
CopyrightbyNeeraj Mittal2002

The Dissertation Committee for Neeraj MittalCerti�es that this is the approved version of the following dissertation:Tehniques for Analyzing Distributed Computations
Committee:Vijay K. Garg, SupervisorAnish AroraCraig M. ChaseMohamed G. GoudaAloysius K. MokHarrik Vin

Tehniques for Analyzing Distributed ComputationsbyNeeraj Mittal, B.Teh., M.S.DissertationPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDotor of PhilosophyThe University of Texas at AustinMay 2002

To my parents

AknowledgmentsI onsider myself to have been an extremely fortunate Ph.D. student in having VijayK. Garg as my Ph.D. supervisor. It is impossible to fully express the many ways inwhih he has helped to make my Ph.D. experiene a ful�lling and enjoyable phase ofmy life. He has been a onstant soure of inspiration, enouragement, and guidanein my researh work and, thanks to him, I have been able to freely explore new ideasand work on what is fun. Moreover, he has been a friend, enouraging me in mynon-Ph.D. related endeavours as well.This dissertation has been shaped by disussions that I have had at varioustimes with fellow students. I am indebted to Om Damani and Ashis Tarafdar fordisussions early in my Ph.D., whih inspired me to follow up on my early ideas.Alper Sen has helped me at various times by reviewing my papers and providingme with valuable ritiism that has greatly improved my work. My ommitteemembers, Mohamed G. Gouda, Anish Arora, Aloysius K. Mok, Craig M. Chase,and Harrik Vin, have also helped to shape my Ph.D. into its urrent form throughtheir valuable omments and ritiisms. Their varied expertise has provided mewith di�erent perspetives from whih to re-evaluate my work.I am grateful to my friends in Austin for making my Ph.D. a very enjoyableexperiene. Fun evenings, weekend trekking trips, late-night disussions, intenseworkouts are but some of the memorable experienes that I have variously sharedwith Subramanyam Gooty, Santanu Sinha, Vipin Gupta, Gokul Rajaram, Ravi P.ix

Bulusu, Praveen K. Jaini, Parminder S. Chhabra, Vineet Kahlon, and SubramanianIyer. The biggest redit goes to my family for their love and support. My parents,Suresh C. Mittal and Shakuntla Mittal, have kept me going by their never-endingon�dene in me. My sisters, Amita Gupta, Vanita Gupta, and Neelima Kumar,have helped me with pratial advie at various stages. Without my family, thisdissertation would never have been written. Neeraj MittalThe University of Texas at AustinMay 2002

x

Tehniques for Analyzing Distributed ComputationsPubliation No.Neeraj Mittal, Ph.D.The University of Texas at Austin, 2002Supervisor: Vijay K. GargInherent non-determinism in distributed programs and presene of multiple threadsof ontrol makes it diÆult to write orret distributed software. Not surprisingly,distributed systems are partiularly vulnerable to software faults. To build adistributed system apable of tolerating software faults, two important problemsneed to be addressed: fault detetion and fault reovery.The fault detetion problem requires �nding a (onsistent) global state of theomputation that satis�es ertain prediate (e.g., violation of mutual exlusion). Toprevent a fault from ausing any serious damage suh as orrupting stable storage, itis essential that it be deteted in a timely manner. However, we prove that detetinga prediate in 2-CNF, even when no two lauses ontain variables from the sameproess, is an NP-omplete problem. We develop a tehnique, based on omputationsliing, to redue the size of the omputation and thus the number of global statesto be examined for deteting a prediate. Sliing an be used to throw away theextraneous global states of the omputation in an eÆient manner, and fous ononly those that are urrently relevant for our purpose. To detet a fault, therefore,rather than searhing the state-spae of the omputation, it is muh more eÆientxi

to searh the state-spae of the slie. We identify several useful lasses of prediatesfor whih the slie an be omputed eÆiently. Our experimental results indiatethat sliing an lead to an exponential redution over existing tehniques both interms of time as well as spae for fault detetion.To reover from faults, we onsider rollbak reovery approah, whih involvesrestoring the system to a previous state and then re-exeuting. We fous on rollbakreovery using ontrolled re-exeution, whih is useful and e�etive for toleratingsynhronization faults. Unlike other approahes whih depend on hane and do notensure that the re-exeution is fault-free, the ontrolled re-exeution method avoidssynhronization faults during re-exeution in a deterministi fashion. Spei�ally, itseletively adds synhronization dependenies during re-exeution to ensure that thepreviously deteted synhronization faults do not our again. We provide eÆientalgorithms to solve the problem for two important lasses of synhronization faults.

xii

ContentsAknowledgments ixAbstrat xiChapter 1 Introdution 11.1 Deteting Global Prediates . 61.2 Controlling Global Prediates . 81.3 Sliing Distributed Computations . 101.4 Overview of the Dissertation . 13Chapter 2 System Model 152.1 Distributed Computations . 152.2 Cuts, Consistent Cuts and Frontiers 172.3 Global Prediates . 18Chapter 3 Deteting Global Prediates 233.1 Overview . 233.2 Problem Statement . 263.3 Singular k-CNF Prediates . 263.3.1 NP-Completeness Result . 273.3.2 EÆient Algorithm for Speial Cases 32xiii

3.3.3 Algorithms for the General Case 343.4 Relational Prediates: x1 + x2 + � � �+ xn = k 343.4.1 NP-Completeness Result . 353.4.2 EÆient Algorithm for the Speial Case 36Chapter 4 Controlling Global Prediates 414.1 Overview . 414.2 Problem Statement . 434.3 Region Prediates . 444.3.1 Finding a Controlling Synhronization 474.4 Disjuntive Prediates . 624.4.1 Admissible Sequenes . 624.4.2 Finding a Controlling Synhronization 754.4.3 Finding a Minimum Controlling Synhronization 80Chapter 5 Sliing Distributed Computations 915.1 Overview . 915.2 Extending the Model . 945.2.1 Direted Graphs: Path- and Cut-Equivalene 945.2.2 Distributed Computations as Direted Graphs 955.3 Problem Statement . 975.4 Regular Prediates . 985.5 Establishing the Existene and Uniqueness of Slie 1045.5.1 Regular Prediates . 1045.5.2 General Prediates . 1095.6 Representing a Slie . 1135.7 Sliing for Regular Prediates . 1185.7.1 Computing the Slie for Regular Prediates 118xiv

5.7.2 Optimizing for the Speial Case: Computing the Slie for De-omposable Regular Prediates 1215.7.3 Optimal Algorithms for Speial Cases 1295.7.4 Appliations of Sliing . 1345.8 Sliing for General Prediates . 1375.8.1 NP-Hardness Result . 1375.8.2 Computing the Slie for Linear Prediates and their Dual . . 1385.8.3 Grafting Two Slies . 1405.8.4 Computing the Slie for Co-Regular Prediates 1435.8.5 Computing the Slie for k-Loal Prediates for Constant k . 1465.8.6 Computing Approximate Slies 1465.9 Deteting Global Prediates using Sliing: An Experimental Study . 149Chapter 6 Related Work 1606.1 Deteting Global Prediates . 1606.2 Controlling Global Prediates . 1636.3 Sliing Distributed Computations . 164Chapter 7 Conlusions and Future Work 166Bibliography 170Vita 182
xv

Chapter 1IntrodutionReent advanes in ommuniation tehnology have led to a rapidproliferation of distributed systems. For example, a luster of servers providedWeb overage of the Sydney Summer Olympis. As another example, mass-distributed omputing was reently used to disover the largest known primenumber. As distributed systems evolve from the speial ase to ommonplae,ensuring their reliable operation has emerged as an important and hallengingproblem. With distributed systems being inreasingly employed in safety-ritialenvironments, a failure in one of these systems ould have irreparable, if not tragi,onsequenes. There have been several examples of serious systems failures (e.g.,Ariane 5, Thera 25, Mars Observer) aused at least in part by ritial defets inthe software.Inherent non-determinism in distributed programs and presene of multiplethreads of ontrol make it diÆult to write orret distributed software. Notsurprisingly, distributed systems are espeially vulnerable to software faults. Dealingwith software faults requires e�orts at multiple levels [TP00℄. Early in thesoftware yle, design methodologies, tehnologies and tehniques that are aimed at1

preventing the introdution of faults into the design an be used (fault prevention).Later, the implementation an be veri�ed using testing, and the faults therebyexposed an be removed using debugging (fault removal). In spite of extensivetesting and debugging, software faults may persist even in prodution qualitysoftware. Fault tolerane an be used as an extra layer of protetion to provideaeptable level of performane and safety at runtime after a fault beomes ative.In this dissertation, we fous on fault removal and fault tolerane tehniques toimprove the reliability of distributed software.Fault RemovalThe orretness of a program is often expressed using a ombination of safety andliveness properties. A safety property spei�es what the program must not do(ensures \nothing bad will ever happen"). An example of a safety property is mutualexlusion whih demands that at no time should there be more than one proessin its ritial setion. A liveness property, on the other hand, spei�es what theprogram must eventually do (guarantees \something good will eventually happen").An example of a liveness property is that every proess whih is trying to aquire aresoure will sueed eventually.Testing and debugging has been widely used for developing traditionalsequential programs. Testing involves exeuting the program for a spei� inputsequene and then validating the output obtained with respet to the given safetyand liveness properties. Spei�ally, when testing for safety property, the objetiveis to verify that the system always stayed in a safe state throughout the exeution,or, in other words, the system did not traverse through an unsafe state. Similarly,when testing for liveness property, the aim is to asertain that some desired onditioneventually beame true in the exeution. In ase testing reveals that the programbehaved erroneously (it violated either safety or liveness property), debugging is the2

proess of traking down the bug that aused the program to exhibit the faultybehaviour.The state of a distributed system, ommonly referred to as global state, isgiven by the set of events that have been exeuted so far (on all proesses). In anasynhronous distributed system, however, it is not possible for an external observerto determine the exat order in whih the events generated by the system wereexeuted in real-time. The events an only be partially ordered; the partial order isreferred to as the Lamport's happened-before relation [Lam78℄ and the orrespondingpartially ordered set (or poset) is alled a distributed omputation. Eah interleavingof events that respets the happened-before relation orresponds to an order inwhih the events ould have been exeuted. Testing a omputation with respetto safety and liveness properties, therefore, translates into answering the followingqueries: \Does there exist an interleaving of events in whih the system passesthrough an unsafe global state?" and \Does a liveness property eventually beometrue in all possible interleavings of events?" The two problems orrespond to theprediate detetion problem under possibly and definitely modalities [CM91, GW91℄,respetively.On disovering a fault in the omputation during testing phase, the nextstep is to analyze the omputation to loate the soure of the fault. While the skilland intuition of the programmer play an important role in debugging, tools thatprovide an e�etive environment for debugging are indispensable. For example, ondeteting a violation of safety property, a programmer an gain onsiderable insightinto the bug, that aused the violation, by learning whether all possible interleavingsof events are unsafe in the sense that they all pass through a global state that isunsafe. In that ase, the bug annot be �xed by adding or removing synhronizationalone. On the other hand, if it is possible to eliminate all unsafe interleavings byadding synhronization to the omputation, without reating a deadlok, then too3

little synhronization is likely to be the problem. Furthermore, the knowledge ofthe exat synhronization needed to maintain a safety property an failitate theloalization of the bug in the program. The problem of �nding a synhronizationrequired to maintain a safety property in a omputation is referred to as the prediateontrol problem [TG98b℄.Analyzing an erroneous omputation in order to trak down the soure of thefault is ompliated by the fat that the omputation in general ontains exponentialnumber of global states. Therefore it is helpful and desirable to fous on only thoseglobal states that are likely to be involved in the fault. For example, to loate thebug, it may suÆe to examine only transitless global states, the ones in whih all sentmessages have been reeived. To that end, we de�ne the notion of omputation slie.Intuitively, slie is a onise representation of those global states of the omputationthat satisfy ertain property. More preisely, the slie of a omputation with respetto a prediate is the omputation satisfying the following two onditions. First,it ontains all global states for whih the prediate evaluates to true. Seond,among all omputations that ful�ll the �rst ondition, it ontains the least numberof global states. A slie may ontain exponentially fewer number of global statesthan the omputation, thereby substantially reduing the size of the omputationto be analyzed.Fault ToleraneA prodution quality software whih has been extensively tested and debuggedontains around 3 bugs per 1,000 lines of ode [GR93℄. Many systems, espeiallythose employed in safety-ritial environments, should be able to operate properlyeven in the presene of these bugs. An overwhelming majority of the bugs tend tobe non-deterministi in nature and are often aused by transient onditions suhas timing and synhronization. Therefore they do not manifest themselves in every4

Monitor

Fault Handler

Application

Fault DetectorFigure 1.1: A software fault tolerane system.program exeution with the same input sequene and it is possible to tolerate themat runtime using rollbak reovery [GR93℄. A system apable of tolerating softwarefaults an be built using a monitor that ontinuously observes the system exeutionto detet an ourrene of a fault. On deteting a fault, it rolls bak the programto a state before the fault ourred and re-exeutes it hoping that the previouslydeteted fault does not our again. To prevent the fault from ausing any seriousdamage suh as orrupting stable storage, it is essential that the monitor be able todetet the fault in a timely manner. This requires the fault detetion algorithm tobe fast and eÆient. Further, to minimize the disruption in servie aused by thefault, it is desirable that during re-exeution the fault be avoided in a deterministifashion instead of relying on hane [WHF+97℄. Tarafdar and Garg [TG99℄ proposedthe ontrolled re-exeution approah whih assumes some knowledge about the fault(e.g., fault ourred beause of improper synhronization) but provides a guaranteethat the previously deteted fault will not reur during re-exeution. Therefore tobuild a software fault tolerant system, two issues need to be addressed: (1) faultdetetion whih gives rise to the problem of deteting a prediate under possiblymodality, and (2) fault reovery whih in the ase of synhronization faults givesrise to the prediate ontrol problem. 5

To summarize, our goals are:� To investigate the problem of deteting a prediate in a omputation.� To investigate the problem of ontrolling a prediate in a omputation.� To formulate and investigate the notion of slie of a omputation with respetto a prediate.In the next three setions, we give an introdution to our work towards eahof these goals. This is followed by an overview of the dissertation.1.1 Deteting Global PrediatesVerifying the orretness of an observed behaviour of a program, for a spei� inputsequene, gives rise to the problem of deteting a prediate in a omputation underpossibly and definitely modalities. When deteting a prediate under possiblymodality, the objetive is to �nd a global state in the omputation that violatesthe safety property. For example, onsider the omputation in Figure 1.2 with threeproesses p1, p2 and p3. The safety property is mutual exlusion whih demandsthat no two proesses are in ritial setions (labeled CS1, CS2, CS3 and CS4) atthe same time. Clearly, the given omputation does not maintain mutual exlusionat all times. Spei�ally, mutual exlusion is violated for global state C in whihproesses p1 and p3 are in their respetive ritial setions.Deteting a prediate under definitely modality requires verifying that theliveness property eventually beomes true in all interleavings of events. For example,onsider the omputation in Figure 1.3 with two proesses p1 and p2. The livenessproperty requires that the system always passes through a state in whih both6

CS3

CS2

CS4

1CS
C

1p

p3

p2Figure 1.2: Deteting a prediate under possibly modality.proesses are in the seond round. Clearly, if the events are interleaved in the ordera e b f d g h, the desired ondition never beomes true.It an be proved that deteting a prediate in a omputation under definitelymodality is the dual of ontrolling a prediate in a omputation. Thus our resultsin solving the prediate ontrol problem are appliable to the prediate detetionproblem under definitely modality as well. Hereafter, the default modality forprediate detetion is possibly. Moreover, we do not speify possibly modalityunless we need to distinguish it from definitely modality.ContributionsIt is always useful and desirable to know for what lasses of prediates an eÆientpolynomial-time detetion algorithm is unlikely to exist. To that end, Chase andGarg prove in [CG95℄ that deteting a prediate in 3-CNF is an NP-ompleteproblem. Also, Stoller and Shneider [SS95℄ show that it is omputationally hardto detet a 2-loal onjuntive prediate (a prediate expressed as onjuntion oflauses where eah lause depends on variables of at most two proesses). Wedemonstrate that deteting a prediate in 2-CNF even when no two lauses ontainvariables from the same proess is an NP-omplete problem as well. It may be notedthat our intratability result subsumes the two aforementioned NP-ompletenessresults. Nevertheless, omputation sliing, disussed later, an be used to ahieve7

f he g

a b c d

1 1 2 3

1 2 2 3

p2

1p

2round

round1Figure 1.3: Deteting a prediate under definitely modality.an exponential improvement in time as well as spae for deteting a prediate thatis otherwise omputationally hard to detet.Additionally, we establish that deteting a relational prediate of the formx1 + x2 + � � �+ xn = k for onstant k, where xi is an integer variable on proesspi, is an NP-omplete problem. This is somewhat surprising beause a relationalprediate of the form x1+x2+� � �+xn 6 k, for onstant k, an be deteted eÆiently.(This is true even when 6 is replaed with >.) However, for ertain restrited butuseful lass of general omputations, it is indeed possible to provide an eÆientpolynomial-time algorithm to detet the former relational prediate. This lassorresponds to omputations in whih eah xi is inremented or deremented by atmost one at eah step. Suh omputations are generated, for example, when eahxi is a binary variable and an assume values 0 or 1. As a orollary, any symmetriprediate|prediate omposed from boolean variables that is invariable under anypermutation of its variables|an be eÆiently deteted.1.2 Controlling Global PrediatesThe problem of ontrolling a prediate in a omputation involves addingsynhronization to the omputation, without reating a yle, suh that the givenprediate is never falsi�ed in the resultant omputation. As an example, onsider theomputation in Figure 1.4(a) with three proesses p1, p2 and p3. Suppose the statedprediate is the mutual exlusion prediate whih requires that no two proesses are8

CS3

CS2

CS4

1CS
C

CS3

CS2

CS4

1CS
C

(a) (b)

1p

p3

p2

1p

p3

p2Figure 1.4: Controlling a prediate in a omputation: (a) original omputation, and(b) ontrolled omputation.in ritial setions (labeled CS1, CS2, CS3 and CS4) at the same time. Clearly,the omputation does not maintain mutual exlusion at all times. Figure 1.4(b)depits the same omputation with added synhronization that ensures that mutualexlusion is maintained at all times. We all suh a omputation as \ontrolledomputation" and the added synhronization as \ontrolling synhronization". Themain diÆulty in determining suh a ontrolling synhronization lies in adding thesynhronization dependenies in suh a manner as to maintain the given propertywithout ausing deadlok with existing synhronization dependenies.ContributionsTarafdar and Garg prove in [TG98b℄ that it is in general NP-omplete to ompute aontrolling synhronization for a prediate. We therefore fous on two useful lassesof prediates for whih polynomial-time algorithms an be provided.The �rst lass of prediates we onsider is the lass of \region prediates".Informally, a region prediate partitions the set of global states of the omputationthat satisfy the prediate into bounded onvex regions, one for eah event. Someexamples of region prediates inlude \the virtual loks of all proesses areapproximately synhronized", and hannel prediates suh as \all request messages9

have been reeived". We give an O(njEj2) algorithm for omputing a ontrollingsynhronization for a region prediate, where n is the number of proesses and E isthe set of events. We also show that the ontrolling synhronization generated by thealgorithm is optimal in the sense that it permits the maximum possible onurrenyin the ontrolled omputation.The other lass of prediates we study is the lass of \disjuntive prediates".A disjuntive prediate an be expressed as disjuntion of loal prediates. Someexamples inlude \at least one server is not busy", \at least one philosopher does nothave a fork", and (n�1)-mutual exlusion with n proesses in the system. Intuitively,a disjuntive prediate ensures that a bad ombination of loal onditions does notour. We provide anO(njEj) algorithm for omputing a ontrolling synhronizationfor a disjuntive prediate, where n is the number of proesses and E is the set ofevents. We further modify the algorithm to ompute a ontrolling synhronizationwith the least number of synhronization dependenies. The modi�ed algorithm hasO(jEj2) time-omplexity.1.3 Sliing Distributed ComputationsThe slie of a omputation with respet to a prediate is the omputation withthe least number of global states suh that it ontains all global states of theoriginal omputation satisfying the given prediate. As an illustration, onsider theomputation in Figure 1.5(a). In the �gure, the �rst event on eah proess initializesthe state of the proess. The initial global state is therefore obtained by exeutingthe events a, e and u. Suppose we wish to examine only those global states forwhih (x1 > 1)^ (x3 6 3). A onise representation of suh global states|referredto as slie|is shown in Figure 1.5(b). Informally, in the slie, the partial order isspei�ed on subsets of events rather than events. Intuitively, all events in a subsetare exeuted atomially, that is, either none of them is exeuted or all of them are10

x2p2

x3p3

x1p1

(b)(a)
w

2

1

g

0

d

−1

c

2

b

1

a

0

e

2 3

h

4

x

1

v

4

u

f

{a,e,f,u,v} {b}

{w} {g}Figure 1.5: (a) A omputation, and (b) its slie with respet to the prediate(x1 > 1)^ (x3 6 3).exeuted. For instane, the global state of the omputation obtained by exeutingthe events a; b; e and u is not a global state of the slie beause only some of theevents in the subset fa; e; f; u; vg have been exeuted. The omputation ontainstwenty eight global states whereas the slie ontains only six global states.Now, suppose we want to �nd a global state of the omputation for whihthe prediate (x1 � x2 + x3 < 5) ^(x1 > 1) ^ (x3 6 3) evaluates to true. Withoutomputation sliing, we are fored to examine all global states of the omputationto asertain whether some global state satis�es the prediate. With omputationsliing, however, we an restrit our searh to the global states of the slie, therebyresulting in substantial savings.ContributionsWe �rst establish that slie exists and is uniquely de�ned for all prediates. Theslie for a prediate may ontain global states that do not satisfy the prediate. Weidentify the lass of \regular prediates" for whih the slie is \lean". In other words,the slie for a regular prediate ontains preisely those global states for whih theprediate evaluates to true. The set of global states that satisfy a regular prediateforms a sublattie, that is, it is losed under intersetion and union. Some examplesof regular prediates are: onjuntion of loal prediates like \no proess has the11

token", and hannel prediates suh as \all request messages have been reeived".We prove that the lass of regular prediates is losed under onjuntion, that is,the onjuntion of two regular prediates is also a regular prediate. We devise aneÆient algorithm to ompute the slie for a regular prediate. The time-omplexityof the algorithm is O(n2jEj), where n is the number of proesses and E is the set ofevents. Additionally, for speial ases of regular prediates suh as onjuntion ofloal prediates, we develop optimal algorithms for omputing the slie whih haveO(jEj) time-omplexity. In addition to regular prediates, we also provide eÆientalgorithms to ompute the slie for many lasses of non-regular prediates inluding\linear prediates" and \post-linear prediates".We prove that it is intratable in general to ompute the slie for a prediate.Nonetheless, it is still useful to be able to ompute an approximate slie for suha prediate eÆiently. An approximate slie may be bigger than the atual sliebut will be muh smaller than the omputation itself. To that end, we developeÆient algorithms to ompose two slies using \grafting". Spei�ally, given twoslies, grafting involves omputing either (1) the smallest slie that ontains allglobal states ommon to both the slies, or (2) the smallest slie that ontainsall global states that belong to at least one of the slies. We apply grafting toeÆiently ompute the slie for the omplement of a regular prediate|referred toas \o-regular prediate". The algorithm has O(n2jEj2) time-omplexity, where nis the number of proesses and E is the set of events. We also employ graftingto ompute the slie for a \k-loal prediate" with onstant k in polynomial-time.More importantly, we use grafting to ompute an approximate slie|in polynomial-time|for a prediate omposed using ^ and _ operators from prediates for whihthe slie an be omputed eÆiently (e.g., regular prediates, linear prediates).Example of suh prediate is: (x1 _ :x2) ^ (x3 _ :x1) ^ (x2 _ x3), where eah xiis a linear prediate. We ondut simulation tests to experimentally measure the12

e�etiveness of omputation sliing in pruning the searh spae when deteting aprediate. Our results indiate that omputation sliing an lead to an exponentialredution over existing tehniques both in terms of time as well as spae.1.4 Overview of the DissertationThe remainder of this dissertation is organized as follows. In Chapter 2, we de�ne ourmodel. Next, we have three main hapters of the dissertation. Chapter 3 disussesour results in deteting global prediates, Chapter 4 investigates the problem ofontrolling global prediates, and Chapter 5 desribes our study of the omputationsliing tehnique. In Chapter 6, we give a summary of the related work. Finally, wedraw onlusions and desribe future diretions in Chapter 7.

13

Chapter 2System ModelIn this hapter we formally desribe the model and notation used in thisdissertation. Our model is based on the Lamport's happened-before model [Lam78℄.The model is further extended in Chapter 5 where we disuss omputation sliingin detail.2.1 Distributed ComputationsWe assume an asynhronous distributed system with the set of proesses P =fp1; p2; : : : ; png. Eah proess exeutes a prede�ned program. Proesses do notshare any lok or memory; they ommuniate and synhronize with eah other bysending messages over a set of hannels. We assume that hannels are reliable, thatis, messages are not lost, altered or spuriously introdued into a hannel. We do notassume FIFO hannels.The loal omputation of a proess is given by the sequene of events thattransforms the initial state of the proess into the �nal state. At eah step, the loalstate is aptured by the initial state together with the sequene of events that have15

been exeuted up to that step. Eah event is either an interval event or an externalevent. An external event ould be a send event or a reeive event or both. An eventauses the loal state of a proess to be updated. Additionally, a send event ausesa message or a set of messages to be sent and a reeive event auses a message ora set of messages to be reeived. We assume the presene of �titious initial eventson eah proess pi, denoted by ?i. The initial event ours before any other eventon the proess and initializes the state of that proess. We denote the last event onproess pi, alled the �nal event, by >i. Let ? and > denote the set of all initialevents and �nal events, respetively.Let pro(e) denote the proess on whih event e ours. The predeessor andsuessor events of e on pro(e) are denoted by pred(e) and su(e), respetively,if they exist. Observe that an initial event does not have a predeessor and a �nalevent does not have a suessor.We model a distributed omputation (or simply a omputation) by anirreexive partial order on a set of events. We use hE;!i to denote a distributedomputation with the set of events E and the partial order!. The partial order !is given by the Lamport's happened-before relation (or ausality relation) [Lam78℄whih is de�ned as the smallest transitive relation satisfying the following properties:1. if events e and f our on the same proess, and e ourred before f in realtime then e happened-before f , and2. if events e and f orrespond to the send and reeive, respetively, of a messagethen e happened-before f .Given a omputation hE;!i, we denote the order of events on proesses byP! whih is referred to as proess order. Note that the projetion of P! onto theevents of a single proess is a total order. The reexive losure of an irreexivepartial order is represented by and its transitive losure is denoted by +. A16

a b c d

hgfe

C D

p2

p1Figure 2.1: An example of a omputation.run or interleaving of a omputation hE;!i is some total order on events E that isonsistent with the partial order !.Example 2.1 Figure 2.1 depits a omputation involving two proesses, namely p1and p2. The loal omputation of eah proess advanes from left to right as shownin the �gure. The irles represent events and the arrows denote messages. Theloal omputation of p1 is given by the sequene abd. The event b is a send event,the event f is a reeive event and the event d is an internal event. Here, ?1 = aand ?2 = e whereas >1 = and >2 = h. Also, pro(b) = p1, pred(b) = a andsu(e) = . The set of events E = fa; b; ; d; e; f; g; hg and the happened-beforeorder != f(a; b); (b;); (; d); (e; f); (f; g); (g; h); (b; f); (g;)g+. The proess orderP! is given by f(a; b); (b;); (; d); (e; f); (f; g); (g; h)g+. Finally, aebfghd is a runof the omputation.2.2 Cuts, Consistent Cuts and FrontiersThe state of a distributed system, alled the global state, is given by the olletivestate of proesses. The equivalent notion based on events is alled ut and is de�nedas a subset of events that ontains all initial events suh that it ontains an eventonly if its predeessor, if it exists, also belongs to the subset. Formally,C is a ut , (? � C) ^ h8 e : e 2 C : e 62 ?) pred(e) 2 Ci17

The frontier of a ut C is de�ned as the set of those events in C whosesuessors are not in C. Formally,frontier(C) , f e 2 C j e 62 >) su(e) 62 C gWe say that a ut passes through an event if the event is inluded inits frontier. Not every ut an our during system exeution. A ut is saidto be onsistent if it ontains an event only if it also ontains all events thathappened-before it. Formally,C is a onsistent ut , (C is a ut) ^ h8 e; f : e! f : f 2 C) e 2 CiIn partiular, only those uts whih are onsistent an possibly our duringan exeution. The equivalent notion based on state is alled onsistent global state.We denote the set of onsistent uts of a omputation hE;!i by C(hE;!i).Two events are onsistent if there exists a onsistent ut that passes throughboth the events, otherwise they are inonsistent. It an be veri�ed that events eand f are inonsistent if and only if either su(e)!f or su(f)!e. Finally, twoevents e and f are independent if they are inomparable with respet to !.Example 2.2 Consider the omputation in Figure 2.1. Pitorially, we represent aut by a line drawn from top to bottom passing through exatly one event on eahproess; an event belongs to the ut if and only if it either lies on the line or lieson the left of the line. The ut C = fa; e; fg. The ut D is onsistent whereas C isnot. Here, frontier(C) = fa; fg and frontier(D) = fb; gg. The events b and f areonsistent whereas events a and f are not. Finally, events and h are independentbut b and f are not.2.3 Global PrediatesA global prediate (or simply a prediate) is de�ned as a boolean-valued funtion onvariables of proesses. Given a onsistent ut, a prediate is evaluated with respet18

to the values of variables resulting after exeuting all events in the ut. If a prediateb evaluates to true for a onsistent ut C, we say that \C satis�es b" and denote itby C j= b.A global prediate is loal if it depends on variables of a single proess. Notethat it is possible to evaluate a loal prediate with respet to an event on theappropriate proess. In ase the prediate evaluates to true, the event is alled atrue event; otherwise, it is alled a false event. We use e j= b to denote the fatthat the event e satis�es the loal prediate b.A run is alled safe with respet to a prediate if every onsistent ut of therun satis�es the prediate; otherwise, the run is unsafe.Remark 2.1 We assume that the time-omplexity of evaluating a prediate for aonsistent ut is polynomial in input size. However, for onveniene, throughoutthis dissertation, we speify the time-omplexity of our algorithms assuming thatthe time-omplexity of evaluating a prediate is linear in number of proesses whosevariables the prediate depends on. In ase the time-omplexity is atually higher,the time-omplexity of the algorithms will inrease orrespondingly.The value of a prediate is de�ned with respet to a onsistent ut. So,what does it mean to evaluate a prediate for a omputation whih may onsist ofseveral onsistent uts? Given a omputation, it is possible to evaluate a prediateunder various modalities, namely possibly, definitely, invariant and ontrollable[CM91, WG91, SUL00, TG99, MG00℄. A prediate is said to be possibly true ina omputation if there exists a onsistent ut of the omputation for whih theprediate evaluates to true. On the other hand, a prediate de�nitely holds in aomputation if it eventually beomes true in all possible runs of the omputation.The modalities invariant and ontrollable are duals of the modalities possibly anddefinitely, respetively. That is, a prediate is invariant in a omputation if everyonsistent ut of the omputation satis�es the prediate, whereas it is ontrollable19

Conept Desription Notationloal omputation sequene of events on a proessdistributed omputation(or simply omputation) irreexive partial order on set ofevents hE;!irun/interleaving total order on events onsistent withthe partial order of a distributedomputationproess order order of events on proesses P!ut an event is in the ut only if itspredeessor is also in the ut C, Dfrontier subset of events in the ut whosesuessors do not belong to the ut frontier(C)passes through event is ontained in the frontier ofthe utonsistent ut an event is in the ut only if all itspreeding events (with respet to thepartial order) are also in the utonsistent events some onsistent ut passes throughboth the eventsindependent events events are inomparable with respetto the given partial orderglobal prediate(or simply prediate) boolean-valued funtion on variablesof proesses bsafe run every onsistent of the run satis�esthe global prediateloal prediate global prediate that depends onvariables of only a single proesstrue event event satis�es the loal prediateTable 2.1: A summary of the various onepts.20

Notation Desriptionpro(e) proess on whih event e ourspred(e) predeessor of event e (on pro(e))su(e) suessor of event e (on pro(e))?i initial event on proess pi>i �nal event on proess pi? set of initial events> set of �nal events!, , 7! irreexive partial orders on set of events! reexive losure of !R+ transitive losure of relation RC j= b onsistent ut C satis�es global prediate be j= b event e satis�es loal prediate bhE;!i j= modal : b global prediate b holds in distributed omputationhE;!i under modal modalitymodal 2 fpossibly; definitely; ontrollable; invariantgTable 2.2: A summary of the notation.in a omputation if there exists a safe run of the omputation with respet to theprediate. The prediate detetion problem [CM91, CG98, SUL00, MG01b℄ typiallyrefers to monitoring a prediate under possibly (and sometimes under definitely)modality, whereas the prediate ontrol problem [TG98b, TG99, MG00℄ involvesmonitoring a prediate under ontrollable modality.Given a prediate b and a omputation hE;!i, we use hE;!i j= possibly :bto denote the fat that b possibly holds in hE;!i. The expressions hE;!i j=definitely : b, hE;!i j= invariant : b and hE;!i j= ontrollable : b an be similarly21

interpreted.Table 2.1 and Table 2.2 summarize various notations and onepts de�nedin this hapter.

22

Chapter 3Deteting Global PrediatesIn this hapter, we desribe in detail our results pertaining to the detetionof global prediates in distributed omputations primarily under possibly modality.In partiular, we provide solutions to all the open problems proposed in [Gar97℄.3.1 OverviewWe start by de�ning the problem formally in Setion 3.2. Informally, the problemof deteting a prediate typially refers to monitoring it under possibly or definitelymodality.Chase and Garg [CG95℄ prove that it is in general NP-omplete to detet a3-CNF prediate under possibly modality. Stoller and Shneider [SS95℄ show thatdeteting a 2-loal onjuntive prediate under possibly modality is NP-ompletein general as well. A 2-loal onjuntive prediate is a onjuntion of lauses suhthat eah lause depends on variables of at most two proesses. In Setion 3.3, weintrodue a new lass of prediates alled \singular k-CNF prediates". Informally,a k-CNF prediate is singular if no two lauses ontain variables from the same23

proess. We show that deteting even a singular 2-CNF prediate under possiblymodality is NP-omplete in general. Our NP-ompleteness result subsumes the twoaforementioned NP-ompleteness results [CG95, SS95℄. It also bridges the wide gapbetween the known tratability [GW94℄ and intratability [CG95, SS95℄ results thatexisted until now. Further, the NP-ompleteness result an be used to establishthe intratability of deteting other \interesting" singular prediates under possiblymodality.It is, however, possible to devise an eÆient polynomial-time algorithm fordeteting a singular k-CNF prediate under possibly modality provided that theomputation satis�es ertain property, namely it is either reeive-ordered or send-ordered [TG98a℄. The algorithm is based on Tarafdar and Garg's algorithm fordeteting a onjuntive prediate under possibly modality for the strong ausalitymodel whih is an extension of the Lamport's happened-before model [Lam78℄ inthe sense that it allows events on a proess to be only partially ordered [TG98a℄.The time-omplexity of the algorithm is O(jEj2), where E is the set of events. Wealso disuss tehniques that an be used to ahieve an exponential redution in timeover existing tehniques for the solving the general version. However, note that thetime-omplexity of the algorithm for the general version will be exponential in theworst ase.In Setion 3.4, we extend the de�nition of \relational prediate" introduedin [TG97℄ to inlude the equality operator. A relational prediate is of the formx1+x2+ � � �+xn relop k, where eah xi is an integer variable on proess pi, k is someonstant and relop 2 f=; <;6; >;>g. Chase and Garg [CG95℄ gave polynomial-time algorithm to detet a relational prediate under possibly modality when relop2 f<;6; >;>g based on the notion of max-ow/min-ut. We prove that it is ingeneral NP-omplete to detet a relational prediate under possibly modality whenrelop =0=0. However, an eÆient polynomial-time algorithm an be developed for24

the ase when eah xi is inremented or deremented by at most one at eah step.The time-omplexity of the algorithm is O(jEj2 log(jEj)), where E is the set ofevents. As a orollary, the above algorithm an be used to detet any \symmetriprediate" on boolean variables under possibly modality. A symmetri prediate isinvariant under any permutation of its variables. Examples of symmetri prediatesinlude \absene of two-third majority", \exlusive-or of loal prediates" and \notall loal prediates have the same value".Although the omputation that we onstrut to prove the NP-ompletenessresult for singular 2-CNF prediates may ontain events that send and/or reeivemultiple messages, it is relatively easy to modify the omputation suh that eahevent sends or reeives at most one message while ensuring that the NP-ompletenessresult still holds. The basi idea is to replae eah event by a ontiguous sequene ofevents suh that eah event in the sequene sends or reeives at most one message(but not both) and the resultant omputation satis�es the desired property.Tarafdar and Garg [TG98b℄ proved that it is in general NP-omplete tomonitor a prediate under ontrollablemodality. Sine the problem of monitoring aprediate under definitely modality is dual of the problem of monitoring a prediateunder ontrollable modality, it is in general oNP-omplete to detet a prediateunder definitely modality. For their NP-ompleteness proof, Tarafdar and Gargtransformed an arbitrary instane of the problem of deteting a prediate b underpossibly modality to an instane of monitoring the prediate x_b under ontrollablemodality [TG98b℄. Using their onstrution and our NP-ompleteness result forsingular 2-CNF prediates, it an be established that ontrolling a singular 3-CNFprediate in a omputation is also intratable in general. This in turn implies thatdeteting a singular 3-DNF prediate (dual of singular 3-CNF prediate) underdefinitely modality is oNP-omplete in general.25

3.2 Problem StatementThe prediate detetion problem typially refers to monitoring a prediate underpossibly or definitely modality [CM91, WG91℄. In this hapter, we mainly fous ondeteting a prediate under possibly modality and make possibly modality expliitonly when we need to distinguish it from definitely modality.3.3 Singular k-CNF PrediatesA prediate of boolean variables in onjuntive normal form (CNF) is alled singularif no two lauses ontain variables from the same proess. Roughly speaking, aprediate in CNF is singular if it is possible to rewrite the prediate suh that eahvariable ours in at most one lause and eah proess hosts at most one variable. Foronveniene, we write a singular prediate in k-CNF (exatly k literals per lause)as singular k-CNF prediate. A singular 1-CNF prediate is also alled onjuntiveprediate [GW94℄. For example, let xi be a boolean variable on proess pi. Then theprediate (x1_x2)^(x3_x4_x5) is a singular CNF prediate whereas the prediate(x1 _ x2) ^ (x2 _ x3) is not.We �rst prove that the problem of deteting a singular k-CNF prediateis intratable in general even when k is two. EÆient algorithms for detetingthe prediate, however, exist when k is one [CG98℄. Our NP-ompleteness resultsubsumes the two earlier known NP-ompleteness results [CG98, SS95℄. We nextpresent a polynomial-time algorithm for solving the problem for two speial ases,namely when the omputation is either reeive-ordered or send-ordered [TG98a℄;the two notions are de�ned later in Setion 3.3.2. We also disuss tehniques thatan be used to ahieve an exponential redution in time over existing tehniques forsolving the general version. The following observation omes in useful for ahievingthe aforementioned results. 26

Observation 3.1 Consider a singular k-CNF prediate b with m lauses i = x1i _x2i _� � �_xki , 1 6 i 6 m, where xji is a boolean variable on proess pji . Let grpi denotethe subset of proesses that host the variables in i, that is, grpi = fpji j 1 6 j 6 kg.A neessary and suÆient ondition for the existene of a onsistent ut that satis�esb is the existene of m pairwise onsistent true events ei, 1 6 i 6 m, suh that eahei is an event on some proess in grpi.The above observation follows from the fat that, given a set of pairwiseonsistent events|not neessarily from all proesses, it is always possible to �nd aonsistent ut that passes through all the events in the set. More preisely, given anevent e, let Cleast:e denote the least onsistent ut of the omputation that passesthrough e. Now, given a subset of events F , onsider the onsistent ut C(F) de�nedas follows: C(F) , [e2F (Cleast:e)It an be veri�ed that C(F) is not only a onsistent ut but also passesthrough every event in F .3.3.1 NP-Completeness ResultThe problem is in NP beause the general problem of deteting an arbitraryboolean expression is in NP [CG98℄. To establish its NP-hardness, we transforman arbitrary instane of a variant of the satis�ability problem [CLR91℄, whih weall non-monotone 3-SAT problem, to an instane of deteting a singular 2-CNFprediate.De�nition 3.1 (non-monotone 3-SAT problem) Given a formula in CNFsuh that (1) eah lause has at most three literals, and (2) eah lause with exatlythree literals has at least one positive literal and one negative literal, does there exista satisfying truth assignment for the formula?27

The NP-ompleteness of the non-monotone 3-SAT problem follows from theintratability of the 3-SAT problem. Spei�ally, given a formula in 3-CNF, it anbe easily transformed into a formula that satis�es the above-mentioned onditions;we all suh a formula non-monotone 3-CNF formula. Consider a lause in a 3-CNFformula ontaining only positive literals, say i = y1i _y2i _y3i . We replae the lausei with three lauses y1i _ y2i _ :z3i , y3i _ z3i and :y3i _ :z3i . The last two lausesensure that, in any satisfying truth assignment, y3i and z3i are logial negation ofeah other. A similar substitution an be made for lauses ontaining only negativeliterals. It is easy to verify that the resultant formula is a non-monotone 3-CNFformula. Furthermore, the new formula is satis�able if and only if the originalformula is satis�able. Thus we have the following theorem.Theorem 3.1 The non-monotone 3-SAT problem is NP-omplete in general.We now prove the NP-hardness of deteting a singular 2-CNF prediate.Observe that �nding a satisfying truth assignment for a non-monotone 3-CNFformula is equivalent to �nding a subset of literals, one from eah lause, that aremutually non-oniting. Consequently, it follows from Observation 3.1 that if theomputation and the singular 2-CNF prediate satisfy the properties: (1) for eahlause in the formula there is a lause in the prediate and vie versa, (2) there is aone-to-one orrespondene between the literals in the formula and the true events inthe omputation, and (3) two literals onit if and only if the orresponding trueevents are inonsistent, then the formula is satis�able if and only if the prediatepossibly holds in the omputation.Given a non-monotone 3-CNF formula with lauses i, 1 6 i 6 m, weonstrut a omputation and a singular 2-CNF prediate as follows. Without loss ofgenerality, assume that eah lause has at least two literals|a lone literal in a lausehas to be assigned value true in any satisfying assignment|and no lause ontainsoniting literals. For eah lause i in the formula, we add two proesses p1i and p2i28

t

: true event : false event

(a)

(b)

f f

ftf

t

f t f

ftf

l3
i

x1
i

x2
i

1p
i

l1
i l2

i

l2
i

x1
i

l1
i

x2
i

1p
i

p
i

p
i

2

2Figure 3.1: The loal omputation when the lause has (a) two literals and (b) threeliterals.to the omputation hosting boolean variables x1i and x2i , respetively. Initially, allvariables evaluate to false. We also add the lause x1i _ x2i to the (singular 2-CNF)prediate. We next desribe the loal omputations of the two proesses. There isone true event for eah literal in the formula. Depending on the number of literalsin the lause, there are two possible ases to onsider:Case 1 (jij = 2): Let i = l1i _ l2i . The loal omputations of proesses p1i and p2ionsist of a true event, orresponding to literals l1i and l2i , respetively, followed bya false event. For an illustration refer to Figure 3.1(a).Case 2 (jij = 3): Let i = l1i _ l2i _ l3i . Without loss of generality, assume thatl1i is a positive literal and l2i is a negative literal. The loal omputation of theproess p1i onsists of a true event, orresponding to the literal l1i , followed by a falseevent, �nally followed by a true event, orresponding to the literal l2i . The loal29

: true event : false event

f t f

ftf

f f

ftf

t

f f

ftf

t

t

t

e f

g

x1
1

x2
1

1p
1

x1
2

x2
2

1p
2

x1
3

x2
3

1p
3

y
1

y
2

y
3

y
1

y
1

y
2

y
3

p
2

p
3

p
1
2

2

2

y
2

Figure 3.2: An illustration of the transformation (for the non-monotone 3-CNFformula (y1 _ y2) ^ (y2 _ :y1 _ y3) ^ (y1 _ :y3 _ :y2)).omputation of the proess p2i onsists of a true event, orresponding to the literall3i , followed by a false event. For an example see Figure 3.1(b).Now, given a satisfying truth assignment, the required subset of mutuallyonsistent true events (see Observation 3.1) an be onstruted by seleting, foreah lause in the prediate, the true event orresponding to the literal with valuetrue (eah lause must ontain at least one suh literal beause the truth assignmentsatis�es the formula). Conversely, given a onsistent ut that satis�es the prediate,for eah lause in the formula, we an assign the value true to that literal for whihthe orresponding true event in ontained in the ut's frontier. However, in theomputation onstruted so far, it is possible for two true events to be onsistent30

even if the orresponding literals are oniting. Thus we may end up assigningtrue values to oniting literals. To prevent this from happening, we make thetrue events orresponding to the oniting literals inonsistent by adding an arrow(that is, a message) from the suessor of the true event orresponding to the positiveliteral to the true event orresponding to the negative literal as shown in Figure 3.2.For example, e is a true event orresponding to the positive literal y2 and g is the trueevent orresponding to the negative literal :y2 whih onits with y2. Thereforewe add an arrow from the suessor of e, namely f , to g.It remains to be shown that the arrows do not reate any yle and two trueevents are onsistent if and only if the orresponding literals are non-oniting. ItsuÆes to show that there is no ausal hain in the omputation involving more thanone message (or arrow) or, in other words, no dependeny is reated between trueevents due to transitivity. Observe that the true event orresponding to a negativeliteral is always at the reeiving end of an arrow, if at all, and the suessor of thetrue event orresponding to the positive literal, whih is a false event, is alwaysat the sending end of an arrow, if at all. Sine there are no other arrows in theomputation, eah external event in the omputation is either a send event or areeive event but not both. Furthermore, if a proess ontains more than one trueevent, the true event for the negative literal ours after the true event for thepositive literal. This ensures that if a proess has both send and reeive events thenthe reeive event ours after the send event. Thus any ausal hain, on reahinga proess via a message, annot subsequently follow any more messages, therebylimiting the size of the ausal hain to at most one message.It is easy to see that the redution takes polynomial-time and thenon-monotone 3-CNF formula is satis�able if and only if some onsistent ut ofthe omputation satis�es the singular 2-CNF prediate.Theorem 3.2 Deteting a singular 2-CNF prediate is NP-omplete in general.31

Using the above theorem, it an be proved that even deteting prediates suhas (x1 < x2) ^ (x3 < x4) ^ � � � ^ (xn�1 < xn), where eah xi is an integer variable onproess pi, is NP-omplete in general. More preisely,Corollary 3.3 Deteting a onjuntion of lauses of the form xi relop xj, whereeah xi is an integer variable and relop 2 f<;6; >;>; 6=g, suh that no two lausesontain variables from the same proess is NP-omplete in general.Proof: The proof involves a simple redution from a singular 2-CNF prediate.Consider a lause yi _ yj in a singular 2-CNF prediate. We de�ne integer variablesxi and xj suh that xi is 0 whenever yi is false and is �1 otherwise. Similarly, xj is0 whenever yj is false and is 1 otherwise. It an be easily veri�ed that yi _ yj holdsif and only if xi is less than xj . Similar redutions an be given for other relationaloperators. �Although the omputation that we onstrut assumes that an event an sendor reeive multiple messages, it an be easily modi�ed to ensure that an event sendsor reeives at most one message while maintaining the property that the formula issatis�able if and only if the prediate holds in the omputation.3.3.2 EÆient Algorithm for Speial CasesTarafdar and Garg [TG98a℄ onsider extension of the Lamport's happened-beforemodel [Lam78℄ for prediate detetion that allows events on a proess to be partiallyordered. They all it the strong ausality model. For this model, they present analgorithm for deteting a onjuntive prediate when either all reeive events onevery proess are totally ordered or all send events on every proess are totallyordered. We denote this algorithm by CPDSC|Conjuntive Prediate Detetionin Strong Causality Model. Observation 3.1 enables us to view eah group grpias a meta-proess with events on it as partially ordered. Thus CPDSC algorithm32

an be applied to solve our problem in a straightforward fashion. However, as intheir ase, either all reeive events on every meta-proess are totally ordered, thatis, the omputation is reeive-ordered, or all send events on every meta-proess aretotally ordered, that is, the omputation is send-ordered. We only give an overviewof the algorithm here assuming that the omputation is reeive-ordered. The proofof orretness and other details an be found elsewhere [TG98a℄.For the happened-before model, Garg and Waldeker [GW94℄ give apolynomial-time algorithm for deteting a onjuntive prediate. We denotetheir algorithm by CPDHB|Conjuntive Prediate Detetion in Happened-BeforeModel. Note that, given a set of true events, one from eah proess, either eventsin the set are pairwise onsistent or there exist events e and f in the set suh thatsu(e) happened-before f . Sine events on a proess are totally ordered in thehappened-before model, e is also inonsistent with every event on the proess thatours after f . This allows us to eliminate e from onsideration in a san of theomputation from left to right, thereby giving an eÆient algorithm for deteting aonjuntive prediate.Sine events on a meta-proess are, in general, not totally ordered, CPDHBalgorithm annot be applied diretly. However, if the omputation is reeive-orderedthen it satis�es Property 3.1 that enables a polynomial-time algorithm to be devised.Consider a omputation hE;!i. We �rst extend the partial order ! as follows: fortwo independent events e and f on a meta-proess suh that f is a reeive event,add an arrow from e to f . It an be proved that the added arrows do not reate anyyle [TG98a℄. We then linearize the new partial order thus generated to obtain atotal order on all events, say . It an be veri�ed that the omputation satis�esthe following property: 33

Property 3.1 Given events e, f and g suh that events f and g are on the samemeta-proess but events e and f are on di�erent meta-proesses, we have,(e! f) ^ (f g)) e! gThus, given events e and f on di�erent meta-proesses suh that su(e)! f ,by virtue of Property 3.1, e is also inonsistent (with respet to !) with everyevent g that ours after f (with respet to) on the same meta-proess (asf). Sine events on a meta-proess are totally ordered with respet to , we aneliminate e from onsideration in a san of hE; i from left to right. This gives usan eÆient algorithm to detet a singular k-CNF prediate when the omputationis reeive-ordered. The time omplexity of the above algorithm is O(jEj2).3.3.3 Algorithms for the General CaseFor the general ase, when the omputation is neither reeive-ordered norsend-ordered, we an form subsets of proesses with eah subset ontaining exatlyone proess from eah meta-proess. The CPDHB algorithm an then be applied toeah subset [SS95℄. Alternatively, we an divide events on eah meta-proess intoa set of hains of events that over all true events in that meta-proess|eah trueevent belongs to at least one hain. We then onstrut subsets of hains with eahsubset ontaining exatly one hain from eah meta-proess. The CPDHB algorithman then be applied to eah subset. The minimum number of hains needed to overall true events in a meta-proess is upper-bounded by k.3.4 Relational Prediates: x1 + x2 + � � �+ xn = kA relational prediate [TG97℄ is of the form x1 + x2 + � � �+ xn relop k, where eahxi is an integer variable on proess pi and relop 2 f=; <;>;6;>g. Note that34

our de�nition of relational prediates inludes equality whih was exluded in thede�nition by Tomlinson and Garg [TG97℄. For onveniene, we abbreviate theprediate possibly : (x1 + x2 + � � �+ xn relop k) by possibly : (relop k). For example,possibly : (= k) is a shorthand for possibly : (x1 + x2 + � � �+ xn = k). Likewise, weobtain definitely : (relop k).We �rst establish the NP-ompleteness of evaluating possibly : (= k) ingeneral. We next present a polynomial-time algorithm for the speial ase wheneah xi is inremented or deremented by at most one at eah step.3.4.1 NP-Completeness ResultThe problem is in NP beause the general problem of deteting an arbitrary booleanexpression is in NP [CG98℄. To prove its NP-hardness, we redue an arbitraryinstane of the subset sum problem [GJ91, problem SP13℄ to an instane of detetingpossibly : (= k). The subset sum problem is de�ned as follows:De�nition 3.2 (subset sum problem [GJ91℄) Given a �nite set A, size s(ai) 2Z+ for eah ai 2 A and a positive integer B, does there exist a subset A0 � A suhthat the sum of the sizes of the elements in A0 is exatly B?The redution is as follows. There is a proess pi that hosts variable xi foreah element ai in the set A. The initial value of eah xi is set to zero. Eah proesshas exatly one event ei; the �nal value of xi, after exeuting ei, is s(ai). Finally,k is set to B. It is easy to see that the redution takes polynomial-time and therequired subset exists if and only if possibly : (= k) holds.Theorem 3.4 Deteting possibly :(= k) when eah xi an be modi�ed (inrementedor deremented) by an arbitrary amount at eah step is NP-omplete in general.35

3.4.2 EÆient Algorithm for the Speial CaseIt is possible to devise an eÆient algorithm for deteting possibly : (= k) in aomputation provided that eah xi is inremented or deremented by at most oneat eah step. The algorithm is based on monitoring prediates possibly : (6 k)and possibly : (> k). EÆient algorithms to observe these prediates an be foundelsewhere [CG95, TG97℄.A onsistent ut C 0 is reahable from a onsistent ut C if it is possible toattain C 0 from C by exeuting zero or more events. It an be veri�ed that C0 isreahable from C if and only if C � C 0. If C0 an be obtained from C by exeutingexatly one event then C0 immediately sueeds C. Furthermore, C immediatelypreedes C0.A sequene of onsistent uts fCigi>0 forms a path in a omputation if eahCi+1 immediately sueeds Ci. Observe that if C 0 is reahable from C then there isa path from C to C 0 and vie versa. Moreover, every run orresponds to a path inthe omputation.Observation 3.2 Let C and C0 be onsistent uts suh that C0 is obtained from Cby exeuting at most one event. Then jsum(C 0)� sum(C)j 6 1.Given a onsistent ut C, let sum(C) denote the value of the sumx1 + x2 + � � �+ xn evaluated at C. Given a pair of integers u and v, let range(u; v)denote the set [minfu; vg : : :maxfu; vg℄. For example, range(3; 8) = [3 : : :8℄ =f3; 4; 5; 6; 7; 8g and range(6; 2) = [2 : : :6℄ = f2; 3; 4; 5; 6g.Theorem 3.5 Let C and C0 be onsistent uts suh that there is a path s from Cto C 0 in the omputation. Then, for eah v,v 2 range(sum(C); sum(C 0))) h9D : D 2 s : sum(D) = vi36

Proof: Without loss of generality, assume that sum(C) 6 sum(C0). The prooffor the other ase, when sum(C) > sum(C 0), is similar and has been omitted.Assume that v 2 range(sum(C); sum(C 0)), that is, sum(C) 6 v 6 sum(C0). Ifv = sum(C 0) then C 0 is the required onsistent ut. Thus assume that v < sum(C 0).Starting from C we follow the path s by exeuting, one-by-one, zero or more eventsin C 0 n C until we reah a onsistent ut H suh that sum(H) > v for the �rsttime. We laim that sum(H) = v. Assume, by the way of ontradition, thatsum(H) 6= v, that is, sum(H) > v. Note that H exists sine sum(C0) > v. LetG be the onsistent ut that immediately preedes H along the path. Note that Gexists sine sum(C) 6 v. Moreover, sum(G) < v beause H is the �rst onsistentut with sum at least v. Thus (1) sum(H) > v implying that sum(H) > v + 1,and (2) sum(G) < v implying that sum(G) 6 v � 1. Combining the two, we havesum(H) � sum(G) > 2, a ontradition. Therefore sum(H) = v and H is therequired onsistent ut. �The entral idea behind the algorithm for deteting possibly : (= k) is to �nda pair of onsistent uts C and C 0, if they exist, suh that C0 is reahable from Cand k lies in range(sum(C); sum(C 0)). Theorem 3.5 then guarantees the existeneof a onsistent ut that satis�es x1 + x2 + � � �+ xn = k. The onsistent ut C isalways set to the initial onsistent ut ?. The advantage is that every onsistentut of the omputation is reahable from the initial onsistent ut. The next lemmafurnishes suÆient onditions for possibly : (= k) to hold in a omputation.Lemma 3.6 We have,(sum(?) 6 k) ^ (possibly : (> k))) possibly : (= k); and(sum(?) > k) ^ (possibly : (6 k))) possibly : (= k)Proof: Assume that the onjuntion (sum(?) 6 k) ^ (possibly :(> k)) holds. Sinepossibly :(> k) is true, there exists a onsistent ut with C0 with sum(C0) > k. Thus,37

from Theorem 3.5, there exists a onsistent ut D suh that sum(D) = k implyingthat possibly : (= k) holds. Likewise, (sum(?) > k) ^ (possibly : (6 k)) impliespossibly : (= k). �The following lemma presents suÆient onditions for definitely : (= k) tohold in a omputation. The proof is similar to the proof of Lemma 3.6 and has beenomitted.Lemma 3.7 We have,(sum(?) 6 k) ^ (definitely : (> k))) definitely : (= k); and(sum(?) > k) ^ (definitely : (6 k))) definitely : (= k)Finally, the following theorem gives the neessary and suÆient onditionsfor prediates possibly : (= k) and definitely : (= k) to hold in a omputation.Theorem 3.8 We have,(1) possibly : (= k) � (sum(?) 6 k) ^ (possibly : (> k)) W(sum(?) > k) ^ (possibly : (6 k))(2) definitely : (= k) � (sum(?) 6 k) ^ (definitely : (> k)) W(sum(?) > k) ^ (definitely : (6 k))Proof: (1) Follows from the fat that possibly : (= k) implies possibly : (6 k) ^possibly : (> k), the disjuntion (sum(?) 6 k) _ (sum(?) > k) is a tautology andLemma 3.6.(2) Follows from the fat that definitely : (= k) implies definitely : (6 k) ^definitely : (> k), the disjuntion (sum(?) 6 k) _ (sum(?) > k) is a tautologyand Lemma 3.7. �Observe that the �nal onsistent ut is reahable from every onsistent utof a omputation. Thus an alternate set of neessary and suÆient onditions for38

possibly :(= k) and definitely :(= k) based on �nal onsistent ut an also be derived.The time-omplexity of omputing possibly : (6 k) or possibly : (> k) [TG97, CG95℄is O(jEj2 log(jEj)). Thus the time-omplexity of omputing possibly : (= k) is alsoO(jEj2 log(jEj)).Sine possibly distributes over disjuntion, the following prediates,expressed as disjuntion of prediates of the form x1 + x2 + � � �+ xn exatly equalsk, an be easily deteted using Theorem 3.8.� absene of simple majority: v1 + v2 + � � �+ vn = n=2, n even� absene of two-third majority:(v1+v2+ � � �vn > bn3)^(v1+v2+ � � �vn < d2n3 e) � Wk2A(v1+v2+ � � �+vn = k),where A = [bn3 + 1 : : :d2n3 e � 1℄� exatly k tokens: token1 + token2 + � � �+ tokenn = kAdditionally, the symmetri prediates, de�ned as follows, an now beeÆiently monitored.De�nition 3.3 (symmetri prediate [Koh78℄) A prediate b(x1; x2; : : : ; xn)de�ned on n boolean variables is alled symmetri if it is invariant under anypermutation of its variables.Some examples of symmetri prediates are x ^ y, x _ y, x � y and(x ^ y) _ (:x ^ :y). The neessary and suÆient ondition for a prediateb(x1; x2; : : : ; xn) to be symmetri is that it may be spei�ed by a set of numbersfa1; a2; : : : ; amg, where 0 6 ai 6 n and m 6 n + 1, suh that it assumes value truewhen and only when, for some i, exatly ai of the variables are true. For example,the symmetri prediate (x _ y _ z) ^ (:x _ :y _ :z) is logially equivalent to theprediate (x + y + z = 1) _ (x + y + z = 2), where false and true are represented39

by 0 and 1, respetively, for the purpose of evaluating x+ y + z. The proof of thisresult an be found elsewhere [Koh78, page 174℄. Sine, possibly distributes overdisjuntion, possibly : b when b is a symmetri prediate an be eÆiently omputedusing Theorem 3.8. Some examples of symmetri prediates that arise in distributedsystems are:� exlusive-or of loal prediates:x1 � x2 � � � � � xn � Wk is odd(x1 + x2 + � � �+ xn = k)� not all loal prediates have the same value:(x1 _ x2 _ � � � _ xn) ^ (:x1 _ :x2 _ � � � _ :xn) � Wk2A(x1 + x2 + � � �+ xn = k),where A = [1 : : :(n� 1)℄

40

Chapter 4Controlling Global PrediatesIn this hapter, we disuss in detail our results pertaining to ontrollingglobal prediates in distributed omputations.4.1 OverviewWe �rst de�ne the problem formally in Setion 4.2. Informally, a prediate is said tobe ontrollable in a omputation if it is possible to add synhronization dependenies,without reating a deadlok (that is, a yle), suh that every onsistent ut of theresulting omputation satis�es the prediate. In ase the prediate an indeed beontrolled in the omputation, the set of synhronization dependenies required toontrol the prediate is referred to as \ontrolling synhronization". The resultantomputation is alled \ontrolled omputation". A synhronization dependenyfrom an event e to an event f means that f annot be exeuted until e has beenexeuted and an be implemented using a ontrol message.Tarafdar and Garg [TG98b℄ establish that it is in general NP-omplete toontrol a prediate in a omputation. However, eÆient polynomial-time algorithms41

an be developed for many useful lasses of prediates [TG98b, TG99℄.In Setion 4.3, we introdue a new lass of prediates alled \regionprediates". A region prediate is a onjuntion of p-region prediates, where pis a proess, with possibly di�erent p's. Roughly speaking, a p-region prediatepartitions the set of onsistent uts that satisfy the prediate into a set of \onvexregions", one for eah event on proess p, suh that the set of onsistent uts thatlie in a region forms a lattie under set ontainment. Intuitively, on reahing anevent on proess p, one the p-region prediate is falsi�ed (that is, beomes falsefrom true), it does not beome true again until the omputation advanes beyondthe event. The lass of p-region prediates is losed under onjuntion and henethe lass of region prediates is losed under onjuntion. Some examples of regionprediates are termination, onjuntive prediates and monotoni hannel prediatessuh as \at most (or at least) k messages in transit in any hannel".We present an eÆient polynomial-time algorithm to ontrol a regionprediate in a omputation. The time-omplexity of our algorithm is O(njEj2),where n is the number of proesses and E is the set of events. We also prove thatthe ontrolling synhronization generated by our algorithm is optimal in the sensethat it not only eliminates all unsafe runs but also retains all safe runs.In Setion 4.4, we introdue the notion of an \admissible sequene" of eventswith respet to a prediate. Spei�ally, we identify four properties that haraterizean admissible sequene. Roughly speaking, an admissible sequene imposes a totalorder on \ertain" events in the omputation suh that exeuting those events inthat order ensures that the prediate is never falsi�ed. We show that the existeneof an admissible sequene of events with respet to a prediate is a neessary andsuÆient ondition for a prediate to be ontrollable in a omputation. Further,given an admissible sequene, the ontrolling synhronization an be easily obtainedand vie versa. 42

Based on the notion of admissible sequene, we devise a polynomial-timealgorithm for ontrolling a \disjuntive prediate" in a omputation. A disjuntiveprediate is a disjuntion of loal prediates. Intuitively, a disjuntive prediatestates that at least one loal ondition must be met at all times, or, in other words,a bad ombination of loal onditions does not our. Examples of disjuntiveprediates inlude \at least one server is available" and \at least one philosopherdoes not have any fork".To ontrol a disjuntive prediate in a omputation, we onstrut a diretedgraph on \true-intervals" (maximal ontiguous sequene of true events on a proess)of the omputation suh that the problem of determining an admissible sequeneredues to �nding an appropriate shortest path in the graph. The time-omplexityof the algorithm is O(njT j), where n is the number of proesses and T is the set oftrue-intervals, whih is same as that of Tarafdar and Garg's algorithm [TG98b℄. Wefurther modify the algorithm to ompute a minimum ontrolling synhronization|with the least number of synhronization dependenies|for a disjuntive prediate.Clearly, a minimum ontrolling synhronization minimizes the number of ontrolmessages required to maintain a disjuntive prediate in a omputation. The time-omplexity of the modi�ed algorithm is O(jEj2), where E is the set of events.4.2 Problem StatementThe prediate ontrol problem refers to monitoring a prediate under ontrollablemodality [TG98b℄. Intuitively, a prediate is ontrollable in a omputation if itis possible to make the omputation \striter" suh that every onsistent ut ofthe resulting omputation satis�es the prediate. More preisely, a prediate bis ontrollable in a omputation hE;!i if there exists a set of synhronizationdependenies S! suh that (1) S! does not interfere with !, that is, (! [S!)is ayli, and (2) every onsistent ut of hE; i, where = (! [S!)+, satis�es b.43

1 2 3 4 5

3

C .emin

f u w

x

round

round

round 3

2

1

yvg

e

D C

Cmax.e

p3

p1

p2Figure 4.1: An example of a p-region prediate.We all the synhronization S! as a ontrolling synhronization and the omputationhE; i as the ontrolled omputation. This de�nition of ontrollable : b is slightlydi�erent from the de�nition provided in Chapter 2. It an be veri�ed that bothde�nitions are atually equivalent.Note that a synhronization dependeny from an event e to an event f meansthat f annot be exeuted until e has been exeuted and an be implemented usinga ontrol message.4.3 Region PrediatesWe �rst de�ne a region prediate with respet to a proess, alled p-region prediate.Informally, a p-region prediate partitions the set of onsistent uts satisfying theprediate into a set of regions, one for eah event on proess p, satisfying ertainproperties. Firstly, the set of onsistent uts that lie in a region (that is, all eventsin the frontier of the ut belong to the region) forms a lattie. Seondly, eah regionis onvex or, equivalently, a onsistent ut that lies between two onsistent utsontained in the region also belongs to the region.44

Example 4.1 Consider the omputation shown in Figure 4.1 and the prediate\proesses p1 and p2 are approximately synhronized" expressed mathematially asjround1 � round2j 6 �12 with �12 set to 1. Consider the event e on p2 depited inthe �gure. Immediately after exeuting e, the value of round2 is 3. Sine round1is monotonially non-dereasing, there exist earliest and latest events on p1, in thisase f and u, respetively, suh that the prediate holds. Furthermore, the prediateholds for every event on p1 that lies between f and u. The region orrespondingto e (the shaded area resembling the ross-setion of an hourglass in the �gure) isbounded on the left by the least onsistent ut passing through e and f and on theright by the greatest onsistent ut passing through e and u. The onsistent ut Clies in the region whereas the onsistent ut D does not. It an be veri�ed that theregion is atually onvex and the set of onsistent uts that belong to the region formsa lattie.A p-region prediate is formally de�ned as follows:De�nition 4.1 (p-region prediate) A prediate b is a p-region prediate if itsatis�es the following properties. For eah event e on proess p,� (weak lattie) If two onsistent uts that pass through e satisfy the prediatethen so do the onsistent uts given by their set intersetion and set union.Formally,(e 2 frontier(C1) \ frontier(C2)) ^ (C1 j= b) ^ (C2 j= b))(C1 \ C2 j= b) ^ (C1 [C2 j= b)� (weak onvexity) If two onsistent uts that pass through e satisfy theprediate then so does the onsistent ut that lies between the two. Formally,(e 2 frontier(C1) \ frontier(C2)) ^ (C1 j= b) ^ (C2 j= b) ^(C1 � C � C2))C j= b45

We all the two properties \weak" beause they are only satis�ed by thoseonsistent uts that satisfy the prediate and pass through a given event, and not byall onsistent uts that satisfy the prediate. Some examples of pi-region prediatesenountered in distributed systems are as follows:� any loal prediate on pi� \bounded" number of messages in transit from pi to pj : sendij � revij 6 �ij� \almost" fair resoure alloation between pi and pj , when the system is heavilyloaded: jalloi � allojj 6 �ij� \bounded" drift between the loks of pi and pj : jloki� lokjj 6 �ij� pi and pj are \approximately" synhronized: jroundi � roundj j 6 �ij� xi < minfyj ; ykg, where xi, yj and zk are variables on pi, pj and pk,respetively, with yj and yk monotonially non-dereasingGiven two p-region prediates, their onjuntion is also a p-region prediateas established by the next theorem.Theorem 4.1 The lass of p-region prediates is losed under onjuntion.Proof: We have to prove that if b1 and b2 are p-region prediates then so is b1^ b2.We �rst prove that b1 ^ b2 satis�es the weak lattie property. Consider onsistentuts C1 and C2 passing through an event e on proess p that satisfy b1 ^ b2. Bysemantis of onjuntion, both C1 and C2 satisfy b1 as well as b2. Applying the weaklattie property twie, we obtain C1 \ C2 satis�es b1 and b2. Again, by semantisof onjuntion, C1 \ C2 satis�es b1 ^ b2. Likewise, C1 [C2 satis�es b1 ^ b2. Thusb1 ^ b2 satis�es the weak lattie property.46

We now prove that b1 ^ b2 satis�es the weak onvexity property. Consideronsistent uts C1 and C2 passing through e that satisfy b1 ^ b2 and let C be anyonsistent ut that lies between the two. By semantis of onjuntion, both C1 andC2 satisfy b1 as well as b2. Applying the weak onvexity property twie, we obtainC satis�es b1 and b2. This implies that C satis�es b1^ b2. Therefore b1^ b2 satis�esthe weak onvexity property. �A region prediate is a onjuntion of p-region prediates with possiblydi�erent p's. It an be veri�ed that the prediate representing termination is atu-ally a region prediate. Note that, for eah p, true is a p-region prediate. Thus aregion prediate b an be written as onjuntion of n prediates suh that the ithonjunt, denoted by b(i), is a pi-region prediate.Given an event e on proess pi, we denote the least onsistent ut passingthrough e that satis�es b(i) by Cmin:e. Similarly, we denote the greatest onsistentut passing through e that satis�es b(i) by Cmax:e. If there does not exist a onsistentut that passes through e and satis�es b(i) then neither Cmin:e nor Cmax:e exists.Additionally, trivially, b(i) (and hene b) annot be ontrolled in the omputation.However, if there exists at least one onsistent ut passing through e that satis�esb(i) then both Cmin:e and Cmax:e exist and are well-de�ned. This is beause, fromthe weak lattie property, the set of suh onsistent uts forms a lattie under setontainment (�) implying that the set has a minimum (orresponds to Cmin:e) anda maximum (orresponds to Cmax:e).4.3.1 Finding a Controlling SynhronizationIn order to �nd the synhronization neessary to ontrol a region prediate in aomputation, we �rst ompute the synhronizations suÆient to ontrol eah of itsonjunt (reall that the ith onjunt orresponds to a pi-region prediate). If it turnsout that one or more of these onjunts is not ontrollable then, trivially, the region47

prediate itself annot be ontrolled. Further, in ase the various synhronizations(orresponding to di�erent onjunts) do not interfere with eah other and, inaddition, the olletive synhronization does not interfere with the happened-beforerelation of the omputation then, learly, the olletive synhronization onstitutesa ontrolling synhronization for the given region prediate. Unfortunately, theonverse does not hold in general.Example 4.2 Suppose we wish to ontrol the prediate (x1 _ x2) ^ (x3 _ x4) in theomputation shown in Figure 4.2(a), where eah xi is a boolean variable on proesspi. It an be veri�ed that the arrow from event h to event e onstitutes a ontrollingsynhronization for the �rst onjunt x1 _ x2. Similarly, the arrow from event v toevent u onstitutes a ontrolling synhronization for the seond onjunt x3 _ x4.However, the olletive synhronization given by f(h; e); (v; u)g interferes with thehappened-before relation of the omputation. In other words, it reates a yle asshown in Figure 4.2(b). The �rst onjunt has another ontrolling synhronization,namely the arrow from event f to event g. In this ase, the olletive synhronizationgiven by f(f; g); (v; u)g neither interferes with itself nor with the happened-beforerelation of the omputation, thereby onstituting a ontrolling synhronization forthe prediate (x1 _ x2) ^ (x3 _ x4).However, if the omputed synhronization for eah onjunt is smallest inthe sense that it is ontained in every possible ontrolling synhronization for therespetive onjunt then the onverse also holds. That is, if the region prediateis ontrollable in a omputation then the various synhronizations not only do notinterfere with eah other but, additionally, the olletive synhronization does notinterfere with the happened-before relation of the omputation. Intuitively, this isbeause a ontrolling synhronization for a region prediate also ats as a ontrolling48

: true event : false event

(a) (b)

f t

tft

t f

tf

f t

tft

t f

tf

(c)

f t

tft

t f

tf

p4

x4

p1
1x

p2

x2

p3

x3

p4

x4

p1
1x

p2

x2

p3

x3

p4

x4

p1
1x

p2

x2

p3

x3

v

e f

g h

u

t

v

e f

g h

u

t

v

e f

g h

u

t

Figure 4.2: An example to illustrate that the interferene of some olletivesynhronization with the happened-before relation does not imply that the prediateannot be ontrolled. 49

: true event : false event

(c)

t

t f

f t

t

(b)(a)

t

t f

f t

t

t

t f

f t

t

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

e f

g h

e f

g h

e f

g h

Figure 4.3: An example to illustrate that the smallest ontrolling synhronizationmay not always exist.synhronization for eah of its onjunt.De�nition 4.2 (smallest ontrolling synhronization) We all a ontrollingsynhronization smallest if it is ontained in every possible ontrollingsynhronization for the prediate. Formally, given a ontrolling synhronizationS! for a prediate b in a omputation hE;!i,S! is smallest , h8 : extends ! :hE; i j= invariant : b � ontains S!iA smallest ontrolling synhronization may not always exist as illustrated bythe following example.Example 4.3 Consider the omputation in Figure 4.3(a). Suppose we desire toontrol the prediate x1 _ x2 in the omputation, where eah xi is a boolean variable50

on proess pi. Sine the prediate x1 _ x2 is not invariant in the omputation tobegin with, the smallest ontrolling synhronization, if it exists, must be non-empty.It an be veri�ed that the arrow from event f to event g onstitutes a ontrollingsynhronization for the prediate x1 _ x2, as shown in Figure 4.3(b), as does thearrow from event h to event e, as depited in Figure 4.3(). Moreover, the twosynhronizations are mutually disjoint implying that the prediate x1 _ x2 does nothave a smallest ontrolling synhronization.As it happens, the smallest ontrolling synhronization in fat exists for ap-region prediate (and therefore also exists for a region prediate). Thus in order to�nd a ontrolling synhronization for a region prediate, from the above disussion,it suÆes to devise an algorithm to ompute the smallest ontrolling synhronizationfor a p-region prediate.Consider a omputation hE;!i and a region prediate b. What does it entailto ontrol the pi-region prediate b(i), 1 6 i 6 n, in hE;!i? Consider an event e onproess pi. As we know, the omputation progresses from the initial onsistent ut? to the �nal onsistent ut E by exeuting, one-by-one, the events in E. For b(i) tohold when it �rst reahes e, it must be the ase that no event in the frontier of theomputation lies on the left of the frontier of Cmin:e. That is, when e is exeuted, allother events in the frontier of Cmin:e must have already been exeuted. This entailsadding synhronization dependenies from eah event in the frontier of Cmin:e thatis di�erent from e to e. We denote this synhronization by e(1)! and formally de�neit as follows: e(1)! , f (f; e) j f 2 frontier(Cmin:e) n feg and e 62 ? gFor an example refer to Figure 4.4. Furthermore, for b(i) to hold as longas the omputation stays at e (equivalently, until the suessor of e, if it exists, isexeuted), the frontier of the omputation annot advane beyond Cmax:e. That51

1 2 3 4 5

C .emin

f u w

x

round

round

round 3

2

1

yvg

e
3

Cmax.e

p3

p1

p2Figure 4.4: An illustration of the synhronization e(1)! (denoted by dotted arrows).is, the suessor of any event in the frontier of Cmax:e that is di�erent from e, if itexists, annot be exeuted until the omputation advanes beyond e. This involvesadding synhronization dependenies from the suessor of e, if it exists, to thesuessor of every other event in the frontier of Cmax:e, if it exists. We denote thissynhronization by e(2)! and formally de�ne it as follows:e(2)! , f (su(e); su(f)) j f 2 frontier(Cmax:e) n feg and fe; fg \ > = ; gFor an illustration see Figure 4.5. The overall synhronization needed forontrolling b(i) in hE;!i is given by the union of (e(1)! [e(2)!), where e ranges overthe events on proess pi. Finally, the synhronization required to ontrol b in hE;!i,denoted by S!, is given by: S! , [e2E(e(1)! [e(2)!) (4.1)For onveniene, we use C! to denote the transitive losure of the relationobtained by adding S! to !. Formally,C! , (! [S!)+The next lemma desribes the suÆient ondition under whih a regionprediate is ontrollable in a omputation. Informally, this happens when eah52

1

round 2

round 1

round 3

2 3 4 5

C .emin

f u w

x

3

yvg

e

Cmax.e

p3

p1

p2Figure 4.5: An illustration of the synhronization e(2)! (denoted by dotted arrows).of its onjunt is ontrollable and the olletive synhronization neither interfereswith itself nor with the happened-before relation of the omputation|whih an besuintly represented as: (! [S!) is ayli.Lemma 4.2 (suÆient ondition) If (1) the initial and �nal onsistent uts ofa omputation hE;!i satisfy a region prediate b, and (2) C! is an irreexive partialorder then b is invariant in hE; C!i.Proof: Consider a onsistent ut C of hE; C!i and an event e ontained in itsfrontier. We show that C lies between Cmin:e and Cmax:e. We �rst prove thatCmin:e � C. If e 2 ? then Cmin:e = ? beause, trivially, ? is the least onsistentut of hE;!i that passes through e and ? j= b. Furthermore, by de�nition ofonsistent ut, C � ?. Thus Cmin:e � C. The more interesting ase is whene 62 ?. We want to prove that,Cmin:e � C� f de�nition of onsistent ut and its frontier gh8 f : f 2 frontier(Cmin:e) : f 2 Ci� f by de�nition, Cmin:e passes through e g53

(e 2 C) ^ h8 f : f 2 frontier(Cmin:e) n feg : f 2 Ci(f C is a onsistent ut of hE; C!i g(e 2 C) ^ h8 f : f 2 frontier(Cmin:e) n feg : f C! ei(f C passes through e gh8 f : f 2 frontier(Cmin:e) n feg : (f C! e)i(f S!� C! gh8 f : f 2 frontier(Cmin:e) n feg : (f S! e)i(f e(1)! � S! gh8 f : f 2 frontier(Cmin:e) n feg : (f e(1)! e)if e 62 ? and de�nition of e(1)! gLikewise, C � Cmax:e. Let pro(e) = pi. By de�nition, both Cmin:e andCmax:e satisfy b(i). Thus, from the weak onvexity property, C satis�es b(i). Sinee was hosen arbitrarily, for eah i, we an infer that C satis�es b(i). This impliesthat C satis�es b. �The next lemma proves that the synhronization given by S! is indeed thesmallest ontrolling synhronization for b in hE;!i. In other words, any otherontrolling synhronization for b in hE;!i, if it exists, must ontain S!.Theorem 4.3 If a region prediate b is ontrollable in a omputation hE;!i thenthe synhronization S! de�ned in (4.1) is the smallest ontrolling synhronization.Proof: Sine b is ontrollable in hE;!i, there exists an irreexive partial order that extends ! suh that b is invariant in hE; i. We need to prove that S! isontained in . It is suÆient to prove that, for eah event e, both e(1)! and e(2)! areontained in .We �rst show that, for eah event e, inludes e(1)! . Consider an event e,e 62 ?, on proess pi. Note that if e 2 ? then e(1)! is an empty set. In the proof54

we use the notion of the least onsistent ut of hE; i that ontains e, denoted byCleast:e. By de�nition, Cleast:e passes through e and an event other than e belongsto Cleast:e if and only if it happened-before e in hE; i. Formally,(e 2 frontier(Cleast:e)) ^ h8 f : f 6= e : f 2 Cleast:e � f ei (4.2)We want to prove that,e(1)! � � f de�nition of e(1)! gh8 f : f 2 frontier(Cmin:e) n feg : f ei� f using (4.2) gh8 f : f 2 frontier(Cmin:e) n feg : f 2 Cleast:ei(f de�nition of onsistent ut and its frontier gCmin:e � Cleast:e(8<:Cleast:e is a onsistent ut of hE;!i that passes through e andsatis�es b(i) and Cmin:e is the least suh ut 9=;(Cleast:e is a onsistent ut of hE;!i) ^ (e 2 frontier(Cleast:e))^(Cleast:e j= b(i))(f Cleast:e is a onsistent ut of hE; i and !� g(e 2 frontier(Cleast:e)) ^ (Cleast:e j= b(i))(f using (4.2) gCleast:e j= b(i)(f b(i) is a onjunt of b gCleast:e j= bf sine b is invariant in hE; i, Cleast:e satis�es b gSimilarly, it an be proved that, for eah event e, inludes e(2)! . �The neessary ondition for a region prediate to be ontrollable in aomputation an now be easily derived. 55

Lemma 4.4 (neessary ondition) If a region prediate b is ontrollable in aomputation hE;!i then (1) the initial and �nal onsistent uts of hE;!i satisfyb, and (2) C! is an irreexive partial order.Proof: Sine b is ontrollable in hE;!i, there exists an irreexive partial order that extends ! suh that b is invariant in hE; i. Sine ? and E are also theonsistent uts of hE; i, they satisfy b. Furthermore, from Theorem 4.3, S! is thesmallest ontrolling synhronization implying that ontains S!. Thus ontains(! [S!). Sine is an irreexive partial order, (! [S!)+ (= C!) is also anirreexive partial order. �Finally, the next theorem ombines the previous two lemmas and furnishesthe neessary and suÆient ondition for a region prediate to be ontrollable in aomputation.Theorem 4.5 (neessary and suÆient ondition) A region prediate b isontrollable in a omputation hE;!i if and only if (1) the initial and �nal onsistentuts of hE;!i satisfy b, and (2) C! is an irreexive partial order.It turns out that the ontrolling synhronization S! de�ned in (4.1) is minimalin another sense. It not only eliminates all unsafe runs of the omputation but alsodoes not suppress any safe run. We all suh a synhronization optimal.De�nition 4.3 (optimal ontrolling synhronization) We all a ontrollingsynhronization optimal if it does not suppress any safe run of the omputation.Formally, given a ontrolling synhronization S! for a prediate b in a omputationhE;!i, where C!= (! [S!)+,S! is optimal , h8 : is a total order on E that extends !:hE; i j= invariant : b � extends C!i56

In fat, the two aforementioned notions of minimality, namely the smallestand the optimal ontrolling synhronization, turn out to be idential. We establishtheir equivalene in the next theorem.Theorem 4.6 (smallest versus optimal) A smallest ontrolling synhronizationis also optimal and vie versa.Proof: Consider a ontrolling synhronization S! for a prediate b in aomputation hE;!i and let C! be (! [S!)+.(optimal) smallest) Assume that S! is the optimal ontrolling synhronization.Consider an irreexive partial order that extends ! suh that b is invariant inhE; i. Our obligation is to establish that ontains S!. Let 7! be a total orderon E that extends . Sine extends !, 7! also extends ! implying that hE; 7!iis a run of hE;!i. Moreover, hE; 7!i is a safe run of hE;!i beause b is invariantin hE; i and therefore also invariant in hE; 7!i. Sine S! is the optimal ontrollingsynhronization, by de�nition, 7! extends C! or, in other words, 7! inludes S!. Sine7! was hosen arbitrarily, we an infer that every total order on E that extends ontains S! implying that also ontains S!.(smallest) optimal) Assume that S! is the smallest ontrolling synhronization.Consider a safe run hE; i of hE;!i. Our obligation is to establish that hE; iis also a run of hE; C!i, that is, ontains C!. Note that b is invariant in hE; i.Sine S! is the smallest ontrolling synhronization, by de�nition, ontains S!.This implies that extends C! or hE; i is a run of hE; C!i. �From Theorem 4.3 and Theorem 4.6, we obtain,57

Theorem 4.7 If a region prediate b is ontrollable in a omputation hE;!i thenthe synhronization S! de�ned in (4.1) is the optimal ontrolling synhronization.Theorem 4.7 implies that the ontrolling synhronization S! de�ned in (4.1)is not too restritive and, in fat, admits the maximum possible onurreny in theontrolled omputation.From the earlier disussion, it follows that a ontrolling synhronization for aregion prediate an be easily omputed provided, for eah event e, we an eÆientlyompute Cmin:e and Cmax:e, if they exist. To that end, given a p-region prediate band an event e on proess p, we de�ne a prediate be to be true for a onsistent utif it passes through e and satis�es b. Formally,C j= be , (e 2 frontier(C)) ^ (C j= b)It an be veri�ed easily, using the weak lattie property, that if two onsistentuts satisfy be then so does the onsistent ut given by their set intersetion. Chaseand Garg [CG98℄ all suh prediates linear. Likewise, if two onsistent uts satisfybe then the onsistent ut given by their set union also satis�es be. Suh prediatesare alled post-linear [CG98℄.Observation 4.1 The prediate be is linear and post-linear.The onsistent uts Cmin:e and Cmax:e an be reinterpreted as the least andgreatest onsistent ut, respetively, that satisfy be. Chase and Garg [CG98℄ alsoprovide algorithms to �nd the least onsistent ut that satis�es a linear prediateand the greatest onsistent ut that satis�es a post-linear prediate. Here, we fouson the former and give the basi idea behind the algorithm. The orretness proofand other details an be found elsewhere [CG98℄. The algorithm is based on thelinearity property whih is de�ned as follows:58

Algorithm Algo 4.1:Input: (1) a omputation hE;!i, (2) a p-region prediate b, and(3) an event e on proess pOutput: Cmin:e, if it exists1 C := least onsistent ut of hE;!i that passes through e;2 done := false;3 while not(done) do4 if there exists an event f in frontier(C)suh that su(e) ! f then5 exit(\Cmin:e does not exist");endif;6 if there exist events f and g, f 6= e, in frontier(C)suh that su(f) ! g then // C is not a onsistent ut7 C := C [su(f); // advane beyond felse // C is a onsistent ut8 if C j= b then done := true;else9 f := forbidden be(C); // invoke the linearity property10 if f = e or f 2 > then // annot advane beyond f11 exit(\Cmin:e does not exist");12 else C := C [su(f); // advane beyond fendif;endif;endif;endwhile;13 Cmin:e := C;Figure 4.6: The algorithm Algo 4:1 to ompute Cmin:e for an event e.59

Algorithm Algo 4.2:Input: a omputation hE;!i and a region prediate bOutput: synhronization neessary to ontrol b in hE;!i, if possible1 if either ? or E does not satisfy b then2 exit(\b annot be ontrolled in hE;!i");endif;3 for eah event e do4 ompute Cmin:e and Cmax:e;5 if either Cmin:e or Cmax:e does not exist then6 exit(\b annot be ontrolled in hE;!i");endfor;endfor;7 ompute the synhronization S! de�ned in (4.1);8 if (! [S!) is ayli then9 exit(S!);else10 exit(\b annot be ontrolled in hE;!i");endif;Figure 4.7: The algorithm Algo 4:2 to ompute the synhronization neessary toontrol a region prediate in a omputation.De�nition 4.4 (linearity property [CG98℄) A prediate satis�es the linearityproperty if, given a onsistent ut that does not satisfy the prediate, there existsan event in its frontier, alled the forbidden event, suh that there does not exista onsistent ut ontaining the given onsistent ut that satis�es the prediate andalso passes through the forbidden event. Formally, given a omputation hE;!i, alinear prediate b and a onsistent ut C,C 6j= b) h9 f : f 2 frontier(C) : h8D : D � C : D j= b) su(f) 2 Dii60

It is assumed that, given a linear prediate b, there is an eÆient partialfuntion forbidden b : C(hE;!i) �! E that an be used to ompute the event fmentioned in the de�nition of the linearity property. It is hard to provide a generalalgorithm to ompute the funtion that works for any linear prediate. Nevertheless,for the linear prediates enountered in pratie, an eÆient algorithm an indeed begiven. For example, for a onjuntive prediate|a onjuntion of loal prediates|the forbidden event orresponds to that event in the ut's frontier for whih theloal prediate evaluates to false. Throughout this dissertation, we assume that alinear prediate also satis�es the advaning property whih guarantees the existeneof an eÆient funtion to ompute the forbidden event.Figure 4.6 desribes the algorithm Algo 4:1 to ompute Cmin:e using thelinearity property. Informally, starting from the least onsistent ut that passesthrough e|whih basially orresponds to the Fidge/Mattern's vetor timestampfor e [Mat89, Fid91℄, the algorithm sans the omputation from left to right addingevents to the ut onstruted so far one-by-one, using the linearity property, untilthe desired onsistent ut is reahed.The time-omplexity analysis of the algorithm Algo 4:1 is as follows. Eahiteration of the while loop at line 3 has O(n) time omplexity assuming that the time-omplexity of invoking forbidden be at line 9 one is O(n). Thus the time-omplexityof the algorithm Algo4:1 for omputing Cmin:e is O(njEj). The algorithm to omputeCmax:e, based on the post-linearity property [CG98℄, is similar and has been omitted.Figure 4.7 depits the algorithm Algo 4:2 that omputes a synhronization forontrolling a region prediate in a omputation. The orretness of the algorithmfollows from Theorem 4.5. Its time-omplexity analysis is as follows. The time-omplexity of exeuting the if statement at line 1 is O(n). Eah iteration of thefor loop at line 3 has O(njEj) time-omplexity giving the for loop an overall time-omplexity of O(njEj2). The synhronization at line 7 an be omputed in O(njEj)61

time. Finally, the if statement at line 8 an be exeuted in O(jEj2) time. Thus theoverall time-omplexity of the algorithm Algo 4:2 is O(njEj2).4.4 Disjuntive PrediatesA prediate is said to be disjuntive if it an be expressed as disjuntion of loalprediates. Some examples of disjuntive prediates are:� at least one server is available: avail1 _ avail2 _ � � � _ availn� at least one philosopher has no fork: :fork1 _ :fork2 _ � � � _ :forknIntuitively, a disjuntive prediate states that at least one loal onditionmust be met at all times, or, in other words, a bad ombination of loal onditionsdoes not our. Our algorithm for omputing a ontrolling synhronization for adisjuntive prediate utilizes the notion of admissible sequene de�ned next.4.4.1 Admissible SequenesIn this setion, we establish that the notion of ontrollability is atually identialto the notion of admissible sequene whose motivation in turn lies in the ontrolalgorithm for a disjuntive prediate. We make the following observation:Observation 4.2 A onsistent ut satis�es a disjuntive prediate if and only if itontains at least one true event in its frontier.Suppose we wish to ontrol a disjuntive prediate in a omputation. As theomputation proeeds from the initial onsistent ut to the �nal onsistent ut, fromthe above observation it follows that it is both neessary and suÆient to ensure thatthroughout there exists at least one true event in the frontier of the omputation.Thus at least one initial event must be a true event. To start with, one suh initial62

: true event : false event

C1

C4

C2

C3

(b)

(d) (c)

(a)

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

fftf

t f f t

e

f

g

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

p2

p1

x2

1x

Figure 4.8: A strategy for ontrolling a disjuntive prediate.event bears the responsibility for ensuring that the prediate stays true|by atingas an anhor|until the burden an be passed on to some other true event. Thistransferene of burden ontinues until the omputation reahes the �nal onsistentut.Example 4.4 We want to ontrol the disjuntive prediate x1 _ x2 in theomputation depited in Figure 4.8. The initial event e is a true event. Hene,using e as an anhor, the omputation advanes from the initial onsistent ut C1,shown in Figure 4.8(a), to the onsistent ut C2, portrayed in Figure 4.8(b). Next,using the true event f as an anhor, it advanes to the onsistent ut C3 as shownin Figure 4.8(). Finally, using the true event g as an anhor|whih is also a�nal event, it reahes the �nal onsistent ut C4 as depited in Figure 4.8(d). Sinethroughout the frontier of the omputation passes through at least one true event,the prediate is never falsi�ed. 63

: true event : false event

f ft

f f f

tft

f

t

e

f

g

h

C
1x

p3

p1

p2

x

x

3

2Figure 4.9: An example to illustrate the diÆulty in hoosing the next anhor event.A natural question to ask is: \If there are more than one possible andidatesfor the next anhor event, whih one should we hoose?". The answer is non-trivialas illustrated by the following example.Example 4.5 Consider the omputation shown in Figure 4.9. It has four trueevents, namely e, f , g and h. After using e as an anhor, the omputation has twopossible hoies of events for the next anhor. They are the events f and g. Theevent h is unavailable beause the omputation has to advane beyond e before itan exeute h. Clearly, f is a bad hoie for anhor beause one the omputationreahes the onsistent ut C, using f as an anhor, neither g nor h an be used asthe next anhor without falsifying the prediate.The notion of admissible sequene attempts to answer the above question in amore general setting. In the next setion, we formalize the aforementioned algorithmfor ontrolling a disjuntive prediate using the notion of admissible sequene. We�rst de�ne a legal ut as follows:De�nition 4.5 (legal ut) A onsistent ut is legal with respet to a sequene ofevents if it ontains an event from the sequene only if it ontains all its preeding64

events from the sequene too. Formally, given a onsistent ut C and an event sifrom a sequene of events s,si 2 C) h8 j : j 6 i : sj 2 CiRoughly speaking, the notion of legal ut helps to apture those runs of aomputation that respet the order of the events in a sequene. More preisely,given a sequene of events, if every onsistent ut of a run is legal then the runand the sequene do not disagree on relative order of any pair of events and vieversa. We next de�ne the notion of admissible sequene. Informally, every eventin an admissible sequene ats as an anhor in the order given by the sequene.To be able to do so, the sequene must respet the happened-before order betweenevents. This onstraint is aptured by the agreement property. The ontinuityproperty ensures that the transfer of burden from one event in the sequene to thenext ours \smoothly" in a single step. In other words, the omputation does notadvane beyond the urrent anhor event until it reahes the next anhor event.The weak safety property asertains that, on reahing an anhor event, at least aslong as the omputation does not advane beyond the event the prediate is notfalsi�ed. Finally, the boundary ondition aptures the fat that the initial and �nalonsistent uts satisfy the prediate. Formally,De�nition 4.6 (admissible sequene) A sequene of events s = s1s2 � � �sl�1slis admissible with respet to a prediate b and a omputation hE;!i if it satis�esthe following properties:� (boundary ondition) The sequene starts with an initial event ends with a�nal event of the omputation. Formally,(s1 2 ?) ^ (sl 2 >)� (agreement) The sequene respets the partial order (that is, happened-beforerelation) of the omputation. Formally,65

e f

g h

u v w

C D

p3

p1

p2Figure 4.10: An example to illustrate the notion of legal ut and admissible sequene.h8 i; j : i < j : sj 6! sii� (ontinuity) The suessor of eah event in the sequene, if it exists, did nothappen-before the next event in the sequene. Formally,h8 i : si 62 > : su(si) 6! si+1i� (weak safety) Any onsistent ut of the omputation that is legal with respetto the sequene and ontains at least one event from the sequene in its frontiersatis�es the prediate. Formally,h8 C : C is legal with respet to s : (s \ frontier(C)) 6= ;) C j= biExample 4.6 Consider the omputation depited in Figure 4.10. The onsistentut C is not legal with respet to the sequene of events efuvh beause it ontains ubut does not ontain f whih ours before u in the sequene. On the other hand, theonsistent ut D is legal with respet to the same sequene. The sequene fuvh doesnot satisfy the boundary ondition beause the �rst event in the sequene, in thisase f , is not an initial event. The sequene egfh does not satisfy the agreementproperty beause although f happened-before g in the omputation, it ours after gin the sequene. Finally, the sequene egh does not satisfy the ontinuity propertyas the suessor of e, namely f , happened-before g, the next event in the sequeneafter e. 66

The following theorem proves that existene of an admissible sequene isneessary for a prediate to be ontrollable in a omputation. Spei�ally, we provethat any safe run of a omputation onstitutes an admissible sequene.Theorem 4.8 (neessary ondition) If a prediate b an be ontrolled in aomputation hE;!i then there exists an admissible sequene with respet to b andhE;!i.Proof: Sine b is ontrollable in hE;!i, there exists a total order that extends! suh that b is invariant in hE; i. Let s be the sequene of events orrespondingto hE; i. We prove that s is admissible with respet to b and hE;!i. Clearly, ssatis�es the boundary ondition and the agreement property. We next prove that ssatis�es the ontinuity property. Assume the ontrary. Then,h9 i :: su(si)! si+1i� f si ! su(si) gh9 i :: si ! su(si)! si+1i) f su(si) 2 s beause s orresponds to hE; i|a run of hE;!i gh9 i; j :: si ! sj ! si+1i) f s satis�es the agreement property gh9 i; j :: i < j < i+ 1i) f i and j are integers ga ontraditionFinally, we show that s satis�es the weak safety property. Consider aonsistent ut C of hE;!i that is legal with respet to s. We prove that C isalso a onsistent ut of hE; i. Consider events e and f . We have,f assumption g(e f) ^ (f 2 C) 67

� f let e = si and f = sj g(si sj) ^ (sj 2 C)) f de�nition of s g(i < j) ^ (sj 2 C)) f C is legal with respet to s gsi 2 C� f si = e ge 2 CThus C is a onsistent ut of hE; i. Sine b is invariant in hE; i, Csatis�es b. This establishes that s satis�es the weak safety property. �Our next step is to prove that the existene of an admissible sequene is alsoa suÆient ondition for a prediate to be ontrollable in a omputation. To ahievethat it suÆes to give the synhronization neessary to ontrol the prediate. Ofourse the synhronization will depend on the partiular sequene. Observe that notall events in the sequene may be ordered by the happened-before relation. Thus,to ensure that they are exeuted in the order they our in the sequene, we need toadd synhronization dependenies from an event in the sequene to all other eventsthat our later in the sequene. This synhronization is denoted by S(1)! and isformally de�ned as follows:S(1)! , f (si; sj) j 1 6 i < j 6 n g (4.3)For an example please refer to Figure 4.11. In the following lemma we showthat if the sequene is admissible, in partiular if it satis�es the agreement property,the above synhronization does not interfere with the happened-before relation ofthe omputation. For onveniene, we de�ne C(1)! as the transitive losure of! [S(1)! .Formally, C(1)! , (! [S(1)!)+68

s
1

s
2

s
3

p3

p1

p2Figure 4.11: An illustration of the synhronization S(1)! (denoted by dotted arrows).Lemma 4.9 C(1)! is an irreexive partial order.Proof: It suÆes to prove that ! [S(1)! does not ontain any yle. Sine ! is anirreexive partial order, a yle, if it exists, must ontain at least one pair of eventsordered by S(1)! . Moreover, sine both ! and S(1)! are transitive, the pairs of eventsin the yle must be alternately ordered by ! and S(1)! . We �rst prove that there isno yle ontaining exatly one pair of events ordered by S(1)! . Assume the ontrary.Then, h9 i; j :: si S(1)! sj ! sii) f de�nition of S(1)! gh9 i; j :: (i < j) ^ (sj ! si)i) f s satis�es the agreement property gh9 i; j :: (sj 6! si) ^ (sj ! si)i) f prediate alulus ga ontraditionWe now prove that if there is a yle that ontains m, m > 2, pairs of eventsordered by S(1)! then there is a yle that ontains stritly fewer than m pairs ofevents ordered by S(1)! . Let the yle be si S(1)! sj ! su S(1)! sv C(1)! si, where the pathfrom sv to si ontains exatly m� 2 pair(s) of events ordered by S(1)! . Sine S(1)! is a69

total order, either si S(1)! sv or sv S(1)! si. We have,Case 1: si S(1)! sv(si S(1)! sj ! su S(1)! sv C(1)! si) ^ (si S(1)! sv)) f simplifying gsi S(1)! sv C(1)! si) f simplifying ga yle with at most m� 1 pair(s) of events ordered by S(1)!Case 2: sv S(1)! si(si S(1)! sj ! su S(1)! sv C(1)! si) ^ (sv S(1)! si)) f simplifying gsi S(1)! sj ! su S(1)! sv S(1)! si� f rewriting gsj ! su S(1)! sv S(1)! si S(1)! sj) f S(1)! is transitive gsj ! su S(1)! sj) f simplifying ga yle with at most one pair of events ordered by S(1)!This establishes that there is no yle in! [S(1)! and thus C(1)! is an irreexivepartial order. �After adding the synhronization S(1)! to the omputation hE;!i, theresulting omputation hE; C(1)!i retains only those onsistent uts|not neessarilyall|that are legal. From the weak safety property, a suÆient ondition for a legalut to satisfy the prediate is that it should ontain at least one event from thesequene in its frontier. To ensure this, given an event in the sequene, we add a70

s
1

s
2

s
3

p3

p1

p2Figure 4.12: An illustration of the synhronization S(2)! (denoted by dotted arrows).synhronization arrow from the event next to it in the sequene, if it exists andis on a di�erent proess, to its sueeding event on the proess, if it exists. Thissynhronization, denoted by S(2)! , asertains that the omputation does not advanebeyond an event in the sequene until it reahes the next event in the sequene.S(2)! , f (si+1; su(si)) j 1 6 i < n; si 62 > and pro(si+1) 6= pro(si) g (4.4)For an illustration please see Figure 4.12. In the next lemma we establishthat if the sequene is admissible, in partiular if it satis�es the agreement andontinuity properties, the above synhronization S(2)! does not interfere with C(1)! .For onveniene, we de�ne C(2)! as the transitive losure of C(1)! [S(3)! . Formally,C(2)! , (C(1)! [S(2)!)+Lemma 4.10 C(2)! is an irreexive partial order.Proof: It suÆes to prove that C(1)! [S(2)! does not ontain any yle. Sine, fromLemma 4.9, C(1)! is an irreexive partial order, a yle, if it exists, must ontainat least one pair of events ordered by S(2)! . We �rst prove that there is no yleontaining exatly one pair of events ordered by S(2)! . Assume the ontrary. Wehave, h9 i :: si+1 S(2)! su(si) C(1)! si+1i71

) f by de�nition of S(2)! , pro(si+1) 6= pro(si) implying si+1 6= su(si) gh9 i :: si+1 S(2)! su(si) C(1)! si+1i) f sine s satis�es the ontinuity property, su(si) 6! si+1 gh9 i; j; k :: si+1 S(2)! su(si)! sj S(1)! sk C(1)! si+1i) f S(1)! is a total order on s gh9 i; j ::(si+1 S(2)! su(si)! sj C(1)! si+1) V((si+1 S(1)! sj) _ (sj S(1)! si+1))i) f si+1 S(1)! sj implies si+1 S(1)! sj C(1)! si+1|ontraditing Lemma 4.9 gh9 i; j :: (si+1 S(2)! su(si)! sj C(1)! si+1) ^ (sj S(1)! si+1)i) f si P! su(si) and P!�! gh9 i; j :: (si ! sj) ^ (sj S(1)! si+1)i) f S(1)! is a total order on s and s satis�es the agreement property gh9 i; j :: (si S(1)! sj) ^ (sj S(1)! si+1)i) f s satis�es the agreement property gh9 i; j :: i < j < i+ 1i) f i and j are integers ga ontraditionWe now prove that if there is a yle that ontains m, m > 2, pairs of eventsordered by S(2)! then there is a yle that ontains stritly fewer thanm pairs of eventsordered by S(2)! . Let the yle be si+1 S(2)! su(si) C(1)! sj+1 S(2)! su(sj) C(2)! si+1,where the path from su(sj) to si+1 ontains exatlym�2 pair(s) of events orderedby S(2)! . Sine S(1)! is a total order, either si+1 S(1)! sj+1 or sj+1 S(1)! si+1. We have,Case 1: si+1 S(1)! sj+1(si+1 S(2)! su(si) C(1)! sj+1 S(2)! su(sj) C(2)! si+1) ^ (si+1 S(1)! sj+1)) f simplifying gsi+1 S(1)! sj+1 S(2)! su(sj) C(2)! si+172

) f simplifying ga yle with at most m� 1 pair(s) of events ordered by S(2)!Case 2: sj+1 S(1)! si+1(si+1 S(2)! su(si) C(1)! sj+1 S(2)! su(sj) C(2)! si+1) ^ (sj+1 S(1)! si+1)) f simplifying gsi+1 S(2)! su(si) C(1)! sj+1 S(1)! si+1) f simplifying ga yle with at most one pair of events ordered by S(2)!This establishes that there is no yle in C(1)! [S(2)! and thus C(2)! is an irreexivepartial order. �The �nal step is to prove that the ombined synhronization, given byS(1)! [S(2)! , indeed ensures that the prediate is invariant in the resulting omputation.Spei�ally, we show that if the sequene is admissible then every onsistent of theresultant omputation satis�es the anteedent of the weak safety property. Wedenote the ontrolled omputation by hE; C!i, where C! is same as C(2)! .Lemma 4.11 Every onsistent ut of hE; C!i satis�es b.Proof: Consider a onsistent ut C of hE; C!i. We �rst prove that C is legal withrespet to s. Consider events si and sj . We have,f assumption g(sj 2 C) ^ (i < j)� f de�nition of S(1)! g(sj 2 C) ^ (si S(1)! sj)) f S(1)! � C! g(sj 2 C) ^ (si C! sj) 73

) f C is a onsistent ut of hE; C!i gsi 2 CThis establishes that C is legal with respet to s. We now prove that thefrontier of C ontains at least one event from s. To that end, we �rst prove that,for eah i, si 62 > implies si+1 C! su(si). Clearly, if pro(si+1) 6= pro(si) then,by de�nition of S(2)! , si+1 S(2)! su(si). Sine S(2)! � C!, si+1 C! su(si). The moreinteresting ase is when pro(si+1) = pro(si). Sine pro(si) = pro(su(si)),pro(si+1) = pro(su(si)). Then,f events on a proess are totally ordered by P! g(si+1 P! su(si)) _ (su(si) P! si+1)) f P!�! g(si+1 ! su(si)) _ (su(si)! si+1)) f sine s satis�es the ontinuity property, su(si) 6! si+1 gsi+1 ! su(si)) f !� C! gsi+1 C! su(si)Assume, on the ontrary, that the frontier of C does not ontain any eventfrom s. We prove by indution on i that, for eah i, si 2 C. Clearly, sine s satis�esthe boundary ondition and ? � C, s1 2 C. We have,f indution hypothesis gsi 2 C� f sine si 62 frontier(C), su(si) exists and it belongs to C gsu(si) 2 C) f si+1 C! su(si) g(si+1 C! su(si)) ^ (su(si) 2 C)74

) f C is a onsistent ut of hE; C!i gsi+1 2 CThis establishes that sl 2 C. Sine, sine s satis�es the boundary ondition,sl 2 >. Thus, trivially, sl 2 frontier(C)|a ontradition. This implies that thefrontier of C ontains at least one event from s. Finally, sine s satis�es the weaksafety property, C satis�es b. �Combining Lemma 4.9, Lemma 4.10 and Lemma 4.11, we obtain,Theorem 4.12 (suÆient ondition) If there exists an admissible sequene withrespet to a prediate b and a omputation hE;!i then b is ontrollable in hE;!i.Finally, from Theorem 4.8 and Theorem 4.12, it follows that,Theorem 4.13 (neessary and suÆient ondition) It is possible to ontrol aprediate b in a omputation hE;!i if and only if there exists an admissible sequenewith respet to b and hE;!i.Although the motivation for de�ning the notion of admissible sequene wasto devise a ontrol algorithm for a disjuntive prediate, nonetheless the preedingtheorem holds for any global prediate.4.4.2 Finding a Controlling SynhronizationIn this setion, we derive an eÆient algorithm for ontrolling a disjuntive prediatein a omputation by using the notion of admissible sequene de�ned before. Sinefalse is a loal prediate of any proess, a disjuntive prediate b an be writtenas disjuntion of n prediates suh that the ith disjunt, denoted by b(i), is a loalprediate of proess pi. The algorithm involves onstruting a direted graph G,75

alled the true event graph, as follows:V(G) , f e j e j= b(i); where pi = pro(e) gE(G) , f(e; f) j e; f 2 V(G); e 6= f and e 62 >) su(e) 6! f gHere, V(G) and E(G) refer to the set of verties and edges, respetively, ofthe graph G. We now de�ne the notion of permissible path whih is almost identialto the notion of admissible sequene exept that a permissible path onsists of trueevents only and may not satisfy the agreement property.De�nition 4.7 (permissible path) A path in a true event graph (TEG) ispermissible if it starts with an initial event and ends with a �nal event of theomputation.Clearly, a permissible path satis�es the boundary ondition as well as theontinuity property. Furthermore, any onsistent ut that ontains a true eventin its frontier, due to the semantis of disjuntion, satis�es the prediate. Thus,a permissible path satis�es the weak safety property also. However, in general, apermissible may not satisfy the agreement property. But if a path besides beingpermissible is also the shortest one then it satis�es the agreement property too.Example 4.7 The true event graph for the omputation shown in Figure 4.13(a)and the disjuntive prediate x1_x2 is depited in Figure 4.13(b). The path eghfu ispermissible but does not satisfy the agreement property beause although f happened-before g in the omputation, it ours after g in the path. The path egu is the shortestpermissible path. It an be veri�ed that it indeed satis�es the agreement property.Lemma 4.14 The shortest permissible path in a true event graph, if it exists,satis�es the agreement property. 76

initial

e

f

h

final
u

g

(b)

f f

f f

f

: true event : false event

(a)

e

t

f

t

f

t

u

g

t

h

t

1x

p3

p1

p2

x

x

2

3Figure 4.13: An algorithm to ompute a ontrolling synhronization for a disjuntiveprediate (edges to initial events and from �nal events have been omitted).Proof: Assume that the true event graph does ontain a permissible path. Considerthe shortest permissible path s = s1s2 � � �sl. Assume, on the ontrary, that s doesnot satisfy the agreement property. Then,h9 i; j : i < j : sj ! sii) f sj 62 ?, otherwise sjsj+1 � � �sl is a shorter permissible path than s gh9 i; j : i < j : (sj ! si) ^ (sj 62 ?)i) f i > 2, otherwise si 2 ? implying si ! sj|reating a yle in ! gh9 i; j : 2 6 i < j : (sj ! si) ^ (sj 62 ?)i) f sine s is the shortest permissible path, (si�1; sj) 62 E(G) gh9 i; j : 2 6 i < j : (su(si�1)! sj) ^ (sj ! si)i) f ! is transitive gh9 i : i > 2 : su(si�1)! sii� f de�nition of an edge gh9 i : i > 2 : (si�1; si) 62 E(G)i) f s is a path implying h8 i : i > 2 : (si�1; si) 2 E(G)i ga ontradition 77

This establishes that s satis�es the agreement property. �The suÆient ondition for a disjuntive prediate to be ontrollable in aomputation an now be given as follows.Theorem 4.15 (suÆient ondition) Given a disjuntive prediate b and aomputation hE;!i, if there exists a permissible path in the orresponding trueevent graph G then b is ontrollable in hE;!i.Proof: Assume that G ontains a permissible path. Clearly, eah permissiblepath satis�es the boundary ondition, the ontinuity property and the weak safetyproperty. From Lemma 4.14, the shortest path among all permissible paths|not neessarily unique|also satis�es the agreement property. Thus the shortestpermissible path in G onstitutes an admissible sequene with respet to b andhE;!i. Using Theorem 4.13, b is ontrollable in hE;!i. �We next prove that the existene of a permissible path in the true eventgraph is also a neessary ondition for a disjuntive prediate to be ontrollable ina omputation.Theorem 4.16 (neessary ondition) If a disjuntive prediate b is ontrollablein a omputation hE;!i then there exists a permissible path in the orrespondingtrue event graph G.Proof: Assume that b is ontrollable in hE;!i. We indutively onstrut a pathin the graph G that is permissible. Sine b is ontrollable in hE;!i, there exists atotal order that extends the partial order ! suh that b is invariant in hE; i.The initial onsistent ut of the omputation hE; i, given by ?, satis�es b. Thusthere exists a true initial event. We all it s1. Starting from s1, we onstrut a paths by adding events to the path onstruted as yet until we reah a �nal event.78

Let si denote the last event added to the path so far. If si is a �nal eventthen the path we have assembled so far is permissible. The more interesting ase iswhen si is not a �nal event. Consider the least onsistent ut of hE; i that ontainssu(si), say Ci. Note that Ci is well-de�ned beause the set of onsistent uts ofa omputation that ontain a given event forms a lattie [JZ88, Mat89℄. Sine b isinvariant in hE; i, Ci satis�es b. Thus the frontier of Ci ontains a true event. Weall it si+1. We still have to show that there is an edge from si to si+1 in the graphG, that is, su(si) 6! si+1. By de�nition of Ci, for eah e 2 Ci, e su(si). Sinesi+1 2 Ci, si+1 su(si). Sine is an irreexive partial order, su(si) 6 si+1.Thus su(si) 6! si+1 beause !� .Finally, we prove that a �nal event is eventually added to the path. Assumethat si+1 62 >. Sine si+1 2 frontier(C), su(si+1) 62 Ci. By de�nition of Ci,su(si+1) 6 su(si). Sine is a total order, su(si) su(si+1). This impliesthat Ci (Ci+1, that is, si+1 is di�erent from every event already in the path. Thusno event is added to the path being built more than one, thereby establishing thata �nal event is eventually added to the path. �From Theorem 4.15 and Theorem 4.16, it follows that,Theorem 4.17 (neessary and suÆient ondition) A disjuntive prediate bis ontrollable in a omputation hE;!i if and only if there exists a permissible pathin the orresponding true event graph G.The true event graph has O(jEj) verties and O(jEj2) edges. The shortestpermissible path in the graph an be determined using breadth �rst searh in O(jEj2)time. Thus the algorithm has the overall time-omplexity of O(jEj2). To improvethe time-omplexity, we attempt to redue the number of edges in the graph. Tothat end, the following observation proves to be helpful.Observation 4.3 If there is an edge from a true event e to a true event f then79

there is an edge from every true event that ours after e on pro(e) to every trueevent that ours before f on pro(f). Formally,(e; f) 2 E(G)) h8 g; h 2 V(G) : (e P! g) ^ (h P! f) : (g; h) 2 E(G)iIt an be veri�ed that, given a true event e and a proess p, if we onlyput an edge from e to the last true event f on p suh that su(e) 6! f , in asesu(e) exists, then Theorem 4.17 still holds. In partiular, it an be proved thatexistene of a permissible path of length l in the true event graph implies existeneof a permissible path in the \redued" true event graph (RTEG) of length at mostl. The redued true event graph has at most O(njEj) edges, thereby reduing thetime-omplexity to O(njEj).To redue the time-omplexity further, we de�ne the notion of true-interval|a maximal ontiguous sequene of true event on a proess. Rather than �nd asequene of true event that satisfy ertain properties, we an �nd a sequene oftrue-intervals satisfying \similar" properties. The details are left to the reader. Thisalgorithm for omputing a ontrolling synhronization for a disjuntive prediate|based on true-intervals|has the time-omplexity of O(njT j+jEj), where T is the setof true-intervals of the omputation, whih is same as that of Tarafdar and Garg'salgorithm [TG98b℄.4.4.3 Finding a Minimum Controlling SynhronizationWe modify our algorithm for omputing a ontrolling synhronization for adisjuntive prediate to ompute a minimum ontrolling synhronization, that is,a synhronization with least number of dependenies that are not subsumed by thehappened-before relation. We take advantage of the fat that the prediate to beontrolled is disjuntive. As a result, a sequene of true events satis�es a strongerproperty than the weak safety property: \a onsistent ut that ontains at least one80

event from the sequene in its frontier satis�es the prediate". In partiular, the utis not required to be legal. Therefore the following holds:Observation 4.4 Let s be an admissible sequene with respet to b and hE;!i. Ifb is a disjuntive prediate then the synhronization given by S(2)! de�ned in (4.4) inSetion 4.4.1 is suÆient to ontrol b in hE;!i.Although the synhronization dependenies given by S(1)! an be omitted, thesequene is still required to satisfy the agreement property. This is to ensure thatthe synhronization S(2)! does not interfere with the happened-before relation of theomputation. To ount the number of synhronization dependenies in S(2)! that arenot overed by !, we assign weight to eah edge as follows:w(e; f) , 8<: (0; 1) : if f ! su(e)(1; 1) : otherwiseTwo weights are added by adding their respetive omponents and areompared lexiographially. As before in the ase of true event graph, the shortestpermissible path in a weighted true event graph not only satis�es the boundaryondition, the ontinuity property and the weak safety property but also satis�esthe agreement property.Lemma 4.18 The shortest permissible path in a weighted true event graph, if itexists, satis�es the agreement property.Proof: Assume that the weighted true event graph does ontain a permissiblepath. Consider the shortest permissible path s = s1s2 � � �sl. Assume, on theontrary, that s does not satisfy the agreement property. Then there exist integersi and j, where i < j, suh that sj ! si. Sine s is the shortest permissible path,sj 62 ?; if otherwise, the path sjsj+1 � � �sl is a shorter permissible path than s|aontradition. Furthermore, i > 2; if otherwise, si 2 ? whih implies that si ! sj ,81

thereby reating a yle in !. Two possible ases arise depending on whether thereis an edge from si�1 to sj .Case 1: (si�1; sj) 62 E(G)f de�nition of an edge g(su(si�1)! sj) ^ (sj ! si)) f ! is transitive gsu(si�1)! si� f de�nition of an edge g(si�1; si) 62 E(G)) f s is a path implying (si�1; si) 2 E(G) ga ontraditionIn the seond ase, two possible sub-ases arise depending on the weight ofthe edge from si�1 to sj . If w(si�1; sj) = (0; 1) then the path s1s2 � � �si�1sj � � �slis permissible and has lesser weight than s|a ontradition. The more interestingase is when w(si�1; sj) = (1; 1). Then,Case 2.2: w(si�1; sj) = (1; 1)f de�nition of the weight funtion gsj 6! su(si�1)) f sj ! si implying si! su(si�1)) sj ! su(si�1) gsi 6! su(si�1)� f (si�1; si) 2 E(G) and de�nition of the weight funtion gw(si�1; si) = (1; 1) 82

Thus the path s1s2 � � �si�1sj � � �sl is permissible and has lesser weight thans|a ontradition. This establishes that s satis�es the agreement property. �For a path s with weight w(s), let wf(s) and ws(s) denote the �rst andseond entries, respetively, of the tuple w(s). The rank of a weighted true eventgraph G, denoted by rank(G), is given by,rank(G) , 8<: ? : if there is no permissible path in Gwf (s) : s is the shortest permissible path in GIntuitively, the rank gives the ardinality of a minimum ontrollingsynhronization. We show that rank behaves in a ontinuous fashion by provingthat adding a single synhronization dependeny to a omputation annot reduethe rank of its weighted true event graph substantially. Consider a omputationhE; i suh that (1) extends !, and (2) the two omputations hE;!i andhE; i di�er by at most one message. Formally,h9 e; f :: = (! [(e; f)+)iLet H be the weighted true event graph orresponding to b and hE; i.Lemma 4.19 (bounded redution) If b is ontrollable in hE; i then rank(G)is at most one more than rank(H).Proof: Sine hE; i j= ontrollable : b, by virtue of Theorem 4.16, there existsa permissible path in H . Consider the shortest permissible path in H , say s =s1s2 � � �sl. For onveniene, let wG and wH be the weight funtions for the graphsG and H , respetively. Sine !� , su(e) 6 f implies su(e) 6! f . Thus eahedge of H is also an edge of G whih implies that s is a path in G. The followingan be easily veri�ed. rank(G) 6 wGf (s) (4.5)83

rank(H) = wHf (s) (4.6)h8 e; f : (e; f) 2 E(H) : wG(e; f) = (0; 1)) wH(e; f) = (0; 1)i (4.7)We �rst prove that wGf (s) � wHf (s) 6 1. Assume the ontrary. Thus, from(4.7), there exist at least two distint edges in the path s suh that their weight inG is (1; 1) but in H is (0; 1). Let the edges be (si; si+1) and (sj ; sj+1), where i 6= j.Equivalently, si+1 6! su(si) and sj+1 6! su(sj) (4.8)si+1 su(si) and sj+1 su(sj) (4.9)Let the additional message in hE; i be from e to f . From (4.8) and (4.9),we an dedue that there exists a path from si+1 to su(si) in hE; i that involvesthe message from e to f . Likewise, there exists a path from sj+1 to su(sj) inhE; i that involves the message from e to f . Then,si+1 e and f su(si) (4.10)sj+1 e and f su(sj) (4.11)Without loss of generality, assume that i < j. Two possible ases arisedepending on whether there is an edge from si to sj+1 in H . We have,Case 1: (si; sj+1) 62 E(H)f de�nition of an edge gsu(si) sj+1) f using (4.11) gsu(si) e) f using (4.10) gf e) f de�nition of implies e f ga ontradition 84

In the seond ase, when there is an edge from si to sj+1, from (4.10)and (4.11), sj+1 su(si). Thus wH(si; sj+1) = (0; 1) implying that thepath s1s2 � � �sisj+1 � � �sl is permissible in H and has smaller weight than s|aontradition. Thus, wGf (s)� wHf (s) 6 1 (4.12)Finally, f using (4.5) grank(G) 6 wGf (s)� f using (4.12) grank(G) 6 wHf (s) + 1� f using (4.6) grank(G) 6 rank(H) + 1This establishes the lemma. �Now, assume that rank(G) 6= 0. Let RCH denote the subset of true eventsthat are reahable from some initial true event in the weighted true event graph Gvia edges with weight (0; 1) only. Sine rank(G) 6= 0, RCH does not ontain any�nal event; if otherwise, there is a path from an initial event to a �nal event viaedges with weight (0; 1) only, thereby foring rank(G) to be zero. For eah proesspi, we identify an interval of ontiguous events on pi that we denote by Ii. The �rstevent of Ii, denoted by Ii:lo, is given by the suessor of the last event on pi thatbelongs to RCH. In ase there is no suh event, Ii:lo is set to ?i, the initial eventon pi. The last event of Ii, denoted by Ii:hi, is given by the earliest event on pithat did not our before Ii:lo suh that its suessor, if it exists, is a true event.Clearly, Ii is non-empty and all events in Ii are false events. For onveniene,I , S16i6n Ii85

f f

f f

f

x

w

final
g

y
initial

e

: true event : false event

(a)

e

t

f

t

tt

t

(b)

I.lo

I.hi

(0,1)
(0,1)

gf

x z

wu

RCH

y

v

1x

p3

p1

p2

x

x

2

3 Figure 4.14: An example to illustrate I.I:lo , f Ii:lo j 1 6 i 6 n gI:hi , f Ii:hi j 1 6 i 6 n gsu(I:hi) , f su(e) j e 2 I:hi and e 62 > gExample 4.8 Consider the omputation portrayed in Figure 4.14(a) and thedisjuntive prediate x1 _ x2 _ x3. The orresponding weighted true event graphis depited in Figure 4.14(b). The inoming edges to the initial event e and theoutgoing edges from the �nal event g have been omitted for obvious reasons. Alledges exept the edges (e; x) and (x; y) have weight (1; 1). For larity, we have onlylabeled those edges that have weight (0; 1) beause they are fewer in number. Thusthe set RCH is given by fe; x; yg. Further, I1:lo = su(e) = f , I2:lo = ?2 = uand I3:lo = su(y) = z. Also, I1:hi = f , I2:hi = v and I3:hi = >3 = z.Finally, su(I) = fsu(f); su(v)g= fg; wg. The shaded region in Figure 4.14(a)orresponds to the spae spanned by the events of I.Observe that if all events in the frontier of a onsistent ut belong to I thenthe ut will not satisfy the given disjuntive prediate. We make two observationsabout the set su(I:hi). First, all events in the set are true events. Seond, no86

event in the set belongs to RCH. The following lemma proves that the omputationmust ontain a onsistent ut that does not satisfy the disjuntive prediate.Lemma 4.20 If the rank of a weighted true event graph is not zero then there existsa onsistent ut of the omputation that does not satisfy the disjuntive prediate.Proof: Our approah is to add enough synhronization dependenies to theomputation hE;!i, without reating any deadlok (or yle), to obtain anotheromputation, say hE; i, that satis�es the required property. Spei�ally, we showthat the omputation hE; i ontains a onsistent ut whose frontier is ompletelyontained in I. Sine all events in I are false events, we obtain the desired result.The required set of dependenies, denoted by I!, is given by,I! , f (e; f) j e 2 I:lo and f 2 su(I:hi) gWe �rst prove that adding dependenies from I! to ! does not reate anyyle. Consider a path e I! f! g I! h (events e, f , g and h need not all be distint,that is, an event or a sequene of events may be repeated in the path). By de�nitionof I!, f 2 su(I:hi) and g 2 I:lo. Clearly, f 62 ?. This implies that g 62 ?; ifotherwise, g ! f , thereby reating a yle in !. Thus pred(g) exists. Furthermore,both f and pred(g) are true events suh that pred(g) 2 RCH but f 62 RCH. Note,however, that f ! su(pred(g))(= g) implying that there is an edge from pred(g)to f with weight (0; 1). Thus f is reahable from an initial event via edges withweight (0; 1) only beause pred(g) 2 RCH and w(pred(g); f) = (0; 1). This impliesthat f belongs to RCH|a ontradition. Thus there is no path in ! [I! of theform e I! f ! g I! h, thereby ensuring that ! [I! is ayli.Now, = (! [I!)+. Consider the least onsistent ut of hE; i, sayCleast:(I:lo), that ontains I:lo. By de�nition of Cleast:(I:lo), we have,h8 e :: e 2 Cleast:(I:lo)) h9 f : f 2 I:lo : e fii (4.13)87

We prove that the frontier of Cleast:(I:lo) lies wholly within I. To that end,it suÆes to show that Cleast:(I:lo) does not ontain any event from su(I:hi).Assume the ontrary. Then,h9 e : e 2 su(I:hi) : e 2 Cleast:(I:lo)i) f using (4.13) gh9 e; f : (e 2 su(I:hi)) ^ (f 2 I:lo) : e fi) f by de�nition of I!, f I! e and I!� gh9 e; f : (e 2 su(I:hi)) ^ (f 2 I:lo) : (e f) ^ (f e)i) f is an irreexive partial order ga ontraditionThis establishes the lemma. �The neessary and suÆient ondition for the rank of a weighted true eventgraph to be zero an now be furnished easily.Theorem 4.21 The rank of a weighted true event graph is zero if and only if thedisjuntive prediate is invariant in the omputation. Formally,hE;!i j= invariant : b () rank(G) = 0Proof: ()) Follows from Lemma 4.20.(() From Lemma 4.18, the shortest permissible path, say s|whih exists beauserank(G) 6= ?|orresponds to an admissible sequene of events with respet to band hE;!i. Sine b is a disjuntive prediate, by Observation 4.4, S(2)! is suÆientto ontrol b in hE;!i. Let C!= (! [S(2)!)+. By de�nition of ontrollability, b isinvariant in hE; C!i. Furthermore, by de�nition of the weight funtion, S(2)! � !whih implies that C!=!. �We now present the main result of this setion.88

Theorem 4.22 (minimum ontrolling synhronization) The shortest permis-sible path in a weighted true event graph, if it exists, orresponds to a minimumontrolling synhronization for the disjuntive prediate in the omputation.Proof: Assume that the weighted true event graph G does ontain a permissiblepath. From Theorem 4.17, b is ontrollable in hE;!i. Let min! denote a mini-mum ontrolling synhronization for b in hE;!i. Further, let fG(k)g representthe sequene of weighted true event graphs generated by adding synhronizationdependenies from min! one-by-one, where G(0) = G. Note that b is invariant in theomputation obtained by adding all synhronization dependenies from min!. Fromthe bounded redution lemma,rank(G(i))� rank(G(i+1)) 6 1; 0 6 i < j min! jAdding the above inequality for all values of i, we obtain,rank(G(0))� rank(Gjmin! j) 6 j min! j� f using Theorem 4.21 grank(G)� 0 6 j min! j� f simplifying grank(G) 6 j min! j� f min! orresponds to a minimum ontrolling synhronization grank(G) = j min! jThis establishes the theorem. �The algorithm to ompute a minimum ontrolling synhronization hasO(jEj2) time-omplexity beause the weighted true event graph has O(jEj) verties,O(jEj2) edges, and the shortest permissible path in the graph an be determinedusing Dijkstra's shortest path algorithm [CLR91℄ in O(jEj2) time.89

Chapter 5Sliing DistributedComputationsIn this hapter, we disuss in detail our results pertaining to sliingdistributed omputations with respet to global prediates.5.1 OverviewWe �rst extend the model of distributed omputation, desribed in Chapter 2, inSetion 5.2. Spei�ally, we relax the restrition that events an only be partiallyordered and allow yles to be present in the omputation. The reason is beausewhereas, in the traditional model, a omputation spei�es the \observable" orderof exeution of events, in the extended model, it aptures the set of \possible"onsistent uts that are urrently relevant for our purpose. The extended modelenables us to model both omputation and slie in a uniform and oherent fashion.We formally de�ne the notion of \slie" in Setion 5.3. Informally, the slieof a omputation with respet to a prediate is the \smallest" omputation that91

ontains all onsistent uts of the original omputation that satisfy the prediate.In ase the slie ontains only those onsistent uts of the omputation that satisfythe prediate, it is referred to as \lean".A natural question to ask is: \Is suh a smallest omputation uniquely de�nedfor every prediate?" To prove that it is indeed the ase, we de�ne a new lassof prediates in Setion 5.4 alled \regular prediates". Informally, a prediate isregular if the set of onsistent uts that satisfy the prediate is losed under set unionand set intersetion. Some examples of regular prediates are onjuntive prediatessuh as \no proess is in red state" and ertain monotoni hannel prediates suhas \all hannels are empty" and \all green messages have been aknowledged". Thelass of regular prediates is losed under onjuntion. We prove in Setion 5.5that the slie for a prediate is lean if and only if the prediate is regular. For thegeneral ase, when the prediate may not be regular, we de�ne a losure operatorthat returns the \strongest" regular prediate weaker than the given prediate. Weshow that suh a prediate exists and is uniquely de�ned for every prediate. Thisin turn proves that the slie exists and is uniquely de�ned for every prediate.In Setion 5.7, we develop a polynomial-time algorithm for omputing theslie for a regular prediate. The algorithm has an overall time-omplexity ofO(n2jEj), where n is the number of proesses and E is the set of events. In asethe regular prediate an be deomposed into a onjuntion of lauses, where eahlause itself is a regular prediate, however, depending on variables of only a smallsubset of proesses, we given an optimized salgorithm for omputing the slie. Theoptimized version may yield a speedup of as muh as n for many regular prediates.We also provide optimal algorithms for speial ases of regular prediates, namelyonjuntive prediates and monotoni hannel prediates of the form \Vi;j (at mostkij messages in transit from proess pi to proess pj)" and \Vi;j (at least kij messagesin transit from proess pi to proess pj)", whih have the time-omplexity of O(jEj).92

We demonstrate how sliing an be used to monitor a regular prediate under variousmodalities. Furthermore, we argue that many results pertaining to onsistent globalhekpoints [NX95, Wan97℄ an be derived as speial ases of sliing.We establish in Setion 5.8 that it is intratable in general to ompute theslie for an arbitrary prediate. Nevertheless, polynomial-time algorithms an bedeveloped for ertain speial lasses of prediates. In partiular, we provide aneÆient algorithm to ompute the slie for a linear prediate and its dual|a post-linear prediate [CG98℄. We next introdue the notion of \grafting" whih is usefulin omposing two slies. Given two slies, grafting an be used to either omputethe smallest slie that ontains all onsistent uts ommon to both slies or omputethe smallest slie that ontains onsistent uts of both slies. As a orollary, the sliefor a prediate in disjuntive normal form (DNF) an now be easily obtained. Wedemonstrate how grafting an be employed to ompute the slie for a \o-regularprediate" (that is, omplement of a regular prediate) in polynomial-time. Wealso use grafting to eÆiently ompute the slie for a \k-loal prediate" (dependson at most k proesses) for onstant k [SS95℄. Furthermore, grafting an also beapplied to ompute an \approximate" slie|in polynomial-time|for a prediateomposed from linear prediates, post-linear prediates, o-regular prediates andk-loal prediates for onstant k using ^ and _ operators.Finally, in Setion 5.9, we disuss our experimental results in evaluating thee�etiveness of sliing in reduing the searh-spae for deteting a prediate underpossibly modality. Our results indiate that omputation sliing an lead to anexponential improvement over existing tehniques both in terms of time as well asspae. 93

5.2 Extending the ModelIn this setion, we extend the model of distributed omputation and related notionsthat we desribed in Chapter 2. In this hapter, we relax the restrition that theorder on events must be a partial order. More preisely, we use direted graphs tomodel distributed omputations as well as slies. Direted graphs allow us to handleboth of them in a uniform and onvenient manner.Given a direted graph G, let V(G) and E(G) denote its set of verties andedges, respetively. A subset of verties of a direted graph forms a onsistent utif the subset ontains a vertex only if it also ontains all its inoming neighbours.Formally,C is a onsistent ut of G , h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C) e 2 CiObserve that a onsistent ut either ontains all verties in a yle or noneof them. This observation an be generalized to a strongly onneted omponent.Traditionally, the notion of onsistent ut (down-set or order ideal) is de�ned forpartially ordered sets [DP90℄. Here, we extend the notion to sets with arbitraryorders. Let C(G) denote the set of onsistent uts of a direted graph G. Observethat the empty set ; and the set of verties V(G) trivially belong to C(G). We allthem trivial onsistent uts. Let P(G) denote the set of paths in a direted graphG, that is, the set of pairs of verties (u; v) suh that there is a path from u to v inG. We assume that eah vertex has a path to itself.5.2.1 Direted Graphs: Path- and Cut-EquivaleneA direted graph G is ut-equivalent to a direted graph H , denoted by G C�= H , ifthey have the same set of onsistent uts. Formally,G C�= H , C(G) = C(H)94

Likewise, a direted graph G is path-equivalent to a direted graph H ,denoted by G P�= H , if a path from vertex u to vertex v in G implies a path fromvertex u to vertex v in H and vie versa. Formally,G P�= H , P(G) = P(H)The next lemma explores the relation between the two notions.Lemma 5.1 Let G and H be direted graphs with the same set of verties. Then,P(G) � P(H) � C(G) � C(H)Evidently, Lemma 5.1 implies that two direted graphs are ut-equivalent ifand only if they are path-equivalent. In other words, in order to determine whethertwo direted graphs are ut-equivalent, it is neessary and suÆient to asertainthat they are path-equivalent. This is signi�ant beause, whereas path-equivalenean be veri�ed in polynomial-time (jP(G)j = O(jV(G)j2)), ut-equivalene isomputationally expensive to asertain in general (jC(G)j = O(2jV(G)j)). In therest of the hapter, we use �= to denote both C�= and P�=.5.2.2 Distributed Computations as Direted GraphsWe model a distributed omputation hE;!i as a direted graph with verties as theset of events E and edges as!. To limit our attention to only those onsistent utsthat an atually our during an exeution, we assume that P(hE;!i) ontains atleast the Lamport's happened-before relation [Lam78℄.We assume the presene of a �titious �nal event on eah proess whihours after all other events on the proess. Reall that a �nal event on proess pi isdenoted by >i whih now refers to the aforementioned �titious event. We assumethat all initial events belong to the same strongly onneted omponent. Similarly,95

all �nal events belong to the same strongly onneted omponent. This ensures thatany non-trivial onsistent ut will ontain all initial events and none of the �nalevents. As a result, every onsistent ut of a omputation in the traditional modelis a non-trivial onsistent ut of the orresponding omputation in the extendedmodel and vie versa. Only non-trivial onsistent uts are of real interest to us. Aswe will see later, the extended model allows us to apture empty slies in a veryonvenient fashion.A distributed omputation in the extended model an ontain yles. This isbeause whereas a omputation in the traditional (happened-before) model apturesthe observable order of exeution of events, a omputation in the extended modelaptures the set of possible onsistent uts.Although, given a omputation hE;!i, the relation ! may ontain yles,the order of events on a proess, that in turn refers to the sequene in whih theevents on a proess were exeuted in real-time, is still a total order. Thus the notionof predeessor and suessor events of an event de�ned in Chapter 2 is well-de�nedand so are the notions that depend on it suh as \frontier" and \passes through".Reall that two events are said to be onsistent if they are ontained in thefrontier of some onsistent ut, otherwise they are inonsistent. More preisely, itan be veri�ed that events e and f are onsistent if and only if there is no path inthe omputation from su(e), if it exists, to f and from su(f), if it exists, to e.Note that, in the extended model, in ontrast to the traditional model, an event anbe inonsistent with itself.As before, a prediate is evaluated with respet to the values of variablesresulting after exeuting all events in the ut. We leave the prediate unde�ned forthe trivial onsistent uts. 96

5.3 Problem StatementInformally, a omputation slie (or simply a slie) is a onise representation of allthose onsistent uts of the omputation that satisfy the prediate. Formally,De�nition 5.1 (slie) The slie of a omputation with respet to a prediate is thesmallest direted graph|with the least number of onsistent uts|that ontains allonsistent uts of the given omputation for whih the prediate evaluates to true.We will later show that the notion of smallest direted graph in the de�nitionis well-de�ned for every prediate. The slie of omputation hE;!i with respetto a prediate b is denoted by hE;!ib. Note that hE;!i = hE;!itrue. In therest of the paper, we use the terms \omputation", \slie" and \direted graph"interhangeably.Note that every slie derived from the omputation hE;!i will have thetrivial onsistent uts (; and E) among its set of onsistent uts. Thus a slieis empty if it has no non-trivial onsistent uts. In the rest of the paper, unlessotherwise stated, a onsistent ut refers to a non-trivial onsistent ut. In general,a slie will ontain onsistent uts that do not satisfy the prediate (besides trivialonsistent uts). In ase a slie does not ontain any suh ut, it is alled lean.Formally,De�nition 5.2 (lean slie) The slie of a omputation with respet to a prediateis lean if every onsistent ut of the slie satis�es the prediate.An interesting question to ask is for what lass of prediates is the sliealways lean? To answer this question, we introdue the lass of regular prediates.97

5.4 Regular PrediatesA global prediate is alled regular if the set of onsistent uts that satisfy theprediate is losed under set intersetion and set union. Formally, given a regularprediate b and onsistent uts C1 and C2,(C1 j= b) ^ (C2 j= b)) (C1 \ C2 j= b) ^ (C1 [C2 j= b)Remark 5.1 More preisely, given a set of elements that forms a lattie under somepartial order, a subset of elements forms a sublattie of the lattie if the subset islosed under the meet and join operators of the lattie. In our ase, the meet andjoin operators are set intersetion and set union, respetively.If the set of onsistent uts that satisfy a prediate is losed under setintersetion then the prediate is said to be linear [CG98℄. Dually, if the set ofonsistent uts that satisfy a prediate is losed under set union then the prediate issaid to be post-linear [CG98℄. The lass of regular prediates is, therefore, given bythe intersetion of the lass of linear prediates and the lass of post-linear prediates.It an be veri�ed that a loal prediate is a regular prediate. Therefore thefollowing prediates are regular.� proess pi is in \red" state� the leader has sent all \prepare to ommit" messagesWe now provide more examples of regular prediates. Consider a funtionf(x; y) with two arguments suh that it is monotoni in its �rst argument x butanti-monotoni in its seond argument y. Some examples of the funtion f are:x � y, 3x � 5y, x=y when x; y > 0, and logy x when x; y > 1. We establish thatthe prediates of the form f(x; y) < and f(x; y) 6 , where is some onstant,are regular when either both x and y are monotonially non-dereasing variables orboth x and y are monotonially non-inreasing variables.98

Lemma 5.2 Let x and y be monotonially non-dereasing variables. Then theprediates f(x; y) < and f(x; y) 6 are regular prediates.Proof: We show that the prediate f(x; y) < is regular. The proof for the otherprediate is similar and has been omitted. For a onsistent C, let x(C) and y(C)denote the values of variables x and y, respetively, immediately after all eventsin C are exeuted. Consider onsistent uts C1 and C2 that satisfy the prediatef(x; y) < . Note that, by de�nition of C1 \C2, y(C1\C2) is either y(C1) or y(C2).Without loss of generality, assume that y(C1 \ C2) = y(C1). Then,f(x(C1 \ C2); y(C1 \ C2))= f assumption gf(x(C1 \ C2); y(C1))6 8<:x is monotonially non-dereasing implies x(C1 \ C2) 6 x(C1);and f is monotoni in x 9=;f(x(C1); y(C1))< f C1 satis�es the prediate f(x; y) < gThus C1\C2 satis�es the prediate f(x; y) < . Also, note that, by de�nitionof C1 [C2, x(C1 [C2) is either x(C1) or x(C2). Without loss of generality, assumethat x(C1 [C2) = x(C1). Then,f(x(C1 [C2); y(C1 [C2))= f assumption gf(x(C1); y(C1 [C2))6 8<:y is monotonially non-dereasing implies y(C1 [C2) > y(C1);and f is anti-monotoni in y 9=;f(x(C1); y(C1)) 99

< f C1 satis�es the prediate f(x; y) < gThus C1 [C2 also satis�es the prediate f(x; y) < . �We now establish that Lemma 5.2 holds even when both x and y aremonotonially non-inreasing variables.Lemma 5.3 Let x and y be monotonially non-inreasing variables. Then theprediates f(x; y) < and f(x; y) 6 are regular prediates.Proof: We show that the prediate f(x; y) < is regular. The proof for the otherprediate is similar and has been omitted. For a onsistent C, let x(C) and y(C)denote the values of variables x and y, respetively, immediately after all eventsin C are exeuted. Consider onsistent uts C1 and C2 that satisfy the prediatef(x; y) < . Note that, by de�nition of C1\C2, x(C1\C2) is either x(C1) or x(C2).Without loss of generality, assume that x(C1 \ C2) = x(C1). Then,f(x(C1 \ C2); y(C1 \ C2))= f assumption gf(x(C1); y(C1 \ C2))6 8<:y is monotonially non-inreasing implies y(C1 \ C2) > y(C1);and f is anti-monotoni in y 9=;f(x(C1); y(C1))< f C1 satis�es the prediate f(x; y) < gThus C1\C2 satis�es the prediate f(x; y) < . Also, note that, by de�nitionof C1 [C2, y(C1 [C2) is either y(C1) or y(C2). Without loss of generality, assumethat y(C1 [C2) = y(C1). Then, 100

f(x(C1 [C2); y(C1 [C2))= f assumption gf(x(C1 [C2); y(C1))6 8<:x is monotonially non-dereasing implies x(C1 [C2) 6 x(C1);and f is monotoni in x 9=;f(x(C1); y(C1))< f C1 satis�es the prediate f(x; y) < gThus C1 [C2 also satis�es the prediate f(x; y) < . �Combining the above two lemmas, we obtain the following:Lemma 5.4 The prediates of the form f(x; y) < and f(x; y) 6 , where is someonstant, are regular when either both x and y are monotonially non-dereasingvariables or both x and y are monotonially non-inreasing variables.As a orollary of Lemma 5.4, it an be proved that Lemma 5.4 still holdswhen < and 6 are replaed by > and >, respetively.Corollary 5.5 Let x and y be monotonially non-dereasing variables. Then theprediates f(x; y) > and f(x; y) > are regular prediates.Proof: De�ne g(y; x) = �f(x; y) and d = �. Observe that the prediatef(x; y) > is equivalent to the prediate g(y; x) < d. Furthermore, the funtiong is monotoni in its �rst argument y and anti-monotoni in its seond argumentx. From Lemma 5.4, the prediate g(y; x) < d is regular and hene the prediatef(x; y) > is also regular. Similarly, the prediate f(x; y) > is regular. �Similarly, it follows that: 101

Corollary 5.6 Let x and y be monotonially non-inreasing variables. Then theprediates f(x; y) > and f(x; y) > are regular prediates.The following theorem ombines all the above results.Theorem 5.7 Let f be a funtion with two arguments suh that it is monotoni inits �rst argument and anti-monotoni in its seond argument. Then the prediateof the form f(x; y) relop , where relop 2 f<;6; >;>g and is some onstant, isregular when either both x and y are monotonially non-dereasing variables or bothx and y are monotonially non-inreasing variables.Remark 5.2 Let xi and yi be variables on proess pi, where 1 6 i 6 n. Considerj 2 [1 : : :n℄, I � f1; 2; : : : ; ng and some onstant .Let x(I) = f xi j i 2 I g and let f be a funtion on the variables in x(I) andyj suh that it is monotoni in eah xi 2 x(I) but anti-monotoni in yj . If eahxi 2 x(I) is a monotonially non-dereasing variable then it an be established thatthe prediates f(x(I); yj) < and f(x(I); yj) 6 are linear prediates. Similarly, ifeah xi 2 x(I) is a monotonially non-inreasing variable then it an be proved thatthe prediates f(x(I); yj) > and f(x(I); yj) > are also linear prediates. Noneof the prediates mentioned above is regular in general.Dually, let y(I) = fyi j i 2 I g and let f be a funtion on xj and the variablesin y(I) suh that it is monotoni in xj but anti-monotoni in eah yi 2 y(I). Ifeah yi 2 x(I) is a monotonially non-dereasing variable then it an be establishedthat the prediates f(xj ;y(I)) < and f(xj ;y(I)) 6 are post-linear prediates.Similarly, if eah yi 2 y(I) is a monotonially non-inreasing variable then it anbe proved that the prediates f(xj ;y(I))> and f(xj ;y(I))> are also post-linearprediates. As before, none of the prediates mentioned above is regular in general.Theorem 5.7 therefore orresponds to the ase when I is a singleton set.Further, observe that Theorem 5.7 holds not only for salar variables, but also for102

vetor variables. As in the ase of salars, in the ase of vetors, the variable shouldeither be monotonially non-dereasing, that is, the value of the variable for thesuessor event either stays the same or stritly inreases, or monotonially non-inreasing, that is, the value of the variable for the suessor event either stays thesame or stritly dereases, as the ase may be.By substituting f(x; y) with x � y, x with \the number of messages thatproess pi has sent to proess pj so far" and y with \the number of messages sent byproess pi that proess pj has reeived so far", it an be veri�ed that the followingprediates are regular.� no outstanding message in the hannel from proess pi to proess pj� the hannel from proess pi to proess pj is non-empty� at most k messages in transit from proess pi to proess pj� at least k messages in transit from proess pi to proess pjWe next show that the onjuntion of two regular prediates is also a regularprediate.Theorem 5.8 The lass of regular prediates is losed under onjuntion.Proof: We have to prove that if b1 and b2 are regular prediates then so is b1 ^ b2.Consider onsistent uts C1 and C2 that satisfy b1^ b2. By semantis of onjuntion,both C1 and C2 satisfy b1 as well as b2. Sine b1 and b2 are regular prediates, C1\C2satis�es b1 and b2. Again, by semantis of onjuntion, C1 \ C2 satis�es b1 ^ b2.Likewise, C1 [C2 satis�es b1 ^ b2. Thus b1 ^ b2 is a regular prediate. �The losure under onjuntion implies that the following prediates are alsoregular. 103

� any onjuntion of loal prediates� no proess has the token and no hannel has the token� every \request" message has been \aknowledged" in the system5.5 Establishing the Existene and Uniqueness of SlieIn this setion, we show that the slie exists and is uniquely de�ned for all prediates.Our approah is to �rst prove that the slie not only exists for a regular prediate,but is also lean. Using this fat we next establish that the slie exists even for aprediate that is not regular.5.5.1 Regular PrediatesIt is well known in distributed systems that the set of all onsistent uts of aomputation forms a lattie under the subset relation [JZ88, Mat89℄. We ask thequestion does the lattie of onsistent uts satisfy any additional property? It turnsout that the answer to this question is in aÆrmative. Spei�ally, we show thatthe set of onsistent uts of a direted graph not only forms a lattie but that thelattie is distributive. A lattie is said to be distributive if meet distributes over join[DP90℄. Formally, a u (b t) � (a u b) t (a u)where u and t denote the meet (in�mum) and join (supremum) operators,respetively. (It an be proved that meet distributes over join if and only if joindistributes over meet.)Theorem 5.9 Given a direted graph G, hC(G);�i forms a distributive lattie.104

Proof: Let C1 and C2 be onsistent uts of G. We de�ne their meet and join asfollows: C1 u C2 , C1 \ C2C1 t C2 , C1 [C2It is suÆient to establish that C1 \C2 and C1 [C2 are onsistent uts of Gwhih an be easily veri�ed. �The above theorem is a generalization of the result in lattie theory that theset of down-sets of a partially ordered set forms a distributive lattie [DP90℄. Wefurther prove that the set of onsistent uts (of a direted graph) does not satisfy anyadditional strutural property. To that end, we need the notion of join-irreduibleelement de�ned as follows.De�nition 5.3 (join-irreduible element [DP90℄) An element of a lattie isjoin-irreduible if (1) it is not the least element of the lattie, and (2) it annotbe expressed as join of two distint elements, both di�erent from itself. Formally,a 2 L is join-irreduible ifh9 x :: x < ai ^ h8 x; y 2 L : a = x t y : (a = x) _ (a = y)iPitorially, an element of a lattie is join-irreduible if and only if it hasexatly one lower over, that is, it has exatly one inoming edge in the orrespondingHasse diagram. The notion of meet-irreduible element an be similarly de�ned. Itturns out that a distributive lattie is uniquely haraterized by the set of its join-irreduible elements. In partiular, every element of the lattie an be written asjoin of some subset of its join-irreduible elements and vie versa. This is formallyaptured by the next theorem.Theorem 5.10 (Birkho�'s Representation Theorem for FiniteDistributive Latties [DP90℄) Let L be a �nite distributive lattie and105

(3,3,3)

(3,2,2)

(2,2,2)

(4,4,4)

(3,3,2)

(3,3,1) (2,3,2)

(2,1,2)

(3,3,3)

(0,0,0)

(4,4,4)

(2,3,3)

(1,1,2)

(2,2,1)

(2,2,2)(3,2,1)

(3,2,2)

(2,1,1)

(3,1,1)

(2,3,1)

(1,1,1)

(3,1,2)

(d)

V

W
Y

X ZU

components
strongly connected

: trivial consistent cut

: consistent cut that satisfies the predicate

: non−trivial consistent cut

: join−irreducible element

(0,0,0)

(2,2,1)

(1,1,1)

(1,1,2)

(2,3,3)

(3,2,1)
(b)

U

WV

X

Y

Z

(c)

(a)

T V

W

D

C

p3

p2

p1

g1 g2 g3 g4

1e 2e 3e 4e

f1 f2 f3 f4

p3

p2

p1

g1 g2 g3 g4

1e 2e 3e 4e

f1 f2 f3 f4

Figure 5.1: (a) A omputation, (b) the lattie of its onsistent uts, () the sublattieof the onsistent uts that satisfy the regular prediate \all hannels are empty",and (d) the poset indued on the set of join-irreduible elements of the sublattie.106

JI(L) be the set of its join-irreduible elements. Then the map f : L �! C(JI(L))de�ned by f(a) = f x 2 JI(L) j x 6 a gis an isomorphism of L onto C(JI(L)). Dually, let P be a �nite poset. Then the mapg : P �! JI(C(P)) de�ned byg(a) = f x 2 P j x 6 a gis an isomorphism of P onto JI(C(P)).Note that the above theorem an also be stated in terms of meet-irreduibleelements.Example 5.1 Consider the omputation shown in Figure 5.1(a). Figure 5.1(b)depits the lattie of onsistent uts of the omputation. In the �gure, the label ofa onsistent ut indiates the number of events that have to be exeuted on eahproess to reah the ut. For example, the label of the onsistent ut C is (3; 2; 1)implying that to reah C, three events have to exeuted on proess p1, two on p2 andone on p3. Mathematially, C = fe1; e2; e3; f1; f2; g1g.In Figure 5.1(b), the onsistent uts of the omputation orresponding tothe join-irreduible elements of the lattie have been drawn in thik lines. Thereare exatly eight join-irreduible elements whih is same as the number of stronglyonneted omponents of the omputation. Note that the poset indued on the set ofstrongly onneted omponents of the omputation is isomorphi to the poset induedon the set of join-irreduible elements of the lattie. It an be veri�ed that everyonsistent ut of the omputation an be expressed as the join of some subset ofthese join-irreduible elements. For example, the onsistent ut C an be written asthe join of the onsistent uts T and V . Moreover, the join of every subset of thesejoin-irreduible elements is a onsistent ut of the omputation. For instane, thejoin of the onsistent uts T , V and W is given by the onsistent ut D.107

In this hapter, we are onerned with only a subset of onsistent uts andnot the entire set of onsistent uts. To that end, the notion of sublattie of a lattieomes in useful [DP90℄. Given a lattie, a subset of its elements forms a sublattieif the subset is losed under the meet and join operators of the given lattie. In ourase, the meet and join operators are set intersetion and set union, respetively.Clearly, the set of onsistent uts satisfying a regular prediate forms a sublattie ofthe lattie of onsistent uts. Finally, we make an important observation regardinga sublattie whih will help us prove the desired result.Lemma 5.11 ([DP90℄) A sublattie of a distributive lattie is also a distributivelattie.Example 5.2 In Figure 5.1(b), the onsistent uts for whih the regular prediate\all hannels are empty" evaluates to true have been shaded. Figure 5.1() depitsthe poset indued on these onsistent uts. It an be veri�ed that the poset formsa sublattie of the lattie in Figure 5.1(b). Moreover, the sublattie is, in fat, adistributive lattie.We now prove that the slie for a prediate is lean if and only if the prediateis regular.Theorem 5.12 The slie of a omputation with respet to a prediate is lean if andonly if the prediate is regular.Proof: (if) Assume that the prediate, say b, is regular. Thus the set of onsistentuts that satisfy the prediate, denoted by Cb, forms a sublattie of the lattie ofonsistent uts (of the omputation). From Lemma 5.11, Cb is in fat a distributivelattie. Let JI(Cb) denote the set of join-irreduible elements of Cb. From Birkho�'sRepresentation Theorem, Cb is isomorphi to C(JI(Cb)). Thus the required slie is108

given by the poset indued on J I(Cb) by �. Moreover, every onsistent ut of theslie satis�es the prediate and therefore the slie is lean.(only if) Assume that the slie of a omputation with respet to a prediate is lean.From the proof of Theorem 5.9, the set of onsistent uts of the slie is losed underset union and set intersetion. This in turn implies that the set of onsistent utsthat satisfy the prediate is losed under set union and set intersetion. Thus theprediate is regular. �Example 5.3 The sublattie shown in Figure 5.1() has exatly six join-irreduibleelements, namely U , V , W , X, Y and Z. These elements or onsistent uts havebeen drawn in thik lines. It an be asertained that every onsistent ut in thesublattie an be written as the join of some subset of the onsistent uts in J =fU; V;W;X;Y;Zg. In other words, every onsistent ut of the omputation thatsatis�es the regular prediate \all hannels are empty" an be represented as the joinof some subset of the elements in J . Moreover, the join of every subset of elementsin J yields a onsistent ut ontained in the sublattie and hene a ut that satis�esthe regular prediate. The poset indued on the elements of J by the relation � isshown in Figure 5.1(d). This poset orresponds to the slie of the omputation shownin Figure 5.1(a) with respet to the regular prediate \all hannels are empty".5.5.2 General PrediatesTo prove that the slie exists even for a prediate that is not a regular prediate,we de�ne a losure operator, denoted by reg, whih, given a omputation, onvertsan arbitrary prediate into a regular prediate satisfying ertain properties. Givena omputation hE;!i, let R(E) denote the set of prediates that are regular withrespet to the omputation (! is impliit).109

De�nition 5.4 (reg) Given a prediate b, we de�ne reg (b) as the prediate thatsatis�es the following onditions:1. it is regular, that is, reg (b) 2 R(E),2. it is weaker than b, that is, b) reg (b), and3. it is stronger than any other prediate that satis�es (1) and (2), that is,h8 b0 : b0 2 R(E) : (b) b0)) (reg (b)) b0)i.Informally, reg (b) is the strongest regular prediate weaker than b. In general,reg (b) not only depends on the prediate b, but also on the omputation underonsideration. We assume the dependene on omputation to be impliit and makeit expliit only when neessary. The next theorem establishes that reg (b) exists forevery prediate b. Observe that the slie for b is given by the slie for reg (b). Thusslie exists and is uniquely de�ned for all prediates.Theorem 5.13 Given a prediate b, reg (b) exists and is uniquely de�ned.Proof: Let Rb(E) be the set of regular prediates in R(E) weaker than b. Observethat Rb(E) is non-empty beause true is a regular prediate weaker than b andtherefore ontained in Rb(E). We set reg (b) to the onjuntion of all prediates inRb(E). Formally, reg (b) , ^q 2Rb(E)qIt remains to be shown that reg (b) as de�ned satis�es the three requiredonditions. Now, ondition (1) holds beause the lass of regular prediates is losedunder onjuntion. Condition (2) holds beause every prediate in Rb(E) is weakerthan b and hene their onjuntion is weaker than b. Finally, let b0 be a prediatethat satis�es onditions (1) and (2). Note that b0 2 Rb(E). Sine onjuntion of110

dcba

e f g

t f

t f f

(a)

{b,f}

{b,f}

{c,f}

\/

(d)(c)

(b)

{a,e}

{b,e} {a,f}

{}

{d,g}

{d,g}

{a,e}

{b,e} {a,f}

{}

: trivial consistent cut : non−trivial consistent cut

: consistent cut that satisfies

dcba

e f g

t f

t f f

X

Y Z

p1

p2

x1

x2

p1

p2

x1

x2

x1 x2Figure 5.2: (a) A omputation, (b) the lattie of its onsistent uts, () the sublattieof its onsistent uts that satisfy reg (x1 _ x2), and (d) its slie with respet toreg (x1 _ x2) (and therefore also with respet to x1 _ x2).prediates is stronger than any of its onjunt, reg (b) is stronger than b0. Thusreg (b) satis�es ondition (3). �Thus, given a omputation hE;!i and a prediate b, the slie of hE;!i withrespet to b an be obtained by �rst applying reg operator to b to get reg (b) and111

then omputing the slie of hE;!i with respet to reg (b).Example 5.4 Consider the omputation shown in Figure 5.2(a). The lattie of itsonsistent uts is depited in Figure 5.2(b). Eah onsistent ut is labeled with itsfrontier. The onsistent uts for whih the prediate x1 _ x2 evaluates to true havebeen shaded in the �gure. Clearly, the set of onsistent uts that satisfy x1 _x2 doesnot form a sublattie. The smallest sublattie that ontains the subset is shown inFigure 5.2(); the sublattie orresponds to the prediate reg (x1 _ x2). The slie forthe regular prediate reg (x1 _ x2) and hene for the prediate x1 _ x2 is portrayedin Figure 5.2(d).Theorem 5.14 reg is a losure operator. Formally,1. reg (b) is weaker than b, that is, b) reg (b),2. reg is monotoni, that is, (b) b0)) (reg (b)) reg (b0)), and3. reg is idempotent, that is, reg (reg (b)) � reg (b).Proof: (reg (b) is weaker than b) Follows from the de�nition.(reg is monotoni) Sine reg (b0) is weaker than b0, it is also weaker than b. That is,reg (b0) is a regular prediate weaker than b. By de�nition, reg (b) is the strongestregular prediate weaker than b. Therefore reg (b) is stronger than reg (b0) or, inother words, reg (b)) reg (b0).(reg is idempotent) Follows from the fat that reg (b) is a regular prediate and isweaker than reg (b). �From the above theorem it follows that [DP90, Theorem 2.21℄,Corollary 5.15 hR(E);)i forms a lattie.112

The meet and join of two regular prediates b1 and b2 is given byb1 u b2 , b1 ^ b2b1 t b2 , reg (b1 _ b2)The dual notion of reg (b), the weakest regular prediate stronger than b, isalso oneivable. However, suh a prediate may not always be unique.Example 5.5 In the previous example, three onsistent uts satisfy the prediatex1 _ x2, namely X, Y and Z, as shown in Figure 5.2(b). Two distint subsets ofthe set S = fX; Y; Zg, given by fX; Y g and fX;Zg, form maximal sublatties of Simplying that there is no weakest regular prediate that is stronger than x1 _ x2.5.6 Representing a SlieAny direted graph that is ut-equivalent to a slie onstitutes a valid representationof the slie. However, for omputational purposes, it is preferable to selet thosegraphs to represent a slie that have fewer edges and an be onstruted heaply. Inthis setion, we show that every slie an be represented by a direted graph withO(jEj) verties and O(njEj) edges.Consider a regular prediate b and a omputation hE;!i. Reall thatC(hE;!ib) denote the set of onsistent uts of hE;!ib, or, in other words, theset of onsistent uts of hE;!i that satisfy b. For reasons of larity, we abbreviateC(hE;!ib) by Cb(E). From Birkho�'s Representation Theorem, the poset induedon JI(Cb(E)) by the relation � is ut-equivalent to the slie hE;!ib. It an beproved that jJ I(Cb(E))j is upper-bounded by jEj. Therefore the direted graphorresponding to hJ I(Cb(E));�i may have
(jEj2).In order to redue the number of edges, we exploit properties of join-irreduible elements. For an event e, let Jb(e) denote the least onsistent ut of113

hE;!i that satis�es b and ontains e. In ase no onsistent ut ontaining e thatalso satis�es b exists or when e 2 >, Jb(e) is set to E|one of the trivial onsistentuts. Here, we use E as a sentinel ut. We �rst show that Jb(e) is uniquely de�ned.Let ie be the prediate de�ned as follows:C j= ie , (e 2 C)It an be proved that ie is a regular prediate. Next, onsider the prediate bede�ned as the onjuntion of b and ie. Sine the lass of regular prediates is losedunder onjuntion, be is also a regular prediate. The onsistent ut Jb(e) an now bereinterpreted as the least onsistent that satis�es be. Sine be is regular, the notion ofleast onsistent ut that satis�es be is uniquely de�ned, thereby implying that Jb(e)is uniquely de�ned. For purposes of omputing the slie only, we assume that bothtrivial onsistent uts satisfy the given regular prediate. That is, f;; Eg � Cb(E).The next lemma establishes that Jb(e) is a join-irreduible element of Cb(E).Lemma 5.16 Jb(e) is a join-irreduible element of the distributive lattiehCb(E);�i.Proof: Suppose Jb(e) an be expressed as the join (in our ase, set union) of twoonsistent uts in Cb(E), say C and D. That is, Jb(e) = C[D, where both C and Dsatisfy b. Our obligation is to show that either Jb(e) = C or Jb(e) = D. Sine Jb(e)ontains e, either C or D must ontain e. Without loss of generality, assume thate belongs to C. By de�nition of union, C � Jb(e). Further, sine C is a onsistentut ontaining e that satis�es b and Jb(e) is the least suh ut, Jb(e) � C. ThusJb(e) = C. �It is possible that Jb(e)s are not all distint. Let Jb(E) denote the setfJb(e) j e 2 E g. Does Jb(e) apture all join-irreduible elements of Cb(E)? Thefollowing lemma provides the answer. 114

Lemma 5.17 Every onsistent ut in Cb(E) an be expressed as the join of somesubset of onsistent uts in Jb(E).Proof: Consider a onsistent ut C in Cb(E). Let D(C) be the onsistent utde�ned as follows: D(C) = [e2C Jb(e)We prove that D(C) is atually equal to C. Sine, by de�nition, e 2 Jb(e),eah event in C is also present in D(C). Thus C � D(C). To prove that D(C) � C,onsider an event e 2 C. Sine C is a onsistent ut ontaining e that satis�es band Jb(e) is the least suh ut, Jb(e) � C. More preisely, for eah event e 2 C,Jb(e) � C. This implies that D(C) � C. �From the previous two lemmas, it follows that Jb(E) = JI(Cb(E)).Combining it with Birkho�'s Representation Theorem, we an dedue that:Theorem 5.18 Given a omputation hE;!i and a regular prediate b, the posethJb(E);�i is ut-equivalent to the slie hE;!ib.Next, to redue the number of edges, rather than onstruting a diretedgraph with join-irreduible elements as verties, we onstrut a direted graph withevents as verties. Theorem 5.18 implies that:Observation 5.1 The direted graph Gb(E) with the set of verties as E and anedge from an event e to an event f if and only if Jb(e) � Jb(f) is ut-equivalent tothe slie hE;!ib.Whereas the poset representation of a slie is better for presentation purposes,the graph representation is more suited for sliing algorithms. From the way thegraph Gb(E) is onstruted, learly, two events e and f belong to the same stronglyonneted omponent of Gb(E) if and only if Jb(e) = Jb(f). As a result, there is115

a b c d

ge h

{a,e}
{d,h}

{b,c,f,g}

a b c d

gfe h

f

p1

p2

p1

p2

(c)

(b)(a)

Figure 5.3: (a) A omputation, (b) its slie with respet to the prediate \all hannelsare empty", and () the skeletal representation of the slie.a one-to-one orrespondene between the strongly onneted omponents of Gb(E)and the join-irreduible elements of Cb(E).Now, let Fb(e) be a vetor whose ith entry denotes the earliest event f onproess pi suh that Jb(e) � Jb(f). Informally, Fb(e)[i℄ is the earliest event on pithat is reahable from e in the slie hE;!ib. Using Fb(e)s, we onstrut a diretedgraph we all the skeletal representation of the slie and denote it by Sb(E). Thegraph Sb(E) has E as the set of verties and the following edges:1. for eah event e 62 >, there is an edge from e to su(e), and2. for eah event e and proess pi, there is an edge from e to Fb(e)[i℄.Example 5.6 Consider the omputation shown in Figure 5.3(a) and the prediate\all hannels are empty". The slie with respet to the prediate is depited inFigure 5.3(b). Here, Jb() = fa; b; ; e; f; gg and Jb(g) = fa; b; ; e; f; gg = Jb().116

Also, Fb() = [b; f ℄ and Fb(g) = [b; f ℄. The skeletal representation of the slie isshown in Figure 5.3().To prove that Sb(E) faithfully aptures the slie hE;!ib, we prove the fol-lowing two lemmas. The �rst lemma establishes that Jb is order-preserving.Lemma 5.19 (Jb is order-preserving) Given events e and f ,e! f) Jb(e) � Jb(f)Proof: Consider Jb(f). Sine e ! f and f 2 Jb(f), e 2 Jb(f). Thus Jb(f) isa onsistent ut that ontains e and satis�es b. Sine Jb(e) is the least suh ut,Jb(e) � Jb(f). �The seond lemma shows that if Jb(e) � Jb(f) then there is a path fromevent e to event f in Sb(E) and vie versa.Lemma 5.20 Given events e and f ,Jb(e) � Jb(f) � (e; f) 2 P(Sb(E))Proof: ()) Assume that Jb(e) � Jb(f). Let pro(f) = pi and g = Fb(e)[i℄. Sine,by de�nition, g is the earliest event on pi suh that Jb(e) � Jb(g), g P! f . Thisimplies that (g; f) 2 P(Sb(E)). Further, by onstrution, (e; g) 2 P(Sb(E)). Thus(e; f) 2 P(Sb(E)).(() It suÆes to show that for eah edge (u; v) in Sb(E), Jb(u) � Jb(v). Ifv = su(u) then Jb(u) � Jb(v) follows from Lemma 5.19. If v = Fb(u)[i℄, wherepi = pro(v), then Jb(u) � Jb(v) follows from the de�nition of Fb(u). �Finally, from Observation 5.1 and Lemma 5.20, we an onlude that:Theorem 5.21 Given a omputation hE;!i and a regular prediate b, Sb(E) isut-equivalent to hE;!ib. 117

It is easy to see that Sb(E) has O(jEj) verties and O(njEj) edges. In thenext setion we give eÆient polynomial-time algorithms to ompute Jb(e) and Fb(e)for eah event e when b is a regular prediate.5.7 Sliing for Regular PrediatesIn this setion, we disuss our results on sliing with respet to a regular prediate.They are disussed here separately from our results on sliing with respet to ageneral prediate beause, as proved in Setion 5.5.1, the slie for a regular prediateis lean and therefore furnishes more information than the slie for a general prediate.First, we present an eÆient O(n2jEj) algorithm to ompute the slie for a regularprediate. The algorithm is then optimized for the ase when a regular prediate anbe deomposed into a onjuntion of lauses, where eah lause itself is a regularprediate but depends on variables of only a small subset of proesses. We alsoprovide optimal algorithms for speial ases of regular prediates suh as onjuntiveprediates and ertain monotoni hannel prediates. Next, we show how a regularprediate an be monitored under various modalities [CM91, GW91, TG99, MG00,SUL00℄, spei�ally possibly, invariant and ontrollable, using sliing. Finally, wedemonstrate that results pertaining to onsistent global hekpoints an be derivedas speial ases of sliing.5.7.1 Computing the Slie for Regular PrediatesIn this setion, given a omputation hE;!i and a regular prediate b, we desribean eÆient O(n2jEj) algorithm to ompute the slie hE;!ib. In partiular, weonstrut Sb(E)|the skeletal representation of hE;!ib. To that end, it suÆes togive an algorithm to ompute Fb(e) for eah event e.Our approah is to �rst ompute Jb(e) for eah event e. To that end, onsiderthe prediate be de�ned in Setion 5.6. Sine be is a regular prediate, it is also a118

Algorithm Algo 5.1:Input: (1) a omputation hE;!i, (2) a regular prediate b, and(3) a proess piOutput: Jb(e) for eah event e on pi1 C := ?;2 for eah event e on pi do // visited in the order given by P!3 done := false;4 if C = E then done := true;5 while not(done) do6 if there exist events f and g in frontier(C)suh that su(f) ! g then // C is not a onsistent ut7 C := C [fsu(f)g; // advane beyond felse // C is a onsistent ut8 if C = E or C j= be then done := true;else9 f := forbidden be(C); // invoke the linearity property10 C := C [fsu(f)g; // advane beyond fendif;endif;endwhile;11 Jb(e) := C;endfor;Figure 5.4: The algorithm Algo 5:1 to ompute Jb(e) for eah event e on proess pi.linear prediate. (A prediate is said to be linear if, given two onsistent uts thatsatisfy the prediate, the onsistent ut given by their set intersetion also satis�esthe prediate.) Chase and Garg [CG98℄ give an eÆient algorithm to �nd the leastonsistent ut that satis�es a linear prediate. Their algorithm is based on thelinearity property de�ned in Chapter 4. Please refer to the hapter for details.Figure 5.4 desribes the algorithm Algo 5:1 to ompute Jb(e) for eah event eon proess pi, using the linearity property, in a single san of the omputation from119

Algorithm Algo 5.2:Input: (1) a omputation hE;!i, (2) Jb(e) for eah event e, and(3) a proess piOutput: Fb(e) for eah event e on pi1 for eah proess pj do2 f := ?j;3 for eah event e on pi do // visited in the order given by P!4 while Jb(e) 6� Jb(f) do f := su(f); endwhile;5 Fb(e)[j℄ := f ;endfor;endfor;Figure 5.5: The algorithm Algo 5:2 to ompute Fb(e) for eah event e on proess pi.left to right. This is possible beause, from Lemma 5.19, one we have omputedJb(e), we do not need to start all over again to determine Jb(su(e)) but an ratherontinue on from Jb(e) itself. The algorithm basially adds events one-by-one to theut onstruted so far until either all events are exhausted or the desired onsistentut is reahed.The time-omplexity analysis of the algorithm Algo 5:1 is as follows. Eahiteration of the while loop at line 5 has O(n) time-omplexity assuming that thetime-omplexity of invoking forbidden be at line 9 one is O(n). Moreover, the whileloop is exeuted at most O(jEj) times beause in eah iteration either we sueed in�nding the required onsistent ut or we add a new event to C. Sine there are atmost jEj events in the omputation, the while loop annot be exeuted more thanO(jEj) times. Thus the overall time-omplexity of the algorithm Algo 5:1 is O(njEj)implying that Jb(e) for eah event e an be omputed in O(n2jEj) time.Finally, we give an algorithm to ompute Fb(e) for eah event e provided Jb(e)120

for eah event e is given to us. We �rst establish a lemma similar to Lemma 5.19for Fb. The lemma allows us to ompute the jth entry of Fb(e) for eah event e onproess pi in a single san of the events on proess pj from left to right.Lemma 5.22 Given events e and f and a proess pi,e! f) Fb(e)[i℄ P! Fb(f)[i℄Proof: Assume that e! f . Let g = Fb(e)[i℄ and h = Fb(f)[i℄. Note that pro(g) =pro(h) = pi. By de�nition of Fb(f), Jb(f) � Jb(h). Sine, from Lemma 5.19,Jb(e) � Jb(f), Jb(e) � Jb(h). Again, by de�nition of Fb(e), g is the earliest eventon pi suh that Jb(e) � Jb(g). Therefore g P! h. �Figure 5.5 depits the algorithm Algo 5:2 to ompute Fb(e) for eah event eon proess pi. The algorithm is self-explanatory and its time-omplexity analysisis as follows. Let Ej denote the set of events on proess pj . The outer for loop atline 1 is exeuted exatly n times. For jth iteration of the outer for loop, the whileloop at line 4 is exeuted at most O(jEij+ jEj j) times. Eah iteration of the whileloop has O(1) time-omplexity beause whether Jb(e) � Jb(f) an be asertainedby performing only a single omparison. Thus the overall time-omplexity of thealgorithm Algo 5:2 is O(njEij+ jEj). Summing up over all proesses, Fb(e) for eahevent e an be determined in O(njEj) time. A summary of the overall algorithm ispresented in Figure 5.6.5.7.2 Optimizing for the Speial Case: Computing the Slie forDeomposable Regular PrediatesIn this setion, we explore the possibility of a faster algorithm for the ase when aregular prediate an be expressed as a onjuntion of lauses suh that eah lauseis again a regular prediate but spans a small fration of proesses. An example of121

Algorithm Algo 5.3:Input: (1) a omputation hE;!i, and (2) a regular prediate bOutput: the slie hE;!ib1 ompute Jb(e) for eah event e using Algo 5:1;2 ompute Fb(e) for eah event e using Algo 5:2;3 onstrut Sb(E) the skeletal representation of hE;!ib;Figure 5.6: The algorithm Algo 5:3 to ompute the slie for a regular prediate.suh a prediate is V16i;j6n(jounteri � ounterj j 6 4ij), where eah ounteri is amonotonially non-dereasing variable on proess pi. In this example, eah lausedepends on variables of at most two proesses. We desribe the algorithm in twosteps. In the �rst step, we give a fast algorithm to ompute the slie for eah lause.In the seond step, we desribe how to ombine the slies for all lauses eÆientlyto obtain the slie for the desired regular prediate.Step 1Consider a omputation hE;!i and a regular prediate b that depends on variablesof a subset Q of the set of proesses P . Without loss of generality, assume that !is a transitive relation. We denote the projetion of E on Q by E(Q) and that of!on Q� Q by !(Q). Thus the projetion of the omputation hE;!i on Q is givenby hE(Q);!(Q)i.We �rst show that the slie hE;!ib of the omputation hE;!i an bereovered exatly from the slie hE(Q);!(Q)ib of the projeted omputationhE(Q);!(Q)i. To that end, we extend the de�nition of Fb(e) and de�ne Fb(e; Q)to be a vetor whose ith entry represents the earliest event on proess pi that isreahable from e in the slie hE(Q);!(Q)ib. Thus Fb(e) = Fb(e; P), F(e; Q) =122

Ftrue(e; Q) and F(e) = Ftrue(e). We next de�ne Kb(e) as follows:Kb(e)[i℄ = 8<: Fb(e; Q)[i℄ : (e 2 E(Q))^ (pi 2 Q)F(e)[i℄ : otherwiseWe laim that it suÆes to knowKb(e) for eah event e to be able to omputethe slie hE;!ib. Before we establish our laim, we de�ne some notation. Whenevents e and f our on the same proess and e ourred before f in real-time, thenwe write e P! f , and let P! be the reexive losure of P!. We now build a graphHb(E) that is similar to the skeletal representation Sb(E) of hE;!ib exept that weuse Kb instead of Fb in its onstrution. The next lemma proves that every path inHb(E) is also a path in Sb(E).Lemma 5.23 For eah event e and proess pi, Fb(e)[i℄ P! Kb(e)[i℄.Proof: Clearly, for eah event e and proess pi, Fb(e)[i℄ P! F(e)[i℄. Thus we onlyneed to prove that Fb(e)[i℄ P! Fb(e; Q)[i℄ when e 2 E(Q) and pi 2 Q .Assume, on the ontrary, that, for some event e 2 E(Q) and proess pi 2Q, Fb(e; Q)[i℄ P! Fb(e)[i℄. For onveniene, let f = Fb(e; Q)[i℄ and g = Fb(e)[i℄.Consider the least onsistent ut C of the slie hE;!ib that ontains f . Note thatC does not ontain e. This is beause, by de�nition of Fb(e)[i℄, g is the earliestevent on pi that is reahable from e in hE;!ib. Sine f ours before g on pi, f isnot reahable from e in hE;!ib and therefore e is not ontained in C. Let C(Q)denote the projetion of C on Q. Sine C satis�es b and b depends only on variablesof proesses in Q, C(Q) satis�es b. However, any onsistent ut of hE(Q);!(Q)ibthat ontains f must ontain e. This is beause, by de�nition of Fb(e; Q)[i℄, thereis a path from e to f in hE(Q);!(Q)ib. Thus C(Q) is not a onsistent ut ofhE(Q);!(Q)ib whih ontradits the fat that hE(Q);!(Q)ib ontains all onsistentuts of hE(Q);!(Q)i that satisfy b. This establishes the lemma. �We now prove the onverse, that is, every path in Sb(E) is also a path in123

Algorithm Algo 5.4:Input: (1) a omputation hE;!i, (2) a subset of proesses Q, and(3) a regular prediate b that depends only on variables of QOutput: the slie hE;!ib1 ompute F(e) for eah event e;2 ompute the projeted omputation hE(Q);!(Q)i;3 ompute the slie of the projeted omputation hE(Q);!(Q)ib using thealgorithm Algo 5:3;Also, ompute Fb(e;Q) for eah event e;4 ompute Kb(e) for eah event e as follows:Kb(e)[i℄ = (Fb(e;Q)[i℄ : (e 2 E(Q)) ^ (pi 2 Q)F(e)[i℄ : otherwise5 onstrut the direted graph Hb(E) with E as its set of verties andedges as follows:1. for eah event e 62 >, there is an edge from e to su(e), and2. for eah event e and proess pi, there is an edge from e to Kb(e)[i℄.Figure 5.7: The algorithm Algo 5:4 to ompute the slie for a regular prediate thatdepends on variables of only a subset of proesses.Hb(E). To that end, by virtue of Lemma 5.1, it suÆes to show that every onsistentut of Hb(E) is also a onsistent ut of Sb(E) or, equivalently, every onsistent utof Hb(E) satis�es b.Lemma 5.24 Every onsistent ut of Hb(E) satis�es b.Proof: Consider a onsistent ut C of Hb(E). It is suÆient to prove that theprojetion of C on Q, denoted by C(Q), is a onsistent ut of hE(Q);!(Q)ib.Assume, on the ontrary, that C(Q) is not a onsistent ut of hE(Q);!(Q)ib. Thusthere exist events e and f suh that there is a path from e to f in hE(Q);!(Q)ib,124

f is in C(Q) but e is not. Let pi denote the proess on whih f ours. Clearly,Fb(e; Q)[i℄ P! f . This implies that there is a path from e to f in Hb(E) or, in otherwords, C is not a onsistent ut of Hb(E)|a ontradition. �Finally, the previous two lemmas an be ombined to give the followingtheorem:Theorem 5.25 Hb(E) is ut-equivalent to Sb(E).Note that the graph Hb(E) may in fat be di�erent from the skeletalrepresentation Sb(E). However, the above theorem guarantees that the two willbe path-equivalent. Figure 5.7 desribes the algorithm Algo 5:4 to ompute the sliefor a regular prediate that depends on variables of only a subset of proesses indetail. We assume that the omputation is given to us as n queues of events|onefor eah proess. Further, the Fidge/Mattern's timestamp ts(e) for eah event e isalso available to us. The algorithm Algo 5:2 an be used to ompute F(e) for eahevent e in O(njEj) (b is true in this ase). The projeted omputation an then beomputed at line 2 in a straightforward fashion. The slie of the projeted om-putation an be omputed at line 3 in O(jQj2jE(Q)j) time. The vetor Kb(e) foreah event e an be determined at line 4 in O(njEj) time. Finally, the graph Hb(E)an be onstruted at line 5 in O(njEj) time. Thus the overall time-omplexity ofthe algorithm is O(jQj2jE(Q)j+ njEj). If jQj is small, say at most pn, then thetime-omplexity of the algorithm is O(njEj)|a fator of n faster than omputingthe slie diretly using the algorithm Algo 5:3.A natural question to ask is: \Can this tehnique of taking a projetion ofa omputation on a subset of proesses, then omputing the slie of the projetionand �nally mapping the slie bak to the original set of proesses be used for a non-regular prediate as well?" The answer is no in general as the following examplesuggests. 125

(c) (d)

(b)(a) strongly connected
components

x f f

(e)

ff t

t

x

e 4e

f1 ff 42

3e2

f

f2

e1
1p

2p

3f

3

p

p1
1e 2e 4e

f

e

4f2

3e

f3

3

2g 3g

2

p3

p2

p1

g1 g4

1e 2e 4e

f1 f4f2

1

3g2

3e

f3

4f1f

e4e2e1

4g1g

1p

f

2

g
p3

g1 g4
g3g2

1e 2e 4e

f1 f4f2

3e

f3

p

3p

1

p2

p1

2

Figure 5.8: (a) A omputation, (b) its slie with respet to the prediate x1 _ x2,() its projetion on proesses p1 and p2, (d) the slie of the projeted omputationwith respet to the prediate x1 _ x2, and (e) the slie omputed in (d) mapped tothe original set of proesses.Example 5.7 Consider the omputation shown in Figure 5.8(a) involving threeproesses p1, p2 and p3. Let x1 and x2 be boolean variables on proesses p1 and p2,respetively. In the �gure, the solid events, namely e3 and f3, satisfy the respetiveboolean variable. The slie of the omputation for the (non-regular) prediate x1_x2is depited in Figure 5.8(b). Figure 5.8() displays the projetion of the omputation126

on proesses on whih the prediate x1 _ x2 depends, namely p1 and p2. The slieof the projeted omputation is shown in Figure 5.8(d) and its mapping bak to theoriginal set of proesses is depited in Figure 5.8(e). As it an be seen, the slieomputed using the algorithm Algo 5:4 (Figure 5.8(e)) is di�erent from the atualslie (Figure 5.8(b)). For instane, events g2 and g3 belong to the same meta-eventin the atual slie but not in the slie omputed using the algorithm Algo 5:4. Thereason for this di�erene is as follows. Sine the prediate x1 _ x2 is non-regular,the slie of the projeted omputation shown in Figure 5.8(d) ontains the onsistentut X = fe1; e2; f1; f2g whih does not satisfy x1 _ x2 but has to be inluded anywayso as to omplete the sublattie. Now, on mapping this slie bak to the original setof proesses, the resulting slie depited in Figure 5.8(e) will ontain all onsistentuts of the original omputation whose projetion on fp1; p2g is X. There are threesuh onsistent uts, namely X [fg1g, X [fg1; g2g and X [fg1; g2; g3g. However,only one of these onsistent uts, given by X [fg1; g2; g3g, is required to ompletethe sublattie for the atual slie.It an be veri�ed that the slie omputed using the algorithm Algo 5:4 fora non-regular prediate will, in general, be bigger than the atual slie. Thus thealgorithm Algo5:4 gives a fast way to ompute an approximate slie for a non-regularprediate (e.g., linear prediate).Step 2We use the above algorithm to devise a faster algorithm for omputing the sliefor a regular prediate b that an be expressed as onjuntion of regular prediatesb(j), 1 6 j 6 m, suh that eah b(j) is a funtion of variables on a subset of atmost k proesses Qj . Let l denote the maximum number of subsets from the setfQj j1 6 j 6 mg, that ontain a given proess. For example, for the regular prediateV16i;j6n(jounteri� ounterj j 6 4ij), where eah ounteri is a monotonially non-127

for eah event e 2 E doKb(e) := F(e);endfor;for eah onjunt b(j) dofor eah event e 2 E(Qj) dofor eah proess pi 2 Qj doKb(e)[i℄ := minfKb(e)[i℄; Fb(j)(e;Qj)[i℄ g;endfor;endfor;endfor; Figure 5.9: Computing Kb(e) for eah event e.dereasing variable on proess pi, k = 2 and l = n.To obtain the slie with respet to b, we �rst ompute the sliehE(Qj);!(Qj)ib(j) with respet to eah onjunt b(j) using the algorithm in [GM01℄,thereby giving us the vetor Fb(j)(e; Qj) for eah event e 2 Qj . We next omputethe vetor Kb(e) for eah event e as shown in Figure 5.9.Intuitively, among all slies for lauses that ontain some variable on proesspi, Kb(e)[i℄ is the earliest event on pi reahable from e in some slie. Formally, letCli denote the set of lauses that depend on some variable on pi. Then,Kb(e)[i℄ = minb(j)2ClifFb(j)(e; Qj)[i℄gIt an be easily veri�ed that the graph Hb(E) then onstruted using Kb(e)for eah event e (in a similar fashion as in Step 1) is atually ut-equivalent to theslie hE;!ib. The proof is similar to the proof in Step 1 and has been omitted. Theoverall time-omplexity of the algorithm is given by:O(njEj) + P16j6mO(jQjj2jE(Qj)j)128

= f for eah Qj , jQj j 6 k gO(njEj+ k2 P16j6m jE(Qj)j)= f simplifying gO(njEj+ k2ljEj) = O((n+ k2l)jEj)If k is onstant and l is O(n) then the overall time-omplexity is O(njEj)whih is a fator of n less than omputing the slie diretly using the algorithmAlgo 5:3.5.7.3 Optimal Algorithms for Speial CasesWe now present optimal algorithms for omputing the slie for speial ases ofregular prediates, namely onjuntive prediates and ertain monotoni hannelprediates. Our algorithms have O(jEj) time-omplexity.Computing the Slie for Conjuntive PrediatesConsider a omputation hE;!i and a onjuntive prediate b. The �rst step is topartition events on eah proess into true events and false events. Having done that,we then onstrut a graph Hb(E) with verties as the events in E and the followingedges:1. from an event, that is not a �nal event, to its suessor,2. from a send event to the orresponding reeive event, and3. from the suessor of a false event to the false event.For the purpose of building the graph, we assume that all �nal events aretrue events. Therefore every false event has a suessor. The �rst two types ofedges ensure that the Lamport's happened-before relation [Lam78℄ is ontained in129

: true event : false event

f

f

f f t

f f t t

f f t

f f t t

p2

p1
1x

x2

p2

p1
1x

x2

(a)

t

t

(b)Figure 5.10: (a) A omputation, and (b) its slie with respet to the onjuntiveprediate x1 ^ x2.P(Hb(E)). Consider the omputation depited in Figure 5.10(a) and the onjuntiveprediate x1 ^ x2. The orresponding graph onstruted as desribed is shown inFigure 5.10(b). We now establish that the above-mentioned edges are suÆientto eliminate all those onsistent uts of the omputation that do not satisfy theonjuntive prediate.Lemma 5.26 Every onsistent ut of Hb(E) satis�es b.Proof: It is suÆient to prove that no onsistent ut of Hb(E) ontains a false eventin its frontier. Consider a onsistent ut C of Hb(E). Assume, on the ontrary, thatC ontains a false event, say e, in its frontier. Sine every false event has a suessor,by onstrution, there is an edge from the suessor of e, say f , to e. Therefore falso belongs to C. This ontradits the fat that e is the last event on its proess130

to be ontained in C. �We next show that the above onstruted graph retains all onsistent uts ofthe omputation that satisfy the onjuntive prediate.Lemma 5.27 Every onsistent ut of hE;!i that satis�es b is a onsistent ut ofHb(E).Proof: Consider a onsistent ut C of hE;!i that satis�es b. Assume, on theontrary, that C is not a onsistent ut of Hb(E). Thus there exist events e and fsuh that there is an edge from e to f in Hb(E), f belongs to C but e does not.Sine C is a onsistent ut of hE;!i, the edge from e to f ould only of type (3).Equivalently, e and f our on the same proess, e is the suessor of f , and f isa false event. Again, sine f is ontained in C but its suessor e is not, f belongsto the frontier of C. However, C satis�es b and therefore annot ontain any falseevent in its frontier. �From the previous two lemmas, it follows that:Theorem 5.28 Hb(E) is ut-equivalent to hE;!ib.It is easy to see that the graph Hb(E) has O(jEj) verties, O(jEj) edges (atmost three edges per event assuming that an event that is not loal either sends atmost one message or reeives at most one message but not both) and an be built inO(jEj) time. Thus the algorithm has O(jEj) overall time-omplexity. It also givesus an O(jEj) algorithm to evaluate possibly : b when b is a onjuntive prediate.Computing the Slie for Monotoni Channel PrediatesWe present an optimal algorithm to ompute the slie with respet to monotonihannel prediates suh as: 131

� Vi;j2[1::n℄ (at most kij messages in transit from proess pi to proess pj); and� Vi;j2[1::n℄ (at least kij messages in transit from proess pi to proess pj)We only provide the sliing algorithm for the former prediate here. Thesliing algorithm for the latter prediate is very similar and has been omitted. Letsndhi; ji(m) denote the send event on proess pi that orresponds to the send ofmth message to proess pj . Similarly, let rvhi; ji(m) denote the reeive event onproess pi that orresponds to the reeive of mth message from proess pj .Consider a omputation hE;!i and a monotoni hannel prediate bdisussed in the previous paragraph. As in the ase of onjuntive prediate, weonstrut a graph Hb(E) with verties as the events in E and the following edges:1. from an event, that is not a �nal event, to its suessor,2. from a send event to the orresponding reeive event, and3. from a reeive event rvhj; ii(m) to the send event sndhi; ji(m+ kij), if itexists.As before, the �rst two types of edges ensure that the Lamport's happened-before relation [Lam78℄ is ontained in P(Hb(E)). Consider the omputation shownin Figure 5.11(a) and the monotoni hannel prediate \at most one message intransit in any hannel". Here, k12 = k21 = 1. The orresponding graph onstrutedas desribed is shown in Figure 5.11(b). We now establish that the above-mentionededges are suÆient to eliminate all those onsistent uts of the omputation that donot satisfy the hannel prediate.Lemma 5.29 Every onsistent ut of Hb(E) satis�es b.Proof: Consider a onsistent ut C of Hb(E) and proesses pi and pj . Letsndhi; ji(m) be the send event orresponding to the last message sent by pi to132

snd 1,2 (2)

2,1 (1)rcv

p1

p2

p1

p2

(b)

(a)

Figure 5.11: (a) A omputation, and (b) its slie with respet to the monotonihannel prediate \at most one message in transit in any hannel".pj suh that sndhi; ji(m) 2 C. Sine C is a onsistent ut of Hb(E) and there isan edge from rvhj; ii(m� kij) to sndhi; ji(m), rvhj; ii(m� kij) also belongs to C.This implies that there are at most kij messages in transit from pi to pj . �We next show that the above onstruted graph retains all onsistent uts ofthe omputation that satisfy the hannel prediate.Lemma 5.30 Every onsistent ut of hE;!i that satis�es b is a onsistent ut ofHb(E).Proof: Consider a onsistent ut C of hE;!i that satis�es b. Assume, on theontrary, that C is not a onsistent ut of Hb(E). Thus there exist events e andf suh that there is a path from e to f in Hb(E), f belongs to C but e does not.Sine C is a onsistent ut of hE;!i, the edge from e to f ould only of type (3).Let e be rvhj; ii(m) and f be sndhi; ji(m+ kij). Sine C satis�es b, rvhj; ii(m)133

or, equivalently, e belongs to C|a ontradition. �From the previous two lemmas, it follows that:Theorem 5.31 Hb(E) is ut-equivalent to hE;!ib.It is easy to see that the graph Hb(E) has O(jEj) verties, O(jEj) edges (atmost three edges per event assuming that an event that is not loal either sends atmost one message or reeives at most one message but not both) and an be builtin O(jEj) time. Thus the algorithm has O(jEj) overall time-omplexity.5.7.4 Appliations of SliingIn this setion, we show that sliing an be used to solve other problems in dis-tributed systems.Monitoring Regular Prediates under Various ModalitiesA prediate an be monitored under four modalities, namely possibly, definitely,invariant and ontrollable [CM91, GW91, TG99, MG00, SUL00℄. A prediateis possibly true in a omputation if there is a onsistent ut of the omputationthat satis�es the prediate. On the other hand, a prediate de�nitely holds in aomputation if it eventually beomes true in all runs of the omputation (a runis a path in the lattie of onsistent uts starting from the initial onsistent utand ending at the �nal onsistent ut). The modalities invariant and ontrollableare duals of the prediates possibly and definitely, respetively. Monitoring hasappliations in the areas of testing and debugging and software fault tolerane ofdistributed programs.We show how to monitor a regular prediate under possibly : b, invariant : band ontrollable : b modalities using sliing. Given a direted graph G, let s(G)denote the number of strongly onneted omponents of G.134

Theorem 5.32 A regular prediate is1. possibly true in a omputation if and only if the slie of the omputation withrespet to the prediate has at least one non-trivial onsistent ut, that is, ithas at least two strongly onneted omponents. Formally,possibly : b � s(hE;!ib) > 22. invariant in a omputation if and only if the slie of the omputation withrespet to the prediate is ut-equivalent to the omputation. Formally,invariant : b � hE;!ib �= hE;!i3. ontrollable in a omputation if and only if the slie of the omputation withrespet to the prediate has the same number of strongly onneted omponentsas the omputation. Formally,ontrollable : b � s(hE;!ib) = s(hE;!i)Proof: The �rst two propositions are easy to verify. We only prove the lastproposition. As for the last proposition, it an be veri�ed that a regular prediate isontrollable in a omputation if and only if there exists a path from the initial to the�nal onsistent ut in the lattie (of onsistent uts) suh that every onsistent utalong the path satis�es the prediate [TG98b℄. Note that the path from the initialto the �nal onsistent ut atually orresponds to a longest hain in the lattie ofonsistent uts. For a lattie L, let height(L) denote the length of a longest hain inL. Therefore if b is ontrollable in hE;!i, then a longest hain in C(E) is ontainedin Cb(E) as well and vie versa. This implies that height(C(E)) 6 height(Cb(E)).However, Cb(E) � C(E) implying that height(Cb(E)) 6 height(C(E)). Therefore wehave: ontrollable : b � height(C(E)) = height(Cb(E))135

For a �nite distributive lattie L, the length of its longest hain is equal tothe number of its join-irreduible elements [DP90℄. In other words, height(L) =JI(L). Also, as observed before in Setion 5.6, for a direted graph, the numberof join-irreduible elements of the lattie generated by its set of onsistent uts|inluding the two trivial onsistent uts|is same as the number of its stronglyonneted omponents. As a result, height(C(E)) = JI(C(E)) = s(hE;!i) andheight(Cb(E)) = JI(Cb(E)) = s(hE;!ib). �Zig-Zag Consisteny Theorem: A Speial Case of SliingWe now show how sliing relates to some of the well-known results in hekpointing.Consider a onjuntive prediate suh that the loal prediate for an event on aproess is true if and only if the event orresponds to a loal hekpoint. It an beveri�ed that there is a zigzag path [NX95, Wan97℄ from a loal hekpoint to aloal hekpoint 0 in a omputation if and only if there is a path from su(), ifit exists, to 0 in the orresponding slie|whih an be asertained by omparingJb(su()) and Jb(0). An alternative formulation of the onsisteny theorem in[NX95℄ an thus be obtained as follows:Theorem 5.33 A set of loal hekpoints an belong to the same onsistent globalsnapshot if and only if the loal hekpoints in the set are mutually onsistent(inluding with itself) in the orresponding slie.Moreover, the R-graph (rollbak-dependeny graph) [Wan97℄ is path-equivalent to the slie when eah ontiguous sequene of false events on a proess ismerged with the nearest true event that ours later on the proess. The minimumonsistent global hekpoint that ontains a set of loal hekpoints [Wan97℄ an beomputed by taking the set union of Jb's for eah loal hekpoint in the set. Themaximum onsistent global hekpoint an be similarly obtained by using the dualof Jb. 136

5.8 Sliing for General PrediatesIn this setion, we desribe our results on sliing for general prediates. We �rstprove that it is in general NP-hard to ompute the slie for an arbitrary prediate.Nonetheless, polynomial-time algorithms an be developed for ertain speial lassesof prediates. In partiular, we provide eÆient algorithm to ompute the slie for alinear prediate and its dual|a post-linear prediate [CG98℄. We next present thenotion of grafting whih an be used to ompose two slies; grafting an be done withrespet to meet or join operator as explained later. We provide eÆient algorithmsfor grafting two slies. Grafting an be used to ompute the slie for a prediatein DNF (disjuntive normal form). We further give three more appliations ofgrafting. First, we demonstrate how grafting an be employed to ompute the sliefor a o-regular prediate|omplement of a regular prediate|in polynomial-time.Seond, using grafting, we derive a polynomial-time algorithm to the ompute theslie for a k-loal prediate for onstant k; a k-loal prediate depends on variables ofat most k proesses [SS95℄. Lastly, we employ grafting to ompute an approximateslie|in polynomial-time|for a prediate omposed from regular and o-regularprediates, linear prediates and post-linear prediates, and k-loal prediates, foronstant k, using ^ and _ operators.5.8.1 NP-Hardness ResultIt is evident from the de�nition of slie that the following is true:Observation 5.2 The neessary and suÆient ondition for the slie of aomputation with respet to a prediate to be non-empty is that there exists aonsistent ut of the omputation that satis�es the prediate.However, �nding out whether some onsistent ut of the omputation satis�esa prediate is an NP-omplete problem [CG95℄. Thus it is in general NP-omplete137

to determine whether the slie for a prediate is non-empty. This further impliesthat omputing the slie for an arbitrary prediate is an NP-hard problem. Fromthe results of Chapter 3, it follows that this is the ase even when the prediate isa singular 2-CNF (onjuntive normal form) prediate.5.8.2 Computing the Slie for Linear Prediates and their DualReall that a prediate is linear if given two onsistent uts that satisfy the prediate,the ut given by their set intersetion also satis�es the prediate [CG98℄. A post-linear prediate an de�ned dually [CG98℄. In this setion we prove that the sliingalgorithm Algo 5:3 for a regular prediate desribed in Setion 5.7.1 an be used fora linear prediate as well. For a post-linear prediate, however, a slightly di�erentversion of the algorithm based on the notion of meet-irreduible element will beappliable.Consider a omputation hE;!i and a linear prediate b. First, we extendthe de�nition of Jb(e) for an event e and a regular prediate b to the ase when bis a linear prediate. It an be easily veri�ed that Jb(e) is uniquely de�ned for eahevent e even when b is a linear prediate. Now, onsider the direted graph Gb(E)with verties as events in E and an edge from an event e to an event f if and only ifJb(e) � Jb(f). We establish that the direted graph Gb(E) is ut-equivalent to theslie hE;!ib. It suÆes to prove that C(Gb(E)) is the smallest sublattie of C(E)that ontains Cb(E). To that end, the following lemma omes in useful. The lemmabasially states that, for eah event e, Jb(e) is the least onsistent ut of Gb(E) thatontains e. (Note that Jb(e) � Jb(f) is equivalent to saying that there is an pathfrom e to f in Gb(E).)Lemma 5.34 Given events e and f , e 2 Jb(f) � Jb(e) � Jb(f).Proof: ()) Assume that e 2 Jb(f). Let C = Jb(e)\Jb(f). Sine e 2 Jb(e), e 2 C.Note that Jb(e) and Jb(f) are onsistent uts of hE;!i. Moreover, both of them138

satisfy b. Sine b is a linear prediate, their onjuntion, given by C, also satis�esb. This implies that C is a onsistent ut of hE;!i whih ontains e and satis�es b.However, Jb(e) is the least suh ut. Therefore Jb(e) � C or Jb(e) � Jb(e) \ Jb(f).This implies that Jb(e) = Jb(e) \ Jb(f). Equivalently, Jb(e) � Jb(f).(() Assume that Jb(e) � Jb(f). Sine e 2 Jb(E), trivially, e 2 Jb(f). �Again, as before, let Jb(E) = f Jb(e) j e 2 E g. Using Lemma 5.34, thefollowing theorem an be proved in a similar fashion as Lemma 5.16 and Lemma 5.17.Theorem 5.35 C(Gb(E)) forms a distributive lattie under �. Further, the set ofjoin-irreduible elements of C(Gb(E)) is given by Jb(E).The next lemma demonstrates that C(Gb(E)) ontains at least Cb(E).Lemma 5.36 Every onsistent ut in Cb(E) an be written as the join of somesubset of elements in Jb(E).The proof of the above lemma is similar to the proof of Lemma 5.17 andtherefore has been omitted. Observe that, for every event e, by de�nition, eitherJb(e) satis�es b or is same as E. In either ase, Jb(e) 2 Cb(E). Therefore we have,Observation 5.3 Jb(E) � Cb(E).Finally, the next theorem establishes that C(Gb(E)) is indeed the smallestsublattie of C(E) that ontains all onsistent uts satisfying b.Theorem 5.37 Any sublattie of C(E) that ontains Cb(E) also ontains C(Gb(E)).Proof: Consider a sublattie D of C(E) suh that D ontains Cb(E). Also, onsidera onsistent ut C of C(Gb(E)). From Birkho�'s Representation Theorem andTheorem 5.35, C an be expressed as the join of some subset of elements in Jb(E).139

Sine Jb(E) � Cb(E) and Cb(E) � D, Jb(E) � D. This implies that C an bewritten as the join of some subset of elements in D. However, D is a sublattie andthus losed under set union. Therefore C 2 D. �The direted graph Gb(E) has jEj verties and an have as many as
(jEj2)edges. However, by onstruting Sb(E), the skeletal representation of hE;!ib,instead of Gb(E), the number of edges and the time-omplexity an be reduedto O(njEj) and O(n2jEj), respetively.5.8.3 Grafting Two SliesGiven two slies, grafting an be used to either ompute the smallest slie thatontains all onsistent uts ommon to both slies|grafting with respet to meet|or ompute the smallest slie that ontains onsistent uts of both slies|graftingwith respet to join. In other words, given slies hE;!ib1 and hE;!ib2 , where b1and b2 are regular prediates, grafting an be used to ompute the slie hE;!ib,where b is either b1 u b2 = b1^ b2 or b1 t b2 = reg (b1_ b2). Grafting enables us toompute the exat slie for an arbitrary boolean expression of loal prediates|byrewriting it in DNF|although it may require exponential time in the worst ase.Grafting with respet to Meet: b � b1 u b2 � b1 ^ b2In this ase, the slie hE;!ib ontains a onsistent ut of hE;!i if and only if the utsatis�es b1 as well as b2. Given an event e, let Fmin(e) denote the vetor obtainedby taking omponentwise minimum of Fb1(e) and Fb2(e). We �rst prove that noomponent of Fmin(e) is less than (or ours before) the orresponding omponentof Fb(e).Lemma 5.38 For eah event e and proess pi,Fb(e)[i℄ P! Fmin(e)[i℄140

Proof: It is suÆient to prove that Fb(e)[i℄ P! Fb1(e)[i℄ and Fb(e)[i℄ P! Fb2(e)[i℄for eah event e and proess pi. Assume, on the ontrary, that Fb1(e)[i℄ P! Fb(e)[i℄for some event e and proess pi. For onveniene, let Fb1(e)[i℄ = f . ConsiderJb(f). Observe that Jb(f) ontains f and is also a onsistent ut of hE;!ib1 .By de�nition of Sb1(E), any onsistent of hE;!ib1 that ontains f also ontains ebeause f = Fb1(e)[i℄. This implies that Jb(f) ontains e. Sine Jb(f) is the leastonsistent ut of hE;!ib that ontains f , there is a path from e to f in Sb(E).Using Lemma 5.20, Jb(e) � Jb(f) whih ontradits our hoie of Fb(e)[i℄. �We now onstrut a direted graph Smin(E) that is similar to Sb(E) exeptthat we use Fmin instead of Fb in its onstrution. The following theorem provesthat Smin(E) is in fat ut-equivalent to Sb(E).Theorem 5.39 Smin(E) is ut-equivalent to Sb(E).Proof: We have,f de�nition of Fmin g�P(Sb1(E)) � P(Smin(E))� V �P(Sb2(E)) � P(Smin(E))�� f using Lemma 5.1 g�C(Smin(E)) � C(Sb1(E))� V �C(Smin(E)) � C(Sb2(E))�� f set alulus gC(Smin(E)) � �C(Sb1(E)) \ C(Sb2(E))�� f b � b1 ^ b2 gC(Smin(E)) � C(Sb(E))Also, we have,f using Lemma 5.38 gP(Smin(E)) � P(Sb(E))� f using Lemma 5.1 g 141

C(Sb(E)) � C(Smin(E))Thus C(Smin(E)) = C(Sb(E)). �Roughly speaking, the aforementioned algorithm omputes the union of thesets of edges of eah slie. Note that, in general, Fb(e)[i℄ need not be same asFmin(e)[i℄. This algorithm an be generalized to onjuntion of an arbitrary numberof regular prediates.Grafting with respet to Join: b � b1 t b2 � reg (b1 _ b2)In this ase, the slie hE;!ib ontains a onsistent ut of hE;!i if the ut satis�eseither b1 or b2. Given an event e, let Fmax(e) denote the vetor obtained by takingomponentwise maximum of Fb1(e) and Fb2(e). We �rst prove that no omponentof Fb(e) is less than (or ours before) the orresponding omponent of Fmax(e).Lemma 5.40 For eah event e and proess pi,Fmax(e)[i℄ P! Fb(e)[i℄The proof of Lemma 5.40 is similar to that of Lemma 5.38 and therefore hasbeen omitted. We now onstrut a direted graph Smax(E) that is similar to Sb(E)exept that we use Fmax instead of Fb in its onstrution. The following theoremproves that Smax(E) is in fat ut-equivalent to Sb(E).Theorem 5.41 Smax(E) is ut-equivalent to Sb(E).Again, the proof of Theorem 5.41 is similar to that of Theorem 5.39 andhene has been omitted. Intuitively, the above-mentioned algorithm omputes theintersetion of the sets of edges of eah slie. In this ase, in ontrast to the formerase, Fb(e)[i℄ is idential to Fmax(e)[i℄. The reason is as follows. Reall that Fb(e)[i℄is the earliest event on pi that is reahable from e in hE;!ib. From Theorem 5.41,142

at least Fmax(e)[i℄ is reahable from e in hE;!ib. Thus Fb(e)[i℄ P! Fmax(e)[i℄.Combining it with Lemma 5.40, we obtain the required result. This algorithm anbe generalized to disjuntion of an arbitrary number of regular prediates.5.8.4 Computing the Slie for Co-Regular PrediatesGiven a regular prediate, we give an algorithm to ompute the slie of aomputation with respet to its negation|a o-regular prediate. In partiular,we express the negation as disjuntion of polynomial number of regular prediates.The slie an then be omputed by grafting together slies for eah disjunt.Consider a omputation hE;!i and a regular prediate b. For onveniene,let !b be the edge relation for the slie hE;!ib. Without loss of generality, assumethat both ! and !b are transitive relations. Our objetive is to �nd a propertythat distinguishes the onsistent uts that belong to the slie from the onsistentuts that do not. Consider events e and f suh that e 6! f but e !b f . Then,learly, a onsistent ut that ontains f but does not ontain e annot belong tothe slie. On the other hand, every onsistent ut of the slie that ontains f alsoontains e. This motivates us to de�ne a prediate prevents(f; e) as follows:C satis�es prevents(f; e) , (f 2 C) ^ (e 62 C)We now prove that the prediate prevents(f; e) is atually a regularprediate. Spei�ally, we establish that prevents(f; e) is a onjuntive prediate.Lemma 5.42 prevents(f; e) is a onjuntive prediate.Proof: Let pro(e) = pi and pro(f) = pj . We de�ne a loal prediate li(e) to betrue for an event g on proess pi if g P! e. Similarly, we de�ne a loal prediatemj(f) to be true for an event h on proess pj if f P! h. Clearly, prevents(f; e) isequivalent to li(e) ^mj(f). �It turns out that every onsistent ut that does not belong to the slie satis�es143

prevents(f; e) for some pair of events (e; f) suh that (e 6! f) ^ (e !b f) holds.Formally,Theorem 5.43 Let C be a onsistent ut of hE;!i. Then,C satis�es :b � h9 e; f : (e 6! f) ^ (e!b f) : C satis�es prevents(f; e)iProof: We have,C satis�es :b� f b is a regular prediate g:�C 2 C(hE;!ib)�� f de�nition of C(hE;!ib) g:h8 e; f : e!b f : f 2 C) e 2 Ci� f prediate alulus gh9 e; f : e!b f : (f 2 C) ^ (e 62 C)i� f de�nition of prevents(f; e) gh9 e; f : e!b f : C satis�es prevents(f; e)i� f prediate alulus gh9 e; f : (e!b f) V �(e! f) _ (e 6! f)� : C satis�es prevents(f; e)i� f e! f implies e!b f gh9 e; f : (e! f) W �(e!b f) ^ (e 6! f)� : C satis�es prevents(f; e)i� 8<:sine C is a onsistent ut of hE;!i; C satis�es prevents(f; e))e 6! f 9=;h9 e; f : (e!b f) ^ (e 6! f) : C satis�es prevents(f; e)iThis establishes the theorem. �Theorem 5.43 an also be derived using the results in lattie theory [Riv74℄.We now give the time-omplexity of the algorithm. We start by making the followingobservation. 144

Observation 5.4 Let e, f and g be events suh that f ! g. Then,prevents(g; e)) prevents(f; e)Let Kb(e) denote the vetor whose ith entry denote the earliest event f onproess pi, if it exists, suh that (e 6! f) ^ (e !b f) holds. Observation 5.4 impliesthat prevents(Kb(e)[i℄; e), whenever Kb(e)[i℄ exists, is the weakest prediate amongall prediates prevents(f; e), where pro(f) = pi and (e 6! f) ^ (e !b f). Thuswe an ignore all other events on pi for the purpose of omputing the slie for ao-regular prediate. More preisely, Theorem 5.43 an be restated as:Theorem 5.44 Let C be a onsistent ut of hE;!i. Then,C satis�es :b � h9 e; pi :: C satis�es prevents(Kb(e)[i℄; e)iIt turns out that Kb(e)[i℄ and Fb(e)[i℄ are losely related.Observation 5.5 Kb(e)[i℄ exists if and only if e 6! Fb(e)[i℄. Moreover, wheneverKb(e)[i℄ exists it is idential to Fb(e)[i℄.Note that, to ompute the slie for :b, we atually ompute the slie forreg (:b), that is, hE;!i:b = hE;!ireg (:b). Theorem 5.44 implies that the numberof disjunts in the prediate equivalent to the negation of a regular prediate is atmost O(njEj). Further, these disjunts an be determined in O(n2jEj) time usingthe algorithm Algo 5:2. The slie with respet to eah disjunt an be omputed inO(jEj) time using the algorithm given in Setion 5.7.3. Moreover, given a disjuntb(i), Jb(i)(e) for eah event e an be omputed in O(njEj) time whih in turn anbe used to determine Fb(i)(e) for eah event e in O(njEj) time using the algorithmAlgo 5:2. Finally, these slies an be grafted together to produe the slie for ao-regular prediate in O(njEj� njEj) = O(n2jEj2) time. This is beause, given an145

event e, omputing eah entry of Fb0(e), where b0 = reg (:b), requires O(njEj) time.Thus the overall time-omplexity of the algorithm is O(n2jEj+n2jEj2) = O(n2jEj2).5.8.5 Computing the Slie for k-Loal Prediates for Constant kA prediate is alled k-loal if it depends on variables of at most k proesses [SS95℄.To ompute the slie for a k-loal prediate, we use the tehnique developed byStoller and Shneider [SS95℄. Given a omputation, their tehnique an be used totransform a k-loal prediate into a prediate in k-DNF (disjuntive normal form)with at mostmk�1 lauses, where m is the maximum number of events on a proess.For example, onsider the prediate x1 6= x2. Let V denote the set of values thatx1 an take in the given omputation. Note that jV j 6 m. Then x1 6= x2 an berewritten as: x1 6= x2 � _v2V �(x1 = v) ^ (x2 6= v)�Eah lause in the resultant k-DNF prediate will be a onjuntive prediate.We an use the optimal O(jEj) algorithm given in Setion 5.7.3 to ompute theslie for eah lause. These slies an then be grafted together with respet todisjuntion to obtain the slie for the given k-loal prediate. The time-omplexityof the algorithm is O(mk�1njEj).5.8.6 Computing Approximate SliesEven though it is, in general, NP-hard to ompute the slie for an arbitrary prediate,it is still possible to ompute an approximate slie in many ases. The slie is\approximate" in the sense that it is bigger than the atual slie for the prediate.Nonetheless, it still ontains all onsistent uts of the omputation that satisfy theprediate. In many ases, the approximate slie that we obtain is muh smaller thanthe omputation itself and therefore an be used to prune the searh-spae for manyintratable problems suh as monitoring prediates under various modalities.146

f

f

(e)

{c,f,w,z}

f

{a,b,d,e,u,v,x}

{c,f.w.z}

f

{v}

f

(d)

{c,e,f,v,w,y,z}

f

{a,d,u,x}

f t

t

{y}

t

(f)

(c)

f

(b)

{b}

{a,b,d,e,u,x,y}

(a)

{a,d,u,x}

{e}

{b,c,f,v,w,y,z}

p

t

4

1x x2 x3

e

x4

zyx

ca b

f

3
v

d

wu

3p

p

x

2x
2

x4

x1
1p

Figure 5.12: (a) A omputation, (b) the parse tree for the prediate (x1_x2)^ (x3_x4), () the slie with respet to x1, (d) the slie with respet to x2, (e) the sliewith respet to x3, (f) the slie with respet to x4.147

{a,b,d,e,u,x} {c,f,v,w,y,z}

(i)

(g)

{e}

{a,b,d,e,u,x}

{b}

{a,d,u,x} {c,f,v,w,y,z}

(h)

{v}

{y}

{c,f,w,z}

Figure 5.13: (ontinuation of Figure 5.12) (g) the slie with respet to x1_x2, (h) theslie with respet to x3 _ x4, and (i) the slie with respet to (x1 _ x2) ^ (x3 _ x4).In partiular, using grafting and the algorithms for omputing the slie forvarious lasses of prediates, it is possible to eÆiently ompute an approximateslie for a prediate derived from linear prediates, post-linear prediates, regularprediates, o-regular prediates, and k-loal prediates for onstant k using ^ and_ operators.To ompute an approximate slie, we �rst build the parse tree for the givenboolean expression; all prediates oupy leaf nodes whereas all operators oupynon-leaf nodes. We then reursively ompute the slie working our way up from leafnodes to the root. For a leaf node, we use the algorithm appropriate for the prediateorresponding to the leaf node. For example, if the leaf node orresponds to a linearprediate, we use the algorithm desribed in Setion 5.8.2. For the onjuntion anddisjuntion operators, ^ and _, we use the suitable grafting algorithm dependingon the operator.Example 5.8 For example, onsider the omputation depited in Figure 5.12(a)and the prediate (x1_x2)^ (x3_x4). The parse tree orresponding to the prediate148

is shown in Figure 5.12(b). To ompute an approximate slie for the prediate,we �rst ompute slies for the (loal) prediates x1, x2, x3 and x4 as shown inFigure 5.12()-(f). We then graft the �rst two and the last two slies together withrespet to join to obtain slies for the lauses x1 _ x2 and x3 _ x4 as portrayedin Figure 5.13(g) and Figure 5.13(h), respetively. For the ease of understanding,the events belonging to the same strongly onneted omponent are shown togetherin a subset. Finally, we graft the slies for both lauses together with respet tomeet. The slie obtained will ontain all onsistent uts that satisfy the prediate(x1 _ x2) ^ (x3 _ x4). The �nal slie is shown in Figure 5.13(i).As shown in the �gure, the omputation has seven non-trivial onsistent uts,namely fa; d; u; xg, fa; b; d; u; xg, fa; d; e; u; xg, fa; b; d; e; u; xg, fa; b; d; e; u; v; xg,fa; b; d; e; u; x; yg and fa; b; d; e; u; v; x; yg. On the other hand, the slie onsists ofonly a single non-trivial onsistent ut, whih is given by fa; b; d; e; u; xg. The �nalslie orresponds to the prediate reg �reg (x1 _ x2) ^ reg (x3 _ x4)� and not to theprediate reg �(x1 _ x2) ^ (x3 _ x4)� as desired. This is expeted beause detetingeven a prediate in 2-CNF when no two lauses ontain variables from the sameproess is NP-omplete in general (see Chapter 3).5.9 Deteting Global Prediates using Sliing: AnExperimental StudyIn this setion, we evaluate the e�etiveness of sliing in pruning the searh-spaewhen deteting a prediate under possibly modality. We ompare our approahwith that of Stoller, Unnikrishnan and Liu [SUL00℄, whih is based on partial-ordermethods [God96℄. Intuitively, when searhing the state-spae, at eah onsistentut, partial-order methods allow only a small subset of enabled transitions to beexplored. In partiular, we use partial-order methods employing both persistent and149

sleep sets for omparison. We onsider two examples that were also used by Stoller,Unnikrishnan and Liu to evaluate their approah [SUL00℄. We briey desribethe main idea behind partial-order methods approah here; details an be foundelsewhere [God96, SUL00℄.The material in the next two paragraphs is paraphrased from [SUL00℄. Intheir full generality, partial-order methods an be used to loate deadloks in aonurrent system. A deadlok is a state in whih no transitions are enabled. Clearly,all reahable deadloks an be identi�ed by exploring all reahable states. Thisinvolves expliitly onsidering all possible exeution orderings of transitions, even ifsome transitions are \independent" (that is, exeuting them in any order leads tothe same state). Exploring one interleaving of independent transitions is suÆientfor �nding deadloks. This auses fewer intermediate states (that is, states in whihsome but not all of the independent transitions have been exeuted) to be explored,but it does not a�et the reahability of deadloks. This is beause the intermediatestates annot be deadloks sine some of the independent transitions are enabledin those states. Partial-order methods attempt to eliminate exploration of multipleinterleavings of independent transitions, thereby saving time and spae.Consider a state s. A set T of transitions enabled in s is said to be persistentin s if, for every sequene of transitions starting from s and not ontaining anytransitions in T , all transitions in that sequene are independent with all transitionsin T . As shown in [God96℄, in order to �nd all reahable deadloks, it suÆes toexplore from eah state s a set of transitions that is persistent in s. Note that the setof all enabled transitions in s trivially onstitutes a persistent set in s. To save timeand spae, small persistent sets should be used. As further optimization, sleep setsan be employed to eliminate redundany aused by exploring multiple interleavingsof independent transitions in a persistent set [God96℄.How do partial-order methods apply to deteting a prediate under possibly150

modality? Consider a prediate b = b(1) ^ b(2) ^ � � � ^ b(l). Let support(b(i)) denotethe subset of proesses on whih the onjunt b(i) depends. Suppose, when exploringthe state-spae of the omputation, we reah a onsistent ut C that does not satisfyb. Therefore there exists a onjunt b(i) that evaluates to false for C. A set T oftransitions that onstitutes a persistent set in C an be onstruted as follows. Foreah proess pj 2 support(b(i)), in ase the next transition tj of pj , if it exists, isenabled in C, add tj to T ; otherwise �nd some enabled transition t that must beexeuted before tj and add t to T .Now, with our approah based on omputation sliing, in order to detet aprediate, we �rst ompute an approximate slie of the omputation with respet tothe prediate, and then perform a simple searh of the state-spae of the resultantslie. Whereas, with the approah based on partial-order methods, we use persistentand sleep sets to searh the state-spae of the omputation. To ompare the twoapproahes, we onsider two examples whih were also used by Stoller, Unnikrishnanand Liu to evaluate their approah [SUL00℄.The �rst example, alled primary-seondary, onerns an algorithm designedto ensure that the system always ontains a pair of proesses ating together asprimary and seondary. The invariant for the algorithm requires that there is a pairof proesses pi and pj suh that (1) pi is ating as a primary and orretly thinksthat pj is its seondary, and (2) pj is ating as a seondary and orretly thinks thatpi is its primary.The �rst example, alled primary-seondary, onerns an algorithm designedto ensure that the system always ontains a pair of proesses ating together asprimary and seondary. The invariant for the algorithm requires that there is a pairof proesses pi and pj suh that (1) pi is ating as a primary and orretly thinksthat pj is its seondary, and (2) pj is ating as a seondary and orretly thinks thatpi is its primary. Both the primary and the seondary may hoose new proesses as151

their suessor at any time; the algorithm must ensure that the invariant is neverfalsi�ed. Mathematially, the invariant Ips an be written as:Ips = Wi; j 2 [1 : : : n℄; i 6= j0� isPrimaryi V isSeondaryj V(seondaryi = pj) V (primaryj = pi) 1AHere, the variable isPrimaryi is true if and only if proess pi is ating as theprimary; in that ase, the variable seondaryi points to the proess that pi thinks isating as its seondary. The variables isSeondaryi and primaryi an be interpretedin a similar fashion. Both the primary and the seondary may hoose new proessesas their suessor at any time; the algorithm must ensure that the invariant is neverfalsi�ed. Stoller, Unnikrishnan and Liu provide an algorithm in [SUL00℄ to maintainthe above invariant. We desribe it here for the sake of ompleteness.Initially, proess p1 is the primary and proess p2 is the seondary. At anytime, the primary may hoose a new primary as its suessor by �rst informing theseondary of its intention, waiting for an aknowledgement, and then multiastingto the other proesses a request for volunteers to be the new primary. It hooses the�rst volunteer whose reply it reeives and sends message to that proess stating thatit is the new primary. The new primary sends a message to the urrent seondarywhih updates its state to reet the hange and then sends a message to the oldprimary stating that it an stop being the primary. The seondary an hoose anew seondary using a similar protool. Before initiating the protool, however, theseondary must wait for an aknowledgement from the primary. If the seondaryinstead reeives a message that the primary is searhing for a suessor as well, theseondary aborts its urrent attempt to �nd a suessor, waits until it reeives amessage from the new primary, and then re-starts the protool. This prevents theprimary and seondary from trying to hoose suessors onurrently. A global faultorresponds to the omplement of the invariant whih an be expressed as:152

:Ips = Vi; j 2 [1 : : : n℄; i 6= j0� :isPrimaryi W :isSeondaryj W(seondaryi 6= pj) W (primaryj 6= pi) 1ANote that :Ips is a prediate in CNF where eah lause is a disjuntion oftwo loal prediates. An approximate slie for :Ips an be omputed in O(n3jEj)time. In the seond example, alled database partitioning, a database is partitionedamong proesses p2 through pn, while proess p1 assigns tasks to these proessesbased on the urrent partition. A proess pi, i 2 [2 : : :n℄, an suggest a newpartition at any time by setting variable hangei to true and broadasting a messageontaining the proposed partition and an appropriate version number. A reipientof this message aepts the proposed partition if its own version of the partition hasa smaller version number or if its own version of the partition has the same versionnumber and was proposed by a proess with larger index. An invariant that shouldbe maintained is: if no proess is hanging the partition, then all proesses agree onthe partition. Formally,Idb = (^i2[2:::n℄:hangei)) (^16i<j6n partitioni = partitionj)Again, the algorithm desribed above was given by Stoller, Unnikrishnan andLiu in [SUL00℄. The omplement of the invariant, given by :Idb, an be written as::Idb = (^i2[2:::n℄:hangei)^� _i;j2[1:::n℄; i 6=j(partitioni 6= partitionj)�Note that the �rst n � 1 lauses of :Idb are loal prediates and the lastlause, say LC, is a disjuntion of 2-loal prediates. Thus, using the tehniquedesribed in Setion 5.8.5, LC an be rewritten as a prediate in DNF with O(njEj)lauses. To redue the number of lauses, we proeed as follows. Let V denote theset of values that partition1 assumes in the given omputation. Then it an be153

No Faults One Injeted FaultNumber of Partial-Order Computation Partial-Order ComputationProesses Methods Sliing Methods Sliingn T M T M T M T M6 0.07 0.62 0.36 1.21 0.05 0.41 0.37 1.387 0.16 1.11 0.61 1.34 0.11 0.81 0.58 1.418 0.37 2.06 0.90 1.54 0.31 1.79 0.91 1.619 0.83 4.37 1.24 1.70 0.59 3.05 1.21 1.7710 1.52 7.26 1.73 1.81 1.12 5.54 1.70 2.0011 2.99� 13.14� 2.15 1.93 2.09� 9.50� 2.13 2.2712 5.0� 21.56� 2.85 2.16 3.51� 14.13� 2.77 2.43n: number of proesses T : amount of time spent (in s)M : amount of memory used (in MB)*: does not inlude the ases in whih the tehnique runs out of memoryTable 5.1: Primary-Seondary example with the number of events on a proessupper-bounded by 90.veri�ed that LC is logially equivalent to:_v2V �(partition1 = v)^�(partition2 6= v)_(partition3 6= v)_� � �_(partitionn 6= v)��This dereases the number of lauses, when LC is rewritten in a form thatan be used to ompute a slie, to O(njV j). Note that jV j is bounded by thenumber of events on the �rst proess, and therefore we expet njV j to be O(jEj).We use the simulator implemented in Java by Stoller, Unnikrishnan and Liu togenerate omputations of these protools. Message latenies and other delays (e.g.,how long to wait before looking for a new suessor) are seleted randomly usingthe distribution 1+ exp(x), where exp(x) is the exponential distribution with meanx. Further details of the two protools and the simulator an be found elsewhere[SUL00℄. We onsider two di�erent senarios: fault-free and faulty. The simulatoralways produes fault-free omputations. A faulty omputation is generated by154

