassing the
a
he entirely and avoiding pollution of the
a
hefor the data stru
tures that exhibit better lo
ality. The temporal analysis shows that this behavior alsomanifests itself within a single data stru
ture a
ross the phases of a program. For example, Figure 5shows that the nodes data stru
ture goes through periods of high and low miss
ounts and rates. Basedon this observation, we dis
overed that nodes is a

essed in two di�erent ways within the program.During periods of low misses, nodes is traversed as a list with good spatial lo
ality. During periodsof high misses, nodes is referen
ed indire
tly from a traversal of ar
s. The a

esses to nodes duringthis phase is essentially random an results in poor lo
ality. These results suggest that the referen
es tonodes
ould be
a
hed during one phase, and un
a
hed in the other. Other a

ess optimizations su
has streaming and prefet
hing
an be sele
ted on a data stru
ture basis or a
ross phases within a datastru
ture based on the results taken from DTra
k.Ca
he re
on�guration: Ar
hite
tures that propose re
on�guration of
a
he organization and poli-
ies are now starting to emerge [16, 10℄. The �rst steps will likely build re
on�guration into existingstru
tures, su
h as
a
he partitioning based on set-asso
iativity or adjusting e�e
tive
a
he line size bymodifying the fet
h poli
y. Future re
on�gurations may in
lude data stru
ture spe
i�

a
hing. Withits time and data stru
ture statisti
s, DTra
k
an help determine when (between programs, betweenphases) and how to re
on�gure. For example, programs su
h as m
f have di�erent data stru
tures thatdominate the
a
he during di�erent phases, while art and equake are very regular in the behavior. Forthose programs that have distin
t phases, DTra
k's identi�
ation of the per data stru
ture behaviora
ross phases enables exploration of the spa
e of possible
on�gurations and examination the bene�tsand drawba
ks of dynami
 re
on�guration.6 Con
lusionsMemory laten
y
ontinues to determine the performan
e of many appli
ations. Previous memoryanalysis tools dete
t troublesome array data stru
tures based on aggregate misses. Our work
ombinesthis aggregate memory behavior with phase behavior analysis, and
onsiders dynami
 pointer datastru
tures in addition to arrays. We use four programs to illustrate the utility of our methodology.Our phase analysis reveals how data stru
ture misses vary over time and how data stru
tures intera
tin the
a
he. This detailed information points to a number of appli
ation,
ompiler, and ar
hite
turaloptimizations that are not apparent from aggregate data.Future extensions to DTra
k will in
lude miss types
lassi�
ation (
on
i
t,
apa
ity) on a datastru
ture and phase basis. We will also enhan
e it to dete
t spatial and temporal lo
ality in the datastru
ture referen
e streams. Finally, we will use the results of these analyses to drive and evaluate theperforman
e optimizations for both the
ompiler and ar
hite
ture.Referen
es[1℄ S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and R. Gupta. Predi
tability ofload/store instru
tion laten
ies. In Pro
eedings of the 28th International Symposium on Mi
roar-
hite
ture, pages 139{152, Austin, TX, De
. 1993.[2℄ J. M. Anderson, L. M. Ber
, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, R. L. Sites,M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous pro�ling: Where have all14

the
y
les gone? In Pro
eedings of the 16th ACM Symposium on Operating Systems Prin
iples,pages 1{14, O
tober 1997.[3℄ D. Burger and T. M. Austin. The simples
alar tool set version 2.0. Te
hni
al Report 1342,Department of Computer S
ien
es, University of Wis
onsin-Madison, June 1997.[4℄ R. Desikan, D. Burger, and S. W. Ke
kler. Measuring experimental error in mi
ropro
essor sim-ulation. In Pro
eedings of the 28th Annual International Symposium on Computer Ar
hite
ture,pages 266{277, July 2001.[5℄ M. Frigo and S. G. Johnson. FFTW: An adaptive software ar
hite
ture for the FFT. In Pro
.IEEE Intl. Conf. on A
ousti
s, Spee
h, and Signal Pro
essing, volume 3, pages 1381{1384, Seattle,WA, May 1998.[6℄ S. Z. Guyer, D. A. Jim�enez, and C. Lin. The C-Breeze
ompiler infrastru
ture. Te
hni
al ReportTR 01-43, Dept. of Computer S
ien
es, University of Texas at Austin, November 2001.[7℄ M. D. Hill. A
ase for dire
t-mapped
a
hes. IEEE Computer, 21(12):25{40, De
. 1988.[8℄ A. R. Lebe
k and D. A. Wood. Ca
he pro�ling and the SPEC ben
hmarks: A
ase study. IEEEComputer, pages 15{26, O
t. 1994.[9℄ M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In Pro
eedings ofthe 8th International Conferen
e of Distributed Computing Systems, pages 104{111, June 1988.[10℄ K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: Amodular re
on�gurable ar
hite
ture. In Pro
eedings of the 26th Annual International Symposiumon Computer Ar
hite
ture, pages 161{171, June 2000.[11℄ M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Analyzing memory system bottlene
ksin programs. In Pro
eedings of the ACM SIGMETRICS Conferen
e on Measurement & ModelingComputer Systems, pages 1{12, Newport, RI, June 1992.[12℄ M. Martonosi, A. Gupta, and T. E. Anderson. E�e
tiveness of tra
e sampling for performan
e de-bugging tools. In Pro
eedings of the ACM SIGMETRICS Conferen
e on Measurement & ModelingComputer Systems, pages 248{259, Santa Clara, CA, May 1993.[13℄ K. S. M
Kinley and O. Temam. A quantitative analysis of loop nest lo
ality. In Pro
eedings ofthe Seventh International Conferen
e on Ar
hite
tural Support for Programming Languages andOperating Systems, pages 94{104, Cambridge, MA, O
t. 1996.[14℄ K. S. M
Kinley and O. Temam. Quantifying loop nest lo
ality using SPEC'95 and the Perfe
tben
hmarks. ACM Transa
tions on Computer Systems, 17(4):288{336, Nov. 1999.[15℄ V. S. Pai, P. Ranganathan, and S. V. Adve. The impa
t of instru
tion-level parallelism on mul-tipro
essor performan
e and simulation methodology. In Pro
eedings of the 3rd InternationalSymposium on High Performan
e Computer Ar
hite
ture, pages 72{83, February 1997.[16℄ P. Ranganathan, S. Adve, and N. P. Jouppi. Re
on�gurable
a
hes and their appli
ation to mediapro
essing. In Pro
eedings of the 26th Annual International Symposium on Computer Ar
hite
ture,pages 214{224, June 2000. 15

[17℄ T. Sherwood, E. Perelman, and B. Calder. Basi
 blo
k distribution analysis to �nd periodi
behavior and simulation points in appli
ations. In Pro
eedings of the International Conferen
e onParallel Ar
hite
tures and Compilation Te
hniques, pages 3{14, September 2001.[18℄ T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati
ally
hara
terizing large s
aleprogram behavior. In International Conferen
e on Ar
hite
tural Support for Programming Lan-guages and Operating Systems, pages 45{57, O
t. 2002.[19℄ A. J. Smith. Se
ond bibliography on
a
he memories. Computer Ar
hite
ture News, 19(4):154{182,June 1991.[20℄ E. van der Deijl, G. Kanbier, O. Temam, and E. Granston. A
a
he visualization tool. IEEEComputer, pages 71{78, July 1997.[21℄ R. C. Whaley and J. J. Dongarra. Automati
ally tuned linear algebra software. In Pro
eedings ofthe 1998 ACM/IEEE Super
omputing Conferen
e (SC98), pages 1{27, 1998.

16

