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This work presents several new approa
hes to the 
onstru
tion of extensiblelanguages, and is the �rst system to 
ombine lo
al, dynami
ally extensible
ontext-free syntax with the expressive power of meta-level pro
edures. Theunifying theme of our system is that meaning should be 
omputed relative tolo
al 
ontext.We show how this theme is manifest in an implementation of a S
hemema
ro system whi
h a
hieves hygieni
 ma
ro expansion without rewriting.Additionally, our S
heme ma
ro system makes available 
ompile-time meta-obje
ts for additional power in writing ma
ros; ma
ros that pattern mat
h on
ompile-time types for optimization at ma
ro-pro
essing time are one example.This approa
h is 
urrently in use in our RS
heme implementation of S
heme.We also show the how this approa
h is applied to languages with 
onven-tional syntax, using Java as an example. We present a dynami
ally extensibleparser based on the Earley parsing algorithm. This approa
h is pra
ti
al as
iv



well as 
exible; a straightforward implementation in C parses a 600-line (2777token) �le in about 44ms on an 866MHz Pentium III.We also des
ribe a language extension framework that makes possiblean extensible variant of Java, in whi
h new syntax 
an be supplied by the
asual programmer with only limited knowledge of the underlying 
ompilerimplementation or approa
h. This �nally makes available to Java program-mers the easy a

ess to stru
tured ma
ro fa
ilities that Lisp programmers�nd so powerful. Finally, we demonstrate this framework by 
onstru
ting adeterministi
 �nite automaton language extension to Java.
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Chapter 1
Introdu
tion

The advantages of extensible languages have long been realized by the Lisp
ommunity. The ability to easily adjust the language to �t the appli
ation,rather than to always adjust the appli
ation to �t the language, is at the heartof what Lisp programmers 
onsider the deep power of Lisp [17, 33℄. In thiswork, we show how that power 
an be made more a

essible and powerfuleven in S
heme, as well as available to programmers in languages with 
on-ventional syntax su
h as Java. The tree-stru
tured transformations of Lispma
ros integrated with an extensible parser allow the 
on
epts to be uni�ed.In addition, a well-stru
tured 
ompiler meta-obje
t proto
ol exposes relevantaspe
ts of the 
ompilation pro
ess and provides powerful programmable hooksfor extending the language to �t the appli
ation.
1.1 Motivation
This work is motivated by the fa
t that mu
h existing work in extensiblelanguages is either insuÆ
iently expressive in the kinds of extensions that
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are permitted (i.e., fun
tion libraries) or expressed at the wrong level or inthe wrong ways (e.g., purely pro
edural transformations operating over textstrings).That is, we are primarily motivated by:
� Ease of language implementation
� Ease of language extension
� Ease of re-engineering language implementation (e.g., to 
hange perfor-man
e tradeo�s to deal with new te
hnologies or new usage patterns)

We re
ognize the following themes:
� Extensible languages should have extensible 
ompilers.
� Meaning should be expressed naturally through 
ontext, espe
ially through
ontour sensitive 
ontexts, whi
h preserve lexi
al s
oping throughouttransformation.
� An extensible 
ompiler should have a friendly interfa
e and be integratedwith languages using 
onventional grammars.
� Obje
ts used during the front-end pro
essing of a program should berei�ed, and be the domain obje
ts of meta-programming.

1.1.1 Our ContributionWith these themes and motivations in mind, in this work we des
ribe anapproa
h that provides:
� Context-lo
al and dynami
ally modi�able 
on
rete syntax,2



� Full 
ontext-free synta
ti
 power, and
� A means for de�ning pro
edural meta-level 
ode for arbitrary 
omputa-tion at 
ompile-time.

Furthermore, we illustrate this approa
h in a system with Java as a baselanguage.
1.2 Modularity, Reusability, and Extensibility
The primary means of 
reating large and 
omplex software systems has beenby building relatively simple program modules, and 
omposing those modulesinto larger, more 
omplex software systems. The pro
ess for developing thelarge software system 
an then be de
omposed into the development of smallerprogram modules. Smaller program modules are easier to understand, develop,and test, and well-
onstru
ted modules 
an be reused to build other softwareappli
ations.A re�ned use of modularization is for program layering. Program lay-ering arranges modules into layers whose role is to transform the program
on
epts at a higher level of abstra
tion to those at a lower level of abstra
-tion. A layer is then extending the language below the layer, 
reating a new(possibly superset) language.Figure 1.1 shows how we draw the relationship between the languageL0 below the layer, the module layer, and the language 
reated by the layer,L1. Layering is a powerful stru
turing tool, and has been used in systemsfrom the Basi
 Linear Algebra Subroutines to the 7-layered OSI proto
ol sta
k

3



L1

L0

layer

Figure 1.1: A simple layered program
for network 
ommuni
ation. The modularity provided by well-ar
hite
ted lay-ering leads to highly e�e
tive reuse of modules.If Figure 1.1 is drawn on its side and the layer module is thought of as apro
ess, an approa
h to language extension known as prepro
essing is revealed:

L1 L0layer

Figure 1.2: A prepro
essing approa
h
In this approa
h, language L1 is 
onsumed by the layer pro
ess, gener-ating an appropriate program in L0 as output. The language L1 is said to beprepro
essed into L0 be
ause the eventual exe
ution of the original programis done in an L0 exe
ution environment.Be it layering or prepro
essing, the manner in whi
h this modularityis expressed 
an be divided into two broad 
ategories. The �rst 
ategory isextension within the language, in whi
h the language itself 
ontains the meansto 
reate or modify layers. The se
ond 
ategory is extension from outside thelanguage, whi
h requires the separate implementation of a language translator,and is restri
ted to expressing modules using the prepro
essing approa
h.Extension from within the language is often a

omplished via program

4



libraries. This te
hnique is so well known { sin
e the days of Fortran, at least{ that it is not given a se
ond thought. A language without the ability tobe extended via fun
tion libraries is immediately re
ognized as unsuitable forserious programming.Large and 
omplex software systems have been built using the programlibrary te
hnique. Some libraries are so large and 
omplex that sophisti
atedsystems are required just in order to 
ompose their 
onstituents (e.g., see thework on the 
omposition of astronomi
al library 
omponents by Sti
kel andWaldinger [37℄). Other libraries are really pro
edural interfa
es to a spe
ializedlanguage environment. For example, RenderMan [41℄ and OpenGL [44℄ bothmaintain a 
omplex virtual ma
hine whi
h is managed by a library of API 
allsthat en
ode the 
onstru
ts and primitives of the language, in
luding nestingand 
onditionals. Still other libraries vastly extend the power and usefulnessof the base language (e.g., the Java 
ore API and the C++ Standard TemplateLibrary).These kinds of libraries are mostly 
olle
tions of pro
edural abstra
-tions. The C++ STL is a notable ex
eption in this respe
t; it represents alibrary of programming templates whi
h are instantiated at 
ompile-time to
reate the appli
ation.Pro
edural abstra
tion libraries are limited in their expressiveness inmost languages. For example, the evaluation of arguments is usually de�nedto take pla
e before a fun
tion is 
alled. Call-by-value semanti
s for argumentpassing make it impossible to implement a 
onditional 
onstru
t su
h as ifusing a fun
tion library style extension.Another problem with pro
edural abstra
tions is that the syntax offun
tion 
alls is usually 
onstrained by the language. For example, most
5



Fortran-derived languages adopt the notation from mathemati
s of the fun
-tion name followed by, in parentheses, a 
omma-separated list of arguments.Programmers of su
h languages would immediately re
ognize the example:
atan2( y, x )
as a 
all to a fun
tion named atan2 with two arguments, y and x.Sometimes, language extensions are in the form of ma
ros. These havethe added expressiveness of being able to de�ne spe
ial forms, but ma
ro se-manti
s are usually that of textual substitution. Many ma
ro implementationsgive little or no thought to preserving the relevant expression 
ontext (i.e., the
ontext at the point of ma
ro de�nition for the purpose of evaluating the ma
robody, and the 
ontext at the point of ma
ro use for the purpose of evaluatingthe ma
ro arguments.)In more severe 
ases, language extensions have taken the form of pre-pro
essors. C++ was originally implemented this way, as a prepro
essor fortransforming C++ into C1. Sometimes the prepro
essor is itself extensible.The C prepro
essor and C++ both are extensible prepro
essors in thesense that the language they provide 
an be extended by the input program.In the language of C ma
ros, this 
omes in the form of the #define dire
tive.In C++, a 
lass de�nition adds to the prepro
essor's internal stru
tures repre-senting the program being transformed and thereby 
onstitutes an extension.In both 
ases, the prepro
essor de�nes, as part of the language it provides,an extension framework. The eventual output of the C prepro
essor has allma
ros removed, and 
orresponds to the plain C 
ode. The C prepro
essor issu
h a general internally-extensible �lter, tied only loosely to the C language,1Sin
e the original implementation, however, the C++ language has be
ome 
ompli
atedenough to warrant its own 
ompiler. 6



that it has been used as an extensibility me
hanism for other languages, su
has IDL [29℄.Like the C prepro
essor, the C++ translator generates plain C 
ode asits output. The translation required to provide the C++ language is quite abit more sophisti
ated, and involves building 
omplex internal data stru
tures,applying internal transformations on parse trees, and unparsing the resultinto textual C 
ode for 
onsumption by the plain C 
ompiler. C++ supportsrelatively sophisti
ated language extensions in the form of templates, whi
hessentially support abstra
tions over types2.Prepro
essing 
an also be regarded as language implementation by trans-formation. If the input language and output language are suÆ
iently di�erent,it is often regarded this way (the line be
omes somewhat blurry when the inputlanguage is a stri
t superset of the output language).
1.3 Syntax-Dire
ted Translation
Another major for
e in mu
h of the development of language systems hasbeen the notion of syntax-dire
ted translation. In this metaphor, the synta
ti
stru
tures of the language 
orrespond to semanti
 stru
tures. As a result, thetranslation of a program, or its assignment of meaning, 
an be embedded inthe parsing pro
ess.Lisp has never been saddled with the notion of syntax-dire
ted transla-tion, instead basing translation on the top-down pro
essing of a simple parsetree. This gives Lisp programmers a more powerful means of expressing trans-2As opposed to fun
tions, whi
h abstra
t over values. That is, a fun
tion 
omputes anew value by being instantiated with a set of values as its arguments. A template 
reates anew 
onstru
t by being instantiated with types as arguments.

7



formations, be
ause they 
an operate on trees instead of streams of tokens.
1.4 Summary of Basi
 Approa
h
Our basi
 approa
h is to 
ompile expressions in environments. A 
ompilernormally makes use of some kind of 
ompile-time environment to keep tra
kof the meaning of identi�ers. This 
an be in the form of a global symboltable or, more typi
ally, a stru
tured representation that re
e
ts the nestedstru
ture of the program.Our approa
h, then, is to extend the use of this sort of symbol table in-formation to permit the e�e
tive interpretation of ma
ros in their appropriate
ontexts. As we show, this approa
h allows the ma
ros themselves to re
e
t(examine and operate upon) these 
ontexts, whi
h makes possible new kindsof expressive power and 
onvenien
e [39℄.This approa
h is extended to traditional language syntax using an inter-pretive parsing approa
h. In the parsing interpreter, the grammar be
omes apart of the 
ompile-time 
ontext, to be manipulated to implement the desired
ontext-dependent aspe
t of the extensible syntax.
1.5 S
ope of Work
There are three distin
t but related aspe
ts of this new approa
h to front-end
ompilation:

� Avoiding 
ommon problems with traditional ma
ros (e.g., providing hy-gieni
 ma
ro pro
essing).
8



� Extending the power of S
heme-style ma
ros, exposing the operation ofthe front-end and allowing the programmer to intervene in a stru
tured,timely manner.
� Supporting 
onventional grammars.

These aspe
ts provide the stru
ture for the rest of this dis
ussion, andare the main points of this work.The issue of providing synta
ti
 extensions in a Lisp-like language (i.e.,S
heme) involves an approa
h where ma
ro pro
essing is fully integrated withnormal 
ompiler pro
essing. Integrating ma
ro pro
essing with the 
ompilergives ma
ros both eÆ
ien
y and power. This approa
h is eÆ
ient be
ause norewriting of the sour
e program need be done, in 
ontrast to traditional ma
ropro
essing whi
h does rewrite the sour
e program into a \ma
ro expanded"program. Additional power for ma
ros is derived from the use of 
ompile-timeproto
ols to allow ma
ros a

ess to the information that is normally availableat 
ompile-time. No additional work is required to make su
h informationavailable { the 
ompiler typi
ally needs the information anyway { but be
ausema
ro pro
essing is integrated with 
ompilation, the ma
ro system 
an a

essthat information in a 
onvenient manner.Languages with 
onventional surfa
e grammars su
h as Java and C alsoneed me
hanisms for synta
ti
 extensibility. Chapter 3 shows how an extensibleparser 
an be 
onstru
ted that applies the general prin
iple of 
ontext-sensitivepro
essing to the parsing problem for a very simple parser. Chapter 4 appliesthe extensible parsing approa
h to a more sophisti
ated parser based on theEarley parsing algorithm.
9



Chapter 2
Ma
ro Systems

2.1 Introdu
tion
In this 
hapter, we des
ribe a kind of language extension me
hanism that is
apable of expressing new 
onstru
ts with mu
h more 
exibility than 
onven-tional library me
hanisms support. The kind of language extension me
hanismwe address is that of ma
ro systems. A ma
ro system is a language fa
ilitythat allows the user to write lo
alized transformations (ma
ros) that 
an beapplied to the sour
e program before later phases of the program pro
essingsystem attempt to assign a meaning to the sour
e program.We �rst dis
uss the very di�erent ma
ro systems available in the C lan-guage and the Lisp family of languages, in
luding Common Lisp and S
heme.We then provide a tentative taxonomy of S
heme ma
ros { a 
atalog of 
om-mon usage patterns adapted from the work of Carl [10℄.Then we elaborate upon our approa
h, whi
h integrates ma
ro pro-
essing with 
ompilation. That is, ma
ros are elaborated in a 
omputation

10



interleaved with the normal work of 
ompiling, instead of operating as a pre-pass. We show how that 
an lead to some additional expressive 
apabilitiesfor ma
ro writers be
ause some 
ompile-time information is available at ma
ropro
essing time.
2.2 Ba
kground
As we indi
ated in the previous 
hapter, the pro
edural abstra
tion is a pri-mary means of building modular program subsystems. However, many lan-guages 
onstrain the form and semanti
s of pro
edure 
alls. For example, apro
edure 
all form typi
ally evaluates all of its arguments exa
tly on
e be-fore invoking the 
alled pro
edure. In some 
ases, the 
ommon semanti
s of apro
edure 
all are insuÆ
ient to express the desired 
onstru
t.For example, if the appli
ation makes repeated use of an operation likeswap, it makes sense to en
apsulate the fun
tionality within an abstra
tion soit 
an be reused e�e
tively. However, the swap operation does not lend itself toa pro
edural abstra
tion be
ause both of its arguments are to be interpretedas both lvalues and rvalues { that is, as lo
ations suitable for being stored into(lvalues) as well as lo
ations to be read (rvalues)1 [38℄. Hen
e, a �xed fun
tion
alling proto
ol like 
all-by-value breaks down for operations like swap.Typi
ally, be
ause the fun
tion 
alling proto
ol is �xed in a language,pro
edural abstra
tions 
annot implement spe
ial forms. Spe
ial forms areprogram 
onstru
ts whi
h have spe
ial rules for evaluating their 
onstituent1The use of an argument as both an lvalue and an rvalue 
an be dealt with in languageswith expli
it pointers by simply passing a pointer to the lo
ations by value. However,some languages with 
all-by-value semanti
s, su
h as S
heme and T
l, do not have expli
itpointers.

11



parts. if and assignment (=) are typi
al examples of spe
ial forms. if isa spe
ial form be
ause its 
onsequent part is only evaluated or exe
uted ifthe 
onditional expression yields a true result. The assignment operation isa spe
ial form be
ause its left-hand side (the target of the assignment) is notevaluated; rather, its meaning is a lo
ation into whi
h the value of the right-hand side is to be stored.In some 
ases, a spe
ial form does not 
onstitute an expression in thesense of an exe
ution that takes pla
e at runtime to produ
e a value. Instead,a spe
ial form may represent a de�nition or other operation whi
h a�e
ts thestate of the 
ompiler. Pragmas, de�nitions, de
larations, and imports are all
ommon examples of this kind of spe
ial form.A language extension te
hnique 
ommonly used when the fun
tion 
all-ing proto
ol breaks down is that of ma
ros. A ma
ro is a user-de�ned trans-formation of the sour
e program that takes pla
e at 
ompile time.Be
ause ma
ros do their transforming at 
ompile time, their invo
ationproto
ol is more 
exible than the usual 
all-by-value fun
tion 
alling 
onven-tion. For example, they may arrange to have some arguments evaluated orexe
uted only in 
ertain 
ases or more than on
e.
2.2.1 C Ma
rosThe C language de�nes a standard prepro
essor for C programs [23℄. Theprepro
essor implements an extensible ma
ro language, allowing some kindsof ma
ros to be de�ned in C programs. However, C ma
ros are almost 
om-pletely distin
t from the rest of the C language. Pra
ti
ally the only thing Cma
ros share with the rest of the language is the lexi
al (token) stru
ture and

12



the syntax of fun
tion 
alls. The la
k of 
ooperation between the C ma
ropro
essor (typi
ally implemented as a separate textual �lter program) and therest of the C language results in problems with both syntax and 
ontext.De�nitions in a program intended for the C prepro
essor are lexi
allyquite distin
t from de�nitions intended for the plain C 
ompiler. For example,a typi
al fun
tion de�nition in C looks like:
int sqr( int a ){ return a * a;}
whereas an analogous ma
ro de�nition looks like:
#define sqr(a) ((a)*(a))

Pre-ANSI C prepro
essors 
onsidered a ma
ro de�nition to expand to asequen
e of 
hara
ters. The la
k of lexi
al stru
ture in the expansion 
reatedopportunities to violate the lexi
al integrity of the ma
ro arguments. Forexample, a ma
ro su
h as the following does not preserve the lexi
al integrityof its arguments:
#define quote(a) "a"

A use of the ma
ro quote su
h as \quote(1 + 2)" does not preservethe apparent lexi
al stru
ture of the arguments to the 
all { the argumentappears to be three tokens, whereas in fa
t the argument is interpreted as astring of 5 
hara
ters, with spa
es being signi�
ant.
13



When the ANSI 
ommittee re�ned the C language, the re
ognition ofthe problems with violating lexi
al integrity prompted the spe
i�
ation to
hange so that the C prepro
essor 
onsiders the body of a ma
ro de�nition tobe a sequen
e of tokens instead of a sequen
e of 
hara
ters.In some 
ases, it is a

epted pra
ti
e (and in fa
t a 
ommon idiom) towant to violate the lexi
al integrity of the arguments in a C ma
ro. To supportthose 
ases, the ANSI 
ommittee de�ned spe
ial operators, \#" and \##", tobypass the default behavior.One pla
e this feature is used is in the generation of families of lan-guage obje
ts; that is, sets of related obje
ts, typi
ally sharing a portion oftheir name. For example, an appli
ation that uses C stru
tures to re
ord in-formation about normal language pro
edures might make use of a C ma
roto build the appropriate stru
tures automati
ally. The following ma
ro, forexample, illustrates su
h a use:
#define PROC(name,arg) \int name( int ); \stru
t info name ## _info = \{ name, \# name }; \int name( int arg )

This ma
ro 
an be used to de
lare a pro
edure with a 
ommon interfa
e(i.e., takes a single integer argument and returns an integer result) like so:
PROC(sqr,x){ return x * x; 14



}
The o

urren
e of the PROC ma
ro 
reates the appropriate stru
turede
laration and �lls it in. The use of the spe
ial ## operator in the ma
rode�nition 
reates a new token (identi�er) 
omposed of the 
hara
ters of itsarguments. Hen
e, the above example use 
reates a variable sqr info of typestru
t info. Furthermore, the use of the spe
ial # operator 
reates a stringwhose 
ontents are the 
hara
ters of the ma
ro argument, in this 
ase \sqr".Using these spe
ial operators, the sqr info stru
ture 
an be initialized withthe name of the pro
edure de
lared using the PROC ma
ro.The # operator is espe
ially useful as a simple form of introspe
tion,allowing a ma
ro to transform the text of an argument into a program dataobje
t. The standard C assertma
ro makes use of this operator to provide aninformative error message when a program assertion fails. Lisp programmersare familiar with this general te
hnique as the ability for ma
ros to quote anargument.Despite these spe
ial operations, the default behavior in the C prepro-
essor is to preserve the lexi
al stru
ture. Nevertheless, the la
k of grammati
alstru
ture in the expansion 
reates opportunities to violate the grammati
al in-tegrity of the ma
ro arguments.Consider, for example, the following na��ve implementation of the sqrma
ro:

#define sqr(a) a*a
This ma
ro de�nition appears to 
apture the intended meaning, but infa
t is an error waiting to happen. Be
ause the C prepro
essor does not honor
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the grammati
al stru
ture of the ma
ro arguments, a grammati
al misinter-pretation 
an arise. For example, 
onsider what happens if the programmeruses sqr(x+1). The rule of substitution of strings of tokens gives rise to thetoken sequen
e x+1*x+1, whi
h means the same as x+(1*x)+1. However, theintended meaning was probably (x+1)*(x+1), a very di�erent expression.Competent C programmers are familiar with the 
onsequen
es of the Cprepro
essor not preserving the grammati
al stru
ture of the ma
ro arguments.As a matter of habit, they defend against this kind of misinterpretation byinserting parentheses around the uses of ma
ro arguments, as in the followingde�nition:
#define sqr(a) ((a)*(a))

The invo
ation proto
ol for ma
ros is one of textual substitution, so sidee�e
ts in an argument to the sqr ma
ro o

ur twi
e. Repeated side-e�e
ts 
anlead to pe
uliar situations. For example, the probability that sqr(random())returns a square number is almost nil, whereas it would appear to always doso. Despite its limitations, the textual substitution proto
ol makes C pre-pro
essor ma
ros suÆ
ient for de�ning spe
ial forms. The la
k of any enfor
e-ment of evaluation order means that the ma
ro de�nition 
an typi
ally arrangeto evaluate its arguments exa
tly as many times as desired.However, the textual substitution proto
ol intera
ts poorly with the in-ability in the C language to de�ne lo
al variables within an expression. Lispprogrammers who write ma
ros are familiar with the problems of repeatedside-e�e
ts and, like C ma
ro writers inserting parentheses to prevent gram-mati
al misinterpretation, routinely insert binding 
onstru
ts to ensure that16




ertain arguments are evaluated exa
tly on
e and in the right order. However,the C language enfor
es a di
hotomy between statements and expressions.Statements may 
ontain expressions, but not vi
e-versa. Sin
e all the binding
onstru
ts in C are statements, an expression 
annot bind a temporary vari-able to hold onto the value of an expression that should be evaluated on
e,su
h as the argument to sqr.An extension to C supported by the g

 
ompiler is the ability to writea statement as an expression by en
losing it in bra
es within parentheses. This
onstru
t 
reates a statement expression. Hen
e, it is possible to write:
#define sqr(a) ({ int temp = (a); \temp * temp; })

However, in ANSI C this is not possible, so a safe inlined version of sqris impossible to write.Another advantage of the textual substitution proto
ol for ma
ro invo-
ation in C, 
ompared to the fun
tional 
alling proto
ol, is that of polymor-phism. That is, the polymorphism available with the standard mathemati
aloperators in C is available to the 
aller of a ma
ro using those operators.For example, some versions of the sqr ma
ro given above, su
h as:
#define sqr(a) ((a)*(a))

an operate on both integral and 
oating-point arguments, returning a valueof the same type. This works be
ause the ma
ro substitution pro
ess has noknowledge of types, and textual substitution produ
es expressions to whi
hthe normal C 
ompiler 
an apply the usual polymorphi
 arithmeti
 operators.Polymorphism of this nature is of relatively little use in C be
ause of the
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limited availability of polymorphi
 operators, but C++ programmers 
an make
onsiderable use of this 
apability.When the programmer uses the statement expression extension of g

,preserving this polymorphism in the safe version requires the use of an ad-ditional extension operator. The meaning of the typeof operator applied tosome expression e is the type whi
h is the result of e. Therefore, the typeofoperator 
an be used to de
lare a variable of a type whi
h is not known to theauthor of the ma
ro de�nition. Extending our running sqr ma
ro to preservenumeri
 polymorphism this way, we have:
#define sqr(a) ({ typeof(a) temp = (a); \temp * temp; })

Even with the use of C extensions, C ma
ros still have problems dealingwith temporary names. The following example illustrates the problem:
#define dist(x,y) ({ typeof(x) x_temp = (x); \typeof(y) y_temp = (y); \sqrt( x_temp * x_temp + \y_temp * y_temp ); })

If the expression given y involves a variable named x temp, its o

ur-ren
e in the ma
ro expansion refers to the temporary variable de�ned by thema
ro.The problem with internal names 
on
i
ting with program sour
e namesis somewhat ameliorated by the 
hoi
e of obs
ure names for internal identi�ers.However, the problem 
annot be 
ompletely avoided if a ma
ro might be usedre
ursively or o

ur in di�erent expansion paths.18



For example, in C, ma
ros 
an't expand re
ursively be
ause there'sno ma
ro-time 
ontrol 
onstru
t to avoid inde�nite re
ursion. However, twoma
ros 
an both be de�ned in terms of some other ma
ro, whi
h results in thesame kind of sharing.
#define UTIL_START { int se
retflag; se
retflag = 0;#define UTIL_END(pro
) if (se
retflag) pro
(se
retflag); }#define UTIL_TAG se
retflag = __line__
#define TRACK_ERRORS_START UTIL_START#define TRACK_ERROR_END UTIL_END(got_error)#define ERROR_HERE UTIL_TAG
#define TRACK_WARN_START UTIL_START#define TRACK_WARN_END UTIL_END(got_warning)#define WARNING_HERE UTIL_TAG

If a warning-tra
king blo
k is used inside of an error-tra
king blo
k,their se
retflag variables get 
onfused. In C, the way around this is toeither dupli
ate the 
ode (i.e., not have a separate UTIL abstra
tion), or topass around uniquifying identi�ers (whi
h might have to 
ome from the sour
eprogram, if the same kind of blo
ks of this sort 
an be nested, whi
h may inturn happen via ma
ro expansion!)Another problem with C ma
ros is their limited surfa
e syntax { theuse of a ma
ro always looks like a fun
tion 
all, even when its semanti
s aremore similar to 
onstru
ts in the language with di�erent syntax. For example,a ma
ro to implement a new kind of looping 
onstru
t would wind up looking19



like a fun
tion 
all rather than a while statement.
2.2.2 Lisp Ma
rosIn a Lisp 
ompiler (or interpreter), the basi
 pro
essing of input programsis somewhat di�erent from that of traditional FORTRAN-derived languages.The input program is subje
ted to lexi
al analysis and parsing, as usual, butthe result of parsing is essentially a parse tree represented as a Lisp data stru
-ture, instead of an abstra
t syntax tree. The part of the Lisp 
ompiler thatassigns meaning to the input program (i.e., builds an abstra
t syntax tree) op-erates on this parse tree data stru
ture. In the traditional language approa
h,that part of the 
ompiler fun
tions inside the parser, assigning meaning duringthe parse itself.Lisp, like C, also appre
iates the utility of ma
ros. The same 
ommentsabove that made ma
ros desirable in C apply to Lisp as well. Be
ause Lisp, likeC, has a �xed and 
all-by-value fun
tion 
alling proto
ol, the need to 
ontrolthe evaluation of arguments gives rise to the need for ma
ros. The ability toportably inline 
ode is another 
lassi
 reason to use ma
ros in Lisp, as well asin C. Ma
ros are implemented somewhat di�erently in Lisp than they arein C. Instead of a separate, prepro
essing-based language layer, ma
ros areexe
uted at 
ompile time, interleaved with the normal 
ompilation [22℄2. Whenthe 
ompiler en
ounters a parse tree whose head names a ma
ro, the 
ompilerexe
utes the body of the ma
ro, with the other bran
hes of the parse treebound as the arguments to the ma
ro. The result of exe
uting the ma
ro2A
tually, Common Lisp does not spe
ify exa
tly when exe
ution of ma
ro forms hap-pens, whi
h gives rise to a whole new 
lass of ma
ro errors.
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de�nition's body is a new parse tree, whi
h the 
ompiler then pro
eeds to
ompile as usual.One thing to noti
e is that the body of the ma
ro is arbitrary Lisp
ode. The 
omplete power of the programming language is available to theprogrammer at 
ompile time for the purpose of expanding the use of a ma
ro.This is very di�erent from most ma
ro systems, and C's in parti
ular, whi
hhave only very limited expressiveness available to the ma
ro system3.Mostly be
ause ma
ros are so 
ommon in Lisp, a spe
ial operator was in-trodu
ed to make it easy to write the body of a ma
ro. This is the quasiquoteor ba
kquote operator, and it works essentially by letting the programmer writea parse tree as data with holes in it. For example,`(* ,x 2)represents a parse tree for a 3-element list with * at its head, a 2 in the lastposition, and a hole in the middle position. The exe
ution of su
h a forme�e
tively �lls in the holes by evaluating the expressions within unquotes or
ommas. Hen
e, if the value of x is the parse tree (+ 1 2), then the result ofexe
uting the above quasiquoted form would be:(* (+ 1 2) 2)The use of quasiquote makes it quite easy to write many Lisp ma
ros.Extending the running example above for C, one 
ould write a na��ve ma
ro inLisp for 
omputing the square of an argument:(defma
ro sqr (x)`(* ,x ,x))3For example, in C it is not possible to write a ma
ro repeat(n,x) whi
h expands to n
opies of the expression x. 21



In the 
ontext of C, we saw how the sqr ma
ro would inadvertentlyevaluate its argument twi
e. This na��ve ma
ro in Lisp would do likewise.Unlike C, Lisp does not distinguish statements from expressions. In ef-fe
t, everything is an expression, in
luding binding 
onstru
ts. This uniformitymakes �xing the multiple-evaluation problem straightforward:
(defma
ro sqr (x)`(let ((temp ,x))(* temp temp)))

Furthermore, Lisp is dynami
ally typed, whereas C is stati
ally typed.Hen
e, the lauded polymorphism available to C ma
ros is trivially available inLisp ma
ros as well, even with a binding 
onstru
t to hold temporary values4.In a dynami
 type system, the polymorphism is realized at the leaves of the
omputation tree so intermediate 
ompiler passes and intermediate variablesneed not repli
ate knowledge of the data type. (On the down side, this makesit mu
h harder for 
ompilers to 
he
k types and do type-based optimizations.)The above ma
ro de�nition still has the problem of name 
lashes oftemporary names. The sqr ma
ro is too simple to illustrate this problem, soinstead 
onsider a ma
ro for the binary form of the Lisp or spe
ial form:
(defma
ro or (a b)`(let ((temp ,a))(if temptemp,b)))4This bene�t 
omes at the 
ost of either runtime performan
e or 
ompiler 
omplexity.
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Re
all that the intention is that or returns the value of its �rst argumentif it is not nil (and in whi
h 
ase it does not evaluate its se
ond argument).Otherwise or returns the value of its se
ond argument.The use of a temporary variable prevents repeated evaluation of the �rstargument when it turns out to be true, but the name given to that temporaryvariable 
an 
lash with names in the se
ond argument. Consider the followinguse of the or ma
ro:
(defun un
omfortablep (temp)(or (> temp 80)(< temp 65)))

The expansion of this ma
ro results in:
(defun un
omfortablep (temp)(let ((temp (> temp 80)))(if temptemp(< temp 65))))

The identi�er temp in (< temp 65) is meant to refer to the argumentof the fun
tion un
omfortablep, and instead winds up referring to the lo
alvariable by the same name.This problem 
an be somewhat mitigated by the 
hoi
e of even moreobs
ure names. However, when ma
ros 
an be used re
ursively, no assignmentof obs
ure names 
an prote
t against an inadvertent 
on
i
t. Fortunately, be-
ause Lisp ma
ros have the 
omplete expressiveness of the language5 for gen-5The language in whi
h the ma
ros are written is properly 
alled the meta-language, butin Lisp the meta-language is the same as the underlying (target) language.23



erating expansion parse trees, a ma
ro 
an 
onstru
t a new identi�er on ea
hinvo
ation. This is the so-
alled gensym approa
h for dealing with variable
apture problems in Lisp ma
ros. The following modi�ed or ma
ro illustratesthis approa
h:
(defma
ro or (a b)(let ((temp (gensym)))`(let ((,temp ,a))(if ,temp,temp,b))))

Now, ea
h time the or ma
ro is 
alled, a new, fresh identi�er is 
reatedfor use as the name of the temporary variable. Sin
e the identi�er is new, it
annot 
on
i
t with any other identi�er in the program, whether generated bygensym or not.By appropriate use of temporary variables to avoid multiple evaluationand the gensym approa
h to avoid name 
lashes, Lisp ma
ros 
an be writtenthat 
orre
tly provide their intended semanti
s. However, due to these pitfalls,doing so may involve 
onsiderable work and obs
ure bugs may lurk undete
ted.Lisp ma
ros are restri
ted to de�ning new expressions6. That is, the
ompiler does not re
ognize the use of a ma
ro in pla
es that are not seman-ti
ally expressions, e.g., in the formal arguments spe
i�
ation of a pro
edure.6Common Lisp has a related but separate me
hanism for de�ning ma
ros for assignmentlo
ations. setf ma
ros allow the de�nition of new kinds of arguments to the assignmentspe
ial forms.
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2.2.3 S
heme Ma
rosThe S
heme language takes a slightly di�erent approa
h to a
hieving the goalof ma
ro support. S
heme ma
ros are in some ways intermediate betweenLisp ma
ros and C ma
ros. Like Lisp ma
ros, they operate on stru
turedparse trees (not abstra
t syntax trees). Like C ma
ros, they are de
larativeand do not provide all of the expressive power of the language to the ma
roprogrammer.The main distinguishing 
hara
teristi
 of S
heme ma
ros is that theyautomati
ally provide hygieni
 ma
ro expansion [14℄. Hygieni
 ma
ro expan-sion refers to the avoidan
e of name 
lashes su
h as we saw in the or ma
roexample in the previous se
tion.S
heme ma
ros are de�ned using the define-syntax form. A set ofpatterns are given with syntax-rules, and in ea
h pattern the spe
ial symbol\ " a
ts as a pla
e-holder for the name of the ma
ro being de�ned. The spe
ialsymbol \..." is used to denote a repeating element of the argument pattern.For example, a simple S
heme ma
ro for or is:
(define-syntax or(syntax-rules ()((_ a b)(let ((temp a))(if temptempb)))))
This de�nes a ma
ro whi
h mat
hes a two-argument invo
ation of or, forexample, (or (
at) (dog)). 25



The ma
ro expansion pro
ess as de�ned in R5RS automati
ally ensuresthat names introdu
ed in di�erent 
ontexts (i.e., inside the ma
ro de�nitionvs. at the use site) do not inadvertently refer to ea
h other. In this 
ase, thetemp variable that is used to prevent multiple evaluation of the �rst argument,a, does not 
on
i
t with any identi�er temp in the argument b.Note that S
heme ma
ros have to deal with suppressing multiple eval-uation of arguments. This is a property of all ma
ro systems that 
an expressspe
ial forms, be
ause the whole purpose of a spe
ial form is to permit theevaluation of an argument either zero times or more than on
e.S
heme a
hieves hygieni
 ma
ro expansion by making the ma
ro ex-pansion pro
ess aware of the binding 
onstru
ts su
h as let so that it 
anautomati
ally rename variables when ne
essary. If the above or ma
ro wereused in something like:
(define (un
omfortable? temp)(or (> temp 80)(< temp 65)))

then the e�e
t is as though the gensym approa
h in Lisp were used, butautomati
ally. The result is something like:
(define (un
omfortable? temp)(let ((temp.1 (> temp 80)))(if temp.1temp.1(< temp 65))))

Be
ause the ma
ro expander is aware of the variable binding role of
26



let, it 
an 
reate a new name for its variables and keep tra
k of the mappingfrom sour
e names to renamed variables.Most S
heme implementations appear to implement the hygieni
 se-manti
s of S
heme ma
ros using a renaming te
hnique. That is, hygiene isa
hieved by automati
ally 
omputing the ne
essary generated symbols.The renaming transformation is a pro
ess whi
h is interleaved with 
om-pilation, but separate from that 
ompilation. As a result, the ma
ro expanderhas to be aware of all the 
onstru
ts in the language whi
h a�e
t s
ope and tohandle any renaming appropriately. Fortunately, this is usually easy be
ausethe system designer typi
ally implements only a few basi
 forms in the 
om-piler proper and uses ma
ro expansion to handle the rest. For example, the
ore 
ompiler might implement only lambda, letre
, set! and a few others.Most binding 
onstru
ts, like let* and do, would be implemented as ma
ros.The ma
ro expander only needs to be aware of the 
onstru
ts dire
tly under-stood by the 
ore 
ompiler be
ause the expander already knows how to handlegeneral hygieni
 expansion of ma
ros.
2.2.4 Systems Related to Ma
rosMa
ro systems are not the only means for allowing the user to de�ne spe
ialforms. More 
exible argument passing te
hniques 
an generalize the tradi-tional fun
tion 
alling proto
ol suÆ
iently that spe
ial forms are a

essible.One su
h 
exible argument passing te
hnique is that of 
all-by-name. In
all-by-name argument passing, the evaluation of the arguments to a pro
edureis under the 
ontrol of the 
alled pro
edure. This a
hieves an e�e
t somewhatlike ma
ros, and spe
ial forms 
an be written using this parameter passing
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te
hnique.For example, 
onsider the following 
onditional 
onstru
t (in a pseudo-Algol language):
define until( WHAT, TO_EXIT )beginwhile true dobeginWHAT;if TO_EXIT then return;end;end.

Call-by-name has problems, though. In parti
ular, it is known that a
all-by-name 
alling 
onvention 
annot implement swap safely. Furthermore,it seems that the use of su
h a subtle 
alling 
onvention as 
all-by-name 
anbe quite dangerous to use as frequently as fun
tion 
alling is used, as well asbeing rather ineÆ
ient to use as the default 
alling 
onvention.Another argument passing te
hnique that is 
exible enough to imple-ment some spe
ial forms is that of 
all-by-need or lazy evaluation. In thiste
hnique, arguments are evaluated zero or one times, and only when needed.Conditional 
onstru
ts 
an be implemented using 
all-by-need. However, newbinding 
onstru
ts 
annot be implemented in Haskell be
ause, although typi
alimplementations use a transformational pro
ess to 
onvert the exposed lan-guage to a lower-level 
ore language (desugaring), these sugar-
oating fa
ilitiesare not exposed to the programmer.
28



2.3 A Taxonomy of S
heme Ma
ros
2.3.1 Call-by-name Inline Pro
eduresPerhaps the simplest use of S
heme ma
ros is as 
all-by-name inline pro
edures.In this 
ase, ma
ro de�nitions are regarded as de
larations of inline pro
edureswhose arguments are passed by name rather than by value.Call-by-name inline pro
edures are also the easiest to implement 
or-re
tly. The te
hnique of synta
ti
 
losures was introdu
ed by Bawden andRees [6℄ to solve the hygiene problem for 
all-by-name inline pro
edures. Thesynta
ti
 
losure approa
h is suÆ
ient for implementing ma
ros used as 
all-by-name inline pro
edures, and our approa
h is based on extending these ideas.As an example, the or ma
ro illustrates the 
ommon use of ma
ros as
all-by-name inline pro
edures.
(define-syntax or(syntax-rules ()((_ term)term)((_)#f)((_ term terms ...)(let ((temp term))(if temptemp(or terms ...))))))
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2.3.2 Advertent CaptureInline 
all-by-name pro
edures, and a straightforward implementation usingsynta
ti
 
losures, 
annot express binding 
onstru
ts. The ability to 
reatebindings in a ma
ro body whose variables are visible to expressions that arearguments to the ma
ro requires advertent 
apture. The sense of advertent isthat the 
apture of identi�ers by the body of the ma
ro is done on purpose,with due 
onsideration of the intended semanti
s.The S
heme form let* is easily expressed using a ma
ro with advertent
apture:
(define-syntax let*(syntax-rules ()((_ () body ...)(begin body ...))((_ ((var init) bdg ...) body ...)(let ((var init))(let* (bdg ...) body ...)))))

In this ma
ro, the bindings represented by var are inserted by thema
ro, and 
apture referen
es within body. For example, a use of the let*ma
ro su
h as:
(let* ((begin 'start)(end 'stop))(list begin end))
would expand into:
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(let ((begin.1 'start))(let ((end.1 'stop))(begin(list begin.1 end.1))))
where begin.1 and end.1 are identi�ers 
onstru
ted by the ma
ro expansionpro
ess. They are 
hosen to be unique, and hen
e do not 
lash with anyreferen
e in the body of the ma
ro, in parti
ular the referen
e to begin.
2.3.3 Expli
it Intentional CaptureA third general use of ma
ros is to insert a binding into an environment wherethe inserted name does not o

ur as an argument to the ma
ro. We 
all thisexpli
it intentional 
apture.Implementing something like C while, whi
h permits the use of breakwithin its body, requires expli
it intentional 
apture. Consider the followingpro
edure whi
h makes use of a hypotheti
al while spe
ial form:
(define (with-ea
h-datum port pro
)(while #t(let ((datum (read port)))(if (eof-obje
t? datum)(break)(pro
 datum)))))

Here, the spe
ial form while introdu
es a new binding for break in thes
ope of its body. The name break is not expli
itly referen
ed by the invokerof the ma
ro, so the advertent 
apture rules 
annot apply. Expli
it intentional
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apture makes it possible to write while, and at the same time makes thema
ro author expli
itly aware that they are bypassing the normal s
ope rules.
2.4 Our Contribution
Our approa
h is novel in two respe
ts. First, it does not expli
itly rewrite thesour
e program; there is no notion of a \transformed" output that is subse-quently fed into a ma
ro-de�
ient 
ompiler. Se
ond, it allows the meaning ofspe
ial forms (in
luding syntax) to be propagated upward in the 
ompilationpro
ess. The latter 
orresponds to a 
ontrolled form of eager ma
ro pro
essing.
2.4.1 RS
heme Ma
rosThe RS
heme implementation of S
heme supports S
heme ma
ros, but the sys-tem a
hieves hygieni
 ma
ro expansion using a te
hnique whi
h is not basedon prepro
essing and renaming of variables, whi
h most S
heme implemen-tations use. The RS
heme implementation integrates ma
ro expansion with
ompilation; there is no ma
ro expansion per se.Be
ause ma
ro pro
essing is fully integrated with 
ompilation, RS
heme'sma
ro fa
ility does not need to be expli
itly aware of the binding 
onstru
tsin the underlying language. Instead, the ma
ro fa
ility dire
tly manipulatesthe 
ompile-time obje
ts representing variables and bindings. Furthermore,the order of ma
ro pro
essing is well-de�ned, sin
e the RS
heme system doesnot have a separate interpreter.
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2.4.2 Type Re
e
tive Ma
rosThe integration of the ma
ro system with the 
ompiler makes possible addi-tional taxa of S
heme ma
ros. An RS
heme ma
ro 
an use 
ompile-time in-formation to do new kinds of pattern mat
hing. Being able to pattern mat
hon 
ompile-time information allows 
ertain kinds of optimizations to be ex-pressed using the ma
ro system, whi
h makes this ability a powerful languagedevelopment tool as well as valuable to the end user.For example, a runtime system might have two primitive pro
edures foradding numbers, one to be used when both arguments are known at 
ompile-time to be small integers. A ma
ro 
an de�ne a pattern that only mat
heswhen that 
ondition is satis�ed and generates the appropriate, fast instru
tion.The default rule 
ould invoke the slower primitive pro
edure.This general approa
h has been used in the RS
heme system to stru
-ture the interfa
e between high-level 
ode and low-level primitives with di�er-ing performan
e tradeo�s. Examples are elaborated in Se
tion 2.5.2.
2.5 Our Implementation
Our implementation is based on a simple re
ursive 
ompiler operating overa surfa
e parse of the input program. The surfa
e parse is the result of theS
heme read pro
edure, and hen
e is a tree-stru
tured representation of thesour
e text. The tree stru
ture is laid out expli
itly by the user; there is nounderstanding of the language grammar or semanti
s that are applied at thistime. The re
ursive stru
ture of 
ompilation is over this tree, so the programsubtext at any given point is the input to the 
ompilation pro
edure.
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The return value from the 
ompilation pro
edure is the meaning asso
i-ated with that program subtext in the 
ontext of that point in the system. Inparti
ular, it is either intermediate 
ode or a meta-obje
t denoting a variable.The stru
ture of intermediate 
ode as used in our implementation isnot important for this dis
ussion { it may be any appropriate representationwhi
h has variable bindings 
ompletely resolved. In our implementation, itis a simple tree-
ode representation whi
h 
an be immediately fed into theba
k end of the RS
heme 
ompiler for 
ode generation. Furthermore, textualreferen
es to variables are en
oded as obje
t referen
es to the 
orrespondingvariable meta-obje
t. No binding ambiguity 
an arise, be
ause the variablereferen
e points to the a
tual variable meta-obje
t. Meta-obje
ts denotingvariables represent o

urren
es of variable de�nitions in the input program.
2.5.1 OperationTo 
ompile an expression in an environment, we maintain a data stru
turerepresenting the \lo
ation" of the expression. By lo
ation here we mean a
omplete indi
ation of the s
ope of the expression, whi
h is suÆ
ient to 
om-pletely resolve the meaning of any identi�er that may o

ur in that expression.An expression's lo
ation is a 2-tuple of its pla
e and its environment.The pla
e denotes the lexi
al position within the sour
e text. The environ-ment denotes the mapping from identi�er-pla
e tuples to a
tual variables. Bya
tual variables, we mean 
ompletely resolved 
ompile-time meta-obje
ts thatrepresent either a 
olle
tion of run-time bindings or a distin
t 
ompile-timebinding.To illustrate this terminology, 
onsider the following program fragment:
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(lambda (x)
  (let ((y (foo x)))
    (cons x y)))

The re
tilinear 
ontours are a visualization of the pla
es in this programfragment. The lambda introdu
es a new 
ontour for its argument. Likewise,the let introdu
es a 
ontour for its variable. This fragment, with pla
es P1and P2, exer
ise the the following bindings:
hlambda; topi ! lambda-sfhx;P1i ! x-varhy;P2i ! y-var

Example 1Let us walk through an initial, simple example. This example does not illus-trate the more subtle e�e
ts when ma
ros are involved; it just shows how thesystem works in the simple 
ase. This should make it 
lear that the 
orre
tresult is produ
ed at least for 
ode that doesn't use ma
ros.This simple pro
edure 
ons's the head of the �rst list onto the se
ondlist, for example, turning (a b) and (3 2 1) into (a 3 2 1):
(lambda (x y)(let ((z (
ar x)))(
ons z y)))

Initially, the pla
e is top and the envt 
onsists of (along with many
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more like this): hlambda; topi ! lambda-sfhlet; topi ! let-sfh
ons; topi ! 
ons-tlvh
ar; topi ! 
ar-tlv
The -sf suÆx is a mnemoni
 to indi
ate meta-obje
ts denoting spe-
ial forms. Likewise, the -tlv suÆx is used to name top-level variables. Inthe a
tual implementation, these names 
orrespond to meta-obje
ts whi
h aresub
lasses of <variable>. Ea
h spe
ial form meta-obje
t has a 
ompile-timepro
edure, its handler, asso
iated with it, whi
h is responsible for implement-ing the semanti
s of the form. The handler is invoked to pro
ess an o

urren
eof the form, and is provided with the 
omplete 
ompile-time environment.The meaning of the form (lambda ...) is determined by the meta-obje
t that is the meaning of the head part. That is, to 
ompute the meaningof a list stru
ture, the meaning of the head position is 
omputed, and then
omputing the meaning for the entire form is delegated to the head's meaning.Computing the meaning of a symbol involves a double loop. The outerloop is over the nesting of the pla
e. That is, we start at the 
urrent pla
e, andif we 
an't �nd a binding in the environment for that pla
e, we try its outer
ontour until we run out of pla
es to look. If we run out of pla
es, the symbolis unbound in this pla
e, whi
h is an error7.Sin
e the 
urrent pla
e is top, we sear
h the envt (bottom to top) fora tuple hlambda; topi. In this 
ase, we �nd it { it is bound to the variable7In the a
tual implementation, giving up means that the symbol presumably refers to anas-yet unde�ned variable; i.e., it is a forward referen
e. We do not address those engineeringissues in this dis
ussion, assuming that all variables are de�ned.
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lambda-sf { so we return that as the meaning of the symbol lambda in thepla
e top.Now we return to the problem of determining the meaning of (lambda...), whose head means lambda-sf. The behavior of spe
ial forms for 
om-puting 
ompositions is to invoke the spe
ial form's handler, the 
ompile-timepro
edure asso
iated with the spe
ial form for just this purpose. This pro-
edure is one of the primary gateways from the main re
ursive 
ompilationdriver to spe
ial-
ase 
ode.The handler for lambda-sf parses the \lambda list" { the pro
edurearguments8. Having parsed the arguments, the lambda-sf handler 
onstru
ts anew 
ontour, sin
e it knows that its body is in a new s
ope, and the argumentsare bound in the environment with respe
t to the new pla
e. Call the newpla
e P. Then, in this 
ase, the handler adds:
hx;Pi ! x-varhy;Pi ! y-varto the end of the environment 
hain.The meta-obje
ts x-var and y-var are 
ompile-time obje
ts that repre-sent a 
olle
tion of storage lo
ations at runtime.Having established the bindings, the meaning of the body, (let ...),is 
omputed in the new pla
e, P, and environment. As before, the stru
ture isre
ognized as a list, and the head looked up. In this 
ase, the �rst iteration ofthe outer lookup { an attempt to lo
ate hlet;Pi in the environment { fails, sothe outer pla
e, top, is 
he
ked and hlet; topi is found to be bound to let-sf .8How the lambda list is parsed is to use the internal pattern-mat
hing me
hanism fromthe inside of the 
ompiler, sin
e the pattern mat
hing already knows how to expand patternvariables in pursuit of a mat
h.
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Example 2Let us take as a further example a more diÆ
ult 
ase. In this 
ase, we de�nea ma
ro and 
all it. However, we still do nothing very 
ompli
ated. In fa
t,this example 
ould be handled well with a synta
ti
 
losures approa
h [6℄.
(lambda (temp x y)(let-syntax ((or (syntax-rules ()((_ a b)(let ((temp a))(if temptempb))))))(or (temp x)(temp y))))

In this example, the �rst argument to the pro
edure is intended to beanother pro
edure whi
h obtains the temperature value of an obje
t, or returns#f if the temperature is not known.As before, initially pla
e is top and the environment 
onsists of:
hlambda; topi ! lambda-sfhlet; topi ! let-sfhlet-syntax; topi ! let-syntax-sfhif; topi ! if-sfAgain, the pro
essing of lambda 
reates a new pla
e { 
all it Q { and extends
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the environment with: htemp;Qi ! temp-var0hx;Qi ! x-varhy;Qi ! y-varNow, when the let-syntax form is pro
essed, the handler9 
reates a pla
einside Q { 
all it R { and extends the environment with:
hor;Ri ! or-rules

Here, or-rules is a kind of spe
ial form that 
aptures the syntax rules, thepla
e Q, and the environment up through the binding for y. (Note that if thishad been a letre
-syntax form, the pla
e R would be 
aptured and hen
eits environment would in
lude the or binding.)The determination of meaning for the body of the let-syntax is theusual. In this 
ase, when or is found in 
ontour R, its meaning is a synta
ti
abstra
tion. The meaning of a list whose �rst element means a synta
ti
abstra
tion is determined by �nding an appropriate expansion using patternmat
hing in the syntax rules.Here we have only one pattern, and it mat
hes. The result of �nding apattern mat
h is that the 
urrent pla
e reverts to the pla
e of de�nition, andthen a new 
ontour (pla
e) is 
reated to represent the s
ope of the patternvariables. In this 
ase, this means we bind the identi�ers a and b to patternvariable obje
ts that 
apture the sour
e text and pla
e. The environment itselfis not reverted.9Lo
ated via the binding hlet-syntax; topi ! let-syntax-sf
39



Let us 
all the new pla
e S, in whi
h 
ase we bind:
ha; Si ! a-pvhb; Si ! b-pvwhere a-pv denotes the text (temp x) in pla
e R, and b-pv denotes the text(temp y) in pla
e R.We now 
ompute the meaning of the body of the mat
hed syntax rulein the so extended environment and in pla
e R. The let form is re
ognizedas usual.Noti
e at this point that we are 
omputing meanings as usual { thereis no expli
it re
ognition that we are inside the body of a synta
ti
 template.It is during the 
omputation of the meaning of the initial value expres-sion for the let that we �rst en
ounter a pattern variable. That is, the lookupof ha; Si �nds a-pv . To 
ompute the meaning of a pattern variable, we 
omputethe meaning of its text in its pla
e of origin, in this 
ase (temp x) in R. Theenvironment 
hain is un
hanged { it monotoni
ally in
reases with the depthof re
ursive 
ompilation and impli
itly shrinks when a re
ursive 
ompilationexits.
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At this point, the environment 
ontains:hlambda; topi ! lambda-sfhlet; topi ! let-sfhlet-syntax; topi ! let-syntax-sfhif; topi ! if-sfhtemp;Qi ! temp-var0hx;Qi ! x-varhy;Qi ! y-varhor;Ri ! or-rulesha; Si ! a-pvhb; Si ! b-pv
And the environment 
hain looks like:

Q
R

??������� S
__>>>>>>>

Sin
e (temp x) is a list, we 
ompute the meaning of the �rst element asusual. In this 
ase, there is no htemp;Ri, but we �nd htemp;Qi instead, whi
his a regular variable that represents the �rst formal argument to the pro
edurewe're 
ompiling. Sin
e the meaning of the �rst element of the list is a regularprogram variable, the entire list must be a pro
edure 
all. Thus, the meaningof the remaining elements of the list are determined, and the meaning of theentire (temp x) is a 
ombination.This works for all o

urren
es of this general style. In general, anybinding that is added to the environment from within the syntax rule has apla
e attribute whi
h is di�erent from that of any other binding. Spe
i�
ally,41



bindings 
reated inside the syntax rule are in pla
e S (or a des
endant), andthus do not mat
h a binding meant for pla
e R.Having 
omputed the meaning of the initial value expression for the letinside the syntax template, the let-sf handler 
reates a new 
ontour, T , andextends the environment with temp in T :
htemp;Ti ! temp-var1

Q
R

??������� S
__???????

T
OO

With this in pla
e, the identi�er temp inside the let body (i.e., in T )mat
hes htemp;Ti instead of htemp;Ri. The rest of the 
ompilation in thisexample pro
eeds similarly, obtaining the desired result.
Example 3Here we illustrate how the system operates in the presen
e of advertent 
ap-ture, and how it dete
ts the impli
it 
apture rule.
top: (lambda (n)P1: (let-syntax((for (syntax-rules ()((_ (var init limit) body ...)P3: (let loop ((var init))
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P4: (if (< init limit)(beginbody ...(loop (+ var 1)))))))))P2: (for (i 0 n)(print i))))
To solve this problem, we revisit the observation made previously {that the spe
ial forms use the internal pattern mat
hing me
hanism to mat
htheir own arguments. In this 
ase, let uses the pattern mat
her to mat
h itsarguments, and by doing so, obtains the expansion of var along with its pla
e.When let goes to bind var, the let a
tually binds i in the pla
e of 
all, sothe environment during the 
ompilation of body looks like:

hlambda; topi ! lambda-sf:::hn;P1i ! n-varhfor;P2i ! for-ruleshvar;P3i ! var-pv = hi;P2ihinit;P3i ! init-pv = h0;P2ihlimit;P3i ! limit-pv = hn;P2ihbody;P3i ! body-pv = h(print i);P2ihi;P2i ! i-var
Where the pla
es are arranged so:
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top
P1

OO

P2
<<zzzzzzzz P3

bbDDDDDDDD

P4
OO

Note that there is no need to bind hvar;P4i, be
ause any use of var inP4 expands into i in P2 anyway by virtue of its expansion.
Example 4This example illustrates the implementation of expli
it intentional 
apture.Consider the following pro
edure de�nition that uses a lo
al ma
ro imple-menting while, with the lexi
al pla
es top, P1, ..., P7.This example uses the 
all/

10 primitive of S
heme to implementnon-lo
al transfer of 
ontrol. The 
all/

 pro
edure 
alls its argument (here,the lambda with body P6) with one value, whi
h is a pro
edure (here, boundto brk). A 
all to that pro
edure (brk) does not return, and instead 
auses
all/

 to return. This kind of non-lo
al 
ontrol transfer is familiar to Cprogrammers as setjmp/longjmp.10Formally, 
all/

 is 
all-with-
urrent-
ontinuation. The name is abbreviated forobvious reasons.
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(lambda (str)

  (let-syntax ((while (syntax-rules ()

                        ((_ expr body ...)

                         (call/cc

                           (lambda (brk)

                             (let loop ()

                               (if expr

                                   (let (((*WHERE body break) (brk)))

                                      body ...

                                      (loop)))))))))

    (let ((i 0))

      (while (< i (string-length str))

        (if (char=? (string-ref str i) #\,)

            (break))

        (set! i (+ i 1)))

    i)))

top

P1

P2

P3

P5

P6

P7

The 
ompilation of this form pro
eeds just as before, until the 
ompilergets to 
reating the binding for break. At this point, we introdu
e the *WHEREoperator. Its purpose is to signal the 
ompiler expli
itly that a symbol is beingintentionally 
aptured. In this 
ase, the form (*WHERE body break) tells the
ompiler's binding fa
ility to interpret the symbol break as if it had 
ome fromthe same pla
e as the value of the pattern variable body (i.e., from the 
allsite). As a result, during the pro
essing of the body of the inner let, we mighthave:
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top
P1

OO

P2
<<zzzzzzzz P5

bbDDDDDDDD

P3
OO

P6
OO

P4
OO

P7
OO

And: hlambda; topi ! lambda-sf:::hlet; topi ! let-sfhstr;P1i ! str-varhwhile;P2i ! while-ruleshi;P3i ! i-varhexpr;P5i ! expr-pvhbody;P5i ! body-pvhbrk;P6i ! brk-varhbreak;P3i ! break-var
2.5.2 Re
e
tion OperatorsAt this point, we are ready to introdu
e the remaining re
e
tive operators thatare implemented and give examples of how to use them and when they are46



appropriate. We have already seen the use of the *WHERE operator (abbreviated\::" in RS
heme, in analogy to C++'s s
oping operator, so that body::breakis equivalent to (*WHERE body break)).
AliasingFor purposes of aliasing (i.e., ensuring that two symbols in di�erent pla
esrefer to the same obje
t), we introdu
e the let-alias form. For example,if the while that we had above required that break be available both in itsbody and in its expression argument (sin
e those are di�erent expressions) wewould use let-alias to ensure it the ne
essary dual availability:
(define-syntax while(syntax-rules ()((_ expr body ...)(
all/

(lambda (brk)(let loop ()(let ((body::break (brk)))(let-alias ((expr::break body::break))(if expr(beginbody ...(loop)))))))))))

Note that let-alias is simply a binding 
onstru
t that does not 
reateany new meta-obje
ts; it only re-links existing meta-obje
ts under new namesor s
opes. 47



Type-based Pattern Mat
hingA powerful appli
ation of the interleaving of 
ompilation with ma
ro expansionis type-based pattern mat
hing. This appli
ation gives us the ability to de�netype-polymorphi
 inline pro
edures, as is done in the mapping of primitiveoperations in RS
heme to user a

essible pro
edures.For example,
(define-syntax binary+(syntax-rules ()((_ (*IS x <fixnum> :
onstant) (*IS y <fixnum> :
onstant))(*EVAL (+ x y)))((_ (*IS x <fixnum>) (*IS y <fixnum>))(fixnum+ x y))((_ x (*IS y <fixnum> 
onstant))(let ((temp x))(if (fixnum? temp)(fixnum+ x y)(generi
+ x y))))((_ x y)(generi
+ x y))))

The *IS operator is used to re
e
t on 
ompile-time type information andother attributes. In order to determine if a parameter mat
hes, the 
ompileris obliged to 
ompile the expression and determine its type. In general, thisis risky if the meta-system 
an have side-e�e
ts on the 
ompile-time state. Inthe 
urrent implementation, we leave it to the ma
ro developer to be aware of
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any su
h issues. The *EVAL operator is used to evaluate 
ode at 
ompile time,whi
h here is used to a
tually do the work of the optimization.Another approa
h that was tried was to tentatively 
ompile the ar-gument, and reuse the resulting meaning as the pattern variable expansion.This approa
h has the disadvantage of not allowing the argument to appearin a di�erent environment (although if the argument appears in a di�erentenvironment in use, then the author needs to be aware of the possibility thatthe expression may exhibit di�erent attributes during use than during patternmat
hing!).Consider the following example of using synthesized attributes:
(define-syntax for(syntax-rules ()((_ (var(*IS init :side-effe
t-free)(*IS limit :side-effe
t-free))body ...)h implementation exploiting la
k of side-e�e
ts in init and limit i)((_ (var init limit) body ...)h fallba
k implementation i)))

This ability 
an be 
onsidered a simple kind of fa
t-based pattern mat
h-ing, where the available fa
ts are en
oded by the type system and other a
-
essible properties of the 
ompile-time 
ontext. This 
ould be generalizedto manipulating arbitrary (and potentially domain-spe
i�
) synthesized andinherited attributes, as is done in M
Mi
Ma
 by Krishnamurthi et al. [27℄.
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Chapter 3
Extensible Parsing

3.1 Introdu
tion
Implementors of 
onventional 
omputer languages have long been 
on
ernedwith the problem of parsing. Parsing is the pro
ess of turning a linear stringof 
hara
ters representing a program into a stru
tured representation that is
loser to the meaning of the program. Conventional languages, as we use theterm here, refers to languages whose syntax is derived from Algol. This familyin
ludes Pas
al, C, and, more re
ently, Java and C#. From a synta
ti
 pointof view, these languages are in signi�
ant 
ontrast to the Lisp family, in whi
hthe parse stru
ture is 
oded expli
itly by the programmer, making the job ofsyntax analysis trivial for a Lisp 
ompiler.In this 
hapter, we introdu
e the notion of extensible parsing. Extensibleparsing is a generalization of the traditional idea that the grammar, or syntax,of the language is �xed at language design time. Instead, the grammar 
anevolve as the pro
essing of a program takes pla
e. In many ways, the ability
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to modify or extend the grammar during program pro
essing is analogous tothe de�nition of ma
ros in a Lisp-like language. However, in a 
onventionallanguage, there is no manifest tree-like data stru
ture on whi
h the ma
rosmight operate.In this 
hapter, we give a simple implementation of an extensible parserthat is based on the re
ursive-des
ent parsing strategy. We are not 
on
ernedwith the performan
e of the extensible parser but instead use it to make 
on-
rete the ideas we present as making up the extensible parsing framework.The main idea of extensible parsing is that the grammar is a data ob-je
t to be manipulated at the runtime of the 
ompiler, mu
h as environmentand s
ope were manipulated in Chapter 2. However, the grammar is not ma-nipulated arbitrarily. Instead, we illustrate some 
ommon kinds of grammar
hanges that behave in fairly regular ways. We 
all these regular patternsgrammar 
hange styles. The two major styles are top-level forms and nested,blo
k-like 
onstru
ts.Top-level forms tend to make grammar 
hanges that live beyond theo

urren
e of the form itself. For example, in C a top-level form that de�nes anew type (i.e., a typedef) has a s
ope that extends to the end of the programunit. Blo
k-like 
onstru
ts, on the other hand, tend to support nesting andmake grammar 
hanges whose extent is 
ontained within the form itself. Forexample, a C while statement might introdu
e a new grammar rule that makesbreak a valid 
onstru
t within its body.Although performan
e is not the main fo
us of this 
hapter, it is worthremarking upon the fo
us of mu
h of the resear
h into eÆ
ient parsing te
h-niques over the past 30 years or so. This resear
h primarily leverages o� the
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fa
t that language grammar was �xed and known at 
ompiler design time.Sin
e the 
ompiler would be invoked many times for the one time that the
ompiler itself was 
ompiled, a large amount of pro
essing was warranted inprodu
ing an eÆ
ient 
ompiler. In the 
ase of the language grammar, thismeant that an almost arbitrary amount of work was justi�ed in 
onstru
tinga parser that would be eÆ
ient at runtime (i.e., when the 
ompiler ran, whi
his to say, when it was 
ompiling some other program).The 
ommon 
omputer s
ien
e te
hnique of moving 
omputation a
rossthe barrier between 
ompile time and run time was applied with ex
ellent re-sults in the �eld of parsing te
hniques. Typi
ally, at build time, an abstra
tionof the workings of the parser would be 
onstru
ted and formed into a �nite-state automaton. The automaton would be en
oded into parse tables thatwould be built into the 
ompiler as stati
 data stru
tures to be interpreted atruntime.However, sin
e 
omputers are roughly 1000 times faster than they werewhen mu
h of this resear
h took pla
e, and more and more time is beingspent in optimization phases instead of front-end pro
essing like parsing, thebene�ts of this body of language resear
h are less 
lear today. In parti
ular, if a
onsiderable amount of expressive power or programmer 
exibility is availableat the expense of some parsing time, it seems a tradeo� well worth making.The usefulness and 
onsequent 
onstru
tion of a 
exible parser, at the 
ost ofprepro
essing for eÆ
ient runtime exe
ution, is the subje
t of this 
hapter. InChapter 4, we return to the subje
t of eÆ
ien
y and give an implementationthat maintains the 
exibility of extensible parsing but with improved eÆ
ien
y.
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3.2 Ba
kground
Extensible parsing is not a new idea. Cardelli [9℄ uses lambda 
al
ulus as abase language and shows how it 
an be extended to support the embeddingof other languages su
h as SQL. However, for Cardelli grammar 
hanges areglobal in s
ope, making the use of grammar 
hanges suitable only in 
ertain
ir
umstan
es.A theoreti
al framework for extensible parsing is available in the re
entwork on adaptable grammars, su
h as that of S
hutt [35℄. However, as far aswe 
an tell, there is no implementation underlying this work.
3.2.1 What We Would Like to DoOur approa
h seeks to permit grammar 
hanges both with high frequen
yand with lo
al s
ope. An example of grammar extensions using this approa
hwould be the while statement that introdu
es the break statement. In thisapproa
h, the while would 
reate a label that is the target of a goto generatedby the break. Furthermore, we would like for ea
h nested while statementof this kind to use unique labels. It therefore be
omes ne
essary for grammar
hanges to manipulate lexi
al s
opes.In a longer perspe
tive, we imagine introdu
ing rules for entire obje
tsystem extensions. This might involve �rst-
lass representations of whole sub-grammar 
hanges that 
an be stored with the meta-obje
ts for 
lasses. Forexample, this might be a means to allow the implementation of C++ as a
olle
tion of synta
ti
 extensions on top of C.In essen
e, we are trying to obtain the bene�ts of Lisp and S
hemema
ros for more traditional programming languages. Re
all that Lisp and
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S
heme ma
ros manipulate a tree representation of the program rather than,for example, the token strings that are manipulated by C (
pp) ma
ros. Lisplanguages make use of a two-level grammar, where the �rst level parses tokenstreams into a tree representation. The se
ond level takes those trees as inputand generates abstra
t syntax trees. Lisp and S
heme ma
ros operate at these
ond level, and the �rst level is �xed and trivial in stru
ture. These two levelsare intermixed in ordinary programming languages, making it ne
essary tomodify the grammar to a
hieve the e�e
t of Lisp ma
ros. With this approa
hwe imagine being able to start with a small subset of Java and building up theentire language using synta
ti
 extensions.
3.2.2 Granularity of Grammar ChangesFor our approa
h to obtain maximum usefulness, we must allow grammar
hanges on a very �ne granularity. In parti
ular, we must be able to parse theinput 
orresponding to one part of a grammar rule using a di�erent grammarfrom that used to parse the rest of the input. The grammar is represented bythe parse environment, whi
h is passed around and modi�ed in the parsingpro
ess to a
hieve the parsing of di�erent parts in di�erent environments.
3.2.3 Appli
ations of Our Approa
hWith this approa
h, we 
an express non-
ontext-free 
onstru
ts in a stru
turedway. An example of su
h a non-
ontext-free 
onstru
t is C's while and break,as mentioned above.Another typi
al example is the typedef in C. In the traditional ap-proa
h, the tokenizer is pat
hed to re
e
t a new lexi
al 
ategory for an identi-
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�er, whi
h widens the interfa
e between the parser and s
anner 
omponents.In our approa
h, we 
an handle this ex
lusively in the parser { we would intro-du
e a new grammar rule for type-name that impli
itly re-
ategorizes the newtype name. Be
ause the grammar understands the s
ope 
ontours of the lan-guage, su
h a grammati
al re-
ategorization follows the normal s
oping rulesof the language (whi
h would be more diÆ
ult to implement in the s
anner,whi
h has no 
on
ept of language s
ope).
3.2.4 LimitationsLisp ma
ros, by virtue of working on internal data stru
tures, are not limitedto any parti
ular order of inspe
tion of their parts. A grammati
al approa
h,however, is. Tokens only be
ome available in a �xed, left-to-right, order.Hen
e, we would have diÆ
ulty expressing grammati
al 
onstru
ts su
h asHaskell's where 
lause be
ause the variable de
larations 
ome after the body.Likewise, Java's try/
at
h is problemati
 to pro
ess synta
ti
ally be
ause the
at
h modi�er 
omes after the body that it modi�es.Note that we 
an parse these 
onstru
ts, but we 
annot make use of�ne-grained grammar 
hanges to do so. Some kinds of grammar 
hanges arestill possible, but any 
hanges that involve the meaning values from the suÆxof the 
onstru
t 
annot determine the grammati
al stru
ture of the pre�x.In any 
ase, a 
ompiler using our approa
h 
ould still perform traditionalmanipulations of the meaning stru
tures to implement the intended semanti
s.
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3.3 Contour Sensitivity
While this approa
h has a mu
h greater expressive power than pure 
ontext-free grammar pro
essing, it is not as unstru
tured as a general-purpose pro-gramming language for parsing. We extend the power of a traditional gram-mati
al framework without going to the extreme of a full programming lan-guage, whi
h gives arbitrary expressiveness with no grammati
al stru
ture.Sin
e we know of no other name for this kind of power, we 
hoose the name\
ontour sensitivity" be
ause the 
onstru
ts are sensitive to the grammati
al
ontours.
3.3.1 Major Styles of Environment PassingEven the power of 
ontour sensitivity might be too mu
h in some 
ases. Infa
t, we have only been able to distinguish two major usage patterns of 
ontoursensitivity in grammars.The �rst usage pattern is 
hara
terized by �le-level global or forward-s
ope 
onstru
ts su
h as S
heme's define and C's typedef. In this style,whi
h we 
all sequen
e style, language entities following the 
onstru
t are allin the s
ope of the 
onstru
t.The se
ond usage pattern is 
hara
terized by lo
al s
ope, su
h as S
heme'slet or C's blo
k-lo
al variables. In this style, whi
h we 
all blo
k style, onlyentities 
ontained in the 
onstru
t are in its s
ope. (Noti
e, though, that lo
alvariables within a blo
k in C follow the �rst usage pattern, as in S
heme'slet*.)
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3.3.2 General Me
hanismIn order to explain the general me
hanism, we need some additional terminol-ogy. We assume the reader is familiar with basi
 parsing terminology.A rule maps a non-terminal to a sequen
e of terminals and non-terminals.A parser is a pro
edure { derived from a rule { whi
h implements theparsing of the input, re
ursively 
alling other parsers to re
ognize the non-terminals in the 
orresponding rule.The meaning is the result of 
ompiling an input string. Meanings areusually abstra
t syntax trees but 
an have other representations su
h as 
ode,or 
an even be values in the 
ase of a syntax-dire
ted interpreter. Rules arethought of as produ
ing a meaning as a 
omposition of the meanings of its
omponents. Terminals have appropriate elementary meanings 
orrespondingto 
on
rete lexemes.A parse environment maps non-terminals to sequen
es of parsers. Ea
hparser in the sequen
e 
orresponds to a rule for the non-terminal.A rule is used to parse input using an environment 
alled the inheritedenvironment. The result of su
h a parse (if su

essful) is the meaning as wellas another environment 
alled the synthesized environment.The top-level parse pro
edure has as arguments a non-terminal to beparsed and an environment in whi
h to interpret it. The parse pro
edurelooks up the non-terminal in the given environment, obtaining the asso
iatedsequen
e of parsers. The top-level pro
edure 
alls the parsers in order withthe same environment until one su

eeds.A parser, in turn, takes a parse environment and a sequen
e of tokens tobe parsed. The parser attempts to re
ognize an instan
e of the 
orresponding
57



rule at the beginning of the given sequen
e of tokens. If it su

eeds, the parserpasses the remaining input sequen
e and a possibly modi�ed environment toits 
ontinuation.When a rule 
ontains a terminal, the 
orresponding parser simply 
he
ksthat the input sequen
e 
ontains that terminal. However, when a rule 
ontainsa non-terminal, the 
orresponding parser 
ontains a 
all to the top-level parsepro
edure. The parser at this point is free to pass an environment of its 
hoi
eto the top-level parse pro
edure. For example, in implementing while/breakas mentioned above, the parser asso
iated with while, if invoked with envi-ronment E, would pass an environment E 0 to parse its body. E 0 would be Eaugmented with a parser that re
ognizes break as a statement.Similarly, a parser is free to use or ignore the parse environment re-turned by the re
ursive 
all to the top-level parse pro
edure. For example, inimplementing typedef, the parser that re
ognizes sequen
es of top-level formspasses the synthesized parse environment from one form as the inherited parseenvironment to the next.
3.4 Implementing Contour Sensitivity
3.4.1 Frequent Grammar ChangesTraditional parsing methods use heavy prepro
essing of the grammar in orderto speed up runtime performan
e. Su
h prepro
essing te
hniques are appro-priate when the grammar is �xed and when parsing would otherwise be tooslow. Prepro
essing usually means 
onstru
ting some kind of automaton tore
ognize sequen
es of input tokens and/or nonterminals.

58



As we have already dis
ussed, we are targeting appli
ations that requirefrequent grammar 
hanges. Su
h appli
ations naturally in
lude embeddedlanguages su
h as SQL statements in a C program. Often, however, eventhough a single sour
e language is involved, our approa
h 
an still be veryuseful. Traditional languages are usually des
ribed by 
ontext-free grammars,even though they are not a
tually 
ontext free.We have already mentioned typedefs in C where the interpretationof a sequen
e of tokens depends on whether an identi�er is a variable or atype. For instan
e, the token sequen
e x * y 
an be a variable de
larationof y as a pointer if x is a type or an arithmeti
 multipli
ation expression if xis a variable. The traditional solution to this problem is to pat
h the lexi
alanalyzer so that when a typedef has been seen, the 
orresponding identi�eris subsequently 
onsidered to be a type name and not a variable identi�er.We also mentioned the break statement in C whi
h is valid only insideloops. The usual solution to this problem is to always 
onsider break a state-ment and then to make a se
ond pass over the abstra
t syntax tree and reje
tits use in other 
ontexts.With our approa
h, su
h simple 
ontext sensitivity is naturally ex-pressed within the framework of the grammar. Other examples in
lude typeveri�
ation of operands to operators, 
he
king whether 
ertain expressions are
ompile-time 
omputable, and more.All of these examples require that frequent grammar 
hanges be handledeÆ
iently. That requirement ex
ludes heavy prepro
essing of the grammar.Fortunately, parsing is now su
h a small fra
tion of language pro
essing thatthe total time remains small even with a substantial in
rease in the time toparse the sour
e.
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Prepro
essing of the grammar is not 
ompletely ex
luded. The methodof Heering, Klint, and Rekers prepro
esses the grammar in
rementally [18℄.Su
h an approa
h 
an be very eÆ
ient and 
an adaptively adjust to the fre-quen
y of grammar 
hanges. That is, if grammar 
hanges are very frequent,then only the part of the automaton that is needed is prepro
essed. Otherwise,if grammar 
hanges are infrequent, parsing be
omes faster over time as moreand more of the automaton is 
omputed.This resear
h is primarily 
on
erned with the me
hanisms and style forextensible parsing. The tradeo� between (possibly in
remental) prepro
essingtime (and software 
omplexity) and parsing time for typi
al appli
ations is leftfor future work. Resear
h into the tradeo�s as applied to typi
al appli
ationsis 
ompli
ated by the fa
t that, sin
e few in
remental grammars exist, thereis not a 
orpus of typi
al appli
ations to examine.For this 
hapter, we avoid dis
ussing these tradeo�s and 
on
entrateon a purely interpretive approa
h, whi
h unfortunately has poor worst-
asebehavior. Even so, it performs well in pra
ti
e.
3.4.2 Simple InterpretationThe best way to minimize prepro
essing is to avoid it altogether. We thereforerepresent the grammar as a 
olle
tion of independent rules that are interpretedby the parser.The parser itself uses ba
ktra
king whenever it fails to re
ognize a se-quen
e of tokens. All possible rules for a nonterminal are tried in order untilone su

eeds1.1Our 
ontinuation-passing parser 
annot handle left re
ursion (dire
t or indire
t) andis not fully ba
ktra
king. However, it has no lookahead 
onstraint, so it is more restri
ted
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Noti
e that for very deeply nested de�nitions, our parser 
an requireexponential time to re
ognize a sequen
e of tokens. A simple memoizationtri
k 
ould be used to avoid su
h behavior, but sin
e the purpose of this im-plementation is only to demonstrate the feasibility of our framework and notto have an extremely fast parser, we have not implemented su
h optimiza-tions. Despite this extremely bad worst-
ase behavior, the parser is a
tuallysuÆ
iently fast for most purposes.Furthermore, the parser des
ribed here has the same limitation as LLparsers in that it 
annot handle left re
ursion. We are 
urrently working onparsing te
hniques that allow both fast parsing and the 
exibility required forfrequent grammar 
hanges. In Chapter 4 we dis
uss the adaptation of the morepowerful Earley [16℄ parsing algorithm to our environment passing framework.
3.5 Implementation of Continuation Passing

Parser
3.5.1 General Des
riptionIn se
tion 3.3.2 we gave a general des
ription of the me
hanism used to im-plement the parser. However, we deliberately did not expand on the a
tualme
hanism for passing 
ontrol among the parsers. In this se
tion, we �ll inthe remaining aspe
ts of the implementation.In general, our implementation uses expli
it 
ontinuation passing, inwhi
h ea
h parser re
eives two 
ontinuations, one for su

ess and one for fail-ure. Thus, our implementation ba
ktra
ks over failures and tries new possi-than LL(1) but di�erently limited than LL(k) for any k.
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bilities until it either fails at the top level or su

eeds.
3.5.2 Representation of RulesSin
e grammar 
hanges are expe
ted to be frequent, our representation ofthe grammar is one for whi
h 
hange operations are 
heap. We also want arelatively high degree of interpretation relative to 
ompilation.We a

omplish the goal of having inexpensive grammar 
hanges by rep-resenting alternative rules for a non-terminal as a simple list stru
ture. Thelist 
ontains the names of non-terminals that are the 
onstituent rules. Thisindire
tion through the name of the non-terminal is an essential part of ourme
hanism.Noti
e that some trivial grammar transformations must be applied inorder to �t this representation. For example, 
onsider the following simplestatement grammar:

stmt ! \let" var \=" expr \;"stmt ! \{" stmtlist \}"stmt ! \print" expr \;"stmtlist ! �stmtlist ! stmt stmtlist
Ea
h alternative for the non-terminals stmt and stmtlist is broken outinto its own rule and given an arbitrary name. The non-terminal itself ismade into an alternative sequen
e 
onsisting of those 
onstituents. Hen
e, thegrammar is transformed into something like the following, where every entry
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is either alternatives among non-terminals or a sequen
e of items.
stmt ! S1 j S2 j S3S1 ! \let" var \=" expr \;"S2 ! \{" stmtlist \}"S3 ! \print" expr \;"stmtlist ! L1 j L2L1 ! stmt stmtlistL2 ! �

Right-hand sides that are simply or-separated sequen
es of non-terminalnames are represented as lists of those non-terminal names. These lists arethen interpreted by a spe
ial alternative-parsing pro
edure.With this additional information, we 
an now des
ribe the 
ompleteme
hanism. The top-level parse pro
edure takes an input stream, a non-terminal to be parsed, an environment in whi
h to interpret the non-terminal,a su

ess 
ontinuation, and a failure 
ontinuation. All su

ess 
ontinuationsfollow the same proto
ol. They take a meaning value, the remaining inputstream, and a possibly modi�ed environment.Similarly, all failure 
ontinuations follow a proto
ol. They take a singleargument, the input stream at the point of failure. The 
urrent implementationdoes not take advantage of this information, but it 
ould be useful for errorreporting.The top-level parser pro
edure operates by looking up the non-terminalname in the given environment. This lookup 
ould yield either an elementary
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parser or a list of alternative non-terminal names.In the 
ase of a list of alternative non-terminal names, the top-level parsepro
edure 
alls a spe
ial alternative-parsing pro
edure. The arguments to thespe
ialized pro
edure are the input stream, the list of alternative non-terminalnames, the environment for interpreting them, the su

ess 
ontinuation andthe failure 
ontinuation. The spe
ialized alternative-parsing pro
edure 
allsthe top-level parse pro
edure for ea
h alternative in the list, passing a failure
ontinuation whose e�e
t is to 
ontinue with the alternatives. Sin
e the su

ess
ontinuation is the same, when any alternative su

eeds, the parse of the wholealternative sequen
e su

eeds.If the lookup does not yield a list of alternative non-terminal names,it yields an elementary parser. In this 
ase, the elementary parser is 
alledwith the same arguments as the top-level parse pro
edure ex
ept that no non-terminal is needed.A parser 
orresponding to a sequen
e of terminals and non-terminalsuses a proto
ol dual to that of the alternative-parsing pro
edure. For anelement in the sequen
e that is a terminal, the parser simply 
he
ks that theinput stream 
ontains that terminal and 
alls the failure 
ontinuation if not.If the input stream does 
ontain the terminal, it simply 
ontinues with thenext element in the sequen
e and the rest of the input stream. For elementsin the sequen
e whi
h are non-terminals, the parser 
alls the top-level parsepro
edure, passing a su

ess 
ontinuation whose e�e
t is to 
ontinue with theelements in the sequen
e. The failure 
ontinuation is the same as given forthe whole parser, so when the parse of any element fails, the parse of thewhole sequen
e fails. Similarly, when a non-terminal parse su

eeds, the inputstream from the su

ess 
ontinuation is used to 
ontinue parsing the sequen
e.
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Sin
e ea
h su

ess 
ontinuation re
eives a parse environment from there
ursive 
all, at any point in the sequen
e multiple parse environments areavailable. Hen
e, the elementary parser 
an implement the appropriate gram-mar 
ontour by sele
ting the environment that implements the parti
ular 
on-tour. It 
an even 
ompute an entirely new environment if ne
essary.
3.5.3 Dynami
 Rule CompilationThere are two ways of generating elementary parsers. A hand-
oded pro
edurethat follows the parser proto
ol may be inserted into the grammar by hand,thereby bootstrapping the system. Alternatively, they may be generated fromgrammar rules 
onsisting of sequen
es of terminals and non-terminals.
3.5.4 Major Styles in Terms of Me
hanismLet us now return to our two major 
ontour styles to explain how these styles
an be implemented in terms of the me
hanism des
ribed in this se
tion. Re
allthat the sequen
e style requires that modi�
ations to the environment bevisible to su

eeding language 
onstru
ts. This is easily implemented by anelementary parser that uses the environment of the su

ess 
ontinuation toparse the next element in the sequen
e. Thus, 
hanges to the environmentthat o

ur during the parse of one element are visible during the parse of thenext element.Consider, for example, the following grammar fragment:

L! S L
whi
h might be part of a grammar for re
ognizing sequen
es L of top-level
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statements S. The re
ursive 
all to parse L would be handed the parse envi-ronment re
eived by the su

ess 
ontinuation that was passed to the re
ursive
all to parse S. The parser for S would of 
ourse have to 
all its su

ess
ontinuation with an appropriately modi�ed environment.For blo
k style, modi�
ations to the environment are 
ontained entirelywithin the s
ope of the 
onstru
t. We implement this style by passing a mod-i�ed environment to the 
all to the top-level parser for the language 
onstru
trepresenting the body and then not using that environment any more.Consider, for example, the following grammar fragment for a while
onstru
t:
W ! while E S

Here, E and S denote expression and statement 
onstituents, respe
-tively. The re
ursive 
all to parse S would be given a parse environmentextended with the break 
onstru
t. Neither this modi�ed environment northe one passed to the su

ess 
ontinuation of this re
ursive 
all would be usedagain. Sin
e the while statement is designed to have no non-lo
al e�e
t on theenvironment, it 
alls its su

ess 
ontinuation with the same parse environmentwith whi
h it was 
alled. Hen
e, it intera
ts with a 
ontaining parser for state-ments using the sequen
e style of 
ontours by making no 
hange. Similarly, ifthe S part of the while 
ontains a sequen
e, non-lo
al modi�
ations withinthat sequen
e would not be passed on to the su

essor of the while. Thesetwo styles allow for a 
ombination of sequen
es and blo
ks, where ea
h blo
k
reates a new s
ope for a sequen
e within whi
h to operate.
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3.5.5 ExamplesWe now present an example to illustrate the above points. In this example,we walk through the operation of the 
ontinuation-passing extensible parser,using a simple statement grammar similar to that des
ribed earlier, in
ludinga while statement that implements loop termination by extending the set ofvalid statements to in
lude break.Several things are worth noting, as they limit the utility of this imple-mentation in pra
ti
e. First, this parser does not support full ba
ktra
king.That is, a parse de
ision in a lo
al area of the grammar may 
onsume inputwhi
h is later ne
essary to make some other parse work. Se
ond, the parsinga
tivity is eager { it mat
hes longer pre�xes �rst.The latter shows up in the sample grammar in the rule for stmtlist. Theprodu
tion L1 must o

ur before L2, sin
e L2 mat
hes anything and hen
estmtlist is always empty.
{ let x = 5;while (p(x)) {if (x <= 0)break;x = f(x);}}

In this parse tree, for brevity we elide the non-terminals that denotealternatives, e.g., stmt and expr. Instead, the alternative that su

eeds isshown. 67



Here is the 
omplete grammar we'll use for this example:2
stmt ! S1 j S2 j S3 j S4 j S5 j S6S1 ! \let" var \=" expr \;"S2 ! \{" stmtlist \}"S3 ! \print" expr \;"S4 ! \if" \(" expr \)" stmtS5 ! \while" \(" expr \)" �1 stmtS6 ! var \=" expr
expr ! testexpr j fun
allexpr j varexpr j literalexpr

stmtlist ! L1 j L2L1 ! stmt stmtlistL2 ! �
When the parse starts, the main parse pro
edure is invoked with stmt asthe goal non-terminal, the token string as input, the default environment whi
h
ontains the grammar and any global top-level variables, a su

ess pro
edurefor a

epting the input, and a failure pro
edure to reje
t the input.In the initial grammar, stmt is bound to a sequen
e of alternatives, S1,..., S6. For stmt, the main parse pro
edure dispat
hes to the alternative-list2Sin
e this is a re
ursive des
ent parser, the a
tual representation of the expr non-terminal has had its left re
ursion eliminated, a me
hani
al pro
ess des
ribed by Aho et al. [1℄whi
h produ
es a lengthy grammar. For brevity, sin
e we are not 
on
erned here withexpression parsing, we show expr in its unfa
tored form.68



parsing pro
edure, whi
h in turn attempts to parse S1, ..., S6 with the sameinput it was given, the same su

ess pro
edure, and a failure pro
edure thatgoes on to the next alternative.In this 
ase, S1 immediately fails when it tries to mat
h \let". Thefailure pro
edure returns to the alternative-list pro
ess to try the next one,i.e., S2.S2 starts by mat
hing the open bra
e, and then trying to parse a stmtlist,whi
h su

eeds. In the pro
ess of su

eeding, the stmtlist breaks down into asequen
e of L1 nodes (one for ea
h statement parsed) with an L2 at the end,as shown here: S2
\{"

{{{{{{{{ L1 \}"
CCCCCCCC

�1
{{{{{{{{ L1
�2 L2

CCCCCCCC

where �1 is the let statement, and �2 is the while statement. As mentionedearlier, the behavior of the L1 elementary parser is to use the environmentpassed to the su

ess pro
edure as the environment for the remainder stmtlist.That is, �1 produ
es an environment that is its input environment aug-mented with a binding for the variable x, and the L1 parse that 
ontains �1passes that augmented environment along as 
ontext for the parse of �2. Thisis an example of the sequen
e grammar 
hange style as applied to the programenvironment (here it's not being used to 
hange the grammar per se, but theenvironment and grammar are kept together).
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When it 
omes to parsing the while statement itself, whi
h is �2, weillustrate how blo
k-style grammar 
hanges take pla
e. In this 
ase, the parsetree looks like this:
�2
S5

\while"
kkkkkkkkkkkkkkkkkkk \("
xxxxxxxxx expr \)"

FFFFFFFFF S2
RRRRRRRRRRRRRRRRR

� \{"
{{{{{{{{ L1 \}"

CCCCCCCC

�1
|||||||| L1
�2 L2

BBBBBBBB

The elementary parser for S5 parses the �rst 4 items as usual but then passesan extended grammar to the stmt parse whi
h mat
hes S2 in this 
ase. Theextended grammar in
ludes a new statement non-terminal, Sw, and a rede�-nition of stmt whi
h in
ludes Sw. That is, in the extended environment, thegrammar in
ludes:
stmt ! Sw j S1 j S2 j S3 j S4 j S5 j S6Sw ! \break" \;"

Now when parsing the statements in the body of the while, e.g., �1,
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the break statement is re
ognized and parsed, produ
ing:
�1
S4

\if"
llllllllllllllllll \("
xxxxxxxxx expr \)"

FFFFFFFFF Sw
SSSSSSSSSSSSSSSSSSSS

\break" \;"
JJJJJJJJJJ

On
e the parse of �1 is 
omplete, the extended environment is dis
arded{ it is not passed to the su

ess pro
edure of S5 itself, sin
e it is not theintention of the while 
onstru
t to manipulate the environment or grammarof a sequen
e in whi
h it o

urs.
3.5.6 Performan
eThe parser des
ribed in this 
hapter is intended to be an illustration of the
apabilities of an environment-passing parser, and not an exemplar of per-forman
e. In fa
t, the parser des
ribed here is exponentially slow in some
ases. The implementation is only intended to illustrate an appli
ation of theframework and the general ideas of interpreted extensible parsing. Despiteits potential slowness, however, the implementation is simple enough that itperforms tolerably well in pra
ti
e. Some 
are in 
onstru
ting the grammarfor eÆ
ient re
ursive-des
ent parsing leads to quite reasonable performan
e.

71



Chapter 4
Extensible Earley Parsing

4.1 Introdu
tion
This 
hapter des
ribes the adaptation of a relatively eÆ
ient parsing algo-rithm, that of Earley [16, 15℄, for the purpose of extensible parsing. TheEarley algorithm is essentially an interpreted version of a table-driven parser.However, the Earley algorithm 
an handle all 
ontext-free grammars, in
lud-ing ambiguous ones, and it is relatively eÆ
ient. In fa
t, even though theEarley algorithm is interpretive in nature, it a
hieves 
omputational bounds
ommensurate with that of other parsers that do a lot of pre-
ompilation.
4.2 Des
ription of Earley Parsing
Like an automaton built by a parser generator, the Earley parsing te
hniqueworks by keeping tra
k of a set of rules that are in the pro
ess of being re
-ognized. However, instead of interpreting an abstra
tion (i.e., an automaton)of the possible rules that might be re
ognized, the Earley te
hnique tra
ks the
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a
tual, 
on
rete rules that des
ribe the input seen so far.For example, the states of an LR parser represent the same set of par-tially re
ognized rules as an Earley parser does. However, an LR parser gener-ator pre-
omputes the possible sets and the possible transitions between setsfor all valid inputs, while the Earley te
hnique 
omputes the set at parse time.Computing the set at parse time is important for our purpose, sin
e we are
hanging the grammar during the parse pro
ess.A language is 
hara
terized by its vo
abulary, whi
h is a set of symbolsused to des
ribe valid senten
es in the language. Terminal symbols are thosethat appear in a senten
e, and non-terminals are those that are used in thegrammar to des
ribe the abstra
t forms of the language.The grammar is a set of rules. Ea
h rule 
onsists of a non-terminal anda sequen
e of vo
abulary symbols. For example, a rule whi
h 
onsists of thenon-terminal N and the sequen
e of vo
abulary symbols a, B, 
, D is written:
N ! a B 
 D

We use the 
onvention that lower 
ase letters denote terminals andupper 
ase letters denote non-terminals. We also use � to denote an emptyright-hand side.When des
ribing the state of a parse in progress, a rule is written witha dot in it to denote the 
urrent position of the parse a
tivity. This is 
alledan item. For example,
N ! a B � 
 D

indi
ates a rule undergoing a mat
h, wherein an a and a B have been re
og-nized, and a 
 is about to be re
ognized.73



4.2.1 StatesEa
h state of an Earley parse is an item together with a ba
k pointer whi
hrefers ba
k to the position in the input whi
h gave rise to the rule. In thedis
ussion about pure Earley parsing, we write states as illustrated by thisexample: hN ! a B � 
 D; 3i (4.1)This denotes the state with rule N ! a B 
 D, with the dot at position 2(i.e., with 2 elements to the left of the dot). In parti
ular, this state is sayingthat an a and a B have been re
ognized so far, and that a 
 and a D must bere
ognized next in order for an N to be re
ognized. State 4.1 also has a ba
kpointer to position 3 in the input, whi
h means that the re
ognition of thiso

urren
e of an N began at position 3 in the input.
4.2.2 State SetsEa
h position in the input (N+1 of them for an input of lengthN) is asso
iatedwith a set of states. The set of states en
odes both re
ursion and parallelism.The re
ursions 
orrespond to attempts to expand non-terminals in the right-hand side of a rule. The parallelism 
orresponds to the di�erent possibleexpansions for a parti
ular non-terminal.For example, in the following grammar:

pgm ! stmt pgmpgm ! �stmt ! ifstmtstmt ! 
allstmt
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when a stmt is being re
ognized, there are two possibilities (ifstmt and 
all-stmt), whi
h are tra
ked in parallel in di�erent subsets of the state set.
4.2.3 Initial ConditionsInitially, the state h� ! � S; 0i is the 
ontent of the state asso
iated withposition 0. This state represents the 
ir
umstan
e that, initially, nothing hasyet been re
ognized, and the entire program (represented by the start symbolS) is about to be re
ognized.
4.2.4 Pro
essingPro
essing pro
eeds by, for ea
h su

essive position in the input, iterating theoperations of 
ompletion and predi
tion on a state set until a �xed point isrea
hed. Then the s
an operation is used to 
onstru
t the initial 
ontents ofthe state set for the next position in the input1.In pseudo-
ode, pro
essing works like:
ssa[0℄ = initial();i = 0;while(i < length(input))beginiterate(ssa[i℄; i);ssa[i+ 1℄ = s
an(ssa[i℄; input[i℄);i = i+ 1;end;1This des
ription 
orresponds to our implementation but di�ers slightly from Earley'sexplanation in that the next state is built while pro
essing the 
urrent state.
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where ssa is the array of state sets and input is the array of input tokens.In this implementation, ss a
ts like an array for the purposes of iteration(that is, new entries are added to the end) and like a set for purposes ofdupli
ate elimination. With this in mind, one iteration step looks like:
pro
edure iterate(ss; i)k = 0;while(k < length(ss))beginss = ss [ derived(ss[k℄; i);k = k + 1;end

When a valid input senten
e of length n has been pro
essed, the 
ontents ofssa[n℄ 
ontain a state h� ! S �; 0i. This indi
ates that an entire S has beenre
ognized, starting at the beginning of the string. If a state of this form doesnot appear in ssa[n℄, then the input string was not a senten
e in the language.Computing the derivatives of a state (the derived fun
tion) depends onwhat is to the right of the dot. There are three 
ases to 
onsider: (1) there is anon-terminal to the right of the dot, (2) there is a terminal to the right of thedot, and (3) there is nothing to the right of the dot. These are des
ribed indetail in the following se
tions. Note that 
ase (2) is not handled by derived;it is handled by the 
all to s
an in the main pro
essing loop.
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4.2.5 Predi
tionPredi
tion is an attempt to mat
h a non-terminal, and o

urs when a statehas a non-terminal to the right of its dot. For example, 
onsider the state:
hN ! a � B 
 D; 3i

This state represents a parse in progress in whi
h an a has just been seen, and aB is expe
ted. The pro
essing of this state within a state set (i.e., the behaviorof the iterate fun
tion on this state) introdu
es new states 
orresponding tothe possible expansions for B.In general, if A is the non-terminal to the right of the dot in a states and i is the 
urrent position in the input, then for ea
h rule r of the formA! �, the result of iterate 
ontains hA! ��; ii. Note that � 
ould be empty,in whi
h 
ase this new rule is 
ompletable within this state set. Furthermore,if � is empty, then we have to be 
areful to make sure that the 
ompletiondoes happen for the state s being pro
essed. Otherwise, it might o

ur thatA ! � has already been introdu
ed and 
ompleted within this state set onbehalf of some other non-terminal B. Dupli
ate elimination within ss wouldkeep s from pro
essing the 
ompletion of B. We handle this as a spe
ial 
aseof a predi
tion that results in an �-rule state that is already in the state set.
pro
edure predi
t(s)A = s:next;result = ;;for r inG(A)result = result [ hr; ki;return result;
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end
where k is the input position 
orresponding to the 
urrent state, and G(A)denotes the lookup of the non-terminal symbol A in the grammar G, whi
hreturns a list of rules. s:next is the symbol after the dot in s.
4.2.6 S
anningS
anning is the pro
ess of mat
hing a token in the input string, and o

urswhen a state has a terminal to the right of its dot. S
anning is the means forinitializing the 
ontents of the state set 
orresponding to the next position inthe input stream. Su

essful s
anning advan
es the dot past a terminal, and
orresponds to 
onsuming an input token.To s
an a state s,

s = hN ! �1 � a �2; ji
provided that a appears next in the input, then the state set for the next inputposition in
ludes: s0 = hN ! �1 a � �2; ji
pro
edure s
an(ss; token)beginresult = ;;for s in ssif s:next 2 Tandmat
h(s:next; token) thenresult = result [ s0;
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return result;end
where T is the set of terminal symbols, and s0 is the same as s but with theposition of the dot advan
ed by one.
4.2.7 CompletionCompletion is analogous to redu
tion in a traditional parser. A state 
an be
ompleted when an item has its dot to the right; that is, there is nothing afterthe dot.Unlike redu
tion in a traditional parser, in Earley parsing meanings(e.g., abstra
t syntax trees) are not 
omputed during 
ompletion. Instead,the parser maintains a re
ord of the 
ompletions that took pla
e during pars-ing and when parsing is 
omplete, that re
ord is analyzed to 
onstru
t the
orresponding meaning. The reason for this delayed approa
h to 
omputingmeaning is to maintain polynomial 
omplexity bounds in the fa
e of ambiguousgrammars. That is, sin
e Earley 
an parse senten
es using an ambiguous gram-mar, 
omputing the meaning during the parse 
an lead to a state explosionwhi
h would degrade Earley's asymptoti
 
omplexity results to exponentialinstead of O(n3).To 
ompute the derivative states of a 
ompletable state s, where:

s = hN ! � �; ji
ssa[j℄ is examined to determine whi
h states led to state s. In parti
ular, thestates leading to s are those states in ssa[j℄ with an N to the right of the dot79



be
ause those 
reated the predi
tion that we are now 
ompleting. For ea
hstate in ssa[j℄ of the form:
hM ! �1 � N �2;mi

the derived set of s in
ludes hM ! �1N � �2;mi. Note that �2 
ould be empty,in whi
h 
ase another 
ompletion takes pla
e, for M this time.Thus, 
ompletion of a state s is the pro
ess whereby the dot is advan
edpast a non-terminal in some other state m. The state m is in the state set
orresponding to the input position referred to by the ba
k pointer of state s.
4.2.8 Relationship to Tomita ParsingThe Tomita [40℄ approa
h to parsing is worth mentioning be
ause it sharesthe ability of the Earley parser to parse senten
es using arbitrary 
ontext-free grammars and uses a similar parallel approa
h. However, a Tomita styleparser 
reates expli
itly parallel parsers when an un
ertainty is en
ountered.However, to avoid exponential blowup, a Tomita parser must then go throughextra work to join together di�erent forked parsers that rea
h the same pointin parsing through di�erent paths.The Earley approa
h is generally equivalent to the Tomita approa
h ifthe expli
itly parallel parsers are regarded as being implemented using user-level threads with light-weight state and a spe
ialized thread s
heduler whi
hadvan
es ea
h thread in lo
k-step with the input stream. The ba
k pointersin the state link together the \sta
k" of a
tivations of the thread.
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4.3 Advantages to the Earley Approa
h
4.3.1 FlexibilityOne of the main advantages of the Earley approa
h to parsing is that it gra
e-fully handles arbitrary 
ontext-free grammars. Traditional wisdom is thatlarge 
lasses of grammars 
an be 
onverted into a 
onvenient 
anoni
al formsu
h as LR or LL. However, this 
anoni
alizing 
onversion often distorts theresulting 
on
rete tree, whi
h makes it diÆ
ult to 
ompose meanings.For example, 
onsider the following grammar G for array referen
es:

E ! E \[" E \℄"E ! id
This 
an be 
onverted into LL form using the te
hniques des
ribed inAho et al. [1℄. Doing so results in a grammar G0:

E ! id E'E' ! \[" E \℄" E'E' ! �
However, when presented with the senten
e x[y℄, grammars G and G0behave very di�erently. G0 generates the parse tree shown in Figure 4.1.Sin
e E 0 is not an expression { in fa
t, it has no 
orresponden
e tothe 
onstru
ts in the language { it is diÆ
ult to asso
iate a meaning with itthat 
orresponds to some semanti
s of the language. In order to make useof grammar G0, an arti�
ial meaning must be assigned to E 0. This arti�
ialmeaning must then be taken apart in order to build the 
orre
t meaning forthe expression E. 81



E

E'

E'

x ]y[ ε

idid

Figure 4.1: Parse tree for x[y℄ with grammar G0.
As a 
onsequen
e, the meaning 
omputations inG0 must break apart themeanings of their 
onstituent parts. On the other hand, if G 
ould have beenparsed dire
tly, its meaning 
omputations would be simple 
ompositions oftheir parts, ea
h with a dire
t 
orresponden
e to the semanti
s of the language.Furthermore, many te
hniques for produ
ing eÆ
ient parsers for stati
grammars rely on being able to 
ompute global properties of the grammar. Forexample, token lookahead sets are one of the �rst tri
ks for improving parsereÆ
ien
y, and the 
omputation involves the entire grammar. This is diÆ
ultto do when the grammar keeps 
hanging, as in an extensible language.

4.3.2 ExtensibilityAs mentioned previously (
.f. 4.2), an Earley parser expli
itly pro
esses therules of a 
ontext-free grammar in its original form. This makes the parsereasy to extend, be
ause it is 
lear what needs to happen when a grammar
hange takes pla
e { the grammar representation is simply updated. Thereis no additional pro
essing ne
essary, sin
e the parser operates on a dire
trepresentation of the grammar.
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An Earley parser 
an also be thought of as pro
essing multiple 
an-didate parses in parallel. We 
an a
hieve s
oped, lo
al grammar 
hanges byaugmenting the states of these parses with a parse environment that 
ontainsthe grammar. Hen
e, the parser 
an be parsing multiple grammars at on
e.Consider, for example, the following grammar:
A ! a B bA ! a �1 B 


In this example, the interpretation of B depends on what follows it2. That is,a B followed by a 
 is to be interpreted under the in
uen
e of grammar 
hange�1. The Earley parser would normally introdu
e two states to 
orrespondto the two a
tive possibilities:
hA ! � a B b; kihA ! � a B 
; ki

If the grammar augments Earley parsing state, then it's 
lear how this 
anwork:
hA ! � a B b; k; GihA ! � a B 
; k;�1(G)iwhere �1(G) denotes the in
uen
e of the grammar 
hange on the originalgrammar G.2Doing this a lot in a language 
an make it very diÆ
ult to read, be
ause you 
an'tunderstand a program in a straightforward left-to-right manner. However, several languageshave some 
avor of this when it 
omes to ex
eptional 
ases, spe
i�
ally be
ause they wantto keep the thinking for ex
eptional 
ases out of the way of the normal 
ase. In any 
ase,it's interesting that an extensible Earley parser 
an handle this!83



Cardelli's [9℄ me
hanism for synta
ti
 extension at the surfa
e grammarlevel operates at a global level. Our approa
h makes possible lo
al and s
oped
hanges to the grammar.So, our approa
h adds a parse environment to the state whi
h in
ludesthe grammar. In addition, sin
e we do not want to run ba
k over the parsestates to build a parse tree, and we aren't worried about parsing ambiguousgrammars, we 
olle
t the meanings in the parse states as well. Hen
e, ourstates look like: hN ! a B � 
 D; 3; h�0; �1i; �iwhi
h denote the same states as in ( 4.1) but with a

umulated meaningsh�0; �1i and in environment �.The meaning sequen
e h�0; �1i is exa
tly as long as the position of thedot, and its elements are in 
orresponden
e with the vo
abulary symbols tothe left of the dot. In this example, �0 is the meaning resulting from the parseof a and �1 is the meaning resulting from the parse of B.
4.3.3 UnderstandabilityThe Earley parsing approa
h is a straightforward implementation of a parserfor general 
ontext-free grammars. A straightforward implementation makessystem development, debugging, and maintenan
e more 
ost e�e
tive. Fur-thermore, despite the dire
t implementation, an Earley parser is not ineÆ
ientin the 
ommon 
ase. Before Earley, generi
 parsers for 
ontext-free grammarswere somewhat less eÆ
ient even when operating on unambiguous grammars.
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4.3.4 ComplexityThe theoreti
al (asymptoti
) 
omplexity of the Earley approa
h is not bad, andit is dependent on the 
lass of grammar on whi
h it is operating. A

ordingto Earley [16℄, the algorithm is O(n3) in the worst 
ase. For unambiguousgrammars, an O(n2) bound is obtained.Indeed, for many pra
ti
al language grammars, it appears that O(n)performan
e is expe
ted. The latter 
lass of grammars are those for whi
h thesize of the state set does not grow with the length of the input string. Earley
alls these grammars bounded state grammars. Furthermore, bounded stategrammars in
lude most LR(k) grammars as well.
4.4 Drawba
ks to the Earley Approa
h
4.4.1 ExpressivenessIf we weren't 
on
erned about the issue of programmer extensibility, then onedrawba
k to the Earley approa
h is that it may be too general. That is, most ofits 
exibility is wasted be
ause it seems that many kinds of grammar 
hanges{ indeed, the most stru
tured and hen
e most understandable ones { haveno greater expressive power than stati
 
ontext-free grammars. This is truebe
ause the dynami
 grammar 
an be 
onverted into an equivalent (althoughsomewhat larger) stati
 grammar by appropriate sub-grammar expansions andsubstitutions3.However, we take the position that a grammar expressed as a dynami
3Although we did not work out the theoreti
al details of this pro
ess, a few 
asualtranslations suggested that the pro
ess is similar in spirit to how non-deterministi
 �niteautomata are 
onverted into equivalent deterministi
 automata.
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grammar is more 
lear and natural. For example, taking the example of whileand break, it is somewhat 
learer to de�ne statements in general and expressthe ex
eption 
ase that break is a valid kind of statement inside a while body.The alternative is to explain that there are two sets of statements { those insidewhile and those not { and that the two sets are the same ex
ept that breakis in one set and not the other. This isn't a diÆ
ult fa
toring problem if thenew kind of thing (break in this 
ase) were only allowed dire
tly inside thewhile. If that were the 
ase, the programmer 
ould simply write:
stmt ! while \(" h
 :expri \)"\{" h
onseq :while stmt listi \}"while stmt list ! in while stmt while stmt listwhile stmt list ! �in while stmt ! stmtin while stmt ! \break" \;"

However, a break statement is allowed inside another statement in the bodyof the while, for example, an if statement. With some statements using sub-statements as 
onstituents, the entire stmt sub-grammar has to be repli
atedand translated to a

ount for the addition of the break statement. This ex-plosion, whi
h multiplies with ea
h statement with this property, is why stati
semanti
s as a 
ompiler 
onstru
tion te
hnique is so widely a

epted.
4.4.2 Performan
eAlthough the theoreti
al performan
e (asymptoti
 
omplexity) of the Ear-ley approa
h is good, espe
ially 
onsidering its 
exibility, the pra
ti
al per-
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forman
e is less impressive. In pra
ti
e, the performan
e su�ers from thediÆ
ulties of all interpreters; systems that make heavy use of 
ompile-timeinformation (and 
ompile-time stati
 knowledge) to build eÆ
ient parsers 
ana
hieve better performan
e than those that don't. For example, the ya

parser generator spends a relatively large amount of time prepro
essing thegrammar in order to build a stru
ture that is very fast to interpret at runtime.An Earley parser does not utilize pre
omputation of this sort, and hen
e itmust re
ompute the same kinds of information at parse time, in
urring thattime 
ost for ea
h program 
ompiled.Despite somewhat less eÆ
ien
y than a parser like ya

, an Earleyparser 
an a
hieve suÆ
ient performan
e for pra
ti
al purposes. Our imple-mentation written in C parses a 600-line Java program in about 44ms on an866MHz Pentium III. Considering the 
exibility that this approa
h enjoys,this seems plenty fast for produ
tion use.
4.5 Extensibility
4.5.1 S
ope IssuesAn extensible parser 
an be thought of as dealing with multiple stati
 gram-mars. Ea
h grammar 
hange 
reates a new grammar for parsing a portion ofthe input program. The s
ope issue to be resolved is determining in whi
hgrammar a parti
ular non-terminal being re
ognized is to be interpreted.The s
ope of a grammar 
hange is the set of non-terminal symbols overwhi
h the 
hange applies4.4Sin
e we use a 
onventional separate lexi
al s
anner, we don't allow 
hanges to thelexi
al analyzer and hen
e 
an take the meaning of terminal symbols as �xed and global.
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What does s
ope look like in an Earley parser?The same s
ope issues that arise in hygieni
 ma
ro expansion 
ome up inextensible parsing, and we show how those issues are addressed.However, when the grammar is no longer a stati
 entity, an additionals
ope issue arises, whi
h is: What is the s
ope of a 
hange to the grammar?An example of the s
ope issue is in the parsing of something like Java's whilestatement where break is a valid statement inside while but not elsewhere.The s
ope of the grammar 
hange that makes break a valid statement shouldonly be the body of the while, not its expression part and not statements thatfollow the while.The usual approa
h for handling this sort of 
onstru
t is to make breakbe a valid statement in all 
ontexts and then to 
he
k the stati
 semanti
s ofthe program after parsing is 
omplete or using parse-time attributes (in fa
t,there is a whole dis
ipline for de�ning stati
 semanti
s [42℄.)Our approa
h uses the ability to extend the grammar during parsing.When a while statement is en
ountered, the rule for the statement 
an makea 
hange to the grammar for the duration of the parsing of its body. This
hange is the extension of the set of valid statements to in
lude break.
Hygiene in an Earley parserGrammar 
hanges in our approa
h have dynami
 extent and inde�nite s
ope.In this respe
t they are like spe
ial variables in Lisp. A grammar rule anywheremay make use of a grammar 
hange as long as the 
hange is still a
tive.Future work should look at relaxing this restri
tion { there is some suggestion that withsome optimizations for the purpose, s
anning 
ould take pla
e in the grammar itself!
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4.6 Our Implementation
We have two implementations of an extensible Earley parser. One is writtenin S
heme and is used for testing new ideas and validating 
on
epts. Theother is written in C and is intended primarily for ben
hmarking, so that theinterpretive overhead of the S
heme implementation doesn't overshadow thea
tual performan
e of the parser.The S
heme implementation is designed for 
exibility and not for speed.As a test bed for 
on
epts, it is more 
onvenient to work out how a feature 
anbe implemented in a highly dynami
 environment su
h as S
heme than in apedanti
, low-level environment like C. This implementation does not engage inany of the performan
e optimizations des
ribed later5. The C implementation,by 
ontrast, is tuned for performan
e. It uses standard systems programmingoptimizations to implement the algorithm eÆ
iently.
4.6.1 DetailsLiteral Equivalen
eIn our 
urrent implementation, we do nothing spe
ial to handle literal equiv-alen
e. Literal equivalen
e for identi�er tokens is determined by equivalen
eof their 
hara
ters. As a result, we get a kind of 
ontext-sensitive keyworddetermination. An identi�er plays the role of a synta
ti
 keyword if it o

ursat a pla
e where one is expe
ted.5The S
heme implementation does employ the optimization des
ribed in se
tion 4.8.2,pruning states using FIRST. This optimization is only be
ause we wanted to exer
ise theFIRST-pruning optimization in the test bed before implementing it in the low-level imple-mentation. We also use the S
heme implementation to pre
ompute the FIRST sets whengrammars are being pre
ompiled.
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Note that this behavior, 
ombined with poor programmer pra
ti
e, 
anlead to programs that are diÆ
ult to read. PL/I, for example, exhibits thiskind of 
ontext-sensitive keyword identi�
ation [20℄. Consider:
if(x) = then + then; (1)if(x) = then + then then; (2)

In this example, (1) is an assignment of the sum \then+then" to the array\if", and (2) is a test of the value x against the sum \then+then". To mitigatethis problem, we implement keywords as distinguished entities, but they ares
oped to the grammar 
hange module whi
h introdu
es them.
DisambiguationOur implementation 
omputes meaning as the parse progresses, instead of in apost-pass as traditional Earley parsing does. To prevent an explosion of states,we use a disambiguating rule to 
ollapse ambiguous 
ases. This is dis
ussedmore fully in se
tion 4.8.1.
4.6.2 Meta-syntaxThe notation we use is essentially standard BNF (e.g., see Aho et al. [1℄).O

urren
es of vo
abulary elements on the right-hand side of a rule are givenvariable names to represent the meaning for the 
orresponding parsed inputelement during the 
omputation of the meaning for the whole rule6. For amore 
omplete explanation of our meta-syntax, see Se
tion 5.8.For a simple example, a rule for an if statement might be:6These variable names play the same role as the $k variables in the a
tion part of ya

grammar rules.
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ifstmt ! if ( h
 :expri ) h
onseq :stmti else halt :stmti
The typographi
al distin
tions herein whi
h signal di�erent roles foridenti�ers, su
h as between if and ifstmt, are written in the meta-syntax withquotes. Other spe
ial symbols are entered using existing operator symbolssu
h as <, > and :. The above rule might be written in our meta-syntax as:

ifstmt = "if" "(" <
:expr> ")"<
onseq:stmt>"else" <alt:stmt>
This de�nes a rule 
alled ifstmt, whi
h begins with a synta
ti
 literal(if), followed by an expression 
 in parentheses, followed by a statement(
onseq), followed by another synta
ti
 literal (else), with another statementalt at the end.It is ne
essary in this implementation to use existing operator symbolsbe
ause the tokenizer is not integrated with the parser. This implies thattokenization is not an extensible fa
ility in this implementation. Hen
e, allmeta-synta
ti
 notation must either use the existing tokens of the languagebeing implemented or add new tokens to the language globally. In general, wedo not want to 
hange the lexi
al stru
ture of the base language, so existingtoken forms are used to express meta-synta
ti
 forms.Future work in
ludes the in
orporation of an extensible s
anner. Theability to extend the lexi
al stru
ture in a lo
al and s
oped way makes 
ertainkinds of language extensions mu
h more natural and eliminate the ne
essityto use existing tokens in meta-synta
ti
 forms. It should also allow user ex-tensions to the language to spe
ify new lexi
al 
ategories.
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4.6.3 Meaning ComputationBe
ause we are 
ompiling and not just re
ognizing, we have to asso
iate ameaning with grammar rules. We implement two ways of 
omputing a newmeaning; a primitive, pro
edural meaning fun
tion, and a re
ursive 
ompila-tion to produ
e new meaning.The following de�nition for the traditional if statement illustrates thenotation used in this dis
ussion:
ifstmt ! if ( h
 :expri ) h
onseq :stmtielse halt :stmti)makeif(
; 
onseq; alt)
In this example, the non-terminal is ifstmt, the pattern is:

if ( h
 :expri ) h
onseq :stmti else halt :stmti
where 
, 
onseq, and alt are pattern variables. The expression for 
omputingthe meaning is: makeif(
; 
onseq; alt)This example also illustrates using an extra-grammati
al fun
tion, makeif,to 
ompute the overall meaning of the 
omplete ifstmt. Taking as argumentsthe appropriate pattern variables, makeif builds, using the fa
ilities of theunderlying metalanguage, a 
omplete meaning value.The simple fun
tional form of this meaning 
omputation is what wemean by 
omposition of meaning. That is, the new meaning is 
omposed fromthe old (lower-level) meanings.Sin
e the parser is itself a me
hanism for 
omputing meanings, the se
-ond approa
h simply reuses that me
hanism. In this 
ase, the repla
ement text92



and a grammati
al type is handed ba
k to the parser/
ompiler in a re
ursivesub-parse:
ifstmt ! if ( h
 :expri ) h
onseq :stmtistmt=) [[ if ( 
 ) 
onseq else f g ℄℄

Here, the meaning for a single-bran
h if (i.e., an if statement withoutan alternative part) is determined by 
omputing the meaning for the programfragment given in double-bra
kets. The portion inside the double-bra
kets isreferred to as the template. The template, mu
h like a quasiquote form inLisp, a
ts like a token string with holes. In this 
ase, the token string denotesa full two-bran
h if.The holes are �lled in with parts taken from the original form. In thisexample, 
 and 
onseq are pattern variables and denote the meanings resultingfrom the parse of an expr and a stmt. When these tokens are en
ounteredduring the parse, the meaning obtained during the parse of the left-hand sideis immediately substituted, and it is as if the produ
tion were 
omplete.Note that this is essentially the same approa
h used in 
ompiling withS
heme ma
ros, ex
ept that the meanings of the 
onstituent parts are deter-mined by the pattern rather than by their use in the template or body part.Re
all that in S
heme ma
ros, the o

urren
e of a pattern variable in a tem-plate represents the parse tree for the 
orresponding part of the input, 
oupledwith a 
ompile-time environment to prote
t hygiene. In our parsing approa
h,the pattern variable denotes a 
omplete meaning, su
h as an abstra
t syntaxtree. The assignment of meaning during pattern re
ognition is ne
essary, orat least 
onvenient, be
ause there are no other synta
ti
 
ues to guide a surfa
e
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parse of an o

urren
e of the ma
ro. In S
heme, by 
ontrast, the parentheti
allist representation is a simple syntax whi
h requires no knowledge of ma
rosor meanings to build trees out of sour
e text.One 
onsequen
e of this approa
h is that grammar 
hanges that onlybe
ome apparent during the parse of the right-hand side (the repla
ement text)are not known during the parse of the left-hand side (the o

urren
e text).One environmental intera
tion that 
omes up in extensible parsing butdoesn't manifest in S
heme ma
ro pro
essing is the de
laration of the surfa
esynta
ti
 types of the arguments. For example, in a pattern de
laration:
forstmt ! for hv :vari = he :expri ...

var is a kind of variable referen
e in the pattern that does not manifest inS
heme ma
ro pro
essing, i.e., it is a referen
e to a non-terminal name. InS
heme ma
ros, there are no names given to synta
ti
 roles in a pattern. Thatis, there are no pattern abstra
tions in S
heme ma
ros.Furthermore, the meaning of the identi�er var should be determined inthe environment of use, even though it o

urs in the environment of de�nition.Thus, for example, the user 
an 
hange the syntax of expr. That 
hange isvisible and used by any rule whi
h uses expr in its pattern, even if the rulehas no knowledge of the possibility that expr has 
hanged.However, the template is interpreted in the environment of de�nition,preventing lo
al 
hanges to the grammar from a�e
ting the synta
ti
 interpre-tation of the template7. For example, let us suppose that in addition to theif statement mentioned previously there is a 
onstru
t, with, whi
h adds a7This is like the se
ond part of the hygiene 
ondition; referen
es (impli
it in the synta
ti

onstru
tion) in the template should not be 
aptured by bindings other than those presentat the point of ma
ro de�nition.
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new kind of expression, it, to the grammar:
withstmt ! with ( he :expri ) �1[ hbody :stmti ℄

where �1 represents a grammar 
hange whose s
ope is the bra
ket-delimitedportion of the rule and whose e�e
t is to add the symbol it to the alternativesfor expr.Now 
onsider an input program fragment su
h as:
with (foo())if (it)print(it);

The with establishes a new kind of expr whi
h 
onsists of the symbolit. Even though the ifstmt rule was written with no knowledge of the futurewithstmt rule the o

urren
e of expr in ifstmt should 
onsider it to be a validexpression. This is true even though the o

urren
e of expr in the patternifstmt is well outside the stati
 s
ope of the 
hange made by �1.Hen
e, although we 
annot impli
itly 
arry a grammar 
hange from theright-hand side (template) into the left-hand side (pattern) of a translationrule, we 
an isolate produ
tions that make use of a non-terminal N from thelo
al e�e
ts of rede�ning N .
4.6.4 Performan
ePra
ti
al measurements have been made of Earley parsing in the 
ontext of im-proving its performan
e using pre
omputation approa
hes [30℄. Unfortunately,sin
e that work did not give the implementation of unmodi�ed Earley, it is
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diÆ
ult to draw 
on
lusions about the general performan
e of the unmodi�edEarley approa
h.Our implementation is designed from the start to be fast, sin
e one ofour points is that the Earley approa
h is not prohibitively expensive. Our Cimplementation uses traditional performan
e-improving te
hniques su
h as in-lining, as well as 
arefully 
hosen data stru
ture representations. Furthermore,sin
e modern 
ompilers spend mu
h more time in optimization and other ba
k-end pro
essing than in front-end pro
essing like parsing, if the parser is a bitslower be
ause it is 
ompletely interpretive (as in Earley), the overall system
ost is still not prohibitive.We don't have a large body of language implementations designed tobe extensible. Therefore, in order to understand the performan
e impli
ationsof our extensible grammar approa
h, we made a pessimisti
 estimation of thefrequen
y of grammar 
hanges. In parti
ular, we assumed that a grammar
hange 
ould take pla
e at every input token.This analysis leads us to the natural advantage of the Earley parsingte
hnique. Sin
e Earley parsing is essentially an interpretive pro
ess, there isno pro
essing of any grammar 
hanges required in order to start re
ognizingagainst a modi�ed grammar. Thus, even if grammar 
hanges are extraordi-narily frequent, performan
e is essentially un
hanged.Even in the absen
e of any grammar 
hanges, performan
e is tolerablein pra
ti
e. As mentioned previously, without any grammar 
hanges (i.e., witha 
ompletely stati
 grammar), our C parser implementation parses a 600-lineJava program (2777 tokens) in about 44ms on an 866MHz Pentium III.
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4.7 Literal Equivalen
e
S
heme ma
ros have the ability to spe
ify pattern elements that must mat
hliterally. Sin
e this is most often useful for identi�ers (for example, else),the question arises as to how to distinguish identi�ers that denote patternvariables from identi�ers that are keywords. S
heme answers this by having thedeveloper provide an expli
it list of identi�ers along with the syntax de�nition.The identi�ers in the list are then 
onsidered literals in the patterns ratherthan pattern variables.Furthermore, in S
heme, these synta
ti
 literals are s
oped, meaningthat the determination of literal equivalen
e takes into a

ount the normals
oping of the language. The synta
ti
 literals are not reserved words, and theidenti�ers may be rebound, leading to new meanings (and hen
e a failure tomat
h in the pattern).In S
heme, the 
ond spe
ial form 
an be implemented using a ma
ro.To do so requires the use of a s
oped synta
ti
 literal for re
ognizing the else
lause 
orre
tly. The following de�nition of 
ond illustrates the idea:
(define-syntax 
ond(syntax-rules (else)((_ (test body ...) 
lause ...)(if test(begin body ...)(
ond 
lause ...)))((_)#f)((_ (else body ...))
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(begin body ...))))
Here, else is a synta
ti
 keyword and is therefore de
lared expli
itly in thesyntax-rules 
lause.The s
oped nature of the else keyword is illustrated by the followingexample:
(let ((else #f)(never #f))(
ond(never 0)(else 1)))

If the o

urren
e of else were interpreted as referring to the synta
ti
keyword, this program fragment would evaluate to 1. Instead, the lo
al bindingof else shadows its meaning as a synta
ti
 keyword so that its o

urren
edenotes the usual variable referen
e instead, and hen
e this program fragmentevaluates to #f instead.In an extensible parsing 
ontext, it is also ne
essary to spe
ify synta
ti
literals. In a S
heme system, there are only a few spe
ial 
ases where synta
ti
literals are required. The else 
lause in a 
ond is one of just a few examples.However, in parsing traditional languages, synta
ti
 literals are used to re
-ognize essentially all 
onstru
ts. Synta
ti
 literals are the keywords of thelanguage, su
h as if and while, and introdu
e most statements8.8It appears that statements are usually introdu
ed by su
h distinguished keywords partlyfor 
omputation and partly for 
omprehension reasons. Computationally, any parser hasan easier time if it 
an re
ognize the kind of 
onstru
t it is parsing as soon as possible.Re
ursive des
ent parsers, a mainstay of hand-
onstru
ted parser te
hniques, rely on thisearly re
ognition of 
onstru
ts. It also seems that the same prin
iple applies in the 
ognitive
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How does the system determine whether or not a synta
ti
 literal mat
hesa parti
ular token in the input? There are two basi
 approa
hes to making thatdetermination. The �rst, more traditional approa
h, marks 
ertain identi�ersas spe
ial reserved words. The se
ond approa
h allows literal equivalen
e tobe a lo
al property of an identi�er.In the traditional reserved-word approa
h, any o

urren
e of somethingthat looks like an identi�er but is made up of a parti
ular 
hara
ter sequen
eis regarded as a di�erent 
lass of token { an instan
e of a reserved word. Forexample, while may look somewhat like an identi�er, but its a
tual 
ontent
auses it to be 
lassi�ed by the s
anner as a reserved word, or, more generally, asynta
ti
 literal. In this way, sin
e the lexeme is never regarded as an identi�er,there is no 
onfusion between identi�ers and reserved words. Keywords arenot even 
onsidered identi�ers by the lexi
al analyzer; their spe
ial roles aredetermined and assigned during lexi
al analysis and are �xed and global in thelanguage. This approa
h has the advantage of 
larity { there is no ambiguityabout the synta
ti
 role of while.However, this approa
h fails when the language is to be extended dy-nami
ally, be
ause the author of a parti
ular module 
annot know what syn-ta
ti
 literals are going to be used by some other extension to the language{ the global nature of reserved words breaks the modularity of the languagesystem. Hen
e, an extensible language system must support a means to s
opesynta
ti
 literals to their textual regions of relevan
e and avoid in
uen
ingother textual regions of the program.This se
ond approa
h makes literal equivalen
e a lo
al property of anpro
ess; it is simply easier for humans to read a program when a left-to-right s
an revealsthe stru
ture of the program in a top-down manner. Standard mathemati
al expressiongrammars are an interesting 
ounterexample.
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identi�er, determined by it 
ontext of o

urren
e. We a

omplish this bymaking the lexi
al analyzer extensible in exa
tly one dimension: the set ofidenti�ers that are interpreted as synta
ti
 keywords is asso
iated with the
urrent grammar.On
e s
ope has been introdu
ed to manage the modularity of synta
ti
literals, another question arises: How is a synta
ti
 literal in a pattern deter-mined to mat
h a synta
ti
 literal in the input? This is the same question asapplies to program variables { how is a referen
e to a program variable knownto refer to one parti
ular de
lared variable or another. To re
all the examplefor program variables, 
onsider the simple 
ase:
int foo( int x ){ print( x );if (x == 0) {int x = 9;print( x );}}
The se
ond o

urren
e of a referen
e to the program variable x 
learly refersto the se
ond de
laration { the me
hanisms of lexi
al s
ope ensure this byproperly managing the 
ompile-time 
ontext.The problem is the same for synta
ti
 literals but re
alls the approa
h ofS
heme where synta
ti
 keywords are lexi
ally interpreted as identi�ers. Dur-ing 
ompilation, these keywords are re
ognized as being \bound" to synta
ti
markers like else and in
luding spe
ial forms like if and let.100



4.8 Improvements to Basi
 Earley
In addition to using Earley as the 
ore algorithm for 
reating an extensibleparser, we have made some simple 
hanges that simplify parsing and improveperforman
e without signi�
antly impairing the in
rementally extensible ben-e�ts.
4.8.1 Con
i
t resolutionIn the presen
e of an ambiguous grammar, the general Earley algorithm 
anreturn all parse trees for a given input string. This 
an be done with no extraspa
e 
ost in a re
ognizer. However, a parser that builds meaning during theparse 
an require exponential spa
e to en
ode the meanings of all the di�erentparse trees. In pra
ti
al language design, it is useful to have a simple rulefor eliminating ambiguities lo
ally, that is, as soon as an ambiguous parse isdete
ted in the input.We have developed an approa
h for resolving 
on
i
ts between alter-native possible rule redu
tions that is simple to understand and trivial toimplement. In our approa
h, we attempt to resolve 
on
i
ts eagerly. Con
i
tsarise when parsing an ambiguous phrase, so essentially we resolve the ambigu-ity as soon as the 
on
i
t is dete
ted. The disambiguation rule we adopt is topreserve the earlier rule in the grammar and dis
ard the later rule. This hasthe advantage of being easy to understand and fully deterministi
.This is a
tually quite easy to do by implementing the parser to be rule-order preserving. That is, by evolving the Earley states in an ordered fashion,we know that in an Earley state 
ontaining two 
on
i
ting 
ompletions, the
ompletions are pro
essed in exa
tly the same order in whi
h they were added
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as a result of the predi
tion whi
h introdu
ed them. Con
i
ting 
ompletionsare those that are for the same non-terminal and are 
overing the same sub-string of input, that is, their predi
ted-from pointers are to the same state.Then, we simply ensure that the predi
tions are introdu
ed in the same or-der as the o

urren
e of their rules in the grammar. We keep only the �rst
on
i
ting 
ompletion, and the user has an easy-to-understand model for theresolution of 
on
i
ts in parsing.
4.8.2 Pruning states using FIRSTObservation of the operation of the the Earley-based parser indi
ates thatmany tuples are introdu
ed that are dropped in the transition to the nextstate (i.e., reading the next input token). For our 2777-token Java program,without FIRST pruning, there are 1225560 tuples 
reated, 
ompared to 618620if pruning is done. Commensurate with this gain, overall parser running timeis almost 
ut in half (86ms versus 44ms).Even better, these tuples 
an not be introdu
ed at all by initially veri-fying that the su

eeding input token is not in the FIRST set9 of a dotted ruleto be predi
ted. This way, no predi
tion su

eeds that does not lead to a rulethat mat
hes the next token of input.
4.8.3 Approximating FIRSTUnfortunately, it is relatively expensive to 
ompute the FIRST set be
auseit is a global property of a grammar and would in prin
iple need to be re-
omputed whenever the grammar 
hanges. Part of the diÆ
ulty lies in empty9See Aho et al. [1℄ for a des
ription of the FIRST set.
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(�) rules; you 
an't simply re
ursively expand the left-hand non-terminal { ifa non-terminal 
an expand into nothing, the FIRST 
omputation has to 
he
kthe next grammar element in the rule, too.However, it turns out that an easy-to-
ompute approximation of FIRSTgets most of the bene�t. In fa
t, the numbers 
ited above are based on usingthis approximation. The approximation is to punt on epsilon produ
tions andassume they 
an mat
h anything. In the usual 
omputation of FIRST, anepsilon produ
tion 
auses the invoking rule 
ontext to 
he
k the next gram-mar element for its FIRST. In our approximation, the FIRST of an epsilonprodu
tion is de�ned to be the universal set. This is a 
onservative estimateof the real FIRST but makes the s
ope of the 
omputation mu
h more lo
aland hen
e easier to re
ompute.
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Chapter 5
Compiler Extension Framework
In the last 
hapter, we introdu
ed a 
ompiler built using the Earley algorithmas the 
ore engine. Prior to that, in Chapter 2, we introdu
ed the themeof extensible programming as a dis
ipline with supporting te
hnology fromthe language framework, spe
i�
ally in the 
ontext of Lisp systems. In this
hapter, we bring these 
on
epts together and show how a few additional
apabilities in an extensible 
ompiler 
an bring the full power of the extensibleprogramming dis
ipline to bear in a 
onventional syntax.
5.1 Capabilities of Extension Framework
The additional 
apabilities we wish to add are:

� De
larative, pattern-based transformations
� Transformations based on synthesized attributes
� Arbitrary pro
edural me
hanisms to produ
e 
ode
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5.1.1 De
larative, Pattern-Based TransformationA de
larative, pattern-based transformation is a pair 
onsisting of a targetlanguage pattern and a template for the translation expressed in a redu
edform of the target language. The restri
tion on the form of the template isto prevent inde�nite re
ursion of transformation; as a matter of pra
ti
e, thepattern is 
onstru
ted to mat
h a \high level" language 
onstru
t, and thetemplate makes use of only lower level 
onstru
ts.Using pattern-based transformations, a language system developer 
aneasily de�ne a translation from one set of language features into another. This
apability is important be
ause many language features are easily understoodin terms of simpler, more primitive features. Indeed, new language features areoften de�ned for the programmer in terms of existing features. For example,the \+=" operator is often de�ned in terms of the existing \+" and \="operators.
5.1.2 Pattern Mat
hing Synthesized AttributesSin
e the result of parsing is to produ
e meaning values, and parsing takespla
e while trying to mat
h a pattern in a pattern-based transformation, thereis additional opportunity to in
lude attributes of the meaning in the patternmat
hing pro
ess. Thus, the transformation 
an mat
h synthesized attributesin the elements of the pattern part.Transformations based on synthesized attributes extend the 
apabili-ties of de
larative, pattern-based transformations by letting patterns mat
hon 
omputed properties of the 
onstituent parts. For example, a formattingpro
edure like printf 
an be expanded at 
ompile-time if the format string is
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a 
ompile-time 
onstant. The property of an expression being a 
ompile-time
onstant is a synthesized attribute of an expression.
5.1.3 Pro
edural Code-Produ
tion Me
hanismsArbitrary pro
edural me
hanisms to produ
e 
ode are the ultimate fall-ba
kfor the language system developer. This is the es
ape hat
h when the de
lara-tive, pattern-based transformations are too weak, and the problem 
annot beexpressed lo
ally in terms of synthesized attributes. Pro
edural me
hanismsare also how a language system is bootstrapped, sin
e in order to begin, thelanguage system must be expressed in terms of some other available language.
5.2 Elements of an Extension Framework
Supporting the target language is the eventual purpose of a language system. Itis in the target language that end users express the solutions to their problems.In the lexi
on of layering, the target language is the interfa
e at the top of thelayer. An extensible parser requires two languages in order to be useful. First,there must be a language whi
h 
an des
ribe the syntax of the new feature.Be
ause this 
onstitutes a syntax for des
ribing syntax, it is 
alledmeta-syntax.Se
ond, there must be a language for des
ribing how to 
ompute the meaning(e.g., intermediate 
ode) for the new feature.The meta-language provides the means to implement the target lan-guage. In terms of layering, it is the means by whi
h the layer itself 
an beimplemented. In the 
ontext of this work, we say that the meta-language isthe language used to express the 
omputation of meaning.106



An extensible parser requires some notation to de�ne the syntax of thetarget language and to asso
iate parsing a
tivity with a
tions expressed inthe meta-language. This notation is the meta-syntax, and it 
ontains as asub-language the meta-language.Parsing is the pro
ess of applying the rules of the 
urrent grammar toidentify target language elements (as de�ned using meta-syntax) in the inputsequen
e of tokens. Compiling is parsing plus the invo
ation of the a
tionswritten in the meta-language to produ
e a meaning for the target languageelement (usually some form of intermediate 
ode).
5.3 Implementation
To a
hieve the desired 
apabilities, our approa
h involves extending the Earleyparser des
ribed in the previous 
hapter with several features. The followingfeatures are added:� Meta-language: a notation for expressing the 
omposition of interme-diate 
ode, possibly employing re
ursive 
ompilation, pattern variables,and the results of in-line 
omputation� Lo
al grammar 
hanges: the ability to parse some parts of a rule usinga di�erent or modi�ed grammar� In-line 
omputation: the ability to exe
ute meta-language 
ode duringthe parse before the 
ompletion of a rule
5.3.1 Meta-languageThe meta-language in
ludes the following features:107



� Syntax evaluation: the ability to translate syntax from the intermediate
ode 
ompiled from meta-syntax to the internal representation used bythe parser
� Re
ursive 
ompilation: the invo
ation of the 
ompiler as part of an a
tion
omputation (i.e., from the meta-language) to 
ompile new strings oftokens into intermediate 
ode
� Pattern variables: the ability to referen
e the non-terminals of a produ
-tion's right-hand side from within a re
ursive 
ompilation

For ease in developing the meta-language itself, we use a bootstrappingpro
ess to make the power of the extensible 
ompiler available for implement-ing the meta-language. Sin
e we 
laim that this approa
h is valuable in thedevelopment of language systems, what better (or �rst) system to whi
h toapply the approa
h than the system's meta-language!The bootstrapping pro
eeds in three phases:(1) The initial grammar is not expressed in meta-syntax notation at all.Instead, the initial grammar is expressed using the intermediate 
ode to whi
hthe meta-syntax normally 
ompiles and whi
h the parser 
onsumes. This isne
essary be
ause initially there is no grammar with whi
h to parse meta-syntax. The grammar de�ned in this phase is for meta-syntax and is limitedto just enough to express what is needed in the next phase. In our implemen-tation, the initial grammar 
ompiles most of the meta-syntax part but verylittle of the meta-language. This initial grammar la
ks in-line 
omputation inthe meta-syntax and has only variable referen
es, literals, and fun
tion 
allsin the meta-language.
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(2) With basi
 meta-syntax in pla
e and a suÆ
ient meta-language,we 
an now extend the initial grammar using meta-syntax instead of hard-
oded synta
ti
 intermediate 
ode. In this phase, we extend the meta-syntaxgrammar to in
lude in-line 
omputation and extend the meta-language to in-
lude assignment statements, basi
 
onditionals (if), blo
k 
onstru
ts, andthe primitives used for doing on-the-
y grammar 
hanges (syntax).(3) Having most fun
tionality in pla
e, we 
esh out the grammar tomake it fully featured. Here, we write while in terms of if and goto, addone-bran
h if, and provide other 
onvenien
e statements and expressions.
5.3.2 Syntax EvaluationSyntax evaluation is the pro
ess of turning meta-synta
ti
 intermediate 
odeinto the data stru
tures that drive the a
tual parser. The meta-synta
ti
intermediate 
ode is the meaning 
omputed by parsing the meta-syntax.The interpreted nature of Earley makes this pro
ess very straightfor-ward for us, 
ompared to what would be ne
essary for a table-driven LALRparser. This fa
t is due to the inherent similarity between the data stru
turesof an Earley parser and the representation of the meta-syntax.We also use this evaluation pro
ess to support some 
onvenien
e nota-tions in the meta-syntax. We support repetition, optional parts, and alter-natives, as illustrated in Figure 5.1, where A and B denote pattern subparts.

In support of extending the basi
 syntax with 
onvenien
e notations, thesyntax evaluation pro
ess turns the extensions into the 
attened representationexpe
ted by Earley. For example:
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repetition A*optional part [A℄alternative forms A j BFigure 5.1: Extensions to basi
 meta-syntax.
S ! \(" A * \)" = f($2)

is transformed into:
S ! \(" T1 \)" = f($2)T1 !A T1 = 
ons($1,$2)T1 ! � = '()

where T1 is a newly generated non-terminal1. The a
tions asso
iated with theT1 rules have the e�e
t of building the meaning of A* as a list of A meanings.Similarly, the optional 
onstru
t [A℄ produ
es a meaning whi
h is eitherthe false value in the meta-language or the meaning of A. The alternative
onstru
t AjB produ
es a meaning whi
h is the meaning of the subpart thatmat
hed.
5.3.3 Re
ursive CompilationThe ability to re
ursively invoke the parser is presented as a pro
edure in themeta-language, 
ompile, whi
h a

epts a non-terminal name, a token string,and an optional set of pattern variable bindings2.1The name T1 is a
tually formed from the name of A by appending a star, whi
his ne
essary to allow the extension author a

ess to the entire repetition 
onstru
t. Anexample of this is in the next 
hapter.2The very name of this pro
edure, 
ompile, shows our perspe
tive { this operation isone to produ
e intermediate 
ode, and is not merely determining synta
ti
al stru
ture.

110



Re
ursive 
ompilation is mostly a
hieved simply by following the en-gineering pra
ti
e of avoiding global variables. With that, the parser initial-ization pro
edure is re�ned to allow a parse to start at a non-terminal otherthan the grammar's start symbol. As Earley parsing was originally de�ned,the grammar 
ontains a distinguished entry point, � (see Se
tion 4.2.3). Sup-porting re
ursive 
ompilation then redu
es to building an appropriate � ruleon demand.Now when trying to parse a token string L with respe
t to a non-terminal A, the framework builds an initial state h�k ! � A; 0i where k isnewly generated3. The parser then runs with L as input. In the �nal state, ifL is a valid o

urren
e of A, then there is a tuple h�k ! A �; 0i, the meaningfor whi
h is the value of the re
ursive 
ompilation.
5.3.4 Pattern VariablesThe meta-language needs a way to refer to the meanings that have been builtup by 
ompiling the elements of a pattern. Some systems use numeri
al vari-ables (e.g., see YACC [21℄), others use symboli
 variables (e.g., see the workof Cardelli et al. [9℄.) Sin
e the audien
e of our meta-syntax is fairly broad,we believe symboli
 names are the better 
hoi
e. These variables are used intwo ways { they are the variables used in the meta-language for 
omposingnew meaning, and they are referen
ed in de
larative translations.We do not extend the parser per se to implement symboli
 patternvariables. Instead, in the pro
ess of 
ompiling the meta-language into an3In fa
t, we don't even need to generate a new symbol { we simply build a new anonymous<produ
tion> obje
t, whi
h a
hieves the e�e
t of having de�ned a new non-terminal. Sin
ethe � name never appears on the right-hand side of any rule, the produ
tion does not needa name.
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exe
utable representation suitable for the runtime environment of the 
ompiler,the 
ompiler maps the positional synta
ti
 parameters to the symboli
 names.For example, in Figure 5.2, the a
tion part is 
ompiled into a representationlike:
(lambda (ignore s)(
ompile 'stmt '...))

whi
h the runtime environment 
alls with arguments that are the meaning ofthe twi
e identi�er token and the stmt, respe
tively. The meaning of theidenti�er is dis
arded be
ause it is not assigned a name in the produ
tion.The parser is extended to re
ognize when a pattern variable is beingused in a token string. The parser substitutes the asso
iated meaning valuewhen it en
ounters an identi�er whi
h is bound to a meaning in the synta
ti
environment. To implement this, the environment stru
ture in the parserin
ludes a pattern variable symbol table. The value of a symbol is a meaningvalue and a non-terminal name. When the parser is predi
ting hN ! � � A�i,it 
he
ks to see if the next input token is an identi�er whose name o

urs inthe pattern variable symbol table and whi
h was generated by parsing an A.If this happens, the meaning is appended to the tuple, and hN ! � A � �iis put into the next parse state, just as if an a
tual A had been parsed out ofthe input at that point.Taking Figure 5.2 as an example, s is a pattern variable that gets boundto the meaning resulting from parsing the stmt that follows the \twi
e" key-word. In the re
ursive 
ompilation, the body of the blo
k is expe
ting a stmt,so the o

urren
e of s mat
hes and the stmt produ
tion is 
ompleted. This isrepeated again for the se
ond o

urren
e of s.
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twi
e_stmt= "twi
e" <s:stmt>== 
ompile( :stmt, [[ { s s } ℄℄ );
Figure 5.2: The twi
e statement, illustrating pattern variables and substitu-tion 
onforman
e.

In our language for des
ribing language extensions, a rule is 
omprised ofa three parts. The �rst part is a non-terminal name (e.g., twi
e stmt) followedby an equals sign (\="). The se
ond part is a sequen
e of elements whi
h areto make up an o

urren
e of the form (e.g., the keyword twi
e and a stmt)followed by a double-equals sign (\=="). The third part is the expression whi
his to 
ompute the meaning of the form from its 
onstituents (e.g., an invo
ationof the 
ompile operator). Inside the third part (the meaning expression), abare 
olon (\:") introdu
es a symbol in the meta-language (e.g., :stmt), anddouble-bra
kets (\[[" ... \℄℄") en
lose a string of tokens whi
h are to bere
ursively 
ompiled. This notation is des
ribed more fully in Se
tion 5.8.Note that there is no \;" after the s, whi
h looks a little strange to the
asual observer. However, this follows from the expansion of the blo
k formand the fa
t that s is a statement. Figure 5.3 shows how the blo
k expansionworks out to the level of the s, whi
h mat
hes the stmt non-terminal.In some 
ases, non-terminals are organized into some kind of meaninghierar
hy. In fa
t, to express pre
eden
e in this kind of grammar, it is 
ommonto see very deep hierar
hies4. For example, a primary is a valid expr. In this4Our Java grammar has 21 levels of nesting from expr to identi�er. In a 
ase like this,pre-pro
essing the grammar, as is done in most 
ompiler generators, 
an greatly improve
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blo
k
\{"

sssssssssss stmtlist \}"
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stmt
ssssssssss stmtlist

s stmt stmtlist
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s
Figure 5.3: Parse tree for translation of the twi
e statement.


ase, something parsed as an primary 
ould be used where a expr is expe
ted.See Figure 5.4 for an example. In our implementation, this inheritan
e happensautomati
ally be
ause the Earley parser keeps expanding expr in the 
urrentparse state until it gets to primary, at whi
h point it mat
hes the patternvariable e.
5.3.5 Lo
al Grammar ChangesNormally, the parser uses the environment of a tuple for resolving grammarlookups (re
all that a parse tuple has an asso
iated grammar environment). Alo
al grammar 
hange is an operator whi
h tells the parser to use a di�erentenvironment for parsing a parti
ular non-terminal in a pattern. The meta-syntax for a lo
al grammar 
hange pattern part looks like:performan
e. Pre-pro
essing wins be
ause (1) expr is a very 
ommon grammati
al element,and (2) a single identi�er is a very 
ommon expr. Our interpreted approa
h frequentlyexpands 21 non-terminals just to dis
over that x is an expression!
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expr = "getter" <e:primary>== 
ompile( :expr, [[ lambda () e ℄℄ )
expr

\lambda"
iiiiiiiiiiiiiiiiiii \("

uuuuuuuuuu arglist \)"
IIIIIIIIII expr

UUUUUUUUUUUUUUUUUUUU


onditional
add

�

�

�

mult
primary

�

�

�

e
Figure 5.4: Parse tree illustrating how a primary gets used as an expr.

< pv : nt : ev >
where pv is the name of the pattern variable to bind the resulting meaning, ntis the non-terminal to parse, and ev is the name of the variable whi
h 
ontainsthe environment in whi
h parse nt (and the grammar in whi
h to �nd nt itself).The ev is either a rule lo
al variable (Se
tion 5.3.6) or the global nameof a syntax module (Se
tion 5.7). For example, <q:query:sql_syntax> in apattern means to parse the non-terminal query as found in the sql syntaxmodule and to use the name q to refer to the resulting meaning within thisrule. 115



5.3.6 In-line ComputationTo support 
omplex 
omputations to build environments for use in grammar
hanges, we introdu
e the ability to do 
omputation in-line with the parsing ofthe right-hand-side5. This allows a single environment to be used for severaldistin
t non-terminals.In a generalization of pattern variables, the meta-language supportsvariables that are lo
al to the produ
tion. These variables are used to storeenvironments built by in-line 
omputations for use in grammar 
hange opera-tions. As an example of using this feature to extend the syntax environmentbefore pro
essing a subsequent phrase, take:
stmt= "foo" { enew = extend( envt, ... ); }<s:stmt:enew>== s;

The fun
tion extend is exposed to the meta-language for the purposeof building new environments (see Se
tion 5.6.3.)
5.4 De
larative Transformations
The general strategy for supporting de
larative transformations was presentedin the previous 
hapter. To apply this strategy, our meta-language in
ludes aliteral 
onstant notation for a sequen
e of tokens. Su
h a literal 
onstant istypi
ally used to supply the argument to a re
ursive 
ompilation, as in:5This is not a new 
on
ept. YACC [21℄ supports the same thing, although in that systemthis feature is not used to 
ompute new grammars on the 
y!
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x
_stmt= "if" "(" <e:expr> ")" <t:x
_stmt>== 
ompile( :x
_stmt, [[ if (e) t else {} ℄℄ );
The 
ompile meta-language operator takes two arguments { a non-terminal of the grammar, and a token sequen
e. It returns the meaning ofthe token sequen
e when 
ompiled as the given non-terminal. 
ompile isnot a plain pro
edure, be
ause it re
e
ts on the s
ope of the meta-languageexpression. That is, it arranges for the token sequen
e to be 
ompiled in anenvironment that in
ludes the pattern variables present in the right-hand sideof the synta
ti
 de�nition. For example, in the above de�nition for x
 stmt,the use of 
ompile in
ludes an environment that binds e to the result of
ompiling the expr and t to the result of 
ompiling the x
 stmt. This notationis similar to that of Cardelli [9℄, apart from some details of meta-syntax.With de
larative transformation and the other meta-programming toolsin hand, we 
an realize the full implementation of while in terms of if andgoto, with break de�ned lo
ally for the body. Figure 5.5 shows how while isexpressed for the meta-language as it appears in the third phase of bootstrap-ping.

5.5 Synthesized Attributes
Be
ause we have an expressive meta-language, the a
tion asso
iated with agiven produ
tion 
an do arbitrary analysis on the meaning of the patternvariables. However, there is no way to sele
t one of several otherwise ambigu-ous mat
hes depending on that analysis. We introdu
e the 
on
ept of syntax
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x
_while= "while" "(" <e:expr> ")"{ loop = gensym();e2 = extend( envt,syntax( x
_stmt = break_stmt; ),syntax( break_stmt= "break" ";"== 
ompile( :x
_stmt,[[return loop;℄℄ ); ));}<s:x
_stmt:e2>== 
ompile( :x
_stmt,[[ loop: if (e) { s goto loop; } ℄℄ );
Figure 5.5: De�nition of while for the meta-language using extensible syntaxfeatures.
guards to enable this ability. The meta-syntax for this feature is a meta-language expression pre
eded by \/;" and lo
ated before the a
tion part. Forexample, 
onsider the following simple optimization implemented in the gram-mar using a guard to 
he
k if an operand is zero:
sum= <e1:expr> "+" <e2:expr>/; zeroq(e2) /* 
he
k for always-0 right operand */== e1;

Our system implements this by arranging for a spe
ial meaning value tobe returned as the meaning when the guard expression fails. When 
ompletionpro
essing en
ounters the spe
ial value, it dis
ards the entire tuple.
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5.6 Pro
edural Code Produ
tion
The standard library of the meta-language provides several fa
ilities that areused to pro
edurally produ
e 
ode. Prin
ipally, these fa
ilities provide a

essto the ma
hinery of the 
ompiler and the obje
ts of intermediate 
ode. For ourpurposes, we use the RS
heme runtime system as the exe
ution environmentfor the meta-language, although the meta-language syntax is 
loser to that ofJava.
5.6.1 Token Sequen
esIn this meta-language, we use S
heme data stru
tures to represent 
ompile-time obje
ts. A token is a pair, and a sequen
e of tokens is a list. Sin
e theunderlying meta-language is S
heme, all of the list management fun
tions areavailable for building and destru
turing token sequen
es.
5.6.2 CompilationThe fun
tion 
ompile in a
ts like the 
ompile operator but takes an expli
itenvironment and a set of pattern variables and their meanings as an argument.Apart from being the underlying implementation of 
ompile, this is used when�ner 
ontrol over the environment is required.
5.6.3 Environments and SyntaxThe extend fun
tion takes a syntax environment and a set of syntax rules andreturns a new, extended environment. The syntax rules are produ
ed usingthe syntax spe
ial form, whi
h wraps a meta-syntax form. For example,
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syntax( stmt = new_stmt; )
is an expression whi
h produ
es syntax intermediate 
ode, suitable for use inextending an environment. This 
an then be used to extend an environmentlike so:

extend( envt, syntax( stmt = new_stmt; ) )
5.6.4 Re
e
tionThe literal fun
tion takes an obje
t of the meta-language and returns theintermediate 
ode for an expression whose e�e
t is to produ
e a 
orrespondingobje
t in the target language. How obje
ts in the meta language translate totarget obje
ts is determined by the adaption to the target language within theextensible 
ompiler framework, whi
h is 
overed in Chapter 6 for Java as atarget language.
5.7 Modular Syntax
Our approa
h supports modularizing syntax, mu
h as in the vo
abularies de-s
ribed by Krishnamurthi [26℄. In our system, we use syntax modules toseparate out the meta-syntax (and its asso
iated meta-language syntax) fromthe target language syntax. A syntax module is realized as a named synta
ti
environment, so a module 
an make use of another module by using the gram-mar 
hange operator to referen
e the target module and a non-terminal in it.For example, the gateway between a target language in our 
urrent systemand the meta-syntax might be expressed like so:
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de
l= "syntax" <u:unit:meta_syntax>== apply( extend, envt, u );
One 
onsequen
e of this modularization is to distinguish keywords fromdi�erent sub-languages. For example, the module meta syntax might use asa keyword the identi�er \to", whi
h is not a keyword in the target language.This is desirable be
ause some sub-languages de�ne a lot of keywords thatwould pollute the parent language. For example, SQL uses keywords heavily,and reserving those words in a C target language would be prohibitive. Ourmodularity approa
h enables the designer to support an SQL extension fa
ilitywithout dragging all of the SQL keywords into the target language:

expr= "sql" <q:query:sql_syntax>== list( :sql_gateway, q );
5.8 Full Meta-syntax
In this se
tion we give a more 
omplete des
ription of the syntax and seman-ti
s of our meta-syntax, in
luding the embedded meta-language. To des
ribethe meta-syntax of our system as a Java extension framework, we use fairlystandard extended BNF notation. In this des
ription, a produ
tion is writtenas a non-terminal, followed by an arrow, followed by a sequen
e of elements.Ea
h element is either:

� a non-terminal name, su
h as foo,
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decl
  = "syntax" <u:unit:meta_sx>
    == extend(envt,u)

expr
  = "sql" <q:query:sql_sx>
    == list(:sql_escape,q)

target_sx

unit = ...

query = ...
sql_sx

meta_sx

Figure 5.6: Syntax modules being used to 
ontain sub-languages.
� a referen
e to a 
ategory of tokens, su
h as id,
� a literal token, written in quotes, su
h as \foo" or \=", or
� an element followed by *, su
h as foo�, to denote zero or more o

urren
esof the element foo.

For example,
expr ! expr \." id

is a 
laim that one possible form for the grammati
al element expr is an exprfollowed by a literal \." token, followed by an identi�er. This is a left-re
ursiverule be
ause the non-terminal being de�ned o

urs as the �rst element in theright-hand side of the produ
tion. For des
ribing our system's meta-syntax, weonly need to de�ne two token 
ategories: id for identi�er tokens and stringfor string tokens. The des
ription of the meta-language requires the additionaltoken 
ategories int for integer literals and num for other numeri
 literals.122



5.8.1 Syntax De
larationsIn this se
tion we des
ribe the top-level stru
ture of a synta
ti
 de
larationin our extended Java implementation. The basi
 form is that of a synta
ti
extension lo
al to a �le, whi
h is introdu
ed using the keyword syntax.
java tl de
l ! \syntax" syntax de
ls java tl de
l

A synta
ti
 extension plays the role of a top-level de
laration, and 
on-veys to the following de
laration an environment extended with the newlyde�ned syntax. The same idea applies if the syntax is being imported from anseparate �le:
java tl de
l ! \import" \syntax" name \;" java tl de
l

This form 
auses a named synta
ti
 de
laration in the �le indi
ated by nameto be imported and supplied to the remaining java tl de
l forms. The �le islo
ated a

ording to the usual rules of Java pa
kage naming.Syntax de
larations themselves are en
losed in bra
es:
syntax de
ls ! \{" syntax de
l� \}"

Ea
h de
laration 
onsists of a non-terminal name (id) and one or more\|"-separated syntax-rules that denote alternative produ
tions for the non-terminal:
syntax de
l ! id \=" syntax rules \;"syntax rules ! syntax rulesyntax rules ! syntax rule \|" syntax rules
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5.8.2 Syntax RulesAs seen above, ea
h non-terminal is asso
iated with a set of syntax rules thatde�ne the valid expansions of that non-terminal. In the general 
ase, a singlesyntax rule is a sequen
e of syntax pattern elements followed by a rule a
tion:
syntax rule ! pat elem� rule a
tion

A shorthand notation is provided for the 
ommon 
ase that one non-terminal is valid in the pla
e of another:
syntax rule ! id

This would be used, for example, to write that a blo
k is a kind of stmt :
stmt = blo
k;

This de
laration states that anywhere a stmt is expe
ted, a blo
k 
an besupplied. Of 
ourse, the kind of meaning (e.g., intermediate 
ode) built byblo
k would have to be 
ompatible with the kind of meaning expe
ted byusers of stmt.
5.8.3 Syntax Pattern ElementsSyntax pattern elements de�ne the right-hand side of a grammar rule. The pat-tern elements spe
ify what 
onstitutes a valid o

urren
e of the non-terminalbeing de�ned.
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Primitive Pattern ElementsThe two most basi
 kinds of pattern elements are tokens (terminal symbols)and non-terminal identi�ers:
pat elem ! pat tokenpat elem ! pat nt

A token pattern is represented as a literal string, whi
h mat
hes thesame token on input. It is an error if the string does not s
an as exa
tly onetoken.
pat token ! string

For example,break_stmt = "break" ";"is part of a syntax de
laration for break stmt, with a syntax rule pattern listthat 
ontains two pattern elements. Ea
h of the two pattern elements mat
hesa literal token. The �rst token must be the identi�er break and the se
ondtoken must be the semi
olon delimiter \;".
Composite Pattern ElementsThe other basi
 kind of pattern element is a binding 
onstru
t, whi
h is usedto bind a syntax variable to the meaning from a 
onstituent pattern element:

pat elem ! pat bindpat bind ! \<" id \:" pat elem \>"
(See also Se
tion 5.8.6 for another pat bind form)125



We also allow the syntax author some 
onvenien
e notations in de�ningthe syntax pattern. The following pat op element is used to de�ne repeatingand optional synta
ti
 patterns:pat elem ! pat oppat op ! \(" pat elem� \)" pat op
odepat op
ode ! \*"pat op
ode ! \?"The op
ode * denotes zero or more o

urren
es of the pat elem sequen
e. Themeaning that is 
onstru
ted at parse time for a * 
onstru
t is a list of themeanings of ea
h o

urren
e. For example, 
onsider the following fragment:blo
k_stmt = "{" <body:(stmt)*> "}"The meaning bound to the syntax variable body is stru
tured as a listof lists, ea
h item of the outer list representing one o

urren
e of the patternsequen
e (stmt), and ea
h inner list being of length 1, the single item beingthe meaning of the stmt o

urren
e. For example, when presented with the in-put { a=1; b=2; }, the variable body is the stru
ture hhM(a=1)i; hM(b=2)iiwhere M(x) denotes the meaning resulting from 
ompiling x.The op
ode \?" 
auses the pattern sequen
e to mat
h zero or one o
-
urren
e. The resulting meaning is either #f (the unique false value in themeta-language's underlying interpreter) if no o

urren
e was mat
hed or a listof the meanings of the pattern elements. Consider, for example:if_stmt = "if" <e:expr> "then" <t:stmt> <f:[ "else" stmt ℄>Here, f takes on either a 2-item list value hM(else);M(stmt)i or #f, depend-ing upon whether the else 
lause was mat
hed in the input or not.126



In addition to the post�x \?" operator, an optional element sequen
e
an also be written using the standard [ � � � ℄ notation:
pat elem ! pat optpat opt ! \[" pat elem� \℄"

5.8.4 A
tionsThe meta-syntax 
ontains as a sub-language the meta-language, whi
h de�nesthe a
tions and expressions used to 
ompute the meaning resulting from aparse mat
h. The simplest arrangement is that the a
tion is an expression inthe meta-language, whi
h is to be evaluated when the produ
tion is 
ompletedin the Earley parser:
rule a
tion ! \==" x
 expr

The x
 expr is evaluated with respe
t to any variables bound by pat bindpattern elements.Sin
e the meta-language uses S
heme as its underlying interpreter, aspe
ial expression is de�ned to make S
heme symbol values denotable usingJava's lexi
al rules:
x
 expr ! \:" id

The \:" is used to introdu
e a meta-language literal symbol value. For exam-ple, :stmt is a meta-language expression whi
h evaluates to the symbol stmtin the underlying interpreter. Similarly, some global variables are de�ned tohold other well-known S
heme values.
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Meta-language Variable Equivalent S
heme Expressionnil '()true #tfalse #f
Token Sequen
esIn order to perform a re
ursive 
ompilation, a meta-language pro
edure needsto have a token string to 
ompile. Token strings are entered as literal obje
tsdelimited with double square-bra
kets. Con
eptually, a token sequen
e is atoken of the meta-language, although it is a
tually implemented in the 
urrentsystem using a grammar rule for mat
hing a string of bra
ket-balan
ed tokens.
Pro
eduresThe meta-language supports pro
edure 
all expressions in the usual notation:x
 expr ! id \(" 
all args \)"
all args ! �
all args ! 
all args ne
all args ne ! x
 expr \," 
all args neThe meta-language also provides a

ess to all the normal pro
edures ofthe underlying interpreter. Primarily, these are used for manipulating the datastru
tures whi
h make up the intermediate 
ode of an extension (for example,see Se
tion 6.2.2.) Sin
e the underlying interpreter is RS
heme, most S
hemepro
edures are available [14℄.For manipulating lists, 
ommon pro
edures are the list 
onstru
torslist and 
ons, and the list a

essors 
ar (get �rst item), 
dr (get rest of128



items), 
adr (get se
ond item), et
. The list iteration pro
edures map andfor-ea
h are also available.
The Compile OperatorThe 
ompile operator is the primary means for 
ontinuing the 
ompilationre
ursively from within meta-language 
ode. It is invoked synta
ti
ally likea fun
tion with two required arguments and one optional argument. The�rst argument is a symbol denoting the non-terminal that is to drive the
ompilation. The se
ond argument is the token sequen
e to be 
ompiled. Theoptional third argument is a set of syntax bindings to be used in the 
ompile.The 
ompile operator is spe
ial (i.e., it is not a normal pro
edure)be
ause it knows about the syntax variables that have been de�ned usingpat bind. By default, 
ompile interprets an identi�er in the supplied tokenstring that mat
hes the name and non-terminal type in a pat bind 
onstru
tas meaning the previously parsed value. The optional third argument extendsthis set of bindings with an expli
it list of three-item lists. The three items inthe list are the identi�er in the token string to mat
h, the non-terminal thatrepresents to type of meaning, and the meaning value.
Embedded SyntaxSin
e a meta-language pro
edure may need to manipulate the synta
ti
 en-vironment (see the extend operator, below), it is ne
essary to have a way of\quoting" syntax rules so they 
an be managed as �rst-
lass obje
ts. Thesyntax spe
ial form does just that:

x
 expr ! \syntax" \(" syntax de
l \)"
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The value of a syntax form is a syntax rule set, the internal representation ofa set of syntax de
larations, suitable for installing into the synta
ti
 environ-ment.
The Extend OperatorThe basi
 operation on synta
ti
 environments is to extend them with newrules. The extend operator does that, taking as arguments an environmentand a sequen
e of syntax rule sets and returning a new environment whi
hin
orporates the indi
ated rule sets.The following example extends the syntax environment with a tra
estatement in the 
ontext of an en
losing tra
ing. The example does thisby 
omputing a new environment in an inline a
tion using the extend oper-ator, and then using that environment to 
ompile the blo
k of 
ontrol. Noadditional 
omputation of the meaning is required in this example (i.e., themeaning 
an simply be body), be
ause any uses of tra
e inside the body havealready been properly 
ompiled.
stmt = "tra
ing"{ e = extend( envt,syntax( stmt = "tra
e" ";"== ... ) ); }<body:blo
k:e>== body;
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Anonymous Pro
eduresAnonymous pro
edure abstra
tions using lambda are also available. Syntaxvariables de�ned using pat bind elements are available to the pro
edure likeother variables with lexi
al s
ope.
x
 expr ! \lambda" \(" x
 lambda name list \)" x
 blo
kx
 lambda name list ! �x
 lambda name list ! x
 lambda namex
 lambda name list ! x
 lambda name \," x
 lambda name list

In addition to de�ning normal meta-language arguments, syntax vari-ables 
an be de
lared as pro
edure arguments, whi
h makes the identi�er avail-able to the 
ompile operator.
x
 lambda name ! idx
 lambda name ! id \:" id

The se
ond form is used to de
lare an argument whose value is a meaning ofthe given type. This is useful, for example, in situations like the following:stmt = "tra
eall" "{" <stmtlist:(stmt)*> "}"== map( lambda( s:stmt ){ 
ompile( :stmt, [[ { tra
e(); s } ℄℄ ); },map( 
ar, stmtlist ) );Here, an anonymous pro
edure is being used to iterate a 
ompilationover a 
olle
tion of statements. Without the 
onvenien
e of spe
ifying the syn-ta
ti
 type in the lambda argument list, implementing that would be somewhatmore verbose: 131



stmt = "tra
eall" "{" <stmtlist:(stmt)*> "}"== map( lambda( s ){ 
ompile( :stmt,[[ { tra
e(); s } ℄℄,list( list( :s,:stmt,
ar(s) ) ) );},stmtlist );
5.8.5 Lo
al VariablesLo
al variables are impli
itly de
lared by assigning to their name. They 
anbe used to remember values between inline a
tions (see below) and the a
tionexpression.

x
 expr ! id \=" x
 expr
5.8.6 Inline A
tionsWe also permit the evaluation of meta-language 
ode during the re
ognitionpart of the parse.

pat elem ! x
 blo
k
In general, this is fun
tionally equivalent to de�ning a unique non-terminal Tkwith an empty pattern and the x
 blo
k as the a
tion, and using Tk where thex
 blo
k o

urs as a pattern element. That is:foo = <a:A> { F(); } <b:B> == G(a,b)132



is fun
tionally similar to:
foo = <a:A> Fk <b:B> == G(a,b);Fk = /* empty */ == F();

However, this kind of inline a
tion is supported spe
ially in order to let anylo
al variables 
reated by the x
 blo
k be visible to the remaining pattern ele-ments and rule a
tion of the 
urrent rule. Lo
al variables 
reated by an inlinea
tion let the programmer parse a non-terminal in a di�erent environmentusing a variant of the pat bind form. This form is used to parse an o

urren
eof a non-terminal with respe
t to a di�erent parse environment:
pat bind ! \<" id \:" id \:" id \>"

The three id's are, respe
tively, the name to whi
h to bind the resulting mean-ing, the non-terminal to be parsed, and the name of the pattern-lo
al variable
ontaining the environment to be used.So, for example, we 
an say:
while_stmt = "while" <e:expr> { brkenv = � � � } <body:stmt:brkenv>

where � � � denotes some additional meta-language 
ode to 
ompute a syntaxenvironment. This allows meta-language 
ode to easily de�ne the environmentof 
ompilation for subsequent non-terminals.
5.8.7 ExampleFor a 
omplete example of some meta-syntax, 
onsider a syntax de
larationfor a twi
e statement (the body of whi
h appears in Figure 5.2):
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syntax {twi
e_stmt= "twi
e" <s:stmt>== 
ompile( :stmt, [[ { s s } ℄℄ );}
The entire 
onstru
t is interpreted as a kind of top-level Java de
la-ration (a java tl de
l), 
omprised of a single syntax de
l for the non-terminaltwi
e stmt6.The twi
e stmt non-terminal is asso
iated with one syntax rule that
onsists of two pattern elements, the literal identi�er \twi
e" followed by somekind of stmt, with the result bound to the syntax variable s.Furthermore, this de
laration states that when a twi
e stmt is re
-ognized (the 
ompletion step in the Earley parser), the way to 
ompute themeaning is to invoke the 
ompile operator with two arguments, the symbolstmt and the 4-token sequen
e { s s }. Be
ause s is a syntax variable inthe pattern list, the 
ompile operator re
ognizes o

urren
es of the token sin the token string as referen
es to the meaning 
omputed by parsing thenon-terminal stmt.6Note that the three names referred to in this senten
e are non-terminal names:java tl de
l and syntax de
l are non-terminals of the meta-language, and twi
e stmt isa non-terminal of the target language. We render them with a di�erent typographi
al styleto emphasize the distin
tion, but in fa
t both are present in the same grammar. This fa
tmakes it possible to extend the extension framework from within the language, a hallmarkof a re
e
tive system [33℄.
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5.9 Issues and Future Work
5.9.1 Substitution Conforman
eOne issue that arises when doing pattern variable substitutions at the gram-mati
al level is determining 
onforman
e of meaning. For example, if theoriginal produ
tion 
ompiles something as a stmt, then the meaning is inter-mediate 
ode appropriate for a stmt. Su
h intermediate 
ode should probablynot be used where, for example, a de
l is needed.One of the problems with our method of determining 
onforman
e o
-
urs when there are anonymous pattern stru
tures. For example, in our meta-grammar, we permit 
onstru
ts like <slist:(stmt)*> (see Se
tion 5.3.2).However, there is no way to determine 
onforman
e for the resultingmeaning. Hen
e, we prohibit the use of su
h a de�nition in a de
larativetransformation. From an extensible language design perspe
tive, this impliesthat the grammar must use named non-terminals for any element whi
h is tobe reused in a ma
ro pattern. Future work should as
ertain how to amelioratethis limitation.Some systems rely on stati
 type 
he
king to ensure that pattern vari-ables are used in pla
es 
ompatible with the obtained meaning [9, 34℄. Thisapproa
h is generally too restri
tive for our purposes, sin
e it requires toomu
h whole-grammar analysis for 
orre
tness7.7Although it would be useful to implement stati
 
he
king where possible for grammarmodules that are developed as units. This would help address the testing problem 
ommonto most purely interpreted systems.
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5.9.2 Translation Re
ursionThe way our approa
h eagerly 
omputes meanings as soon as 
onstru
ts arere
ognized (i.e., at 
ompletion), 
ombined with our approa
h to transforma-tional 
ompilation, 
an lead to unbounded re
ursion. This is similar to theproblem of left re
ursion in a re
ursive-des
ent parser [1℄. The problem ariseswhen one form is translated into another that 
ontains a 
ompletable instan
eof itself. Eager 
ompletion means that a \
ompletable instan
e" may only be apre�x of the translation string. This 
omes up, for example, in the translationof one-bran
h if to two-bran
h if. The natural rule to try to write is:x
_onebran
hif= "if" "(" <e:expr> ")" <t:x
_stmt>== 
ompile( :x
_stmt, [[ if (e) t else {} ℄℄ );but, be
ause this rule itself is 
ompletable after the t in the expansion, thesystem loops trying to determine the meaning of the �rst 5 tokens of thetranslation.For our meta-language extensions, we worked around this by expressingthe translation dire
tly in terms of a x
 twobran
hif instead of in terms of anx
 stmt. This works for some 
ases but is not a general solution in two ways:(1) it requires knowledge of the non-terminal that bypasses the re
ursion, and(2) it assumes the re
ursion is at the top level. With respe
t to (2), note thatthe solution does not apply when a 
onstru
t nested within the token stringpassed to 
ompile mat
hes the rule being parsed, for example:x
_onebran
hif= "if" "(" <e:expr> ")" <t:x
_stmt>== 
ompile( :x
_stmt, [[ { if (e) t else {} } ℄℄ );136



triggers the same inde�nite re
ursion.
5.9.3 Meta-syntax S
opeTo s
ale a language system built using our approa
h, a way of managing thes
ope of synta
ti
 identi�ers needs to be developed. In our 
urrent imple-mentation, synta
ti
 identi�ers are realized as symbols, and their s
ope is
orrespondingly global, at least within a given syntax module. This is usefulin some ways { for example, a syntax module 
an extend the de�nition of expr{ but being able to manage these identi�ers in a more 
ontrolled way, withonly well-de�ned export points, would be more s
alable.
5.9.4 Syntax Module TemplatesThe logi
al next step for syntax modules is to support syntax module tem-plates, whi
h are parameterized modules. This would enable more sophisti-
ated reuse of syntax modules, enabling a synta
ti
 
on
ept (e.g., expressions)to be applied uniformly in di�erent areas of a language system. For exam-ple, in our system itself, the 
on
ept of expressions shows up in both themeta-language and the target language, yet we 
an't reuse the syntax modulebe
ause it generates di�erent intermediate 
ode. One way of parameterizingmodules would be to supply the set of intermediate 
ode 
onstru
tor bindings,thereby tailoring how intermediate 
ode is produ
ed.
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Chapter 6
An Appli
ation of an Extensible

Language
6.1 Introdu
tion
In this 
hapter, we apply our approa
h to the problem of de�ning an extensionto the Java language. The appli
ation we develop enables the simple de�ni-tion of a �nite-state ma
hine with a
tions on state transitions (i.e., a Mealyma
hine).The language extension we 
onsider is as follows:
automatonde
l ! \automaton" name \{" varde
l� statede
l+ \}"varde
l ! visibility type name \=" initvalue \;"visibility ! \publi
" j \private"statede
l ! name [\a

ept"℄ \{" transition� \}"transition ! int \->" name (blo
k j \;")
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start pre mid

0 01

1

post

0 0Figure 6.1: A simple string re
ognizer in graphi
al state ma
hine representa-tion
For simpli
ity, we 
onsider only automata over an integer vo
abulary.In the following example, the automaton de�ned using this extensionis 
onstru
ted to re
ognize strings of 1's surrounded by non-empty strings of0's and to 
ount the number of 1's. For example, the string \00001111000" isre
ognized by this automaton, and the number of 1's is four. Figure 6.1 showsthis state ma
hine in diagrammati
 form.
automaton InteriorString {publi
 int 
ount = 0;start { 0 -> pre; }pre { 1 -> mid { 
ount++; }0 -> pre; }mid { 1 -> mid { 
ount++; }0 -> post; }post a

ept { 0 -> post; }}

The obje
tive of this extension is to transform an automaton de
lara-tion, su
h as the one above, into a Java 
lass of the same name that implements139



the automaton's behavior. The Java 
lass provides a pro
ess method thattakes a segment of input supplied as an integer array. The publi
 variablesde
lared in the automaton are available as publi
 instan
e variables of the Java
lass. The generated 
lass implements the Automaton interfa
e, whi
h 
onsistsof the following methods:
publi
 void pro
ess( int input[℄ );publi
 String getState();publi
 boolean isA

epting();
The pro
ess method is responsible for exe
uting the automaton withsome input symbols. This method attempts to 
onsume the input (sub)stringand either leaves the automaton in the appropriate state or throws a RuntimeEx
eptionif a parti
ular transition is not possible. The getState method returns the
urrent state of the automaton as a string. The isA

epting method answerswhether or not the 
urrent state of the automaton is an a

epting state.

6.2 Implementation Approa
h
This appli
ation illustrates the o

asional need to de
onstru
t meaning values(e.g., intermediate 
ode). This arises be
ause the lower-level 
onstru
ts (inthis 
ase, the state de
larations) 
ontribute to di�erent top-level 
onstru
ts(in this 
ase, the methods of the automaton 
lass).To support automata de
larations as an extension to Java, we de�ne asynta
ti
 extension module 
alled dfa that de�nes a new kind of type de
la-ration. In the base Java language, a type de
laration is a 
lass or interfa
e
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de
laration. Sin
e an automaton a
ts like a kind of 
lass, it is natural to extendthe synta
ti
 
onstru
t for 
lasses.
6.2.1 De
laring the ExtensionThe outermost portion of the extension itself is shown in Figure 6.2. Here, thename of the syntax module is being de
lared as dfa, and the main entry pointat type de
l is being installed1.
syntax dfa {type_de
l= "automaton" <aname:java_id>"{" <vars:(field_de
l)*><states:(statede
l)*>"}"== htypebodyihstatede
lihtransitioni}

Figure 6.2: Top-level stru
ture of the DFA extension to Java. The field de
lnon-terminal is part of the underlying Java grammar.
The grammar symbol name type de
l, and its role in the grammar ofthe underlying language, must be known to the author of the extension. Ingeneral, our approa
h requires knowing something about the spe
i�
 grammarthat is used to realize the underlying language. Although this requirement1Note that we extend the type de
l non-terminal, whi
h is from the underlying Javagrammar. Likewise, we reuse field de
l, the grammati
al element for 
lass �eld de
la-rations. There is no need for us to rede�ne field de
l, sin
e the underlying languageprovides us what we need. In fa
t, we thereby get to reuse all the ma
hinery for parsing�eld de
larations and their initializers.
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follows from the need to install new grammati
al produ
tions in the grammar,it does expose some details of the implementation. In pra
ti
e, we expe
t thatlanguage systems built to be extensible would in
orporate the grammar aspart of the language spe
i�
ation, with all the important non-terminal namesstandardized.
6.2.2 Building the Final MeaningApproa
hing this appli
ation top-down, the next thing to de�ne is the meta-level 
ode that 
ompiles the entire automaton 
onstru
t. In Figure 6.3, thebasi
 stru
ture of the automaton 
ompiler is laid out. The strategy is to buildup the automaton's 
lass de�nition from pie
es de�ned in subsequent se
tions.These pie
es are then assembled by the 
all to 
ompile into a single 
lassde�nition.As a matter of bookkeeping, the �rst statement de
onstru
ts the mean-ings that are bound to states that mat
hed the (statede
l)* repetitionpattern. The meaning of a repetition is a list of the meanings of the elements.However, ea
h element is a sequen
e, the meaning of whi
h is a list of themeaning of its elements. Hen
e, the meaning stru
ture for states is a list(one entry per field de
l) of lists (one entry in the list is the field de
lmeaning itself). Sin
e we are only 
on
erned with the list of field de
lmeanings, the �rst thing we do is pull those meanings out.This 
ode fragment also shows how meta-language 
ode 
an 
ompute thevalue of a set of synta
ti
 variables that are interpreted during parse time. Thespe
ial operator 
ompile normally takes two arguments: a symbol denotingthe non-terminal to parse, and a string of tokens that is the fragment to
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typebody)sx = map( 
ar, states );hinternal-stateihpro
ess-methodihgetstate-methodiha

epting-methodihstatename-stati
si
ompile( :type_de
l,[[ 
lass aname implements Automaton { 
body } ℄℄,list( list( :
body,:
lass_body_de
l__star,append( list( 
b1 ),vars,statenames,list( 
b2, 
b3, 
b4 ) ) ) ) ); };
Figure 6.3: Meta-language 
ode for building the meaning of a 
omplete au-tomaton 
onstru
t.
be parsed. The 
ompile operator also impli
itly understands any synta
ti
variables that are in s
ope from the pattern. For example, in Figure 6.3, theidenti�er aname in the token string passed to 
ompile refers to the meaningthat was parsed by the java id pattern in Figure 6.2. 
ompile 
an take anoptional third argument whi
h is a 
omputed set of synta
ti
 variables.In this 
ase, we are pro
edurally 
onstru
ting the elements that makeup the 
lass body. In order to insert the meaning of the parts into the �nalmeaning, we de�ne a lo
al synta
ti
 variable 
body to take on the meaningof the 
lass body. Furthermore, we 
ompute 
body by appending severalmeaning fragments to form the 
omplete body (the 
ode referred to by internal-state, pro
ess-method, et
., is responsible for building these fragments and is
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des
ribed in detail below.)This example also illustrates what happens when a repetition 
onstru
tis transformed by the 
ompiler extension framework. In our Java grammar, a
lass body is de�ned as follows:

lass_body= "{" <b:(
lass_body_de
l)*> "}"== . . . ;

When the 
lass body de
l is expanded into the dire
t grammar representa-tion required by the Earley parser, it is transformed into something like:

lass_body= "{" <b:
lass_body_de
l__star> "}"== . . . ;
lass_body_de
l__star= /* empty */ == nil| 
lass_body_de
l__1 
lass_body_de
l__star == 
ons( $1, $2 );
lass_body_de
l__1= 
lass_body_de
l == list( $1 );

(The list operator on the last line is why the �rst statement in Figure 6.3appears.)Sin
e the 
onstru
tion of the automaton requires supplying a sequen
eof 
lass body de
larations whose length depends on pro
edural meta-language
ode, we need to build up the entire sequen
e and supply it as the meaningasso
iated with a 
lass body de
l star.
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One of the bene�ts of our approa
h starts to be
ome 
lear here. The au-tomaton extension is written entirely in terms of a well-de�ned meta-languageand the underlying language; a 
lass de�nition 
an be 
onstru
ted without anyknowledge of the form of the intermediate 
ode. Only the synta
ti
 elementsof the underlying grammar need be identi�ed (i.e., as we mentioned above,that a type de
l is the appropriate kind of synta
ti
 obje
t to supply a 
lassde�nition.)2
6.2.3 De
laring the State-Keeping VariableOur Java 
lass requires an instan
e variable in whi
h to store the 
urrentstate of the automaton. The 
ode to de
lare this instan
e variable is shownin Figure 6.4. This intermediate 
ode fragment is in
orporated into the main
lass obje
t when the 
lass body is assembled in Figure 6.3.
internal-state)
b1 = 
ompile( :
lass_body_de
l,[[ private int state = start; ℄℄ );
Figure 6.4: Meta-language 
ode to build the internal state variable for theresulting Java 
lass implementation.

The identi�er state is the literal name of the internal variable that isused to maintain the 
urrent state of the automaton. The token start is thename of the start state, whi
h is bound to an appropriate integer representationin the resulting 
lass by the 
ode generated in statename-stati
s (Figure 6.12).2In some 
ases, as we'll see, it is ne
essary to de
onstru
t the meaning values produ
edby the underlying grammar. In this appli
ation, it only be
omes ne
essary for literal valuesand identi�ers, for whi
h it is easy to provide appropriate meta-language operators.
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6.2.4 De
laring the Java Class's Entry MethodThe main entry point to the Java 
lass that this extension produ
es is thepro
essmethod, whi
h is responsible for advan
ing the state of the automatona

ording to a sequen
e of input symbols represented by an array of integers.Figure 6.5 has the meta-language 
ode fragment that generates the pro
essmethod.Input symbols are represented as integers in this implementation, sopro
ess takes an array of integers and exe
utes the state ma
hine for ea
hsymbol. If a transition 
annot be made from a given state with a 
ertainsymbol as input, then a RuntimeEx
eption is thrown (see Se
tion 6.2.8).
pro
ess-method)
b2 = 
ompile( :
lass_body_de
l,[[// main entry pointpubli
 void pro
ess( int input[℄ ){ int i;for (i=0; i<input.length; i++){ int symbol = input[i℄;swit
h (state) { state_
lauses }}}℄℄,list( list( :state_
lauses,:swit
h_
lause__star,map( 
adr, sx ) ) ) );
Figure 6.5: Meta-language 
ode to build the pro
ess method in the Java 
lassimplementation.
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6.2.5 De
laring the Java Class's A

essor MethodsIn this appli
ation, ea
h generated Java 
lass supports two a

essor methods,isA

epting and getState. See Figures 6.6 and 6.7, respe
tively. The ap-proa
h to implementing both is similar and involves a swit
h on the 
urrentstate of the automaton. The swit
h 
lause for ea
h state returns the appropri-ate value (i.e., the state name as a string literal in the 
ase of the getStatevalue, and a boolean value in the 
ase of isA

epting.) Note that the 
om-pilation of the a
tual 
ase 
lause is done when the state is being parsed, inFigure 6.8.
getstate-method)
b3 = 
ompile( :
lass_body_de
l,[[// 
urrent state inspe
torpubli
 String getState(){ swit
h (state) { return_state_
lauses }return "?unknown";}℄℄,list( list( :return_state_
lauses,:swit
h_
lause__star,map( 
addr, sx ) ) ) );

Figure 6.6: Meta-language 
ode to build the getState method.
6.2.6 States Within an AutomatonAt this point, we are ready to des
ribe the part of the grammar that is re-sponsible for parsing the states within an automaton. Figure 6.8 shows the
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a

epting-method)
b4 = 
ompile( :
lass_body_de
l,[[// 
urrently in an a

ept state?publi
 boolean isA

epting(){ swit
h (state) { return_a

ept_
lauses }return false; // unknown state}℄℄,list( list( :return_a

ept_
lauses,:swit
h_
lause__star,map( 
adddr, sx ) ) ) );
Figure 6.7: Meta-language 
ode to build the isA

epting method.

statede
l produ
tion. Ea
h state 
omprises:
� a state name (mat
hing java id and bound to the syntax variable n),
� a 
ag indi
ating whether it is an a

ept state (mat
hing a

ept 
ag,whi
h is de�ned at the bottom of Figure 6.8, and bound to a),
� a set of expli
it transitions (bound to t), and
� a default transition whi
h is really the error handler (bound to d).

In this appli
ation, we use list-oriented data stru
tures to 
ommuni
ate in-termediate 
ode between the non-terminal statede
l and type de
l. Figure 6.8gives the statede
l fragment of 
ode, whi
h builds the main list stru
ture weuse in this appli
ation. The data types we build here using lists 
ould beformalized, and a larger appli
ation may bene�t from stati
 type 
he
king to148




onstrain the grammar itself (for example, see Cardelli et al. [9℄). However,our approa
h is dynami
ally typed, whi
h we �nd more suitable for experi-mental work. The list, whi
h is the meaning asso
iated with statede
l, has
statede
l)statede
l = <n:java_id> <a:a

ept_flag>"{" <t:(transition)*><d:default_transition>"}"== list( n,hstateswit
heri,
ompile( :swit
h_
lause, [[ 
ase n: return strform; ℄℄,list( list( :strform,:expr,literal(tostring(n)) ) ) ),
ompile( :swit
h_
lause, [[ 
ase n: return aa; ℄℄,list( list( :aa, :expr, a ) ) ) );a

ept_flag = "a

ept" == 
ompile( :expr, [[ true ℄℄ )| /* empty */ == 
ompile( :expr, [[ false ℄℄ );

Figure 6.8: Sub-language for de
laring states within an automaton.
four items:

� the name of the state,
� the 
lause that goes into the \big swit
h" in the pro
ess() method (seethe de�nition of stateswit
her in Se
tion 6.2.7),
� the 
lause that goes into the swit
h statement in the getState method,and
� the 
lause that goes into the swit
h statement in the isA

eptingmethod.149



These 
lauses are assembled into the appropriate swit
h statements in thetop-level a
tion (see Figure 6.3).In the implementation of exposing the a

ept 
ag, in whi
h we 
ompilea swit
h 
lause3 to be used in Figure 6.7, we essentially build the literal answerto the question \is this an a

ept state?" for ea
h di�erent state. We expe
tthat the underlying language 
ompiler applies some 
ommon subexpressionelimination to optimize the 
ode that appears in the resulting statement:
swit
h (state) {
ase 0: return false;
ase 1: return false;
ase 2: return false;
ase 3: return true;}

If the 
ompiler did not do so, and this bloated 
ode were a problem, thena little additional work at a higher level (i.e., in Figure 6.7) 
ould do someappli
ation-spe
i�
 optimization.This fragment illustrates the use of the extension framework operatorliteral, whi
h is responsible for produ
ing the target language meaning that
reates a value equivalent to the meta-language argument that is its argument.For example, literal(3) produ
es intermediate 
ode whi
h, when exe
uted,evaluates to the integer value \3" in the target language. In this 
ase, we areusing literal to 
onvert the state name identi�er (whi
h is a symbol obje
tin the metalanguage) to a string literal in the target language to be returnedas the value of the getState method.3A swit
h 
lause is a 
onstituent of a swit
h statement, whi
h is Java's multi-way bran
hstatement. A swit
h 
lause is also known as a 
ase statement.150



6.2.7 Building the State Swit
herFigure 6.9 shows the meta-language 
ode that 
onstru
ts the swit
h 
lause forthe 
urrent state in the pro
ess method. For ea
h state of the automaton, thepro
ess method swit
hes on the next input symbol. The identi�er symbol inthe argument to the 
ompile operator refers to the lo
al variable de
lared inthe 
ompiled 
ode in Figure 6.5.
stateswit
her)
ompile( :swit
h_
lause, [[ 
ase n:swit
h (symbol) {sym
lauses}break; ℄℄,list( list( :sym
lauses,:swit
h_
lause__star,append( t, list(d) ) ) ) )
Figure 6.9: Meta-language 
ode for building the swit
h 
lause for a single statethat makes up part of the \big swit
h" in the pro
ess method.

The 
lauses whi
h make up the body of the swit
h on the input sym-bol are supplied to the 
ompile operator in the alias sym
lauses. Thesym
lauses alias plays the role of a sequen
e of swit
h 
lauses (formally, aswit
h 
lause star), whi
h we 
onstru
t by appending the 
ases for ea
h indi-vidually de�ned transition with the default (or error) transition. Se
tion 6.2.8shows how the swit
h 
lause intermediate 
ode is built up for ea
h transition,in
luding the default.
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6.2.8 De
laring transitionsThe transitions among the states of the automaton are de
lared using thegrammar elements de�ned in Figure 6.10. There are two forms for a transitionde
laration. The �rst form is used when the automaton programmer is notexe
uting any 
ode on the state transition. The se
ond form is used to supplyan a
tion to perform when the automaton makes that transition.
transition)transition = <k:integer_literal_expr> "->" <n:name> ";"== 
ompile( :swit
h_
lause,[[ 
ase k: state = n; break; ℄℄ );transition = <k:integer_literal_expr> "->" <n:name> <b:blo
k>== 
ompile( :swit
h_
lause,[[ 
ase k: b state = n; break; ℄℄ );
Figure 6.10: Sub-language extension for the de
laration of a single transitionwithin a state.

Both forms are stru
turally similar. In ea
h, there is the identi�
ationof the input symbol that is used to trigger the transition. The input symbol isgrammati
ally an integer literal expr and is bound to k. k be
omes the 
aseexpr in the resulting swit
h 
lause. The destination, or target, state is alsoidenti�ed by name and bound to the syntax variable n.The di�eren
e between the forms is that the se
ond form expe
ts a Javablo
k, whi
h is bound to the syntax variable b. In turn, the user's a
tionblo
k, b, is employed just before the assignment to update the state variablein the resulting swit
h 
lause. In the sample automaton, the transition a
tionblo
k form is used to 
ount the number of \1" symbols in the middle of the
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string. The meaning that we generate for a transition non-terminal is simplythe swit
h 
lause that is used when pro
ess swit
hes on the input symbol.We also need to handle the 
ase where the input symbol is not valid inthe 
urrent state. The spe
i�
ation requires that we throw a RuntimeEx
eptionin that 
ase. We a
hieve this by de�ning a default transition, whi
h plays therole similar to that of a transition but is not spe
i�
 to any parti
ular inputsymbol. Figure 6.11 shows how the default transition is handled. The defaulttransition is realized as the default 
lause on the swit
h that dispat
hes onthe input symbol in the 
urrent state. We fa
tored this out into a separatenon-terminal partly by analogy with the other transitions, and partly as a hookfor extending the appli
ation to allow the user to spe
ify a di�erent defaulttransition behavior.default-transition)default_transition= /* empty... no override of error behavior for now */== 
ompile( :swit
h_
lause,[[ default: throw new RuntimeEx
eption(); ℄℄ );
Figure 6.11: Hook for de
laring default transition behavior.

6.2.9 Symboli
 State NamesOne feature of this appli
ation is that states are numbered automati
ally; theuser does not have to deal with state identi�ers. This is analogous to the way,for example, the ya

 
ompiler generator builds internal dispat
h tables withshort integer names, but the programmer only has to deal with the symbolstate names. This is the kind of detail that pra
ti
al language users demand.153



This feature is implemented by maintaining a mapping from symboli
state names to numbers assigned by the extension. A straightforward mappingis suÆ
ient in this 
ase. The symbols are assigned identi�ers 0, 1, ... in theorder in whi
h the de
larations appear in the automaton.If we also de�ne Java-level symbols to map the symbols to the internalid's, then this simpli�es the extension author's job. We do so in Figure 6.12.For ea
h state, a Java 
lass variable is de�ned that takes on the value of theinternally assigned identi�er. With these de�nitions supplied in the gener-ated Java 
lass, the author may now do lo
al 
ompilations using Java to mapthe symboli
 state names to the internal integer number. For example, seeFigure 6.8, where the 
ompilation of the various swit
h 
lauses 
an pro
eedwithout having to map to state numbers in meta-language 
ode.
statename-stati
s)statenames = map( lambda(k,n){ 
ompile( :
lass_body_de
l,[[ private final stati
 int name = k; ℄℄,list( list( :name, :java_id, n ),list( :k, :expr, literal(k) ) ) );}, range( length( sx ) ),map( 
ar, sx ) );
Figure 6.12: Building the Java de�nitions of symbol state names, mappingstate names to internal identi�ers.

Usually, this is done for 
onvenien
e in implementing the language ex-tension and sometimes in
urs a 
ost be
ause the underlying language is notlikely to have optimizations to deal with the generated 
ode stru
tures. In this
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ase, we expe
t the underlying language 
ompiler to inline the values of thesesymbols (they are de
lared \�nal" so the 
ompiler knows they 
annot 
hangeat runtime), resulting in no runtime performan
e penalty.
6.3 Example Use of the DFA Extension
In this se
tion, we return to the sample �nite state ma
hine des
ribed in theintrodu
tion of this 
hapter and show the Java 
ode equivalent to what theDFA language extension generates to implement it.
6.3.1 Sample Extended-Java FileThis is the input �le, whi
h imports the DFA syntax and de�nes an automaton
alled InteriorString.import syntax DFA.dfa;automaton InteriorString {publi
 int 
ount = 0;start { 0 -> pre; }pre { 1 -> mid { 
ount++; }0 -> pre; }mid { 1 -> mid { 
ount++; }0 -> post; }post a

ept { 0 -> post; }}
6.3.2 Generated 
lass de�nitionHere is the Java 
ode generated as a result of pro
essing the above automatonde
laration. The pro
ess method of the 
lass de�nition is elaborated in thenext se
tion. 155




lass InteriorString implements Automaton {private int state = start;publi
 int 
ount = 0;private final stati
 int start = 0;private final stati
 int pre = 1;private final stati
 int mid = 2;private final stati
 int post = 3;publi
 String getState( ) {swit
h ( state ){ 
ase start:return "start";
ase pre:return "pre";
ase mid:return "mid";
ase post:return "post";}return "?unknown";}publi
 void pro
ess( int input[℄ ) { ... }publi
 boolean isA

epting( ) {swit
h ( state ){ 
ase start:return false;
ase pre:return false;
ase mid:return false;
ase post:return true;}return false;}}
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6.3.3 Generated pro
ess() methodHere is the pro
ess method. Note the 
hara
teristi
 nested-swit
h stru
turegenerated by this Java extension and the use of symboli
 names to avoid extrawork in the extension itself.publi
 void pro
ess( int input[℄ ) {int i;for ( i = 0; i < input.length; i++ ) {int symbol = input[i℄;swit
h ( state ){ 
ase start:swit
h ( symbol ){ 
ase 0:state = pre;break;default:throw new RuntimeEx
eption( );} break;
ase pre:swit
h ( symbol ){ 
ase 1:{ 
ount++;}state = mid;break;
ase 0:state = pre;break;default:throw new RuntimeEx
eption( );}break;
ase mid:swit
h ( symbol ){ 
ase 1: 157



{ 
ount++;}state = mid;break;
ase 0:state = post;break;default:throw new RuntimeEx
eption( );}break;
ase post:swit
h ( symbol ){ 
ase 0:state = post;break;default:throw new RuntimeEx
eption( );}break;}}}
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Chapter 7
Final Words

7.1 Related Work
7.1.1 Synta
ti
 ExposuresEarlier work in generalizing synta
ti
 
losures, synta
ti
 exposures [10℄, isalong the same lines as our approa
h, with the interleaving of 
ompilation andexpansion for the purpose of improved pattern mat
hing abilities. Our im-plementation handles some 
ases of advertent 
apture better, espe
ially whenma
ros are used to de�ne ma
ros and pattern variables are used in ma
ropattern rules.
7.1.2 Term RewritingThere is some similarity between our general approa
h and the way someterm rewriting systems 
ompute normalized head forms eagerly. In de�ningan evaluation strategy for term rewriting, the system des
ribed by Nakamuraet al. [31, 32℄ 
omputes a fun
tion  of the operator, whi
h is used as meta-159



data to drive the rewriting of terms in the expression. For example, whenpresented with an expression like x+ y, the rewriting of sub-terms x and y is
ontrolled by the value of the strategy fun
tion  (+). The eager evaluationof the head form (the head form here is the operator +) is being done forthe same reason we resolve the head form �rst { in order to determine theappropriate a
tion to apply to the expression 
ontrolled by the operator. Inessen
e, both their approa
h and ours 
ompute the 
ontrol information �rstand then delegate the interpretation of the entire form based on the result ofthat 
ontrol information. However, our approa
h a
hieves the e�e
ts withoutthe spa
e 
ost of general rewriting.
7.1.3 Hygieni
 Ma
ro ExpansionAs pointed out earlier, our approa
h a
hieves the general goals of hygieni
ma
ro expansion as des
ribed by Clinger and Rees [13℄. The interleaved ex-pansion and ma
ro s
anning pro
ess des
ribed there is similar to our lazypro
essing, although we interleave with a
tual 
ompilation. Interleaving 
om-pilation with ma
ro pro
essing opens the door to ma
ro dispat
h (i.e., patternmat
hing) based on the intermediate results of 
ompilation (synthesized at-tributes), whi
h we exploit in our type-re
e
tive ma
ros.Our general approa
h is similar to that of synta
ti
 
losures [25℄, inthat we 
apture the synta
ti
 environment at the point of ma
ro de�nition.However, our implementation separates the lexi
al lo
ation (\pla
e") fromthe dynami
 lo
ation. Among other things, this allows us to identify distin
tvariables in one interleaved 
ompilation pass instead of re-pro
essing the inputwith relabeled identi�ers.
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7.1.4 Reusable Generative ProgrammingThe work by Krishnamurthi et al.onM
Mi
Ma
 [27℄ views extensible languagesover the Lisp family as a generative programming problem. The main thrust inthat work is to develop languages using reusable modules of linguisti
 features
alled vo
abularies. Their vo
abulary development takes pla
e in a separatespa
e, so it is not re
e
tive in the same sense. Their framework addressesthe issues of our internal 
ompiler meta-obje
t proto
ol, an aspe
t that, whileimportant for its engineering 
onsiderations, is not the main thrust of ourwork. Their vo
abulary abstra
tion is espe
ially interesting, as it 
ould ad-dress the proliferation of 
ompilation types in our system. That is, we haveseparate sub-
ompilers for list forms, atoms, et
., whi
h we implement usinggeneri
 fun
tion dispat
h. Their dispat
hing approa
h 
ould unify the di�erentlevels of dispat
h in our implementation. And, whereas we use the existing lan-guage's module framework to organize our synta
ti
 extensions, their 
on
eptof vo
abularies is a useful way to abstra
t extensions.Although we believe their framework 
ould be used to implement ourapproa
h, their default assumption about how to handle ma
ros in su
h a lan-guage is still based on sour
e!sour
e transformation, and hen
e is less eÆ
ientand unable to leverage 
ompile-time knowledge to drive transformation.
7.1.5 Adaptable GrammarsIn the literature of extensible parsing, the sub
lass of adaptable grammarsknown as Re
ursive Adaptable Grammars, or RAGs, 
ontains a notion similarto that of 
ontour sensitivity, and the goals in expressiveness are similar to
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our own [35℄. RAGs are the result of an e�ort to preserve the modeling andanalyti
 bene�ts of 
ontext free grammars while permitting lo
al variations inthe grammar.It is interesting to note that some would push the adaptable grammarto the point of subsuming all attribute 
al
ulations within the syntax. Forexample, Christiansen [12℄ is 
on
erned with the use of adaptable grammarsto unify stati
 semanti
s with the grammar, similar to our example of makingbreak a valid statement only in the s
ope of a breakable 
onstru
t. Thegeneral approa
h involves de�ning a grammar rule to store information thatis traditionally stored in a symbol table or 
omputed from the meaning a laattribute grammars. Our own opinion is that this goes too far and that thelanguage implementation bene�ts from having the power of both a de
larativedes
ription of mostly-
ontext-free patterns to mat
h surfa
e syntax and thefull pro
edural expressiveness of an underlying meta-language.Furthermore, the spe
i�
 implementation des
ribed by Christiansen [12℄seems to utilize a global grammar table, and thus has diÆ
ulty 
leaning upwhen exiting blo
k s
opes. Although the thrust of our work is not spe
i�
allyin the translation of stati
 semanti
 
onstraints into the grammar, the easewith whi
h our implementation manages lo
al grammar 
hanges would makesu
h a strategy somewhat more straightforward.
7.1.6 Open Compilers and MOPsIn developing a language system that makes use of an extensible grammar, thelanguage designer typi
ally de�nes a parti
ular proto
ol that 
an be followedby the language extender to de�ne a new language extension. This proto-
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ol involves things like the well-de�ned non-terminals through whi
h most ofthe extensions are expe
ted to take pla
e. For example, we expe
t that mostsystems de�ning a 
onventional programming language will have hooks forstatements, expressions, and variable de
larations, at the least. The use of vo-
abularies in M
Mi
Ma
 [27℄ as a language extension modularity me
hanism isa more formalized approa
h to what would be well-known hook non-terminalsin the implementation des
ribed here.The Intentional Programming proje
t [2, 36℄ is 
on
erned with the def-inition of language abstra
tions as transformations on meaning stru
tures.However, that work operates dire
tly against the meaning stru
tures, withtextual syntax limited to an input me
hanism. Furthermore, transformationsare implemented pro
edurally against the 
ompiler's meta-obje
ts, whi
h un-ne
essarily separates the intention developer from the developer in the targetlanguage.Other work in transformational programming, su
h as that of Visser [43℄,in
orporates the ability to de�ne transformations in terms of the 
on
rete syn-tax of the program, along with the ability to in
orporate new syntax. How-ever, their syntax is stati
ally de�ned (although partitioned into 
omposablemodules) and global for a module, whereas our system supports lo
al syntaxextensions.The Jakarta tool suite (JTS) is a fa
ility that addresses the issue of lan-guage extensibility as a set of generator 
omponents [4℄. This has the bene�t ofsupporting modularity of the language extension features; in fa
t, JTS lever-ages the 
omponent 
omposition of the JTS framework itself. One of the mainfo
uses of the JTS work is support for 
omposable domain-spe
i�
 languages.Our approa
h a
hieves synta
ti
 modularity but has no spe
ial support for
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modularizing its meta-language pro
edures. In
orporating advan
ed modular-ization features into our approa
h, as is done in JTS, is a ri
h area for futureresear
h.The <bigwig> proje
t [7℄ is targeted at de�ning intera
tive Web ser-vi
es and 
an handle synta
ti
 extensions together with the transformationsto more primitive language stru
tures. However, in <bigwig>, ma
ros muststart with an identi�er, whi
h shares the limitations of C's ma
ro system;for example, new in�x operators 
annot be introdu
ed. Also, there is nopro
edural meta-language for expressing transformations more 
omplex thanpattern-based transformations.The Java Synta
ti
 Extender [3℄ work uses an approa
h similar to thatof C for de�ning ma
ros. The set of synta
ti
 forms whi
h are 
onsideredextensible are stati
ally limited, although JSE improves upon C by allowingstatements as well as pro
edure 
all forms to be extended. JSE is not dy-nami
ally extensible in the sense that our system allows users to de�ne newsynta
ti
 forms of any sort.Other approa
hes to language extensibility have been taken. The meta-obje
t proto
ol approa
h [24, 11℄ enables the extension author to de�ne how
ertain language 
onstru
ts are pro
essed. In these systems, the underlyingobje
t system provides the stru
tural framework to whi
h the extensions areatta
hed. The extensions de�ned using our approa
h are asso
iated with thesynta
ti
 representation of the programAmeta-program in our approa
h exe
utes in the 
ontext of the 
ompiler,but is not expli
itly part of the 
ompiler. The domain obje
ts of the meta-programmer in our approa
h are meanings, parse environments, and tokenstrings. For example, using just our approa
h, the meta-programmer 
annot
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alter the internal pro
essing of a built-in language 
onstru
t su
h as the lay-out of a data stru
ture without rede�ning the synta
ti
 entities that introdu
ethem. This is in 
ontrast to the open 
ompiler work of Lamping et.al [28℄,whi
h is spe
i�
ally intended to in
rementally rede�ne internal 
ompiler pro-
essing using a 
ompile-time meta-obje
t proto
ol.
7.2 Limitations and Future Work
7.2.1 Meta-Obje
t Proto
olConsiderably more formalism 
an be developed around the syntax and se-manti
s of our meta-language itself. A more systemati
 development of themeta-language would allow the de�nition of a meta-obje
t proto
ol (MOP) asthe foundation of the extensible language framework [28℄. With a well-de�nedMOP in pla
e, the meta-syntax 
an be 
onstru
ted in terms of that proto
ol,enabling user-de�ned extensions to our meta-language1.
7.2.2 Error ReportingMore work is needed to determine how best to report synta
ti
 errors in the
ontext of a dynami
 grammar. As in most language systems, the emphasisin our work is on 
ore fun
tionality when presented with 
orre
t input and, toa lesser extent, on dete
ting in
orre
t input. But for a language system to bepra
ti
al, it must report errors in a way that is useful to the programmer.The interpretive nature of the Earley parser is useful for error reporting1User-de�ned extensions are possible in our 
urrent implementation. In fa
t, our systemis bootstrapped in multiple stages using our own meta-syntax to do so. However, thesynta
ti
 hooks ne
essary to do so are not well formalized.
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in some ways, be
ause it is easy to 
ompute the set of 
onstru
ts whi
h arebeing parsed at any given point, even in the presen
e of synta
ti
 extensions2.However, more work is needed to re�ne these 
apabilities in the 
urrent imple-mentation to report even more useful error 
onditions and ideally to implementerror re
overy so that parsing 
an 
ontinue on a best-e�ort basis.
7.2.3 Synthesized AttributesMore work is needed to understand the relationship between the eager evalu-ation of intermediate 
ode and the lazier evaluation of meaning on the basisof the template. This is espe
ially a problem as the template may try to in-trodu
e binding 
onstru
ts whi
h, depending upon 
ontext, 
ould 
hange howthe pattern element should be 
ompiled.
Stati
 Syntax Type Che
kingOur implementation uses dynami
 type 
he
king in the meta-language. Othersystems [9, 8, 5℄ apply stati
 type rules to ensure that any meaning 
onstru
tedby an extension is a valid 
omposition of primitive meaning operators and val-ues. Furthermore, they ensure that the o

urren
e of the extension 
onstru
tin a program always produ
es the right kind of meaning at the right pla
e inthe target program. Additional work is needed to analyze appli
ations of ourapproa
h to as
ertain whether stati
 
he
king is helpful or a hindran
e.2In fa
t, we found it so easy that just for the purpose of debugging the examples inChapter 6, we signi�
antly improved the error reporting 
apabilities
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Convenien
e NotationsOne of the pra
ti
al limitations of our 
urrent extensible parsing system re-volves around the problem of interpolating single synta
ti
 
onstru
ts into asequen
e. For example, in Figure 6.3 we had to expli
itly append several pie
estogether in order to form the body of a 
lass de�nition. We would ratherhave been able to write something like:

ompile( :type_de
l,[[ 
lass aname implements Automaton{ private int state = start;varsstatenamespro
ess_methodgetstate_methodisa

epting_method}℄℄ );

and let the parsing engine do the interpolation of vars and statenames. Thereare several ways this 
ould be implemented within the 
urrent framework. Thebasi
 idea is to extend the expansion of the repetition 
onstru
t. Re
all thatthe repetition 
onstru
t is responsible for transforming a Kleene star pattern(e.g., \de
l*") into grammati
al primitives suitable for interpretation by theEarley parser.One approa
h would be, in the expansion of \A*," to de�ne a rule su
has: 167



A star !A star A star = append($1,$2)
This has the disadvantage of being extremely ambiguous. While this 
ould beparsed, it tends to degenerate into O(n2) 
omplexity.Another approa
h would be to de�ne a non-terminal name whi
h 
ouldnot be parsed dire
tly (
all it A seq), and 
ould only be satis�ed by a synta
ti
substitution. Then, an additional rule in the repetition expansion 
ould bede�ned:

A star !A seq A star = append($1,$2)
This has the disadvantage of introdu
ing a new and irregular kind of obje
tinto the parsing engine.Another approa
h would be to require the programmer to signal theinterpolation. Then, the repetition expansion 
ould in
lude:

A star ! \�" ident A star = append(expand($2),$3)
This runs the risk of 
on
i
ting with the grammar of the target language,although for any parti
ular target language a suitable indi
ator 
ould be iden-ti�ed. This also ambiguates the use of the alias identi�er in the token streamas standing for itself in an expansion and standing for what it denotes as analias. In general, more appli
ations should be built using this approa
h inorder to identify the pra
ti
al limitations of the system and point the way toadditional 
onvenien
e notations. To make this work more widely available,and to test its end-to-end performan
e, one area of future work is to integratethe 
urrent extensible Java into a full 
ompiler. The Jikes implementation [19℄
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looks espe
ially promising for this purpose, as it is fast and well stru
tured forrepla
ing the parser front end.
7.3 Con
lusions
The expressive power of Lisp ma
ros 
an be made available to programmers oflanguages with traditional syntax, whi
h allows the easy development of newlanguage features and the modular 
onstru
tion of domain-spe
i�
 languageextensions. Furthermore, integrating synta
ti
 extensibility with true 
ompi-lation enables the re
e
tion of synthesized attributes into synta
ti
 pro
essing,whi
h in turn in
reases the expressive range of de
larative, syntax-based lan-guage extensions.This work is the �rst to eÆ
iently apply the 
on
epts of de
larative andpro
edural ma
ro pro
essing to the domain of languages with a traditionalsyntax, su
h as Java and C. We have shown how ma
ro pro
essing 
an beinterleaved with 
ompilation, and how an eÆ
ient, lo
ally extensible parser
an be used to exe
ute ma
ro expansions at parse time.With an extensible parsing framework that in
ludes the 
apabilities ofma
ro transformation, a language system that adds extensibility to Java 
anbe 
onstru
ted. An extensible Java implementation 
an be used to rapidlydevelop new language features and to de�ne domain-spe
i�
 languages as il-lustrated in Chapter 6.This is the �rst system to 
ombine support for lo
al, dynami
ally exten-sible 
ontext-free syntax with 
ontrol by meta-level pro
edures. It is 
lear to usthat this 
apability leads to a more robust programming paradigm, in whi
hthe roles of programmer and language author blur, and appli
ation-spe
i�
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language extensions be
ome a standard me
hanism for modular abstra
tion.
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