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This work presents several new approaches to the construction of extensible
languages, and is the first system to combine local, dynamically extensible
context-free syntax with the expressive power of meta-level procedures. The
unifying theme of our system is that meaning should be computed relative to
local context.

We show how this theme is manifest in an implementation of a Scheme
macro system which achieves hygienic macro expansion without rewriting.
Additionally, our Scheme macro system makes available compile-time meta-
objects for additional power in writing macros; macros that pattern match on
compile-time types for optimization at macro-processing time are one example.
This approach is currently in use in our RScheme implementation of Scheme.

We also show the how this approach is applied to languages with conven-
tional syntax, using Java as an example. We present a dynamically extensible

parser based on the Earley parsing algorithm. This approach is practical as
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well as flexible; a straightforward implementation in C parses a 600-line (2777
token) file in about 44ms on an 866MHz Pentium III.

We also describe a language extension framework that makes possible
an extensible variant of Java, in which new syntax can be supplied by the
casual programmer with only limited knowledge of the underlying compiler
implementation or approach. This finally makes available to Java program-
mers the easy access to structured macro facilities that Lisp programmers
find so powerful. Finally, we demonstrate this framework by constructing a

deterministic finite automaton language extension to Java.
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Chapter 1

Introduction

The advantages of extensible languages have long been realized by the Lisp
community. The ability to easily adjust the language to fit the application,
rather than to always adjust the application to fit the language, is at the heart
of what Lisp programmers consider the deep power of Lisp [17, 33]. In this
work, we show how that power can be made more accessible and powerful
even in Scheme, as well as available to programmers in languages with con-
ventional syntax such as Java. The tree-structured transformations of Lisp
macros integrated with an extensible parser allow the concepts to be unified.
In addition, a well-structured compiler meta-object protocol exposes relevant
aspects of the compilation process and provides powerful programmable hooks

for extending the language to fit the application.

1.1 Motivation

This work is motivated by the fact that much existing work in extensible

languages is either insufficiently expressive in the kinds of extensions that



are permitted (i.e., function libraries) or expressed at the wrong level or in
the wrong ways (e.g., purely procedural transformations operating over text
strings).

That is, we are primarily motivated by:
e Ease of language implementation
e Ease of language extension

e Ease of re-engineering language implementation (e.g., to change perfor-

mance tradeoffs to deal with new technologies or new usage patterns)
We recognize the following themes:
e Extensible languages should have extensible compilers.

e Meaning should be expressed naturally through context, especially through
contour sensitive contexts, which preserve lexical scoping throughout

transformation.

e An extensible compiler should have a friendly interface and be integrated

with languages using conventional grammars.
e Objects used during the front-end processing of a program should be

reified, and be the domain objects of meta-programming.

1.1.1 Our Contribution

With these themes and motivations in mind, in this work we describe an

approach that provides:

e Context-local and dynamically modifiable concrete syntax,



e Full context-free syntactic power, and

e A means for defining procedural meta-level code for arbitrary computa-

tion at compile-time.

Furthermore, we illustrate this approach in a system with Java as a base

language.

1.2 Modularity, Reusability, and Extensibility

The primary means of creating large and complex software systems has been
by building relatively simple program modules, and composing those modules
into larger, more complex software systems. The process for developing the
large software system can then be decomposed into the development of smaller
program modules. Smaller program modules are easier to understand, develop,
and test, and well-constructed modules can be reused to build other software
applications.

A refined use of modularization is for program layering. Program lay-
ering arranges modules into layers whose role is to transform the program
concepts at a higher level of abstraction to those at a lower level of abstrac-
tion. A layer is then extending the language below the layer, creating a new
(possibly superset) language.

Figure 1.1 shows how we draw the relationship between the language
LO below the layer, the module layer, and the language created by the layer,
L1.

Layering is a powerful structuring tool, and has been used in systems

from the Basic Linear Algebra Subroutines to the 7-layered OSI protocol stack



