Copyright
by
Donovan Michael Kolbly

2002

The Dissertation Committee for Donovan Michael Kolbly

Certifies that this is the approved version of the following dissertation:

Extensible Language Implementation

Committee:

Gordon Novak, Supervisor

Don Batory

Don Fussell

Calvin Lin

Robert Strandh

Extensible Language Implementation

by

Donovan Michael Kolbly, B.S.; M.S.

Dissertation
Presented to the Faculty of the Graduate School of
the University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2002

Extensible Language Implementation

Publication No.

Donovan Michael Kolbly, Ph.D.
The University of Texas at Austin, 2002

Supervisor: Gordon Novak

This work presents several new approaches to the construction of extensible
languages, and is the first system to combine local, dynamically extensible
context-free syntax with the expressive power of meta-level procedures. The
unifying theme of our system is that meaning should be computed relative to
local context.

We show how this theme is manifest in an implementation of a Scheme
macro system which achieves hygienic macro expansion without rewriting.
Additionally, our Scheme macro system makes available compile-time meta-
objects for additional power in writing macros; macros that pattern match on
compile-time types for optimization at macro-processing time are one example.
This approach is currently in use in our RScheme implementation of Scheme.

We also show the how this approach is applied to languages with conven-
tional syntax, using Java as an example. We present a dynamically extensible

parser based on the Earley parsing algorithm. This approach is practical as

v

well as flexible; a straightforward implementation in C parses a 600-line (2777
token) file in about 44ms on an 866MHz Pentium III.

We also describe a language extension framework that makes possible
an extensible variant of Java, in which new syntax can be supplied by the
casual programmer with only limited knowledge of the underlying compiler
implementation or approach. This finally makes available to Java program-
mers the easy access to structured macro facilities that Lisp programmers
find so powerful. Finally, we demonstrate this framework by constructing a

deterministic finite automaton language extension to Java.

Contents

Abstract

Chapter 1 Introduction

1.1

1.2
1.3
1.4
1.5

Motivation L
1.1.1 Our Contribution
Modularity, Reusability, and Extensibility
Syntax-Directed Translation
Summary of Basic Approach

Scopeof Work

Chapter 2 Macro Systems

2.1
2.2

2.3

Introduction
Background oo
221 CMacros v i
2.2.2 LispMacros
2.2.3 Scheme Macros
2.2.4 Systems Related to Macros.
A Taxonomy of Scheme Macros

2.3.1 Call-by-name Inline Procedures

vi

iv

o 00 N W N = -

2.3.2 Advertent Capture 30

2.3.3 Explicit Intentional Capture 31

2.4 Our Contribution 000 32
24.1 RScheme Macros 32
2.4.2 Type Reflective Macros 33

2.5 Our Implementation 33
25.1 Operation o 34
2.5.2 Reflection Operators 46
Chapter 3 Extensible Parsing 50
3.1 Imtroduction 50
3.2 Background 53
3.21 What We Would LiketoDo 53
3.2.2 Granularity of Grammar Changes 54
3.2.3 Applications of Our Approach 54
3.24 Limitations Lo oo 25

3.3 Contour Sensitivity 0oL 56
3.3.1 Major Styles of Environment Passing 56
3.3.2 General Mechanism o7

3.4 Implementing Contour Sensitivity 58
3.4.1 Frequent Grammar Changes 58
3.4.2 Simple Interpretation 60

3.5 Implementation of Continuation Passing Parser 61
3.5.1 General Description 61
3.5.2 Representation of Rules 62
3.5.3 Dynamic Rule Compilation 65

Vil

3.5.4 Major Styles in Terms of Mechanism 65

3.5.5 Examples Lo 67
3.5.6 Performance 0. 71
Chapter 4 Extensible Earley Parsing 72
4.1 Introduction Lo 72
4.2 Description of Earley Parsing 72
421 States 74
422 StateSets Lo 74
4.2.3 Initial Conditions 75
424 Processingo 75
4.2.5 Prediction Lo 77
4.2.6 Scanning 78
427 Completion 79
4.2.8 Relationship to Tomita Parsing 80

4.3 Advantages to the Earley Approach 81
4.3.1 Flexibility 81

4.3.2 Extensibility oo 82
4.3.3 Understandability 84
4.3.4 Complexity 85

4.4 Drawbacks to the Earley Approach 85
4.4.1 Expressiveness.o 85

4.4.2 Performanceo 86

4.5 Extensibility o 87
4.5.1 Scopelssues, 87

4.6 Our Implementation 89

viil

4.6.1 Details 89

4.6.2 Meta-syntaxo 90
4.6.3 Meaning Computation 92
4.6.4 Performance 95

4.7 Literal Equivalence 97
4.8 Improvements to Basic Earley 101
4.8.1 Conflict resolution 101
4.8.2 Pruning states using FIRST 102
4.8.3 Approximating FIRST 102
Chapter 5 Compiler Extension Framework 104
5.1 Capabilities of Extension Framework 104
5.1.1 Declarative, Pattern-Based Transformation 105
5.1.2 Pattern Matching Synthesized Attributes 105
5.1.3 Procedural Code-Production Mechanisms 106

5.2 Elements of an Extension Framework 106
5.3 Implementation L. 107
5.3.1 Meta-language 107
5.3.2 Syntax Evaluation 109
5.3.3 Recursive Compilation 110
5.3.4 Pattern Variables 0oL 111
5.3.5 Local Grammar Changes 114
5.3.6 In-line Computation 116

5.4 Declarative Transformations 116
5.5 Synthesized Attributes oL 117
5.6 Procedural Code Production 119

1X

5.6.1 Token Sequences 119
5.6.2 Compilation oo 119
5.6.3 Environments and Syntax 119
5.6.4 Reflection oo 120

5.7 Modular Syntax 120
5.8 Full Meta-syntax 121
5.8.1 Syntax Declarations 123

5.8.2 Syntax Rules 124
5.8.3 Syntax Pattern Elements 124
584 Actions 127
5.8.5 Local Variables, 132
5.8.6 Inline Actions 132
587 Example 133

5.9 Issues and Future Work 135
5.9.1 Substitution Conformance 135
5.9.2 Translation Recursion 136
5.9.3 Meta-syntax Scope 137
5.9.4 Syntax Module Templates 137
Chapter 6 An Application of an Extensible Language 138
6.1 Introductiono 138
6.2 Implementation Approach 140
6.2.1 Declaring the Extension 141
6.2.2 Building the Final Meaning 142
6.2.3 Declaring the State-Keeping Variable 145
6.2.4 Declaring the Java Class’s Entry Method 146

6.2.5 Declaring the Java Class’s Accessor Methods
6.2.6 States Within an Automaton
6.2.7 Building the State Switcher
6.2.8 Declaring transitions
6.2.9 Symbolic State Names
6.3 Example Use of the DFA Extension
6.3.1 Sample Extended-Java File
6.3.2 Generated class definition
6.3.3 Generated process() method

Chapter 7 Final Words

7.1 Related Worko
7.1.1 Syntactic Exposures
7.1.2 Term Rewriting
7.1.3 Hygienic Macro Expansion
7.1.4 Reusable Generative Programming
7.1.5 Adaptable Grammars
7.1.6 Open Compilers and MOPs

7.2 Limitations and Future Work
7.2.1 Meta-Object Protocol
7.2.2 Error Reporting
7.2.3 Synthesized Attributes

7.3 Conclusions

Bibliography

Vita

x1

159
159
159
159
160
161
161
162
165
165
165
166
169

171

177

Chapter 1

Introduction

The advantages of extensible languages have long been realized by the Lisp
community. The ability to easily adjust the language to fit the application,
rather than to always adjust the application to fit the language, is at the heart
of what Lisp programmers consider the deep power of Lisp [17, 33]. In this
work, we show how that power can be made more accessible and powerful
even in Scheme, as well as available to programmers in languages with con-
ventional syntax such as Java. The tree-structured transformations of Lisp
macros integrated with an extensible parser allow the concepts to be unified.
In addition, a well-structured compiler meta-object protocol exposes relevant
aspects of the compilation process and provides powerful programmable hooks

for extending the language to fit the application.

1.1 Motivation

This work is motivated by the fact that much existing work in extensible

languages is either insufficiently expressive in the kinds of extensions that

are permitted (i.e., function libraries) or expressed at the wrong level or in
the wrong ways (e.g., purely procedural transformations operating over text
strings).

That is, we are primarily motivated by:
e Ease of language implementation
e Ease of language extension

e Ease of re-engineering language implementation (e.g., to change perfor-

mance tradeoffs to deal with new technologies or new usage patterns)
We recognize the following themes:
e Extensible languages should have extensible compilers.

e Meaning should be expressed naturally through context, especially through
contour sensitive contexts, which preserve lexical scoping throughout

transformation.

e An extensible compiler should have a friendly interface and be integrated

with languages using conventional grammars.
e Objects used during the front-end processing of a program should be

reified, and be the domain objects of meta-programming.

1.1.1 Our Contribution

With these themes and motivations in mind, in this work we describe an

approach that provides:

e Context-local and dynamically modifiable concrete syntax,

e Full context-free syntactic power, and

e A means for defining procedural meta-level code for arbitrary computa-

tion at compile-time.

Furthermore, we illustrate this approach in a system with Java as a base

language.

1.2 Modularity, Reusability, and Extensibility

The primary means of creating large and complex software systems has been
by building relatively simple program modules, and composing those modules
into larger, more complex software systems. The process for developing the
large software system can then be decomposed into the development of smaller
program modules. Smaller program modules are easier to understand, develop,
and test, and well-constructed modules can be reused to build other software
applications.

A refined use of modularization is for program layering. Program lay-
ering arranges modules into layers whose role is to transform the program
concepts at a higher level of abstraction to those at a lower level of abstrac-
tion. A layer is then extending the language below the layer, creating a new
(possibly superset) language.

Figure 1.1 shows how we draw the relationship between the language
LO below the layer, the module layer, and the language created by the layer,
L1.

Layering is a powerful structuring tool, and has been used in systems

from the Basic Linear Algebra Subroutines to the 7-layered OSI protocol stack

