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Te
hniques for Analyzing Distributed ComputationsPubli
ation No.Neeraj Mittal, Ph.D.The University of Texas at Austin, 2002Supervisor: Vijay K. GargInherent non-determinism in distributed programs and presen
e of multiple threadsof 
ontrol makes it diÆ
ult to write 
orre
t distributed software. Not surprisingly,distributed systems are parti
ularly vulnerable to software faults. To build adistributed system 
apable of tolerating software faults, two important problemsneed to be addressed: fault dete
tion and fault re
overy.The fault dete
tion problem requires �nding a (
onsistent) global state of the
omputation that satis�es 
ertain predi
ate (e.g., violation of mutual ex
lusion). Toprevent a fault from 
ausing any serious damage su
h as 
orrupting stable storage, itis essential that it be dete
ted in a timely manner. However, we prove that dete
tinga predi
ate in 2-CNF, even when no two 
lauses 
ontain variables from the samepro
ess, is an NP-
omplete problem. We develop a te
hnique, based on 
omputationsli
ing, to redu
e the size of the 
omputation and thus the number of global statesto be examined for dete
ting a predi
ate. Sli
ing 
an be used to throw away theextraneous global states of the 
omputation in an eÆ
ient manner, and fo
us ononly those that are 
urrently relevant for our purpose. To dete
t a fault, therefore,rather than sear
hing the state-spa
e of the 
omputation, it is mu
h more eÆ
ientxi



to sear
h the state-spa
e of the sli
e. We identify several useful 
lasses of predi
atesfor whi
h the sli
e 
an be 
omputed eÆ
iently. Our experimental results indi
atethat sli
ing 
an lead to an exponential redu
tion over existing te
hniques both interms of time as well as spa
e for fault dete
tion.To re
over from faults, we 
onsider rollba
k re
overy approa
h, whi
h involvesrestoring the system to a previous state and then re-exe
uting. We fo
us on rollba
kre
overy using 
ontrolled re-exe
ution, whi
h is useful and e�e
tive for toleratingsyn
hronization faults. Unlike other approa
hes whi
h depend on 
han
e and do notensure that the re-exe
ution is fault-free, the 
ontrolled re-exe
ution method avoidssyn
hronization faults during re-exe
ution in a deterministi
 fashion. Spe
i�
ally, itsele
tively adds syn
hronization dependen
ies during re-exe
ution to ensure that thepreviously dete
ted syn
hronization faults do not o

ur again. We provide eÆ
ientalgorithms to solve the problem for two important 
lasses of syn
hronization faults.
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Chapter 1Introdu
tionRe
ent advan
es in 
ommuni
ation te
hnology have led to a rapidproliferation of distributed systems. For example, a 
luster of servers providedWeb 
overage of the Sydney Summer Olympi
s. As another example, mass-distributed 
omputing was re
ently used to dis
over the largest known primenumber. As distributed systems evolve from the spe
ial 
ase to 
ommonpla
e,ensuring their reliable operation has emerged as an important and 
hallengingproblem. With distributed systems being in
reasingly employed in safety-
riti
alenvironments, a failure in one of these systems 
ould have irreparable, if not tragi
,
onsequen
es. There have been several examples of serious systems failures (e.g.,Ariane 5, Thera
 25, Mars Observer) 
aused at least in part by 
riti
al defe
ts inthe software.Inherent non-determinism in distributed programs and presen
e of multiplethreads of 
ontrol make it diÆ
ult to write 
orre
t distributed software. Notsurprisingly, distributed systems are espe
ially vulnerable to software faults. Dealingwith software faults requires e�orts at multiple levels [TP00℄. Early in thesoftware 
y
le, design methodologies, te
hnologies and te
hniques that are aimed at1



preventing the introdu
tion of faults into the design 
an be used (fault prevention).Later, the implementation 
an be veri�ed using testing, and the faults therebyexposed 
an be removed using debugging (fault removal). In spite of extensivetesting and debugging, software faults may persist even in produ
tion qualitysoftware. Fault toleran
e 
an be used as an extra layer of prote
tion to providea

eptable level of performan
e and safety at runtime after a fault be
omes a
tive.In this dissertation, we fo
us on fault removal and fault toleran
e te
hniques toimprove the reliability of distributed software.Fault RemovalThe 
orre
tness of a program is often expressed using a 
ombination of safety andliveness properties. A safety property spe
i�es what the program must not do(ensures \nothing bad will ever happen"). An example of a safety property is mutualex
lusion whi
h demands that at no time should there be more than one pro
essin its 
riti
al se
tion. A liveness property, on the other hand, spe
i�es what theprogram must eventually do (guarantees \something good will eventually happen").An example of a liveness property is that every pro
ess whi
h is trying to a
quire aresour
e will su

eed eventually.Testing and debugging has been widely used for developing traditionalsequential programs. Testing involves exe
uting the program for a spe
i�
 inputsequen
e and then validating the output obtained with respe
t to the given safetyand liveness properties. Spe
i�
ally, when testing for safety property, the obje
tiveis to verify that the system always stayed in a safe state throughout the exe
ution,or, in other words, the system did not traverse through an unsafe state. Similarly,when testing for liveness property, the aim is to as
ertain that some desired 
onditioneventually be
ame true in the exe
ution. In 
ase testing reveals that the programbehaved erroneously (it violated either safety or liveness property), debugging is the2



pro
ess of tra
king down the bug that 
aused the program to exhibit the faultybehaviour.The state of a distributed system, 
ommonly referred to as global state, isgiven by the set of events that have been exe
uted so far (on all pro
esses). In anasyn
hronous distributed system, however, it is not possible for an external observerto determine the exa
t order in whi
h the events generated by the system wereexe
uted in real-time. The events 
an only be partially ordered; the partial order isreferred to as the Lamport's happened-before relation [Lam78℄ and the 
orrespondingpartially ordered set (or poset) is 
alled a distributed 
omputation. Ea
h interleavingof events that respe
ts the happened-before relation 
orresponds to an order inwhi
h the events 
ould have been exe
uted. Testing a 
omputation with respe
tto safety and liveness properties, therefore, translates into answering the followingqueries: \Does there exist an interleaving of events in whi
h the system passesthrough an unsafe global state?" and \Does a liveness property eventually be
ometrue in all possible interleavings of events?" The two problems 
orrespond to thepredi
ate dete
tion problem under possibly and definitely modalities [CM91, GW91℄,respe
tively.On dis
overing a fault in the 
omputation during testing phase, the nextstep is to analyze the 
omputation to lo
ate the sour
e of the fault. While the skilland intuition of the programmer play an important role in debugging, tools thatprovide an e�e
tive environment for debugging are indispensable. For example, ondete
ting a violation of safety property, a programmer 
an gain 
onsiderable insightinto the bug, that 
aused the violation, by learning whether all possible interleavingsof events are unsafe in the sense that they all pass through a global state that isunsafe. In that 
ase, the bug 
annot be �xed by adding or removing syn
hronizationalone. On the other hand, if it is possible to eliminate all unsafe interleavings byadding syn
hronization to the 
omputation, without 
reating a deadlo
k, then too3



little syn
hronization is likely to be the problem. Furthermore, the knowledge ofthe exa
t syn
hronization needed to maintain a safety property 
an fa
ilitate thelo
alization of the bug in the program. The problem of �nding a syn
hronizationrequired to maintain a safety property in a 
omputation is referred to as the predi
ate
ontrol problem [TG98b℄.Analyzing an erroneous 
omputation in order to tra
k down the sour
e of thefault is 
ompli
ated by the fa
t that the 
omputation in general 
ontains exponentialnumber of global states. Therefore it is helpful and desirable to fo
us on only thoseglobal states that are likely to be involved in the fault. For example, to lo
ate thebug, it may suÆ
e to examine only transitless global states, the ones in whi
h all sentmessages have been re
eived. To that end, we de�ne the notion of 
omputation sli
e.Intuitively, sli
e is a 
on
ise representation of those global states of the 
omputationthat satisfy 
ertain property. More pre
isely, the sli
e of a 
omputation with respe
tto a predi
ate is the 
omputation satisfying the following two 
onditions. First,it 
ontains all global states for whi
h the predi
ate evaluates to true. Se
ond,among all 
omputations that ful�ll the �rst 
ondition, it 
ontains the least numberof global states. A sli
e may 
ontain exponentially fewer number of global statesthan the 
omputation, thereby substantially redu
ing the size of the 
omputationto be analyzed.Fault Toleran
eA produ
tion quality software whi
h has been extensively tested and debugged
ontains around 3 bugs per 1,000 lines of 
ode [GR93℄. Many systems, espe
iallythose employed in safety-
riti
al environments, should be able to operate properlyeven in the presen
e of these bugs. An overwhelming majority of the bugs tend tobe non-deterministi
 in nature and are often 
aused by transient 
onditions su
has timing and syn
hronization. Therefore they do not manifest themselves in every4
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Fault DetectorFigure 1.1: A software fault toleran
e system.program exe
ution with the same input sequen
e and it is possible to tolerate themat runtime using rollba
k re
overy [GR93℄. A system 
apable of tolerating softwarefaults 
an be built using a monitor that 
ontinuously observes the system exe
utionto dete
t an o

urren
e of a fault. On dete
ting a fault, it rolls ba
k the programto a state before the fault o

urred and re-exe
utes it hoping that the previouslydete
ted fault does not o

ur again. To prevent the fault from 
ausing any seriousdamage su
h as 
orrupting stable storage, it is essential that the monitor be able todete
t the fault in a timely manner. This requires the fault dete
tion algorithm tobe fast and eÆ
ient. Further, to minimize the disruption in servi
e 
aused by thefault, it is desirable that during re-exe
ution the fault be avoided in a deterministi
fashion instead of relying on 
han
e [WHF+97℄. Tarafdar and Garg [TG99℄ proposedthe 
ontrolled re-exe
ution approa
h whi
h assumes some knowledge about the fault(e.g., fault o

urred be
ause of improper syn
hronization) but provides a guaranteethat the previously dete
ted fault will not re
ur during re-exe
ution. Therefore tobuild a software fault tolerant system, two issues need to be addressed: (1) faultdete
tion whi
h gives rise to the problem of dete
ting a predi
ate under possiblymodality, and (2) fault re
overy whi
h in the 
ase of syn
hronization faults givesrise to the predi
ate 
ontrol problem. 5



To summarize, our goals are:� To investigate the problem of dete
ting a predi
ate in a 
omputation.� To investigate the problem of 
ontrolling a predi
ate in a 
omputation.� To formulate and investigate the notion of sli
e of a 
omputation with respe
tto a predi
ate.In the next three se
tions, we give an introdu
tion to our work towards ea
hof these goals. This is followed by an overview of the dissertation.1.1 Dete
ting Global Predi
atesVerifying the 
orre
tness of an observed behaviour of a program, for a spe
i�
 inputsequen
e, gives rise to the problem of dete
ting a predi
ate in a 
omputation underpossibly and definitely modalities. When dete
ting a predi
ate under possiblymodality, the obje
tive is to �nd a global state in the 
omputation that violatesthe safety property. For example, 
onsider the 
omputation in Figure 1.2 with threepro
esses p1, p2 and p3. The safety property is mutual ex
lusion whi
h demandsthat no two pro
esses are in 
riti
al se
tions (labeled CS1, CS2, CS3 and CS4) atthe same time. Clearly, the given 
omputation does not maintain mutual ex
lusionat all times. Spe
i�
ally, mutual ex
lusion is violated for global state C in whi
hpro
esses p1 and p3 are in their respe
tive 
riti
al se
tions.Dete
ting a predi
ate under definitely modality requires verifying that theliveness property eventually be
omes true in all interleavings of events. For example,
onsider the 
omputation in Figure 1.3 with two pro
esses p1 and p2. The livenessproperty requires that the system always passes through a state in whi
h both6
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1p

p3

p2Figure 1.2: Dete
ting a predi
ate under possibly modality.pro
esses are in the se
ond round. Clearly, if the events are interleaved in the ordera e b 
 f d g h, the desired 
ondition never be
omes true.It 
an be proved that dete
ting a predi
ate in a 
omputation under definitelymodality is the dual of 
ontrolling a predi
ate in a 
omputation. Thus our resultsin solving the predi
ate 
ontrol problem are appli
able to the predi
ate dete
tionproblem under definitely modality as well. Hereafter, the default modality forpredi
ate dete
tion is possibly. Moreover, we do not spe
ify possibly modalityunless we need to distinguish it from definitely modality.ContributionsIt is always useful and desirable to know for what 
lasses of predi
ates an eÆ
ientpolynomial-time dete
tion algorithm is unlikely to exist. To that end, Chase andGarg prove in [CG95℄ that dete
ting a predi
ate in 3-CNF is an NP-
ompleteproblem. Also, Stoller and S
hneider [SS95℄ show that it is 
omputationally hardto dete
t a 2-lo
al 
onjun
tive predi
ate (a predi
ate expressed as 
onjun
tion of
lauses where ea
h 
lause depends on variables of at most two pro
esses). Wedemonstrate that dete
ting a predi
ate in 2-CNF even when no two 
lauses 
ontainvariables from the same pro
ess is an NP-
omplete problem as well. It may be notedthat our intra
tability result subsumes the two aforementioned NP-
ompletenessresults. Nevertheless, 
omputation sli
ing, dis
ussed later, 
an be used to a
hieve7
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round1Figure 1.3: Dete
ting a predi
ate under definitely modality.an exponential improvement in time as well as spa
e for dete
ting a predi
ate thatis otherwise 
omputationally hard to dete
t.Additionally, we establish that dete
ting a relational predi
ate of the formx1 + x2 + � � �+ xn = k for 
onstant k, where xi is an integer variable on pro
esspi, is an NP-
omplete problem. This is somewhat surprising be
ause a relationalpredi
ate of the form x1+x2+� � �+xn 6 k, for 
onstant k, 
an be dete
ted eÆ
iently.(This is true even when 6 is repla
ed with >.) However, for 
ertain restri
ted butuseful 
lass of general 
omputations, it is indeed possible to provide an eÆ
ientpolynomial-time algorithm to dete
t the former relational predi
ate. This 
lass
orresponds to 
omputations in whi
h ea
h xi is in
remented or de
remented by atmost one at ea
h step. Su
h 
omputations are generated, for example, when ea
hxi is a binary variable and 
an assume values 0 or 1. As a 
orollary, any symmetri
predi
ate|predi
ate 
omposed from boolean variables that is invariable under anypermutation of its variables|
an be eÆ
iently dete
ted.1.2 Controlling Global Predi
atesThe problem of 
ontrolling a predi
ate in a 
omputation involves addingsyn
hronization to the 
omputation, without 
reating a 
y
le, su
h that the givenpredi
ate is never falsi�ed in the resultant 
omputation. As an example, 
onsider the
omputation in Figure 1.4(a) with three pro
esses p1, p2 and p3. Suppose the statedpredi
ate is the mutual ex
lusion predi
ate whi
h requires that no two pro
esses are8



CS3

CS2

CS4

1CS
C

CS3

CS2

CS4

1CS
C

(a) (b)

1p

p3

p2

1p

p3

p2Figure 1.4: Controlling a predi
ate in a 
omputation: (a) original 
omputation, and(b) 
ontrolled 
omputation.in 
riti
al se
tions (labeled CS1, CS2, CS3 and CS4) at the same time. Clearly,the 
omputation does not maintain mutual ex
lusion at all times. Figure 1.4(b)depi
ts the same 
omputation with added syn
hronization that ensures that mutualex
lusion is maintained at all times. We 
all su
h a 
omputation as \
ontrolled
omputation" and the added syn
hronization as \
ontrolling syn
hronization". Themain diÆ
ulty in determining su
h a 
ontrolling syn
hronization lies in adding thesyn
hronization dependen
ies in su
h a manner as to maintain the given propertywithout 
ausing deadlo
k with existing syn
hronization dependen
ies.ContributionsTarafdar and Garg prove in [TG98b℄ that it is in general NP-
omplete to 
ompute a
ontrolling syn
hronization for a predi
ate. We therefore fo
us on two useful 
lassesof predi
ates for whi
h polynomial-time algorithms 
an be provided.The �rst 
lass of predi
ates we 
onsider is the 
lass of \region predi
ates".Informally, a region predi
ate partitions the set of global states of the 
omputationthat satisfy the predi
ate into bounded 
onvex regions, one for ea
h event. Someexamples of region predi
ates in
lude \the virtual 
lo
ks of all pro
esses areapproximately syn
hronized", and 
hannel predi
ates su
h as \all request messages9



have been re
eived". We give an O(njEj2) algorithm for 
omputing a 
ontrollingsyn
hronization for a region predi
ate, where n is the number of pro
esses and E isthe set of events. We also show that the 
ontrolling syn
hronization generated by thealgorithm is optimal in the sense that it permits the maximum possible 
on
urren
yin the 
ontrolled 
omputation.The other 
lass of predi
ates we study is the 
lass of \disjun
tive predi
ates".A disjun
tive predi
ate 
an be expressed as disjun
tion of lo
al predi
ates. Someexamples in
lude \at least one server is not busy", \at least one philosopher does nothave a fork", and (n�1)-mutual ex
lusion with n pro
esses in the system. Intuitively,a disjun
tive predi
ate ensures that a bad 
ombination of lo
al 
onditions does noto

ur. We provide anO(njEj) algorithm for 
omputing a 
ontrolling syn
hronizationfor a disjun
tive predi
ate, where n is the number of pro
esses and E is the set ofevents. We further modify the algorithm to 
ompute a 
ontrolling syn
hronizationwith the least number of syn
hronization dependen
ies. The modi�ed algorithm hasO(jEj2) time-
omplexity.1.3 Sli
ing Distributed ComputationsThe sli
e of a 
omputation with respe
t to a predi
ate is the 
omputation withthe least number of global states su
h that it 
ontains all global states of theoriginal 
omputation satisfying the given predi
ate. As an illustration, 
onsider the
omputation in Figure 1.5(a). In the �gure, the �rst event on ea
h pro
ess initializesthe state of the pro
ess. The initial global state is therefore obtained by exe
utingthe events a, e and u. Suppose we wish to examine only those global states forwhi
h (x1 > 1)^ (x3 6 3). A 
on
ise representation of su
h global states|referredto as sli
e|is shown in Figure 1.5(b). Informally, in the sli
e, the partial order isspe
i�ed on subsets of events rather than events. Intuitively, all events in a subsetare exe
uted atomi
ally, that is, either none of them is exe
uted or all of them are10
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{w} {g}Figure 1.5: (a) A 
omputation, and (b) its sli
e with respe
t to the predi
ate(x1 > 1)^ (x3 6 3).exe
uted. For instan
e, the global state of the 
omputation obtained by exe
utingthe events a; b; e and u is not a global state of the sli
e be
ause only some of theevents in the subset fa; e; f; u; vg have been exe
uted. The 
omputation 
ontainstwenty eight global states whereas the sli
e 
ontains only six global states.Now, suppose we want to �nd a global state of the 
omputation for whi
hthe predi
ate (x1 � x2 + x3 < 5) ^(x1 > 1) ^ (x3 6 3) evaluates to true. Without
omputation sli
ing, we are for
ed to examine all global states of the 
omputationto as
ertain whether some global state satis�es the predi
ate. With 
omputationsli
ing, however, we 
an restri
t our sear
h to the global states of the sli
e, therebyresulting in substantial savings.ContributionsWe �rst establish that sli
e exists and is uniquely de�ned for all predi
ates. Thesli
e for a predi
ate may 
ontain global states that do not satisfy the predi
ate. Weidentify the 
lass of \regular predi
ates" for whi
h the sli
e is \lean". In other words,the sli
e for a regular predi
ate 
ontains pre
isely those global states for whi
h thepredi
ate evaluates to true. The set of global states that satisfy a regular predi
ateforms a sublatti
e, that is, it is 
losed under interse
tion and union. Some examplesof regular predi
ates are: 
onjun
tion of lo
al predi
ates like \no pro
ess has the11



token", and 
hannel predi
ates su
h as \all request messages have been re
eived".We prove that the 
lass of regular predi
ates is 
losed under 
onjun
tion, that is,the 
onjun
tion of two regular predi
ates is also a regular predi
ate. We devise aneÆ
ient algorithm to 
ompute the sli
e for a regular predi
ate. The time-
omplexityof the algorithm is O(n2jEj), where n is the number of pro
esses and E is the set ofevents. Additionally, for spe
ial 
ases of regular predi
ates su
h as 
onjun
tion oflo
al predi
ates, we develop optimal algorithms for 
omputing the sli
e whi
h haveO(jEj) time-
omplexity. In addition to regular predi
ates, we also provide eÆ
ientalgorithms to 
ompute the sli
e for many 
lasses of non-regular predi
ates in
luding\linear predi
ates" and \post-linear predi
ates".We prove that it is intra
table in general to 
ompute the sli
e for a predi
ate.Nonetheless, it is still useful to be able to 
ompute an approximate sli
e for su
ha predi
ate eÆ
iently. An approximate sli
e may be bigger than the a
tual sli
ebut will be mu
h smaller than the 
omputation itself. To that end, we developeÆ
ient algorithms to 
ompose two sli
es using \grafting". Spe
i�
ally, given twosli
es, grafting involves 
omputing either (1) the smallest sli
e that 
ontains allglobal states 
ommon to both the sli
es, or (2) the smallest sli
e that 
ontainsall global states that belong to at least one of the sli
es. We apply grafting toeÆ
iently 
ompute the sli
e for the 
omplement of a regular predi
ate|referred toas \
o-regular predi
ate". The algorithm has O(n2jEj2) time-
omplexity, where nis the number of pro
esses and E is the set of events. We also employ graftingto 
ompute the sli
e for a \k-lo
al predi
ate" with 
onstant k in polynomial-time.More importantly, we use grafting to 
ompute an approximate sli
e|in polynomial-time|for a predi
ate 
omposed using ^ and _ operators from predi
ates for whi
hthe sli
e 
an be 
omputed eÆ
iently (e.g., regular predi
ates, linear predi
ates).Example of su
h predi
ate is: (x1 _ :x2) ^ (x3 _ :x1) ^ (x2 _ x3), where ea
h xiis a linear predi
ate. We 
ondu
t simulation tests to experimentally measure the12



e�e
tiveness of 
omputation sli
ing in pruning the sear
h spa
e when dete
ting apredi
ate. Our results indi
ate that 
omputation sli
ing 
an lead to an exponentialredu
tion over existing te
hniques both in terms of time as well as spa
e.1.4 Overview of the DissertationThe remainder of this dissertation is organized as follows. In Chapter 2, we de�ne ourmodel. Next, we have three main 
hapters of the dissertation. Chapter 3 dis
ussesour results in dete
ting global predi
ates, Chapter 4 investigates the problem of
ontrolling global predi
ates, and Chapter 5 des
ribes our study of the 
omputationsli
ing te
hnique. In Chapter 6, we give a summary of the related work. Finally, wedraw 
on
lusions and des
ribe future dire
tions in Chapter 7.

13





Chapter 2System ModelIn this 
hapter we formally des
ribe the model and notation used in thisdissertation. Our model is based on the Lamport's happened-before model [Lam78℄.The model is further extended in Chapter 5 where we dis
uss 
omputation sli
ingin detail.2.1 Distributed ComputationsWe assume an asyn
hronous distributed system with the set of pro
esses P =fp1; p2; : : : ; png. Ea
h pro
ess exe
utes a prede�ned program. Pro
esses do notshare any 
lo
k or memory; they 
ommuni
ate and syn
hronize with ea
h other bysending messages over a set of 
hannels. We assume that 
hannels are reliable, thatis, messages are not lost, altered or spuriously introdu
ed into a 
hannel. We do notassume FIFO 
hannels.The lo
al 
omputation of a pro
ess is given by the sequen
e of events thattransforms the initial state of the pro
ess into the �nal state. At ea
h step, the lo
alstate is 
aptured by the initial state together with the sequen
e of events that have15



been exe
uted up to that step. Ea
h event is either an interval event or an externalevent. An external event 
ould be a send event or a re
eive event or both. An event
auses the lo
al state of a pro
ess to be updated. Additionally, a send event 
ausesa message or a set of messages to be sent and a re
eive event 
auses a message ora set of messages to be re
eived. We assume the presen
e of �
titious initial eventson ea
h pro
ess pi, denoted by ?i. The initial event o

urs before any other eventon the pro
ess and initializes the state of that pro
ess. We denote the last event onpro
ess pi, 
alled the �nal event, by >i. Let ? and > denote the set of all initialevents and �nal events, respe
tively.Let pro
(e) denote the pro
ess on whi
h event e o

urs. The prede
essor andsu

essor events of e on pro
(e) are denoted by pred(e) and su

(e), respe
tively,if they exist. Observe that an initial event does not have a prede
essor and a �nalevent does not have a su

essor.We model a distributed 
omputation (or simply a 
omputation) by anirre
exive partial order on a set of events. We use hE;!i to denote a distributed
omputation with the set of events E and the partial order!. The partial order !is given by the Lamport's happened-before relation (or 
ausality relation) [Lam78℄whi
h is de�ned as the smallest transitive relation satisfying the following properties:1. if events e and f o

ur on the same pro
ess, and e o

urred before f in realtime then e happened-before f , and2. if events e and f 
orrespond to the send and re
eive, respe
tively, of a messagethen e happened-before f .Given a 
omputation hE;!i, we denote the order of events on pro
esses byP! whi
h is referred to as pro
ess order. Note that the proje
tion of P! onto theevents of a single pro
ess is a total order. The re
exive 
losure of an irre
exivepartial order  is represented by  and its transitive 
losure is denoted by  +. A16
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hgfe

C D

p2

p1Figure 2.1: An example of a 
omputation.run or interleaving of a 
omputation hE;!i is some total order on events E that is
onsistent with the partial order !.Example 2.1 Figure 2.1 depi
ts a 
omputation involving two pro
esses, namely p1and p2. The lo
al 
omputation of ea
h pro
ess advan
es from left to right as shownin the �gure. The 
ir
les represent events and the arrows denote messages. Thelo
al 
omputation of p1 is given by the sequen
e ab
d. The event b is a send event,the event f is a re
eive event and the event d is an internal event. Here, ?1 = aand ?2 = e whereas >1 = 
 and >2 = h. Also, pro
(b) = p1, pred(b) = a andsu

(e) = 
. The set of events E = fa; b; 
; d; e; f; g; hg and the happened-beforeorder != f(a; b); (b; 
); (
; d); (e; f); (f; g); (g; h); (b; f); (g; 
)g+. The pro
ess orderP! is given by f(a; b); (b; 
); (
; d); (e; f); (f; g); (g; h)g+. Finally, aebfgh
d is a runof the 
omputation.2.2 Cuts, Consistent Cuts and FrontiersThe state of a distributed system, 
alled the global state, is given by the 
olle
tivestate of pro
esses. The equivalent notion based on events is 
alled 
ut and is de�nedas a subset of events that 
ontains all initial events su
h that it 
ontains an eventonly if its prede
essor, if it exists, also belongs to the subset. Formally,C is a 
ut , (? � C) ^ h8 e : e 2 C : e 62 ? ) pred(e) 2 Ci17



The frontier of a 
ut C is de�ned as the set of those events in C whosesu

essors are not in C. Formally,frontier(C) , f e 2 C j e 62 > ) su

(e) 62 C gWe say that a 
ut passes through an event if the event is in
luded inits frontier. Not every 
ut 
an o

ur during system exe
ution. A 
ut is saidto be 
onsistent if it 
ontains an event only if it also 
ontains all events thathappened-before it. Formally,C is a 
onsistent 
ut , (C is a 
ut) ^ h8 e; f : e! f : f 2 C ) e 2 CiIn parti
ular, only those 
uts whi
h are 
onsistent 
an possibly o

ur duringan exe
ution. The equivalent notion based on state is 
alled 
onsistent global state.We denote the set of 
onsistent 
uts of a 
omputation hE;!i by C(hE;!i).Two events are 
onsistent if there exists a 
onsistent 
ut that passes throughboth the events, otherwise they are in
onsistent. It 
an be veri�ed that events eand f are in
onsistent if and only if either su

(e)!f or su

(f)!e. Finally, twoevents e and f are independent if they are in
omparable with respe
t to !.Example 2.2 Consider the 
omputation in Figure 2.1. Pi
torially, we represent a
ut by a line drawn from top to bottom passing through exa
tly one event on ea
hpro
ess; an event belongs to the 
ut if and only if it either lies on the line or lieson the left of the line. The 
ut C = fa; e; fg. The 
ut D is 
onsistent whereas C isnot. Here, frontier(C) = fa; fg and frontier(D) = fb; gg. The events b and f are
onsistent whereas events a and f are not. Finally, events 
 and h are independentbut b and f are not.2.3 Global Predi
atesA global predi
ate (or simply a predi
ate) is de�ned as a boolean-valued fun
tion onvariables of pro
esses. Given a 
onsistent 
ut, a predi
ate is evaluated with respe
t18



to the values of variables resulting after exe
uting all events in the 
ut. If a predi
ateb evaluates to true for a 
onsistent 
ut C, we say that \C satis�es b" and denote itby C j= b.A global predi
ate is lo
al if it depends on variables of a single pro
ess. Notethat it is possible to evaluate a lo
al predi
ate with respe
t to an event on theappropriate pro
ess. In 
ase the predi
ate evaluates to true, the event is 
alled atrue event; otherwise, it is 
alled a false event. We use e j= b to denote the fa
tthat the event e satis�es the lo
al predi
ate b.A run is 
alled safe with respe
t to a predi
ate if every 
onsistent 
ut of therun satis�es the predi
ate; otherwise, the run is unsafe.Remark 2.1 We assume that the time-
omplexity of evaluating a predi
ate for a
onsistent 
ut is polynomial in input size. However, for 
onvenien
e, throughoutthis dissertation, we spe
ify the time-
omplexity of our algorithms assuming thatthe time-
omplexity of evaluating a predi
ate is linear in number of pro
esses whosevariables the predi
ate depends on. In 
ase the time-
omplexity is a
tually higher,the time-
omplexity of the algorithms will in
rease 
orrespondingly.The value of a predi
ate is de�ned with respe
t to a 
onsistent 
ut. So,what does it mean to evaluate a predi
ate for a 
omputation whi
h may 
onsist ofseveral 
onsistent 
uts? Given a 
omputation, it is possible to evaluate a predi
ateunder various modalities, namely possibly, definitely, invariant and 
ontrollable[CM91, WG91, SUL00, TG99, MG00℄. A predi
ate is said to be possibly true ina 
omputation if there exists a 
onsistent 
ut of the 
omputation for whi
h thepredi
ate evaluates to true. On the other hand, a predi
ate de�nitely holds in a
omputation if it eventually be
omes true in all possible runs of the 
omputation.The modalities invariant and 
ontrollable are duals of the modalities possibly anddefinitely, respe
tively. That is, a predi
ate is invariant in a 
omputation if every
onsistent 
ut of the 
omputation satis�es the predi
ate, whereas it is 
ontrollable19



Con
ept Des
ription Notationlo
al 
omputation sequen
e of events on a pro
essdistributed 
omputation(or simply 
omputation) irre
exive partial order on set ofevents hE;!irun/interleaving total order on events 
onsistent withthe partial order of a distributed
omputationpro
ess order order of events on pro
esses P!
ut an event is in the 
ut only if itsprede
essor is also in the 
ut C, Dfrontier subset of events in the 
ut whosesu

essors do not belong to the 
ut frontier(C)passes through event is 
ontained in the frontier ofthe 
ut
onsistent 
ut an event is in the 
ut only if all itspre
eding events (with respe
t to thepartial order) are also in the 
ut
onsistent events some 
onsistent 
ut passes throughboth the eventsindependent events events are in
omparable with respe
tto the given partial orderglobal predi
ate(or simply predi
ate) boolean-valued fun
tion on variablesof pro
esses bsafe run every 
onsistent of the run satis�esthe global predi
atelo
al predi
ate global predi
ate that depends onvariables of only a single pro
esstrue event event satis�es the lo
al predi
ateTable 2.1: A summary of the various 
on
epts.20



Notation Des
riptionpro
(e) pro
ess on whi
h event e o

urspred(e) prede
essor of event e (on pro
(e))su

(e) su

essor of event e (on pro
(e))?i initial event on pro
ess pi>i �nal event on pro
ess pi? set of initial events> set of �nal events!,  , 7! irre
exive partial orders on set of events! re
exive 
losure of !R+ transitive 
losure of relation RC j= b 
onsistent 
ut C satis�es global predi
ate be j= b event e satis�es lo
al predi
ate bhE;!i j= modal : b global predi
ate b holds in distributed 
omputationhE;!i under modal modalitymodal 2 fpossibly; definitely; 
ontrollable; invariantgTable 2.2: A summary of the notation.in a 
omputation if there exists a safe run of the 
omputation with respe
t to thepredi
ate. The predi
ate dete
tion problem [CM91, CG98, SUL00, MG01b℄ typi
allyrefers to monitoring a predi
ate under possibly (and sometimes under definitely)modality, whereas the predi
ate 
ontrol problem [TG98b, TG99, MG00℄ involvesmonitoring a predi
ate under 
ontrollable modality.Given a predi
ate b and a 
omputation hE;!i, we use hE;!i j= possibly :bto denote the fa
t that b possibly holds in hE;!i. The expressions hE;!i j=definitely : b, hE;!i j= invariant : b and hE;!i j= 
ontrollable : b 
an be similarly21



interpreted.Table 2.1 and Table 2.2 summarize various notations and 
on
epts de�nedin this 
hapter.

22



Chapter 3Dete
ting Global Predi
atesIn this 
hapter, we des
ribe in detail our results pertaining to the dete
tionof global predi
ates in distributed 
omputations primarily under possibly modality.In parti
ular, we provide solutions to all the open problems proposed in [Gar97℄.3.1 OverviewWe start by de�ning the problem formally in Se
tion 3.2. Informally, the problemof dete
ting a predi
ate typi
ally refers to monitoring it under possibly or definitelymodality.Chase and Garg [CG95℄ prove that it is in general NP-
omplete to dete
t a3-CNF predi
ate under possibly modality. Stoller and S
hneider [SS95℄ show thatdete
ting a 2-lo
al 
onjun
tive predi
ate under possibly modality is NP-
ompletein general as well. A 2-lo
al 
onjun
tive predi
ate is a 
onjun
tion of 
lauses su
hthat ea
h 
lause depends on variables of at most two pro
esses. In Se
tion 3.3, weintrodu
e a new 
lass of predi
ates 
alled \singular k-CNF predi
ates". Informally,a k-CNF predi
ate is singular if no two 
lauses 
ontain variables from the same23



pro
ess. We show that dete
ting even a singular 2-CNF predi
ate under possiblymodality is NP-
omplete in general. Our NP-
ompleteness result subsumes the twoaforementioned NP-
ompleteness results [CG95, SS95℄. It also bridges the wide gapbetween the known tra
tability [GW94℄ and intra
tability [CG95, SS95℄ results thatexisted until now. Further, the NP-
ompleteness result 
an be used to establishthe intra
tability of dete
ting other \interesting" singular predi
ates under possiblymodality.It is, however, possible to devise an eÆ
ient polynomial-time algorithm fordete
ting a singular k-CNF predi
ate under possibly modality provided that the
omputation satis�es 
ertain property, namely it is either re
eive-ordered or send-ordered [TG98a℄. The algorithm is based on Tarafdar and Garg's algorithm fordete
ting a 
onjun
tive predi
ate under possibly modality for the strong 
ausalitymodel whi
h is an extension of the Lamport's happened-before model [Lam78℄ inthe sense that it allows events on a pro
ess to be only partially ordered [TG98a℄.The time-
omplexity of the algorithm is O(jEj2), where E is the set of events. Wealso dis
uss te
hniques that 
an be used to a
hieve an exponential redu
tion in timeover existing te
hniques for the solving the general version. However, note that thetime-
omplexity of the algorithm for the general version will be exponential in theworst 
ase.In Se
tion 3.4, we extend the de�nition of \relational predi
ate" introdu
edin [TG97℄ to in
lude the equality operator. A relational predi
ate is of the formx1+x2+ � � �+xn relop k, where ea
h xi is an integer variable on pro
ess pi, k is some
onstant and relop 2 f=; <;6; >;>g. Chase and Garg [CG95℄ gave polynomial-time algorithm to dete
t a relational predi
ate under possibly modality when relop2 f<;6; >;>g based on the notion of max-
ow/min-
ut. We prove that it is ingeneral NP-
omplete to dete
t a relational predi
ate under possibly modality whenrelop =0=0. However, an eÆ
ient polynomial-time algorithm 
an be developed for24



the 
ase when ea
h xi is in
remented or de
remented by at most one at ea
h step.The time-
omplexity of the algorithm is O(jEj2 log(jEj)), where E is the set ofevents. As a 
orollary, the above algorithm 
an be used to dete
t any \symmetri
predi
ate" on boolean variables under possibly modality. A symmetri
 predi
ate isinvariant under any permutation of its variables. Examples of symmetri
 predi
atesin
lude \absen
e of two-third majority", \ex
lusive-or of lo
al predi
ates" and \notall lo
al predi
ates have the same value".Although the 
omputation that we 
onstru
t to prove the NP-
ompletenessresult for singular 2-CNF predi
ates may 
ontain events that send and/or re
eivemultiple messages, it is relatively easy to modify the 
omputation su
h that ea
hevent sends or re
eives at most one message while ensuring that the NP-
ompletenessresult still holds. The basi
 idea is to repla
e ea
h event by a 
ontiguous sequen
e ofevents su
h that ea
h event in the sequen
e sends or re
eives at most one message(but not both) and the resultant 
omputation satis�es the desired property.Tarafdar and Garg [TG98b℄ proved that it is in general NP-
omplete tomonitor a predi
ate under 
ontrollablemodality. Sin
e the problem of monitoring apredi
ate under definitely modality is dual of the problem of monitoring a predi
ateunder 
ontrollable modality, it is in general 
oNP-
omplete to dete
t a predi
ateunder definitely modality. For their NP-
ompleteness proof, Tarafdar and Gargtransformed an arbitrary instan
e of the problem of dete
ting a predi
ate b underpossibly modality to an instan
e of monitoring the predi
ate x_b under 
ontrollablemodality [TG98b℄. Using their 
onstru
tion and our NP-
ompleteness result forsingular 2-CNF predi
ates, it 
an be established that 
ontrolling a singular 3-CNFpredi
ate in a 
omputation is also intra
table in general. This in turn implies thatdete
ting a singular 3-DNF predi
ate (dual of singular 3-CNF predi
ate) underdefinitely modality is 
oNP-
omplete in general.25



3.2 Problem StatementThe predi
ate dete
tion problem typi
ally refers to monitoring a predi
ate underpossibly or definitely modality [CM91, WG91℄. In this 
hapter, we mainly fo
us ondete
ting a predi
ate under possibly modality and make possibly modality expli
itonly when we need to distinguish it from definitely modality.3.3 Singular k-CNF Predi
atesA predi
ate of boolean variables in 
onjun
tive normal form (CNF) is 
alled singularif no two 
lauses 
ontain variables from the same pro
ess. Roughly speaking, apredi
ate in CNF is singular if it is possible to rewrite the predi
ate su
h that ea
hvariable o

urs in at most one 
lause and ea
h pro
ess hosts at most one variable. For
onvenien
e, we write a singular predi
ate in k-CNF (exa
tly k literals per 
lause)as singular k-CNF predi
ate. A singular 1-CNF predi
ate is also 
alled 
onjun
tivepredi
ate [GW94℄. For example, let xi be a boolean variable on pro
ess pi. Then thepredi
ate (x1_x2)^(x3_x4_x5) is a singular CNF predi
ate whereas the predi
ate(x1 _ x2) ^ (x2 _ x3) is not.We �rst prove that the problem of dete
ting a singular k-CNF predi
ateis intra
table in general even when k is two. EÆ
ient algorithms for dete
tingthe predi
ate, however, exist when k is one [CG98℄. Our NP-
ompleteness resultsubsumes the two earlier known NP-
ompleteness results [CG98, SS95℄. We nextpresent a polynomial-time algorithm for solving the problem for two spe
ial 
ases,namely when the 
omputation is either re
eive-ordered or send-ordered [TG98a℄;the two notions are de�ned later in Se
tion 3.3.2. We also dis
uss te
hniques that
an be used to a
hieve an exponential redu
tion in time over existing te
hniques forsolving the general version. The following observation 
omes in useful for a
hievingthe aforementioned results. 26



Observation 3.1 Consider a singular k-CNF predi
ate b with m 
lauses 
i = x1i _x2i _� � �_xki , 1 6 i 6 m, where xji is a boolean variable on pro
ess pji . Let grpi denotethe subset of pro
esses that host the variables in 
i, that is, grpi = fpji j 1 6 j 6 kg.A ne
essary and suÆ
ient 
ondition for the existen
e of a 
onsistent 
ut that satis�esb is the existen
e of m pairwise 
onsistent true events ei, 1 6 i 6 m, su
h that ea
hei is an event on some pro
ess in grpi.The above observation follows from the fa
t that, given a set of pairwise
onsistent events|not ne
essarily from all pro
esses, it is always possible to �nd a
onsistent 
ut that passes through all the events in the set. More pre
isely, given anevent e, let Cleast:e denote the least 
onsistent 
ut of the 
omputation that passesthrough e. Now, given a subset of events F , 
onsider the 
onsistent 
ut C(F ) de�nedas follows: C(F ) , [e2F (Cleast:e)It 
an be veri�ed that C(F ) is not only a 
onsistent 
ut but also passesthrough every event in F .3.3.1 NP-Completeness ResultThe problem is in NP be
ause the general problem of dete
ting an arbitraryboolean expression is in NP [CG98℄. To establish its NP-hardness, we transforman arbitrary instan
e of a variant of the satis�ability problem [CLR91℄, whi
h we
all non-monotone 3-SAT problem, to an instan
e of dete
ting a singular 2-CNFpredi
ate.De�nition 3.1 (non-monotone 3-SAT problem) Given a formula in CNFsu
h that (1) ea
h 
lause has at most three literals, and (2) ea
h 
lause with exa
tlythree literals has at least one positive literal and one negative literal, does there exista satisfying truth assignment for the formula?27



The NP-
ompleteness of the non-monotone 3-SAT problem follows from theintra
tability of the 3-SAT problem. Spe
i�
ally, given a formula in 3-CNF, it 
anbe easily transformed into a formula that satis�es the above-mentioned 
onditions;we 
all su
h a formula non-monotone 3-CNF formula. Consider a 
lause in a 3-CNFformula 
ontaining only positive literals, say 
i = y1i _y2i _y3i . We repla
e the 
lause
i with three 
lauses y1i _ y2i _ :z3i , y3i _ z3i and :y3i _ :z3i . The last two 
lausesensure that, in any satisfying truth assignment, y3i and z3i are logi
al negation ofea
h other. A similar substitution 
an be made for 
lauses 
ontaining only negativeliterals. It is easy to verify that the resultant formula is a non-monotone 3-CNFformula. Furthermore, the new formula is satis�able if and only if the originalformula is satis�able. Thus we have the following theorem.Theorem 3.1 The non-monotone 3-SAT problem is NP-
omplete in general.We now prove the NP-hardness of dete
ting a singular 2-CNF predi
ate.Observe that �nding a satisfying truth assignment for a non-monotone 3-CNFformula is equivalent to �nding a subset of literals, one from ea
h 
lause, that aremutually non-
on
i
ting. Consequently, it follows from Observation 3.1 that if the
omputation and the singular 2-CNF predi
ate satisfy the properties: (1) for ea
h
lause in the formula there is a 
lause in the predi
ate and vi
e versa, (2) there is aone-to-one 
orresponden
e between the literals in the formula and the true events inthe 
omputation, and (3) two literals 
on
i
t if and only if the 
orresponding trueevents are in
onsistent, then the formula is satis�able if and only if the predi
atepossibly holds in the 
omputation.Given a non-monotone 3-CNF formula with 
lauses 
i, 1 6 i 6 m, we
onstru
t a 
omputation and a singular 2-CNF predi
ate as follows. Without loss ofgenerality, assume that ea
h 
lause has at least two literals|a lone literal in a 
lausehas to be assigned value true in any satisfying assignment|and no 
lause 
ontains
on
i
ting literals. For ea
h 
lause 
i in the formula, we add two pro
esses p1i and p2i28
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2Figure 3.1: The lo
al 
omputation when the 
lause has (a) two literals and (b) threeliterals.to the 
omputation hosting boolean variables x1i and x2i , respe
tively. Initially, allvariables evaluate to false. We also add the 
lause x1i _ x2i to the (singular 2-CNF)predi
ate. We next des
ribe the lo
al 
omputations of the two pro
esses. There isone true event for ea
h literal in the formula. Depending on the number of literalsin the 
lause, there are two possible 
ases to 
onsider:Case 1 (j
ij = 2): Let 
i = l1i _ l2i . The lo
al 
omputations of pro
esses p1i and p2i
onsist of a true event, 
orresponding to literals l1i and l2i , respe
tively, followed bya false event. For an illustration refer to Figure 3.1(a).Case 2 (j
ij = 3): Let 
i = l1i _ l2i _ l3i . Without loss of generality, assume thatl1i is a positive literal and l2i is a negative literal. The lo
al 
omputation of thepro
ess p1i 
onsists of a true event, 
orresponding to the literal l1i , followed by a falseevent, �nally followed by a true event, 
orresponding to the literal l2i . The lo
al29
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Figure 3.2: An illustration of the transformation (for the non-monotone 3-CNFformula (y1 _ y2) ^ (y2 _ :y1 _ y3) ^ (y1 _ :y3 _ :y2)).
omputation of the pro
ess p2i 
onsists of a true event, 
orresponding to the literall3i , followed by a false event. For an example see Figure 3.1(b).Now, given a satisfying truth assignment, the required subset of mutually
onsistent true events (see Observation 3.1) 
an be 
onstru
ted by sele
ting, forea
h 
lause in the predi
ate, the true event 
orresponding to the literal with valuetrue (ea
h 
lause must 
ontain at least one su
h literal be
ause the truth assignmentsatis�es the formula). Conversely, given a 
onsistent 
ut that satis�es the predi
ate,for ea
h 
lause in the formula, we 
an assign the value true to that literal for whi
hthe 
orresponding true event in 
ontained in the 
ut's frontier. However, in the
omputation 
onstru
ted so far, it is possible for two true events to be 
onsistent30



even if the 
orresponding literals are 
on
i
ting. Thus we may end up assigningtrue values to 
on
i
ting literals. To prevent this from happening, we make thetrue events 
orresponding to the 
on
i
ting literals in
onsistent by adding an arrow(that is, a message) from the su

essor of the true event 
orresponding to the positiveliteral to the true event 
orresponding to the negative literal as shown in Figure 3.2.For example, e is a true event 
orresponding to the positive literal y2 and g is the trueevent 
orresponding to the negative literal :y2 whi
h 
on
i
ts with y2. Thereforewe add an arrow from the su

essor of e, namely f , to g.It remains to be shown that the arrows do not 
reate any 
y
le and two trueevents are 
onsistent if and only if the 
orresponding literals are non-
on
i
ting. ItsuÆ
es to show that there is no 
ausal 
hain in the 
omputation involving more thanone message (or arrow) or, in other words, no dependen
y is 
reated between trueevents due to transitivity. Observe that the true event 
orresponding to a negativeliteral is always at the re
eiving end of an arrow, if at all, and the su

essor of thetrue event 
orresponding to the positive literal, whi
h is a false event, is alwaysat the sending end of an arrow, if at all. Sin
e there are no other arrows in the
omputation, ea
h external event in the 
omputation is either a send event or are
eive event but not both. Furthermore, if a pro
ess 
ontains more than one trueevent, the true event for the negative literal o

urs after the true event for thepositive literal. This ensures that if a pro
ess has both send and re
eive events thenthe re
eive event o

urs after the send event. Thus any 
ausal 
hain, on rea
hinga pro
ess via a message, 
annot subsequently follow any more messages, therebylimiting the size of the 
ausal 
hain to at most one message.It is easy to see that the redu
tion takes polynomial-time and thenon-monotone 3-CNF formula is satis�able if and only if some 
onsistent 
ut ofthe 
omputation satis�es the singular 2-CNF predi
ate.Theorem 3.2 Dete
ting a singular 2-CNF predi
ate is NP-
omplete in general.31



Using the above theorem, it 
an be proved that even dete
ting predi
ates su
has (x1 < x2) ^ (x3 < x4) ^ � � � ^ (xn�1 < xn), where ea
h xi is an integer variable onpro
ess pi, is NP-
omplete in general. More pre
isely,Corollary 3.3 Dete
ting a 
onjun
tion of 
lauses of the form xi relop xj, whereea
h xi is an integer variable and relop 2 f<;6; >;>; 6=g, su
h that no two 
lauses
ontain variables from the same pro
ess is NP-
omplete in general.Proof: The proof involves a simple redu
tion from a singular 2-CNF predi
ate.Consider a 
lause yi _ yj in a singular 2-CNF predi
ate. We de�ne integer variablesxi and xj su
h that xi is 0 whenever yi is false and is �1 otherwise. Similarly, xj is0 whenever yj is false and is 1 otherwise. It 
an be easily veri�ed that yi _ yj holdsif and only if xi is less than xj . Similar redu
tions 
an be given for other relationaloperators. �Although the 
omputation that we 
onstru
t assumes that an event 
an sendor re
eive multiple messages, it 
an be easily modi�ed to ensure that an event sendsor re
eives at most one message while maintaining the property that the formula issatis�able if and only if the predi
ate holds in the 
omputation.3.3.2 EÆ
ient Algorithm for Spe
ial CasesTarafdar and Garg [TG98a℄ 
onsider extension of the Lamport's happened-beforemodel [Lam78℄ for predi
ate dete
tion that allows events on a pro
ess to be partiallyordered. They 
all it the strong 
ausality model. For this model, they present analgorithm for dete
ting a 
onjun
tive predi
ate when either all re
eive events onevery pro
ess are totally ordered or all send events on every pro
ess are totallyordered. We denote this algorithm by CPDSC|Conjun
tive Predi
ate Dete
tionin Strong Causality Model. Observation 3.1 enables us to view ea
h group grpias a meta-pro
ess with events on it as partially ordered. Thus CPDSC algorithm32




an be applied to solve our problem in a straightforward fashion. However, as intheir 
ase, either all re
eive events on every meta-pro
ess are totally ordered, thatis, the 
omputation is re
eive-ordered, or all send events on every meta-pro
ess aretotally ordered, that is, the 
omputation is send-ordered. We only give an overviewof the algorithm here assuming that the 
omputation is re
eive-ordered. The proofof 
orre
tness and other details 
an be found elsewhere [TG98a℄.For the happened-before model, Garg and Walde
ker [GW94℄ give apolynomial-time algorithm for dete
ting a 
onjun
tive predi
ate. We denotetheir algorithm by CPDHB|Conjun
tive Predi
ate Dete
tion in Happened-BeforeModel. Note that, given a set of true events, one from ea
h pro
ess, either eventsin the set are pairwise 
onsistent or there exist events e and f in the set su
h thatsu

(e) happened-before f . Sin
e events on a pro
ess are totally ordered in thehappened-before model, e is also in
onsistent with every event on the pro
ess thato

urs after f . This allows us to eliminate e from 
onsideration in a s
an of the
omputation from left to right, thereby giving an eÆ
ient algorithm for dete
ting a
onjun
tive predi
ate.Sin
e events on a meta-pro
ess are, in general, not totally ordered, CPDHBalgorithm 
annot be applied dire
tly. However, if the 
omputation is re
eive-orderedthen it satis�es Property 3.1 that enables a polynomial-time algorithm to be devised.Consider a 
omputation hE;!i. We �rst extend the partial order ! as follows: fortwo independent events e and f on a meta-pro
ess su
h that f is a re
eive event,add an arrow from e to f . It 
an be proved that the added arrows do not 
reate any
y
le [TG98a℄. We then linearize the new partial order thus generated to obtain atotal order on all events, say  . It 
an be veri�ed that the 
omputation satis�esthe following property: 33



Property 3.1 Given events e, f and g su
h that events f and g are on the samemeta-pro
ess but events e and f are on di�erent meta-pro
esses, we have,(e! f) ^ (f  g)) e! gThus, given events e and f on di�erent meta-pro
esses su
h that su

(e)! f ,by virtue of Property 3.1, e is also in
onsistent (with respe
t to !) with everyevent g that o

urs after f (with respe
t to  ) on the same meta-pro
ess (asf). Sin
e events on a meta-pro
ess are totally ordered with respe
t to  , we 
aneliminate e from 
onsideration in a s
an of hE; i from left to right. This gives usan eÆ
ient algorithm to dete
t a singular k-CNF predi
ate when the 
omputationis re
eive-ordered. The time 
omplexity of the above algorithm is O(jEj2).3.3.3 Algorithms for the General CaseFor the general 
ase, when the 
omputation is neither re
eive-ordered norsend-ordered, we 
an form subsets of pro
esses with ea
h subset 
ontaining exa
tlyone pro
ess from ea
h meta-pro
ess. The CPDHB algorithm 
an then be applied toea
h subset [SS95℄. Alternatively, we 
an divide events on ea
h meta-pro
ess intoa set of 
hains of events that 
over all true events in that meta-pro
ess|ea
h trueevent belongs to at least one 
hain. We then 
onstru
t subsets of 
hains with ea
hsubset 
ontaining exa
tly one 
hain from ea
h meta-pro
ess. The CPDHB algorithm
an then be applied to ea
h subset. The minimum number of 
hains needed to 
overall true events in a meta-pro
ess is upper-bounded by k.3.4 Relational Predi
ates: x1 + x2 + � � �+ xn = kA relational predi
ate [TG97℄ is of the form x1 + x2 + � � �+ xn relop k, where ea
hxi is an integer variable on pro
ess pi and relop 2 f=; <;>;6;>g. Note that34



our de�nition of relational predi
ates in
ludes equality whi
h was ex
luded in thede�nition by Tomlinson and Garg [TG97℄. For 
onvenien
e, we abbreviate thepredi
ate possibly : (x1 + x2 + � � �+ xn relop k) by possibly : (relop k). For example,possibly : (= k) is a shorthand for possibly : (x1 + x2 + � � �+ xn = k). Likewise, weobtain definitely : (relop k).We �rst establish the NP-
ompleteness of evaluating possibly : (= k) ingeneral. We next present a polynomial-time algorithm for the spe
ial 
ase whenea
h xi is in
remented or de
remented by at most one at ea
h step.3.4.1 NP-Completeness ResultThe problem is in NP be
ause the general problem of dete
ting an arbitrary booleanexpression is in NP [CG98℄. To prove its NP-hardness, we redu
e an arbitraryinstan
e of the subset sum problem [GJ91, problem SP13℄ to an instan
e of dete
tingpossibly : (= k). The subset sum problem is de�ned as follows:De�nition 3.2 (subset sum problem [GJ91℄) Given a �nite set A, size s(ai) 2Z+ for ea
h ai 2 A and a positive integer B, does there exist a subset A0 � A su
hthat the sum of the sizes of the elements in A0 is exa
tly B?The redu
tion is as follows. There is a pro
ess pi that hosts variable xi forea
h element ai in the set A. The initial value of ea
h xi is set to zero. Ea
h pro
esshas exa
tly one event ei; the �nal value of xi, after exe
uting ei, is s(ai). Finally,k is set to B. It is easy to see that the redu
tion takes polynomial-time and therequired subset exists if and only if possibly : (= k) holds.Theorem 3.4 Dete
ting possibly :(= k) when ea
h xi 
an be modi�ed (in
rementedor de
remented) by an arbitrary amount at ea
h step is NP-
omplete in general.35



3.4.2 EÆ
ient Algorithm for the Spe
ial CaseIt is possible to devise an eÆ
ient algorithm for dete
ting possibly : (= k) in a
omputation provided that ea
h xi is in
remented or de
remented by at most oneat ea
h step. The algorithm is based on monitoring predi
ates possibly : (6 k)and possibly : (> k). EÆ
ient algorithms to observe these predi
ates 
an be foundelsewhere [CG95, TG97℄.A 
onsistent 
ut C 0 is rea
hable from a 
onsistent 
ut C if it is possible toattain C 0 from C by exe
uting zero or more events. It 
an be veri�ed that C0 isrea
hable from C if and only if C � C 0. If C0 
an be obtained from C by exe
utingexa
tly one event then C0 immediately su

eeds C. Furthermore, C immediatelypre
edes C0.A sequen
e of 
onsistent 
uts fCigi>0 forms a path in a 
omputation if ea
hCi+1 immediately su

eeds Ci. Observe that if C 0 is rea
hable from C then there isa path from C to C 0 and vi
e versa. Moreover, every run 
orresponds to a path inthe 
omputation.Observation 3.2 Let C and C0 be 
onsistent 
uts su
h that C0 is obtained from Cby exe
uting at most one event. Then jsum(C 0)� sum(C)j 6 1.Given a 
onsistent 
ut C, let sum(C) denote the value of the sumx1 + x2 + � � �+ xn evaluated at C. Given a pair of integers u and v, let range(u; v)denote the set [minfu; vg : : :maxfu; vg℄. For example, range(3; 8) = [3 : : :8℄ =f3; 4; 5; 6; 7; 8g and range(6; 2) = [2 : : :6℄ = f2; 3; 4; 5; 6g.Theorem 3.5 Let C and C0 be 
onsistent 
uts su
h that there is a path s from Cto C 0 in the 
omputation. Then, for ea
h v,v 2 range(sum(C); sum(C 0)) ) h9D : D 2 s : sum(D) = vi36



Proof: Without loss of generality, assume that sum(C) 6 sum(C0). The prooffor the other 
ase, when sum(C) > sum(C 0), is similar and has been omitted.Assume that v 2 range(sum(C); sum(C 0)), that is, sum(C) 6 v 6 sum(C0). Ifv = sum(C 0) then C 0 is the required 
onsistent 
ut. Thus assume that v < sum(C 0).Starting from C we follow the path s by exe
uting, one-by-one, zero or more eventsin C 0 n C until we rea
h a 
onsistent 
ut H su
h that sum(H) > v for the �rsttime. We 
laim that sum(H) = v. Assume, by the way of 
ontradi
tion, thatsum(H) 6= v, that is, sum(H) > v. Note that H exists sin
e sum(C0) > v. LetG be the 
onsistent 
ut that immediately pre
edes H along the path. Note that Gexists sin
e sum(C) 6 v. Moreover, sum(G) < v be
ause H is the �rst 
onsistent
ut with sum at least v. Thus (1) sum(H) > v implying that sum(H) > v + 1,and (2) sum(G) < v implying that sum(G) 6 v � 1. Combining the two, we havesum(H) � sum(G) > 2, a 
ontradi
tion. Therefore sum(H) = v and H is therequired 
onsistent 
ut. �The 
entral idea behind the algorithm for dete
ting possibly : (= k) is to �nda pair of 
onsistent 
uts C and C 0, if they exist, su
h that C0 is rea
hable from Cand k lies in range(sum(C); sum(C 0)). Theorem 3.5 then guarantees the existen
eof a 
onsistent 
ut that satis�es x1 + x2 + � � �+ xn = k. The 
onsistent 
ut C isalways set to the initial 
onsistent 
ut ?. The advantage is that every 
onsistent
ut of the 
omputation is rea
hable from the initial 
onsistent 
ut. The next lemmafurnishes suÆ
ient 
onditions for possibly : (= k) to hold in a 
omputation.Lemma 3.6 We have,(sum(?) 6 k) ^ (possibly : (> k)) ) possibly : (= k); and(sum(?) > k) ^ (possibly : (6 k)) ) possibly : (= k)Proof: Assume that the 
onjun
tion (sum(?) 6 k) ^ (possibly :(> k)) holds. Sin
epossibly :(> k) is true, there exists a 
onsistent 
ut with C0 with sum(C0) > k. Thus,37



from Theorem 3.5, there exists a 
onsistent 
ut D su
h that sum(D) = k implyingthat possibly : (= k) holds. Likewise, (sum(?) > k) ^ (possibly : (6 k)) impliespossibly : (= k). �The following lemma presents suÆ
ient 
onditions for definitely : (= k) tohold in a 
omputation. The proof is similar to the proof of Lemma 3.6 and has beenomitted.Lemma 3.7 We have,(sum(?) 6 k) ^ (definitely : (> k)) ) definitely : (= k); and(sum(?) > k) ^ (definitely : (6 k)) ) definitely : (= k)Finally, the following theorem gives the ne
essary and suÆ
ient 
onditionsfor predi
ates possibly : (= k) and definitely : (= k) to hold in a 
omputation.Theorem 3.8 We have,(1) possibly : (= k) � (sum(?) 6 k) ^ (possibly : (> k)) W(sum(?) > k) ^ (possibly : (6 k))(2) definitely : (= k) � (sum(?) 6 k) ^ (definitely : (> k)) W(sum(?) > k) ^ (definitely : (6 k))Proof: (1) Follows from the fa
t that possibly : (= k) implies possibly : (6 k) ^possibly : (> k), the disjun
tion (sum(?) 6 k) _ (sum(?) > k) is a tautology andLemma 3.6.(2) Follows from the fa
t that definitely : (= k) implies definitely : (6 k) ^definitely : (> k), the disjun
tion (sum(?) 6 k) _ (sum(?) > k) is a tautologyand Lemma 3.7. �Observe that the �nal 
onsistent 
ut is rea
hable from every 
onsistent 
utof a 
omputation. Thus an alternate set of ne
essary and suÆ
ient 
onditions for38



possibly :(= k) and definitely :(= k) based on �nal 
onsistent 
ut 
an also be derived.The time-
omplexity of 
omputing possibly : (6 k) or possibly : (> k) [TG97, CG95℄is O(jEj2 log(jEj)). Thus the time-
omplexity of 
omputing possibly : (= k) is alsoO(jEj2 log(jEj)).Sin
e possibly distributes over disjun
tion, the following predi
ates,expressed as disjun
tion of predi
ates of the form x1 + x2 + � � �+ xn exa
tly equalsk, 
an be easily dete
ted using Theorem 3.8.� absen
e of simple majority: v1 + v2 + � � �+ vn = n=2, n even� absen
e of two-third majority:(v1+v2+ � � �vn > bn3 
)^(v1+v2+ � � �vn < d2n3 e) � Wk2A(v1+v2+ � � �+vn = k),where A = [bn3 
+ 1 : : :d2n3 e � 1℄� exa
tly k tokens: token1 + token2 + � � �+ tokenn = kAdditionally, the symmetri
 predi
ates, de�ned as follows, 
an now beeÆ
iently monitored.De�nition 3.3 (symmetri
 predi
ate [Koh78℄) A predi
ate b(x1; x2; : : : ; xn)de�ned on n boolean variables is 
alled symmetri
 if it is invariant under anypermutation of its variables.Some examples of symmetri
 predi
ates are x ^ y, x _ y, x � y and(x ^ y) _ (:x ^ :y). The ne
essary and suÆ
ient 
ondition for a predi
ateb(x1; x2; : : : ; xn) to be symmetri
 is that it may be spe
i�ed by a set of numbersfa1; a2; : : : ; amg, where 0 6 ai 6 n and m 6 n + 1, su
h that it assumes value truewhen and only when, for some i, exa
tly ai of the variables are true. For example,the symmetri
 predi
ate (x _ y _ z) ^ (:x _ :y _ :z) is logi
ally equivalent to thepredi
ate (x + y + z = 1) _ (x + y + z = 2), where false and true are represented39



by 0 and 1, respe
tively, for the purpose of evaluating x+ y + z. The proof of thisresult 
an be found elsewhere [Koh78, page 174℄. Sin
e, possibly distributes overdisjun
tion, possibly : b when b is a symmetri
 predi
ate 
an be eÆ
iently 
omputedusing Theorem 3.8. Some examples of symmetri
 predi
ates that arise in distributedsystems are:� ex
lusive-or of lo
al predi
ates:x1 � x2 � � � � � xn � Wk is odd(x1 + x2 + � � �+ xn = k)� not all lo
al predi
ates have the same value:(x1 _ x2 _ � � � _ xn) ^ (:x1 _ :x2 _ � � � _ :xn) � Wk2A(x1 + x2 + � � �+ xn = k),where A = [1 : : :(n� 1)℄
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Chapter 4Controlling Global Predi
atesIn this 
hapter, we dis
uss in detail our results pertaining to 
ontrollingglobal predi
ates in distributed 
omputations.4.1 OverviewWe �rst de�ne the problem formally in Se
tion 4.2. Informally, a predi
ate is said tobe 
ontrollable in a 
omputation if it is possible to add syn
hronization dependen
ies,without 
reating a deadlo
k (that is, a 
y
le), su
h that every 
onsistent 
ut of theresulting 
omputation satis�es the predi
ate. In 
ase the predi
ate 
an indeed be
ontrolled in the 
omputation, the set of syn
hronization dependen
ies required to
ontrol the predi
ate is referred to as \
ontrolling syn
hronization". The resultant
omputation is 
alled \
ontrolled 
omputation". A syn
hronization dependen
yfrom an event e to an event f means that f 
annot be exe
uted until e has beenexe
uted and 
an be implemented using a 
ontrol message.Tarafdar and Garg [TG98b℄ establish that it is in general NP-
omplete to
ontrol a predi
ate in a 
omputation. However, eÆ
ient polynomial-time algorithms41




an be developed for many useful 
lasses of predi
ates [TG98b, TG99℄.In Se
tion 4.3, we introdu
e a new 
lass of predi
ates 
alled \regionpredi
ates". A region predi
ate is a 
onjun
tion of p-region predi
ates, where pis a pro
ess, with possibly di�erent p's. Roughly speaking, a p-region predi
atepartitions the set of 
onsistent 
uts that satisfy the predi
ate into a set of \
onvexregions", one for ea
h event on pro
ess p, su
h that the set of 
onsistent 
uts thatlie in a region forms a latti
e under set 
ontainment. Intuitively, on rea
hing anevent on pro
ess p, on
e the p-region predi
ate is falsi�ed (that is, be
omes falsefrom true), it does not be
ome true again until the 
omputation advan
es beyondthe event. The 
lass of p-region predi
ates is 
losed under 
onjun
tion and hen
ethe 
lass of region predi
ates is 
losed under 
onjun
tion. Some examples of regionpredi
ates are termination, 
onjun
tive predi
ates and monotoni
 
hannel predi
atessu
h as \at most (or at least) k messages in transit in any 
hannel".We present an eÆ
ient polynomial-time algorithm to 
ontrol a regionpredi
ate in a 
omputation. The time-
omplexity of our algorithm is O(njEj2),where n is the number of pro
esses and E is the set of events. We also prove thatthe 
ontrolling syn
hronization generated by our algorithm is optimal in the sensethat it not only eliminates all unsafe runs but also retains all safe runs.In Se
tion 4.4, we introdu
e the notion of an \admissible sequen
e" of eventswith respe
t to a predi
ate. Spe
i�
ally, we identify four properties that 
hara
terizean admissible sequen
e. Roughly speaking, an admissible sequen
e imposes a totalorder on \
ertain" events in the 
omputation su
h that exe
uting those events inthat order ensures that the predi
ate is never falsi�ed. We show that the existen
eof an admissible sequen
e of events with respe
t to a predi
ate is a ne
essary andsuÆ
ient 
ondition for a predi
ate to be 
ontrollable in a 
omputation. Further,given an admissible sequen
e, the 
ontrolling syn
hronization 
an be easily obtainedand vi
e versa. 42



Based on the notion of admissible sequen
e, we devise a polynomial-timealgorithm for 
ontrolling a \disjun
tive predi
ate" in a 
omputation. A disjun
tivepredi
ate is a disjun
tion of lo
al predi
ates. Intuitively, a disjun
tive predi
atestates that at least one lo
al 
ondition must be met at all times, or, in other words,a bad 
ombination of lo
al 
onditions does not o

ur. Examples of disjun
tivepredi
ates in
lude \at least one server is available" and \at least one philosopherdoes not have any fork".To 
ontrol a disjun
tive predi
ate in a 
omputation, we 
onstru
t a dire
tedgraph on \true-intervals" (maximal 
ontiguous sequen
e of true events on a pro
ess)of the 
omputation su
h that the problem of determining an admissible sequen
eredu
es to �nding an appropriate shortest path in the graph. The time-
omplexityof the algorithm is O(njT j), where n is the number of pro
esses and T is the set oftrue-intervals, whi
h is same as that of Tarafdar and Garg's algorithm [TG98b℄. Wefurther modify the algorithm to 
ompute a minimum 
ontrolling syn
hronization|with the least number of syn
hronization dependen
ies|for a disjun
tive predi
ate.Clearly, a minimum 
ontrolling syn
hronization minimizes the number of 
ontrolmessages required to maintain a disjun
tive predi
ate in a 
omputation. The time-
omplexity of the modi�ed algorithm is O(jEj2), where E is the set of events.4.2 Problem StatementThe predi
ate 
ontrol problem refers to monitoring a predi
ate under 
ontrollablemodality [TG98b℄. Intuitively, a predi
ate is 
ontrollable in a 
omputation if itis possible to make the 
omputation \stri
ter" su
h that every 
onsistent 
ut ofthe resulting 
omputation satis�es the predi
ate. More pre
isely, a predi
ate bis 
ontrollable in a 
omputation hE;!i if there exists a set of syn
hronizationdependen
ies S! su
h that (1) S! does not interfere with !, that is, (! [ S!)is a
y
li
, and (2) every 
onsistent 
ut of hE; i, where  = (! [ S!)+, satis�es b.43
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ate.We 
all the syn
hronization S! as a 
ontrolling syn
hronization and the 
omputationhE; i as the 
ontrolled 
omputation. This de�nition of 
ontrollable : b is slightlydi�erent from the de�nition provided in Chapter 2. It 
an be veri�ed that bothde�nitions are a
tually equivalent.Note that a syn
hronization dependen
y from an event e to an event f meansthat f 
annot be exe
uted until e has been exe
uted and 
an be implemented usinga 
ontrol message.4.3 Region Predi
atesWe �rst de�ne a region predi
ate with respe
t to a pro
ess, 
alled p-region predi
ate.Informally, a p-region predi
ate partitions the set of 
onsistent 
uts satisfying thepredi
ate into a set of regions, one for ea
h event on pro
ess p, satisfying 
ertainproperties. Firstly, the set of 
onsistent 
uts that lie in a region (that is, all eventsin the frontier of the 
ut belong to the region) forms a latti
e. Se
ondly, ea
h regionis 
onvex or, equivalently, a 
onsistent 
ut that lies between two 
onsistent 
uts
ontained in the region also belongs to the region.44



Example 4.1 Consider the 
omputation shown in Figure 4.1 and the predi
ate\pro
esses p1 and p2 are approximately syn
hronized" expressed mathemati
ally asjround1 � round2j 6 �12 with �12 set to 1. Consider the event e on p2 depi
ted inthe �gure. Immediately after exe
uting e, the value of round2 is 3. Sin
e round1is monotoni
ally non-de
reasing, there exist earliest and latest events on p1, in this
ase f and u, respe
tively, su
h that the predi
ate holds. Furthermore, the predi
ateholds for every event on p1 that lies between f and u. The region 
orrespondingto e (the shaded area resembling the 
ross-se
tion of an hourglass in the �gure) isbounded on the left by the least 
onsistent 
ut passing through e and f and on theright by the greatest 
onsistent 
ut passing through e and u. The 
onsistent 
ut Clies in the region whereas the 
onsistent 
ut D does not. It 
an be veri�ed that theregion is a
tually 
onvex and the set of 
onsistent 
uts that belong to the region formsa latti
e.A p-region predi
ate is formally de�ned as follows:De�nition 4.1 (p-region predi
ate) A predi
ate b is a p-region predi
ate if itsatis�es the following properties. For ea
h event e on pro
ess p,� (weak latti
e) If two 
onsistent 
uts that pass through e satisfy the predi
atethen so do the 
onsistent 
uts given by their set interse
tion and set union.Formally,(e 2 frontier(C1) \ frontier(C2)) ^ (C1 j= b) ^ (C2 j= b))(C1 \ C2 j= b) ^ (C1 [ C2 j= b)� (weak 
onvexity) If two 
onsistent 
uts that pass through e satisfy thepredi
ate then so does the 
onsistent 
ut that lies between the two. Formally,(e 2 frontier(C1) \ frontier(C2)) ^ (C1 j= b) ^ (C2 j= b) ^(C1 � C � C2))C j= b45



We 
all the two properties \weak" be
ause they are only satis�ed by those
onsistent 
uts that satisfy the predi
ate and pass through a given event, and not byall 
onsistent 
uts that satisfy the predi
ate. Some examples of pi-region predi
atesen
ountered in distributed systems are as follows:� any lo
al predi
ate on pi� \bounded" number of messages in transit from pi to pj : sendij � re
vij 6 �ij� \almost" fair resour
e allo
ation between pi and pj , when the system is heavilyloaded: jallo
i � allo
jj 6 �ij� \bounded" drift between the 
lo
ks of pi and pj : j
lo
ki� 
lo
kjj 6 �ij� pi and pj are \approximately" syn
hronized: jroundi � roundj j 6 �ij� xi < minfyj ; ykg, where xi, yj and zk are variables on pi, pj and pk,respe
tively, with yj and yk monotoni
ally non-de
reasingGiven two p-region predi
ates, their 
onjun
tion is also a p-region predi
ateas established by the next theorem.Theorem 4.1 The 
lass of p-region predi
ates is 
losed under 
onjun
tion.Proof: We have to prove that if b1 and b2 are p-region predi
ates then so is b1^ b2.We �rst prove that b1 ^ b2 satis�es the weak latti
e property. Consider 
onsistent
uts C1 and C2 passing through an event e on pro
ess p that satisfy b1 ^ b2. Bysemanti
s of 
onjun
tion, both C1 and C2 satisfy b1 as well as b2. Applying the weaklatti
e property twi
e, we obtain C1 \ C2 satis�es b1 and b2. Again, by semanti
sof 
onjun
tion, C1 \ C2 satis�es b1 ^ b2. Likewise, C1 [ C2 satis�es b1 ^ b2. Thusb1 ^ b2 satis�es the weak latti
e property.46



We now prove that b1 ^ b2 satis�es the weak 
onvexity property. Consider
onsistent 
uts C1 and C2 passing through e that satisfy b1 ^ b2 and let C be any
onsistent 
ut that lies between the two. By semanti
s of 
onjun
tion, both C1 andC2 satisfy b1 as well as b2. Applying the weak 
onvexity property twi
e, we obtainC satis�es b1 and b2. This implies that C satis�es b1^ b2. Therefore b1^ b2 satis�esthe weak 
onvexity property. �A region predi
ate is a 
onjun
tion of p-region predi
ates with possiblydi�erent p's. It 
an be veri�ed that the predi
ate representing termination is a
tu-ally a region predi
ate. Note that, for ea
h p, true is a p-region predi
ate. Thus aregion predi
ate b 
an be written as 
onjun
tion of n predi
ates su
h that the ith
onjun
t, denoted by b(i), is a pi-region predi
ate.Given an event e on pro
ess pi, we denote the least 
onsistent 
ut passingthrough e that satis�es b(i) by Cmin:e. Similarly, we denote the greatest 
onsistent
ut passing through e that satis�es b(i) by Cmax:e. If there does not exist a 
onsistent
ut that passes through e and satis�es b(i) then neither Cmin:e nor Cmax:e exists.Additionally, trivially, b(i) (and hen
e b) 
annot be 
ontrolled in the 
omputation.However, if there exists at least one 
onsistent 
ut passing through e that satis�esb(i) then both Cmin:e and Cmax:e exist and are well-de�ned. This is be
ause, fromthe weak latti
e property, the set of su
h 
onsistent 
uts forms a latti
e under set
ontainment (�) implying that the set has a minimum (
orresponds to Cmin:e) anda maximum (
orresponds to Cmax:e).4.3.1 Finding a Controlling Syn
hronizationIn order to �nd the syn
hronization ne
essary to 
ontrol a region predi
ate in a
omputation, we �rst 
ompute the syn
hronizations suÆ
ient to 
ontrol ea
h of its
onjun
t (re
all that the ith 
onjun
t 
orresponds to a pi-region predi
ate). If it turnsout that one or more of these 
onjun
ts is not 
ontrollable then, trivially, the region47



predi
ate itself 
annot be 
ontrolled. Further, in 
ase the various syn
hronizations(
orresponding to di�erent 
onjun
ts) do not interfere with ea
h other and, inaddition, the 
olle
tive syn
hronization does not interfere with the happened-beforerelation of the 
omputation then, 
learly, the 
olle
tive syn
hronization 
onstitutesa 
ontrolling syn
hronization for the given region predi
ate. Unfortunately, the
onverse does not hold in general.Example 4.2 Suppose we wish to 
ontrol the predi
ate (x1 _ x2) ^ (x3 _ x4) in the
omputation shown in Figure 4.2(a), where ea
h xi is a boolean variable on pro
esspi. It 
an be veri�ed that the arrow from event h to event e 
onstitutes a 
ontrollingsyn
hronization for the �rst 
onjun
t x1 _ x2. Similarly, the arrow from event v toevent u 
onstitutes a 
ontrolling syn
hronization for the se
ond 
onjun
t x3 _ x4.However, the 
olle
tive syn
hronization given by f(h; e); (v; u)g interferes with thehappened-before relation of the 
omputation. In other words, it 
reates a 
y
le asshown in Figure 4.2(b). The �rst 
onjun
t has another 
ontrolling syn
hronization,namely the arrow from event f to event g. In this 
ase, the 
olle
tive syn
hronizationgiven by f(f; g); (v; u)g neither interferes with itself nor with the happened-beforerelation of the 
omputation, thereby 
onstituting a 
ontrolling syn
hronization forthe predi
ate (x1 _ x2) ^ (x3 _ x4).However, if the 
omputed syn
hronization for ea
h 
onjun
t is smallest inthe sense that it is 
ontained in every possible 
ontrolling syn
hronization for therespe
tive 
onjun
t then the 
onverse also holds. That is, if the region predi
ateis 
ontrollable in a 
omputation then the various syn
hronizations not only do notinterfere with ea
h other but, additionally, the 
olle
tive syn
hronization does notinterfere with the happened-before relation of the 
omputation. Intuitively, this isbe
ause a 
ontrolling syn
hronization for a region predi
ate also a
ts as a 
ontrolling48
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Figure 4.2: An example to illustrate that the interferen
e of some 
olle
tivesyn
hronization with the happened-before relation does not imply that the predi
ate
annot be 
ontrolled. 49



:  true event :  false event
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Figure 4.3: An example to illustrate that the smallest 
ontrolling syn
hronizationmay not always exist.syn
hronization for ea
h of its 
onjun
t.De�nition 4.2 (smallest 
ontrolling syn
hronization) We 
all a 
ontrollingsyn
hronization smallest if it is 
ontained in every possible 
ontrollingsyn
hronization for the predi
ate. Formally, given a 
ontrolling syn
hronizationS! for a predi
ate b in a 
omputation hE;!i,S! is smallest , h8 : extends ! :hE; i j= invariant : b �  
ontains S!iA smallest 
ontrolling syn
hronization may not always exist as illustrated bythe following example.Example 4.3 Consider the 
omputation in Figure 4.3(a). Suppose we desire to
ontrol the predi
ate x1 _ x2 in the 
omputation, where ea
h xi is a boolean variable50



on pro
ess pi. Sin
e the predi
ate x1 _ x2 is not invariant in the 
omputation tobegin with, the smallest 
ontrolling syn
hronization, if it exists, must be non-empty.It 
an be veri�ed that the arrow from event f to event g 
onstitutes a 
ontrollingsyn
hronization for the predi
ate x1 _ x2, as shown in Figure 4.3(b), as does thearrow from event h to event e, as depi
ted in Figure 4.3(
). Moreover, the twosyn
hronizations are mutually disjoint implying that the predi
ate x1 _ x2 does nothave a smallest 
ontrolling syn
hronization.As it happens, the smallest 
ontrolling syn
hronization in fa
t exists for ap-region predi
ate (and therefore also exists for a region predi
ate). Thus in order to�nd a 
ontrolling syn
hronization for a region predi
ate, from the above dis
ussion,it suÆ
es to devise an algorithm to 
ompute the smallest 
ontrolling syn
hronizationfor a p-region predi
ate.Consider a 
omputation hE;!i and a region predi
ate b. What does it entailto 
ontrol the pi-region predi
ate b(i), 1 6 i 6 n, in hE;!i? Consider an event e onpro
ess pi. As we know, the 
omputation progresses from the initial 
onsistent 
ut? to the �nal 
onsistent 
ut E by exe
uting, one-by-one, the events in E. For b(i) tohold when it �rst rea
hes e, it must be the 
ase that no event in the frontier of the
omputation lies on the left of the frontier of Cmin:e. That is, when e is exe
uted, allother events in the frontier of Cmin:e must have already been exe
uted. This entailsadding syn
hronization dependen
ies from ea
h event in the frontier of Cmin:e thatis di�erent from e to e. We denote this syn
hronization by e(1)! and formally de�neit as follows: e(1)! , f (f; e) j f 2 frontier(Cmin:e) n feg and e 62 ? gFor an example refer to Figure 4.4. Furthermore, for b(i) to hold as longas the 
omputation stays at e (equivalently, until the su

essor of e, if it exists, isexe
uted), the frontier of the 
omputation 
annot advan
e beyond Cmax:e. That51
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hronization e(1)! (denoted by dotted arrows).is, the su

essor of any event in the frontier of Cmax:e that is di�erent from e, if itexists, 
annot be exe
uted until the 
omputation advan
es beyond e. This involvesadding syn
hronization dependen
ies from the su

essor of e, if it exists, to thesu

essor of every other event in the frontier of Cmax:e, if it exists. We denote thissyn
hronization by e(2)! and formally de�ne it as follows:e(2)! , f (su

(e); su

(f)) j f 2 frontier(Cmax:e) n feg and fe; fg \ > = ; gFor an illustration see Figure 4.5. The overall syn
hronization needed for
ontrolling b(i) in hE;!i is given by the union of ( e(1)! [ e(2)!), where e ranges overthe events on pro
ess pi. Finally, the syn
hronization required to 
ontrol b in hE;!i,denoted by S!, is given by: S! , [e2E(e(1)! [ e(2)!) (4.1)For 
onvenien
e, we use C! to denote the transitive 
losure of the relationobtained by adding S! to !. Formally,C! , (! [ S!)+The next lemma des
ribes the suÆ
ient 
ondition under whi
h a regionpredi
ate is 
ontrollable in a 
omputation. Informally, this happens when ea
h52
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hronization e(2)! (denoted by dotted arrows).of its 
onjun
t is 
ontrollable and the 
olle
tive syn
hronization neither interfereswith itself nor with the happened-before relation of the 
omputation|whi
h 
an besu

in
tly represented as: (! [ S!) is a
y
li
.Lemma 4.2 (suÆ
ient 
ondition) If (1) the initial and �nal 
onsistent 
uts ofa 
omputation hE;!i satisfy a region predi
ate b, and (2) C! is an irre
exive partialorder then b is invariant in hE; C!i.Proof: Consider a 
onsistent 
ut C of hE; C!i and an event e 
ontained in itsfrontier. We show that C lies between Cmin:e and Cmax:e. We �rst prove thatCmin:e � C. If e 2 ? then Cmin:e = ? be
ause, trivially, ? is the least 
onsistent
ut of hE;!i that passes through e and ? j= b. Furthermore, by de�nition of
onsistent 
ut, C � ?. Thus Cmin:e � C. The more interesting 
ase is whene 62 ?. We want to prove that,Cmin:e � C� f de�nition of 
onsistent 
ut and its frontier gh8 f : f 2 frontier(Cmin:e) : f 2 Ci� f by de�nition, Cmin:e passes through e g53



(e 2 C) ^ h8 f : f 2 frontier(Cmin:e) n feg : f 2 Ci( f C is a 
onsistent 
ut of hE; C!i g(e 2 C) ^ h8 f : f 2 frontier(Cmin:e) n feg : f C! ei( f C passes through e gh8 f : f 2 frontier(Cmin:e) n feg : (f C! e)i( f S!� C! gh8 f : f 2 frontier(Cmin:e) n feg : (f S! e)i( f e(1)! � S! gh8 f : f 2 frontier(Cmin:e) n feg : (f e(1)! e)if e 62 ? and de�nition of e(1)! gLikewise, C � Cmax:e. Let pro
(e) = pi. By de�nition, both Cmin:e andCmax:e satisfy b(i). Thus, from the weak 
onvexity property, C satis�es b(i). Sin
ee was 
hosen arbitrarily, for ea
h i, we 
an infer that C satis�es b(i). This impliesthat C satis�es b. �The next lemma proves that the syn
hronization given by S! is indeed thesmallest 
ontrolling syn
hronization for b in hE;!i. In other words, any other
ontrolling syn
hronization for b in hE;!i, if it exists, must 
ontain S!.Theorem 4.3 If a region predi
ate b is 
ontrollable in a 
omputation hE;!i thenthe syn
hronization S! de�ned in (4.1) is the smallest 
ontrolling syn
hronization.Proof: Sin
e b is 
ontrollable in hE;!i, there exists an irre
exive partial order  that extends ! su
h that b is invariant in hE; i. We need to prove that S! is
ontained in  . It is suÆ
ient to prove that, for ea
h event e, both e(1)! and e(2)! are
ontained in  .We �rst show that, for ea
h event e,  in
ludes e(1)! . Consider an event e,e 62 ?, on pro
ess pi. Note that if e 2 ? then e(1)! is an empty set. In the proof54



we use the notion of the least 
onsistent 
ut of hE; i that 
ontains e, denoted byCleast:e. By de�nition, Cleast:e passes through e and an event other than e belongsto Cleast:e if and only if it happened-before e in hE; i. Formally,(e 2 frontier(Cleast:e)) ^ h8 f : f 6= e : f 2 Cleast:e � f  ei (4.2)We want to prove that,e(1)! � � f de�nition of e(1)! gh8 f : f 2 frontier(Cmin:e) n feg : f  ei� f using (4.2) gh8 f : f 2 frontier(Cmin:e) n feg : f 2 Cleast:ei( f de�nition of 
onsistent 
ut and its frontier gCmin:e � Cleast:e( 8<:Cleast:e is a 
onsistent 
ut of hE;!i that passes through e andsatis�es b(i) and Cmin:e is the least su
h 
ut 9=;(Cleast:e is a 
onsistent 
ut of hE;!i) ^ (e 2 frontier(Cleast:e))^(Cleast:e j= b(i))( f Cleast:e is a 
onsistent 
ut of hE; i and !� g(e 2 frontier(Cleast:e)) ^ (Cleast:e j= b(i))( f using (4.2) gCleast:e j= b(i)( f b(i) is a 
onjun
t of b gCleast:e j= bf sin
e b is invariant in hE; i, Cleast:e satis�es b gSimilarly, it 
an be proved that, for ea
h event e,  in
ludes e(2)! . �The ne
essary 
ondition for a region predi
ate to be 
ontrollable in a
omputation 
an now be easily derived. 55



Lemma 4.4 (ne
essary 
ondition) If a region predi
ate b is 
ontrollable in a
omputation hE;!i then (1) the initial and �nal 
onsistent 
uts of hE;!i satisfyb, and (2) C! is an irre
exive partial order.Proof: Sin
e b is 
ontrollable in hE;!i, there exists an irre
exive partial order  that extends ! su
h that b is invariant in hE; i. Sin
e ? and E are also the
onsistent 
uts of hE; i, they satisfy b. Furthermore, from Theorem 4.3, S! is thesmallest 
ontrolling syn
hronization implying that 
ontains S!. Thus 
ontains(! [ S!). Sin
e  is an irre
exive partial order, (! [ S!)+ (= C!) is also anirre
exive partial order. �Finally, the next theorem 
ombines the previous two lemmas and furnishesthe ne
essary and suÆ
ient 
ondition for a region predi
ate to be 
ontrollable in a
omputation.Theorem 4.5 (ne
essary and suÆ
ient 
ondition) A region predi
ate b is
ontrollable in a 
omputation hE;!i if and only if (1) the initial and �nal 
onsistent
uts of hE;!i satisfy b, and (2) C! is an irre
exive partial order.It turns out that the 
ontrolling syn
hronization S! de�ned in (4.1) is minimalin another sense. It not only eliminates all unsafe runs of the 
omputation but alsodoes not suppress any safe run. We 
all su
h a syn
hronization optimal.De�nition 4.3 (optimal 
ontrolling syn
hronization) We 
all a 
ontrollingsyn
hronization optimal if it does not suppress any safe run of the 
omputation.Formally, given a 
ontrolling syn
hronization S! for a predi
ate b in a 
omputationhE;!i, where C!= (! [ S!)+,S! is optimal , h8 : is a total order on E that extends !:hE; i j= invariant : b �  extends C!i56



In fa
t, the two aforementioned notions of minimality, namely the smallestand the optimal 
ontrolling syn
hronization, turn out to be identi
al. We establishtheir equivalen
e in the next theorem.Theorem 4.6 (smallest versus optimal) A smallest 
ontrolling syn
hronizationis also optimal and vi
e versa.Proof: Consider a 
ontrolling syn
hronization S! for a predi
ate b in a
omputation hE;!i and let C! be (! [ S!)+.(optimal ) smallest) Assume that S! is the optimal 
ontrolling syn
hronization.Consider an irre
exive partial order  that extends ! su
h that b is invariant inhE; i. Our obligation is to establish that  
ontains S!. Let 7! be a total orderon E that extends . Sin
e  extends !, 7! also extends ! implying that hE; 7!iis a run of hE;!i. Moreover, hE; 7!i is a safe run of hE;!i be
ause b is invariantin hE; i and therefore also invariant in hE; 7!i. Sin
e S! is the optimal 
ontrollingsyn
hronization, by de�nition, 7! extends C! or, in other words, 7! in
ludes S!. Sin
e7! was 
hosen arbitrarily, we 
an infer that every total order on E that extends  
ontains S! implying that  also 
ontains S!.(smallest ) optimal) Assume that S! is the smallest 
ontrolling syn
hronization.Consider a safe run hE; i of hE;!i. Our obligation is to establish that hE; iis also a run of hE; C!i, that is,  
ontains C!. Note that b is invariant in hE; i.Sin
e S! is the smallest 
ontrolling syn
hronization, by de�nition,  
ontains S!.This implies that  extends C! or hE; i is a run of hE; C!i. �From Theorem 4.3 and Theorem 4.6, we obtain,57



Theorem 4.7 If a region predi
ate b is 
ontrollable in a 
omputation hE;!i thenthe syn
hronization S! de�ned in (4.1) is the optimal 
ontrolling syn
hronization.Theorem 4.7 implies that the 
ontrolling syn
hronization S! de�ned in (4.1)is not too restri
tive and, in fa
t, admits the maximum possible 
on
urren
y in the
ontrolled 
omputation.From the earlier dis
ussion, it follows that a 
ontrolling syn
hronization for aregion predi
ate 
an be easily 
omputed provided, for ea
h event e, we 
an eÆ
iently
ompute Cmin:e and Cmax:e, if they exist. To that end, given a p-region predi
ate band an event e on pro
ess p, we de�ne a predi
ate be to be true for a 
onsistent 
utif it passes through e and satis�es b. Formally,C j= be , (e 2 frontier(C)) ^ (C j= b)It 
an be veri�ed easily, using the weak latti
e property, that if two 
onsistent
uts satisfy be then so does the 
onsistent 
ut given by their set interse
tion. Chaseand Garg [CG98℄ 
all su
h predi
ates linear. Likewise, if two 
onsistent 
uts satisfybe then the 
onsistent 
ut given by their set union also satis�es be. Su
h predi
atesare 
alled post-linear [CG98℄.Observation 4.1 The predi
ate be is linear and post-linear.The 
onsistent 
uts Cmin:e and Cmax:e 
an be reinterpreted as the least andgreatest 
onsistent 
ut, respe
tively, that satisfy be. Chase and Garg [CG98℄ alsoprovide algorithms to �nd the least 
onsistent 
ut that satis�es a linear predi
ateand the greatest 
onsistent 
ut that satis�es a post-linear predi
ate. Here, we fo
uson the former and give the basi
 idea behind the algorithm. The 
orre
tness proofand other details 
an be found elsewhere [CG98℄. The algorithm is based on thelinearity property whi
h is de�ned as follows:58



Algorithm Algo 4.1:Input: (1) a 
omputation hE;!i, (2) a p-region predi
ate b, and(3) an event e on pro
ess pOutput: Cmin:e, if it exists1 C := least 
onsistent 
ut of hE;!i that passes through e;2 done := false;3 while not(done) do4 if there exists an event f in frontier(C)su
h that su

(e) ! f then5 exit(\Cmin:e does not exist");endif;6 if there exist events f and g, f 6= e, in frontier(C)su
h that su

(f) ! g then // C is not a 
onsistent 
ut7 C := C [ su

(f); // advan
e beyond felse // C is a 
onsistent 
ut8 if C j= b then done := true;else9 f := forbidden be(C); // invoke the linearity property10 if f = e or f 2 > then // 
annot advan
e beyond f11 exit(\Cmin:e does not exist");12 else C := C [ su

(f); // advan
e beyond fendif;endif;endif;endwhile;13 Cmin:e := C;Figure 4.6: The algorithm Algo 4:1 to 
ompute Cmin:e for an event e.59



Algorithm Algo 4.2:Input: a 
omputation hE;!i and a region predi
ate bOutput: syn
hronization ne
essary to 
ontrol b in hE;!i, if possible1 if either ? or E does not satisfy b then2 exit(\b 
annot be 
ontrolled in hE;!i");endif;3 for ea
h event e do4 
ompute Cmin:e and Cmax:e;5 if either Cmin:e or Cmax:e does not exist then6 exit(\b 
annot be 
ontrolled in hE;!i");endfor;endfor;7 
ompute the syn
hronization S! de�ned in (4.1);8 if (! [ S!) is a
y
li
 then9 exit( S!);else10 exit(\b 
annot be 
ontrolled in hE;!i");endif;Figure 4.7: The algorithm Algo 4:2 to 
ompute the syn
hronization ne
essary to
ontrol a region predi
ate in a 
omputation.De�nition 4.4 (linearity property [CG98℄) A predi
ate satis�es the linearityproperty if, given a 
onsistent 
ut that does not satisfy the predi
ate, there existsan event in its frontier, 
alled the forbidden event, su
h that there does not exista 
onsistent 
ut 
ontaining the given 
onsistent 
ut that satis�es the predi
ate andalso passes through the forbidden event. Formally, given a 
omputation hE;!i, alinear predi
ate b and a 
onsistent 
ut C,C 6j= b ) h9 f : f 2 frontier(C) : h8D : D � C : D j= b ) su

(f) 2 Dii60



It is assumed that, given a linear predi
ate b, there is an eÆ
ient partialfun
tion forbidden b : C(hE;!i) �! E that 
an be used to 
ompute the event fmentioned in the de�nition of the linearity property. It is hard to provide a generalalgorithm to 
ompute the fun
tion that works for any linear predi
ate. Nevertheless,for the linear predi
ates en
ountered in pra
ti
e, an eÆ
ient algorithm 
an indeed begiven. For example, for a 
onjun
tive predi
ate|a 
onjun
tion of lo
al predi
ates|the forbidden event 
orresponds to that event in the 
ut's frontier for whi
h thelo
al predi
ate evaluates to false. Throughout this dissertation, we assume that alinear predi
ate also satis�es the advan
ing property whi
h guarantees the existen
eof an eÆ
ient fun
tion to 
ompute the forbidden event.Figure 4.6 des
ribes the algorithm Algo 4:1 to 
ompute Cmin:e using thelinearity property. Informally, starting from the least 
onsistent 
ut that passesthrough e|whi
h basi
ally 
orresponds to the Fidge/Mattern's ve
tor timestampfor e [Mat89, Fid91℄, the algorithm s
ans the 
omputation from left to right addingevents to the 
ut 
onstru
ted so far one-by-one, using the linearity property, untilthe desired 
onsistent 
ut is rea
hed.The time-
omplexity analysis of the algorithm Algo 4:1 is as follows. Ea
hiteration of the while loop at line 3 has O(n) time 
omplexity assuming that the time-
omplexity of invoking forbidden be at line 9 on
e is O(n). Thus the time-
omplexityof the algorithm Algo4:1 for 
omputing Cmin:e is O(njEj). The algorithm to 
omputeCmax:e, based on the post-linearity property [CG98℄, is similar and has been omitted.Figure 4.7 depi
ts the algorithm Algo 4:2 that 
omputes a syn
hronization for
ontrolling a region predi
ate in a 
omputation. The 
orre
tness of the algorithmfollows from Theorem 4.5. Its time-
omplexity analysis is as follows. The time-
omplexity of exe
uting the if statement at line 1 is O(n). Ea
h iteration of thefor loop at line 3 has O(njEj) time-
omplexity giving the for loop an overall time-
omplexity of O(njEj2). The syn
hronization at line 7 
an be 
omputed in O(njEj)61



time. Finally, the if statement at line 8 
an be exe
uted in O(jEj2) time. Thus theoverall time-
omplexity of the algorithm Algo 4:2 is O(njEj2).4.4 Disjun
tive Predi
atesA predi
ate is said to be disjun
tive if it 
an be expressed as disjun
tion of lo
alpredi
ates. Some examples of disjun
tive predi
ates are:� at least one server is available: avail1 _ avail2 _ � � � _ availn� at least one philosopher has no fork: :fork1 _ :fork2 _ � � � _ :forknIntuitively, a disjun
tive predi
ate states that at least one lo
al 
onditionmust be met at all times, or, in other words, a bad 
ombination of lo
al 
onditionsdoes not o

ur. Our algorithm for 
omputing a 
ontrolling syn
hronization for adisjun
tive predi
ate utilizes the notion of admissible sequen
e de�ned next.4.4.1 Admissible Sequen
esIn this se
tion, we establish that the notion of 
ontrollability is a
tually identi
alto the notion of admissible sequen
e whose motivation in turn lies in the 
ontrolalgorithm for a disjun
tive predi
ate. We make the following observation:Observation 4.2 A 
onsistent 
ut satis�es a disjun
tive predi
ate if and only if it
ontains at least one true event in its frontier.Suppose we wish to 
ontrol a disjun
tive predi
ate in a 
omputation. As the
omputation pro
eeds from the initial 
onsistent 
ut to the �nal 
onsistent 
ut, fromthe above observation it follows that it is both ne
essary and suÆ
ient to ensure thatthroughout there exists at least one true event in the frontier of the 
omputation.Thus at least one initial event must be a true event. To start with, one su
h initial62
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Figure 4.8: A strategy for 
ontrolling a disjun
tive predi
ate.event bears the responsibility for ensuring that the predi
ate stays true|by a
tingas an an
hor|until the burden 
an be passed on to some other true event. Thistransferen
e of burden 
ontinues until the 
omputation rea
hes the �nal 
onsistent
ut.Example 4.4 We want to 
ontrol the disjun
tive predi
ate x1 _ x2 in the
omputation depi
ted in Figure 4.8. The initial event e is a true event. Hen
e,using e as an an
hor, the 
omputation advan
es from the initial 
onsistent 
ut C1,shown in Figure 4.8(a), to the 
onsistent 
ut C2, portrayed in Figure 4.8(b). Next,using the true event f as an an
hor, it advan
es to the 
onsistent 
ut C3 as shownin Figure 4.8(
). Finally, using the true event g as an an
hor|whi
h is also a�nal event, it rea
hes the �nal 
onsistent 
ut C4 as depi
ted in Figure 4.8(d). Sin
ethroughout the frontier of the 
omputation passes through at least one true event,the predi
ate is never falsi�ed. 63



:  true event :  false event
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2Figure 4.9: An example to illustrate the diÆ
ulty in 
hoosing the next an
hor event.A natural question to ask is: \If there are more than one possible 
andidatesfor the next an
hor event, whi
h one should we 
hoose?". The answer is non-trivialas illustrated by the following example.Example 4.5 Consider the 
omputation shown in Figure 4.9. It has four trueevents, namely e, f , g and h. After using e as an an
hor, the 
omputation has twopossible 
hoi
es of events for the next an
hor. They are the events f and g. Theevent h is unavailable be
ause the 
omputation has to advan
e beyond e before it
an exe
ute h. Clearly, f is a bad 
hoi
e for an
hor be
ause on
e the 
omputationrea
hes the 
onsistent 
ut C, using f as an an
hor, neither g nor h 
an be used asthe next an
hor without falsifying the predi
ate.The notion of admissible sequen
e attempts to answer the above question in amore general setting. In the next se
tion, we formalize the aforementioned algorithmfor 
ontrolling a disjun
tive predi
ate using the notion of admissible sequen
e. We�rst de�ne a legal 
ut as follows:De�nition 4.5 (legal 
ut) A 
onsistent 
ut is legal with respe
t to a sequen
e ofevents if it 
ontains an event from the sequen
e only if it 
ontains all its pre
eding64



events from the sequen
e too. Formally, given a 
onsistent 
ut C and an event sifrom a sequen
e of events s,si 2 C ) h8 j : j 6 i : sj 2 CiRoughly speaking, the notion of legal 
ut helps to 
apture those runs of a
omputation that respe
t the order of the events in a sequen
e. More pre
isely,given a sequen
e of events, if every 
onsistent 
ut of a run is legal then the runand the sequen
e do not disagree on relative order of any pair of events and vi
eversa. We next de�ne the notion of admissible sequen
e. Informally, every eventin an admissible sequen
e a
ts as an an
hor in the order given by the sequen
e.To be able to do so, the sequen
e must respe
t the happened-before order betweenevents. This 
onstraint is 
aptured by the agreement property. The 
ontinuityproperty ensures that the transfer of burden from one event in the sequen
e to thenext o

urs \smoothly" in a single step. In other words, the 
omputation does notadvan
e beyond the 
urrent an
hor event until it rea
hes the next an
hor event.The weak safety property as
ertains that, on rea
hing an an
hor event, at least aslong as the 
omputation does not advan
e beyond the event the predi
ate is notfalsi�ed. Finally, the boundary 
ondition 
aptures the fa
t that the initial and �nal
onsistent 
uts satisfy the predi
ate. Formally,De�nition 4.6 (admissible sequen
e) A sequen
e of events s = s1s2 � � �sl�1slis admissible with respe
t to a predi
ate b and a 
omputation hE;!i if it satis�esthe following properties:� (boundary 
ondition) The sequen
e starts with an initial event ends with a�nal event of the 
omputation. Formally,(s1 2 ?) ^ (sl 2 >)� (agreement) The sequen
e respe
ts the partial order (that is, happened-beforerelation) of the 
omputation. Formally,65
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p2Figure 4.10: An example to illustrate the notion of legal 
ut and admissible sequen
e.h8 i; j : i < j : sj 6! sii� (
ontinuity) The su

essor of ea
h event in the sequen
e, if it exists, did nothappen-before the next event in the sequen
e. Formally,h8 i : si 62 > : su

(si) 6! si+1i� (weak safety) Any 
onsistent 
ut of the 
omputation that is legal with respe
tto the sequen
e and 
ontains at least one event from the sequen
e in its frontiersatis�es the predi
ate. Formally,h8 C : C is legal with respe
t to s : (s \ frontier(C)) 6= ; ) C j= biExample 4.6 Consider the 
omputation depi
ted in Figure 4.10. The 
onsistent
ut C is not legal with respe
t to the sequen
e of events efuvh be
ause it 
ontains ubut does not 
ontain f whi
h o

urs before u in the sequen
e. On the other hand, the
onsistent 
ut D is legal with respe
t to the same sequen
e. The sequen
e fuvh doesnot satisfy the boundary 
ondition be
ause the �rst event in the sequen
e, in this
ase f , is not an initial event. The sequen
e egfh does not satisfy the agreementproperty be
ause although f happened-before g in the 
omputation, it o

urs after gin the sequen
e. Finally, the sequen
e egh does not satisfy the 
ontinuity propertyas the su

essor of e, namely f , happened-before g, the next event in the sequen
eafter e. 66



The following theorem proves that existen
e of an admissible sequen
e isne
essary for a predi
ate to be 
ontrollable in a 
omputation. Spe
i�
ally, we provethat any safe run of a 
omputation 
onstitutes an admissible sequen
e.Theorem 4.8 (ne
essary 
ondition) If a predi
ate b 
an be 
ontrolled in a
omputation hE;!i then there exists an admissible sequen
e with respe
t to b andhE;!i.Proof: Sin
e b is 
ontrollable in hE;!i, there exists a total order  that extends! su
h that b is invariant in hE; i. Let s be the sequen
e of events 
orrespondingto hE; i. We prove that s is admissible with respe
t to b and hE;!i. Clearly, ssatis�es the boundary 
ondition and the agreement property. We next prove that ssatis�es the 
ontinuity property. Assume the 
ontrary. Then,h9 i :: su

(si)! si+1i� f si ! su

(si) gh9 i :: si ! su

(si)! si+1i) f su

(si) 2 s be
ause s 
orresponds to hE; i|a run of hE;!i gh9 i; j :: si ! sj ! si+1i) f s satis�es the agreement property gh9 i; j :: i < j < i+ 1i) f i and j are integers ga 
ontradi
tionFinally, we show that s satis�es the weak safety property. Consider a
onsistent 
ut C of hE;!i that is legal with respe
t to s. We prove that C isalso a 
onsistent 
ut of hE; i. Consider events e and f . We have,f assumption g(e f) ^ (f 2 C) 67



� f let e = si and f = sj g(si  sj) ^ (sj 2 C)) f de�nition of s g(i < j) ^ (sj 2 C)) f C is legal with respe
t to s gsi 2 C� f si = e ge 2 CThus C is a 
onsistent 
ut of hE; i. Sin
e b is invariant in hE; i, Csatis�es b. This establishes that s satis�es the weak safety property. �Our next step is to prove that the existen
e of an admissible sequen
e is alsoa suÆ
ient 
ondition for a predi
ate to be 
ontrollable in a 
omputation. To a
hievethat it suÆ
es to give the syn
hronization ne
essary to 
ontrol the predi
ate. Of
ourse the syn
hronization will depend on the parti
ular sequen
e. Observe that notall events in the sequen
e may be ordered by the happened-before relation. Thus,to ensure that they are exe
uted in the order they o

ur in the sequen
e, we need toadd syn
hronization dependen
ies from an event in the sequen
e to all other eventsthat o

ur later in the sequen
e. This syn
hronization is denoted by S(1)! and isformally de�ned as follows:S(1)! , f (si; sj) j 1 6 i < j 6 n g (4.3)For an example please refer to Figure 4.11. In the following lemma we showthat if the sequen
e is admissible, in parti
ular if it satis�es the agreement property,the above syn
hronization does not interfere with the happened-before relation ofthe 
omputation. For 
onvenien
e, we de�ne C(1)! as the transitive 
losure of! [ S(1)! .Formally, C(1)! , (! [ S(1)! )+68
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p2Figure 4.11: An illustration of the syn
hronization S(1)! (denoted by dotted arrows).Lemma 4.9 C(1)! is an irre
exive partial order.Proof: It suÆ
es to prove that ! [ S(1)! does not 
ontain any 
y
le. Sin
e ! is anirre
exive partial order, a 
y
le, if it exists, must 
ontain at least one pair of eventsordered by S(1)! . Moreover, sin
e both ! and S(1)! are transitive, the pairs of eventsin the 
y
le must be alternately ordered by ! and S(1)! . We �rst prove that there isno 
y
le 
ontaining exa
tly one pair of events ordered by S(1)! . Assume the 
ontrary.Then, h9 i; j :: si S(1)! sj ! sii) f de�nition of S(1)! gh9 i; j :: (i < j) ^ (sj ! si)i) f s satis�es the agreement property gh9 i; j :: (sj 6! si) ^ (sj ! si)i) f predi
ate 
al
ulus ga 
ontradi
tionWe now prove that if there is a 
y
le that 
ontains m, m > 2, pairs of eventsordered by S(1)! then there is a 
y
le that 
ontains stri
tly fewer than m pairs ofevents ordered by S(1)! . Let the 
y
le be si S(1)! sj ! su S(1)! sv C(1)! si, where the pathfrom sv to si 
ontains exa
tly m� 2 pair(s) of events ordered by S(1)! . Sin
e S(1)! is a69



total order, either si S(1)! sv or sv S(1)! si. We have,Case 1: si S(1)! sv(si S(1)! sj ! su S(1)! sv C(1)! si) ^ (si S(1)! sv)) f simplifying gsi S(1)! sv C(1)! si) f simplifying ga 
y
le with at most m� 1 pair(s) of events ordered by S(1)!Case 2: sv S(1)! si(si S(1)! sj ! su S(1)! sv C(1)! si) ^ (sv S(1)! si)) f simplifying gsi S(1)! sj ! su S(1)! sv S(1)! si� f rewriting gsj ! su S(1)! sv S(1)! si S(1)! sj) f S(1)! is transitive gsj ! su S(1)! sj) f simplifying ga 
y
le with at most one pair of events ordered by S(1)!This establishes that there is no 
y
le in! [ S(1)! and thus C(1)! is an irre
exivepartial order. �After adding the syn
hronization S(1)! to the 
omputation hE;!i, theresulting 
omputation hE; C(1)!i retains only those 
onsistent 
uts|not ne
essarilyall|that are legal. From the weak safety property, a suÆ
ient 
ondition for a legal
ut to satisfy the predi
ate is that it should 
ontain at least one event from thesequen
e in its frontier. To ensure this, given an event in the sequen
e, we add a70



s
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p3

p1

p2Figure 4.12: An illustration of the syn
hronization S(2)! (denoted by dotted arrows).syn
hronization arrow from the event next to it in the sequen
e, if it exists andis on a di�erent pro
ess, to its su

eeding event on the pro
ess, if it exists. Thissyn
hronization, denoted by S(2)! , as
ertains that the 
omputation does not advan
ebeyond an event in the sequen
e until it rea
hes the next event in the sequen
e.S(2)! , f (si+1; su

(si)) j 1 6 i < n; si 62 > and pro
(si+1) 6= pro
(si) g (4.4)For an illustration please see Figure 4.12. In the next lemma we establishthat if the sequen
e is admissible, in parti
ular if it satis�es the agreement and
ontinuity properties, the above syn
hronization S(2)! does not interfere with C(1)! .For 
onvenien
e, we de�ne C(2)! as the transitive 
losure of C(1)! [ S(3)! . Formally,C(2)! , (C(1)! [ S(2)! )+Lemma 4.10 C(2)! is an irre
exive partial order.Proof: It suÆ
es to prove that C(1)! [ S(2)! does not 
ontain any 
y
le. Sin
e, fromLemma 4.9, C(1)! is an irre
exive partial order, a 
y
le, if it exists, must 
ontainat least one pair of events ordered by S(2)! . We �rst prove that there is no 
y
le
ontaining exa
tly one pair of events ordered by S(2)! . Assume the 
ontrary. Wehave, h9 i :: si+1 S(2)! su

(si) C(1)! si+1i71



) f by de�nition of S(2)! , pro
(si+1) 6= pro
(si) implying si+1 6= su

(si) gh9 i :: si+1 S(2)! su

(si) C(1)! si+1i) f sin
e s satis�es the 
ontinuity property, su

(si) 6! si+1 gh9 i; j; k :: si+1 S(2)! su

(si)! sj S(1)! sk C(1)! si+1i) f S(1)! is a total order on s gh9 i; j ::(si+1 S(2)! su

(si)! sj C(1)! si+1) V((si+1 S(1)! sj) _ (sj S(1)! si+1))i) f si+1 S(1)! sj implies si+1 S(1)! sj C(1)! si+1|
ontradi
ting Lemma 4.9 gh9 i; j :: (si+1 S(2)! su

(si)! sj C(1)! si+1) ^ (sj S(1)! si+1)i) f si P! su

(si) and P!�! gh9 i; j :: (si ! sj) ^ (sj S(1)! si+1)i) f S(1)! is a total order on s and s satis�es the agreement property gh9 i; j :: (si S(1)! sj) ^ (sj S(1)! si+1)i) f s satis�es the agreement property gh9 i; j :: i < j < i+ 1i) f i and j are integers ga 
ontradi
tionWe now prove that if there is a 
y
le that 
ontains m, m > 2, pairs of eventsordered by S(2)! then there is a 
y
le that 
ontains stri
tly fewer thanm pairs of eventsordered by S(2)! . Let the 
y
le be si+1 S(2)! su

(si) C(1)! sj+1 S(2)! su

(sj) C(2)! si+1,where the path from su

(sj) to si+1 
ontains exa
tlym�2 pair(s) of events orderedby S(2)! . Sin
e S(1)! is a total order, either si+1 S(1)! sj+1 or sj+1 S(1)! si+1. We have,Case 1: si+1 S(1)! sj+1(si+1 S(2)! su

(si) C(1)! sj+1 S(2)! su

(sj) C(2)! si+1) ^ (si+1 S(1)! sj+1)) f simplifying gsi+1 S(1)! sj+1 S(2)! su

(sj) C(2)! si+172



) f simplifying ga 
y
le with at most m� 1 pair(s) of events ordered by S(2)!Case 2: sj+1 S(1)! si+1(si+1 S(2)! su

(si) C(1)! sj+1 S(2)! su

(sj) C(2)! si+1) ^ (sj+1 S(1)! si+1)) f simplifying gsi+1 S(2)! su

(si) C(1)! sj+1 S(1)! si+1) f simplifying ga 
y
le with at most one pair of events ordered by S(2)!This establishes that there is no 
y
le in C(1)! [ S(2)! and thus C(2)! is an irre
exivepartial order. �The �nal step is to prove that the 
ombined syn
hronization, given byS(1)! [ S(2)! , indeed ensures that the predi
ate is invariant in the resulting 
omputation.Spe
i�
ally, we show that if the sequen
e is admissible then every 
onsistent of theresultant 
omputation satis�es the ante
edent of the weak safety property. Wedenote the 
ontrolled 
omputation by hE; C!i, where C! is same as C(2)! .Lemma 4.11 Every 
onsistent 
ut of hE; C!i satis�es b.Proof: Consider a 
onsistent 
ut C of hE; C!i. We �rst prove that C is legal withrespe
t to s. Consider events si and sj . We have,f assumption g(sj 2 C) ^ (i < j)� f de�nition of S(1)! g(sj 2 C) ^ (si S(1)! sj)) f S(1)! � C! g(sj 2 C) ^ (si C! sj) 73



) f C is a 
onsistent 
ut of hE; C!i gsi 2 CThis establishes that C is legal with respe
t to s. We now prove that thefrontier of C 
ontains at least one event from s. To that end, we �rst prove that,for ea
h i, si 62 > implies si+1 C! su

(si). Clearly, if pro
(si+1) 6= pro
(si) then,by de�nition of S(2)! , si+1 S(2)! su

(si). Sin
e S(2)! � C!, si+1 C! su

(si). The moreinteresting 
ase is when pro
(si+1) = pro
(si). Sin
e pro
(si) = pro
(su

(si)),pro
(si+1) = pro
(su

(si)). Then,f events on a pro
ess are totally ordered by P! g(si+1 P! su

(si)) _ (su

(si) P! si+1)) f P!�! g(si+1 ! su

(si)) _ (su

(si)! si+1)) f sin
e s satis�es the 
ontinuity property, su

(si) 6! si+1 gsi+1 ! su

(si)) f !� C! gsi+1 C! su

(si)Assume, on the 
ontrary, that the frontier of C does not 
ontain any eventfrom s. We prove by indu
tion on i that, for ea
h i, si 2 C. Clearly, sin
e s satis�esthe boundary 
ondition and ? � C, s1 2 C. We have,f indu
tion hypothesis gsi 2 C� f sin
e si 62 frontier(C), su

(si) exists and it belongs to C gsu

(si) 2 C) f si+1 C! su

(si) g(si+1 C! su

(si)) ^ (su

(si) 2 C)74



) f C is a 
onsistent 
ut of hE; C!i gsi+1 2 CThis establishes that sl 2 C. Sin
e, sin
e s satis�es the boundary 
ondition,sl 2 >. Thus, trivially, sl 2 frontier(C)|a 
ontradi
tion. This implies that thefrontier of C 
ontains at least one event from s. Finally, sin
e s satis�es the weaksafety property, C satis�es b. �Combining Lemma 4.9, Lemma 4.10 and Lemma 4.11, we obtain,Theorem 4.12 (suÆ
ient 
ondition) If there exists an admissible sequen
e withrespe
t to a predi
ate b and a 
omputation hE;!i then b is 
ontrollable in hE;!i.Finally, from Theorem 4.8 and Theorem 4.12, it follows that,Theorem 4.13 (ne
essary and suÆ
ient 
ondition) It is possible to 
ontrol apredi
ate b in a 
omputation hE;!i if and only if there exists an admissible sequen
ewith respe
t to b and hE;!i.Although the motivation for de�ning the notion of admissible sequen
e wasto devise a 
ontrol algorithm for a disjun
tive predi
ate, nonetheless the pre
edingtheorem holds for any global predi
ate.4.4.2 Finding a Controlling Syn
hronizationIn this se
tion, we derive an eÆ
ient algorithm for 
ontrolling a disjun
tive predi
atein a 
omputation by using the notion of admissible sequen
e de�ned before. Sin
efalse is a lo
al predi
ate of any pro
ess, a disjun
tive predi
ate b 
an be writtenas disjun
tion of n predi
ates su
h that the ith disjun
t, denoted by b(i), is a lo
alpredi
ate of pro
ess pi. The algorithm involves 
onstru
ting a dire
ted graph G,75




alled the true event graph, as follows:V(G) , f e j e j= b(i); where pi = pro
(e) gE(G) , f(e; f) j e; f 2 V(G); e 6= f and e 62 > ) su

(e) 6! f gHere, V(G) and E(G) refer to the set of verti
es and edges, respe
tively, ofthe graph G. We now de�ne the notion of permissible path whi
h is almost identi
alto the notion of admissible sequen
e ex
ept that a permissible path 
onsists of trueevents only and may not satisfy the agreement property.De�nition 4.7 (permissible path) A path in a true event graph (TEG) ispermissible if it starts with an initial event and ends with a �nal event of the
omputation.Clearly, a permissible path satis�es the boundary 
ondition as well as the
ontinuity property. Furthermore, any 
onsistent 
ut that 
ontains a true eventin its frontier, due to the semanti
s of disjun
tion, satis�es the predi
ate. Thus,a permissible path satis�es the weak safety property also. However, in general, apermissible may not satisfy the agreement property. But if a path besides beingpermissible is also the shortest one then it satis�es the agreement property too.Example 4.7 The true event graph for the 
omputation shown in Figure 4.13(a)and the disjun
tive predi
ate x1_x2 is depi
ted in Figure 4.13(b). The path eghfu ispermissible but does not satisfy the agreement property be
ause although f happened-before g in the 
omputation, it o

urs after g in the path. The path egu is the shortestpermissible path. It 
an be veri�ed that it indeed satis�es the agreement property.Lemma 4.14 The shortest permissible path in a true event graph, if it exists,satis�es the agreement property. 76
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ompute a 
ontrolling syn
hronization for a disjun
tivepredi
ate (edges to initial events and from �nal events have been omitted).Proof: Assume that the true event graph does 
ontain a permissible path. Considerthe shortest permissible path s = s1s2 � � �sl. Assume, on the 
ontrary, that s doesnot satisfy the agreement property. Then,h9 i; j : i < j : sj ! sii) f sj 62 ?, otherwise sjsj+1 � � �sl is a shorter permissible path than s gh9 i; j : i < j : (sj ! si) ^ (sj 62 ?)i) f i > 2, otherwise si 2 ? implying si ! sj|
reating a 
y
le in ! gh9 i; j : 2 6 i < j : (sj ! si) ^ (sj 62 ?)i) f sin
e s is the shortest permissible path, (si�1; sj) 62 E(G) gh9 i; j : 2 6 i < j : (su

(si�1)! sj) ^ (sj ! si)i) f ! is transitive gh9 i : i > 2 : su

(si�1)! sii� f de�nition of an edge gh9 i : i > 2 : (si�1; si) 62 E(G)i) f s is a path implying h8 i : i > 2 : (si�1; si) 2 E(G)i ga 
ontradi
tion 77



This establishes that s satis�es the agreement property. �The suÆ
ient 
ondition for a disjun
tive predi
ate to be 
ontrollable in a
omputation 
an now be given as follows.Theorem 4.15 (suÆ
ient 
ondition) Given a disjun
tive predi
ate b and a
omputation hE;!i, if there exists a permissible path in the 
orresponding trueevent graph G then b is 
ontrollable in hE;!i.Proof: Assume that G 
ontains a permissible path. Clearly, ea
h permissiblepath satis�es the boundary 
ondition, the 
ontinuity property and the weak safetyproperty. From Lemma 4.14, the shortest path among all permissible paths|not ne
essarily unique|also satis�es the agreement property. Thus the shortestpermissible path in G 
onstitutes an admissible sequen
e with respe
t to b andhE;!i. Using Theorem 4.13, b is 
ontrollable in hE;!i. �We next prove that the existen
e of a permissible path in the true eventgraph is also a ne
essary 
ondition for a disjun
tive predi
ate to be 
ontrollable ina 
omputation.Theorem 4.16 (ne
essary 
ondition) If a disjun
tive predi
ate b is 
ontrollablein a 
omputation hE;!i then there exists a permissible path in the 
orrespondingtrue event graph G.Proof: Assume that b is 
ontrollable in hE;!i. We indu
tively 
onstru
t a pathin the graph G that is permissible. Sin
e b is 
ontrollable in hE;!i, there exists atotal order  that extends the partial order ! su
h that b is invariant in hE; i.The initial 
onsistent 
ut of the 
omputation hE; i, given by ?, satis�es b. Thusthere exists a true initial event. We 
all it s1. Starting from s1, we 
onstru
t a paths by adding events to the path 
onstru
ted as yet until we rea
h a �nal event.78



Let si denote the last event added to the path so far. If si is a �nal eventthen the path we have assembled so far is permissible. The more interesting 
ase iswhen si is not a �nal event. Consider the least 
onsistent 
ut of hE; i that 
ontainssu

(si), say Ci. Note that Ci is well-de�ned be
ause the set of 
onsistent 
uts ofa 
omputation that 
ontain a given event forms a latti
e [JZ88, Mat89℄. Sin
e b isinvariant in hE; i, Ci satis�es b. Thus the frontier of Ci 
ontains a true event. We
all it si+1. We still have to show that there is an edge from si to si+1 in the graphG, that is, su

(si) 6! si+1. By de�nition of Ci, for ea
h e 2 Ci, e su

(si). Sin
esi+1 2 Ci, si+1 su

(si). Sin
e  is an irre
exive partial order, su

(si) 6 si+1.Thus su

(si) 6! si+1 be
ause !� .Finally, we prove that a �nal event is eventually added to the path. Assumethat si+1 62 >. Sin
e si+1 2 frontier(C), su

(si+1) 62 Ci. By de�nition of Ci,su

(si+1) 6 su

(si). Sin
e  is a total order, su

(si) su

(si+1). This impliesthat Ci ( Ci+1, that is, si+1 is di�erent from every event already in the path. Thusno event is added to the path being built more than on
e, thereby establishing thata �nal event is eventually added to the path. �From Theorem 4.15 and Theorem 4.16, it follows that,Theorem 4.17 (ne
essary and suÆ
ient 
ondition) A disjun
tive predi
ate bis 
ontrollable in a 
omputation hE;!i if and only if there exists a permissible pathin the 
orresponding true event graph G.The true event graph has O(jEj) verti
es and O(jEj2) edges. The shortestpermissible path in the graph 
an be determined using breadth �rst sear
h in O(jEj2)time. Thus the algorithm has the overall time-
omplexity of O(jEj2). To improvethe time-
omplexity, we attempt to redu
e the number of edges in the graph. Tothat end, the following observation proves to be helpful.Observation 4.3 If there is an edge from a true event e to a true event f then79



there is an edge from every true event that o

urs after e on pro
(e) to every trueevent that o

urs before f on pro
(f). Formally,(e; f) 2 E(G) ) h8 g; h 2 V(G) : (e P! g) ^ (h P! f) : (g; h) 2 E(G)iIt 
an be veri�ed that, given a true event e and a pro
ess p, if we onlyput an edge from e to the last true event f on p su
h that su

(e) 6! f , in 
asesu

(e) exists, then Theorem 4.17 still holds. In parti
ular, it 
an be proved thatexisten
e of a permissible path of length l in the true event graph implies existen
eof a permissible path in the \redu
ed" true event graph (RTEG) of length at mostl. The redu
ed true event graph has at most O(njEj) edges, thereby redu
ing thetime-
omplexity to O(njEj).To redu
e the time-
omplexity further, we de�ne the notion of true-interval|a maximal 
ontiguous sequen
e of true event on a pro
ess. Rather than �nd asequen
e of true event that satisfy 
ertain properties, we 
an �nd a sequen
e oftrue-intervals satisfying \similar" properties. The details are left to the reader. Thisalgorithm for 
omputing a 
ontrolling syn
hronization for a disjun
tive predi
ate|based on true-intervals|has the time-
omplexity of O(njT j+jEj), where T is the setof true-intervals of the 
omputation, whi
h is same as that of Tarafdar and Garg'salgorithm [TG98b℄.4.4.3 Finding a Minimum Controlling Syn
hronizationWe modify our algorithm for 
omputing a 
ontrolling syn
hronization for adisjun
tive predi
ate to 
ompute a minimum 
ontrolling syn
hronization, that is,a syn
hronization with least number of dependen
ies that are not subsumed by thehappened-before relation. We take advantage of the fa
t that the predi
ate to be
ontrolled is disjun
tive. As a result, a sequen
e of true events satis�es a strongerproperty than the weak safety property: \a 
onsistent 
ut that 
ontains at least one80



event from the sequen
e in its frontier satis�es the predi
ate". In parti
ular, the 
utis not required to be legal. Therefore the following holds:Observation 4.4 Let s be an admissible sequen
e with respe
t to b and hE;!i. Ifb is a disjun
tive predi
ate then the syn
hronization given by S(2)! de�ned in (4.4) inSe
tion 4.4.1 is suÆ
ient to 
ontrol b in hE;!i.Although the syn
hronization dependen
ies given by S(1)! 
an be omitted, thesequen
e is still required to satisfy the agreement property. This is to ensure thatthe syn
hronization S(2)! does not interfere with the happened-before relation of the
omputation. To 
ount the number of syn
hronization dependen
ies in S(2)! that arenot 
overed by !, we assign weight to ea
h edge as follows:w(e; f) , 8<: (0; 1) : if f ! su

(e)(1; 1) : otherwiseTwo weights are added by adding their respe
tive 
omponents and are
ompared lexi
ographi
ally. As before in the 
ase of true event graph, the shortestpermissible path in a weighted true event graph not only satis�es the boundary
ondition, the 
ontinuity property and the weak safety property but also satis�esthe agreement property.Lemma 4.18 The shortest permissible path in a weighted true event graph, if itexists, satis�es the agreement property.Proof: Assume that the weighted true event graph does 
ontain a permissiblepath. Consider the shortest permissible path s = s1s2 � � �sl. Assume, on the
ontrary, that s does not satisfy the agreement property. Then there exist integersi and j, where i < j, su
h that sj ! si. Sin
e s is the shortest permissible path,sj 62 ?; if otherwise, the path sjsj+1 � � �sl is a shorter permissible path than s|a
ontradi
tion. Furthermore, i > 2; if otherwise, si 2 ? whi
h implies that si ! sj ,81



thereby 
reating a 
y
le in !. Two possible 
ases arise depending on whether thereis an edge from si�1 to sj .Case 1: (si�1; sj) 62 E(G)f de�nition of an edge g(su

(si�1)! sj) ^ (sj ! si)) f ! is transitive gsu

(si�1)! si� f de�nition of an edge g(si�1; si) 62 E(G)) f s is a path implying (si�1; si) 2 E(G) ga 
ontradi
tionIn the se
ond 
ase, two possible sub-
ases arise depending on the weight ofthe edge from si�1 to sj . If w(si�1; sj) = (0; 1) then the path s1s2 � � �si�1sj � � �slis permissible and has lesser weight than s|a 
ontradi
tion. The more interesting
ase is when w(si�1; sj) = (1; 1). Then,Case 2.2: w(si�1; sj) = (1; 1)f de�nition of the weight fun
tion gsj 6! su

(si�1)) f sj ! si implying si! su

(si�1) ) sj ! su

(si�1) gsi 6! su

(si�1)� f (si�1; si) 2 E(G) and de�nition of the weight fun
tion gw(si�1; si) = (1; 1) 82



Thus the path s1s2 � � �si�1sj � � �sl is permissible and has lesser weight thans|a 
ontradi
tion. This establishes that s satis�es the agreement property. �For a path s with weight w(s), let wf(s) and ws(s) denote the �rst andse
ond entries, respe
tively, of the tuple w(s). The rank of a weighted true eventgraph G, denoted by rank(G), is given by,rank(G) , 8<: ? : if there is no permissible path in Gwf (s) : s is the shortest permissible path in GIntuitively, the rank gives the 
ardinality of a minimum 
ontrollingsyn
hronization. We show that rank behaves in a 
ontinuous fashion by provingthat adding a single syn
hronization dependen
y to a 
omputation 
annot redu
ethe rank of its weighted true event graph substantially. Consider a 
omputationhE; i su
h that (1)  extends !, and (2) the two 
omputations hE;!i andhE; i di�er by at most one message. Formally,h9 e; f :: = (! [ (e; f)+)iLet H be the weighted true event graph 
orresponding to b and hE; i.Lemma 4.19 (bounded redu
tion) If b is 
ontrollable in hE; i then rank(G)is at most one more than rank(H).Proof: Sin
e hE; i j= 
ontrollable : b, by virtue of Theorem 4.16, there existsa permissible path in H . Consider the shortest permissible path in H , say s =s1s2 � � �sl. For 
onvenien
e, let wG and wH be the weight fun
tions for the graphsG and H , respe
tively. Sin
e !� , su

(e) 6 f implies su

(e) 6! f . Thus ea
hedge of H is also an edge of G whi
h implies that s is a path in G. The following
an be easily veri�ed. rank(G) 6 wGf (s) (4.5)83



rank(H) = wHf (s) (4.6)h8 e; f : (e; f) 2 E(H) : wG(e; f) = (0; 1) ) wH(e; f) = (0; 1)i (4.7)We �rst prove that wGf (s) � wHf (s) 6 1. Assume the 
ontrary. Thus, from(4.7), there exist at least two distin
t edges in the path s su
h that their weight inG is (1; 1) but in H is (0; 1). Let the edges be (si; si+1) and (sj ; sj+1), where i 6= j.Equivalently, si+1 6! su

(si) and sj+1 6! su

(sj) (4.8)si+1 su

(si) and sj+1 su

(sj) (4.9)Let the additional message in hE; i be from e to f . From (4.8) and (4.9),we 
an dedu
e that there exists a path from si+1 to su

(si) in hE; i that involvesthe message from e to f . Likewise, there exists a path from sj+1 to su

(sj) inhE; i that involves the message from e to f . Then,si+1 e and f  su

(si) (4.10)sj+1 e and f  su

(sj) (4.11)Without loss of generality, assume that i < j. Two possible 
ases arisedepending on whether there is an edge from si to sj+1 in H . We have,Case 1: (si; sj+1) 62 E(H)f de�nition of an edge gsu

(si) sj+1) f using (4.11) gsu

(si) e) f using (4.10) gf  e) f de�nition of  implies e f ga 
ontradi
tion 84



In the se
ond 
ase, when there is an edge from si to sj+1, from (4.10)and (4.11), sj+1  su

(si). Thus wH(si; sj+1) = (0; 1) implying that thepath s1s2 � � �sisj+1 � � �sl is permissible in H and has smaller weight than s|a
ontradi
tion. Thus, wGf (s)� wHf (s) 6 1 (4.12)Finally, f using (4.5) grank(G) 6 wGf (s)� f using (4.12) grank(G) 6 wHf (s) + 1� f using (4.6) grank(G) 6 rank(H) + 1This establishes the lemma. �Now, assume that rank(G) 6= 0. Let RCH denote the subset of true eventsthat are rea
hable from some initial true event in the weighted true event graph Gvia edges with weight (0; 1) only. Sin
e rank(G) 6= 0, RCH does not 
ontain any�nal event; if otherwise, there is a path from an initial event to a �nal event viaedges with weight (0; 1) only, thereby for
ing rank(G) to be zero. For ea
h pro
esspi, we identify an interval of 
ontiguous events on pi that we denote by Ii. The �rstevent of Ii, denoted by Ii:lo, is given by the su

essor of the last event on pi thatbelongs to RCH. In 
ase there is no su
h event, Ii:lo is set to ?i, the initial eventon pi. The last event of Ii, denoted by Ii:hi, is given by the earliest event on pithat did not o

ur before Ii:lo su
h that its su

essor, if it exists, is a true event.Clearly, Ii is non-empty and all events in Ii are false events. For 
onvenien
e,I , S16i6n Ii85
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(I:hi) , f su

(e) j e 2 I:hi and e 62 > gExample 4.8 Consider the 
omputation portrayed in Figure 4.14(a) and thedisjun
tive predi
ate x1 _ x2 _ x3. The 
orresponding weighted true event graphis depi
ted in Figure 4.14(b). The in
oming edges to the initial event e and theoutgoing edges from the �nal event g have been omitted for obvious reasons. Alledges ex
ept the edges (e; x) and (x; y) have weight (1; 1). For 
larity, we have onlylabeled those edges that have weight (0; 1) be
ause they are fewer in number. Thusthe set RCH is given by fe; x; yg. Further, I1:lo = su

(e) = f , I2:lo = ?2 = uand I3:lo = su

(y) = z. Also, I1:hi = f , I2:hi = v and I3:hi = >3 = z.Finally, su

(I) = fsu

(f); su

(v)g= fg; wg. The shaded region in Figure 4.14(a)
orresponds to the spa
e spanned by the events of I.Observe that if all events in the frontier of a 
onsistent 
ut belong to I thenthe 
ut will not satisfy the given disjun
tive predi
ate. We make two observationsabout the set su

(I:hi). First, all events in the set are true events. Se
ond, no86



event in the set belongs to RCH. The following lemma proves that the 
omputationmust 
ontain a 
onsistent 
ut that does not satisfy the disjun
tive predi
ate.Lemma 4.20 If the rank of a weighted true event graph is not zero then there existsa 
onsistent 
ut of the 
omputation that does not satisfy the disjun
tive predi
ate.Proof: Our approa
h is to add enough syn
hronization dependen
ies to the
omputation hE;!i, without 
reating any deadlo
k (or 
y
le), to obtain another
omputation, say hE; i, that satis�es the required property. Spe
i�
ally, we showthat the 
omputation hE; i 
ontains a 
onsistent 
ut whose frontier is 
ompletely
ontained in I. Sin
e all events in I are false events, we obtain the desired result.The required set of dependen
ies, denoted by I!, is given by,I! , f (e; f) j e 2 I:lo and f 2 su

(I:hi) gWe �rst prove that adding dependen
ies from I! to ! does not 
reate any
y
le. Consider a path e I! f! g I! h (events e, f , g and h need not all be distin
t,that is, an event or a sequen
e of events may be repeated in the path). By de�nitionof I!, f 2 su

(I:hi) and g 2 I:lo. Clearly, f 62 ?. This implies that g 62 ?; ifotherwise, g ! f , thereby 
reating a 
y
le in !. Thus pred(g) exists. Furthermore,both f and pred(g) are true events su
h that pred(g) 2 RCH but f 62 RCH. Note,however, that f ! su

(pred(g))(= g) implying that there is an edge from pred(g)to f with weight (0; 1). Thus f is rea
hable from an initial event via edges withweight (0; 1) only be
ause pred(g) 2 RCH and w(pred(g); f) = (0; 1). This impliesthat f belongs to RCH|a 
ontradi
tion. Thus there is no path in ! [ I! of theform e I! f ! g I! h, thereby ensuring that ! [ I! is a
y
li
.Now,  = (! [ I!)+. Consider the least 
onsistent 
ut of hE; i, sayCleast:(I:lo), that 
ontains I:lo. By de�nition of Cleast:(I:lo), we have,h8 e :: e 2 Cleast:(I:lo) ) h9 f : f 2 I:lo : e fii (4.13)87



We prove that the frontier of Cleast:(I:lo) lies wholly within I. To that end,it suÆ
es to show that Cleast:(I:lo) does not 
ontain any event from su

(I:hi).Assume the 
ontrary. Then,h9 e : e 2 su

(I:hi) : e 2 Cleast:(I:lo)i) f using (4.13) gh9 e; f : (e 2 su

(I:hi)) ^ (f 2 I:lo) : e fi) f by de�nition of I!, f I! e and I!� gh9 e; f : (e 2 su

(I:hi)) ^ (f 2 I:lo) : (e f) ^ (f  e)i) f  is an irre
exive partial order ga 
ontradi
tionThis establishes the lemma. �The ne
essary and suÆ
ient 
ondition for the rank of a weighted true eventgraph to be zero 
an now be furnished easily.Theorem 4.21 The rank of a weighted true event graph is zero if and only if thedisjun
tive predi
ate is invariant in the 
omputation. Formally,hE;!i j= invariant : b () rank(G) = 0Proof: ()) Follows from Lemma 4.20.(() From Lemma 4.18, the shortest permissible path, say s|whi
h exists be
auserank(G) 6= ?|
orresponds to an admissible sequen
e of events with respe
t to band hE;!i. Sin
e b is a disjun
tive predi
ate, by Observation 4.4, S(2)! is suÆ
ientto 
ontrol b in hE;!i. Let C!= (! [ S(2)! )+. By de�nition of 
ontrollability, b isinvariant in hE; C!i. Furthermore, by de�nition of the weight fun
tion, S(2)! � !whi
h implies that C!=!. �We now present the main result of this se
tion.88



Theorem 4.22 (minimum 
ontrolling syn
hronization) The shortest permis-sible path in a weighted true event graph, if it exists, 
orresponds to a minimum
ontrolling syn
hronization for the disjun
tive predi
ate in the 
omputation.Proof: Assume that the weighted true event graph G does 
ontain a permissiblepath. From Theorem 4.17, b is 
ontrollable in hE;!i. Let min! denote a mini-mum 
ontrolling syn
hronization for b in hE;!i. Further, let fG(k)g representthe sequen
e of weighted true event graphs generated by adding syn
hronizationdependen
ies from min! one-by-one, where G(0) = G. Note that b is invariant in the
omputation obtained by adding all syn
hronization dependen
ies from min!. Fromthe bounded redu
tion lemma,rank(G(i))� rank(G(i+1)) 6 1; 0 6 i < j min! jAdding the above inequality for all values of i, we obtain,rank(G(0))� rank(Gjmin! j) 6 j min! j� f using Theorem 4.21 grank(G)� 0 6 j min! j� f simplifying grank(G) 6 j min! j� f min! 
orresponds to a minimum 
ontrolling syn
hronization grank(G) = j min! jThis establishes the theorem. �The algorithm to 
ompute a minimum 
ontrolling syn
hronization hasO(jEj2) time-
omplexity be
ause the weighted true event graph has O(jEj) verti
es,O(jEj2) edges, and the shortest permissible path in the graph 
an be determinedusing Dijkstra's shortest path algorithm [CLR91℄ in O(jEj2) time.89





Chapter 5Sli
ing DistributedComputationsIn this 
hapter, we dis
uss in detail our results pertaining to sli
ingdistributed 
omputations with respe
t to global predi
ates.5.1 OverviewWe �rst extend the model of distributed 
omputation, des
ribed in Chapter 2, inSe
tion 5.2. Spe
i�
ally, we relax the restri
tion that events 
an only be partiallyordered and allow 
y
les to be present in the 
omputation. The reason is be
ausewhereas, in the traditional model, a 
omputation spe
i�es the \observable" orderof exe
ution of events, in the extended model, it 
aptures the set of \possible"
onsistent 
uts that are 
urrently relevant for our purpose. The extended modelenables us to model both 
omputation and sli
e in a uniform and 
oherent fashion.We formally de�ne the notion of \sli
e" in Se
tion 5.3. Informally, the sli
eof a 
omputation with respe
t to a predi
ate is the \smallest" 
omputation that91




ontains all 
onsistent 
uts of the original 
omputation that satisfy the predi
ate.In 
ase the sli
e 
ontains only those 
onsistent 
uts of the 
omputation that satisfythe predi
ate, it is referred to as \lean".A natural question to ask is: \Is su
h a smallest 
omputation uniquely de�nedfor every predi
ate?" To prove that it is indeed the 
ase, we de�ne a new 
lassof predi
ates in Se
tion 5.4 
alled \regular predi
ates". Informally, a predi
ate isregular if the set of 
onsistent 
uts that satisfy the predi
ate is 
losed under set unionand set interse
tion. Some examples of regular predi
ates are 
onjun
tive predi
atessu
h as \no pro
ess is in red state" and 
ertain monotoni
 
hannel predi
ates su
has \all 
hannels are empty" and \all green messages have been a
knowledged". The
lass of regular predi
ates is 
losed under 
onjun
tion. We prove in Se
tion 5.5that the sli
e for a predi
ate is lean if and only if the predi
ate is regular. For thegeneral 
ase, when the predi
ate may not be regular, we de�ne a 
losure operatorthat returns the \strongest" regular predi
ate weaker than the given predi
ate. Weshow that su
h a predi
ate exists and is uniquely de�ned for every predi
ate. Thisin turn proves that the sli
e exists and is uniquely de�ned for every predi
ate.In Se
tion 5.7, we develop a polynomial-time algorithm for 
omputing thesli
e for a regular predi
ate. The algorithm has an overall time-
omplexity ofO(n2jEj), where n is the number of pro
esses and E is the set of events. In 
asethe regular predi
ate 
an be de
omposed into a 
onjun
tion of 
lauses, where ea
h
lause itself is a regular predi
ate, however, depending on variables of only a smallsubset of pro
esses, we given an optimized salgorithm for 
omputing the sli
e. Theoptimized version may yield a speedup of as mu
h as n for many regular predi
ates.We also provide optimal algorithms for spe
ial 
ases of regular predi
ates, namely
onjun
tive predi
ates and monotoni
 
hannel predi
ates of the form \Vi;j (at mostkij messages in transit from pro
ess pi to pro
ess pj)" and \Vi;j (at least kij messagesin transit from pro
ess pi to pro
ess pj)", whi
h have the time-
omplexity of O(jEj).92



We demonstrate how sli
ing 
an be used to monitor a regular predi
ate under variousmodalities. Furthermore, we argue that many results pertaining to 
onsistent global
he
kpoints [NX95, Wan97℄ 
an be derived as spe
ial 
ases of sli
ing.We establish in Se
tion 5.8 that it is intra
table in general to 
ompute thesli
e for an arbitrary predi
ate. Nevertheless, polynomial-time algorithms 
an bedeveloped for 
ertain spe
ial 
lasses of predi
ates. In parti
ular, we provide aneÆ
ient algorithm to 
ompute the sli
e for a linear predi
ate and its dual|a post-linear predi
ate [CG98℄. We next introdu
e the notion of \grafting" whi
h is usefulin 
omposing two sli
es. Given two sli
es, grafting 
an be used to either 
omputethe smallest sli
e that 
ontains all 
onsistent 
uts 
ommon to both sli
es or 
omputethe smallest sli
e that 
ontains 
onsistent 
uts of both sli
es. As a 
orollary, the sli
efor a predi
ate in disjun
tive normal form (DNF) 
an now be easily obtained. Wedemonstrate how grafting 
an be employed to 
ompute the sli
e for a \
o-regularpredi
ate" (that is, 
omplement of a regular predi
ate) in polynomial-time. Wealso use grafting to eÆ
iently 
ompute the sli
e for a \k-lo
al predi
ate" (dependson at most k pro
esses) for 
onstant k [SS95℄. Furthermore, grafting 
an also beapplied to 
ompute an \approximate" sli
e|in polynomial-time|for a predi
ate
omposed from linear predi
ates, post-linear predi
ates, 
o-regular predi
ates andk-lo
al predi
ates for 
onstant k using ^ and _ operators.Finally, in Se
tion 5.9, we dis
uss our experimental results in evaluating thee�e
tiveness of sli
ing in redu
ing the sear
h-spa
e for dete
ting a predi
ate underpossibly modality. Our results indi
ate that 
omputation sli
ing 
an lead to anexponential improvement over existing te
hniques both in terms of time as well asspa
e. 93



5.2 Extending the ModelIn this se
tion, we extend the model of distributed 
omputation and related notionsthat we des
ribed in Chapter 2. In this 
hapter, we relax the restri
tion that theorder on events must be a partial order. More pre
isely, we use dire
ted graphs tomodel distributed 
omputations as well as sli
es. Dire
ted graphs allow us to handleboth of them in a uniform and 
onvenient manner.Given a dire
ted graph G, let V(G) and E(G) denote its set of verti
es andedges, respe
tively. A subset of verti
es of a dire
ted graph forms a 
onsistent 
utif the subset 
ontains a vertex only if it also 
ontains all its in
oming neighbours.Formally,C is a 
onsistent 
ut of G , h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C ) e 2 CiObserve that a 
onsistent 
ut either 
ontains all verti
es in a 
y
le or noneof them. This observation 
an be generalized to a strongly 
onne
ted 
omponent.Traditionally, the notion of 
onsistent 
ut (down-set or order ideal) is de�ned forpartially ordered sets [DP90℄. Here, we extend the notion to sets with arbitraryorders. Let C(G) denote the set of 
onsistent 
uts of a dire
ted graph G. Observethat the empty set ; and the set of verti
es V(G) trivially belong to C(G). We 
allthem trivial 
onsistent 
uts. Let P(G) denote the set of paths in a dire
ted graphG, that is, the set of pairs of verti
es (u; v) su
h that there is a path from u to v inG. We assume that ea
h vertex has a path to itself.5.2.1 Dire
ted Graphs: Path- and Cut-Equivalen
eA dire
ted graph G is 
ut-equivalent to a dire
ted graph H , denoted by G C�= H , ifthey have the same set of 
onsistent 
uts. Formally,G C�= H , C(G) = C(H)94



Likewise, a dire
ted graph G is path-equivalent to a dire
ted graph H ,denoted by G P�= H , if a path from vertex u to vertex v in G implies a path fromvertex u to vertex v in H and vi
e versa. Formally,G P�= H , P(G) = P(H)The next lemma explores the relation between the two notions.Lemma 5.1 Let G and H be dire
ted graphs with the same set of verti
es. Then,P(G) � P(H) � C(G) � C(H)Evidently, Lemma 5.1 implies that two dire
ted graphs are 
ut-equivalent ifand only if they are path-equivalent. In other words, in order to determine whethertwo dire
ted graphs are 
ut-equivalent, it is ne
essary and suÆ
ient to as
ertainthat they are path-equivalent. This is signi�
ant be
ause, whereas path-equivalen
e
an be veri�ed in polynomial-time (jP(G)j = O(jV(G)j2)), 
ut-equivalen
e is
omputationally expensive to as
ertain in general (jC(G)j = O(2jV(G)j)). In therest of the 
hapter, we use �= to denote both C�= and P�=.5.2.2 Distributed Computations as Dire
ted GraphsWe model a distributed 
omputation hE;!i as a dire
ted graph with verti
es as theset of events E and edges as!. To limit our attention to only those 
onsistent 
utsthat 
an a
tually o

ur during an exe
ution, we assume that P(hE;!i) 
ontains atleast the Lamport's happened-before relation [Lam78℄.We assume the presen
e of a �
titious �nal event on ea
h pro
ess whi
ho

urs after all other events on the pro
ess. Re
all that a �nal event on pro
ess pi isdenoted by >i whi
h now refers to the aforementioned �
titious event. We assumethat all initial events belong to the same strongly 
onne
ted 
omponent. Similarly,95



all �nal events belong to the same strongly 
onne
ted 
omponent. This ensures thatany non-trivial 
onsistent 
ut will 
ontain all initial events and none of the �nalevents. As a result, every 
onsistent 
ut of a 
omputation in the traditional modelis a non-trivial 
onsistent 
ut of the 
orresponding 
omputation in the extendedmodel and vi
e versa. Only non-trivial 
onsistent 
uts are of real interest to us. Aswe will see later, the extended model allows us to 
apture empty sli
es in a very
onvenient fashion.A distributed 
omputation in the extended model 
an 
ontain 
y
les. This isbe
ause whereas a 
omputation in the traditional (happened-before) model 
apturesthe observable order of exe
ution of events, a 
omputation in the extended model
aptures the set of possible 
onsistent 
uts.Although, given a 
omputation hE;!i, the relation ! may 
ontain 
y
les,the order of events on a pro
ess, that in turn refers to the sequen
e in whi
h theevents on a pro
ess were exe
uted in real-time, is still a total order. Thus the notionof prede
essor and su

essor events of an event de�ned in Chapter 2 is well-de�nedand so are the notions that depend on it su
h as \frontier" and \passes through".Re
all that two events are said to be 
onsistent if they are 
ontained in thefrontier of some 
onsistent 
ut, otherwise they are in
onsistent. More pre
isely, it
an be veri�ed that events e and f are 
onsistent if and only if there is no path inthe 
omputation from su

(e), if it exists, to f and from su

(f), if it exists, to e.Note that, in the extended model, in 
ontrast to the traditional model, an event 
anbe in
onsistent with itself.As before, a predi
ate is evaluated with respe
t to the values of variablesresulting after exe
uting all events in the 
ut. We leave the predi
ate unde�ned forthe trivial 
onsistent 
uts. 96



5.3 Problem StatementInformally, a 
omputation sli
e (or simply a sli
e) is a 
on
ise representation of allthose 
onsistent 
uts of the 
omputation that satisfy the predi
ate. Formally,De�nition 5.1 (sli
e) The sli
e of a 
omputation with respe
t to a predi
ate is thesmallest dire
ted graph|with the least number of 
onsistent 
uts|that 
ontains all
onsistent 
uts of the given 
omputation for whi
h the predi
ate evaluates to true.We will later show that the notion of smallest dire
ted graph in the de�nitionis well-de�ned for every predi
ate. The sli
e of 
omputation hE;!i with respe
tto a predi
ate b is denoted by hE;!ib. Note that hE;!i = hE;!itrue. In therest of the paper, we use the terms \
omputation", \sli
e" and \dire
ted graph"inter
hangeably.Note that every sli
e derived from the 
omputation hE;!i will have thetrivial 
onsistent 
uts (; and E) among its set of 
onsistent 
uts. Thus a sli
eis empty if it has no non-trivial 
onsistent 
uts. In the rest of the paper, unlessotherwise stated, a 
onsistent 
ut refers to a non-trivial 
onsistent 
ut. In general,a sli
e will 
ontain 
onsistent 
uts that do not satisfy the predi
ate (besides trivial
onsistent 
uts). In 
ase a sli
e does not 
ontain any su
h 
ut, it is 
alled lean.Formally,De�nition 5.2 (lean sli
e) The sli
e of a 
omputation with respe
t to a predi
ateis lean if every 
onsistent 
ut of the sli
e satis�es the predi
ate.An interesting question to ask is for what 
lass of predi
ates is the sli
ealways lean? To answer this question, we introdu
e the 
lass of regular predi
ates.97



5.4 Regular Predi
atesA global predi
ate is 
alled regular if the set of 
onsistent 
uts that satisfy thepredi
ate is 
losed under set interse
tion and set union. Formally, given a regularpredi
ate b and 
onsistent 
uts C1 and C2,(C1 j= b) ^ (C2 j= b) ) (C1 \ C2 j= b) ^ (C1 [ C2 j= b)Remark 5.1 More pre
isely, given a set of elements that forms a latti
e under somepartial order, a subset of elements forms a sublatti
e of the latti
e if the subset is
losed under the meet and join operators of the latti
e. In our 
ase, the meet andjoin operators are set interse
tion and set union, respe
tively.If the set of 
onsistent 
uts that satisfy a predi
ate is 
losed under setinterse
tion then the predi
ate is said to be linear [CG98℄. Dually, if the set of
onsistent 
uts that satisfy a predi
ate is 
losed under set union then the predi
ate issaid to be post-linear [CG98℄. The 
lass of regular predi
ates is, therefore, given bythe interse
tion of the 
lass of linear predi
ates and the 
lass of post-linear predi
ates.It 
an be veri�ed that a lo
al predi
ate is a regular predi
ate. Therefore thefollowing predi
ates are regular.� pro
ess pi is in \red" state� the leader has sent all \prepare to 
ommit" messagesWe now provide more examples of regular predi
ates. Consider a fun
tionf(x; y) with two arguments su
h that it is monotoni
 in its �rst argument x butanti-monotoni
 in its se
ond argument y. Some examples of the fun
tion f are:x � y, 3x � 5y, x=y when x; y > 0, and logy x when x; y > 1. We establish thatthe predi
ates of the form f(x; y) < 
 and f(x; y) 6 
, where 
 is some 
onstant,are regular when either both x and y are monotoni
ally non-de
reasing variables orboth x and y are monotoni
ally non-in
reasing variables.98



Lemma 5.2 Let x and y be monotoni
ally non-de
reasing variables. Then thepredi
ates f(x; y) < 
 and f(x; y) 6 
 are regular predi
ates.Proof: We show that the predi
ate f(x; y) < 
 is regular. The proof for the otherpredi
ate is similar and has been omitted. For a 
onsistent C, let x(C) and y(C)denote the values of variables x and y, respe
tively, immediately after all eventsin C are exe
uted. Consider 
onsistent 
uts C1 and C2 that satisfy the predi
atef(x; y) < 
. Note that, by de�nition of C1 \C2, y(C1\C2) is either y(C1) or y(C2).Without loss of generality, assume that y(C1 \ C2) = y(C1). Then,f(x(C1 \ C2); y(C1 \ C2))= f assumption gf(x(C1 \ C2); y(C1))6 8<:x is monotoni
ally non-de
reasing implies x(C1 \ C2) 6 x(C1);and f is monotoni
 in x 9=;f(x(C1); y(C1))< f C1 satis�es the predi
ate f(x; y) < 
 g
Thus C1\C2 satis�es the predi
ate f(x; y) < 
. Also, note that, by de�nitionof C1 [ C2, x(C1 [ C2) is either x(C1) or x(C2). Without loss of generality, assumethat x(C1 [ C2) = x(C1). Then,f(x(C1 [ C2); y(C1 [ C2))= f assumption gf(x(C1); y(C1 [ C2))6 8<:y is monotoni
ally non-de
reasing implies y(C1 [ C2) > y(C1);and f is anti-monotoni
 in y 9=;f(x(C1); y(C1)) 99



< f C1 satis�es the predi
ate f(x; y) < 
 g
Thus C1 [ C2 also satis�es the predi
ate f(x; y) < 
. �We now establish that Lemma 5.2 holds even when both x and y aremonotoni
ally non-in
reasing variables.Lemma 5.3 Let x and y be monotoni
ally non-in
reasing variables. Then thepredi
ates f(x; y) < 
 and f(x; y) 6 
 are regular predi
ates.Proof: We show that the predi
ate f(x; y) < 
 is regular. The proof for the otherpredi
ate is similar and has been omitted. For a 
onsistent C, let x(C) and y(C)denote the values of variables x and y, respe
tively, immediately after all eventsin C are exe
uted. Consider 
onsistent 
uts C1 and C2 that satisfy the predi
atef(x; y) < 
. Note that, by de�nition of C1\C2, x(C1\C2) is either x(C1) or x(C2).Without loss of generality, assume that x(C1 \ C2) = x(C1). Then,f(x(C1 \ C2); y(C1 \ C2))= f assumption gf(x(C1); y(C1 \ C2))6 8<:y is monotoni
ally non-in
reasing implies y(C1 \ C2) > y(C1);and f is anti-monotoni
 in y 9=;f(x(C1); y(C1))< f C1 satis�es the predi
ate f(x; y) < 
 g
Thus C1\C2 satis�es the predi
ate f(x; y) < 
. Also, note that, by de�nitionof C1 [ C2, y(C1 [ C2) is either y(C1) or y(C2). Without loss of generality, assumethat y(C1 [ C2) = y(C1). Then, 100



f(x(C1 [ C2); y(C1 [ C2))= f assumption gf(x(C1 [ C2); y(C1))6 8<:x is monotoni
ally non-de
reasing implies x(C1 [ C2) 6 x(C1);and f is monotoni
 in x 9=;f(x(C1); y(C1))< f C1 satis�es the predi
ate f(x; y) < 
 g
Thus C1 [ C2 also satis�es the predi
ate f(x; y) < 
. �Combining the above two lemmas, we obtain the following:Lemma 5.4 The predi
ates of the form f(x; y) < 
 and f(x; y) 6 
, where 
 is some
onstant, are regular when either both x and y are monotoni
ally non-de
reasingvariables or both x and y are monotoni
ally non-in
reasing variables.As a 
orollary of Lemma 5.4, it 
an be proved that Lemma 5.4 still holdswhen < and 6 are repla
ed by > and >, respe
tively.Corollary 5.5 Let x and y be monotoni
ally non-de
reasing variables. Then thepredi
ates f(x; y) > 
 and f(x; y) > 
 are regular predi
ates.Proof: De�ne g(y; x) = �f(x; y) and d = �
. Observe that the predi
atef(x; y) > 
 is equivalent to the predi
ate g(y; x) < d. Furthermore, the fun
tiong is monotoni
 in its �rst argument y and anti-monotoni
 in its se
ond argumentx. From Lemma 5.4, the predi
ate g(y; x) < d is regular and hen
e the predi
atef(x; y) > 
 is also regular. Similarly, the predi
ate f(x; y) > 
 is regular. �Similarly, it follows that: 101



Corollary 5.6 Let x and y be monotoni
ally non-in
reasing variables. Then thepredi
ates f(x; y) > 
 and f(x; y) > 
 are regular predi
ates.The following theorem 
ombines all the above results.Theorem 5.7 Let f be a fun
tion with two arguments su
h that it is monotoni
 inits �rst argument and anti-monotoni
 in its se
ond argument. Then the predi
ateof the form f(x; y) relop 
, where relop 2 f<;6; >;>g and 
 is some 
onstant, isregular when either both x and y are monotoni
ally non-de
reasing variables or bothx and y are monotoni
ally non-in
reasing variables.Remark 5.2 Let xi and yi be variables on pro
ess pi, where 1 6 i 6 n. Considerj 2 [1 : : :n℄, I � f1; 2; : : : ; ng and some 
onstant 
.Let x(I) = f xi j i 2 I g and let f be a fun
tion on the variables in x(I) andyj su
h that it is monotoni
 in ea
h xi 2 x(I) but anti-monotoni
 in yj . If ea
hxi 2 x(I) is a monotoni
ally non-de
reasing variable then it 
an be established thatthe predi
ates f(x(I); yj) < 
 and f(x(I); yj) 6 
 are linear predi
ates. Similarly, ifea
h xi 2 x(I) is a monotoni
ally non-in
reasing variable then it 
an be proved thatthe predi
ates f(x(I); yj) > 
 and f(x(I); yj) > 
 are also linear predi
ates. Noneof the predi
ates mentioned above is regular in general.Dually, let y(I) = fyi j i 2 I g and let f be a fun
tion on xj and the variablesin y(I) su
h that it is monotoni
 in xj but anti-monotoni
 in ea
h yi 2 y(I). Ifea
h yi 2 x(I) is a monotoni
ally non-de
reasing variable then it 
an be establishedthat the predi
ates f(xj ;y(I)) < 
 and f(xj ;y(I)) 6 
 are post-linear predi
ates.Similarly, if ea
h yi 2 y(I) is a monotoni
ally non-in
reasing variable then it 
anbe proved that the predi
ates f(xj ;y(I))> 
 and f(xj ;y(I))> 
 are also post-linearpredi
ates. As before, none of the predi
ates mentioned above is regular in general.Theorem 5.7 therefore 
orresponds to the 
ase when I is a singleton set.Further, observe that Theorem 5.7 holds not only for s
alar variables, but also for102



ve
tor variables. As in the 
ase of s
alars, in the 
ase of ve
tors, the variable shouldeither be monotoni
ally non-de
reasing, that is, the value of the variable for thesu

essor event either stays the same or stri
tly in
reases, or monotoni
ally non-in
reasing, that is, the value of the variable for the su

essor event either stays thesame or stri
tly de
reases, as the 
ase may be.By substituting f(x; y) with x � y, x with \the number of messages thatpro
ess pi has sent to pro
ess pj so far" and y with \the number of messages sent bypro
ess pi that pro
ess pj has re
eived so far", it 
an be veri�ed that the followingpredi
ates are regular.� no outstanding message in the 
hannel from pro
ess pi to pro
ess pj� the 
hannel from pro
ess pi to pro
ess pj is non-empty� at most k messages in transit from pro
ess pi to pro
ess pj� at least k messages in transit from pro
ess pi to pro
ess pjWe next show that the 
onjun
tion of two regular predi
ates is also a regularpredi
ate.Theorem 5.8 The 
lass of regular predi
ates is 
losed under 
onjun
tion.Proof: We have to prove that if b1 and b2 are regular predi
ates then so is b1 ^ b2.Consider 
onsistent 
uts C1 and C2 that satisfy b1^ b2. By semanti
s of 
onjun
tion,both C1 and C2 satisfy b1 as well as b2. Sin
e b1 and b2 are regular predi
ates, C1\C2satis�es b1 and b2. Again, by semanti
s of 
onjun
tion, C1 \ C2 satis�es b1 ^ b2.Likewise, C1 [ C2 satis�es b1 ^ b2. Thus b1 ^ b2 is a regular predi
ate. �The 
losure under 
onjun
tion implies that the following predi
ates are alsoregular. 103



� any 
onjun
tion of lo
al predi
ates� no pro
ess has the token and no 
hannel has the token� every \request" message has been \a
knowledged" in the system5.5 Establishing the Existen
e and Uniqueness of Sli
eIn this se
tion, we show that the sli
e exists and is uniquely de�ned for all predi
ates.Our approa
h is to �rst prove that the sli
e not only exists for a regular predi
ate,but is also lean. Using this fa
t we next establish that the sli
e exists even for apredi
ate that is not regular.5.5.1 Regular Predi
atesIt is well known in distributed systems that the set of all 
onsistent 
uts of a
omputation forms a latti
e under the subset relation [JZ88, Mat89℄. We ask thequestion does the latti
e of 
onsistent 
uts satisfy any additional property? It turnsout that the answer to this question is in aÆrmative. Spe
i�
ally, we show thatthe set of 
onsistent 
uts of a dire
ted graph not only forms a latti
e but that thelatti
e is distributive. A latti
e is said to be distributive if meet distributes over join[DP90℄. Formally, a u (b t 
) � (a u b) t (a u 
)where u and t denote the meet (in�mum) and join (supremum) operators,respe
tively. (It 
an be proved that meet distributes over join if and only if joindistributes over meet.)Theorem 5.9 Given a dire
ted graph G, hC(G);�i forms a distributive latti
e.104



Proof: Let C1 and C2 be 
onsistent 
uts of G. We de�ne their meet and join asfollows: C1 u C2 , C1 \ C2C1 t C2 , C1 [ C2It is suÆ
ient to establish that C1 \C2 and C1 [C2 are 
onsistent 
uts of Gwhi
h 
an be easily veri�ed. �The above theorem is a generalization of the result in latti
e theory that theset of down-sets of a partially ordered set forms a distributive latti
e [DP90℄. Wefurther prove that the set of 
onsistent 
uts (of a dire
ted graph) does not satisfy anyadditional stru
tural property. To that end, we need the notion of join-irredu
ibleelement de�ned as follows.De�nition 5.3 (join-irredu
ible element [DP90℄) An element of a latti
e isjoin-irredu
ible if (1) it is not the least element of the latti
e, and (2) it 
annotbe expressed as join of two distin
t elements, both di�erent from itself. Formally,a 2 L is join-irredu
ible ifh9 x :: x < ai ^ h8 x; y 2 L : a = x t y : (a = x) _ (a = y)iPi
torially, an element of a latti
e is join-irredu
ible if and only if it hasexa
tly one lower 
over, that is, it has exa
tly one in
oming edge in the 
orrespondingHasse diagram. The notion of meet-irredu
ible element 
an be similarly de�ned. Itturns out that a distributive latti
e is uniquely 
hara
terized by the set of its join-irredu
ible elements. In parti
ular, every element of the latti
e 
an be written asjoin of some subset of its join-irredu
ible elements and vi
e versa. This is formally
aptured by the next theorem.Theorem 5.10 (Birkho�'s Representation Theorem for FiniteDistributive Latti
es [DP90℄) Let L be a �nite distributive latti
e and105
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Figure 5.1: (a) A 
omputation, (b) the latti
e of its 
onsistent 
uts, (
) the sublatti
eof the 
onsistent 
uts that satisfy the regular predi
ate \all 
hannels are empty",and (d) the poset indu
ed on the set of join-irredu
ible elements of the sublatti
e.106



JI(L) be the set of its join-irredu
ible elements. Then the map f : L �! C(JI(L))de�ned by f(a) = f x 2 JI(L) j x 6 a gis an isomorphism of L onto C(JI(L)). Dually, let P be a �nite poset. Then the mapg : P �! JI(C(P )) de�ned byg(a) = f x 2 P j x 6 a gis an isomorphism of P onto JI(C(P )).Note that the above theorem 
an also be stated in terms of meet-irredu
ibleelements.Example 5.1 Consider the 
omputation shown in Figure 5.1(a). Figure 5.1(b)depi
ts the latti
e of 
onsistent 
uts of the 
omputation. In the �gure, the label ofa 
onsistent 
ut indi
ates the number of events that have to be exe
uted on ea
hpro
ess to rea
h the 
ut. For example, the label of the 
onsistent 
ut C is (3; 2; 1)implying that to rea
h C, three events have to exe
uted on pro
ess p1, two on p2 andone on p3. Mathemati
ally, C = fe1; e2; e3; f1; f2; g1g.In Figure 5.1(b), the 
onsistent 
uts of the 
omputation 
orresponding tothe join-irredu
ible elements of the latti
e have been drawn in thi
k lines. Thereare exa
tly eight join-irredu
ible elements whi
h is same as the number of strongly
onne
ted 
omponents of the 
omputation. Note that the poset indu
ed on the set ofstrongly 
onne
ted 
omponents of the 
omputation is isomorphi
 to the poset indu
edon the set of join-irredu
ible elements of the latti
e. It 
an be veri�ed that every
onsistent 
ut of the 
omputation 
an be expressed as the join of some subset ofthese join-irredu
ible elements. For example, the 
onsistent 
ut C 
an be written asthe join of the 
onsistent 
uts T and V . Moreover, the join of every subset of thesejoin-irredu
ible elements is a 
onsistent 
ut of the 
omputation. For instan
e, thejoin of the 
onsistent 
uts T , V and W is given by the 
onsistent 
ut D.107



In this 
hapter, we are 
on
erned with only a subset of 
onsistent 
uts andnot the entire set of 
onsistent 
uts. To that end, the notion of sublatti
e of a latti
e
omes in useful [DP90℄. Given a latti
e, a subset of its elements forms a sublatti
eif the subset is 
losed under the meet and join operators of the given latti
e. In our
ase, the meet and join operators are set interse
tion and set union, respe
tively.Clearly, the set of 
onsistent 
uts satisfying a regular predi
ate forms a sublatti
e ofthe latti
e of 
onsistent 
uts. Finally, we make an important observation regardinga sublatti
e whi
h will help us prove the desired result.Lemma 5.11 ([DP90℄) A sublatti
e of a distributive latti
e is also a distributivelatti
e.Example 5.2 In Figure 5.1(b), the 
onsistent 
uts for whi
h the regular predi
ate\all 
hannels are empty" evaluates to true have been shaded. Figure 5.1(
) depi
tsthe poset indu
ed on these 
onsistent 
uts. It 
an be veri�ed that the poset formsa sublatti
e of the latti
e in Figure 5.1(b). Moreover, the sublatti
e is, in fa
t, adistributive latti
e.We now prove that the sli
e for a predi
ate is lean if and only if the predi
ateis regular.Theorem 5.12 The sli
e of a 
omputation with respe
t to a predi
ate is lean if andonly if the predi
ate is regular.Proof: (if ) Assume that the predi
ate, say b, is regular. Thus the set of 
onsistent
uts that satisfy the predi
ate, denoted by Cb, forms a sublatti
e of the latti
e of
onsistent 
uts (of the 
omputation). From Lemma 5.11, Cb is in fa
t a distributivelatti
e. Let JI(Cb) denote the set of join-irredu
ible elements of Cb. From Birkho�'sRepresentation Theorem, Cb is isomorphi
 to C(JI(Cb)). Thus the required sli
e is108



given by the poset indu
ed on J I(Cb) by �. Moreover, every 
onsistent 
ut of thesli
e satis�es the predi
ate and therefore the sli
e is lean.(only if ) Assume that the sli
e of a 
omputation with respe
t to a predi
ate is lean.From the proof of Theorem 5.9, the set of 
onsistent 
uts of the sli
e is 
losed underset union and set interse
tion. This in turn implies that the set of 
onsistent 
utsthat satisfy the predi
ate is 
losed under set union and set interse
tion. Thus thepredi
ate is regular. �Example 5.3 The sublatti
e shown in Figure 5.1(
) has exa
tly six join-irredu
ibleelements, namely U , V , W , X, Y and Z. These elements or 
onsistent 
uts havebeen drawn in thi
k lines. It 
an be as
ertained that every 
onsistent 
ut in thesublatti
e 
an be written as the join of some subset of the 
onsistent 
uts in J =fU; V;W;X;Y;Zg. In other words, every 
onsistent 
ut of the 
omputation thatsatis�es the regular predi
ate \all 
hannels are empty" 
an be represented as the joinof some subset of the elements in J . Moreover, the join of every subset of elementsin J yields a 
onsistent 
ut 
ontained in the sublatti
e and hen
e a 
ut that satis�esthe regular predi
ate. The poset indu
ed on the elements of J by the relation � isshown in Figure 5.1(d). This poset 
orresponds to the sli
e of the 
omputation shownin Figure 5.1(a) with respe
t to the regular predi
ate \all 
hannels are empty".5.5.2 General Predi
atesTo prove that the sli
e exists even for a predi
ate that is not a regular predi
ate,we de�ne a 
losure operator, denoted by reg, whi
h, given a 
omputation, 
onvertsan arbitrary predi
ate into a regular predi
ate satisfying 
ertain properties. Givena 
omputation hE;!i, let R(E) denote the set of predi
ates that are regular withrespe
t to the 
omputation (! is impli
it).109



De�nition 5.4 (reg) Given a predi
ate b, we de�ne reg (b) as the predi
ate thatsatis�es the following 
onditions:1. it is regular, that is, reg (b) 2 R(E),2. it is weaker than b, that is, b) reg (b), and3. it is stronger than any other predi
ate that satis�es (1) and (2), that is,h8 b0 : b0 2 R(E) : (b) b0)) (reg (b)) b0)i.Informally, reg (b) is the strongest regular predi
ate weaker than b. In general,reg (b) not only depends on the predi
ate b, but also on the 
omputation under
onsideration. We assume the dependen
e on 
omputation to be impli
it and makeit expli
it only when ne
essary. The next theorem establishes that reg (b) exists forevery predi
ate b. Observe that the sli
e for b is given by the sli
e for reg (b). Thussli
e exists and is uniquely de�ned for all predi
ates.Theorem 5.13 Given a predi
ate b, reg (b) exists and is uniquely de�ned.Proof: Let Rb(E) be the set of regular predi
ates in R(E) weaker than b. Observethat Rb(E) is non-empty be
ause true is a regular predi
ate weaker than b andtherefore 
ontained in Rb(E). We set reg (b) to the 
onjun
tion of all predi
ates inRb(E). Formally, reg (b) , ^q 2Rb(E)qIt remains to be shown that reg (b) as de�ned satis�es the three required
onditions. Now, 
ondition (1) holds be
ause the 
lass of regular predi
ates is 
losedunder 
onjun
tion. Condition (2) holds be
ause every predi
ate in Rb(E) is weakerthan b and hen
e their 
onjun
tion is weaker than b. Finally, let b0 be a predi
atethat satis�es 
onditions (1) and (2). Note that b0 2 Rb(E). Sin
e 
onjun
tion of110
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x1 x2Figure 5.2: (a) A 
omputation, (b) the latti
e of its 
onsistent 
uts, (
) the sublatti
eof its 
onsistent 
uts that satisfy reg (x1 _ x2), and (d) its sli
e with respe
t toreg (x1 _ x2) (and therefore also with respe
t to x1 _ x2).predi
ates is stronger than any of its 
onjun
t, reg (b) is stronger than b0. Thusreg (b) satis�es 
ondition (3). �Thus, given a 
omputation hE;!i and a predi
ate b, the sli
e of hE;!i withrespe
t to b 
an be obtained by �rst applying reg operator to b to get reg (b) and111



then 
omputing the sli
e of hE;!i with respe
t to reg (b).Example 5.4 Consider the 
omputation shown in Figure 5.2(a). The latti
e of its
onsistent 
uts is depi
ted in Figure 5.2(b). Ea
h 
onsistent 
ut is labeled with itsfrontier. The 
onsistent 
uts for whi
h the predi
ate x1 _ x2 evaluates to true havebeen shaded in the �gure. Clearly, the set of 
onsistent 
uts that satisfy x1 _x2 doesnot form a sublatti
e. The smallest sublatti
e that 
ontains the subset is shown inFigure 5.2(
); the sublatti
e 
orresponds to the predi
ate reg (x1 _ x2). The sli
e forthe regular predi
ate reg (x1 _ x2) and hen
e for the predi
ate x1 _ x2 is portrayedin Figure 5.2(d).Theorem 5.14 reg is a 
losure operator. Formally,1. reg (b) is weaker than b, that is, b ) reg (b),2. reg is monotoni
, that is, (b) b0) ) (reg (b)) reg (b0)), and3. reg is idempotent, that is, reg (reg (b)) � reg (b).Proof: (reg (b) is weaker than b) Follows from the de�nition.(reg is monotoni
) Sin
e reg (b0) is weaker than b0, it is also weaker than b. That is,reg (b0) is a regular predi
ate weaker than b. By de�nition, reg (b) is the strongestregular predi
ate weaker than b. Therefore reg (b) is stronger than reg (b0) or, inother words, reg (b)) reg (b0).(reg is idempotent) Follows from the fa
t that reg (b) is a regular predi
ate and isweaker than reg (b). �From the above theorem it follows that [DP90, Theorem 2.21℄,Corollary 5.15 hR(E);)i forms a latti
e.112



The meet and join of two regular predi
ates b1 and b2 is given byb1 u b2 , b1 ^ b2b1 t b2 , reg (b1 _ b2)The dual notion of reg (b), the weakest regular predi
ate stronger than b, isalso 
on
eivable. However, su
h a predi
ate may not always be unique.Example 5.5 In the previous example, three 
onsistent 
uts satisfy the predi
atex1 _ x2, namely X, Y and Z, as shown in Figure 5.2(b). Two distin
t subsets ofthe set S = fX; Y; Zg, given by fX; Y g and fX;Zg, form maximal sublatti
es of Simplying that there is no weakest regular predi
ate that is stronger than x1 _ x2.5.6 Representing a Sli
eAny dire
ted graph that is 
ut-equivalent to a sli
e 
onstitutes a valid representationof the sli
e. However, for 
omputational purposes, it is preferable to sele
t thosegraphs to represent a sli
e that have fewer edges and 
an be 
onstru
ted 
heaply. Inthis se
tion, we show that every sli
e 
an be represented by a dire
ted graph withO(jEj) verti
es and O(njEj) edges.Consider a regular predi
ate b and a 
omputation hE;!i. Re
all thatC(hE;!ib) denote the set of 
onsistent 
uts of hE;!ib, or, in other words, theset of 
onsistent 
uts of hE;!i that satisfy b. For reasons of 
larity, we abbreviateC(hE;!ib) by Cb(E). From Birkho�'s Representation Theorem, the poset indu
edon JI(Cb(E)) by the relation � is 
ut-equivalent to the sli
e hE;!ib. It 
an beproved that jJ I(Cb(E))j is upper-bounded by jEj. Therefore the dire
ted graph
orresponding to hJ I(Cb(E));�i may have 
(jEj2).In order to redu
e the number of edges, we exploit properties of join-irredu
ible elements. For an event e, let Jb(e) denote the least 
onsistent 
ut of113



hE;!i that satis�es b and 
ontains e. In 
ase no 
onsistent 
ut 
ontaining e thatalso satis�es b exists or when e 2 >, Jb(e) is set to E|one of the trivial 
onsistent
uts. Here, we use E as a sentinel 
ut. We �rst show that Jb(e) is uniquely de�ned.Let ie be the predi
ate de�ned as follows:C j= ie , (e 2 C)It 
an be proved that ie is a regular predi
ate. Next, 
onsider the predi
ate bede�ned as the 
onjun
tion of b and ie. Sin
e the 
lass of regular predi
ates is 
losedunder 
onjun
tion, be is also a regular predi
ate. The 
onsistent 
ut Jb(e) 
an now bereinterpreted as the least 
onsistent that satis�es be. Sin
e be is regular, the notion ofleast 
onsistent 
ut that satis�es be is uniquely de�ned, thereby implying that Jb(e)is uniquely de�ned. For purposes of 
omputing the sli
e only, we assume that bothtrivial 
onsistent 
uts satisfy the given regular predi
ate. That is, f;; Eg � Cb(E).The next lemma establishes that Jb(e) is a join-irredu
ible element of Cb(E).Lemma 5.16 Jb(e) is a join-irredu
ible element of the distributive latti
ehCb(E);�i.Proof: Suppose Jb(e) 
an be expressed as the join (in our 
ase, set union) of two
onsistent 
uts in Cb(E), say C and D. That is, Jb(e) = C[D, where both C and Dsatisfy b. Our obligation is to show that either Jb(e) = C or Jb(e) = D. Sin
e Jb(e)
ontains e, either C or D must 
ontain e. Without loss of generality, assume thate belongs to C. By de�nition of union, C � Jb(e). Further, sin
e C is a 
onsistent
ut 
ontaining e that satis�es b and Jb(e) is the least su
h 
ut, Jb(e) � C. ThusJb(e) = C. �It is possible that Jb(e)s are not all distin
t. Let Jb(E) denote the setfJb(e) j e 2 E g. Does Jb(e) 
apture all join-irredu
ible elements of Cb(E)? Thefollowing lemma provides the answer. 114



Lemma 5.17 Every 
onsistent 
ut in Cb(E) 
an be expressed as the join of somesubset of 
onsistent 
uts in Jb(E).Proof: Consider a 
onsistent 
ut C in Cb(E). Let D(C) be the 
onsistent 
utde�ned as follows: D(C) = [e2C Jb(e)We prove that D(C) is a
tually equal to C. Sin
e, by de�nition, e 2 Jb(e),ea
h event in C is also present in D(C). Thus C � D(C). To prove that D(C) � C,
onsider an event e 2 C. Sin
e C is a 
onsistent 
ut 
ontaining e that satis�es band Jb(e) is the least su
h 
ut, Jb(e) � C. More pre
isely, for ea
h event e 2 C,Jb(e) � C. This implies that D(C) � C. �From the previous two lemmas, it follows that Jb(E) = JI(Cb(E)).Combining it with Birkho�'s Representation Theorem, we 
an dedu
e that:Theorem 5.18 Given a 
omputation hE;!i and a regular predi
ate b, the posethJb(E);�i is 
ut-equivalent to the sli
e hE;!ib.Next, to redu
e the number of edges, rather than 
onstru
ting a dire
tedgraph with join-irredu
ible elements as verti
es, we 
onstru
t a dire
ted graph withevents as verti
es. Theorem 5.18 implies that:Observation 5.1 The dire
ted graph Gb(E) with the set of verti
es as E and anedge from an event e to an event f if and only if Jb(e) � Jb(f) is 
ut-equivalent tothe sli
e hE;!ib.Whereas the poset representation of a sli
e is better for presentation purposes,the graph representation is more suited for sli
ing algorithms. From the way thegraph Gb(E) is 
onstru
ted, 
learly, two events e and f belong to the same strongly
onne
ted 
omponent of Gb(E) if and only if Jb(e) = Jb(f). As a result, there is115
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Figure 5.3: (a) A 
omputation, (b) its sli
e with respe
t to the predi
ate \all 
hannelsare empty", and (
) the skeletal representation of the sli
e.a one-to-one 
orresponden
e between the strongly 
onne
ted 
omponents of Gb(E)and the join-irredu
ible elements of Cb(E).Now, let Fb(e) be a ve
tor whose ith entry denotes the earliest event f onpro
ess pi su
h that Jb(e) � Jb(f). Informally, Fb(e)[i℄ is the earliest event on pithat is rea
hable from e in the sli
e hE;!ib. Using Fb(e)s, we 
onstru
t a dire
tedgraph we 
all the skeletal representation of the sli
e and denote it by Sb(E). Thegraph Sb(E) has E as the set of verti
es and the following edges:1. for ea
h event e 62 >, there is an edge from e to su

(e), and2. for ea
h event e and pro
ess pi, there is an edge from e to Fb(e)[i℄.Example 5.6 Consider the 
omputation shown in Figure 5.3(a) and the predi
ate\all 
hannels are empty". The sli
e with respe
t to the predi
ate is depi
ted inFigure 5.3(b). Here, Jb(
) = fa; b; 
; e; f; gg and Jb(g) = fa; b; 
; e; f; gg = Jb(
).116



Also, Fb(
) = [b; f ℄ and Fb(g) = [b; f ℄. The skeletal representation of the sli
e isshown in Figure 5.3(
).To prove that Sb(E) faithfully 
aptures the sli
e hE;!ib, we prove the fol-lowing two lemmas. The �rst lemma establishes that Jb is order-preserving.Lemma 5.19 (Jb is order-preserving) Given events e and f ,e! f ) Jb(e) � Jb(f)Proof: Consider Jb(f). Sin
e e ! f and f 2 Jb(f), e 2 Jb(f). Thus Jb(f) isa 
onsistent 
ut that 
ontains e and satis�es b. Sin
e Jb(e) is the least su
h 
ut,Jb(e) � Jb(f). �The se
ond lemma shows that if Jb(e) � Jb(f) then there is a path fromevent e to event f in Sb(E) and vi
e versa.Lemma 5.20 Given events e and f ,Jb(e) � Jb(f) � (e; f) 2 P(Sb(E))Proof: ()) Assume that Jb(e) � Jb(f). Let pro
(f) = pi and g = Fb(e)[i℄. Sin
e,by de�nition, g is the earliest event on pi su
h that Jb(e) � Jb(g), g P! f . Thisimplies that (g; f) 2 P(Sb(E)). Further, by 
onstru
tion, (e; g) 2 P(Sb(E)). Thus(e; f) 2 P(Sb(E)).(() It suÆ
es to show that for ea
h edge (u; v) in Sb(E), Jb(u) � Jb(v). Ifv = su

(u) then Jb(u) � Jb(v) follows from Lemma 5.19. If v = Fb(u)[i℄, wherepi = pro
(v), then Jb(u) � Jb(v) follows from the de�nition of Fb(u). �Finally, from Observation 5.1 and Lemma 5.20, we 
an 
on
lude that:Theorem 5.21 Given a 
omputation hE;!i and a regular predi
ate b, Sb(E) is
ut-equivalent to hE;!ib. 117



It is easy to see that Sb(E) has O(jEj) verti
es and O(njEj) edges. In thenext se
tion we give eÆ
ient polynomial-time algorithms to 
ompute Jb(e) and Fb(e)for ea
h event e when b is a regular predi
ate.5.7 Sli
ing for Regular Predi
atesIn this se
tion, we dis
uss our results on sli
ing with respe
t to a regular predi
ate.They are dis
ussed here separately from our results on sli
ing with respe
t to ageneral predi
ate be
ause, as proved in Se
tion 5.5.1, the sli
e for a regular predi
ateis lean and therefore furnishes more information than the sli
e for a general predi
ate.First, we present an eÆ
ient O(n2jEj) algorithm to 
ompute the sli
e for a regularpredi
ate. The algorithm is then optimized for the 
ase when a regular predi
ate 
anbe de
omposed into a 
onjun
tion of 
lauses, where ea
h 
lause itself is a regularpredi
ate but depends on variables of only a small subset of pro
esses. We alsoprovide optimal algorithms for spe
ial 
ases of regular predi
ates su
h as 
onjun
tivepredi
ates and 
ertain monotoni
 
hannel predi
ates. Next, we show how a regularpredi
ate 
an be monitored under various modalities [CM91, GW91, TG99, MG00,SUL00℄, spe
i�
ally possibly, invariant and 
ontrollable, using sli
ing. Finally, wedemonstrate that results pertaining to 
onsistent global 
he
kpoints 
an be derivedas spe
ial 
ases of sli
ing.5.7.1 Computing the Sli
e for Regular Predi
atesIn this se
tion, given a 
omputation hE;!i and a regular predi
ate b, we des
ribean eÆ
ient O(n2jEj) algorithm to 
ompute the sli
e hE;!ib. In parti
ular, we
onstru
t Sb(E)|the skeletal representation of hE;!ib. To that end, it suÆ
es togive an algorithm to 
ompute Fb(e) for ea
h event e.Our approa
h is to �rst 
ompute Jb(e) for ea
h event e. To that end, 
onsiderthe predi
ate be de�ned in Se
tion 5.6. Sin
e be is a regular predi
ate, it is also a118



Algorithm Algo 5.1:Input: (1) a 
omputation hE;!i, (2) a regular predi
ate b, and(3) a pro
ess piOutput: Jb(e) for ea
h event e on pi1 C := ?;2 for ea
h event e on pi do // visited in the order given by P!3 done := false;4 if C = E then done := true;5 while not(done) do6 if there exist events f and g in frontier(C)su
h that su

(f) ! g then // C is not a 
onsistent 
ut7 C := C [ fsu

(f)g; // advan
e beyond felse // C is a 
onsistent 
ut8 if C = E or C j= be then done := true;else9 f := forbidden be(C); // invoke the linearity property10 C := C [ fsu

(f)g; // advan
e beyond fendif;endif;endwhile;11 Jb(e) := C;endfor;Figure 5.4: The algorithm Algo 5:1 to 
ompute Jb(e) for ea
h event e on pro
ess pi.linear predi
ate. (A predi
ate is said to be linear if, given two 
onsistent 
uts thatsatisfy the predi
ate, the 
onsistent 
ut given by their set interse
tion also satis�esthe predi
ate.) Chase and Garg [CG98℄ give an eÆ
ient algorithm to �nd the least
onsistent 
ut that satis�es a linear predi
ate. Their algorithm is based on thelinearity property de�ned in Chapter 4. Please refer to the 
hapter for details.Figure 5.4 des
ribes the algorithm Algo 5:1 to 
ompute Jb(e) for ea
h event eon pro
ess pi, using the linearity property, in a single s
an of the 
omputation from119



Algorithm Algo 5.2:Input: (1) a 
omputation hE;!i, (2) Jb(e) for ea
h event e, and(3) a pro
ess piOutput: Fb(e) for ea
h event e on pi1 for ea
h pro
ess pj do2 f := ?j;3 for ea
h event e on pi do // visited in the order given by P!4 while Jb(e) 6� Jb(f) do f := su

(f); endwhile;5 Fb(e)[j℄ := f ;endfor;endfor;Figure 5.5: The algorithm Algo 5:2 to 
ompute Fb(e) for ea
h event e on pro
ess pi.left to right. This is possible be
ause, from Lemma 5.19, on
e we have 
omputedJb(e), we do not need to start all over again to determine Jb(su

(e)) but 
an rather
ontinue on from Jb(e) itself. The algorithm basi
ally adds events one-by-one to the
ut 
onstru
ted so far until either all events are exhausted or the desired 
onsistent
ut is rea
hed.The time-
omplexity analysis of the algorithm Algo 5:1 is as follows. Ea
hiteration of the while loop at line 5 has O(n) time-
omplexity assuming that thetime-
omplexity of invoking forbidden be at line 9 on
e is O(n). Moreover, the whileloop is exe
uted at most O(jEj) times be
ause in ea
h iteration either we su

eed in�nding the required 
onsistent 
ut or we add a new event to C. Sin
e there are atmost jEj events in the 
omputation, the while loop 
annot be exe
uted more thanO(jEj) times. Thus the overall time-
omplexity of the algorithm Algo 5:1 is O(njEj)implying that Jb(e) for ea
h event e 
an be 
omputed in O(n2jEj) time.Finally, we give an algorithm to 
ompute Fb(e) for ea
h event e provided Jb(e)120



for ea
h event e is given to us. We �rst establish a lemma similar to Lemma 5.19for Fb. The lemma allows us to 
ompute the jth entry of Fb(e) for ea
h event e onpro
ess pi in a single s
an of the events on pro
ess pj from left to right.Lemma 5.22 Given events e and f and a pro
ess pi,e! f ) Fb(e)[i℄ P! Fb(f)[i℄Proof: Assume that e! f . Let g = Fb(e)[i℄ and h = Fb(f)[i℄. Note that pro
(g) =pro
(h) = pi. By de�nition of Fb(f), Jb(f) � Jb(h). Sin
e, from Lemma 5.19,Jb(e) � Jb(f), Jb(e) � Jb(h). Again, by de�nition of Fb(e), g is the earliest eventon pi su
h that Jb(e) � Jb(g). Therefore g P! h. �Figure 5.5 depi
ts the algorithm Algo 5:2 to 
ompute Fb(e) for ea
h event eon pro
ess pi. The algorithm is self-explanatory and its time-
omplexity analysisis as follows. Let Ej denote the set of events on pro
ess pj . The outer for loop atline 1 is exe
uted exa
tly n times. For jth iteration of the outer for loop, the whileloop at line 4 is exe
uted at most O(jEij+ jEj j) times. Ea
h iteration of the whileloop has O(1) time-
omplexity be
ause whether Jb(e) � Jb(f) 
an be as
ertainedby performing only a single 
omparison. Thus the overall time-
omplexity of thealgorithm Algo 5:2 is O(njEij+ jEj). Summing up over all pro
esses, Fb(e) for ea
hevent e 
an be determined in O(njEj) time. A summary of the overall algorithm ispresented in Figure 5.6.5.7.2 Optimizing for the Spe
ial Case: Computing the Sli
e forDe
omposable Regular Predi
atesIn this se
tion, we explore the possibility of a faster algorithm for the 
ase when aregular predi
ate 
an be expressed as a 
onjun
tion of 
lauses su
h that ea
h 
lauseis again a regular predi
ate but spans a small fra
tion of pro
esses. An example of121



Algorithm Algo 5.3:Input: (1) a 
omputation hE;!i, and (2) a regular predi
ate bOutput: the sli
e hE;!ib1 
ompute Jb(e) for ea
h event e using Algo 5:1;2 
ompute Fb(e) for ea
h event e using Algo 5:2;3 
onstru
t Sb(E) the skeletal representation of hE;!ib;Figure 5.6: The algorithm Algo 5:3 to 
ompute the sli
e for a regular predi
ate.su
h a predi
ate is V16i;j6n(j
ounteri � 
ounterj j 6 4ij), where ea
h 
ounteri is amonotoni
ally non-de
reasing variable on pro
ess pi. In this example, ea
h 
lausedepends on variables of at most two pro
esses. We des
ribe the algorithm in twosteps. In the �rst step, we give a fast algorithm to 
ompute the sli
e for ea
h 
lause.In the se
ond step, we des
ribe how to 
ombine the sli
es for all 
lauses eÆ
ientlyto obtain the sli
e for the desired regular predi
ate.Step 1Consider a 
omputation hE;!i and a regular predi
ate b that depends on variablesof a subset Q of the set of pro
esses P . Without loss of generality, assume that !is a transitive relation. We denote the proje
tion of E on Q by E(Q) and that of!on Q� Q by !(Q). Thus the proje
tion of the 
omputation hE;!i on Q is givenby hE(Q);!(Q)i.We �rst show that the sli
e hE;!ib of the 
omputation hE;!i 
an bere
overed exa
tly from the sli
e hE(Q);!(Q)ib of the proje
ted 
omputationhE(Q);!(Q)i. To that end, we extend the de�nition of Fb(e) and de�ne Fb(e; Q)to be a ve
tor whose ith entry represents the earliest event on pro
ess pi that isrea
hable from e in the sli
e hE(Q);!(Q)ib. Thus Fb(e) = Fb(e; P ), F(e; Q) =122



Ftrue(e; Q) and F(e) = Ftrue(e). We next de�ne Kb(e) as follows:Kb(e)[i℄ = 8<: Fb(e; Q)[i℄ : (e 2 E(Q))^ (pi 2 Q)F(e)[i℄ : otherwiseWe 
laim that it suÆ
es to knowKb(e) for ea
h event e to be able to 
omputethe sli
e hE;!ib. Before we establish our 
laim, we de�ne some notation. Whenevents e and f o

ur on the same pro
ess and e o

urred before f in real-time, thenwe write e P! f , and let P! be the re
exive 
losure of P!. We now build a graphHb(E) that is similar to the skeletal representation Sb(E) of hE;!ib ex
ept that weuse Kb instead of Fb in its 
onstru
tion. The next lemma proves that every path inHb(E) is also a path in Sb(E).Lemma 5.23 For ea
h event e and pro
ess pi, Fb(e)[i℄ P! Kb(e)[i℄.Proof: Clearly, for ea
h event e and pro
ess pi, Fb(e)[i℄ P! F(e)[i℄. Thus we onlyneed to prove that Fb(e)[i℄ P! Fb(e; Q)[i℄ when e 2 E(Q) and pi 2 Q .Assume, on the 
ontrary, that, for some event e 2 E(Q) and pro
ess pi 2Q, Fb(e; Q)[i℄ P! Fb(e)[i℄. For 
onvenien
e, let f = Fb(e; Q)[i℄ and g = Fb(e)[i℄.Consider the least 
onsistent 
ut C of the sli
e hE;!ib that 
ontains f . Note thatC does not 
ontain e. This is be
ause, by de�nition of Fb(e)[i℄, g is the earliestevent on pi that is rea
hable from e in hE;!ib. Sin
e f o

urs before g on pi, f isnot rea
hable from e in hE;!ib and therefore e is not 
ontained in C. Let C(Q)denote the proje
tion of C on Q. Sin
e C satis�es b and b depends only on variablesof pro
esses in Q, C(Q) satis�es b. However, any 
onsistent 
ut of hE(Q);!(Q)ibthat 
ontains f must 
ontain e. This is be
ause, by de�nition of Fb(e; Q)[i℄, thereis a path from e to f in hE(Q);!(Q)ib. Thus C(Q) is not a 
onsistent 
ut ofhE(Q);!(Q)ib whi
h 
ontradi
ts the fa
t that hE(Q);!(Q)ib 
ontains all 
onsistent
uts of hE(Q);!(Q)i that satisfy b. This establishes the lemma. �We now prove the 
onverse, that is, every path in Sb(E) is also a path in123



Algorithm Algo 5.4:Input: (1) a 
omputation hE;!i, (2) a subset of pro
esses Q, and(3) a regular predi
ate b that depends only on variables of QOutput: the sli
e hE;!ib1 
ompute F(e) for ea
h event e;2 
ompute the proje
ted 
omputation hE(Q);!(Q)i;3 
ompute the sli
e of the proje
ted 
omputation hE(Q);!(Q)ib using thealgorithm Algo 5:3;Also, 
ompute Fb(e;Q) for ea
h event e;4 
ompute Kb(e) for ea
h event e as follows:Kb(e)[i℄ = ( Fb(e;Q)[i℄ : (e 2 E(Q)) ^ (pi 2 Q)F(e)[i℄ : otherwise5 
onstru
t the dire
ted graph Hb(E) with E as its set of verti
es andedges as follows:1. for ea
h event e 62 >, there is an edge from e to su

(e), and2. for ea
h event e and pro
ess pi, there is an edge from e to Kb(e)[i℄.Figure 5.7: The algorithm Algo 5:4 to 
ompute the sli
e for a regular predi
ate thatdepends on variables of only a subset of pro
esses.Hb(E). To that end, by virtue of Lemma 5.1, it suÆ
es to show that every 
onsistent
ut of Hb(E) is also a 
onsistent 
ut of Sb(E) or, equivalently, every 
onsistent 
utof Hb(E) satis�es b.Lemma 5.24 Every 
onsistent 
ut of Hb(E) satis�es b.Proof: Consider a 
onsistent 
ut C of Hb(E). It is suÆ
ient to prove that theproje
tion of C on Q, denoted by C(Q), is a 
onsistent 
ut of hE(Q);!(Q)ib.Assume, on the 
ontrary, that C(Q) is not a 
onsistent 
ut of hE(Q);!(Q)ib. Thusthere exist events e and f su
h that there is a path from e to f in hE(Q);!(Q)ib,124



f is in C(Q) but e is not. Let pi denote the pro
ess on whi
h f o

urs. Clearly,Fb(e; Q)[i℄ P! f . This implies that there is a path from e to f in Hb(E) or, in otherwords, C is not a 
onsistent 
ut of Hb(E)|a 
ontradi
tion. �Finally, the previous two lemmas 
an be 
ombined to give the followingtheorem:Theorem 5.25 Hb(E) is 
ut-equivalent to Sb(E).Note that the graph Hb(E) may in fa
t be di�erent from the skeletalrepresentation Sb(E). However, the above theorem guarantees that the two willbe path-equivalent. Figure 5.7 des
ribes the algorithm Algo 5:4 to 
ompute the sli
efor a regular predi
ate that depends on variables of only a subset of pro
esses indetail. We assume that the 
omputation is given to us as n queues of events|onefor ea
h pro
ess. Further, the Fidge/Mattern's timestamp ts(e) for ea
h event e isalso available to us. The algorithm Algo 5:2 
an be used to 
ompute F(e) for ea
hevent e in O(njEj) (b is true in this 
ase). The proje
ted 
omputation 
an then be
omputed at line 2 in a straightforward fashion. The sli
e of the proje
ted 
om-putation 
an be 
omputed at line 3 in O(jQj2jE(Q)j) time. The ve
tor Kb(e) forea
h event e 
an be determined at line 4 in O(njEj) time. Finally, the graph Hb(E)
an be 
onstru
ted at line 5 in O(njEj) time. Thus the overall time-
omplexity ofthe algorithm is O(jQj2jE(Q)j+ njEj). If jQj is small, say at most pn, then thetime-
omplexity of the algorithm is O(njEj)|a fa
tor of n faster than 
omputingthe sli
e dire
tly using the algorithm Algo 5:3.A natural question to ask is: \Can this te
hnique of taking a proje
tion ofa 
omputation on a subset of pro
esses, then 
omputing the sli
e of the proje
tionand �nally mapping the sli
e ba
k to the original set of pro
esses be used for a non-regular predi
ate as well?" The answer is no in general as the following examplesuggests. 125
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Figure 5.8: (a) A 
omputation, (b) its sli
e with respe
t to the predi
ate x1 _ x2,(
) its proje
tion on pro
esses p1 and p2, (d) the sli
e of the proje
ted 
omputationwith respe
t to the predi
ate x1 _ x2, and (e) the sli
e 
omputed in (d) mapped tothe original set of pro
esses.Example 5.7 Consider the 
omputation shown in Figure 5.8(a) involving threepro
esses p1, p2 and p3. Let x1 and x2 be boolean variables on pro
esses p1 and p2,respe
tively. In the �gure, the solid events, namely e3 and f3, satisfy the respe
tiveboolean variable. The sli
e of the 
omputation for the (non-regular) predi
ate x1_x2is depi
ted in Figure 5.8(b). Figure 5.8(
) displays the proje
tion of the 
omputation126



on pro
esses on whi
h the predi
ate x1 _ x2 depends, namely p1 and p2. The sli
eof the proje
ted 
omputation is shown in Figure 5.8(d) and its mapping ba
k to theoriginal set of pro
esses is depi
ted in Figure 5.8(e). As it 
an be seen, the sli
e
omputed using the algorithm Algo 5:4 (Figure 5.8(e)) is di�erent from the a
tualsli
e (Figure 5.8(b)). For instan
e, events g2 and g3 belong to the same meta-eventin the a
tual sli
e but not in the sli
e 
omputed using the algorithm Algo 5:4. Thereason for this di�eren
e is as follows. Sin
e the predi
ate x1 _ x2 is non-regular,the sli
e of the proje
ted 
omputation shown in Figure 5.8(d) 
ontains the 
onsistent
ut X = fe1; e2; f1; f2g whi
h does not satisfy x1 _ x2 but has to be in
luded anywayso as to 
omplete the sublatti
e. Now, on mapping this sli
e ba
k to the original setof pro
esses, the resulting sli
e depi
ted in Figure 5.8(e) will 
ontain all 
onsistent
uts of the original 
omputation whose proje
tion on fp1; p2g is X. There are threesu
h 
onsistent 
uts, namely X [ fg1g, X [ fg1; g2g and X [ fg1; g2; g3g. However,only one of these 
onsistent 
uts, given by X [ fg1; g2; g3g, is required to 
ompletethe sublatti
e for the a
tual sli
e.It 
an be veri�ed that the sli
e 
omputed using the algorithm Algo 5:4 fora non-regular predi
ate will, in general, be bigger than the a
tual sli
e. Thus thealgorithm Algo5:4 gives a fast way to 
ompute an approximate sli
e for a non-regularpredi
ate (e.g., linear predi
ate).Step 2We use the above algorithm to devise a faster algorithm for 
omputing the sli
efor a regular predi
ate b that 
an be expressed as 
onjun
tion of regular predi
atesb(j), 1 6 j 6 m, su
h that ea
h b(j) is a fun
tion of variables on a subset of atmost k pro
esses Qj . Let l denote the maximum number of subsets from the setfQj j1 6 j 6 mg, that 
ontain a given pro
ess. For example, for the regular predi
ateV16i;j6n(j
ounteri� 
ounterj j 6 4ij), where ea
h 
ounteri is a monotoni
ally non-127



for ea
h event e 2 E doKb(e) := F(e);endfor;for ea
h 
onjun
t b(j) dofor ea
h event e 2 E(Qj) dofor ea
h pro
ess pi 2 Qj doKb(e)[i℄ := minfKb(e)[i℄; Fb(j)(e;Qj)[i℄ g;endfor;endfor;endfor; Figure 5.9: Computing Kb(e) for ea
h event e.de
reasing variable on pro
ess pi, k = 2 and l = n.To obtain the sli
e with respe
t to b, we �rst 
ompute the sli
ehE(Qj);!(Qj)ib(j) with respe
t to ea
h 
onjun
t b(j) using the algorithm in [GM01℄,thereby giving us the ve
tor Fb(j)(e; Qj) for ea
h event e 2 Qj . We next 
omputethe ve
tor Kb(e) for ea
h event e as shown in Figure 5.9.Intuitively, among all sli
es for 
lauses that 
ontain some variable on pro
esspi, Kb(e)[i℄ is the earliest event on pi rea
hable from e in some sli
e. Formally, letCli denote the set of 
lauses that depend on some variable on pi. Then,Kb(e)[i℄ = minb(j)2ClifFb(j)(e; Qj)[i℄gIt 
an be easily veri�ed that the graph Hb(E) then 
onstru
ted using Kb(e)for ea
h event e (in a similar fashion as in Step 1) is a
tually 
ut-equivalent to thesli
e hE;!ib. The proof is similar to the proof in Step 1 and has been omitted. Theoverall time-
omplexity of the algorithm is given by:O(njEj) + P16j6mO(jQjj2jE(Qj)j)128



= f for ea
h Qj , jQj j 6 k gO(njEj+ k2 P16j6m jE(Qj)j)= f simplifying gO(njEj+ k2ljEj) = O((n+ k2l)jEj)If k is 
onstant and l is O(n) then the overall time-
omplexity is O(njEj)whi
h is a fa
tor of n less than 
omputing the sli
e dire
tly using the algorithmAlgo 5:3.5.7.3 Optimal Algorithms for Spe
ial CasesWe now present optimal algorithms for 
omputing the sli
e for spe
ial 
ases ofregular predi
ates, namely 
onjun
tive predi
ates and 
ertain monotoni
 
hannelpredi
ates. Our algorithms have O(jEj) time-
omplexity.Computing the Sli
e for Conjun
tive Predi
atesConsider a 
omputation hE;!i and a 
onjun
tive predi
ate b. The �rst step is topartition events on ea
h pro
ess into true events and false events. Having done that,we then 
onstru
t a graph Hb(E) with verti
es as the events in E and the followingedges:1. from an event, that is not a �nal event, to its su

essor,2. from a send event to the 
orresponding re
eive event, and3. from the su

essor of a false event to the false event.For the purpose of building the graph, we assume that all �nal events aretrue events. Therefore every false event has a su

essor. The �rst two types ofedges ensure that the Lamport's happened-before relation [Lam78℄ is 
ontained in129
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(b)Figure 5.10: (a) A 
omputation, and (b) its sli
e with respe
t to the 
onjun
tivepredi
ate x1 ^ x2.P(Hb(E)). Consider the 
omputation depi
ted in Figure 5.10(a) and the 
onjun
tivepredi
ate x1 ^ x2. The 
orresponding graph 
onstru
ted as des
ribed is shown inFigure 5.10(b). We now establish that the above-mentioned edges are suÆ
ientto eliminate all those 
onsistent 
uts of the 
omputation that do not satisfy the
onjun
tive predi
ate.Lemma 5.26 Every 
onsistent 
ut of Hb(E) satis�es b.Proof: It is suÆ
ient to prove that no 
onsistent 
ut of Hb(E) 
ontains a false eventin its frontier. Consider a 
onsistent 
ut C of Hb(E). Assume, on the 
ontrary, thatC 
ontains a false event, say e, in its frontier. Sin
e every false event has a su

essor,by 
onstru
tion, there is an edge from the su

essor of e, say f , to e. Therefore falso belongs to C. This 
ontradi
ts the fa
t that e is the last event on its pro
ess130



to be 
ontained in C. �We next show that the above 
onstru
ted graph retains all 
onsistent 
uts ofthe 
omputation that satisfy the 
onjun
tive predi
ate.Lemma 5.27 Every 
onsistent 
ut of hE;!i that satis�es b is a 
onsistent 
ut ofHb(E).Proof: Consider a 
onsistent 
ut C of hE;!i that satis�es b. Assume, on the
ontrary, that C is not a 
onsistent 
ut of Hb(E). Thus there exist events e and fsu
h that there is an edge from e to f in Hb(E), f belongs to C but e does not.Sin
e C is a 
onsistent 
ut of hE;!i, the edge from e to f 
ould only of type (3).Equivalently, e and f o

ur on the same pro
ess, e is the su

essor of f , and f isa false event. Again, sin
e f is 
ontained in C but its su

essor e is not, f belongsto the frontier of C. However, C satis�es b and therefore 
annot 
ontain any falseevent in its frontier. �From the previous two lemmas, it follows that:Theorem 5.28 Hb(E) is 
ut-equivalent to hE;!ib.It is easy to see that the graph Hb(E) has O(jEj) verti
es, O(jEj) edges (atmost three edges per event assuming that an event that is not lo
al either sends atmost one message or re
eives at most one message but not both) and 
an be built inO(jEj) time. Thus the algorithm has O(jEj) overall time-
omplexity. It also givesus an O(jEj) algorithm to evaluate possibly : b when b is a 
onjun
tive predi
ate.Computing the Sli
e for Monotoni
 Channel Predi
atesWe present an optimal algorithm to 
ompute the sli
e with respe
t to monotoni

hannel predi
ates su
h as: 131



� Vi;j2[1::n℄ (at most kij messages in transit from pro
ess pi to pro
ess pj); and� Vi;j2[1::n℄ (at least kij messages in transit from pro
ess pi to pro
ess pj)We only provide the sli
ing algorithm for the former predi
ate here. Thesli
ing algorithm for the latter predi
ate is very similar and has been omitted. Letsndhi; ji(m) denote the send event on pro
ess pi that 
orresponds to the send ofmth message to pro
ess pj . Similarly, let r
vhi; ji(m) denote the re
eive event onpro
ess pi that 
orresponds to the re
eive of mth message from pro
ess pj .Consider a 
omputation hE;!i and a monotoni
 
hannel predi
ate bdis
ussed in the previous paragraph. As in the 
ase of 
onjun
tive predi
ate, we
onstru
t a graph Hb(E) with verti
es as the events in E and the following edges:1. from an event, that is not a �nal event, to its su

essor,2. from a send event to the 
orresponding re
eive event, and3. from a re
eive event r
vhj; ii(m) to the send event sndhi; ji(m+ kij), if itexists.As before, the �rst two types of edges ensure that the Lamport's happened-before relation [Lam78℄ is 
ontained in P(Hb(E)). Consider the 
omputation shownin Figure 5.11(a) and the monotoni
 
hannel predi
ate \at most one message intransit in any 
hannel". Here, k12 = k21 = 1. The 
orresponding graph 
onstru
tedas des
ribed is shown in Figure 5.11(b). We now establish that the above-mentionededges are suÆ
ient to eliminate all those 
onsistent 
uts of the 
omputation that donot satisfy the 
hannel predi
ate.Lemma 5.29 Every 
onsistent 
ut of Hb(E) satis�es b.Proof: Consider a 
onsistent 
ut C of Hb(E) and pro
esses pi and pj . Letsndhi; ji(m) be the send event 
orresponding to the last message sent by pi to132
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Figure 5.11: (a) A 
omputation, and (b) its sli
e with respe
t to the monotoni

hannel predi
ate \at most one message in transit in any 
hannel".pj su
h that sndhi; ji(m) 2 C. Sin
e C is a 
onsistent 
ut of Hb(E) and there isan edge from r
vhj; ii(m� kij) to sndhi; ji(m), r
vhj; ii(m� kij) also belongs to C.This implies that there are at most kij messages in transit from pi to pj . �We next show that the above 
onstru
ted graph retains all 
onsistent 
uts ofthe 
omputation that satisfy the 
hannel predi
ate.Lemma 5.30 Every 
onsistent 
ut of hE;!i that satis�es b is a 
onsistent 
ut ofHb(E).Proof: Consider a 
onsistent 
ut C of hE;!i that satis�es b. Assume, on the
ontrary, that C is not a 
onsistent 
ut of Hb(E). Thus there exist events e andf su
h that there is a path from e to f in Hb(E), f belongs to C but e does not.Sin
e C is a 
onsistent 
ut of hE;!i, the edge from e to f 
ould only of type (3).Let e be r
vhj; ii(m) and f be sndhi; ji(m+ kij). Sin
e C satis�es b, r
vhj; ii(m)133



or, equivalently, e belongs to C|a 
ontradi
tion. �From the previous two lemmas, it follows that:Theorem 5.31 Hb(E) is 
ut-equivalent to hE;!ib.It is easy to see that the graph Hb(E) has O(jEj) verti
es, O(jEj) edges (atmost three edges per event assuming that an event that is not lo
al either sends atmost one message or re
eives at most one message but not both) and 
an be builtin O(jEj) time. Thus the algorithm has O(jEj) overall time-
omplexity.5.7.4 Appli
ations of Sli
ingIn this se
tion, we show that sli
ing 
an be used to solve other problems in dis-tributed systems.Monitoring Regular Predi
ates under Various ModalitiesA predi
ate 
an be monitored under four modalities, namely possibly, definitely,invariant and 
ontrollable [CM91, GW91, TG99, MG00, SUL00℄. A predi
ateis possibly true in a 
omputation if there is a 
onsistent 
ut of the 
omputationthat satis�es the predi
ate. On the other hand, a predi
ate de�nitely holds in a
omputation if it eventually be
omes true in all runs of the 
omputation (a runis a path in the latti
e of 
onsistent 
uts starting from the initial 
onsistent 
utand ending at the �nal 
onsistent 
ut). The modalities invariant and 
ontrollableare duals of the predi
ates possibly and definitely, respe
tively. Monitoring hasappli
ations in the areas of testing and debugging and software fault toleran
e ofdistributed programs.We show how to monitor a regular predi
ate under possibly : b, invariant : band 
ontrollable : b modalities using sli
ing. Given a dire
ted graph G, let s

(G)denote the number of strongly 
onne
ted 
omponents of G.134



Theorem 5.32 A regular predi
ate is1. possibly true in a 
omputation if and only if the sli
e of the 
omputation withrespe
t to the predi
ate has at least one non-trivial 
onsistent 
ut, that is, ithas at least two strongly 
onne
ted 
omponents. Formally,possibly : b � s

(hE;!ib) > 22. invariant in a 
omputation if and only if the sli
e of the 
omputation withrespe
t to the predi
ate is 
ut-equivalent to the 
omputation. Formally,invariant : b � hE;!ib �= hE;!i3. 
ontrollable in a 
omputation if and only if the sli
e of the 
omputation withrespe
t to the predi
ate has the same number of strongly 
onne
ted 
omponentsas the 
omputation. Formally,
ontrollable : b � s

(hE;!ib) = s

(hE;!i)Proof: The �rst two propositions are easy to verify. We only prove the lastproposition. As for the last proposition, it 
an be veri�ed that a regular predi
ate is
ontrollable in a 
omputation if and only if there exists a path from the initial to the�nal 
onsistent 
ut in the latti
e (of 
onsistent 
uts) su
h that every 
onsistent 
utalong the path satis�es the predi
ate [TG98b℄. Note that the path from the initialto the �nal 
onsistent 
ut a
tually 
orresponds to a longest 
hain in the latti
e of
onsistent 
uts. For a latti
e L, let height(L) denote the length of a longest 
hain inL. Therefore if b is 
ontrollable in hE;!i, then a longest 
hain in C(E) is 
ontainedin Cb(E) as well and vi
e versa. This implies that height(C(E)) 6 height(Cb(E)).However, Cb(E) � C(E) implying that height(Cb(E)) 6 height(C(E)). Therefore wehave: 
ontrollable : b � height(C(E)) = height(Cb(E))135



For a �nite distributive latti
e L, the length of its longest 
hain is equal tothe number of its join-irredu
ible elements [DP90℄. In other words, height(L) =JI(L). Also, as observed before in Se
tion 5.6, for a dire
ted graph, the numberof join-irredu
ible elements of the latti
e generated by its set of 
onsistent 
uts|in
luding the two trivial 
onsistent 
uts|is same as the number of its strongly
onne
ted 
omponents. As a result, height(C(E)) = JI(C(E)) = s

(hE;!i) andheight(Cb(E)) = JI(Cb(E)) = s

(hE;!ib). �Zig-Zag Consisten
y Theorem: A Spe
ial Case of Sli
ingWe now show how sli
ing relates to some of the well-known results in 
he
kpointing.Consider a 
onjun
tive predi
ate su
h that the lo
al predi
ate for an event on apro
ess is true if and only if the event 
orresponds to a lo
al 
he
kpoint. It 
an beveri�ed that there is a zigzag path [NX95, Wan97℄ from a lo
al 
he
kpoint 
 to alo
al 
he
kpoint 
0 in a 
omputation if and only if there is a path from su

(
), ifit exists, to 
0 in the 
orresponding sli
e|whi
h 
an be as
ertained by 
omparingJb(su

(
)) and Jb(
0). An alternative formulation of the 
onsisten
y theorem in[NX95℄ 
an thus be obtained as follows:Theorem 5.33 A set of lo
al 
he
kpoints 
an belong to the same 
onsistent globalsnapshot if and only if the lo
al 
he
kpoints in the set are mutually 
onsistent(in
luding with itself) in the 
orresponding sli
e.Moreover, the R-graph (rollba
k-dependen
y graph) [Wan97℄ is path-equivalent to the sli
e when ea
h 
ontiguous sequen
e of false events on a pro
ess ismerged with the nearest true event that o

urs later on the pro
ess. The minimum
onsistent global 
he
kpoint that 
ontains a set of lo
al 
he
kpoints [Wan97℄ 
an be
omputed by taking the set union of Jb's for ea
h lo
al 
he
kpoint in the set. Themaximum 
onsistent global 
he
kpoint 
an be similarly obtained by using the dualof Jb. 136



5.8 Sli
ing for General Predi
atesIn this se
tion, we des
ribe our results on sli
ing for general predi
ates. We �rstprove that it is in general NP-hard to 
ompute the sli
e for an arbitrary predi
ate.Nonetheless, polynomial-time algorithms 
an be developed for 
ertain spe
ial 
lassesof predi
ates. In parti
ular, we provide eÆ
ient algorithm to 
ompute the sli
e for alinear predi
ate and its dual|a post-linear predi
ate [CG98℄. We next present thenotion of grafting whi
h 
an be used to 
ompose two sli
es; grafting 
an be done withrespe
t to meet or join operator as explained later. We provide eÆ
ient algorithmsfor grafting two sli
es. Grafting 
an be used to 
ompute the sli
e for a predi
atein DNF (disjun
tive normal form). We further give three more appli
ations ofgrafting. First, we demonstrate how grafting 
an be employed to 
ompute the sli
efor a 
o-regular predi
ate|
omplement of a regular predi
ate|in polynomial-time.Se
ond, using grafting, we derive a polynomial-time algorithm to the 
ompute thesli
e for a k-lo
al predi
ate for 
onstant k; a k-lo
al predi
ate depends on variables ofat most k pro
esses [SS95℄. Lastly, we employ grafting to 
ompute an approximatesli
e|in polynomial-time|for a predi
ate 
omposed from regular and 
o-regularpredi
ates, linear predi
ates and post-linear predi
ates, and k-lo
al predi
ates, for
onstant k, using ^ and _ operators.5.8.1 NP-Hardness ResultIt is evident from the de�nition of sli
e that the following is true:Observation 5.2 The ne
essary and suÆ
ient 
ondition for the sli
e of a
omputation with respe
t to a predi
ate to be non-empty is that there exists a
onsistent 
ut of the 
omputation that satis�es the predi
ate.However, �nding out whether some 
onsistent 
ut of the 
omputation satis�esa predi
ate is an NP-
omplete problem [CG95℄. Thus it is in general NP-
omplete137



to determine whether the sli
e for a predi
ate is non-empty. This further impliesthat 
omputing the sli
e for an arbitrary predi
ate is an NP-hard problem. Fromthe results of Chapter 3, it follows that this is the 
ase even when the predi
ate isa singular 2-CNF (
onjun
tive normal form) predi
ate.5.8.2 Computing the Sli
e for Linear Predi
ates and their DualRe
all that a predi
ate is linear if given two 
onsistent 
uts that satisfy the predi
ate,the 
ut given by their set interse
tion also satis�es the predi
ate [CG98℄. A post-linear predi
ate 
an de�ned dually [CG98℄. In this se
tion we prove that the sli
ingalgorithm Algo 5:3 for a regular predi
ate des
ribed in Se
tion 5.7.1 
an be used fora linear predi
ate as well. For a post-linear predi
ate, however, a slightly di�erentversion of the algorithm based on the notion of meet-irredu
ible element will beappli
able.Consider a 
omputation hE;!i and a linear predi
ate b. First, we extendthe de�nition of Jb(e) for an event e and a regular predi
ate b to the 
ase when bis a linear predi
ate. It 
an be easily veri�ed that Jb(e) is uniquely de�ned for ea
hevent e even when b is a linear predi
ate. Now, 
onsider the dire
ted graph Gb(E)with verti
es as events in E and an edge from an event e to an event f if and only ifJb(e) � Jb(f). We establish that the dire
ted graph Gb(E) is 
ut-equivalent to thesli
e hE;!ib. It suÆ
es to prove that C(Gb(E)) is the smallest sublatti
e of C(E)that 
ontains Cb(E). To that end, the following lemma 
omes in useful. The lemmabasi
ally states that, for ea
h event e, Jb(e) is the least 
onsistent 
ut of Gb(E) that
ontains e. (Note that Jb(e) � Jb(f) is equivalent to saying that there is an pathfrom e to f in Gb(E).)Lemma 5.34 Given events e and f , e 2 Jb(f) � Jb(e) � Jb(f).Proof: ()) Assume that e 2 Jb(f). Let C = Jb(e)\Jb(f). Sin
e e 2 Jb(e), e 2 C.Note that Jb(e) and Jb(f) are 
onsistent 
uts of hE;!i. Moreover, both of them138



satisfy b. Sin
e b is a linear predi
ate, their 
onjun
tion, given by C, also satis�esb. This implies that C is a 
onsistent 
ut of hE;!i whi
h 
ontains e and satis�es b.However, Jb(e) is the least su
h 
ut. Therefore Jb(e) � C or Jb(e) � Jb(e) \ Jb(f).This implies that Jb(e) = Jb(e) \ Jb(f). Equivalently, Jb(e) � Jb(f).(() Assume that Jb(e) � Jb(f). Sin
e e 2 Jb(E), trivially, e 2 Jb(f). �Again, as before, let Jb(E) = f Jb(e) j e 2 E g. Using Lemma 5.34, thefollowing theorem 
an be proved in a similar fashion as Lemma 5.16 and Lemma 5.17.Theorem 5.35 C(Gb(E)) forms a distributive latti
e under �. Further, the set ofjoin-irredu
ible elements of C(Gb(E)) is given by Jb(E).The next lemma demonstrates that C(Gb(E)) 
ontains at least Cb(E).Lemma 5.36 Every 
onsistent 
ut in Cb(E) 
an be written as the join of somesubset of elements in Jb(E).The proof of the above lemma is similar to the proof of Lemma 5.17 andtherefore has been omitted. Observe that, for every event e, by de�nition, eitherJb(e) satis�es b or is same as E. In either 
ase, Jb(e) 2 Cb(E). Therefore we have,Observation 5.3 Jb(E) � Cb(E).Finally, the next theorem establishes that C(Gb(E)) is indeed the smallestsublatti
e of C(E) that 
ontains all 
onsistent 
uts satisfying b.Theorem 5.37 Any sublatti
e of C(E) that 
ontains Cb(E) also 
ontains C(Gb(E)).Proof: Consider a sublatti
e D of C(E) su
h that D 
ontains Cb(E). Also, 
onsidera 
onsistent 
ut C of C(Gb(E)). From Birkho�'s Representation Theorem andTheorem 5.35, C 
an be expressed as the join of some subset of elements in Jb(E).139



Sin
e Jb(E) � Cb(E) and Cb(E) � D, Jb(E) � D. This implies that C 
an bewritten as the join of some subset of elements in D. However, D is a sublatti
e andthus 
losed under set union. Therefore C 2 D. �The dire
ted graph Gb(E) has jEj verti
es and 
an have as many as 
(jEj2)edges. However, by 
onstru
ting Sb(E), the skeletal representation of hE;!ib,instead of Gb(E), the number of edges and the time-
omplexity 
an be redu
edto O(njEj) and O(n2jEj), respe
tively.5.8.3 Grafting Two Sli
esGiven two sli
es, grafting 
an be used to either 
ompute the smallest sli
e that
ontains all 
onsistent 
uts 
ommon to both sli
es|grafting with respe
t to meet|or 
ompute the smallest sli
e that 
ontains 
onsistent 
uts of both sli
es|graftingwith respe
t to join. In other words, given sli
es hE;!ib1 and hE;!ib2 , where b1and b2 are regular predi
ates, grafting 
an be used to 
ompute the sli
e hE;!ib,where b is either b1 u b2 = b1^ b2 or b1 t b2 = reg (b1_ b2). Grafting enables us to
ompute the exa
t sli
e for an arbitrary boolean expression of lo
al predi
ates|byrewriting it in DNF|although it may require exponential time in the worst 
ase.Grafting with respe
t to Meet: b � b1 u b2 � b1 ^ b2In this 
ase, the sli
e hE;!ib 
ontains a 
onsistent 
ut of hE;!i if and only if the 
utsatis�es b1 as well as b2. Given an event e, let Fmin(e) denote the ve
tor obtainedby taking 
omponentwise minimum of Fb1(e) and Fb2(e). We �rst prove that no
omponent of Fmin(e) is less than (or o

urs before) the 
orresponding 
omponentof Fb(e).Lemma 5.38 For ea
h event e and pro
ess pi,Fb(e)[i℄ P! Fmin(e)[i℄140



Proof: It is suÆ
ient to prove that Fb(e)[i℄ P! Fb1(e)[i℄ and Fb(e)[i℄ P! Fb2(e)[i℄for ea
h event e and pro
ess pi. Assume, on the 
ontrary, that Fb1(e)[i℄ P! Fb(e)[i℄for some event e and pro
ess pi. For 
onvenien
e, let Fb1(e)[i℄ = f . ConsiderJb(f). Observe that Jb(f) 
ontains f and is also a 
onsistent 
ut of hE;!ib1 .By de�nition of Sb1(E), any 
onsistent of hE;!ib1 that 
ontains f also 
ontains ebe
ause f = Fb1(e)[i℄. This implies that Jb(f) 
ontains e. Sin
e Jb(f) is the least
onsistent 
ut of hE;!ib that 
ontains f , there is a path from e to f in Sb(E).Using Lemma 5.20, Jb(e) � Jb(f) whi
h 
ontradi
ts our 
hoi
e of Fb(e)[i℄. �We now 
onstru
t a dire
ted graph Smin(E) that is similar to Sb(E) ex
eptthat we use Fmin instead of Fb in its 
onstru
tion. The following theorem provesthat Smin(E) is in fa
t 
ut-equivalent to Sb(E).Theorem 5.39 Smin(E) is 
ut-equivalent to Sb(E).Proof: We have,f de�nition of Fmin g�P(Sb1(E)) � P(Smin(E))� V �P(Sb2(E)) � P(Smin(E))�� f using Lemma 5.1 g�C(Smin(E)) � C(Sb1(E))� V �C(Smin(E)) � C(Sb2(E))�� f set 
al
ulus gC(Smin(E)) � �C(Sb1(E)) \ C(Sb2(E))�� f b � b1 ^ b2 gC(Smin(E)) � C(Sb(E))Also, we have,f using Lemma 5.38 gP(Smin(E)) � P(Sb(E))� f using Lemma 5.1 g 141



C(Sb(E)) � C(Smin(E))Thus C(Smin(E)) = C(Sb(E)). �Roughly speaking, the aforementioned algorithm 
omputes the union of thesets of edges of ea
h sli
e. Note that, in general, Fb(e)[i℄ need not be same asFmin(e)[i℄. This algorithm 
an be generalized to 
onjun
tion of an arbitrary numberof regular predi
ates.Grafting with respe
t to Join: b � b1 t b2 � reg (b1 _ b2)In this 
ase, the sli
e hE;!ib 
ontains a 
onsistent 
ut of hE;!i if the 
ut satis�eseither b1 or b2. Given an event e, let Fmax(e) denote the ve
tor obtained by taking
omponentwise maximum of Fb1(e) and Fb2(e). We �rst prove that no 
omponentof Fb(e) is less than (or o

urs before) the 
orresponding 
omponent of Fmax(e).Lemma 5.40 For ea
h event e and pro
ess pi,Fmax(e)[i℄ P! Fb(e)[i℄The proof of Lemma 5.40 is similar to that of Lemma 5.38 and therefore hasbeen omitted. We now 
onstru
t a dire
ted graph Smax(E) that is similar to Sb(E)ex
ept that we use Fmax instead of Fb in its 
onstru
tion. The following theoremproves that Smax(E) is in fa
t 
ut-equivalent to Sb(E).Theorem 5.41 Smax(E) is 
ut-equivalent to Sb(E).Again, the proof of Theorem 5.41 is similar to that of Theorem 5.39 andhen
e has been omitted. Intuitively, the above-mentioned algorithm 
omputes theinterse
tion of the sets of edges of ea
h sli
e. In this 
ase, in 
ontrast to the former
ase, Fb(e)[i℄ is identi
al to Fmax(e)[i℄. The reason is as follows. Re
all that Fb(e)[i℄is the earliest event on pi that is rea
hable from e in hE;!ib. From Theorem 5.41,142



at least Fmax(e)[i℄ is rea
hable from e in hE;!ib. Thus Fb(e)[i℄ P! Fmax(e)[i℄.Combining it with Lemma 5.40, we obtain the required result. This algorithm 
anbe generalized to disjun
tion of an arbitrary number of regular predi
ates.5.8.4 Computing the Sli
e for Co-Regular Predi
atesGiven a regular predi
ate, we give an algorithm to 
ompute the sli
e of a
omputation with respe
t to its negation|a 
o-regular predi
ate. In parti
ular,we express the negation as disjun
tion of polynomial number of regular predi
ates.The sli
e 
an then be 
omputed by grafting together sli
es for ea
h disjun
t.Consider a 
omputation hE;!i and a regular predi
ate b. For 
onvenien
e,let !b be the edge relation for the sli
e hE;!ib. Without loss of generality, assumethat both ! and !b are transitive relations. Our obje
tive is to �nd a propertythat distinguishes the 
onsistent 
uts that belong to the sli
e from the 
onsistent
uts that do not. Consider events e and f su
h that e 6! f but e !b f . Then,
learly, a 
onsistent 
ut that 
ontains f but does not 
ontain e 
annot belong tothe sli
e. On the other hand, every 
onsistent 
ut of the sli
e that 
ontains f also
ontains e. This motivates us to de�ne a predi
ate prevents(f; e) as follows:C satis�es prevents(f; e) , (f 2 C) ^ (e 62 C)We now prove that the predi
ate prevents(f; e) is a
tually a regularpredi
ate. Spe
i�
ally, we establish that prevents(f; e) is a 
onjun
tive predi
ate.Lemma 5.42 prevents(f; e) is a 
onjun
tive predi
ate.Proof: Let pro
(e) = pi and pro
(f) = pj . We de�ne a lo
al predi
ate li(e) to betrue for an event g on pro
ess pi if g P! e. Similarly, we de�ne a lo
al predi
atemj(f) to be true for an event h on pro
ess pj if f P! h. Clearly, prevents(f; e) isequivalent to li(e) ^mj(f). �It turns out that every 
onsistent 
ut that does not belong to the sli
e satis�es143



prevents(f; e) for some pair of events (e; f) su
h that (e 6! f) ^ (e !b f) holds.Formally,Theorem 5.43 Let C be a 
onsistent 
ut of hE;!i. Then,C satis�es :b � h9 e; f : (e 6! f) ^ (e!b f) : C satis�es prevents(f; e)iProof: We have,C satis�es :b� f b is a regular predi
ate g:�C 2 C(hE;!ib)�� f de�nition of C(hE;!ib) g:h8 e; f : e!b f : f 2 C ) e 2 Ci� f predi
ate 
al
ulus gh9 e; f : e!b f : (f 2 C) ^ (e 62 C)i� f de�nition of prevents(f; e) gh9 e; f : e!b f : C satis�es prevents(f; e)i� f predi
ate 
al
ulus gh9 e; f : (e!b f) V �(e! f) _ (e 6! f)� : C satis�es prevents(f; e)i� f e! f implies e!b f gh9 e; f : (e! f) W �(e!b f) ^ (e 6! f)� : C satis�es prevents(f; e)i� 8<:sin
e C is a 
onsistent 
ut of hE;!i; C satis�es prevents(f; e))e 6! f 9=;h9 e; f : (e!b f) ^ (e 6! f) : C satis�es prevents(f; e)iThis establishes the theorem. �Theorem 5.43 
an also be derived using the results in latti
e theory [Riv74℄.We now give the time-
omplexity of the algorithm. We start by making the followingobservation. 144



Observation 5.4 Let e, f and g be events su
h that f ! g. Then,prevents(g; e) ) prevents(f; e)Let Kb(e) denote the ve
tor whose ith entry denote the earliest event f onpro
ess pi, if it exists, su
h that (e 6! f) ^ (e !b f) holds. Observation 5.4 impliesthat prevents(Kb(e)[i℄; e), whenever Kb(e)[i℄ exists, is the weakest predi
ate amongall predi
ates prevents(f; e), where pro
(f) = pi and (e 6! f) ^ (e !b f). Thuswe 
an ignore all other events on pi for the purpose of 
omputing the sli
e for a
o-regular predi
ate. More pre
isely, Theorem 5.43 
an be restated as:Theorem 5.44 Let C be a 
onsistent 
ut of hE;!i. Then,C satis�es :b � h9 e; pi :: C satis�es prevents(Kb(e)[i℄; e)iIt turns out that Kb(e)[i℄ and Fb(e)[i℄ are 
losely related.Observation 5.5 Kb(e)[i℄ exists if and only if e 6! Fb(e)[i℄. Moreover, wheneverKb(e)[i℄ exists it is identi
al to Fb(e)[i℄.Note that, to 
ompute the sli
e for :b, we a
tually 
ompute the sli
e forreg (:b), that is, hE;!i:b = hE;!ireg (:b). Theorem 5.44 implies that the numberof disjun
ts in the predi
ate equivalent to the negation of a regular predi
ate is atmost O(njEj). Further, these disjun
ts 
an be determined in O(n2jEj) time usingthe algorithm Algo 5:2. The sli
e with respe
t to ea
h disjun
t 
an be 
omputed inO(jEj) time using the algorithm given in Se
tion 5.7.3. Moreover, given a disjun
tb(i), Jb(i)(e) for ea
h event e 
an be 
omputed in O(njEj) time whi
h in turn 
anbe used to determine Fb(i)(e) for ea
h event e in O(njEj) time using the algorithmAlgo 5:2. Finally, these sli
es 
an be grafted together to produ
e the sli
e for a
o-regular predi
ate in O(njEj� njEj) = O(n2jEj2) time. This is be
ause, given an145



event e, 
omputing ea
h entry of Fb0(e), where b0 = reg (:b), requires O(njEj) time.Thus the overall time-
omplexity of the algorithm is O(n2jEj+n2jEj2) = O(n2jEj2).5.8.5 Computing the Sli
e for k-Lo
al Predi
ates for Constant kA predi
ate is 
alled k-lo
al if it depends on variables of at most k pro
esses [SS95℄.To 
ompute the sli
e for a k-lo
al predi
ate, we use the te
hnique developed byStoller and S
hneider [SS95℄. Given a 
omputation, their te
hnique 
an be used totransform a k-lo
al predi
ate into a predi
ate in k-DNF (disjun
tive normal form)with at mostmk�1 
lauses, where m is the maximum number of events on a pro
ess.For example, 
onsider the predi
ate x1 6= x2. Let V denote the set of values thatx1 
an take in the given 
omputation. Note that jV j 6 m. Then x1 6= x2 
an berewritten as: x1 6= x2 � _v2V �(x1 = v) ^ (x2 6= v)�Ea
h 
lause in the resultant k-DNF predi
ate will be a 
onjun
tive predi
ate.We 
an use the optimal O(jEj) algorithm given in Se
tion 5.7.3 to 
ompute thesli
e for ea
h 
lause. These sli
es 
an then be grafted together with respe
t todisjun
tion to obtain the sli
e for the given k-lo
al predi
ate. The time-
omplexityof the algorithm is O(mk�1njEj).5.8.6 Computing Approximate Sli
esEven though it is, in general, NP-hard to 
ompute the sli
e for an arbitrary predi
ate,it is still possible to 
ompute an approximate sli
e in many 
ases. The sli
e is\approximate" in the sense that it is bigger than the a
tual sli
e for the predi
ate.Nonetheless, it still 
ontains all 
onsistent 
uts of the 
omputation that satisfy thepredi
ate. In many 
ases, the approximate sli
e that we obtain is mu
h smaller thanthe 
omputation itself and therefore 
an be used to prune the sear
h-spa
e for manyintra
table problems su
h as monitoring predi
ates under various modalities.146
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Figure 5.12: (a) A 
omputation, (b) the parse tree for the predi
ate (x1_x2)^ (x3_x4), (
) the sli
e with respe
t to x1, (d) the sli
e with respe
t to x2, (e) the sli
ewith respe
t to x3, (f) the sli
e with respe
t to x4.147
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Figure 5.13: (
ontinuation of Figure 5.12) (g) the sli
e with respe
t to x1_x2, (h) thesli
e with respe
t to x3 _ x4, and (i) the sli
e with respe
t to (x1 _ x2) ^ (x3 _ x4).In parti
ular, using grafting and the algorithms for 
omputing the sli
e forvarious 
lasses of predi
ates, it is possible to eÆ
iently 
ompute an approximatesli
e for a predi
ate derived from linear predi
ates, post-linear predi
ates, regularpredi
ates, 
o-regular predi
ates, and k-lo
al predi
ates for 
onstant k using ^ and_ operators.To 
ompute an approximate sli
e, we �rst build the parse tree for the givenboolean expression; all predi
ates o

upy leaf nodes whereas all operators o

upynon-leaf nodes. We then re
ursively 
ompute the sli
e working our way up from leafnodes to the root. For a leaf node, we use the algorithm appropriate for the predi
ate
orresponding to the leaf node. For example, if the leaf node 
orresponds to a linearpredi
ate, we use the algorithm des
ribed in Se
tion 5.8.2. For the 
onjun
tion anddisjun
tion operators, ^ and _, we use the suitable grafting algorithm dependingon the operator.Example 5.8 For example, 
onsider the 
omputation depi
ted in Figure 5.12(a)and the predi
ate (x1_x2)^ (x3_x4). The parse tree 
orresponding to the predi
ate148



is shown in Figure 5.12(b). To 
ompute an approximate sli
e for the predi
ate,we �rst 
ompute sli
es for the (lo
al) predi
ates x1, x2, x3 and x4 as shown inFigure 5.12(
)-(f). We then graft the �rst two and the last two sli
es together withrespe
t to join to obtain sli
es for the 
lauses x1 _ x2 and x3 _ x4 as portrayedin Figure 5.13(g) and Figure 5.13(h), respe
tively. For the ease of understanding,the events belonging to the same strongly 
onne
ted 
omponent are shown togetherin a subset. Finally, we graft the sli
es for both 
lauses together with respe
t tomeet. The sli
e obtained will 
ontain all 
onsistent 
uts that satisfy the predi
ate(x1 _ x2) ^ (x3 _ x4). The �nal sli
e is shown in Figure 5.13(i).As shown in the �gure, the 
omputation has seven non-trivial 
onsistent 
uts,namely fa; d; u; xg, fa; b; d; u; xg, fa; d; e; u; xg, fa; b; d; e; u; xg, fa; b; d; e; u; v; xg,fa; b; d; e; u; x; yg and fa; b; d; e; u; v; x; yg. On the other hand, the sli
e 
onsists ofonly a single non-trivial 
onsistent 
ut, whi
h is given by fa; b; d; e; u; xg. The �nalsli
e 
orresponds to the predi
ate reg �reg (x1 _ x2) ^ reg (x3 _ x4)� and not to thepredi
ate reg �(x1 _ x2) ^ (x3 _ x4)� as desired. This is expe
ted be
ause dete
tingeven a predi
ate in 2-CNF when no two 
lauses 
ontain variables from the samepro
ess is NP-
omplete in general (see Chapter 3).5.9 Dete
ting Global Predi
ates using Sli
ing: AnExperimental StudyIn this se
tion, we evaluate the e�e
tiveness of sli
ing in pruning the sear
h-spa
ewhen dete
ting a predi
ate under possibly modality. We 
ompare our approa
hwith that of Stoller, Unnikrishnan and Liu [SUL00℄, whi
h is based on partial-ordermethods [God96℄. Intuitively, when sear
hing the state-spa
e, at ea
h 
onsistent
ut, partial-order methods allow only a small subset of enabled transitions to beexplored. In parti
ular, we use partial-order methods employing both persistent and149



sleep sets for 
omparison. We 
onsider two examples that were also used by Stoller,Unnikrishnan and Liu to evaluate their approa
h [SUL00℄. We brie
y des
ribethe main idea behind partial-order methods approa
h here; details 
an be foundelsewhere [God96, SUL00℄.The material in the next two paragraphs is paraphrased from [SUL00℄. Intheir full generality, partial-order methods 
an be used to lo
ate deadlo
ks in a
on
urrent system. A deadlo
k is a state in whi
h no transitions are enabled. Clearly,all rea
hable deadlo
ks 
an be identi�ed by exploring all rea
hable states. Thisinvolves expli
itly 
onsidering all possible exe
ution orderings of transitions, even ifsome transitions are \independent" (that is, exe
uting them in any order leads tothe same state). Exploring one interleaving of independent transitions is suÆ
ientfor �nding deadlo
ks. This 
auses fewer intermediate states (that is, states in whi
hsome but not all of the independent transitions have been exe
uted) to be explored,but it does not a�e
t the rea
hability of deadlo
ks. This is be
ause the intermediatestates 
annot be deadlo
ks sin
e some of the independent transitions are enabledin those states. Partial-order methods attempt to eliminate exploration of multipleinterleavings of independent transitions, thereby saving time and spa
e.Consider a state s. A set T of transitions enabled in s is said to be persistentin s if, for every sequen
e of transitions starting from s and not 
ontaining anytransitions in T , all transitions in that sequen
e are independent with all transitionsin T . As shown in [God96℄, in order to �nd all rea
hable deadlo
ks, it suÆ
es toexplore from ea
h state s a set of transitions that is persistent in s. Note that the setof all enabled transitions in s trivially 
onstitutes a persistent set in s. To save timeand spa
e, small persistent sets should be used. As further optimization, sleep sets
an be employed to eliminate redundan
y 
aused by exploring multiple interleavingsof independent transitions in a persistent set [God96℄.How do partial-order methods apply to dete
ting a predi
ate under possibly150



modality? Consider a predi
ate b = b(1) ^ b(2) ^ � � � ^ b(l). Let support(b(i)) denotethe subset of pro
esses on whi
h the 
onjun
t b(i) depends. Suppose, when exploringthe state-spa
e of the 
omputation, we rea
h a 
onsistent 
ut C that does not satisfyb. Therefore there exists a 
onjun
t b(i) that evaluates to false for C. A set T oftransitions that 
onstitutes a persistent set in C 
an be 
onstru
ted as follows. Forea
h pro
ess pj 2 support(b(i)), in 
ase the next transition tj of pj , if it exists, isenabled in C, add tj to T ; otherwise �nd some enabled transition t that must beexe
uted before tj and add t to T .Now, with our approa
h based on 
omputation sli
ing, in order to dete
t apredi
ate, we �rst 
ompute an approximate sli
e of the 
omputation with respe
t tothe predi
ate, and then perform a simple sear
h of the state-spa
e of the resultantsli
e. Whereas, with the approa
h based on partial-order methods, we use persistentand sleep sets to sear
h the state-spa
e of the 
omputation. To 
ompare the twoapproa
hes, we 
onsider two examples whi
h were also used by Stoller, Unnikrishnanand Liu to evaluate their approa
h [SUL00℄.The �rst example, 
alled primary-se
ondary, 
on
erns an algorithm designedto ensure that the system always 
ontains a pair of pro
esses a
ting together asprimary and se
ondary. The invariant for the algorithm requires that there is a pairof pro
esses pi and pj su
h that (1) pi is a
ting as a primary and 
orre
tly thinksthat pj is its se
ondary, and (2) pj is a
ting as a se
ondary and 
orre
tly thinks thatpi is its primary.The �rst example, 
alled primary-se
ondary, 
on
erns an algorithm designedto ensure that the system always 
ontains a pair of pro
esses a
ting together asprimary and se
ondary. The invariant for the algorithm requires that there is a pairof pro
esses pi and pj su
h that (1) pi is a
ting as a primary and 
orre
tly thinksthat pj is its se
ondary, and (2) pj is a
ting as a se
ondary and 
orre
tly thinks thatpi is its primary. Both the primary and the se
ondary may 
hoose new pro
esses as151



their su

essor at any time; the algorithm must ensure that the invariant is neverfalsi�ed. Mathemati
ally, the invariant Ips 
an be written as:Ips = Wi; j 2 [1 : : : n℄; i 6= j0� isPrimaryi V isSe
ondaryj V(se
ondaryi = pj) V (primaryj = pi) 1AHere, the variable isPrimaryi is true if and only if pro
ess pi is a
ting as theprimary; in that 
ase, the variable se
ondaryi points to the pro
ess that pi thinks isa
ting as its se
ondary. The variables isSe
ondaryi and primaryi 
an be interpretedin a similar fashion. Both the primary and the se
ondary may 
hoose new pro
essesas their su

essor at any time; the algorithm must ensure that the invariant is neverfalsi�ed. Stoller, Unnikrishnan and Liu provide an algorithm in [SUL00℄ to maintainthe above invariant. We des
ribe it here for the sake of 
ompleteness.Initially, pro
ess p1 is the primary and pro
ess p2 is the se
ondary. At anytime, the primary may 
hoose a new primary as its su

essor by �rst informing these
ondary of its intention, waiting for an a
knowledgement, and then multi
astingto the other pro
esses a request for volunteers to be the new primary. It 
hooses the�rst volunteer whose reply it re
eives and sends message to that pro
ess stating thatit is the new primary. The new primary sends a message to the 
urrent se
ondarywhi
h updates its state to re
e
t the 
hange and then sends a message to the oldprimary stating that it 
an stop being the primary. The se
ondary 
an 
hoose anew se
ondary using a similar proto
ol. Before initiating the proto
ol, however, these
ondary must wait for an a
knowledgement from the primary. If the se
ondaryinstead re
eives a message that the primary is sear
hing for a su

essor as well, these
ondary aborts its 
urrent attempt to �nd a su

essor, waits until it re
eives amessage from the new primary, and then re-starts the proto
ol. This prevents theprimary and se
ondary from trying to 
hoose su

essors 
on
urrently. A global fault
orresponds to the 
omplement of the invariant whi
h 
an be expressed as:152



:Ips = Vi; j 2 [1 : : : n℄; i 6= j0� :isPrimaryi W :isSe
ondaryj W(se
ondaryi 6= pj) W (primaryj 6= pi) 1ANote that :Ips is a predi
ate in CNF where ea
h 
lause is a disjun
tion oftwo lo
al predi
ates. An approximate sli
e for :Ips 
an be 
omputed in O(n3jEj)time. In the se
ond example, 
alled database partitioning, a database is partitionedamong pro
esses p2 through pn, while pro
ess p1 assigns tasks to these pro
essesbased on the 
urrent partition. A pro
ess pi, i 2 [2 : : :n℄, 
an suggest a newpartition at any time by setting variable 
hangei to true and broad
asting a message
ontaining the proposed partition and an appropriate version number. A re
ipientof this message a

epts the proposed partition if its own version of the partition hasa smaller version number or if its own version of the partition has the same versionnumber and was proposed by a pro
ess with larger index. An invariant that shouldbe maintained is: if no pro
ess is 
hanging the partition, then all pro
esses agree onthe partition. Formally,Idb = ( ^i2[2:::n℄:
hangei)) ( ^16i<j6n partitioni = partitionj)Again, the algorithm des
ribed above was given by Stoller, Unnikrishnan andLiu in [SUL00℄. The 
omplement of the invariant, given by :Idb, 
an be written as::Idb = ( ^i2[2:::n℄:
hangei)^� _i;j2[1:::n℄; i 6=j(partitioni 6= partitionj)�Note that the �rst n � 1 
lauses of :Idb are lo
al predi
ates and the last
lause, say LC, is a disjun
tion of 2-lo
al predi
ates. Thus, using the te
hniquedes
ribed in Se
tion 5.8.5, LC 
an be rewritten as a predi
ate in DNF with O(njEj)
lauses. To redu
e the number of 
lauses, we pro
eed as follows. Let V denote theset of values that partition1 assumes in the given 
omputation. Then it 
an be153



No Faults One Inje
ted FaultNumber of Partial-Order Computation Partial-Order ComputationPro
esses Methods Sli
ing Methods Sli
ingn T M T M T M T M6 0.07 0.62 0.36 1.21 0.05 0.41 0.37 1.387 0.16 1.11 0.61 1.34 0.11 0.81 0.58 1.418 0.37 2.06 0.90 1.54 0.31 1.79 0.91 1.619 0.83 4.37 1.24 1.70 0.59 3.05 1.21 1.7710 1.52 7.26 1.73 1.81 1.12 5.54 1.70 2.0011 2.99� 13.14� 2.15 1.93 2.09� 9.50� 2.13 2.2712 5.0� 21.56� 2.85 2.16 3.51� 14.13� 2.77 2.43n: number of pro
esses T : amount of time spent (in s)M : amount of memory used (in MB)*: does not in
lude the 
ases in whi
h the te
hnique runs out of memoryTable 5.1: Primary-Se
ondary example with the number of events on a pro
essupper-bounded by 90.veri�ed that LC is logi
ally equivalent to:_v2V �(partition1 = v)^�(partition2 6= v)_(partition3 6= v)_� � �_(partitionn 6= v)��This de
reases the number of 
lauses, when LC is rewritten in a form that
an be used to 
ompute a sli
e, to O(njV j). Note that jV j is bounded by thenumber of events on the �rst pro
ess, and therefore we expe
t njV j to be O(jEj).We use the simulator implemented in Java by Stoller, Unnikrishnan and Liu togenerate 
omputations of these proto
ols. Message laten
ies and other delays (e.g.,how long to wait before looking for a new su

essor) are sele
ted randomly usingthe distribution 1+ exp(x), where exp(x) is the exponential distribution with meanx. Further details of the two proto
ols and the simulator 
an be found elsewhere[SUL00℄. We 
onsider two di�erent s
enarios: fault-free and faulty. The simulatoralways produ
es fault-free 
omputations. A faulty 
omputation is generated by154


