Using Hyper/J to implement Product-Lines: A Case Study

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences
The University of Texas
Austin, Texas 78712
{rlopez,batory } @cs.utexas.edu

Abstract. Aspect-Oriented Programming (AOP) is an emerging technology
whose goal is to modularize concerns that may involve several classes. The pur-
pose of this report is to describe how one of the main representatives of AOP,
namely Hyper/J, was used to implement a simple yet illustrative product-line of
graph algorithms.

1 The Graph Product Line (GPL)

The Graph Product-Line (GPL) [5] is a family of classical graph applications that was
inspired by work on software extensibility [4, 8]. GPL is typical of product-lines in
that applications are distinguished by the set of features that they implement, where no

two applications implement the same set.! Also typical is that applications are mod-

eled as sentences of a grammar. Figure 1a® shows this grammar, where tokens are
names of features. Figure 1b shows a GUI that implements this grammar and allows
GPL products to be specified declaratively as a series of radio-button and check-box
selections.

The semantics of GPL features, and the domain itself, are straightforward. A graph is
either Directed or Undirected. Edges can be Weighted with non-negative num-
bers or Unweighted. Every graph application requires at most one search algorithm:
breadth-first search (BFs) or depth-first search (DFs); and one or more of the following
algorithms [2]:

® Vertex Numbering (Number): Assigns a unique number to each vertex as a
result of a graph traversal.

®* Connected Components (Connected): Computes the connected components
of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in an equivalence class, there is a path
from x to y.

e Strongly Connected Components (StronglyConnected): Computes the
strongly connected components of a directed graph, which are equivalence classes
under the reachable-from relation. A vertex y is reachable form vertex x if there is
a path from x to y.

1. A feature is a functionality or implementation characteristic that is important to clients [3].
2. The grammar does not preclude the repetition of algorithms, whereas the GUI does.

GPL := Gtp Wgt Src Alg+;
Gtp := Directed | Undirected;
Wgt := Weighted | Unweighted;
Src := DFS | BFS | None;

Alg := Number | Connected | StronglyConnected
| Cycle | MST Prim | MST Kruskal | Shortest;

Graph Type Weight Search Algorithms
(b) @ Directed m Weighted = DFS [+ Humher

1 Undirected ' Unweighted ' BFS] Connected Comp.
1 None [+] Stronghs Con. Comp.
[¥] Cycle Checking
] MST Prim
[MST Kruskal
[v] Single Shortest Path

Figure 1. GPL Grammar and Specification GUI

® Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must have
at least 3 edges.

* Minimum Spanning Tree (MST Prim,MST Kruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal.

* Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

A fundamental characteristic of product-lines is that not all features are compatible.
That is, the selection of one feature may disable (or enable) the selection of others.
GPL is no exception. The set of constraints that govern GPL features are summarized
in Table 1.

A GPL application implements a valid combination of features. As examples, one GPL
application implements vertex numbering and connected components using depth-first
search on an undirected graph. Another implements minimum spanning trees on
weighted, undirected graphs. Thus, from a client’s viewpoint, to specify a particular
graph application with the desired set of features is straightforward. And so too is the
implementation of the GUI (Figure 1b) and constraints of Table 1.

Required Required Required
Algorithm Graph Type | Weight Search

Vertex Numbering Directed, Weighted, BES, DES
Undirected Unweighted

Connected Components Undirected Weighted, BFS, DES
Unweighted

Strongly Connected Components Directed Weighted, DFS
Unweighted

Cycle Checking Directed, Weighted, DES

Undirected Unweighted
Minimum Spanning Tree Undirected Weighted None
Single-Source Shortest Path Directed Weighted None

Table 1. Feature Constraints

2 Graph Representation

While deciding how to represent our graphs, we recognized that there are a standard
set of “conceptual” objects that are referenced by all graph algorithms: Graphs, Verti-
ces, Edges, and Neighbors (i.e., adjacencies). Algorithms in graph textbooks define
fundamental extensions of graphs, and these extensions modify Graph objects, Vertex
objects, Edge objects, and Neighbor objects. Thus, the simplest way to express such
extensions is to reify all of these “conceptual” objects as physical objects and give
them their own distinct classes.

Therefore we represent a graph with these four classes:
® Graph: contains a list of Vertex objects, and a list of Edge objects.
® Vertex: contains a list of Neighbor objects.

®* Neighbor: contains a reference to a neighbor Vertex object (the vertex in the
other end of the edge), and a reference to the corresponding Edge object.

® Edge: extends the Neighbor class and contains the start Vertex of an Edge.

Edge annotations are performed by adding extra fields to the Edge class. This repre-
sentation is illustrated in Figure 2. For example, Edge E1 connects vertex V1 to V2
with weight of 7.
Graph Object
9 E Vertices List Edges List
|

7\ 11 List of Neighbors
e Vertex V1 g (v3)

V3

Graph Example Neighbor . .

Object

Edge E1 Edge E2 Edge E3
@®) @w- (@)

Figure 2. Edge and Neighbor List Representation Example

3 Hyper/J Implementation

We implemented GPL with the purpose of exploring how Hyper/J can be used to
implement product-lines and to compare and contrast this implementation with the one
that relies on mixin-layers with the ultimate goal of identifying the relationship
between the two approaches.

Creating a Hyper/J application is a 3 step process [6, 7]:

* Define the hyperspace: consists of all the methods, classes, packages, etc.
involved in the application.

¢ Define the concern mapping: break the hyperspace into pieces called hyperslices,
and separate them as concern points along multiple dimensions.

¢ Define the hypermodule: specify how the hyperslices of the hyperspace are com-
posed together.

Following this process, first each of the features from Figure 1a was implemented in a
Java package that then was included in a hyperspace definition. For example, for the
Number feature the package is named GPL . Number and it is included in the hyper-
space with the following statement:

composable class GPL.Number.*; 3

Second, each of these packages was made to correspond to a hyperslice and each of
them implements a different concern along the Feature dimension. Table 2 shows the
names of the hyperslices and the concern they implement. For example, the following

3. This goes in the hyperspace definition file used for the composition.

package GPL.Number

Feature.Number”

mapping means that the package GPL.Number implements the Number concern in
the Feature dimension.

Directed directed graph J Cycle cycle checking
Undirected undirected MSTPrim MST Prim
graph algorithm
Weighted weighted MSTKruskal MST Kruskal
graph algorithm
DFS depth-first Shortest single source
search shortest path
BFS breadth-first Transpose graph
search transposition
Number vertex Benchmark benchmark
numbering program
Connected connected Prog main program
components
StronglyConnected strongly
connected
components

Table 2. Hyper/J hyperslices of GPL

Third, applications were defined for GPL (see Appendix).

Three hyperslices do not appear in Figure la: Transpose, Benchmark, and Prog.
Transpose performs graph transposition and is used (only) by the StronglyCon-
nected algorithm. It made sense to separate the StronglyConnected algorithm
from Transpose, as they dealt with separate concerns. (This means that an implemen-
tation constraint in using the StronglyConnected aspect is that the Transpose
aspect must also be included, and vice versa). Benchmark contains functions to read a
graph from a file and elementary timing functions for profiling. Prog contains the
main method. It creates the objects required to represent a graph whose elements are
read from a file, and starts the execution of the algorithms.

A graph is implemented with the four classes mentioned above: Graph, Vertex, Neigh-
bor, and Edge. Each hyperslice cross-cuts some of these classes, depending on the

4. This goes in the concern mapping file used for the composition.

functionality they implement. For example all the algorithmic hyperslices cross-cut the
Graph class by adding the run method that executes the algorithm implemented by that
particular hyperslice. This is illustrated in Figure 3 for the Number hyperslice.

package GPL.Number;
public class Graph {

// Executes Number Vertices

public void run(Vertex s) {
NumberVertices () ;

}

public void NumberVertices () {
GraphSearch (new NumberWorkSpace());

}

// STUB comes from a search feature
public void GraphSearch(WorkSpace w) { }

Figure 3. Run method in Number hyperslice

By definition, a hyperslice has to be declaratively complete [6], that is, it must declare
everything to which it refers. This requirement creates in GPL a stub proliferation
problem. Recall, from Table 1, that the Number feature requires a search method,
named GraphSearch which is implemented by either of two search hyperslices, BFS

and DFS’. Notice in Figure 3 that in order to satisfy the declarative completeness prop-
erty, a stub for GraphSearch was added. This problem is aggravated in GPL by the fact
that a hyperslice usually refers to units from several other hyperslices, and also
because some of the stubs that need to be added are variable or data members. The use
of interfaces or abstract classes in GPL cannot alleviate this problem for the following
reasons:

¢ Identifying and defining an interface takes at least the same effort as to write the
stubs.

e Some stubs are variables or data members and therefore cannot be defined in
interfaces.

¢ Some hyperslices create new objects. If these objects are instances of a class used
for declarative completeness obviously such class cannot be abstract.

An application member of this product-line is defined by a hypermodule[6,7]. Special
care should be taken in the order in which the hyperslices are composed. As an exam-
ple, consider a family member whose hypermodule definition contains the Strongly-

5. Both search algorithms work on WorkSpace objects. NumberWorkSpace extends this class
and customizes the search for the vertex numbering algorithm.

Connected hyperslice that requires the Transpose hyperslice (see Table 1), which
implements the ComputeTranspose method. To satisfy the declarative complete-
ness property, the StronglyConnected hyperslice declares a stub for this method that
returns a null pointer, as illustrated in Figure 4. For the composition to run correctly
Transpose hyperslice has to appear after StronglyConnected in the hypermodule defi-
nition so that the value assigned in the St rongComponents method is that com-
puted in the Transpose hyperslice. If the Transpose hyperslice appears before the
StronglyConnected one, the value assigned in St rongComponents method will be
a null pointer (coming from StronglyConnected itself), that later on the execution of
the program will cause a null pointer exception.

package GPL.StronglyConnected;
public class Graph {

// STUB comes from Transpose hyperslice
public Graph ComputeTranspose (Graph the_graph) {
return null;

}

// Executes Strongly Connected Components
public void run(Vertex s) {
Graph gaux = StrongComponents () ;

}
public Graph StrongComponents () {

// Compute the transpose of G
Graph gaux = ComputeTranspose ((Graph)this);

Figure 4. StronglyConnected hyperslice

The hyperslices were composed with the default relationship mergeByName, with the
exception of the method addAnEdge of the Weighted hyperspace which creates Edge
objects with weights that overrides the behavior of that method in the Directed or
Undirected hyperslices where weightless Edges are created. The reason for this excep-
tion is that: Prog hyperslice calls the method addAnEdge for each Edge object that
needs to be added to the graph, if no overrides relationship is used each Edge will be
effectively added to the graph twice, once in the Weighted hyperslice and once in the
Directed or Undirected hyperslices. See ExampleB and ExampleC in the Appendix for
a detailed example.

4 Findings

In product-line designs it is the case that not all syntactically valid composition of fea-
tures are semantically valid. For example, consider the case where the Hyper/J pro-
grammer overlooked the constraint that the Cycle hyperslice requires the DFS
hyperslice (see Table 1), and instead wrote down BFS in the composition files. Hyper/
J would compose the hypermodule without any trouble, since both search hyperslices
define and use the same data members and methods. However, evidently, the outcome
of the execution of the algorithm will be incorrect.

The legal compositions of features in Table 1 are defined by simple constraints called
design rules [1]. In Hyper/J there is no support for design rules, that is, the program-
mer has to manually select all the files necessary to create a new member and include
them in the correct order in the hypermodule, this activity is complex and error prone
even for small product-lines like GPL.

Declarative completeness of the hyperslices introduces the stub problem that is perva-
sive in GPL, most of the hyperslices present the problem, and sometimes it is not easy
to deal with. Identifying the units that are missing and what hyperslices they come
from is necessary for introducing their corresponding stubs manually (copy and paste)
in the hyperslices that require them, which is a laborious task that definitely calls for
an adequate tool support.

5 Appendix

The jar file associated to this report contains the entire source code of GPL and three
examples located in the Examples directory. Those are:

¢ ExampleA: Prog, Benchmark, Cycle, Number, DFS, Undirected.

« ExampleB: Prog, Benchmark, MSTKruskal, MSTPrim, Cycle, Number, Con-
nected, DFS, Weighted, Undirected.

« ExampleC: Prog, Benchmark, Shortest, Transpose, Cycle, Number, StronglyCon-
nected, DFS, Weighted, Directed.

Each example has its own concern mapping, hyperspace definition, and hypermodule.
For example for ExampleA those files are named GLPA.cm, GPLA.hs, and GPLA.hm
respectively. The hypermodule and hyperspace definition of ExampleA are shown in n
Table 3.

To compose the programs use the normal Hyper/J way. To run an application type:
java GPL.Prog.Main ..\BENCH\MSTExample.bench v0
The first argument is the bench file that you want to use as input for your application,

so you have to provide the corresponding path to reach it. The second argument is the
starting vertex that some algorithms require to begin the execution from.

Hypermodule Hyperspace definition

hypermodule GPLExampleA hyperspace GPLHyperspace

hyperslices: composable class GPL.Undirected.*;
Feature.Prog, composable class GPL.DFS.*;
Feature.Benchmark, composable class GPL.Number.*;
Feature.Number, composable class GPL.Cycle.*;
Feature.Cycle, composable class GPL.Benchmark.*;
Feature.DFS, composable class GPL.Prog.*;

Feature.Undirected;

relationships:
mergeByName;

Table 3. Hypermodule and Hyperspace Example

As output the application displays the final values of the fields of all the Vertex and
Edge objects in the graph, along with the time it took to execute the entire application.

6 References

(1]

(2]

(3]

(4]

(5]

(6]

(71

8]

D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering, February 1997.

T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press,
1990.

M. Griss, “Implementing Product-Line Features by Composing Component Aspects”,
First International Software Product-Line Conference, Denver, Colorado., August 2000.

I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.

R. E. Lopez-Herrejon, D. Batory. “A Standard Problem for Evaluating Product-Line
Methodologies”. Third International Conference on Generative and Component-Based
Software Engineering (GCSE), September 2001, Erfurt, Germany.

Harold Ossher and Peri Tarr, “Multi-dimensional separation of concerns and the
Hyperspace approach.” In Software Architectures and Component Technology (M. Aksit,
ed.), 293-323, Kluwer, 2002.

P Tarr, H. Ossher. “Hyper/J User and Installation Manual”. IBM Corporation, 2001. http:/
/www.research.ibm.com/hyperspace.

M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,
JSSST International Symposium on Object Technologies for Advanced Software,
Springer-Verlag, 1996, 22-37.

