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ABSTRACTThis paper desribes a methodology for measuring and analyzing a program's memory performane.This method an both identify phase behavior and analyze the behavior of individual data strutures.Our approah uses a new tool that ombines ompile-time annotation of memory alloation sites witha detailed miroproessor simulator. Using this infrastruture, we deompose the omplex aesspatterns of four SPEC-2000 benhmarks by phase and by data struture. We study how di�erent datastrutures oexist in a ommon memory system and we distinguish data strutures that miss beauseof external onits from those that miss beause of poor intrinsi loality. These results provide ariher understanding of the appliation than those delivered by tools that simply aggregate memorybehavior into a single miss-rate statisti. These results also suggest e�etive optimizations for eahdata struture and phase of an appliation. In various phases of the exeution of the benhmarks weidentify optimizations, suh as data-struture spei� ahing, stati layout transformations, softwareprefething and streaming, that are likely to be most e�etive. We show that the set of e�etiveoptimizations vary by appliation and program exeution phase.



1 IntrodutionThe memory hierarhy of omputer systems has a substantial, if not dominant, e�et on appliationperformane. It is not surprising then that many researhers are attaking memory lateny at all levelsof omputer systems. Arhitets redue memory lateny and inrease bandwidth by implementingand optimizing hardware ahing algorithms; ompilers improve the e�etiveness of ahes throughoptimizations suh as ahe bloking, seletive ahing, and prefething; and appliation writers oftentune their appliations to the size of the ahes, either by hand or in an automated fashion [21, 5℄.Tools for analyzing ahe behavior inlude ahe simulators, suh as the sim-ahe [3℄ simulator fromthe SimpleSalar tool suite, and hardware performane monitors [2℄. These tools have an arhiteturalpoint of view and do not desribe performane problems in terms that are familiar to the programmer'sor ompiler's view of the program. Several program analysis tools [20, 8, 11, 14℄ ome loser to thisview and apture aggregate data struture, proedure, and/or loop nesting ahe behavior for arrayprograms. They do not, however, examine phase behavior|how data struture behavior varies overthe exeution of the program. These tools also do not analyze dynamially alloated pointer datastrutures, whih are responsible for poor ahe behavior in many programs.This paper introdues DTrak, an automated tool that traks a program's memory behavior interms of individual data strutures aross the exeution of the program. DTrak monitors aessesto the stak, heap and global segment, and ategorizes eah aess to the spei� data struture itbelongs to. Eah aess is traked through the ahe memory hierarhy, and the system providesahe hierarhy statistis, suh as aess ounts, hits, misses, and miss rates, on a per data struturebasis. DTrak also reports the time-varying behavior of these statistis aross the exeution of theprogram. These statistis identify subtle (and not so subtle) program harateristis suh as hot datastrutures, data struture interferene in the ahe hierarhy, and performane bottleneks due to layoutor aess patterns of individual data strutures. These new apabilities provide better insight intoprogram behavior than prior tools that aggregate statistis aross both data strutures and time. Asa result, DTrak identi�es opportunities for hardware and software optimizations at many levels. Thisanalysis will be more important in future arhitetures as memory lateny inreases and partitionedarhitetures beome more ommon. For instane, the use of reently proposed hardware suh aspartitioned ahes and reon�gurable ahes [16, 10℄ alls for the data-struture phase analysis thatDTrak provides.DTrak inludes two main omponents: a ompile-time data struture analyzer and a miroarhite-tural simulator that gathers the runtime statistis for eah data struture. The ompile-time analyzerannotates all dynami memory alloation all sites (e.g., mallo) and generates a map of the addressspae. The simulator reads the map and assigns eah aess, hit, and miss to the orresponding datastruture. The simulator also reports the data in exeution time intervals, thus apturing phase be-havior in the program. To illustrate the apabilities of DTrak, we use it to analyze the behavior offour frequently missing SPEC-2000 benhmarks, eah of whih illustrates di�erent data-struture basedmemory system performane. Our analysis suggests opportunities for optimization inluding: reduinginterferene between two hot data strutures, data struture reorganization to improve loality, datastruture partition sharing for partitioned ahes, and data strutures that should be streamed diretlyinto the proessor, bypassing the ahe hierarhy.The main ontributions of this paper are a new methodology and supporting tools for ombininginformation about program phase and individual data struture behavior, whih yields new insightsfor arhitets, ompiler writers, and appliation writers to use in memory system optimizations.The remainder of this paper is organized as follows. Setion 2 desribes prior memory system anal-ysis tools and details the di�erenes between them and DTrak. Setion 3 desribes the omponents ofDTrak, explains the mehanisms employed to minimize the invasiveness of the annotations, and mea-1



asm ("mop") ;

struct foo bar ;

void main () {

     NAME = "f2" ;
     PTR = f2 ;
     SIZE = sizeof (struct foo) ;

     f2 = malloc (sizeof (struct foo)) ;

}

asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

    addLayout () ;
}

if (inst == mop) {
}

struct foo bar ;

void main () {
     f2 = malloc (struct foo) ;

c−breeze

sim−alpha

cc

Figure 1: DTrak shemati.sures both the invasiveness and the impat on simulation time. Setion 4 demonstrates the apabilitiesof DTrak on the four benhmarks, highlighting the additional insight gained by the per data strutureand time-based statistis. Setion 5 disusses performane tehniques motivated by the results andinsights of Setion 4. Finally, Setion 6 summarizes and suggests further uses of DTrak.2 Related WorkA ommon method of produing aggregate memory statistis is through simulation, of whih we ite afew representative samples [1, 7, 19, 3℄. More sophistiated ahe memory behavior analysis tools havebeen developed [20, 8, 11, 12, 13, 14℄, and this setion ompares DTrak to this prior work. Our workdi�ers from these tools in that we onsider pointer data strutures in addition to arrays, and show thataggregate statistis obsure possible optimization opportunities revealed by phase behavior. Of ourse,the inreased detail omes at a ost of inreased simulation time.Most tools [8, 11, 12℄ have foused on aggregate data struture and proedure-level information forarrays. Lebek et al. [8℄ and Martonosi et al. [11℄ present data struture and proedure level aggregatemiss information, and lassify misses as ompulsory, apaity, and onit. Both papers also presenta number of software optimizations for improving ahe performane. While these tools point users tothe ode and arrays that ause problems, they examine the behavior of an array within the ontext of asingle proedure, resulting in two weaknesses. First, beause they do not perform ross data strutureanalysis, it is not diretly apparent from their aggregate data statistis whih data strutures interferewith themselves or with others. Seond, sine they do not perform ross-proedure analysis, optimiza-tions hosen to improve performane of one array/proedure ombination may diminish performanein another proedure. Finally, both tools handle only regular array-based data strutures rather thanpointer-based data strutures. MKinley and Temam analyze the omplementary dimension of inter-nest and intra-nest loop loality [13, 14℄, but again onsider only arrays and aggregate informationbetween loop nests.The tool losest to ours is the Cahe Visualization Tool [20℄ whih demonstrates the time-varyingbehavior or arrays as they marh through the ahe. The graphial omponent of this tool olors ahelines aording to their loality and misses by data strutures, so the user an see whih ahe linesause onit misses. This level of detail supports analyzing a single loop nest at a time, whereaswe ompute and present data struture phase behavior for muh longer periods. In addition, we alsoanalyze pointer odes whose data is not well strutured.
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3 DTrakThis setion desribes DTrak, our tool for performing detailed analyses of appliations from a memorysystem perspetive. Figure 1 shows a shemati of the tool hain. DTrak onsists of an extension tothe C-Breeze C-to-C translator [6℄, forming the front-end, and an extension to a detailed miroproessorsimulator alled sim-alpha [4℄. We use sim-alpha to assoiate memory system behavior, suh as memoryaesses and ahe misses, with soure-level data strutures, and we use C-Breeze to instrument theappliation soure so that the simulator an map addresses to appliation-level data strutures.3.1 Identifying Data StruturesIdentifying the appropriate mapping from address to data struture is hard in the ase of reursive datastrutures suh as lists and trees. Salar and array data strutures are easily identi�ed at ompile-time beause their alloations are oupled with their delarations. Pointer-based data strutures,however, are alloated dynamially and often in a pieemeal fashion, so a method of relating dynamiallyalloated memory to individual data strutures is neessary. We use a simple heuristi that onsidersall alloations from the same program loation to belong to the same data struture. In general,this approah ould fail to distinguish alloation to di�erent instanes of the same type, e.g. twodistint trees. For the SPEC benhmarks that we onsider in this work, we �nd that the predominantdata strutures do not have multiple instanes, and are usually alloated from a single loation. Inthe rare ase where multiple loations in the program alloate nodes to the same data struture, wemanually oalese nodes alloated at these loations. Other languages and benhmarks may requiremore elaborate heuristis.3.2 Communiating Data Struture Layout to the SimulatorThe goal of the soure-level translator is to ommuniate to the simulator information about theextents of di�erent data strutures in simulated memory. In partiular, the translator instruments theappliation to ompute the name, address, and size of eah data struture and provide them to thesimulator. The simulator maintains this information in a tabular layout by address range. To minimizethe invasiveness of the tool on the underlying appliation in di�erent ontexts, the translator uses twotehniques to ommuniate layout information.� For global variables, the names and addresses of variables are written to a predeided �le. These�le operations, though expensive, are one-time osts during program initialization that are amor-tized aross all global variables.� A more eÆient solution is needed for heap-alloated variables, sine the simulator needs toassoiate a data struture name with eah dynami alloation or dealloation. The translatorinserts instrumentation ode that stores the name (a numerial enoding of the funtion it is foundin), the address of the alloated data, the size of the alloated memory, and the type of memoryoperation (alloation or dealloation). All of this information is stored in a predetermined set ofvariables so that the simulator an extrat it from the appliation's memory during simulation.To redue the impat of these extra variables, we simulate perfet memory for them, and neverfeth them into the simulated ahe.In both ases, when the new additions to the layout are in plae the front-end instruts the simulatorto extrat them by inserting a spei� rarely used opode. When the simulator enounters this opodein the simulated instrution stream, it proesses the instrution and then takes additional measures3



to either read a �le or import variables from the appliation's memory. With these mehanisms, thesimulator is able to add or remove entries from the layout as memory is alloated or freed on theheap, to always maintain an aurate piture of the appliation's data strutures. This knowledge ofthe urrent layout of the program throughout its exeution enables it to ollet statistis on a perdata struture basis. The ode fragment in Figure 1 illustrates the entire proess. Two details meritattention:� Stak variables would be expensive to instrument, sine they are alloated and dealloated onevery hange in sope. We hoose to treat the stak as a monolithi entity. Detet aesses tothe stak requires no instrumentation by the translator, sine it orresponds to a well-delineatedregion in memory. We show in the next setion that ombining stak variables does not redueDTrak's e�etiveness.� All instrumentation is performed by transforming the appliation soure so variables within pre-ompiled libraries need to be handled speially. The basi idea is to assume that eah libraryalloates exatly one data struture. Thus, when the simulator enounters an alloation insideof a library routine, it names the data struture by the name of the library routine. Our systemdoes not trak any global variables delared by library routines. We �nd suh variables to berare.We measure the overhead introdued by DTrak in instrumenting dynami alloations and dealloa-tions, by omparing, for eah of our benhmarks, the instrution ounts exeuted both with and withoutinstrumentation, to reah a spei� point in the soure ode past initialization and inluding one toten iterations of the top-level loop of the benhmark. This omparison shows that our instrumentationinreases the instrution ount of the benhmarks by a maximum of 0.3%.3.3 Full Appliation SimulationAfter the front-end instruments a program's soures, we ompile them in the normal manner using on the alpha platform and simulate the resulting binary on sim-alpha. Details of the proessor andmemory on�guration we simulate are presented in Table 1. The on�guration we simulate is similarto the Alpha 21264 proessor urrently in the market. Previous researh [15℄ has shown that, for aommon program, an out-of-order proessor provides a very di�erent sequene of memory aesses toits ahes, when ompared to an in-order proessor. We hoose to performed detailed out-of-ordersimulation, so as to more aurately model the behavior of our benhmarks on ontemporary omputersystems. We modify the simulator to orretly proess the instrumentation provided by the front-end,and to orretly lassify all memory aesses based on them. Classifying all loads and stores in thismanner and keeping trak of statistis on a data struture basis slows down the simulation by anaverage of 60%.In order to apture the important phase behavior in our benhmarks, we simulate them for 40billion instrutions eah from the start. This large simulation e�ort is required to obtain aurateand omprehensive results on the phase behavior of these programs. Sherwood et al. [18, 17℄ reentlydeveloped a tool alled SimPoint that breaks up a program's exeution into slies, lusters exeutionslies on the basis of a ode similarity metri, and predits the slie in eah luster that is mostrepresentative with respet to the miss-rates and IPC (instrutions per lok yle). Simulating asmall number of thin slies of the whole program and weighting them appropriately provides resultswith very low error. While this methodology has been validated with respet to aggregate statistis, itis not lear how muh error it introdues when studying phase behavior. We hoose, for this reason,to simulate large parts of the exeution of all our benhmarks. To ensure that the �rst 40 billion4



Feature Size/ValueOut-of-order ProessorFeth width 4Deode width 4Issue width 4Int ALUs 4Int multipliers 4FP ALUs 1FP multipliers 1Branh preditor Tournament, 1 KB x 1 KB loal,4 KB global, 4 KB hoieMemory HierarhyLevel 1 Data Cahe (DL1) 64 KB, bloksize 64 bytes, 2-wayDL1 lateny 3 ylesLevel 1 Instrution Cahe (IL1) 64 KB, bloksize 64 bytes, 2-wayIL1 lateny 1 yleUni�ed Level 2 Cahe (L2) 512 KB, bloksize 64 bytes, diret-mappedL2 lateny 12 ylesTranslation Look-aside Bu�ers (TLBs) 128 entriesLateny to DRAM 62 ylesTable 1: Details of the simulated proessor and memory hierarhy.instrutions provide representative results, we ran all the benhmarks to ompletion in an earlierexperiment. Comparing those results with those of SimPoint, we �nd that while SimPoint preditsaggregate miss-rates with 0.0% error for three of the four benhmarks, it shows signi�ant error in themean miss-rate within a luster, with an average of 11%, and as high as 47.7% for some lusters in ourbenhmarks.To simulate large intervals of many billions of instrutions, we partition eah simulation into multipleruns and simulate them in parallel on a luster of Linux workstations managed by Condor [9℄. Eahof these runs performs funtional simulation (fast-forwards) to a spei� point and then simulates abillion instrutions. Di�erent runs fast-forward di�erent distanes. The results from these staggeredruns are post-proessed o�ine to provide results for the entire simulation.Our parallel approah introdues errors due to the old ahes that appear every billion instrutions.Sine eah billion-instrution sample �nds at least 10 million misses in the DL1 and 1 million missesin the L2, the error due to extra ompulsory misses is a maximum of 512 misses in the DL1 and 8192misses in the L2 in every billion instrutions, whih is an aeptable level of error.4 ResultsIn this setion, we use DTrak to examine the memory hierarhy behavior of four SPEC-2000 benh-marks, highlighting the types of insight gained �rst by the aggregate per data struture analysis andthen by temporal analyses of phase behavior. We then use these insights to suggest and explore statiand dynami methods of improving performane in Setion 5. We expet that the same analysiswill be useful beyond our example benhmarks, and ould, in fat, suggest additional performaneoptimizations tailored to eah partiular appliation.5



DL1 L2Benhmark Aesses Misses Miss-rate Misses Miss-rate IPCammp 14.9G 1.7G 11.1% 0.6G 36.7% 0.82art 20.3G 7.1G 34.9% 4.6G 64.2% 0.54equake 19.3G 2.9G 14.1% 0.8G 29.4% 0.58mf 18.9G 8.8G 46.4% 4.0G 44.4% 0.22Table 2: Aggregate memory hierarhy behavior.4.1 Aggregate Data Struture AnalysisTable 2 summarizes the aggregate behavior of four example benhmarks taken from the SPEC-2000suite. Eah benhmark was run for 40 billion instrutions. The high DL1 and L2 miss rates indiate thatthese appliations are memory intensive. Figure 2 shows the aggregate per data struture behavior ofthese benhmarks produed by DTrak. The �ve most important dynamially alloated data strutures(ordered by miss ount) are shown for eah benhmark, along with the bars for stak aesses and allremaining aesses (\Others").In the level-1 data ahe (DL1) more than 60% of the misses result from referenes to a single datastruture, while three of the benhmarks show a signi�ant seond data struture (middle row). Thedata strutures that have the most misses have signi�ant aess ounts (top row). In art, 10% of allDL1 aesses are data strutures that almost always miss. More than half of the ritial data strutureshave higher-than-aggregate DL1 miss-rates, often signi�antly higher.To examine eah appliation in further detail, we used the results of DTrak as a guide to the soureode. Table 3 summarizes the top data strutures from Figure 2, showing the total size of the struture,the size of eah element, and the way in whih the struture is aessed (type). Note that 2-D arraysthat are implemented as arrays of arrays are shown as separate data strutures. For example, bu is anarray of pointers, eah of whih point to data arrays that are represented by bu[℄. The type indiatesthe whether the data struture is aessed in a regular fashion (array), or sometimes in a regular andother times in an irregular fashion. In the paragraphs that follow, we desribe further details of theappliations and their most signi�ant data strutures.ammp models the moleular dynamis of a protein in water. It traks the motion of a set ofapproximately 10,000 atoms from an initial on�guration by repeatedly solving a system of di�erentialequations for eah atom. The set of atoms to be modeled is maintained as a linked list that is repeatedlytraversed as fores and veloities are omputed. To model interations, eah atom maintains an arrayof 200 neighboring atoms. This array of neighboring atoms must be periodially reomputed for eahatom, as it moves through the spae. In addition to the list of atoms, the program maintains severalauxiliary lists that ontain information about bonds between atoms, angle omputations, torsionalfores and tetrahedral strutures. The length of eah of these lists is roughly proportional to thenumber of atoms. The interloking nature of these di�erent data strutures makes it diÆult tostatially determine the ritial ones.Using DTrak, we determine that the list of atoms (atoms) auses the most misses, more than fourtimes that of any other data struture. The large size of the data struture (80 MB) and the ommonpattern of traversing it from end to end ontributes to its poor ahe behavior, ausing a large numberof apaity misses. Surprisingly, the auxiliary lists of physial relationships between atoms, suh asangles and torsion, reate few misses in the memory hierarhy. Instead, almost 24% of all missesare aused by 4 temporary arrays whih are repeatedly re-alloated during during program exeutionand used in only one of the 150 funtions in the all-graph of ammp. Determining that these data6
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Figure 2: Deomposition of DL1 and L2 behavior by data struture, showing aesses, misses, and missrate. The horizontal bars on the bottom graphs indiate the total aggregate miss rate on all of thedata strutures.
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Data Struture Type Aess Pattern Size Element size(KB) (bytes)Benhmark: ammp#1: atoms Pointer Both 41322 2208#2: nodelist Array Regular 76 232#3: atomlist Array Regular 4342 232#4: vetor Array Regular 599 8#5: atomall Array Regular 150 8Benhmark: art#1: f1 layer Array Regular 625 64#2: bu[℄ Array Regular 859 8#3: bu Array Regular 78 8#4: td[℄ Array Regular 859 8#5: f1 layer[℄:I Array Regular 156 8Benhmark: equake#1: K Array Regular 22399 8#2: disp Array Regular 2828 8#3: V23 Array Regular 943 8#4: C23 Array Regular 943 8#5: M23 Array Regular 943 8Benhmark: mf#1: nodes Array Both 7071 120#2: ars Array Irregular 188416 64#3: dummy ars Array Irregular 3771 120#4: basket Array Regular 3.13 8#5: perm Array Regular 3.13 8Table 3: The most ritial data strutures by miss ount.strutures are more ritial than the persistent auxiliary arrays of similar length would be diÆultwithout DTrak, whih highlights them in an automated manner.art performs image reognition using an unsupervised neural network lassi�er. This benhmarkonsists of regular loops traversing large 2-dimensional arrays. The major data strutures, shown inFigure 2, are the array of neurons (f1 layer) and the arrays of bottom-up and top-down weights, buand td. These two-dimensional arrays are organized as arrays of arrays, and fewer misses are due tothe array of row pointers than from the subsidiary arrays holding the data. Further examination ofthe data strutures pro�led by DTrak shows that eah iteration of the inner loop of art aesses 1-2spei� �elds in the array of neurons.This pattern suggests �eld-splitting - breaking up the array of neuron data strutures into smallerarrays, eah ontaining �elds of the neuron. This optimization will eliminate fething of unused neuron�elds.equake simulates the propagation of seismi waves in large valleys, determining the history of groundmotion during an earthquake. It uses a �nite-element omputation on an unstrutured grid topology,whih involves regular traversal of large 2-D and 3-D arrays with aess patterns similar to art. DTrakshows that the most ommonly missing data strutures are portions of two large 3-D arrays, K anddisp. The innermost loop repeatedly multiplies the matries in K with the orresponding vetors of a8



matrix in disp. K is never written after initialization, while disp is frequently modi�ed. The remaining3 top data strutures are part of a group of 5 data strutures that are aessed in interleaved fashionto update an element in disp. K displays a miss rate of 37%, far exeeding the aggregate miss rate of14.1%, while C23, M23 and V23 have miss rates exeeding 28%.mf implements the network simplex algorithm to minimize the number of vessels required in a eetto traverse a graph of destinations with �xed arrival/departure shedules and preplanned routes. Thepriniple data strutures are the nodes and ars shown in Figure 2, whih olletively represent thegraph of destinations. Eah node ontains a linked list of pointers to inoming and outgoing ars, andeah ar ontains pointers to the nodes it onnets. Eah node also ontains pointers to its parent andlinked lists of hildren and siblings. In ertain phases of the program nodes are aessed in regularorder, orresponding to a depth-�rst searh of a subtree of the graph, while in others node aess isirregular as the nodes are aessed in the sequene of the ars that they are onneted to. The arrayof ars is aessed in sequential order. Some loops insert a new ar at the beginning of the ar array,whih triggers aesses that employ reursive doubling of the array indies (2 � n or 2 � n + 1) untilan empty ar position is found. Other loops traverse the ars and selet a subset, plaing them into atemporary bu�er where they are sorted using a quiksort algorithm. The unstrutured aess patternsto nodes (850KB) and ars (12MB) results in DL1 miss rates for eah that exeed the aggregate missrate.4.2 Temporal AnalysisWe now examine the behavior of the data strutures over the exeution time of the appliations.DTrak exposes phase behavior on a data struture basis and shows orrelation between di�erent datastrutures within the phases.ammp: As shown in the previous setion, the ahe misses in ammp are aused primarily by its linkedlist of atoms, and to a lesser extent by various temporary arrays based on this list and the 3-D gridthat models the spae around the atoms. Figure 3 plots the number of DL1 misses per 0.5 billion ylesfor eah of these data strutures. The graph shows 110 time steps simulated by the outermost loop.The number of misses to the linked list of atoms and to the arrays based on it peaks approximatelyevery 4 billion yles. These 4 billion yle periods orrespond exatly with 10-12 iterations of theoutermost loop. However, the time spent by the iterations within eah period is not uniform. Whilemost of the iterations take omparitively less time to exeute, one iteration in every 10-12 exeutes afuntion alled mm fv update nonbon, whih updates the neighbors for eah atom. Over 80% of thetime in eah period is spent within this funtion. This funtion is solely responsible for the misses to4 of the 5 ritial data strutures in ammp, and the traversals in the neighbor pointers in the �fthand most important data struture. Thus, DTrak is able to highlight in an automated fashion thatoptimization e�orts should be foussed on the traversal of the neighbor array.Figure 4 shows a magni�ed setion of Figure 3 to demonstrate how a temporal analysis without datastruture deomposition an miss important aspets of the program memory behavior. During a singlephase, the miss ounts for both nodelist and vetor data strutures initially rise, but the miss ountfor vetor soon falls in the latter part of the phase. Tools that simply measure the phase behaviorin aggregate miss ount without separating the di�erent data strutures would observe a muh atterurve, and not expose the more dramati shift in the fration of misses ontributed by eah.mf: The exeution of mf is omposed of alternating phases that perform an iteration of the simplexalgorithm followed by insertion of new ars into the graph. Figure 5 shows the DL1 miss ount per0.5 billion yles for the top �ve data strutures aross the exeution of the entire program on the9
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Figure 3: Misses by data struture per 0.5 billion yles inammp.
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Figure 4: Magni�ed view of Figure 3.
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Figure 5: Misses by data struture per 0.5 billion yles inmf.
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Figure 6: Miss-rates of the node and ar arrays in mf.
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referene input set. Misses to nodes and ars tend to trak one another exept for spikes in the arsurve. These peaks in misses to the ar array orrespond to the start of the simplex phase in whih asubset of the ars are seleted and sorted. The end of the simplex phase orresponds with the dramatiinrease in misses to nodes. These misses orrespond to the ar insertion phase in whih the ar arrayis traversed sequentially with a stride of three. This phase periodially inserts new ars into the array,ausing some irregular aess to the array and the seondary spikes in the miss ount for ars. Inonjuntion with the mostly regular aesses to ars is the near random aesses to the nodes thatthe ars onnet. Figure 6 shows the orresponding miss rate for eah sample point. The spikes in themiss rate for nodes our at the same time as the spikes in the miss ount.art and equake: As shown in Figures 7 and 8, these two benhmarks show similar behavior hara-terized by only a single transition in memory system behavior, rather than the repeated phases in ammpand mf. Note, however, that the transition ours at between 15 and 30 billion yles, points well be-yond the simulation intervals traditionally piked by most researhers, prior to the reent developmentof SimPoint [18℄.5 Memory Optimization OpportunitiesBy olleting statistis of the memory hierarhy behavior aross the axes of data strutures and time,DTrak exposes opportunities in the hardware and software to improve performane, whih would oth-erwise be less obvious or invisible. The aggregate statistis on a data-struture basis alone immediatelydisplays the data strutures whih have the poorest ahing harateristis. As shown in Table 3, theseare not always the largest data strutures. This data quikly fouses the attention of the appliationprogrammer on the major bottleneks in performane, and shows arhitets and ompiler writers theareas that would most bene�t from new ahing strategies. The further detail provided by the time-based statistis exposes the struture and phases of the appliation, and indiates how a given datastruture is aessed in di�erent ways and frequenies over time. These observations inspire applia-tion, ompile-time, and runtime optimizations that ould exploit the time-varying aess patterns tothe ritial data strutures. The remainder of this setion desribes spei� optimization opportunitiesexposed by DTrak.Data struture reorganization: As shown in Figure 2, the bottom-up weight matrix bu in artaounts for a large number of misses and a partiularly high miss rate in both the DL1 and L2 ahes.Based on these statistis, we examined the referenes in the soure ode and disovered that this matrixis organized in row-major order, but aessed in olumn-major order. Sine the rows are too large to�t in the ahe, aesses to this matrix have neither spatial nor temporal loality. By transposingthe matrix, we redued its miss rate in the DL1 ahe from 100% to 12.5% and improved overall IPCby 34% from 0.47 to 0.63. Not surprisingly, the miss rate shows that one in eight ontiguous 8-byteaesses auses a miss in the DL1 with with 64-byte bloks.Avoiding ahing onits: Figure 2 shows that Equake's seond data struture disp is referenedmore frequently than K, yet inurs fewer misses, indiating the possibility of ross-data struture on-its. This suggests that a tehnique to partition the ahe between the data strutures would beuseful. A more omprehensive way to detet suh onit is under development.Seleting data struture aess method: The aggregate data of Figure 2 shows extremely highmiss rates in the DL1 and L2 ahes (approahing 100%) for two data strutures in art. Suh poor12
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Figure 7: Misses by data struture per 0.5 billion yles inart.
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Figure 8: Misses by data struture per 0.5 billion yles inequake.
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ahe behavior indiates that little spatial or temporal loality may exist and that aesses to these datastrutures would be better served by bypassing the ahe entirely and avoiding pollution of the ahefor the data strutures that exhibit better loality. The temporal analysis shows that this behavior alsomanifests itself within a single data struture aross the phases of a program. For example, Figure 5shows that the nodes data struture goes through periods of high and low miss ounts and rates. Basedon this observation, we disovered that nodes is aessed in two di�erent ways within the program.During periods of low misses, nodes is traversed as a list with good spatial loality. During periodsof high misses, nodes is referened indiretly from a traversal of ars. The aesses to nodes duringthis phase is essentially random an results in poor loality. These results suggest that the referenes tonodes ould be ahed during one phase, and unahed in the other. Other aess optimizations suhas streaming and prefething an be seleted on a data struture basis or aross phases within a datastruture based on the results taken from DTrak.Cahe reon�guration: Arhitetures that propose reon�guration of ahe organization and poli-ies are now starting to emerge [16, 10℄. The �rst steps will likely build reon�guration into existingstrutures, suh as ahe partitioning based on set-assoiativity or adjusting e�etive ahe line size bymodifying the feth poliy. Future reon�gurations may inlude data struture spei� ahing. Withits time and data struture statistis, DTrak an help determine when (between programs, betweenphases) and how to reon�gure. For example, programs suh as mf have di�erent data strutures thatdominate the ahe during di�erent phases, while art and equake are very regular in the behavior. Forthose programs that have distint phases, DTrak's identi�ation of the per data struture behavioraross phases enables exploration of the spae of possible on�gurations and examination the bene�tsand drawbaks of dynami reon�guration.6 ConlusionsMemory lateny ontinues to determine the performane of many appliations. Previous memoryanalysis tools detet troublesome array data strutures based on aggregate misses. Our work ombinesthis aggregate memory behavior with phase behavior analysis, and onsiders dynami pointer datastrutures in addition to arrays. We use four programs to illustrate the utility of our methodology.Our phase analysis reveals how data struture misses vary over time and how data strutures interatin the ahe. This detailed information points to a number of appliation, ompiler, and arhiteturaloptimizations that are not apparent from aggregate data.Future extensions to DTrak will inlude miss types lassi�ation (onit, apaity) on a datastruture and phase basis. We will also enhane it to detet spatial and temporal loality in the datastruture referene streams. Finally, we will use the results of these analyses to drive and evaluate theperformane optimizations for both the ompiler and arhiteture.Referenes[1℄ S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and R. Gupta. Preditability ofload/store instrution latenies. In Proeedings of the 28th International Symposium on Miroar-hiteture, pages 139{152, Austin, TX, De. 1993.[2℄ J. M. Anderson, L. M. Ber, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, R. L. Sites,M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous pro�ling: Where have all14
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