
CopyrightbyDonovan Mihael Kolbly2002

The Dissertation Committee for Donovan Mihael KolblyCerti�es that this is the approved version of the following dissertation:
Extensible Language Implementation

Committee:

Gordon Novak, Supervisor
Don Batory
Don Fussell
Calvin Lin
Robert Strandh

Extensible Language Implementation
by

Donovan Mihael Kolbly, B.S.; M.S.

DissertationPresented to the Faulty of the Graduate Shool ofthe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree of
Dotor of Philosophy

The University of Texas at Austin
Deember 2002

Extensible Language Implementation
Publiation No.

Donovan Mihael Kolbly, Ph.D.The University of Texas at Austin, 2002
Supervisor: Gordon Novak

This work presents several new approahes to the onstrution of extensiblelanguages, and is the �rst system to ombine loal, dynamially extensibleontext-free syntax with the expressive power of meta-level proedures. Theunifying theme of our system is that meaning should be omputed relative toloal ontext.We show how this theme is manifest in an implementation of a Shememaro system whih ahieves hygieni maro expansion without rewriting.Additionally, our Sheme maro system makes available ompile-time meta-objets for additional power in writing maros; maros that pattern math onompile-time types for optimization at maro-proessing time are one example.This approah is urrently in use in our RSheme implementation of Sheme.We also show the how this approah is applied to languages with onven-tional syntax, using Java as an example. We present a dynamially extensibleparser based on the Earley parsing algorithm. This approah is pratial as
iv

well as exible; a straightforward implementation in C parses a 600-line (2777token) �le in about 44ms on an 866MHz Pentium III.We also desribe a language extension framework that makes possiblean extensible variant of Java, in whih new syntax an be supplied by theasual programmer with only limited knowledge of the underlying ompilerimplementation or approah. This �nally makes available to Java program-mers the easy aess to strutured maro failities that Lisp programmers�nd so powerful. Finally, we demonstrate this framework by onstruting adeterministi �nite automaton language extension to Java.

v

Contents
Abstrat iv
Chapter 1 Introdution 11.1 Motivation . 11.1.1 Our Contribution . 21.2 Modularity, Reusability, and Extensibility 31.3 Syntax-Direted Translation 71.4 Summary of Basi Approah 81.5 Sope of Work . 8
Chapter 2 Maro Systems 102.1 Introdution . 102.2 Bakground . 112.2.1 C Maros . 122.2.2 Lisp Maros . 202.2.3 Sheme Maros . 252.2.4 Systems Related to Maros 272.3 A Taxonomy of Sheme Maros 292.3.1 Call-by-name Inline Proedures 29

vi

2.3.2 Advertent Capture . 302.3.3 Expliit Intentional Capture 312.4 Our Contribution . 322.4.1 RSheme Maros . 322.4.2 Type Reetive Maros 332.5 Our Implementation . 332.5.1 Operation . 342.5.2 Reetion Operators 46
Chapter 3 Extensible Parsing 503.1 Introdution . 503.2 Bakground . 533.2.1 What We Would Like to Do 533.2.2 Granularity of Grammar Changes 543.2.3 Appliations of Our Approah 543.2.4 Limitations . 553.3 Contour Sensitivity . 563.3.1 Major Styles of Environment Passing 563.3.2 General Mehanism . 573.4 Implementing Contour Sensitivity 583.4.1 Frequent Grammar Changes 583.4.2 Simple Interpretation 603.5 Implementation of Continuation Passing Parser 613.5.1 General Desription . 613.5.2 Representation of Rules 623.5.3 Dynami Rule Compilation 65

vii

3.5.4 Major Styles in Terms of Mehanism 653.5.5 Examples . 673.5.6 Performane . 71
Chapter 4 Extensible Earley Parsing 724.1 Introdution . 724.2 Desription of Earley Parsing 724.2.1 States . 744.2.2 State Sets . 744.2.3 Initial Conditions . 754.2.4 Proessing . 754.2.5 Predition . 774.2.6 Sanning . 784.2.7 Completion . 794.2.8 Relationship to Tomita Parsing 804.3 Advantages to the Earley Approah 814.3.1 Flexibility . 814.3.2 Extensibility . 824.3.3 Understandability . 844.3.4 Complexity . 854.4 Drawbaks to the Earley Approah 854.4.1 Expressiveness . 854.4.2 Performane . 864.5 Extensibility . 874.5.1 Sope Issues . 874.6 Our Implementation . 89

viii

4.6.1 Details . 894.6.2 Meta-syntax . 904.6.3 Meaning Computation 924.6.4 Performane . 954.7 Literal Equivalene . 974.8 Improvements to Basi Earley 1014.8.1 Conit resolution . 1014.8.2 Pruning states using FIRST 1024.8.3 Approximating FIRST 102
Chapter 5 Compiler Extension Framework 1045.1 Capabilities of Extension Framework 1045.1.1 Delarative, Pattern-Based Transformation 1055.1.2 Pattern Mathing Synthesized Attributes 1055.1.3 Proedural Code-Prodution Mehanisms 1065.2 Elements of an Extension Framework 1065.3 Implementation . 1075.3.1 Meta-language . 1075.3.2 Syntax Evaluation . 1095.3.3 Reursive Compilation 1105.3.4 Pattern Variables . 1115.3.5 Loal Grammar Changes 1145.3.6 In-line Computation 1165.4 Delarative Transformations 1165.5 Synthesized Attributes . 1175.6 Proedural Code Prodution 119

ix

5.6.1 Token Sequenes . 1195.6.2 Compilation . 1195.6.3 Environments and Syntax 1195.6.4 Reetion . 1205.7 Modular Syntax . 1205.8 Full Meta-syntax . 1215.8.1 Syntax Delarations 1235.8.2 Syntax Rules . 1245.8.3 Syntax Pattern Elements 1245.8.4 Ations . 1275.8.5 Loal Variables . 1325.8.6 Inline Ations . 1325.8.7 Example . 1335.9 Issues and Future Work . 1355.9.1 Substitution Conformane 1355.9.2 Translation Reursion 1365.9.3 Meta-syntax Sope . 1375.9.4 Syntax Module Templates 137
Chapter 6 An Appliation of an Extensible Language 1386.1 Introdution . 1386.2 Implementation Approah . 1406.2.1 Delaring the Extension 1416.2.2 Building the Final Meaning 1426.2.3 Delaring the State-Keeping Variable 1456.2.4 Delaring the Java Class's Entry Method 146

x

6.2.5 Delaring the Java Class's Aessor Methods 1476.2.6 States Within an Automaton 1476.2.7 Building the State Swither 1516.2.8 Delaring transitions 1526.2.9 Symboli State Names 1536.3 Example Use of the DFA Extension 1556.3.1 Sample Extended-Java File 1556.3.2 Generated lass de�nition 1556.3.3 Generated proess() method 157
Chapter 7 Final Words 1597.1 Related Work . 1597.1.1 Syntati Exposures 1597.1.2 Term Rewriting . 1597.1.3 Hygieni Maro Expansion 1607.1.4 Reusable Generative Programming 1617.1.5 Adaptable Grammars 1617.1.6 Open Compilers and MOPs 1627.2 Limitations and Future Work 1657.2.1 Meta-Objet Protool 1657.2.2 Error Reporting . 1657.2.3 Synthesized Attributes 1667.3 Conlusions . 169
Bibliography 171
Vita 177

xi

Chapter 1
Introdution

The advantages of extensible languages have long been realized by the Lispommunity. The ability to easily adjust the language to �t the appliation,rather than to always adjust the appliation to �t the language, is at the heartof what Lisp programmers onsider the deep power of Lisp [17, 33℄. In thiswork, we show how that power an be made more aessible and powerfuleven in Sheme, as well as available to programmers in languages with on-ventional syntax suh as Java. The tree-strutured transformations of Lispmaros integrated with an extensible parser allow the onepts to be uni�ed.In addition, a well-strutured ompiler meta-objet protool exposes relevantaspets of the ompilation proess and provides powerful programmable hooksfor extending the language to �t the appliation.
1.1 Motivation
This work is motivated by the fat that muh existing work in extensiblelanguages is either insuÆiently expressive in the kinds of extensions that

1

are permitted (i.e., funtion libraries) or expressed at the wrong level or inthe wrong ways (e.g., purely proedural transformations operating over textstrings).That is, we are primarily motivated by:
� Ease of language implementation
� Ease of language extension
� Ease of re-engineering language implementation (e.g., to hange perfor-mane tradeo�s to deal with new tehnologies or new usage patterns)

We reognize the following themes:
� Extensible languages should have extensible ompilers.
� Meaning should be expressed naturally through ontext, espeially throughontour sensitive ontexts, whih preserve lexial soping throughouttransformation.
� An extensible ompiler should have a friendly interfae and be integratedwith languages using onventional grammars.
� Objets used during the front-end proessing of a program should berei�ed, and be the domain objets of meta-programming.

1.1.1 Our ContributionWith these themes and motivations in mind, in this work we desribe anapproah that provides:
� Context-loal and dynamially modi�able onrete syntax,2

� Full ontext-free syntati power, and
� A means for de�ning proedural meta-level ode for arbitrary omputa-tion at ompile-time.

Furthermore, we illustrate this approah in a system with Java as a baselanguage.
1.2 Modularity, Reusability, and Extensibility
The primary means of reating large and omplex software systems has beenby building relatively simple program modules, and omposing those modulesinto larger, more omplex software systems. The proess for developing thelarge software system an then be deomposed into the development of smallerprogram modules. Smaller program modules are easier to understand, develop,and test, and well-onstruted modules an be reused to build other softwareappliations.A re�ned use of modularization is for program layering. Program lay-ering arranges modules into layers whose role is to transform the programonepts at a higher level of abstration to those at a lower level of abstra-tion. A layer is then extending the language below the layer, reating a new(possibly superset) language.Figure 1.1 shows how we draw the relationship between the languageL0 below the layer, the module layer, and the language reated by the layer,L1. Layering is a powerful struturing tool, and has been used in systemsfrom the Basi Linear Algebra Subroutines to the 7-layered OSI protool stak

3

L1

L0

layer

Figure 1.1: A simple layered program
for network ommuniation. The modularity provided by well-arhiteted lay-ering leads to highly e�etive reuse of modules.If Figure 1.1 is drawn on its side and the layer module is thought of as aproess, an approah to language extension known as preproessing is revealed:

L1 L0layer

Figure 1.2: A preproessing approah
In this approah, language L1 is onsumed by the layer proess, gener-ating an appropriate program in L0 as output. The language L1 is said to bepreproessed into L0 beause the eventual exeution of the original programis done in an L0 exeution environment.Be it layering or preproessing, the manner in whih this modularityis expressed an be divided into two broad ategories. The �rst ategory isextension within the language, in whih the language itself ontains the meansto reate or modify layers. The seond ategory is extension from outside thelanguage, whih requires the separate implementation of a language translator,and is restrited to expressing modules using the preproessing approah.Extension from within the language is often aomplished via program

4

libraries. This tehnique is so well known { sine the days of Fortran, at least{ that it is not given a seond thought. A language without the ability tobe extended via funtion libraries is immediately reognized as unsuitable forserious programming.Large and omplex software systems have been built using the programlibrary tehnique. Some libraries are so large and omplex that sophistiatedsystems are required just in order to ompose their onstituents (e.g., see thework on the omposition of astronomial library omponents by Stikel andWaldinger [37℄). Other libraries are really proedural interfaes to a speializedlanguage environment. For example, RenderMan [41℄ and OpenGL [44℄ bothmaintain a omplex virtual mahine whih is managed by a library of API allsthat enode the onstruts and primitives of the language, inluding nestingand onditionals. Still other libraries vastly extend the power and usefulnessof the base language (e.g., the Java ore API and the C++ Standard TemplateLibrary).These kinds of libraries are mostly olletions of proedural abstra-tions. The C++ STL is a notable exeption in this respet; it represents alibrary of programming templates whih are instantiated at ompile-time toreate the appliation.Proedural abstration libraries are limited in their expressiveness inmost languages. For example, the evaluation of arguments is usually de�nedto take plae before a funtion is alled. Call-by-value semantis for argumentpassing make it impossible to implement a onditional onstrut suh as ifusing a funtion library style extension.Another problem with proedural abstrations is that the syntax offuntion alls is usually onstrained by the language. For example, most
5

Fortran-derived languages adopt the notation from mathematis of the fun-tion name followed by, in parentheses, a omma-separated list of arguments.Programmers of suh languages would immediately reognize the example:
atan2(y, x)
as a all to a funtion named atan2 with two arguments, y and x.Sometimes, language extensions are in the form of maros. These havethe added expressiveness of being able to de�ne speial forms, but maro se-mantis are usually that of textual substitution. Many maro implementationsgive little or no thought to preserving the relevant expression ontext (i.e., theontext at the point of maro de�nition for the purpose of evaluating the marobody, and the ontext at the point of maro use for the purpose of evaluatingthe maro arguments.)In more severe ases, language extensions have taken the form of pre-proessors. C++ was originally implemented this way, as a preproessor fortransforming C++ into C1. Sometimes the preproessor is itself extensible.The C preproessor and C++ both are extensible preproessors in thesense that the language they provide an be extended by the input program.In the language of C maros, this omes in the form of the #define diretive.In C++, a lass de�nition adds to the preproessor's internal strutures repre-senting the program being transformed and thereby onstitutes an extension.In both ases, the preproessor de�nes, as part of the language it provides,an extension framework. The eventual output of the C preproessor has allmaros removed, and orresponds to the plain C ode. The C preproessor issuh a general internally-extensible �lter, tied only loosely to the C language,1Sine the original implementation, however, the C++ language has beome ompliatedenough to warrant its own ompiler. 6

that it has been used as an extensibility mehanism for other languages, suhas IDL [29℄.Like the C preproessor, the C++ translator generates plain C ode asits output. The translation required to provide the C++ language is quite abit more sophistiated, and involves building omplex internal data strutures,applying internal transformations on parse trees, and unparsing the resultinto textual C ode for onsumption by the plain C ompiler. C++ supportsrelatively sophistiated language extensions in the form of templates, whihessentially support abstrations over types2.Preproessing an also be regarded as language implementation by trans-formation. If the input language and output language are suÆiently di�erent,it is often regarded this way (the line beomes somewhat blurry when the inputlanguage is a strit superset of the output language).
1.3 Syntax-Direted Translation
Another major fore in muh of the development of language systems hasbeen the notion of syntax-direted translation. In this metaphor, the syntatistrutures of the language orrespond to semanti strutures. As a result, thetranslation of a program, or its assignment of meaning, an be embedded inthe parsing proess.Lisp has never been saddled with the notion of syntax-direted transla-tion, instead basing translation on the top-down proessing of a simple parsetree. This gives Lisp programmers a more powerful means of expressing trans-2As opposed to funtions, whih abstrat over values. That is, a funtion omputes anew value by being instantiated with a set of values as its arguments. A template reates anew onstrut by being instantiated with types as arguments.

7

formations, beause they an operate on trees instead of streams of tokens.
1.4 Summary of Basi Approah
Our basi approah is to ompile expressions in environments. A ompilernormally makes use of some kind of ompile-time environment to keep trakof the meaning of identi�ers. This an be in the form of a global symboltable or, more typially, a strutured representation that reets the nestedstruture of the program.Our approah, then, is to extend the use of this sort of symbol table in-formation to permit the e�etive interpretation of maros in their appropriateontexts. As we show, this approah allows the maros themselves to reet(examine and operate upon) these ontexts, whih makes possible new kindsof expressive power and onveniene [39℄.This approah is extended to traditional language syntax using an inter-pretive parsing approah. In the parsing interpreter, the grammar beomes apart of the ompile-time ontext, to be manipulated to implement the desiredontext-dependent aspet of the extensible syntax.
1.5 Sope of Work
There are three distint but related aspets of this new approah to front-endompilation:

� Avoiding ommon problems with traditional maros (e.g., providing hy-gieni maro proessing).
8

� Extending the power of Sheme-style maros, exposing the operation ofthe front-end and allowing the programmer to intervene in a strutured,timely manner.
� Supporting onventional grammars.

These aspets provide the struture for the rest of this disussion, andare the main points of this work.The issue of providing syntati extensions in a Lisp-like language (i.e.,Sheme) involves an approah where maro proessing is fully integrated withnormal ompiler proessing. Integrating maro proessing with the ompilergives maros both eÆieny and power. This approah is eÆient beause norewriting of the soure program need be done, in ontrast to traditional maroproessing whih does rewrite the soure program into a \maro expanded"program. Additional power for maros is derived from the use of ompile-timeprotools to allow maros aess to the information that is normally availableat ompile-time. No additional work is required to make suh informationavailable { the ompiler typially needs the information anyway { but beausemaro proessing is integrated with ompilation, the maro system an aessthat information in a onvenient manner.Languages with onventional surfae grammars suh as Java and C alsoneed mehanisms for syntati extensibility. Chapter 3 shows how an extensibleparser an be onstruted that applies the general priniple of ontext-sensitiveproessing to the parsing problem for a very simple parser. Chapter 4 appliesthe extensible parsing approah to a more sophistiated parser based on theEarley parsing algorithm.
9

Chapter 2
Maro Systems

2.1 Introdution
In this hapter, we desribe a kind of language extension mehanism that isapable of expressing new onstruts with muh more exibility than onven-tional library mehanisms support. The kind of language extension mehanismwe address is that of maro systems. A maro system is a language failitythat allows the user to write loalized transformations (maros) that an beapplied to the soure program before later phases of the program proessingsystem attempt to assign a meaning to the soure program.We �rst disuss the very di�erent maro systems available in the C lan-guage and the Lisp family of languages, inluding Common Lisp and Sheme.We then provide a tentative taxonomy of Sheme maros { a atalog of om-mon usage patterns adapted from the work of Carl [10℄.Then we elaborate upon our approah, whih integrates maro pro-essing with ompilation. That is, maros are elaborated in a omputation

10

interleaved with the normal work of ompiling, instead of operating as a pre-pass. We show how that an lead to some additional expressive apabilitiesfor maro writers beause some ompile-time information is available at maroproessing time.
2.2 Bakground
As we indiated in the previous hapter, the proedural abstration is a pri-mary means of building modular program subsystems. However, many lan-guages onstrain the form and semantis of proedure alls. For example, aproedure all form typially evaluates all of its arguments exatly one be-fore invoking the alled proedure. In some ases, the ommon semantis of aproedure all are insuÆient to express the desired onstrut.For example, if the appliation makes repeated use of an operation likeswap, it makes sense to enapsulate the funtionality within an abstration soit an be reused e�etively. However, the swap operation does not lend itself toa proedural abstration beause both of its arguments are to be interpretedas both lvalues and rvalues { that is, as loations suitable for being stored into(lvalues) as well as loations to be read (rvalues)1 [38℄. Hene, a �xed funtionalling protool like all-by-value breaks down for operations like swap.Typially, beause the funtion alling protool is �xed in a language,proedural abstrations annot implement speial forms. Speial forms areprogram onstruts whih have speial rules for evaluating their onstituent1The use of an argument as both an lvalue and an rvalue an be dealt with in languageswith expliit pointers by simply passing a pointer to the loations by value. However,some languages with all-by-value semantis, suh as Sheme and Tl, do not have expliitpointers.

11

parts. if and assignment (=) are typial examples of speial forms. if isa speial form beause its onsequent part is only evaluated or exeuted ifthe onditional expression yields a true result. The assignment operation isa speial form beause its left-hand side (the target of the assignment) is notevaluated; rather, its meaning is a loation into whih the value of the right-hand side is to be stored.In some ases, a speial form does not onstitute an expression in thesense of an exeution that takes plae at runtime to produe a value. Instead,a speial form may represent a de�nition or other operation whih a�ets thestate of the ompiler. Pragmas, de�nitions, delarations, and imports are allommon examples of this kind of speial form.A language extension tehnique ommonly used when the funtion all-ing protool breaks down is that of maros. A maro is a user-de�ned trans-formation of the soure program that takes plae at ompile time.Beause maros do their transforming at ompile time, their invoationprotool is more exible than the usual all-by-value funtion alling onven-tion. For example, they may arrange to have some arguments evaluated orexeuted only in ertain ases or more than one.
2.2.1 C MarosThe C language de�nes a standard preproessor for C programs [23℄. Thepreproessor implements an extensible maro language, allowing some kindsof maros to be de�ned in C programs. However, C maros are almost om-pletely distint from the rest of the C language. Pratially the only thing Cmaros share with the rest of the language is the lexial (token) struture and

12

the syntax of funtion alls. The lak of ooperation between the C maroproessor (typially implemented as a separate textual �lter program) and therest of the C language results in problems with both syntax and ontext.De�nitions in a program intended for the C preproessor are lexiallyquite distint from de�nitions intended for the plain C ompiler. For example,a typial funtion de�nition in C looks like:
int sqr(int a){ return a * a;}
whereas an analogous maro de�nition looks like:
#define sqr(a) ((a)*(a))

Pre-ANSI C preproessors onsidered a maro de�nition to expand to asequene of haraters. The lak of lexial struture in the expansion reatedopportunities to violate the lexial integrity of the maro arguments. Forexample, a maro suh as the following does not preserve the lexial integrityof its arguments:
#define quote(a) "a"

A use of the maro quote suh as \quote(1 + 2)" does not preservethe apparent lexial struture of the arguments to the all { the argumentappears to be three tokens, whereas in fat the argument is interpreted as astring of 5 haraters, with spaes being signi�ant.
13

When the ANSI ommittee re�ned the C language, the reognition ofthe problems with violating lexial integrity prompted the spei�ation tohange so that the C preproessor onsiders the body of a maro de�nition tobe a sequene of tokens instead of a sequene of haraters.In some ases, it is aepted pratie (and in fat a ommon idiom) towant to violate the lexial integrity of the arguments in a C maro. To supportthose ases, the ANSI ommittee de�ned speial operators, \#" and \##", tobypass the default behavior.One plae this feature is used is in the generation of families of lan-guage objets; that is, sets of related objets, typially sharing a portion oftheir name. For example, an appliation that uses C strutures to reord in-formation about normal language proedures might make use of a C maroto build the appropriate strutures automatially. The following maro, forexample, illustrates suh a use:
#define PROC(name,arg) \int name(int); \strut info name ## _info = \{ name, \# name }; \int name(int arg)

This maro an be used to delare a proedure with a ommon interfae(i.e., takes a single integer argument and returns an integer result) like so:
PROC(sqr,x){ return x * x; 14

}
The ourrene of the PROC maro reates the appropriate struturedelaration and �lls it in. The use of the speial ## operator in the marode�nition reates a new token (identi�er) omposed of the haraters of itsarguments. Hene, the above example use reates a variable sqr info of typestrut info. Furthermore, the use of the speial # operator reates a stringwhose ontents are the haraters of the maro argument, in this ase \sqr".Using these speial operators, the sqr info struture an be initialized withthe name of the proedure delared using the PROC maro.The # operator is espeially useful as a simple form of introspetion,allowing a maro to transform the text of an argument into a program dataobjet. The standard C assertmaro makes use of this operator to provide aninformative error message when a program assertion fails. Lisp programmersare familiar with this general tehnique as the ability for maros to quote anargument.Despite these speial operations, the default behavior in the C prepro-essor is to preserve the lexial struture. Nevertheless, the lak of grammatialstruture in the expansion reates opportunities to violate the grammatial in-tegrity of the maro arguments.Consider, for example, the following na��ve implementation of the sqrmaro:

#define sqr(a) a*a
This maro de�nition appears to apture the intended meaning, but infat is an error waiting to happen. Beause the C preproessor does not honor

15

the grammatial struture of the maro arguments, a grammatial misinter-pretation an arise. For example, onsider what happens if the programmeruses sqr(x+1). The rule of substitution of strings of tokens gives rise to thetoken sequene x+1*x+1, whih means the same as x+(1*x)+1. However, theintended meaning was probably (x+1)*(x+1), a very di�erent expression.Competent C programmers are familiar with the onsequenes of the Cpreproessor not preserving the grammatial struture of the maro arguments.As a matter of habit, they defend against this kind of misinterpretation byinserting parentheses around the uses of maro arguments, as in the followingde�nition:
#define sqr(a) ((a)*(a))

The invoation protool for maros is one of textual substitution, so sidee�ets in an argument to the sqr maro our twie. Repeated side-e�ets anlead to peuliar situations. For example, the probability that sqr(random())returns a square number is almost nil, whereas it would appear to always doso. Despite its limitations, the textual substitution protool makes C pre-proessor maros suÆient for de�ning speial forms. The lak of any enfore-ment of evaluation order means that the maro de�nition an typially arrangeto evaluate its arguments exatly as many times as desired.However, the textual substitution protool interats poorly with the in-ability in the C language to de�ne loal variables within an expression. Lispprogrammers who write maros are familiar with the problems of repeatedside-e�ets and, like C maro writers inserting parentheses to prevent gram-matial misinterpretation, routinely insert binding onstruts to ensure that16

ertain arguments are evaluated exatly one and in the right order. However,the C language enfores a dihotomy between statements and expressions.Statements may ontain expressions, but not vie-versa. Sine all the bindingonstruts in C are statements, an expression annot bind a temporary vari-able to hold onto the value of an expression that should be evaluated one,suh as the argument to sqr.An extension to C supported by the g ompiler is the ability to writea statement as an expression by enlosing it in braes within parentheses. Thisonstrut reates a statement expression. Hene, it is possible to write:
#define sqr(a) ({ int temp = (a); \temp * temp; })

However, in ANSI C this is not possible, so a safe inlined version of sqris impossible to write.Another advantage of the textual substitution protool for maro invo-ation in C, ompared to the funtional alling protool, is that of polymor-phism. That is, the polymorphism available with the standard mathematialoperators in C is available to the aller of a maro using those operators.For example, some versions of the sqr maro given above, suh as:
#define sqr(a) ((a)*(a))
an operate on both integral and oating-point arguments, returning a valueof the same type. This works beause the maro substitution proess has noknowledge of types, and textual substitution produes expressions to whihthe normal C ompiler an apply the usual polymorphi arithmeti operators.Polymorphism of this nature is of relatively little use in C beause of the

17

limited availability of polymorphi operators, but C++ programmers an makeonsiderable use of this apability.When the programmer uses the statement expression extension of g,preserving this polymorphism in the safe version requires the use of an ad-ditional extension operator. The meaning of the typeof operator applied tosome expression e is the type whih is the result of e. Therefore, the typeofoperator an be used to delare a variable of a type whih is not known to theauthor of the maro de�nition. Extending our running sqr maro to preservenumeri polymorphism this way, we have:
#define sqr(a) ({ typeof(a) temp = (a); \temp * temp; })

Even with the use of C extensions, C maros still have problems dealingwith temporary names. The following example illustrates the problem:
#define dist(x,y) ({ typeof(x) x_temp = (x); \typeof(y) y_temp = (y); \sqrt(x_temp * x_temp + \y_temp * y_temp); })

If the expression given y involves a variable named x temp, its our-rene in the maro expansion refers to the temporary variable de�ned by themaro.The problem with internal names oniting with program soure namesis somewhat ameliorated by the hoie of obsure names for internal identi�ers.However, the problem annot be ompletely avoided if a maro might be usedreursively or our in di�erent expansion paths.18

For example, in C, maros an't expand reursively beause there'sno maro-time ontrol onstrut to avoid inde�nite reursion. However, twomaros an both be de�ned in terms of some other maro, whih results in thesame kind of sharing.
#define UTIL_START { int seretflag; seretflag = 0;#define UTIL_END(pro) if (seretflag) pro(seretflag); }#define UTIL_TAG seretflag = __line__
#define TRACK_ERRORS_START UTIL_START#define TRACK_ERROR_END UTIL_END(got_error)#define ERROR_HERE UTIL_TAG
#define TRACK_WARN_START UTIL_START#define TRACK_WARN_END UTIL_END(got_warning)#define WARNING_HERE UTIL_TAG

If a warning-traking blok is used inside of an error-traking blok,their seretflag variables get onfused. In C, the way around this is toeither dupliate the ode (i.e., not have a separate UTIL abstration), or topass around uniquifying identi�ers (whih might have to ome from the soureprogram, if the same kind of bloks of this sort an be nested, whih may inturn happen via maro expansion!)Another problem with C maros is their limited surfae syntax { theuse of a maro always looks like a funtion all, even when its semantis aremore similar to onstruts in the language with di�erent syntax. For example,a maro to implement a new kind of looping onstrut would wind up looking19

like a funtion all rather than a while statement.
2.2.2 Lisp MarosIn a Lisp ompiler (or interpreter), the basi proessing of input programsis somewhat di�erent from that of traditional FORTRAN-derived languages.The input program is subjeted to lexial analysis and parsing, as usual, butthe result of parsing is essentially a parse tree represented as a Lisp data stru-ture, instead of an abstrat syntax tree. The part of the Lisp ompiler thatassigns meaning to the input program (i.e., builds an abstrat syntax tree) op-erates on this parse tree data struture. In the traditional language approah,that part of the ompiler funtions inside the parser, assigning meaning duringthe parse itself.Lisp, like C, also appreiates the utility of maros. The same ommentsabove that made maros desirable in C apply to Lisp as well. Beause Lisp, likeC, has a �xed and all-by-value funtion alling protool, the need to ontrolthe evaluation of arguments gives rise to the need for maros. The ability toportably inline ode is another lassi reason to use maros in Lisp, as well asin C. Maros are implemented somewhat di�erently in Lisp than they arein C. Instead of a separate, preproessing-based language layer, maros areexeuted at ompile time, interleaved with the normal ompilation [22℄2. Whenthe ompiler enounters a parse tree whose head names a maro, the ompilerexeutes the body of the maro, with the other branhes of the parse treebound as the arguments to the maro. The result of exeuting the maro2Atually, Common Lisp does not speify exatly when exeution of maro forms hap-pens, whih gives rise to a whole new lass of maro errors.

20

de�nition's body is a new parse tree, whih the ompiler then proeeds toompile as usual.One thing to notie is that the body of the maro is arbitrary Lispode. The omplete power of the programming language is available to theprogrammer at ompile time for the purpose of expanding the use of a maro.This is very di�erent from most maro systems, and C's in partiular, whihhave only very limited expressiveness available to the maro system3.Mostly beause maros are so ommon in Lisp, a speial operator was in-trodued to make it easy to write the body of a maro. This is the quasiquoteor bakquote operator, and it works essentially by letting the programmer writea parse tree as data with holes in it. For example,`(* ,x 2)represents a parse tree for a 3-element list with * at its head, a 2 in the lastposition, and a hole in the middle position. The exeution of suh a forme�etively �lls in the holes by evaluating the expressions within unquotes orommas. Hene, if the value of x is the parse tree (+ 1 2), then the result ofexeuting the above quasiquoted form would be:(* (+ 1 2) 2)The use of quasiquote makes it quite easy to write many Lisp maros.Extending the running example above for C, one ould write a na��ve maro inLisp for omputing the square of an argument:(defmaro sqr (x)`(* ,x ,x))3For example, in C it is not possible to write a maro repeat(n,x) whih expands to nopies of the expression x. 21

In the ontext of C, we saw how the sqr maro would inadvertentlyevaluate its argument twie. This na��ve maro in Lisp would do likewise.Unlike C, Lisp does not distinguish statements from expressions. In ef-fet, everything is an expression, inluding binding onstruts. This uniformitymakes �xing the multiple-evaluation problem straightforward:
(defmaro sqr (x)`(let ((temp ,x))(* temp temp)))

Furthermore, Lisp is dynamially typed, whereas C is statially typed.Hene, the lauded polymorphism available to C maros is trivially available inLisp maros as well, even with a binding onstrut to hold temporary values4.In a dynami type system, the polymorphism is realized at the leaves of theomputation tree so intermediate ompiler passes and intermediate variablesneed not repliate knowledge of the data type. (On the down side, this makesit muh harder for ompilers to hek types and do type-based optimizations.)The above maro de�nition still has the problem of name lashes oftemporary names. The sqr maro is too simple to illustrate this problem, soinstead onsider a maro for the binary form of the Lisp or speial form:
(defmaro or (a b)`(let ((temp ,a))(if temptemp,b)))4This bene�t omes at the ost of either runtime performane or ompiler omplexity.

22

Reall that the intention is that or returns the value of its �rst argumentif it is not nil (and in whih ase it does not evaluate its seond argument).Otherwise or returns the value of its seond argument.The use of a temporary variable prevents repeated evaluation of the �rstargument when it turns out to be true, but the name given to that temporaryvariable an lash with names in the seond argument. Consider the followinguse of the or maro:
(defun unomfortablep (temp)(or (> temp 80)(< temp 65)))

The expansion of this maro results in:
(defun unomfortablep (temp)(let ((temp (> temp 80)))(if temptemp(< temp 65))))

The identi�er temp in (< temp 65) is meant to refer to the argumentof the funtion unomfortablep, and instead winds up referring to the loalvariable by the same name.This problem an be somewhat mitigated by the hoie of even moreobsure names. However, when maros an be used reursively, no assignmentof obsure names an protet against an inadvertent onit. Fortunately, be-ause Lisp maros have the omplete expressiveness of the language5 for gen-5The language in whih the maros are written is properly alled the meta-language, butin Lisp the meta-language is the same as the underlying (target) language.23

erating expansion parse trees, a maro an onstrut a new identi�er on eahinvoation. This is the so-alled gensym approah for dealing with variableapture problems in Lisp maros. The following modi�ed or maro illustratesthis approah:
(defmaro or (a b)(let ((temp (gensym)))`(let ((,temp ,a))(if ,temp,temp,b))))

Now, eah time the or maro is alled, a new, fresh identi�er is reatedfor use as the name of the temporary variable. Sine the identi�er is new, itannot onit with any other identi�er in the program, whether generated bygensym or not.By appropriate use of temporary variables to avoid multiple evaluationand the gensym approah to avoid name lashes, Lisp maros an be writtenthat orretly provide their intended semantis. However, due to these pitfalls,doing so may involve onsiderable work and obsure bugs may lurk undeteted.Lisp maros are restrited to de�ning new expressions6. That is, theompiler does not reognize the use of a maro in plaes that are not seman-tially expressions, e.g., in the formal arguments spei�ation of a proedure.6Common Lisp has a related but separate mehanism for de�ning maros for assignmentloations. setf maros allow the de�nition of new kinds of arguments to the assignmentspeial forms.

24

2.2.3 Sheme MarosThe Sheme language takes a slightly di�erent approah to ahieving the goalof maro support. Sheme maros are in some ways intermediate betweenLisp maros and C maros. Like Lisp maros, they operate on struturedparse trees (not abstrat syntax trees). Like C maros, they are delarativeand do not provide all of the expressive power of the language to the maroprogrammer.The main distinguishing harateristi of Sheme maros is that theyautomatially provide hygieni maro expansion [14℄. Hygieni maro expan-sion refers to the avoidane of name lashes suh as we saw in the or maroexample in the previous setion.Sheme maros are de�ned using the define-syntax form. A set ofpatterns are given with syntax-rules, and in eah pattern the speial symbol\ " ats as a plae-holder for the name of the maro being de�ned. The speialsymbol \..." is used to denote a repeating element of the argument pattern.For example, a simple Sheme maro for or is:
(define-syntax or(syntax-rules ()((_ a b)(let ((temp a))(if temptempb)))))
This de�nes a maro whih mathes a two-argument invoation of or, forexample, (or (at) (dog)). 25

The maro expansion proess as de�ned in R5RS automatially ensuresthat names introdued in di�erent ontexts (i.e., inside the maro de�nitionvs. at the use site) do not inadvertently refer to eah other. In this ase, thetemp variable that is used to prevent multiple evaluation of the �rst argument,a, does not onit with any identi�er temp in the argument b.Note that Sheme maros have to deal with suppressing multiple eval-uation of arguments. This is a property of all maro systems that an expressspeial forms, beause the whole purpose of a speial form is to permit theevaluation of an argument either zero times or more than one.Sheme ahieves hygieni maro expansion by making the maro ex-pansion proess aware of the binding onstruts suh as let so that it anautomatially rename variables when neessary. If the above or maro wereused in something like:
(define (unomfortable? temp)(or (> temp 80)(< temp 65)))

then the e�et is as though the gensym approah in Lisp were used, butautomatially. The result is something like:
(define (unomfortable? temp)(let ((temp.1 (> temp 80)))(if temp.1temp.1(< temp 65))))

Beause the maro expander is aware of the variable binding role of
26

let, it an reate a new name for its variables and keep trak of the mappingfrom soure names to renamed variables.Most Sheme implementations appear to implement the hygieni se-mantis of Sheme maros using a renaming tehnique. That is, hygiene isahieved by automatially omputing the neessary generated symbols.The renaming transformation is a proess whih is interleaved with om-pilation, but separate from that ompilation. As a result, the maro expanderhas to be aware of all the onstruts in the language whih a�et sope and tohandle any renaming appropriately. Fortunately, this is usually easy beausethe system designer typially implements only a few basi forms in the om-piler proper and uses maro expansion to handle the rest. For example, theore ompiler might implement only lambda, letre, set! and a few others.Most binding onstruts, like let* and do, would be implemented as maros.The maro expander only needs to be aware of the onstruts diretly under-stood by the ore ompiler beause the expander already knows how to handlegeneral hygieni expansion of maros.
2.2.4 Systems Related to MarosMaro systems are not the only means for allowing the user to de�ne speialforms. More exible argument passing tehniques an generalize the tradi-tional funtion alling protool suÆiently that speial forms are aessible.One suh exible argument passing tehnique is that of all-by-name. Inall-by-name argument passing, the evaluation of the arguments to a proedureis under the ontrol of the alled proedure. This ahieves an e�et somewhatlike maros, and speial forms an be written using this parameter passing

27

tehnique.For example, onsider the following onditional onstrut (in a pseudo-Algol language):
define until(WHAT, TO_EXIT)beginwhile true dobeginWHAT;if TO_EXIT then return;end;end.

Call-by-name has problems, though. In partiular, it is known that aall-by-name alling onvention annot implement swap safely. Furthermore,it seems that the use of suh a subtle alling onvention as all-by-name anbe quite dangerous to use as frequently as funtion alling is used, as well asbeing rather ineÆient to use as the default alling onvention.Another argument passing tehnique that is exible enough to imple-ment some speial forms is that of all-by-need or lazy evaluation. In thistehnique, arguments are evaluated zero or one times, and only when needed.Conditional onstruts an be implemented using all-by-need. However, newbinding onstruts annot be implemented in Haskell beause, although typialimplementations use a transformational proess to onvert the exposed lan-guage to a lower-level ore language (desugaring), these sugar-oating failitiesare not exposed to the programmer.
28

2.3 A Taxonomy of Sheme Maros
2.3.1 Call-by-name Inline ProeduresPerhaps the simplest use of Sheme maros is as all-by-name inline proedures.In this ase, maro de�nitions are regarded as delarations of inline proedureswhose arguments are passed by name rather than by value.Call-by-name inline proedures are also the easiest to implement or-retly. The tehnique of syntati losures was introdued by Bawden andRees [6℄ to solve the hygiene problem for all-by-name inline proedures. Thesyntati losure approah is suÆient for implementing maros used as all-by-name inline proedures, and our approah is based on extending these ideas.As an example, the or maro illustrates the ommon use of maros asall-by-name inline proedures.
(define-syntax or(syntax-rules ()((_ term)term)((_)#f)((_ term terms ...)(let ((temp term))(if temptemp(or terms ...))))))

29

2.3.2 Advertent CaptureInline all-by-name proedures, and a straightforward implementation usingsyntati losures, annot express binding onstruts. The ability to reatebindings in a maro body whose variables are visible to expressions that arearguments to the maro requires advertent apture. The sense of advertent isthat the apture of identi�ers by the body of the maro is done on purpose,with due onsideration of the intended semantis.The Sheme form let* is easily expressed using a maro with advertentapture:
(define-syntax let*(syntax-rules ()((_ () body ...)(begin body ...))((_ ((var init) bdg ...) body ...)(let ((var init))(let* (bdg ...) body ...)))))

In this maro, the bindings represented by var are inserted by themaro, and apture referenes within body. For example, a use of the let*maro suh as:
(let* ((begin 'start)(end 'stop))(list begin end))
would expand into:

30

(let ((begin.1 'start))(let ((end.1 'stop))(begin(list begin.1 end.1))))
where begin.1 and end.1 are identi�ers onstruted by the maro expansionproess. They are hosen to be unique, and hene do not lash with anyreferene in the body of the maro, in partiular the referene to begin.
2.3.3 Expliit Intentional CaptureA third general use of maros is to insert a binding into an environment wherethe inserted name does not our as an argument to the maro. We all thisexpliit intentional apture.Implementing something like C while, whih permits the use of breakwithin its body, requires expliit intentional apture. Consider the followingproedure whih makes use of a hypothetial while speial form:
(define (with-eah-datum port pro)(while #t(let ((datum (read port)))(if (eof-objet? datum)(break)(pro datum)))))

Here, the speial form while introdues a new binding for break in thesope of its body. The name break is not expliitly referened by the invokerof the maro, so the advertent apture rules annot apply. Expliit intentional
31

apture makes it possible to write while, and at the same time makes themaro author expliitly aware that they are bypassing the normal sope rules.
2.4 Our Contribution
Our approah is novel in two respets. First, it does not expliitly rewrite thesoure program; there is no notion of a \transformed" output that is subse-quently fed into a maro-de�ient ompiler. Seond, it allows the meaning ofspeial forms (inluding syntax) to be propagated upward in the ompilationproess. The latter orresponds to a ontrolled form of eager maro proessing.
2.4.1 RSheme MarosThe RSheme implementation of Sheme supports Sheme maros, but the sys-tem ahieves hygieni maro expansion using a tehnique whih is not basedon preproessing and renaming of variables, whih most Sheme implemen-tations use. The RSheme implementation integrates maro expansion withompilation; there is no maro expansion per se.Beause maro proessing is fully integrated with ompilation, RSheme'smaro faility does not need to be expliitly aware of the binding onstrutsin the underlying language. Instead, the maro faility diretly manipulatesthe ompile-time objets representing variables and bindings. Furthermore,the order of maro proessing is well-de�ned, sine the RSheme system doesnot have a separate interpreter.

32

2.4.2 Type Reetive MarosThe integration of the maro system with the ompiler makes possible addi-tional taxa of Sheme maros. An RSheme maro an use ompile-time in-formation to do new kinds of pattern mathing. Being able to pattern mathon ompile-time information allows ertain kinds of optimizations to be ex-pressed using the maro system, whih makes this ability a powerful languagedevelopment tool as well as valuable to the end user.For example, a runtime system might have two primitive proedures foradding numbers, one to be used when both arguments are known at ompile-time to be small integers. A maro an de�ne a pattern that only matheswhen that ondition is satis�ed and generates the appropriate, fast instrution.The default rule ould invoke the slower primitive proedure.This general approah has been used in the RSheme system to stru-ture the interfae between high-level ode and low-level primitives with di�er-ing performane tradeo�s. Examples are elaborated in Setion 2.5.2.
2.5 Our Implementation
Our implementation is based on a simple reursive ompiler operating overa surfae parse of the input program. The surfae parse is the result of theSheme read proedure, and hene is a tree-strutured representation of thesoure text. The tree struture is laid out expliitly by the user; there is nounderstanding of the language grammar or semantis that are applied at thistime. The reursive struture of ompilation is over this tree, so the programsubtext at any given point is the input to the ompilation proedure.

33

The return value from the ompilation proedure is the meaning assoi-ated with that program subtext in the ontext of that point in the system. Inpartiular, it is either intermediate ode or a meta-objet denoting a variable.The struture of intermediate ode as used in our implementation isnot important for this disussion { it may be any appropriate representationwhih has variable bindings ompletely resolved. In our implementation, itis a simple tree-ode representation whih an be immediately fed into thebak end of the RSheme ompiler for ode generation. Furthermore, textualreferenes to variables are enoded as objet referenes to the orrespondingvariable meta-objet. No binding ambiguity an arise, beause the variablereferene points to the atual variable meta-objet. Meta-objets denotingvariables represent ourrenes of variable de�nitions in the input program.
2.5.1 OperationTo ompile an expression in an environment, we maintain a data struturerepresenting the \loation" of the expression. By loation here we mean aomplete indiation of the sope of the expression, whih is suÆient to om-pletely resolve the meaning of any identi�er that may our in that expression.An expression's loation is a 2-tuple of its plae and its environment.The plae denotes the lexial position within the soure text. The environ-ment denotes the mapping from identi�er-plae tuples to atual variables. Byatual variables, we mean ompletely resolved ompile-time meta-objets thatrepresent either a olletion of run-time bindings or a distint ompile-timebinding.To illustrate this terminology, onsider the following program fragment:

34

(lambda (x)
 (let ((y (foo x)))
 (cons x y)))

The retilinear ontours are a visualization of the plaes in this programfragment. The lambda introdues a new ontour for its argument. Likewise,the let introdues a ontour for its variable. This fragment, with plaes P1and P2, exerise the the following bindings:
hlambda; topi ! lambda-sfhx;P1i ! x-varhy;P2i ! y-var

Example 1Let us walk through an initial, simple example. This example does not illus-trate the more subtle e�ets when maros are involved; it just shows how thesystem works in the simple ase. This should make it lear that the orretresult is produed at least for ode that doesn't use maros.This simple proedure ons's the head of the �rst list onto the seondlist, for example, turning (a b) and (3 2 1) into (a 3 2 1):
(lambda (x y)(let ((z (ar x)))(ons z y)))

Initially, the plae is top and the envt onsists of (along with many
35

more like this): hlambda; topi ! lambda-sfhlet; topi ! let-sfhons; topi ! ons-tlvhar; topi ! ar-tlv
The -sf suÆx is a mnemoni to indiate meta-objets denoting spe-ial forms. Likewise, the -tlv suÆx is used to name top-level variables. Inthe atual implementation, these names orrespond to meta-objets whih aresublasses of <variable>. Eah speial form meta-objet has a ompile-timeproedure, its handler, assoiated with it, whih is responsible for implement-ing the semantis of the form. The handler is invoked to proess an ourreneof the form, and is provided with the omplete ompile-time environment.The meaning of the form (lambda ...) is determined by the meta-objet that is the meaning of the head part. That is, to ompute the meaningof a list struture, the meaning of the head position is omputed, and thenomputing the meaning for the entire form is delegated to the head's meaning.Computing the meaning of a symbol involves a double loop. The outerloop is over the nesting of the plae. That is, we start at the urrent plae, andif we an't �nd a binding in the environment for that plae, we try its outerontour until we run out of plaes to look. If we run out of plaes, the symbolis unbound in this plae, whih is an error7.Sine the urrent plae is top, we searh the envt (bottom to top) fora tuple hlambda; topi. In this ase, we �nd it { it is bound to the variable7In the atual implementation, giving up means that the symbol presumably refers to anas-yet unde�ned variable; i.e., it is a forward referene. We do not address those engineeringissues in this disussion, assuming that all variables are de�ned.

36

lambda-sf { so we return that as the meaning of the symbol lambda in theplae top.Now we return to the problem of determining the meaning of (lambda...), whose head means lambda-sf. The behavior of speial forms for om-puting ompositions is to invoke the speial form's handler, the ompile-timeproedure assoiated with the speial form for just this purpose. This pro-edure is one of the primary gateways from the main reursive ompilationdriver to speial-ase ode.The handler for lambda-sf parses the \lambda list" { the proedurearguments8. Having parsed the arguments, the lambda-sf handler onstruts anew ontour, sine it knows that its body is in a new sope, and the argumentsare bound in the environment with respet to the new plae. Call the newplae P. Then, in this ase, the handler adds:
hx;Pi ! x-varhy;Pi ! y-varto the end of the environment hain.The meta-objets x-var and y-var are ompile-time objets that repre-sent a olletion of storage loations at runtime.Having established the bindings, the meaning of the body, (let ...),is omputed in the new plae, P, and environment. As before, the struture isreognized as a list, and the head looked up. In this ase, the �rst iteration ofthe outer lookup { an attempt to loate hlet;Pi in the environment { fails, sothe outer plae, top, is heked and hlet; topi is found to be bound to let-sf .8How the lambda list is parsed is to use the internal pattern-mathing mehanism fromthe inside of the ompiler, sine the pattern mathing already knows how to expand patternvariables in pursuit of a math.

37

Example 2Let us take as a further example a more diÆult ase. In this ase, we de�nea maro and all it. However, we still do nothing very ompliated. In fat,this example ould be handled well with a syntati losures approah [6℄.
(lambda (temp x y)(let-syntax ((or (syntax-rules ()((_ a b)(let ((temp a))(if temptempb))))))(or (temp x)(temp y))))

In this example, the �rst argument to the proedure is intended to beanother proedure whih obtains the temperature value of an objet, or returns#f if the temperature is not known.As before, initially plae is top and the environment onsists of:
hlambda; topi ! lambda-sfhlet; topi ! let-sfhlet-syntax; topi ! let-syntax-sfhif; topi ! if-sfAgain, the proessing of lambda reates a new plae { all it Q { and extends

38

the environment with: htemp;Qi ! temp-var0hx;Qi ! x-varhy;Qi ! y-varNow, when the let-syntax form is proessed, the handler9 reates a plaeinside Q { all it R { and extends the environment with:
hor;Ri ! or-rules

Here, or-rules is a kind of speial form that aptures the syntax rules, theplae Q, and the environment up through the binding for y. (Note that if thishad been a letre-syntax form, the plae R would be aptured and heneits environment would inlude the or binding.)The determination of meaning for the body of the let-syntax is theusual. In this ase, when or is found in ontour R, its meaning is a syntatiabstration. The meaning of a list whose �rst element means a syntatiabstration is determined by �nding an appropriate expansion using patternmathing in the syntax rules.Here we have only one pattern, and it mathes. The result of �nding apattern math is that the urrent plae reverts to the plae of de�nition, andthen a new ontour (plae) is reated to represent the sope of the patternvariables. In this ase, this means we bind the identi�ers a and b to patternvariable objets that apture the soure text and plae. The environment itselfis not reverted.9Loated via the binding hlet-syntax; topi ! let-syntax-sf
39

Let us all the new plae S, in whih ase we bind:
ha; Si ! a-pvhb; Si ! b-pvwhere a-pv denotes the text (temp x) in plae R, and b-pv denotes the text(temp y) in plae R.We now ompute the meaning of the body of the mathed syntax rulein the so extended environment and in plae R. The let form is reognizedas usual.Notie at this point that we are omputing meanings as usual { thereis no expliit reognition that we are inside the body of a syntati template.It is during the omputation of the meaning of the initial value expres-sion for the let that we �rst enounter a pattern variable. That is, the lookupof ha; Si �nds a-pv . To ompute the meaning of a pattern variable, we omputethe meaning of its text in its plae of origin, in this ase (temp x) in R. Theenvironment hain is unhanged { it monotonially inreases with the depthof reursive ompilation and impliitly shrinks when a reursive ompilationexits.

40

At this point, the environment ontains:hlambda; topi ! lambda-sfhlet; topi ! let-sfhlet-syntax; topi ! let-syntax-sfhif; topi ! if-sfhtemp;Qi ! temp-var0hx;Qi ! x-varhy;Qi ! y-varhor;Ri ! or-rulesha; Si ! a-pvhb; Si ! b-pv
And the environment hain looks like:

Q
R

??������� S
__>>>>>>>

Sine (temp x) is a list, we ompute the meaning of the �rst element asusual. In this ase, there is no htemp;Ri, but we �nd htemp;Qi instead, whihis a regular variable that represents the �rst formal argument to the proedurewe're ompiling. Sine the meaning of the �rst element of the list is a regularprogram variable, the entire list must be a proedure all. Thus, the meaningof the remaining elements of the list are determined, and the meaning of theentire (temp x) is a ombination.This works for all ourrenes of this general style. In general, anybinding that is added to the environment from within the syntax rule has aplae attribute whih is di�erent from that of any other binding. Spei�ally,41

bindings reated inside the syntax rule are in plae S (or a desendant), andthus do not math a binding meant for plae R.Having omputed the meaning of the initial value expression for the letinside the syntax template, the let-sf handler reates a new ontour, T , andextends the environment with temp in T :
htemp;Ti ! temp-var1

Q
R

??������� S
__???????

T
OO

With this in plae, the identi�er temp inside the let body (i.e., in T)mathes htemp;Ti instead of htemp;Ri. The rest of the ompilation in thisexample proeeds similarly, obtaining the desired result.
Example 3Here we illustrate how the system operates in the presene of advertent ap-ture, and how it detets the impliit apture rule.
top: (lambda (n)P1: (let-syntax((for (syntax-rules ()((_ (var init limit) body ...)P3: (let loop ((var init))

42

P4: (if (< init limit)(beginbody ...(loop (+ var 1)))))))))P2: (for (i 0 n)(print i))))
To solve this problem, we revisit the observation made previously {that the speial forms use the internal pattern mathing mehanism to maththeir own arguments. In this ase, let uses the pattern mather to math itsarguments, and by doing so, obtains the expansion of var along with its plae.When let goes to bind var, the let atually binds i in the plae of all, sothe environment during the ompilation of body looks like:

hlambda; topi ! lambda-sf:::hn;P1i ! n-varhfor;P2i ! for-ruleshvar;P3i ! var-pv = hi;P2ihinit;P3i ! init-pv = h0;P2ihlimit;P3i ! limit-pv = hn;P2ihbody;P3i ! body-pv = h(print i);P2ihi;P2i ! i-var
Where the plaes are arranged so:

43

top
P1

OO

P2
<<zzzzzzzz P3

bbDDDDDDDD

P4
OO

Note that there is no need to bind hvar;P4i, beause any use of var inP4 expands into i in P2 anyway by virtue of its expansion.
Example 4This example illustrates the implementation of expliit intentional apture.Consider the following proedure de�nition that uses a loal maro imple-menting while, with the lexial plaes top, P1, ..., P7.This example uses the all/10 primitive of Sheme to implementnon-loal transfer of ontrol. The all/ proedure alls its argument (here,the lambda with body P6) with one value, whih is a proedure (here, boundto brk). A all to that proedure (brk) does not return, and instead ausesall/ to return. This kind of non-loal ontrol transfer is familiar to Cprogrammers as setjmp/longjmp.10Formally, all/ is all-with-urrent-ontinuation. The name is abbreviated forobvious reasons.

44

(lambda (str)

 (let-syntax ((while (syntax-rules ()

 ((_ expr body ...)

 (call/cc

 (lambda (brk)

 (let loop ()

 (if expr

 (let (((*WHERE body break) (brk)))

 body ...

 (loop)))))))))

 (let ((i 0))

 (while (< i (string-length str))

 (if (char=? (string-ref str i) #\,)

 (break))

 (set! i (+ i 1)))

 i)))

top

P1

P2

P3

P5

P6

P7

The ompilation of this form proeeds just as before, until the ompilergets to reating the binding for break. At this point, we introdue the *WHEREoperator. Its purpose is to signal the ompiler expliitly that a symbol is beingintentionally aptured. In this ase, the form (*WHERE body break) tells theompiler's binding faility to interpret the symbol break as if it had ome fromthe same plae as the value of the pattern variable body (i.e., from the allsite). As a result, during the proessing of the body of the inner let, we mighthave:
45

top
P1

OO

P2
<<zzzzzzzz P5

bbDDDDDDDD

P3
OO

P6
OO

P4
OO

P7
OO

And: hlambda; topi ! lambda-sf:::hlet; topi ! let-sfhstr;P1i ! str-varhwhile;P2i ! while-ruleshi;P3i ! i-varhexpr;P5i ! expr-pvhbody;P5i ! body-pvhbrk;P6i ! brk-varhbreak;P3i ! break-var
2.5.2 Reetion OperatorsAt this point, we are ready to introdue the remaining reetive operators thatare implemented and give examples of how to use them and when they are46

appropriate. We have already seen the use of the *WHERE operator (abbreviated\::" in RSheme, in analogy to C++'s soping operator, so that body::breakis equivalent to (*WHERE body break)).
AliasingFor purposes of aliasing (i.e., ensuring that two symbols in di�erent plaesrefer to the same objet), we introdue the let-alias form. For example,if the while that we had above required that break be available both in itsbody and in its expression argument (sine those are di�erent expressions) wewould use let-alias to ensure it the neessary dual availability:
(define-syntax while(syntax-rules ()((_ expr body ...)(all/(lambda (brk)(let loop ()(let ((body::break (brk)))(let-alias ((expr::break body::break))(if expr(beginbody ...(loop)))))))))))

Note that let-alias is simply a binding onstrut that does not reateany new meta-objets; it only re-links existing meta-objets under new namesor sopes. 47

Type-based Pattern MathingA powerful appliation of the interleaving of ompilation with maro expansionis type-based pattern mathing. This appliation gives us the ability to de�netype-polymorphi inline proedures, as is done in the mapping of primitiveoperations in RSheme to user aessible proedures.For example,
(define-syntax binary+(syntax-rules ()((_ (*IS x <fixnum> :onstant) (*IS y <fixnum> :onstant))(*EVAL (+ x y)))((_ (*IS x <fixnum>) (*IS y <fixnum>))(fixnum+ x y))((_ x (*IS y <fixnum> onstant))(let ((temp x))(if (fixnum? temp)(fixnum+ x y)(generi+ x y))))((_ x y)(generi+ x y))))

The *IS operator is used to reet on ompile-time type information andother attributes. In order to determine if a parameter mathes, the ompileris obliged to ompile the expression and determine its type. In general, thisis risky if the meta-system an have side-e�ets on the ompile-time state. Inthe urrent implementation, we leave it to the maro developer to be aware of
48

any suh issues. The *EVAL operator is used to evaluate ode at ompile time,whih here is used to atually do the work of the optimization.Another approah that was tried was to tentatively ompile the ar-gument, and reuse the resulting meaning as the pattern variable expansion.This approah has the disadvantage of not allowing the argument to appearin a di�erent environment (although if the argument appears in a di�erentenvironment in use, then the author needs to be aware of the possibility thatthe expression may exhibit di�erent attributes during use than during patternmathing!).Consider the following example of using synthesized attributes:
(define-syntax for(syntax-rules ()((_ (var(*IS init :side-effet-free)(*IS limit :side-effet-free))body ...)h implementation exploiting lak of side-e�ets in init and limit i)((_ (var init limit) body ...)h fallbak implementation i)))

This ability an be onsidered a simple kind of fat-based pattern math-ing, where the available fats are enoded by the type system and other a-essible properties of the ompile-time ontext. This ould be generalizedto manipulating arbitrary (and potentially domain-spei�) synthesized andinherited attributes, as is done in MMiMa by Krishnamurthi et al. [27℄.
49

Chapter 3
Extensible Parsing

3.1 Introdution
Implementors of onventional omputer languages have long been onernedwith the problem of parsing. Parsing is the proess of turning a linear stringof haraters representing a program into a strutured representation that isloser to the meaning of the program. Conventional languages, as we use theterm here, refers to languages whose syntax is derived from Algol. This familyinludes Pasal, C, and, more reently, Java and C#. From a syntati pointof view, these languages are in signi�ant ontrast to the Lisp family, in whihthe parse struture is oded expliitly by the programmer, making the job ofsyntax analysis trivial for a Lisp ompiler.In this hapter, we introdue the notion of extensible parsing. Extensibleparsing is a generalization of the traditional idea that the grammar, or syntax,of the language is �xed at language design time. Instead, the grammar anevolve as the proessing of a program takes plae. In many ways, the ability

50

to modify or extend the grammar during program proessing is analogous tothe de�nition of maros in a Lisp-like language. However, in a onventionallanguage, there is no manifest tree-like data struture on whih the marosmight operate.In this hapter, we give a simple implementation of an extensible parserthat is based on the reursive-desent parsing strategy. We are not onernedwith the performane of the extensible parser but instead use it to make on-rete the ideas we present as making up the extensible parsing framework.The main idea of extensible parsing is that the grammar is a data ob-jet to be manipulated at the runtime of the ompiler, muh as environmentand sope were manipulated in Chapter 2. However, the grammar is not ma-nipulated arbitrarily. Instead, we illustrate some ommon kinds of grammarhanges that behave in fairly regular ways. We all these regular patternsgrammar hange styles. The two major styles are top-level forms and nested,blok-like onstruts.Top-level forms tend to make grammar hanges that live beyond theourrene of the form itself. For example, in C a top-level form that de�nes anew type (i.e., a typedef) has a sope that extends to the end of the programunit. Blok-like onstruts, on the other hand, tend to support nesting andmake grammar hanges whose extent is ontained within the form itself. Forexample, a C while statement might introdue a new grammar rule that makesbreak a valid onstrut within its body.Although performane is not the main fous of this hapter, it is worthremarking upon the fous of muh of the researh into eÆient parsing teh-niques over the past 30 years or so. This researh primarily leverages o� the
51

fat that language grammar was �xed and known at ompiler design time.Sine the ompiler would be invoked many times for the one time that theompiler itself was ompiled, a large amount of proessing was warranted inproduing an eÆient ompiler. In the ase of the language grammar, thismeant that an almost arbitrary amount of work was justi�ed in onstrutinga parser that would be eÆient at runtime (i.e., when the ompiler ran, whihis to say, when it was ompiling some other program).The ommon omputer siene tehnique of moving omputation arossthe barrier between ompile time and run time was applied with exellent re-sults in the �eld of parsing tehniques. Typially, at build time, an abstrationof the workings of the parser would be onstruted and formed into a �nite-state automaton. The automaton would be enoded into parse tables thatwould be built into the ompiler as stati data strutures to be interpreted atruntime.However, sine omputers are roughly 1000 times faster than they werewhen muh of this researh took plae, and more and more time is beingspent in optimization phases instead of front-end proessing like parsing, thebene�ts of this body of language researh are less lear today. In partiular, if aonsiderable amount of expressive power or programmer exibility is availableat the expense of some parsing time, it seems a tradeo� well worth making.The usefulness and onsequent onstrution of a exible parser, at the ost ofpreproessing for eÆient runtime exeution, is the subjet of this hapter. InChapter 4, we return to the subjet of eÆieny and give an implementationthat maintains the exibility of extensible parsing but with improved eÆieny.

52

3.2 Bakground
Extensible parsing is not a new idea. Cardelli [9℄ uses lambda alulus as abase language and shows how it an be extended to support the embeddingof other languages suh as SQL. However, for Cardelli grammar hanges areglobal in sope, making the use of grammar hanges suitable only in ertainirumstanes.A theoretial framework for extensible parsing is available in the reentwork on adaptable grammars, suh as that of Shutt [35℄. However, as far aswe an tell, there is no implementation underlying this work.
3.2.1 What We Would Like to DoOur approah seeks to permit grammar hanges both with high frequenyand with loal sope. An example of grammar extensions using this approahwould be the while statement that introdues the break statement. In thisapproah, the while would reate a label that is the target of a goto generatedby the break. Furthermore, we would like for eah nested while statementof this kind to use unique labels. It therefore beomes neessary for grammarhanges to manipulate lexial sopes.In a longer perspetive, we imagine introduing rules for entire objetsystem extensions. This might involve �rst-lass representations of whole sub-grammar hanges that an be stored with the meta-objets for lasses. Forexample, this might be a means to allow the implementation of C++ as aolletion of syntati extensions on top of C.In essene, we are trying to obtain the bene�ts of Lisp and Shememaros for more traditional programming languages. Reall that Lisp and

53

Sheme maros manipulate a tree representation of the program rather than,for example, the token strings that are manipulated by C (pp) maros. Lisplanguages make use of a two-level grammar, where the �rst level parses tokenstreams into a tree representation. The seond level takes those trees as inputand generates abstrat syntax trees. Lisp and Sheme maros operate at theseond level, and the �rst level is �xed and trivial in struture. These two levelsare intermixed in ordinary programming languages, making it neessary tomodify the grammar to ahieve the e�et of Lisp maros. With this approahwe imagine being able to start with a small subset of Java and building up theentire language using syntati extensions.
3.2.2 Granularity of Grammar ChangesFor our approah to obtain maximum usefulness, we must allow grammarhanges on a very �ne granularity. In partiular, we must be able to parse theinput orresponding to one part of a grammar rule using a di�erent grammarfrom that used to parse the rest of the input. The grammar is represented bythe parse environment, whih is passed around and modi�ed in the parsingproess to ahieve the parsing of di�erent parts in di�erent environments.
3.2.3 Appliations of Our ApproahWith this approah, we an express non-ontext-free onstruts in a struturedway. An example of suh a non-ontext-free onstrut is C's while and break,as mentioned above.Another typial example is the typedef in C. In the traditional ap-proah, the tokenizer is pathed to reet a new lexial ategory for an identi-

54

�er, whih widens the interfae between the parser and sanner omponents.In our approah, we an handle this exlusively in the parser { we would intro-due a new grammar rule for type-name that impliitly re-ategorizes the newtype name. Beause the grammar understands the sope ontours of the lan-guage, suh a grammatial re-ategorization follows the normal soping rulesof the language (whih would be more diÆult to implement in the sanner,whih has no onept of language sope).
3.2.4 LimitationsLisp maros, by virtue of working on internal data strutures, are not limitedto any partiular order of inspetion of their parts. A grammatial approah,however, is. Tokens only beome available in a �xed, left-to-right, order.Hene, we would have diÆulty expressing grammatial onstruts suh asHaskell's where lause beause the variable delarations ome after the body.Likewise, Java's try/ath is problemati to proess syntatially beause theath modi�er omes after the body that it modi�es.Note that we an parse these onstruts, but we annot make use of�ne-grained grammar hanges to do so. Some kinds of grammar hanges arestill possible, but any hanges that involve the meaning values from the suÆxof the onstrut annot determine the grammatial struture of the pre�x.In any ase, a ompiler using our approah ould still perform traditionalmanipulations of the meaning strutures to implement the intended semantis.

55

3.3 Contour Sensitivity
While this approah has a muh greater expressive power than pure ontext-free grammar proessing, it is not as unstrutured as a general-purpose pro-gramming language for parsing. We extend the power of a traditional gram-matial framework without going to the extreme of a full programming lan-guage, whih gives arbitrary expressiveness with no grammatial struture.Sine we know of no other name for this kind of power, we hoose the name\ontour sensitivity" beause the onstruts are sensitive to the grammatialontours.
3.3.1 Major Styles of Environment PassingEven the power of ontour sensitivity might be too muh in some ases. Infat, we have only been able to distinguish two major usage patterns of ontoursensitivity in grammars.The �rst usage pattern is haraterized by �le-level global or forward-sope onstruts suh as Sheme's define and C's typedef. In this style,whih we all sequene style, language entities following the onstrut are allin the sope of the onstrut.The seond usage pattern is haraterized by loal sope, suh as Sheme'slet or C's blok-loal variables. In this style, whih we all blok style, onlyentities ontained in the onstrut are in its sope. (Notie, though, that loalvariables within a blok in C follow the �rst usage pattern, as in Sheme'slet*.)

56

3.3.2 General MehanismIn order to explain the general mehanism, we need some additional terminol-ogy. We assume the reader is familiar with basi parsing terminology.A rule maps a non-terminal to a sequene of terminals and non-terminals.A parser is a proedure { derived from a rule { whih implements theparsing of the input, reursively alling other parsers to reognize the non-terminals in the orresponding rule.The meaning is the result of ompiling an input string. Meanings areusually abstrat syntax trees but an have other representations suh as ode,or an even be values in the ase of a syntax-direted interpreter. Rules arethought of as produing a meaning as a omposition of the meanings of itsomponents. Terminals have appropriate elementary meanings orrespondingto onrete lexemes.A parse environment maps non-terminals to sequenes of parsers. Eahparser in the sequene orresponds to a rule for the non-terminal.A rule is used to parse input using an environment alled the inheritedenvironment. The result of suh a parse (if suessful) is the meaning as wellas another environment alled the synthesized environment.The top-level parse proedure has as arguments a non-terminal to beparsed and an environment in whih to interpret it. The parse proedurelooks up the non-terminal in the given environment, obtaining the assoiatedsequene of parsers. The top-level proedure alls the parsers in order withthe same environment until one sueeds.A parser, in turn, takes a parse environment and a sequene of tokens tobe parsed. The parser attempts to reognize an instane of the orresponding
57

rule at the beginning of the given sequene of tokens. If it sueeds, the parserpasses the remaining input sequene and a possibly modi�ed environment toits ontinuation.When a rule ontains a terminal, the orresponding parser simply heksthat the input sequene ontains that terminal. However, when a rule ontainsa non-terminal, the orresponding parser ontains a all to the top-level parseproedure. The parser at this point is free to pass an environment of its hoieto the top-level parse proedure. For example, in implementing while/breakas mentioned above, the parser assoiated with while, if invoked with envi-ronment E, would pass an environment E 0 to parse its body. E 0 would be Eaugmented with a parser that reognizes break as a statement.Similarly, a parser is free to use or ignore the parse environment re-turned by the reursive all to the top-level parse proedure. For example, inimplementing typedef, the parser that reognizes sequenes of top-level formspasses the synthesized parse environment from one form as the inherited parseenvironment to the next.
3.4 Implementing Contour Sensitivity
3.4.1 Frequent Grammar ChangesTraditional parsing methods use heavy preproessing of the grammar in orderto speed up runtime performane. Suh preproessing tehniques are appro-priate when the grammar is �xed and when parsing would otherwise be tooslow. Preproessing usually means onstruting some kind of automaton toreognize sequenes of input tokens and/or nonterminals.

58

As we have already disussed, we are targeting appliations that requirefrequent grammar hanges. Suh appliations naturally inlude embeddedlanguages suh as SQL statements in a C program. Often, however, eventhough a single soure language is involved, our approah an still be veryuseful. Traditional languages are usually desribed by ontext-free grammars,even though they are not atually ontext free.We have already mentioned typedefs in C where the interpretationof a sequene of tokens depends on whether an identi�er is a variable or atype. For instane, the token sequene x * y an be a variable delarationof y as a pointer if x is a type or an arithmeti multipliation expression if xis a variable. The traditional solution to this problem is to path the lexialanalyzer so that when a typedef has been seen, the orresponding identi�eris subsequently onsidered to be a type name and not a variable identi�er.We also mentioned the break statement in C whih is valid only insideloops. The usual solution to this problem is to always onsider break a state-ment and then to make a seond pass over the abstrat syntax tree and rejetits use in other ontexts.With our approah, suh simple ontext sensitivity is naturally ex-pressed within the framework of the grammar. Other examples inlude typeveri�ation of operands to operators, heking whether ertain expressions areompile-time omputable, and more.All of these examples require that frequent grammar hanges be handledeÆiently. That requirement exludes heavy preproessing of the grammar.Fortunately, parsing is now suh a small fration of language proessing thatthe total time remains small even with a substantial inrease in the time toparse the soure.
59

Preproessing of the grammar is not ompletely exluded. The methodof Heering, Klint, and Rekers preproesses the grammar inrementally [18℄.Suh an approah an be very eÆient and an adaptively adjust to the fre-queny of grammar hanges. That is, if grammar hanges are very frequent,then only the part of the automaton that is needed is preproessed. Otherwise,if grammar hanges are infrequent, parsing beomes faster over time as moreand more of the automaton is omputed.This researh is primarily onerned with the mehanisms and style forextensible parsing. The tradeo� between (possibly inremental) preproessingtime (and software omplexity) and parsing time for typial appliations is leftfor future work. Researh into the tradeo�s as applied to typial appliationsis ompliated by the fat that, sine few inremental grammars exist, thereis not a orpus of typial appliations to examine.For this hapter, we avoid disussing these tradeo�s and onentrateon a purely interpretive approah, whih unfortunately has poor worst-asebehavior. Even so, it performs well in pratie.
3.4.2 Simple InterpretationThe best way to minimize preproessing is to avoid it altogether. We thereforerepresent the grammar as a olletion of independent rules that are interpretedby the parser.The parser itself uses baktraking whenever it fails to reognize a se-quene of tokens. All possible rules for a nonterminal are tried in order untilone sueeds1.1Our ontinuation-passing parser annot handle left reursion (diret or indiret) andis not fully baktraking. However, it has no lookahead onstraint, so it is more restrited

60

Notie that for very deeply nested de�nitions, our parser an requireexponential time to reognize a sequene of tokens. A simple memoizationtrik ould be used to avoid suh behavior, but sine the purpose of this im-plementation is only to demonstrate the feasibility of our framework and notto have an extremely fast parser, we have not implemented suh optimiza-tions. Despite this extremely bad worst-ase behavior, the parser is atuallysuÆiently fast for most purposes.Furthermore, the parser desribed here has the same limitation as LLparsers in that it annot handle left reursion. We are urrently working onparsing tehniques that allow both fast parsing and the exibility required forfrequent grammar hanges. In Chapter 4 we disuss the adaptation of the morepowerful Earley [16℄ parsing algorithm to our environment passing framework.
3.5 Implementation of Continuation Passing

Parser
3.5.1 General DesriptionIn setion 3.3.2 we gave a general desription of the mehanism used to im-plement the parser. However, we deliberately did not expand on the atualmehanism for passing ontrol among the parsers. In this setion, we �ll inthe remaining aspets of the implementation.In general, our implementation uses expliit ontinuation passing, inwhih eah parser reeives two ontinuations, one for suess and one for fail-ure. Thus, our implementation baktraks over failures and tries new possi-than LL(1) but di�erently limited than LL(k) for any k.

61

bilities until it either fails at the top level or sueeds.
3.5.2 Representation of RulesSine grammar hanges are expeted to be frequent, our representation ofthe grammar is one for whih hange operations are heap. We also want arelatively high degree of interpretation relative to ompilation.We aomplish the goal of having inexpensive grammar hanges by rep-resenting alternative rules for a non-terminal as a simple list struture. Thelist ontains the names of non-terminals that are the onstituent rules. Thisindiretion through the name of the non-terminal is an essential part of ourmehanism.Notie that some trivial grammar transformations must be applied inorder to �t this representation. For example, onsider the following simplestatement grammar:

stmt ! \let" var \=" expr \;"stmt ! \{" stmtlist \}"stmt ! \print" expr \;"stmtlist ! �stmtlist ! stmt stmtlist
Eah alternative for the non-terminals stmt and stmtlist is broken outinto its own rule and given an arbitrary name. The non-terminal itself ismade into an alternative sequene onsisting of those onstituents. Hene, thegrammar is transformed into something like the following, where every entry

62

is either alternatives among non-terminals or a sequene of items.
stmt ! S1 j S2 j S3S1 ! \let" var \=" expr \;"S2 ! \{" stmtlist \}"S3 ! \print" expr \;"stmtlist ! L1 j L2L1 ! stmt stmtlistL2 ! �

Right-hand sides that are simply or-separated sequenes of non-terminalnames are represented as lists of those non-terminal names. These lists arethen interpreted by a speial alternative-parsing proedure.With this additional information, we an now desribe the ompletemehanism. The top-level parse proedure takes an input stream, a non-terminal to be parsed, an environment in whih to interpret the non-terminal,a suess ontinuation, and a failure ontinuation. All suess ontinuationsfollow the same protool. They take a meaning value, the remaining inputstream, and a possibly modi�ed environment.Similarly, all failure ontinuations follow a protool. They take a singleargument, the input stream at the point of failure. The urrent implementationdoes not take advantage of this information, but it ould be useful for errorreporting.The top-level parser proedure operates by looking up the non-terminalname in the given environment. This lookup ould yield either an elementary
63

parser or a list of alternative non-terminal names.In the ase of a list of alternative non-terminal names, the top-level parseproedure alls a speial alternative-parsing proedure. The arguments to thespeialized proedure are the input stream, the list of alternative non-terminalnames, the environment for interpreting them, the suess ontinuation andthe failure ontinuation. The speialized alternative-parsing proedure allsthe top-level parse proedure for eah alternative in the list, passing a failureontinuation whose e�et is to ontinue with the alternatives. Sine the suessontinuation is the same, when any alternative sueeds, the parse of the wholealternative sequene sueeds.If the lookup does not yield a list of alternative non-terminal names,it yields an elementary parser. In this ase, the elementary parser is alledwith the same arguments as the top-level parse proedure exept that no non-terminal is needed.A parser orresponding to a sequene of terminals and non-terminalsuses a protool dual to that of the alternative-parsing proedure. For anelement in the sequene that is a terminal, the parser simply heks that theinput stream ontains that terminal and alls the failure ontinuation if not.If the input stream does ontain the terminal, it simply ontinues with thenext element in the sequene and the rest of the input stream. For elementsin the sequene whih are non-terminals, the parser alls the top-level parseproedure, passing a suess ontinuation whose e�et is to ontinue with theelements in the sequene. The failure ontinuation is the same as given forthe whole parser, so when the parse of any element fails, the parse of thewhole sequene fails. Similarly, when a non-terminal parse sueeds, the inputstream from the suess ontinuation is used to ontinue parsing the sequene.
64

Sine eah suess ontinuation reeives a parse environment from thereursive all, at any point in the sequene multiple parse environments areavailable. Hene, the elementary parser an implement the appropriate gram-mar ontour by seleting the environment that implements the partiular on-tour. It an even ompute an entirely new environment if neessary.
3.5.3 Dynami Rule CompilationThere are two ways of generating elementary parsers. A hand-oded proedurethat follows the parser protool may be inserted into the grammar by hand,thereby bootstrapping the system. Alternatively, they may be generated fromgrammar rules onsisting of sequenes of terminals and non-terminals.
3.5.4 Major Styles in Terms of MehanismLet us now return to our two major ontour styles to explain how these stylesan be implemented in terms of the mehanism desribed in this setion. Reallthat the sequene style requires that modi�ations to the environment bevisible to sueeding language onstruts. This is easily implemented by anelementary parser that uses the environment of the suess ontinuation toparse the next element in the sequene. Thus, hanges to the environmentthat our during the parse of one element are visible during the parse of thenext element.Consider, for example, the following grammar fragment:

L! S L
whih might be part of a grammar for reognizing sequenes L of top-level

65

statements S. The reursive all to parse L would be handed the parse envi-ronment reeived by the suess ontinuation that was passed to the reursiveall to parse S. The parser for S would of ourse have to all its suessontinuation with an appropriately modi�ed environment.For blok style, modi�ations to the environment are ontained entirelywithin the sope of the onstrut. We implement this style by passing a mod-i�ed environment to the all to the top-level parser for the language onstrutrepresenting the body and then not using that environment any more.Consider, for example, the following grammar fragment for a whileonstrut:
W ! while E S

Here, E and S denote expression and statement onstituents, respe-tively. The reursive all to parse S would be given a parse environmentextended with the break onstrut. Neither this modi�ed environment northe one passed to the suess ontinuation of this reursive all would be usedagain. Sine the while statement is designed to have no non-loal e�et on theenvironment, it alls its suess ontinuation with the same parse environmentwith whih it was alled. Hene, it interats with a ontaining parser for state-ments using the sequene style of ontours by making no hange. Similarly, ifthe S part of the while ontains a sequene, non-loal modi�ations withinthat sequene would not be passed on to the suessor of the while. Thesetwo styles allow for a ombination of sequenes and bloks, where eah blokreates a new sope for a sequene within whih to operate.
66

3.5.5 ExamplesWe now present an example to illustrate the above points. In this example,we walk through the operation of the ontinuation-passing extensible parser,using a simple statement grammar similar to that desribed earlier, inludinga while statement that implements loop termination by extending the set ofvalid statements to inlude break.Several things are worth noting, as they limit the utility of this imple-mentation in pratie. First, this parser does not support full baktraking.That is, a parse deision in a loal area of the grammar may onsume inputwhih is later neessary to make some other parse work. Seond, the parsingativity is eager { it mathes longer pre�xes �rst.The latter shows up in the sample grammar in the rule for stmtlist. Theprodution L1 must our before L2, sine L2 mathes anything and henestmtlist is always empty.
{ let x = 5;while (p(x)) {if (x <= 0)break;x = f(x);}}

In this parse tree, for brevity we elide the non-terminals that denotealternatives, e.g., stmt and expr. Instead, the alternative that sueeds isshown. 67

Here is the omplete grammar we'll use for this example:2
stmt ! S1 j S2 j S3 j S4 j S5 j S6S1 ! \let" var \=" expr \;"S2 ! \{" stmtlist \}"S3 ! \print" expr \;"S4 ! \if" \(" expr \)" stmtS5 ! \while" \(" expr \)" �1 stmtS6 ! var \=" expr
expr ! testexpr j funallexpr j varexpr j literalexpr

stmtlist ! L1 j L2L1 ! stmt stmtlistL2 ! �
When the parse starts, the main parse proedure is invoked with stmt asthe goal non-terminal, the token string as input, the default environment whihontains the grammar and any global top-level variables, a suess proedurefor aepting the input, and a failure proedure to rejet the input.In the initial grammar, stmt is bound to a sequene of alternatives, S1,..., S6. For stmt, the main parse proedure dispathes to the alternative-list2Sine this is a reursive desent parser, the atual representation of the expr non-terminal has had its left reursion eliminated, a mehanial proess desribed by Aho et al. [1℄whih produes a lengthy grammar. For brevity, sine we are not onerned here withexpression parsing, we show expr in its unfatored form.68

parsing proedure, whih in turn attempts to parse S1, ..., S6 with the sameinput it was given, the same suess proedure, and a failure proedure thatgoes on to the next alternative.In this ase, S1 immediately fails when it tries to math \let". Thefailure proedure returns to the alternative-list proess to try the next one,i.e., S2.S2 starts by mathing the open brae, and then trying to parse a stmtlist,whih sueeds. In the proess of sueeding, the stmtlist breaks down into asequene of L1 nodes (one for eah statement parsed) with an L2 at the end,as shown here: S2
\{"

{{{{{{{{ L1 \}"
CCCCCCCC

�1
{{{{{{{{ L1
�2 L2

CCCCCCCC

where �1 is the let statement, and �2 is the while statement. As mentionedearlier, the behavior of the L1 elementary parser is to use the environmentpassed to the suess proedure as the environment for the remainder stmtlist.That is, �1 produes an environment that is its input environment aug-mented with a binding for the variable x, and the L1 parse that ontains �1passes that augmented environment along as ontext for the parse of �2. Thisis an example of the sequene grammar hange style as applied to the programenvironment (here it's not being used to hange the grammar per se, but theenvironment and grammar are kept together).
69

When it omes to parsing the while statement itself, whih is �2, weillustrate how blok-style grammar hanges take plae. In this ase, the parsetree looks like this:
�2
S5

\while"
kkkkkkkkkkkkkkkkkkk \("
xxxxxxxxx expr \)"

FFFFFFFFF S2
RRRRRRRRRRRRRRRRR

� \{"
{{{{{{{{ L1 \}"

CCCCCCCC

�1
|||||||| L1
�2 L2

BBBBBBBB

The elementary parser for S5 parses the �rst 4 items as usual but then passesan extended grammar to the stmt parse whih mathes S2 in this ase. Theextended grammar inludes a new statement non-terminal, Sw, and a rede�-nition of stmt whih inludes Sw. That is, in the extended environment, thegrammar inludes:
stmt ! Sw j S1 j S2 j S3 j S4 j S5 j S6Sw ! \break" \;"

Now when parsing the statements in the body of the while, e.g., �1,

70

the break statement is reognized and parsed, produing:
�1
S4

\if"
llllllllllllllllll \("
xxxxxxxxx expr \)"

FFFFFFFFF Sw
SSSSSSSSSSSSSSSSSSSS

\break" \;"
JJJJJJJJJJ

One the parse of �1 is omplete, the extended environment is disarded{ it is not passed to the suess proedure of S5 itself, sine it is not theintention of the while onstrut to manipulate the environment or grammarof a sequene in whih it ours.
3.5.6 PerformaneThe parser desribed in this hapter is intended to be an illustration of theapabilities of an environment-passing parser, and not an exemplar of per-formane. In fat, the parser desribed here is exponentially slow in someases. The implementation is only intended to illustrate an appliation of theframework and the general ideas of interpreted extensible parsing. Despiteits potential slowness, however, the implementation is simple enough that itperforms tolerably well in pratie. Some are in onstruting the grammarfor eÆient reursive-desent parsing leads to quite reasonable performane.

71

Chapter 4
Extensible Earley Parsing

4.1 Introdution
This hapter desribes the adaptation of a relatively eÆient parsing algo-rithm, that of Earley [16, 15℄, for the purpose of extensible parsing. TheEarley algorithm is essentially an interpreted version of a table-driven parser.However, the Earley algorithm an handle all ontext-free grammars, inlud-ing ambiguous ones, and it is relatively eÆient. In fat, even though theEarley algorithm is interpretive in nature, it ahieves omputational boundsommensurate with that of other parsers that do a lot of pre-ompilation.
4.2 Desription of Earley Parsing
Like an automaton built by a parser generator, the Earley parsing tehniqueworks by keeping trak of a set of rules that are in the proess of being re-ognized. However, instead of interpreting an abstration (i.e., an automaton)of the possible rules that might be reognized, the Earley tehnique traks the

72

atual, onrete rules that desribe the input seen so far.For example, the states of an LR parser represent the same set of par-tially reognized rules as an Earley parser does. However, an LR parser gener-ator pre-omputes the possible sets and the possible transitions between setsfor all valid inputs, while the Earley tehnique omputes the set at parse time.Computing the set at parse time is important for our purpose, sine we arehanging the grammar during the parse proess.A language is haraterized by its voabulary, whih is a set of symbolsused to desribe valid sentenes in the language. Terminal symbols are thosethat appear in a sentene, and non-terminals are those that are used in thegrammar to desribe the abstrat forms of the language.The grammar is a set of rules. Eah rule onsists of a non-terminal anda sequene of voabulary symbols. For example, a rule whih onsists of thenon-terminal N and the sequene of voabulary symbols a, B, , D is written:
N ! a B D

We use the onvention that lower ase letters denote terminals andupper ase letters denote non-terminals. We also use � to denote an emptyright-hand side.When desribing the state of a parse in progress, a rule is written witha dot in it to denote the urrent position of the parse ativity. This is alledan item. For example,
N ! a B � D

indiates a rule undergoing a math, wherein an a and a B have been reog-nized, and a is about to be reognized.73

4.2.1 StatesEah state of an Earley parse is an item together with a bak pointer whihrefers bak to the position in the input whih gave rise to the rule. In thedisussion about pure Earley parsing, we write states as illustrated by thisexample: hN ! a B � D; 3i (4.1)This denotes the state with rule N ! a B D, with the dot at position 2(i.e., with 2 elements to the left of the dot). In partiular, this state is sayingthat an a and a B have been reognized so far, and that a and a D must bereognized next in order for an N to be reognized. State 4.1 also has a bakpointer to position 3 in the input, whih means that the reognition of thisourrene of an N began at position 3 in the input.
4.2.2 State SetsEah position in the input (N+1 of them for an input of lengthN) is assoiatedwith a set of states. The set of states enodes both reursion and parallelism.The reursions orrespond to attempts to expand non-terminals in the right-hand side of a rule. The parallelism orresponds to the di�erent possibleexpansions for a partiular non-terminal.For example, in the following grammar:

pgm ! stmt pgmpgm ! �stmt ! ifstmtstmt ! allstmt
74

when a stmt is being reognized, there are two possibilities (ifstmt and all-stmt), whih are traked in parallel in di�erent subsets of the state set.
4.2.3 Initial ConditionsInitially, the state h� ! � S; 0i is the ontent of the state assoiated withposition 0. This state represents the irumstane that, initially, nothing hasyet been reognized, and the entire program (represented by the start symbolS) is about to be reognized.
4.2.4 ProessingProessing proeeds by, for eah suessive position in the input, iterating theoperations of ompletion and predition on a state set until a �xed point isreahed. Then the san operation is used to onstrut the initial ontents ofthe state set for the next position in the input1.In pseudo-ode, proessing works like:
ssa[0℄ = initial();i = 0;while(i < length(input))beginiterate(ssa[i℄; i);ssa[i+ 1℄ = san(ssa[i℄; input[i℄);i = i+ 1;end;1This desription orresponds to our implementation but di�ers slightly from Earley'sexplanation in that the next state is built while proessing the urrent state.

75

where ssa is the array of state sets and input is the array of input tokens.In this implementation, ss ats like an array for the purposes of iteration(that is, new entries are added to the end) and like a set for purposes ofdupliate elimination. With this in mind, one iteration step looks like:
proedure iterate(ss; i)k = 0;while(k < length(ss))beginss = ss [derived(ss[k℄; i);k = k + 1;end

When a valid input sentene of length n has been proessed, the ontents ofssa[n℄ ontain a state h� ! S �; 0i. This indiates that an entire S has beenreognized, starting at the beginning of the string. If a state of this form doesnot appear in ssa[n℄, then the input string was not a sentene in the language.Computing the derivatives of a state (the derived funtion) depends onwhat is to the right of the dot. There are three ases to onsider: (1) there is anon-terminal to the right of the dot, (2) there is a terminal to the right of thedot, and (3) there is nothing to the right of the dot. These are desribed indetail in the following setions. Note that ase (2) is not handled by derived;it is handled by the all to san in the main proessing loop.

76

4.2.5 PreditionPredition is an attempt to math a non-terminal, and ours when a statehas a non-terminal to the right of its dot. For example, onsider the state:
hN ! a � B D; 3i

This state represents a parse in progress in whih an a has just been seen, and aB is expeted. The proessing of this state within a state set (i.e., the behaviorof the iterate funtion on this state) introdues new states orresponding tothe possible expansions for B.In general, if A is the non-terminal to the right of the dot in a states and i is the urrent position in the input, then for eah rule r of the formA! �, the result of iterate ontains hA! ��; ii. Note that � ould be empty,in whih ase this new rule is ompletable within this state set. Furthermore,if � is empty, then we have to be areful to make sure that the ompletiondoes happen for the state s being proessed. Otherwise, it might our thatA ! � has already been introdued and ompleted within this state set onbehalf of some other non-terminal B. Dupliate elimination within ss wouldkeep s from proessing the ompletion of B. We handle this as a speial aseof a predition that results in an �-rule state that is already in the state set.
proedure predit(s)A = s:next;result = ;;for r inG(A)result = result [hr; ki;return result;

77

end
where k is the input position orresponding to the urrent state, and G(A)denotes the lookup of the non-terminal symbol A in the grammar G, whihreturns a list of rules. s:next is the symbol after the dot in s.
4.2.6 SanningSanning is the proess of mathing a token in the input string, and ourswhen a state has a terminal to the right of its dot. Sanning is the means forinitializing the ontents of the state set orresponding to the next position inthe input stream. Suessful sanning advanes the dot past a terminal, andorresponds to onsuming an input token.To san a state s,

s = hN ! �1 � a �2; ji
provided that a appears next in the input, then the state set for the next inputposition inludes: s0 = hN ! �1 a � �2; ji
proedure san(ss; token)beginresult = ;;for s in ssif s:next 2 Tandmath(s:next; token) thenresult = result [s0;

78

return result;end
where T is the set of terminal symbols, and s0 is the same as s but with theposition of the dot advaned by one.
4.2.7 CompletionCompletion is analogous to redution in a traditional parser. A state an beompleted when an item has its dot to the right; that is, there is nothing afterthe dot.Unlike redution in a traditional parser, in Earley parsing meanings(e.g., abstrat syntax trees) are not omputed during ompletion. Instead,the parser maintains a reord of the ompletions that took plae during pars-ing and when parsing is omplete, that reord is analyzed to onstrut theorresponding meaning. The reason for this delayed approah to omputingmeaning is to maintain polynomial omplexity bounds in the fae of ambiguousgrammars. That is, sine Earley an parse sentenes using an ambiguous gram-mar, omputing the meaning during the parse an lead to a state explosionwhih would degrade Earley's asymptoti omplexity results to exponentialinstead of O(n3).To ompute the derivative states of a ompletable state s, where:

s = hN ! � �; ji
ssa[j℄ is examined to determine whih states led to state s. In partiular, thestates leading to s are those states in ssa[j℄ with an N to the right of the dot79

beause those reated the predition that we are now ompleting. For eahstate in ssa[j℄ of the form:
hM ! �1 � N �2;mi

the derived set of s inludes hM ! �1N � �2;mi. Note that �2 ould be empty,in whih ase another ompletion takes plae, for M this time.Thus, ompletion of a state s is the proess whereby the dot is advanedpast a non-terminal in some other state m. The state m is in the state setorresponding to the input position referred to by the bak pointer of state s.
4.2.8 Relationship to Tomita ParsingThe Tomita [40℄ approah to parsing is worth mentioning beause it sharesthe ability of the Earley parser to parse sentenes using arbitrary ontext-free grammars and uses a similar parallel approah. However, a Tomita styleparser reates expliitly parallel parsers when an unertainty is enountered.However, to avoid exponential blowup, a Tomita parser must then go throughextra work to join together di�erent forked parsers that reah the same pointin parsing through di�erent paths.The Earley approah is generally equivalent to the Tomita approah ifthe expliitly parallel parsers are regarded as being implemented using user-level threads with light-weight state and a speialized thread sheduler whihadvanes eah thread in lok-step with the input stream. The bak pointersin the state link together the \stak" of ativations of the thread.

80

4.3 Advantages to the Earley Approah
4.3.1 FlexibilityOne of the main advantages of the Earley approah to parsing is that it grae-fully handles arbitrary ontext-free grammars. Traditional wisdom is thatlarge lasses of grammars an be onverted into a onvenient anonial formsuh as LR or LL. However, this anonializing onversion often distorts theresulting onrete tree, whih makes it diÆult to ompose meanings.For example, onsider the following grammar G for array referenes:

E ! E \[" E \℄"E ! id
This an be onverted into LL form using the tehniques desribed inAho et al. [1℄. Doing so results in a grammar G0:

E ! id E'E' ! \[" E \℄" E'E' ! �
However, when presented with the sentene x[y℄, grammars G and G0behave very di�erently. G0 generates the parse tree shown in Figure 4.1.Sine E 0 is not an expression { in fat, it has no orrespondene tothe onstruts in the language { it is diÆult to assoiate a meaning with itthat orresponds to some semantis of the language. In order to make useof grammar G0, an arti�ial meaning must be assigned to E 0. This arti�ialmeaning must then be taken apart in order to build the orret meaning forthe expression E. 81

E

E'

E'

x]y[ε

idid

Figure 4.1: Parse tree for x[y℄ with grammar G0.
As a onsequene, the meaning omputations inG0 must break apart themeanings of their onstituent parts. On the other hand, if G ould have beenparsed diretly, its meaning omputations would be simple ompositions oftheir parts, eah with a diret orrespondene to the semantis of the language.Furthermore, many tehniques for produing eÆient parsers for statigrammars rely on being able to ompute global properties of the grammar. Forexample, token lookahead sets are one of the �rst triks for improving parsereÆieny, and the omputation involves the entire grammar. This is diÆultto do when the grammar keeps hanging, as in an extensible language.

4.3.2 ExtensibilityAs mentioned previously (.f. 4.2), an Earley parser expliitly proesses therules of a ontext-free grammar in its original form. This makes the parsereasy to extend, beause it is lear what needs to happen when a grammarhange takes plae { the grammar representation is simply updated. Thereis no additional proessing neessary, sine the parser operates on a diretrepresentation of the grammar.
82

An Earley parser an also be thought of as proessing multiple an-didate parses in parallel. We an ahieve soped, loal grammar hanges byaugmenting the states of these parses with a parse environment that ontainsthe grammar. Hene, the parser an be parsing multiple grammars at one.Consider, for example, the following grammar:
A ! a B bA ! a �1 B

In this example, the interpretation of B depends on what follows it2. That is,a B followed by a is to be interpreted under the inuene of grammar hange�1. The Earley parser would normally introdue two states to orrespondto the two ative possibilities:
hA ! � a B b; kihA ! � a B ; ki

If the grammar augments Earley parsing state, then it's lear how this anwork:
hA ! � a B b; k; GihA ! � a B ; k;�1(G)iwhere �1(G) denotes the inuene of the grammar hange on the originalgrammar G.2Doing this a lot in a language an make it very diÆult to read, beause you an'tunderstand a program in a straightforward left-to-right manner. However, several languageshave some avor of this when it omes to exeptional ases, spei�ally beause they wantto keep the thinking for exeptional ases out of the way of the normal ase. In any ase,it's interesting that an extensible Earley parser an handle this!83

Cardelli's [9℄ mehanism for syntati extension at the surfae grammarlevel operates at a global level. Our approah makes possible loal and sopedhanges to the grammar.So, our approah adds a parse environment to the state whih inludesthe grammar. In addition, sine we do not want to run bak over the parsestates to build a parse tree, and we aren't worried about parsing ambiguousgrammars, we ollet the meanings in the parse states as well. Hene, ourstates look like: hN ! a B � D; 3; h�0; �1i; �iwhih denote the same states as in (4.1) but with aumulated meaningsh�0; �1i and in environment �.The meaning sequene h�0; �1i is exatly as long as the position of thedot, and its elements are in orrespondene with the voabulary symbols tothe left of the dot. In this example, �0 is the meaning resulting from the parseof a and �1 is the meaning resulting from the parse of B.
4.3.3 UnderstandabilityThe Earley parsing approah is a straightforward implementation of a parserfor general ontext-free grammars. A straightforward implementation makessystem development, debugging, and maintenane more ost e�etive. Fur-thermore, despite the diret implementation, an Earley parser is not ineÆientin the ommon ase. Before Earley, generi parsers for ontext-free grammarswere somewhat less eÆient even when operating on unambiguous grammars.

84

4.3.4 ComplexityThe theoretial (asymptoti) omplexity of the Earley approah is not bad, andit is dependent on the lass of grammar on whih it is operating. Aordingto Earley [16℄, the algorithm is O(n3) in the worst ase. For unambiguousgrammars, an O(n2) bound is obtained.Indeed, for many pratial language grammars, it appears that O(n)performane is expeted. The latter lass of grammars are those for whih thesize of the state set does not grow with the length of the input string. Earleyalls these grammars bounded state grammars. Furthermore, bounded stategrammars inlude most LR(k) grammars as well.
4.4 Drawbaks to the Earley Approah
4.4.1 ExpressivenessIf we weren't onerned about the issue of programmer extensibility, then onedrawbak to the Earley approah is that it may be too general. That is, most ofits exibility is wasted beause it seems that many kinds of grammar hanges{ indeed, the most strutured and hene most understandable ones { haveno greater expressive power than stati ontext-free grammars. This is truebeause the dynami grammar an be onverted into an equivalent (althoughsomewhat larger) stati grammar by appropriate sub-grammar expansions andsubstitutions3.However, we take the position that a grammar expressed as a dynami3Although we did not work out the theoretial details of this proess, a few asualtranslations suggested that the proess is similar in spirit to how non-deterministi �niteautomata are onverted into equivalent deterministi automata.

85

grammar is more lear and natural. For example, taking the example of whileand break, it is somewhat learer to de�ne statements in general and expressthe exeption ase that break is a valid kind of statement inside a while body.The alternative is to explain that there are two sets of statements { those insidewhile and those not { and that the two sets are the same exept that breakis in one set and not the other. This isn't a diÆult fatoring problem if thenew kind of thing (break in this ase) were only allowed diretly inside thewhile. If that were the ase, the programmer ould simply write:
stmt ! while \(" h :expri \)"\{" honseq :while stmt listi \}"while stmt list ! in while stmt while stmt listwhile stmt list ! �in while stmt ! stmtin while stmt ! \break" \;"

However, a break statement is allowed inside another statement in the bodyof the while, for example, an if statement. With some statements using sub-statements as onstituents, the entire stmt sub-grammar has to be repliatedand translated to aount for the addition of the break statement. This ex-plosion, whih multiplies with eah statement with this property, is why statisemantis as a ompiler onstrution tehnique is so widely aepted.
4.4.2 PerformaneAlthough the theoretial performane (asymptoti omplexity) of the Ear-ley approah is good, espeially onsidering its exibility, the pratial per-

86

formane is less impressive. In pratie, the performane su�ers from thediÆulties of all interpreters; systems that make heavy use of ompile-timeinformation (and ompile-time stati knowledge) to build eÆient parsers anahieve better performane than those that don't. For example, the yaparser generator spends a relatively large amount of time preproessing thegrammar in order to build a struture that is very fast to interpret at runtime.An Earley parser does not utilize preomputation of this sort, and hene itmust reompute the same kinds of information at parse time, inurring thattime ost for eah program ompiled.Despite somewhat less eÆieny than a parser like ya, an Earleyparser an ahieve suÆient performane for pratial purposes. Our imple-mentation written in C parses a 600-line Java program in about 44ms on an866MHz Pentium III. Considering the exibility that this approah enjoys,this seems plenty fast for prodution use.
4.5 Extensibility
4.5.1 Sope IssuesAn extensible parser an be thought of as dealing with multiple stati gram-mars. Eah grammar hange reates a new grammar for parsing a portion ofthe input program. The sope issue to be resolved is determining in whihgrammar a partiular non-terminal being reognized is to be interpreted.The sope of a grammar hange is the set of non-terminal symbols overwhih the hange applies4.4Sine we use a onventional separate lexial sanner, we don't allow hanges to thelexial analyzer and hene an take the meaning of terminal symbols as �xed and global.

87

What does sope look like in an Earley parser?The same sope issues that arise in hygieni maro expansion ome up inextensible parsing, and we show how those issues are addressed.However, when the grammar is no longer a stati entity, an additionalsope issue arises, whih is: What is the sope of a hange to the grammar?An example of the sope issue is in the parsing of something like Java's whilestatement where break is a valid statement inside while but not elsewhere.The sope of the grammar hange that makes break a valid statement shouldonly be the body of the while, not its expression part and not statements thatfollow the while.The usual approah for handling this sort of onstrut is to make breakbe a valid statement in all ontexts and then to hek the stati semantis ofthe program after parsing is omplete or using parse-time attributes (in fat,there is a whole disipline for de�ning stati semantis [42℄.)Our approah uses the ability to extend the grammar during parsing.When a while statement is enountered, the rule for the statement an makea hange to the grammar for the duration of the parsing of its body. Thishange is the extension of the set of valid statements to inlude break.
Hygiene in an Earley parserGrammar hanges in our approah have dynami extent and inde�nite sope.In this respet they are like speial variables in Lisp. A grammar rule anywheremay make use of a grammar hange as long as the hange is still ative.Future work should look at relaxing this restrition { there is some suggestion that withsome optimizations for the purpose, sanning ould take plae in the grammar itself!

88

4.6 Our Implementation
We have two implementations of an extensible Earley parser. One is writtenin Sheme and is used for testing new ideas and validating onepts. Theother is written in C and is intended primarily for benhmarking, so that theinterpretive overhead of the Sheme implementation doesn't overshadow theatual performane of the parser.The Sheme implementation is designed for exibility and not for speed.As a test bed for onepts, it is more onvenient to work out how a feature anbe implemented in a highly dynami environment suh as Sheme than in apedanti, low-level environment like C. This implementation does not engage inany of the performane optimizations desribed later5. The C implementation,by ontrast, is tuned for performane. It uses standard systems programmingoptimizations to implement the algorithm eÆiently.
4.6.1 DetailsLiteral EquivaleneIn our urrent implementation, we do nothing speial to handle literal equiv-alene. Literal equivalene for identi�er tokens is determined by equivaleneof their haraters. As a result, we get a kind of ontext-sensitive keyworddetermination. An identi�er plays the role of a syntati keyword if it oursat a plae where one is expeted.5The Sheme implementation does employ the optimization desribed in setion 4.8.2,pruning states using FIRST. This optimization is only beause we wanted to exerise theFIRST-pruning optimization in the test bed before implementing it in the low-level imple-mentation. We also use the Sheme implementation to preompute the FIRST sets whengrammars are being preompiled.

89

Note that this behavior, ombined with poor programmer pratie, anlead to programs that are diÆult to read. PL/I, for example, exhibits thiskind of ontext-sensitive keyword identi�ation [20℄. Consider:
if(x) = then + then; (1)if(x) = then + then then; (2)

In this example, (1) is an assignment of the sum \then+then" to the array\if", and (2) is a test of the value x against the sum \then+then". To mitigatethis problem, we implement keywords as distinguished entities, but they aresoped to the grammar hange module whih introdues them.
DisambiguationOur implementation omputes meaning as the parse progresses, instead of in apost-pass as traditional Earley parsing does. To prevent an explosion of states,we use a disambiguating rule to ollapse ambiguous ases. This is disussedmore fully in setion 4.8.1.
4.6.2 Meta-syntaxThe notation we use is essentially standard BNF (e.g., see Aho et al. [1℄).Ourrenes of voabulary elements on the right-hand side of a rule are givenvariable names to represent the meaning for the orresponding parsed inputelement during the omputation of the meaning for the whole rule6. For amore omplete explanation of our meta-syntax, see Setion 5.8.For a simple example, a rule for an if statement might be:6These variable names play the same role as the $k variables in the ation part of yagrammar rules.

90

ifstmt ! if (h :expri) honseq :stmti else halt :stmti
The typographial distintions herein whih signal di�erent roles foridenti�ers, suh as between if and ifstmt, are written in the meta-syntax withquotes. Other speial symbols are entered using existing operator symbolssuh as <, > and :. The above rule might be written in our meta-syntax as:

ifstmt = "if" "(" <:expr> ")"<onseq:stmt>"else" <alt:stmt>
This de�nes a rule alled ifstmt, whih begins with a syntati literal(if), followed by an expression in parentheses, followed by a statement(onseq), followed by another syntati literal (else), with another statementalt at the end.It is neessary in this implementation to use existing operator symbolsbeause the tokenizer is not integrated with the parser. This implies thattokenization is not an extensible faility in this implementation. Hene, allmeta-syntati notation must either use the existing tokens of the languagebeing implemented or add new tokens to the language globally. In general, wedo not want to hange the lexial struture of the base language, so existingtoken forms are used to express meta-syntati forms.Future work inludes the inorporation of an extensible sanner. Theability to extend the lexial struture in a loal and soped way makes ertainkinds of language extensions muh more natural and eliminate the neessityto use existing tokens in meta-syntati forms. It should also allow user ex-tensions to the language to speify new lexial ategories.

91

4.6.3 Meaning ComputationBeause we are ompiling and not just reognizing, we have to assoiate ameaning with grammar rules. We implement two ways of omputing a newmeaning; a primitive, proedural meaning funtion, and a reursive ompila-tion to produe new meaning.The following de�nition for the traditional if statement illustrates thenotation used in this disussion:
ifstmt ! if (h :expri) honseq :stmtielse halt :stmti)makeif(; onseq; alt)
In this example, the non-terminal is ifstmt, the pattern is:

if (h :expri) honseq :stmti else halt :stmti
where , onseq, and alt are pattern variables. The expression for omputingthe meaning is: makeif(; onseq; alt)This example also illustrates using an extra-grammatial funtion, makeif,to ompute the overall meaning of the omplete ifstmt. Taking as argumentsthe appropriate pattern variables, makeif builds, using the failities of theunderlying metalanguage, a omplete meaning value.The simple funtional form of this meaning omputation is what wemean by omposition of meaning. That is, the new meaning is omposed fromthe old (lower-level) meanings.Sine the parser is itself a mehanism for omputing meanings, the se-ond approah simply reuses that mehanism. In this ase, the replaement text92

and a grammatial type is handed bak to the parser/ompiler in a reursivesub-parse:
ifstmt ! if (h :expri) honseq :stmtistmt=) [[if () onseq else f g ℄℄

Here, the meaning for a single-branh if (i.e., an if statement withoutan alternative part) is determined by omputing the meaning for the programfragment given in double-brakets. The portion inside the double-brakets isreferred to as the template. The template, muh like a quasiquote form inLisp, ats like a token string with holes. In this ase, the token string denotesa full two-branh if.The holes are �lled in with parts taken from the original form. In thisexample, and onseq are pattern variables and denote the meanings resultingfrom the parse of an expr and a stmt. When these tokens are enounteredduring the parse, the meaning obtained during the parse of the left-hand sideis immediately substituted, and it is as if the prodution were omplete.Note that this is essentially the same approah used in ompiling withSheme maros, exept that the meanings of the onstituent parts are deter-mined by the pattern rather than by their use in the template or body part.Reall that in Sheme maros, the ourrene of a pattern variable in a tem-plate represents the parse tree for the orresponding part of the input, oupledwith a ompile-time environment to protet hygiene. In our parsing approah,the pattern variable denotes a omplete meaning, suh as an abstrat syntaxtree. The assignment of meaning during pattern reognition is neessary, orat least onvenient, beause there are no other syntati ues to guide a surfae
93

parse of an ourrene of the maro. In Sheme, by ontrast, the parenthetiallist representation is a simple syntax whih requires no knowledge of marosor meanings to build trees out of soure text.One onsequene of this approah is that grammar hanges that onlybeome apparent during the parse of the right-hand side (the replaement text)are not known during the parse of the left-hand side (the ourrene text).One environmental interation that omes up in extensible parsing butdoesn't manifest in Sheme maro proessing is the delaration of the surfaesyntati types of the arguments. For example, in a pattern delaration:
forstmt ! for hv :vari = he :expri ...

var is a kind of variable referene in the pattern that does not manifest inSheme maro proessing, i.e., it is a referene to a non-terminal name. InSheme maros, there are no names given to syntati roles in a pattern. Thatis, there are no pattern abstrations in Sheme maros.Furthermore, the meaning of the identi�er var should be determined inthe environment of use, even though it ours in the environment of de�nition.Thus, for example, the user an hange the syntax of expr. That hange isvisible and used by any rule whih uses expr in its pattern, even if the rulehas no knowledge of the possibility that expr has hanged.However, the template is interpreted in the environment of de�nition,preventing loal hanges to the grammar from a�eting the syntati interpre-tation of the template7. For example, let us suppose that in addition to theif statement mentioned previously there is a onstrut, with, whih adds a7This is like the seond part of the hygiene ondition; referenes (impliit in the syntationstrution) in the template should not be aptured by bindings other than those presentat the point of maro de�nition.
94

new kind of expression, it, to the grammar:
withstmt ! with (he :expri) �1[hbody :stmti ℄

where �1 represents a grammar hange whose sope is the braket-delimitedportion of the rule and whose e�et is to add the symbol it to the alternativesfor expr.Now onsider an input program fragment suh as:
with (foo())if (it)print(it);

The with establishes a new kind of expr whih onsists of the symbolit. Even though the ifstmt rule was written with no knowledge of the futurewithstmt rule the ourrene of expr in ifstmt should onsider it to be a validexpression. This is true even though the ourrene of expr in the patternifstmt is well outside the stati sope of the hange made by �1.Hene, although we annot impliitly arry a grammar hange from theright-hand side (template) into the left-hand side (pattern) of a translationrule, we an isolate produtions that make use of a non-terminal N from theloal e�ets of rede�ning N .
4.6.4 PerformanePratial measurements have been made of Earley parsing in the ontext of im-proving its performane using preomputation approahes [30℄. Unfortunately,sine that work did not give the implementation of unmodi�ed Earley, it is

95

diÆult to draw onlusions about the general performane of the unmodi�edEarley approah.Our implementation is designed from the start to be fast, sine one ofour points is that the Earley approah is not prohibitively expensive. Our Cimplementation uses traditional performane-improving tehniques suh as in-lining, as well as arefully hosen data struture representations. Furthermore,sine modern ompilers spend muh more time in optimization and other bak-end proessing than in front-end proessing like parsing, if the parser is a bitslower beause it is ompletely interpretive (as in Earley), the overall systemost is still not prohibitive.We don't have a large body of language implementations designed tobe extensible. Therefore, in order to understand the performane impliationsof our extensible grammar approah, we made a pessimisti estimation of thefrequeny of grammar hanges. In partiular, we assumed that a grammarhange ould take plae at every input token.This analysis leads us to the natural advantage of the Earley parsingtehnique. Sine Earley parsing is essentially an interpretive proess, there isno proessing of any grammar hanges required in order to start reognizingagainst a modi�ed grammar. Thus, even if grammar hanges are extraordi-narily frequent, performane is essentially unhanged.Even in the absene of any grammar hanges, performane is tolerablein pratie. As mentioned previously, without any grammar hanges (i.e., witha ompletely stati grammar), our C parser implementation parses a 600-lineJava program (2777 tokens) in about 44ms on an 866MHz Pentium III.

96

4.7 Literal Equivalene
Sheme maros have the ability to speify pattern elements that must mathliterally. Sine this is most often useful for identi�ers (for example, else),the question arises as to how to distinguish identi�ers that denote patternvariables from identi�ers that are keywords. Sheme answers this by having thedeveloper provide an expliit list of identi�ers along with the syntax de�nition.The identi�ers in the list are then onsidered literals in the patterns ratherthan pattern variables.Furthermore, in Sheme, these syntati literals are soped, meaningthat the determination of literal equivalene takes into aount the normalsoping of the language. The syntati literals are not reserved words, and theidenti�ers may be rebound, leading to new meanings (and hene a failure tomath in the pattern).In Sheme, the ond speial form an be implemented using a maro.To do so requires the use of a soped syntati literal for reognizing the elselause orretly. The following de�nition of ond illustrates the idea:
(define-syntax ond(syntax-rules (else)((_ (test body ...) lause ...)(if test(begin body ...)(ond lause ...)))((_)#f)((_ (else body ...))

97

(begin body ...))))
Here, else is a syntati keyword and is therefore delared expliitly in thesyntax-rules lause.The soped nature of the else keyword is illustrated by the followingexample:
(let ((else #f)(never #f))(ond(never 0)(else 1)))

If the ourrene of else were interpreted as referring to the syntatikeyword, this program fragment would evaluate to 1. Instead, the loal bindingof else shadows its meaning as a syntati keyword so that its ourrenedenotes the usual variable referene instead, and hene this program fragmentevaluates to #f instead.In an extensible parsing ontext, it is also neessary to speify syntatiliterals. In a Sheme system, there are only a few speial ases where syntatiliterals are required. The else lause in a ond is one of just a few examples.However, in parsing traditional languages, syntati literals are used to re-ognize essentially all onstruts. Syntati literals are the keywords of thelanguage, suh as if and while, and introdue most statements8.8It appears that statements are usually introdued by suh distinguished keywords partlyfor omputation and partly for omprehension reasons. Computationally, any parser hasan easier time if it an reognize the kind of onstrut it is parsing as soon as possible.Reursive desent parsers, a mainstay of hand-onstruted parser tehniques, rely on thisearly reognition of onstruts. It also seems that the same priniple applies in the ognitive
98

How does the system determine whether or not a syntati literal mathesa partiular token in the input? There are two basi approahes to making thatdetermination. The �rst, more traditional approah, marks ertain identi�ersas speial reserved words. The seond approah allows literal equivalene tobe a loal property of an identi�er.In the traditional reserved-word approah, any ourrene of somethingthat looks like an identi�er but is made up of a partiular harater sequeneis regarded as a di�erent lass of token { an instane of a reserved word. Forexample, while may look somewhat like an identi�er, but its atual ontentauses it to be lassi�ed by the sanner as a reserved word, or, more generally, asyntati literal. In this way, sine the lexeme is never regarded as an identi�er,there is no onfusion between identi�ers and reserved words. Keywords arenot even onsidered identi�ers by the lexial analyzer; their speial roles aredetermined and assigned during lexial analysis and are �xed and global in thelanguage. This approah has the advantage of larity { there is no ambiguityabout the syntati role of while.However, this approah fails when the language is to be extended dy-namially, beause the author of a partiular module annot know what syn-tati literals are going to be used by some other extension to the language{ the global nature of reserved words breaks the modularity of the languagesystem. Hene, an extensible language system must support a means to sopesyntati literals to their textual regions of relevane and avoid inueningother textual regions of the program.This seond approah makes literal equivalene a loal property of anproess; it is simply easier for humans to read a program when a left-to-right san revealsthe struture of the program in a top-down manner. Standard mathematial expressiongrammars are an interesting ounterexample.
99

identi�er, determined by it ontext of ourrene. We aomplish this bymaking the lexial analyzer extensible in exatly one dimension: the set ofidenti�ers that are interpreted as syntati keywords is assoiated with theurrent grammar.One sope has been introdued to manage the modularity of syntatiliterals, another question arises: How is a syntati literal in a pattern deter-mined to math a syntati literal in the input? This is the same question asapplies to program variables { how is a referene to a program variable knownto refer to one partiular delared variable or another. To reall the examplefor program variables, onsider the simple ase:
int foo(int x){ print(x);if (x == 0) {int x = 9;print(x);}}
The seond ourrene of a referene to the program variable x learly refersto the seond delaration { the mehanisms of lexial sope ensure this byproperly managing the ompile-time ontext.The problem is the same for syntati literals but realls the approah ofSheme where syntati keywords are lexially interpreted as identi�ers. Dur-ing ompilation, these keywords are reognized as being \bound" to syntatimarkers like else and inluding speial forms like if and let.100

4.8 Improvements to Basi Earley
In addition to using Earley as the ore algorithm for reating an extensibleparser, we have made some simple hanges that simplify parsing and improveperformane without signi�antly impairing the inrementally extensible ben-e�ts.
4.8.1 Conit resolutionIn the presene of an ambiguous grammar, the general Earley algorithm anreturn all parse trees for a given input string. This an be done with no extraspae ost in a reognizer. However, a parser that builds meaning during theparse an require exponential spae to enode the meanings of all the di�erentparse trees. In pratial language design, it is useful to have a simple rulefor eliminating ambiguities loally, that is, as soon as an ambiguous parse isdeteted in the input.We have developed an approah for resolving onits between alter-native possible rule redutions that is simple to understand and trivial toimplement. In our approah, we attempt to resolve onits eagerly. Conitsarise when parsing an ambiguous phrase, so essentially we resolve the ambigu-ity as soon as the onit is deteted. The disambiguation rule we adopt is topreserve the earlier rule in the grammar and disard the later rule. This hasthe advantage of being easy to understand and fully deterministi.This is atually quite easy to do by implementing the parser to be rule-order preserving. That is, by evolving the Earley states in an ordered fashion,we know that in an Earley state ontaining two oniting ompletions, theompletions are proessed in exatly the same order in whih they were added

101

as a result of the predition whih introdued them. Coniting ompletionsare those that are for the same non-terminal and are overing the same sub-string of input, that is, their predited-from pointers are to the same state.Then, we simply ensure that the preditions are introdued in the same or-der as the ourrene of their rules in the grammar. We keep only the �rstoniting ompletion, and the user has an easy-to-understand model for theresolution of onits in parsing.
4.8.2 Pruning states using FIRSTObservation of the operation of the the Earley-based parser indiates thatmany tuples are introdued that are dropped in the transition to the nextstate (i.e., reading the next input token). For our 2777-token Java program,without FIRST pruning, there are 1225560 tuples reated, ompared to 618620if pruning is done. Commensurate with this gain, overall parser running timeis almost ut in half (86ms versus 44ms).Even better, these tuples an not be introdued at all by initially veri-fying that the sueeding input token is not in the FIRST set9 of a dotted ruleto be predited. This way, no predition sueeds that does not lead to a rulethat mathes the next token of input.
4.8.3 Approximating FIRSTUnfortunately, it is relatively expensive to ompute the FIRST set beauseit is a global property of a grammar and would in priniple need to be re-omputed whenever the grammar hanges. Part of the diÆulty lies in empty9See Aho et al. [1℄ for a desription of the FIRST set.

102

(�) rules; you an't simply reursively expand the left-hand non-terminal { ifa non-terminal an expand into nothing, the FIRST omputation has to hekthe next grammar element in the rule, too.However, it turns out that an easy-to-ompute approximation of FIRSTgets most of the bene�t. In fat, the numbers ited above are based on usingthis approximation. The approximation is to punt on epsilon produtions andassume they an math anything. In the usual omputation of FIRST, anepsilon prodution auses the invoking rule ontext to hek the next gram-mar element for its FIRST. In our approximation, the FIRST of an epsilonprodution is de�ned to be the universal set. This is a onservative estimateof the real FIRST but makes the sope of the omputation muh more loaland hene easier to reompute.

103

Chapter 5
Compiler Extension Framework
In the last hapter, we introdued a ompiler built using the Earley algorithmas the ore engine. Prior to that, in Chapter 2, we introdued the themeof extensible programming as a disipline with supporting tehnology fromthe language framework, spei�ally in the ontext of Lisp systems. In thishapter, we bring these onepts together and show how a few additionalapabilities in an extensible ompiler an bring the full power of the extensibleprogramming disipline to bear in a onventional syntax.
5.1 Capabilities of Extension Framework
The additional apabilities we wish to add are:

� Delarative, pattern-based transformations
� Transformations based on synthesized attributes
� Arbitrary proedural mehanisms to produe ode

104

5.1.1 Delarative, Pattern-Based TransformationA delarative, pattern-based transformation is a pair onsisting of a targetlanguage pattern and a template for the translation expressed in a reduedform of the target language. The restrition on the form of the template isto prevent inde�nite reursion of transformation; as a matter of pratie, thepattern is onstruted to math a \high level" language onstrut, and thetemplate makes use of only lower level onstruts.Using pattern-based transformations, a language system developer aneasily de�ne a translation from one set of language features into another. Thisapability is important beause many language features are easily understoodin terms of simpler, more primitive features. Indeed, new language features areoften de�ned for the programmer in terms of existing features. For example,the \+=" operator is often de�ned in terms of the existing \+" and \="operators.
5.1.2 Pattern Mathing Synthesized AttributesSine the result of parsing is to produe meaning values, and parsing takesplae while trying to math a pattern in a pattern-based transformation, thereis additional opportunity to inlude attributes of the meaning in the patternmathing proess. Thus, the transformation an math synthesized attributesin the elements of the pattern part.Transformations based on synthesized attributes extend the apabili-ties of delarative, pattern-based transformations by letting patterns mathon omputed properties of the onstituent parts. For example, a formattingproedure like printf an be expanded at ompile-time if the format string is

105

a ompile-time onstant. The property of an expression being a ompile-timeonstant is a synthesized attribute of an expression.
5.1.3 Proedural Code-Prodution MehanismsArbitrary proedural mehanisms to produe ode are the ultimate fall-bakfor the language system developer. This is the esape hath when the delara-tive, pattern-based transformations are too weak, and the problem annot beexpressed loally in terms of synthesized attributes. Proedural mehanismsare also how a language system is bootstrapped, sine in order to begin, thelanguage system must be expressed in terms of some other available language.
5.2 Elements of an Extension Framework
Supporting the target language is the eventual purpose of a language system. Itis in the target language that end users express the solutions to their problems.In the lexion of layering, the target language is the interfae at the top of thelayer. An extensible parser requires two languages in order to be useful. First,there must be a language whih an desribe the syntax of the new feature.Beause this onstitutes a syntax for desribing syntax, it is alledmeta-syntax.Seond, there must be a language for desribing how to ompute the meaning(e.g., intermediate ode) for the new feature.The meta-language provides the means to implement the target lan-guage. In terms of layering, it is the means by whih the layer itself an beimplemented. In the ontext of this work, we say that the meta-language isthe language used to express the omputation of meaning.106

An extensible parser requires some notation to de�ne the syntax of thetarget language and to assoiate parsing ativity with ations expressed inthe meta-language. This notation is the meta-syntax, and it ontains as asub-language the meta-language.Parsing is the proess of applying the rules of the urrent grammar toidentify target language elements (as de�ned using meta-syntax) in the inputsequene of tokens. Compiling is parsing plus the invoation of the ationswritten in the meta-language to produe a meaning for the target languageelement (usually some form of intermediate ode).
5.3 Implementation
To ahieve the desired apabilities, our approah involves extending the Earleyparser desribed in the previous hapter with several features. The followingfeatures are added:� Meta-language: a notation for expressing the omposition of interme-diate ode, possibly employing reursive ompilation, pattern variables,and the results of in-line omputation� Loal grammar hanges: the ability to parse some parts of a rule usinga di�erent or modi�ed grammar� In-line omputation: the ability to exeute meta-language ode duringthe parse before the ompletion of a rule
5.3.1 Meta-languageThe meta-language inludes the following features:107

� Syntax evaluation: the ability to translate syntax from the intermediateode ompiled from meta-syntax to the internal representation used bythe parser
� Reursive ompilation: the invoation of the ompiler as part of an ationomputation (i.e., from the meta-language) to ompile new strings oftokens into intermediate ode
� Pattern variables: the ability to referene the non-terminals of a produ-tion's right-hand side from within a reursive ompilation

For ease in developing the meta-language itself, we use a bootstrappingproess to make the power of the extensible ompiler available for implement-ing the meta-language. Sine we laim that this approah is valuable in thedevelopment of language systems, what better (or �rst) system to whih toapply the approah than the system's meta-language!The bootstrapping proeeds in three phases:(1) The initial grammar is not expressed in meta-syntax notation at all.Instead, the initial grammar is expressed using the intermediate ode to whihthe meta-syntax normally ompiles and whih the parser onsumes. This isneessary beause initially there is no grammar with whih to parse meta-syntax. The grammar de�ned in this phase is for meta-syntax and is limitedto just enough to express what is needed in the next phase. In our implemen-tation, the initial grammar ompiles most of the meta-syntax part but verylittle of the meta-language. This initial grammar laks in-line omputation inthe meta-syntax and has only variable referenes, literals, and funtion allsin the meta-language.
108

(2) With basi meta-syntax in plae and a suÆient meta-language,we an now extend the initial grammar using meta-syntax instead of hard-oded syntati intermediate ode. In this phase, we extend the meta-syntaxgrammar to inlude in-line omputation and extend the meta-language to in-lude assignment statements, basi onditionals (if), blok onstruts, andthe primitives used for doing on-the-y grammar hanges (syntax).(3) Having most funtionality in plae, we esh out the grammar tomake it fully featured. Here, we write while in terms of if and goto, addone-branh if, and provide other onveniene statements and expressions.
5.3.2 Syntax EvaluationSyntax evaluation is the proess of turning meta-syntati intermediate odeinto the data strutures that drive the atual parser. The meta-syntatiintermediate ode is the meaning omputed by parsing the meta-syntax.The interpreted nature of Earley makes this proess very straightfor-ward for us, ompared to what would be neessary for a table-driven LALRparser. This fat is due to the inherent similarity between the data struturesof an Earley parser and the representation of the meta-syntax.We also use this evaluation proess to support some onveniene nota-tions in the meta-syntax. We support repetition, optional parts, and alter-natives, as illustrated in Figure 5.1, where A and B denote pattern subparts.

In support of extending the basi syntax with onveniene notations, thesyntax evaluation proess turns the extensions into the attened representationexpeted by Earley. For example:
109

repetition A*optional part [A℄alternative forms A j BFigure 5.1: Extensions to basi meta-syntax.
S ! \(" A * \)" = f($2)

is transformed into:
S ! \(" T1 \)" = f($2)T1 !A T1 = ons($1,$2)T1 ! � = '()

where T1 is a newly generated non-terminal1. The ations assoiated with theT1 rules have the e�et of building the meaning of A* as a list of A meanings.Similarly, the optional onstrut [A℄ produes a meaning whih is eitherthe false value in the meta-language or the meaning of A. The alternativeonstrut AjB produes a meaning whih is the meaning of the subpart thatmathed.
5.3.3 Reursive CompilationThe ability to reursively invoke the parser is presented as a proedure in themeta-language, ompile, whih aepts a non-terminal name, a token string,and an optional set of pattern variable bindings2.1The name T1 is atually formed from the name of A by appending a star, whihis neessary to allow the extension author aess to the entire repetition onstrut. Anexample of this is in the next hapter.2The very name of this proedure, ompile, shows our perspetive { this operation isone to produe intermediate ode, and is not merely determining syntatial struture.

110

Reursive ompilation is mostly ahieved simply by following the en-gineering pratie of avoiding global variables. With that, the parser initial-ization proedure is re�ned to allow a parse to start at a non-terminal otherthan the grammar's start symbol. As Earley parsing was originally de�ned,the grammar ontains a distinguished entry point, � (see Setion 4.2.3). Sup-porting reursive ompilation then redues to building an appropriate � ruleon demand.Now when trying to parse a token string L with respet to a non-terminal A, the framework builds an initial state h�k ! � A; 0i where k isnewly generated3. The parser then runs with L as input. In the �nal state, ifL is a valid ourrene of A, then there is a tuple h�k ! A �; 0i, the meaningfor whih is the value of the reursive ompilation.
5.3.4 Pattern VariablesThe meta-language needs a way to refer to the meanings that have been builtup by ompiling the elements of a pattern. Some systems use numerial vari-ables (e.g., see YACC [21℄), others use symboli variables (e.g., see the workof Cardelli et al. [9℄.) Sine the audiene of our meta-syntax is fairly broad,we believe symboli names are the better hoie. These variables are used intwo ways { they are the variables used in the meta-language for omposingnew meaning, and they are referened in delarative translations.We do not extend the parser per se to implement symboli patternvariables. Instead, in the proess of ompiling the meta-language into an3In fat, we don't even need to generate a new symbol { we simply build a new anonymous<prodution> objet, whih ahieves the e�et of having de�ned a new non-terminal. Sinethe � name never appears on the right-hand side of any rule, the prodution does not needa name.

111

exeutable representation suitable for the runtime environment of the ompiler,the ompiler maps the positional syntati parameters to the symboli names.For example, in Figure 5.2, the ation part is ompiled into a representationlike:
(lambda (ignore s)(ompile 'stmt '...))

whih the runtime environment alls with arguments that are the meaning ofthe twie identi�er token and the stmt, respetively. The meaning of theidenti�er is disarded beause it is not assigned a name in the prodution.The parser is extended to reognize when a pattern variable is beingused in a token string. The parser substitutes the assoiated meaning valuewhen it enounters an identi�er whih is bound to a meaning in the syntatienvironment. To implement this, the environment struture in the parserinludes a pattern variable symbol table. The value of a symbol is a meaningvalue and a non-terminal name. When the parser is prediting hN ! � � A�i,it heks to see if the next input token is an identi�er whose name ours inthe pattern variable symbol table and whih was generated by parsing an A.If this happens, the meaning is appended to the tuple, and hN ! � A � �iis put into the next parse state, just as if an atual A had been parsed out ofthe input at that point.Taking Figure 5.2 as an example, s is a pattern variable that gets boundto the meaning resulting from parsing the stmt that follows the \twie" key-word. In the reursive ompilation, the body of the blok is expeting a stmt,so the ourrene of s mathes and the stmt prodution is ompleted. This isrepeated again for the seond ourrene of s.
112

twie_stmt= "twie" <s:stmt>== ompile(:stmt, [[{ s s } ℄℄);
Figure 5.2: The twie statement, illustrating pattern variables and substitu-tion onformane.

In our language for desribing language extensions, a rule is omprised ofa three parts. The �rst part is a non-terminal name (e.g., twie stmt) followedby an equals sign (\="). The seond part is a sequene of elements whih areto make up an ourrene of the form (e.g., the keyword twie and a stmt)followed by a double-equals sign (\=="). The third part is the expression whihis to ompute the meaning of the form from its onstituents (e.g., an invoationof the ompile operator). Inside the third part (the meaning expression), abare olon (\:") introdues a symbol in the meta-language (e.g., :stmt), anddouble-brakets (\[[" ... \℄℄") enlose a string of tokens whih are to bereursively ompiled. This notation is desribed more fully in Setion 5.8.Note that there is no \;" after the s, whih looks a little strange to theasual observer. However, this follows from the expansion of the blok formand the fat that s is a statement. Figure 5.3 shows how the blok expansionworks out to the level of the s, whih mathes the stmt non-terminal.In some ases, non-terminals are organized into some kind of meaninghierarhy. In fat, to express preedene in this kind of grammar, it is ommonto see very deep hierarhies4. For example, a primary is a valid expr. In this4Our Java grammar has 21 levels of nesting from expr to identi�er. In a ase like this,pre-proessing the grammar, as is done in most ompiler generators, an greatly improve
113

blok
\{"

sssssssssss stmtlist \}"
NNNNNNNNNNNN

stmt
ssssssssss stmtlist

s stmt stmtlist
NNNNNNNNNNN

s
Figure 5.3: Parse tree for translation of the twie statement.

ase, something parsed as an primary ould be used where a expr is expeted.See Figure 5.4 for an example. In our implementation, this inheritane happensautomatially beause the Earley parser keeps expanding expr in the urrentparse state until it gets to primary, at whih point it mathes the patternvariable e.
5.3.5 Loal Grammar ChangesNormally, the parser uses the environment of a tuple for resolving grammarlookups (reall that a parse tuple has an assoiated grammar environment). Aloal grammar hange is an operator whih tells the parser to use a di�erentenvironment for parsing a partiular non-terminal in a pattern. The meta-syntax for a loal grammar hange pattern part looks like:performane. Pre-proessing wins beause (1) expr is a very ommon grammatial element,and (2) a single identi�er is a very ommon expr. Our interpreted approah frequentlyexpands 21 non-terminals just to disover that x is an expression!

114

expr = "getter" <e:primary>== ompile(:expr, [[lambda () e ℄℄)
expr

\lambda"
iiiiiiiiiiiiiiiiiii \("

uuuuuuuuuu arglist \)"
IIIIIIIIII expr

UUUUUUUUUUUUUUUUUUUU

onditional
add

�

�

�

mult
primary

�

�

�

e
Figure 5.4: Parse tree illustrating how a primary gets used as an expr.

< pv : nt : ev >
where pv is the name of the pattern variable to bind the resulting meaning, ntis the non-terminal to parse, and ev is the name of the variable whih ontainsthe environment in whih parse nt (and the grammar in whih to �nd nt itself).The ev is either a rule loal variable (Setion 5.3.6) or the global nameof a syntax module (Setion 5.7). For example, <q:query:sql_syntax> in apattern means to parse the non-terminal query as found in the sql syntaxmodule and to use the name q to refer to the resulting meaning within thisrule. 115

5.3.6 In-line ComputationTo support omplex omputations to build environments for use in grammarhanges, we introdue the ability to do omputation in-line with the parsing ofthe right-hand-side5. This allows a single environment to be used for severaldistint non-terminals.In a generalization of pattern variables, the meta-language supportsvariables that are loal to the prodution. These variables are used to storeenvironments built by in-line omputations for use in grammar hange opera-tions. As an example of using this feature to extend the syntax environmentbefore proessing a subsequent phrase, take:
stmt= "foo" { enew = extend(envt, ...); }<s:stmt:enew>== s;

The funtion extend is exposed to the meta-language for the purposeof building new environments (see Setion 5.6.3.)
5.4 Delarative Transformations
The general strategy for supporting delarative transformations was presentedin the previous hapter. To apply this strategy, our meta-language inludes aliteral onstant notation for a sequene of tokens. Suh a literal onstant istypially used to supply the argument to a reursive ompilation, as in:5This is not a new onept. YACC [21℄ supports the same thing, although in that systemthis feature is not used to ompute new grammars on the y!

116

x_stmt= "if" "(" <e:expr> ")" <t:x_stmt>== ompile(:x_stmt, [[if (e) t else {} ℄℄);
The ompile meta-language operator takes two arguments { a non-terminal of the grammar, and a token sequene. It returns the meaning ofthe token sequene when ompiled as the given non-terminal. ompile isnot a plain proedure, beause it reets on the sope of the meta-languageexpression. That is, it arranges for the token sequene to be ompiled in anenvironment that inludes the pattern variables present in the right-hand sideof the syntati de�nition. For example, in the above de�nition for x stmt,the use of ompile inludes an environment that binds e to the result ofompiling the expr and t to the result of ompiling the x stmt. This notationis similar to that of Cardelli [9℄, apart from some details of meta-syntax.With delarative transformation and the other meta-programming toolsin hand, we an realize the full implementation of while in terms of if andgoto, with break de�ned loally for the body. Figure 5.5 shows how while isexpressed for the meta-language as it appears in the third phase of bootstrap-ping.

5.5 Synthesized Attributes
Beause we have an expressive meta-language, the ation assoiated with agiven prodution an do arbitrary analysis on the meaning of the patternvariables. However, there is no way to selet one of several otherwise ambigu-ous mathes depending on that analysis. We introdue the onept of syntax

117

x_while= "while" "(" <e:expr> ")"{ loop = gensym();e2 = extend(envt,syntax(x_stmt = break_stmt;),syntax(break_stmt= "break" ";"== ompile(:x_stmt,[[return loop;℄℄);));}<s:x_stmt:e2>== ompile(:x_stmt,[[loop: if (e) { s goto loop; } ℄℄);
Figure 5.5: De�nition of while for the meta-language using extensible syntaxfeatures.
guards to enable this ability. The meta-syntax for this feature is a meta-language expression preeded by \/;" and loated before the ation part. Forexample, onsider the following simple optimization implemented in the gram-mar using a guard to hek if an operand is zero:
sum= <e1:expr> "+" <e2:expr>/; zeroq(e2) /* hek for always-0 right operand */== e1;

Our system implements this by arranging for a speial meaning value tobe returned as the meaning when the guard expression fails. When ompletionproessing enounters the speial value, it disards the entire tuple.
118

5.6 Proedural Code Prodution
The standard library of the meta-language provides several failities that areused to proedurally produe ode. Prinipally, these failities provide aessto the mahinery of the ompiler and the objets of intermediate ode. For ourpurposes, we use the RSheme runtime system as the exeution environmentfor the meta-language, although the meta-language syntax is loser to that ofJava.
5.6.1 Token SequenesIn this meta-language, we use Sheme data strutures to represent ompile-time objets. A token is a pair, and a sequene of tokens is a list. Sine theunderlying meta-language is Sheme, all of the list management funtions areavailable for building and destruturing token sequenes.
5.6.2 CompilationThe funtion ompile in ats like the ompile operator but takes an expliitenvironment and a set of pattern variables and their meanings as an argument.Apart from being the underlying implementation of ompile, this is used when�ner ontrol over the environment is required.
5.6.3 Environments and SyntaxThe extend funtion takes a syntax environment and a set of syntax rules andreturns a new, extended environment. The syntax rules are produed usingthe syntax speial form, whih wraps a meta-syntax form. For example,

119

syntax(stmt = new_stmt;)
is an expression whih produes syntax intermediate ode, suitable for use inextending an environment. This an then be used to extend an environmentlike so:

extend(envt, syntax(stmt = new_stmt;))
5.6.4 ReetionThe literal funtion takes an objet of the meta-language and returns theintermediate ode for an expression whose e�et is to produe a orrespondingobjet in the target language. How objets in the meta language translate totarget objets is determined by the adaption to the target language within theextensible ompiler framework, whih is overed in Chapter 6 for Java as atarget language.
5.7 Modular Syntax
Our approah supports modularizing syntax, muh as in the voabularies de-sribed by Krishnamurthi [26℄. In our system, we use syntax modules toseparate out the meta-syntax (and its assoiated meta-language syntax) fromthe target language syntax. A syntax module is realized as a named syntatienvironment, so a module an make use of another module by using the gram-mar hange operator to referene the target module and a non-terminal in it.For example, the gateway between a target language in our urrent systemand the meta-syntax might be expressed like so:

120

del= "syntax" <u:unit:meta_syntax>== apply(extend, envt, u);
One onsequene of this modularization is to distinguish keywords fromdi�erent sub-languages. For example, the module meta syntax might use asa keyword the identi�er \to", whih is not a keyword in the target language.This is desirable beause some sub-languages de�ne a lot of keywords thatwould pollute the parent language. For example, SQL uses keywords heavily,and reserving those words in a C target language would be prohibitive. Ourmodularity approah enables the designer to support an SQL extension failitywithout dragging all of the SQL keywords into the target language:

expr= "sql" <q:query:sql_syntax>== list(:sql_gateway, q);
5.8 Full Meta-syntax
In this setion we give a more omplete desription of the syntax and seman-tis of our meta-syntax, inluding the embedded meta-language. To desribethe meta-syntax of our system as a Java extension framework, we use fairlystandard extended BNF notation. In this desription, a prodution is writtenas a non-terminal, followed by an arrow, followed by a sequene of elements.Eah element is either:

� a non-terminal name, suh as foo,
121

decl
 = "syntax" <u:unit:meta_sx>
 == extend(envt,u)

expr
 = "sql" <q:query:sql_sx>
 == list(:sql_escape,q)

target_sx

unit = ...

query = ...
sql_sx

meta_sx

Figure 5.6: Syntax modules being used to ontain sub-languages.
� a referene to a ategory of tokens, suh as id,
� a literal token, written in quotes, suh as \foo" or \=", or
� an element followed by *, suh as foo�, to denote zero or more ourrenesof the element foo.

For example,
expr ! expr \." id

is a laim that one possible form for the grammatial element expr is an exprfollowed by a literal \." token, followed by an identi�er. This is a left-reursiverule beause the non-terminal being de�ned ours as the �rst element in theright-hand side of the prodution. For desribing our system's meta-syntax, weonly need to de�ne two token ategories: id for identi�er tokens and stringfor string tokens. The desription of the meta-language requires the additionaltoken ategories int for integer literals and num for other numeri literals.122

5.8.1 Syntax DelarationsIn this setion we desribe the top-level struture of a syntati delarationin our extended Java implementation. The basi form is that of a syntatiextension loal to a �le, whih is introdued using the keyword syntax.
java tl del ! \syntax" syntax dels java tl del

A syntati extension plays the role of a top-level delaration, and on-veys to the following delaration an environment extended with the newlyde�ned syntax. The same idea applies if the syntax is being imported from anseparate �le:
java tl del ! \import" \syntax" name \;" java tl del

This form auses a named syntati delaration in the �le indiated by nameto be imported and supplied to the remaining java tl del forms. The �le isloated aording to the usual rules of Java pakage naming.Syntax delarations themselves are enlosed in braes:
syntax dels ! \{" syntax del� \}"

Eah delaration onsists of a non-terminal name (id) and one or more\|"-separated syntax-rules that denote alternative produtions for the non-terminal:
syntax del ! id \=" syntax rules \;"syntax rules ! syntax rulesyntax rules ! syntax rule \|" syntax rules

123

5.8.2 Syntax RulesAs seen above, eah non-terminal is assoiated with a set of syntax rules thatde�ne the valid expansions of that non-terminal. In the general ase, a singlesyntax rule is a sequene of syntax pattern elements followed by a rule ation:
syntax rule ! pat elem� rule ation

A shorthand notation is provided for the ommon ase that one non-terminal is valid in the plae of another:
syntax rule ! id

This would be used, for example, to write that a blok is a kind of stmt :
stmt = blok;

This delaration states that anywhere a stmt is expeted, a blok an besupplied. Of ourse, the kind of meaning (e.g., intermediate ode) built byblok would have to be ompatible with the kind of meaning expeted byusers of stmt.
5.8.3 Syntax Pattern ElementsSyntax pattern elements de�ne the right-hand side of a grammar rule. The pat-tern elements speify what onstitutes a valid ourrene of the non-terminalbeing de�ned.

124

Primitive Pattern ElementsThe two most basi kinds of pattern elements are tokens (terminal symbols)and non-terminal identi�ers:
pat elem ! pat tokenpat elem ! pat nt

A token pattern is represented as a literal string, whih mathes thesame token on input. It is an error if the string does not san as exatly onetoken.
pat token ! string

For example,break_stmt = "break" ";"is part of a syntax delaration for break stmt, with a syntax rule pattern listthat ontains two pattern elements. Eah of the two pattern elements mathesa literal token. The �rst token must be the identi�er break and the seondtoken must be the semiolon delimiter \;".
Composite Pattern ElementsThe other basi kind of pattern element is a binding onstrut, whih is usedto bind a syntax variable to the meaning from a onstituent pattern element:

pat elem ! pat bindpat bind ! \<" id \:" pat elem \>"
(See also Setion 5.8.6 for another pat bind form)125

We also allow the syntax author some onveniene notations in de�ningthe syntax pattern. The following pat op element is used to de�ne repeatingand optional syntati patterns:pat elem ! pat oppat op ! \(" pat elem� \)" pat opodepat opode ! *"pat opode ! \?"The opode * denotes zero or more ourrenes of the pat elem sequene. Themeaning that is onstruted at parse time for a * onstrut is a list of themeanings of eah ourrene. For example, onsider the following fragment:blok_stmt = "{" <body:(stmt)*> "}"The meaning bound to the syntax variable body is strutured as a listof lists, eah item of the outer list representing one ourrene of the patternsequene (stmt), and eah inner list being of length 1, the single item beingthe meaning of the stmt ourrene. For example, when presented with the in-put { a=1; b=2; }, the variable body is the struture hhM(a=1)i; hM(b=2)iiwhere M(x) denotes the meaning resulting from ompiling x.The opode \?" auses the pattern sequene to math zero or one o-urrene. The resulting meaning is either #f (the unique false value in themeta-language's underlying interpreter) if no ourrene was mathed or a listof the meanings of the pattern elements. Consider, for example:if_stmt = "if" <e:expr> "then" <t:stmt> <f:["else" stmt ℄>Here, f takes on either a 2-item list value hM(else);M(stmt)i or #f, depend-ing upon whether the else lause was mathed in the input or not.126

In addition to the post�x \?" operator, an optional element sequenean also be written using the standard [� � � ℄ notation:
pat elem ! pat optpat opt ! \[" pat elem� \℄"

5.8.4 AtionsThe meta-syntax ontains as a sub-language the meta-language, whih de�nesthe ations and expressions used to ompute the meaning resulting from aparse math. The simplest arrangement is that the ation is an expression inthe meta-language, whih is to be evaluated when the prodution is ompletedin the Earley parser:
rule ation ! \==" x expr

The x expr is evaluated with respet to any variables bound by pat bindpattern elements.Sine the meta-language uses Sheme as its underlying interpreter, aspeial expression is de�ned to make Sheme symbol values denotable usingJava's lexial rules:
x expr ! \:" id

The \:" is used to introdue a meta-language literal symbol value. For exam-ple, :stmt is a meta-language expression whih evaluates to the symbol stmtin the underlying interpreter. Similarly, some global variables are de�ned tohold other well-known Sheme values.
127

Meta-language Variable Equivalent Sheme Expressionnil '()true #tfalse #f
Token SequenesIn order to perform a reursive ompilation, a meta-language proedure needsto have a token string to ompile. Token strings are entered as literal objetsdelimited with double square-brakets. Coneptually, a token sequene is atoken of the meta-language, although it is atually implemented in the urrentsystem using a grammar rule for mathing a string of braket-balaned tokens.
ProeduresThe meta-language supports proedure all expressions in the usual notation:x expr ! id \(" all args \)"all args ! �all args ! all args neall args ne ! x expr \," all args neThe meta-language also provides aess to all the normal proedures ofthe underlying interpreter. Primarily, these are used for manipulating the datastrutures whih make up the intermediate ode of an extension (for example,see Setion 6.2.2.) Sine the underlying interpreter is RSheme, most Shemeproedures are available [14℄.For manipulating lists, ommon proedures are the list onstrutorslist and ons, and the list aessors ar (get �rst item), dr (get rest of128

items), adr (get seond item), et. The list iteration proedures map andfor-eah are also available.
The Compile OperatorThe ompile operator is the primary means for ontinuing the ompilationreursively from within meta-language ode. It is invoked syntatially likea funtion with two required arguments and one optional argument. The�rst argument is a symbol denoting the non-terminal that is to drive theompilation. The seond argument is the token sequene to be ompiled. Theoptional third argument is a set of syntax bindings to be used in the ompile.The ompile operator is speial (i.e., it is not a normal proedure)beause it knows about the syntax variables that have been de�ned usingpat bind. By default, ompile interprets an identi�er in the supplied tokenstring that mathes the name and non-terminal type in a pat bind onstrutas meaning the previously parsed value. The optional third argument extendsthis set of bindings with an expliit list of three-item lists. The three items inthe list are the identi�er in the token string to math, the non-terminal thatrepresents to type of meaning, and the meaning value.
Embedded SyntaxSine a meta-language proedure may need to manipulate the syntati en-vironment (see the extend operator, below), it is neessary to have a way of\quoting" syntax rules so they an be managed as �rst-lass objets. Thesyntax speial form does just that:

x expr ! \syntax" \(" syntax del \)"
129

The value of a syntax form is a syntax rule set, the internal representation ofa set of syntax delarations, suitable for installing into the syntati environ-ment.
The Extend OperatorThe basi operation on syntati environments is to extend them with newrules. The extend operator does that, taking as arguments an environmentand a sequene of syntax rule sets and returning a new environment whihinorporates the indiated rule sets.The following example extends the syntax environment with a traestatement in the ontext of an enlosing traing. The example does thisby omputing a new environment in an inline ation using the extend oper-ator, and then using that environment to ompile the blok of ontrol. Noadditional omputation of the meaning is required in this example (i.e., themeaning an simply be body), beause any uses of trae inside the body havealready been properly ompiled.
stmt = "traing"{ e = extend(envt,syntax(stmt = "trae" ";"== ...)); }<body:blok:e>== body;

130

Anonymous ProeduresAnonymous proedure abstrations using lambda are also available. Syntaxvariables de�ned using pat bind elements are available to the proedure likeother variables with lexial sope.
x expr ! \lambda" \(" x lambda name list \)" x blokx lambda name list ! �x lambda name list ! x lambda namex lambda name list ! x lambda name \," x lambda name list

In addition to de�ning normal meta-language arguments, syntax vari-ables an be delared as proedure arguments, whih makes the identi�er avail-able to the ompile operator.
x lambda name ! idx lambda name ! id \:" id

The seond form is used to delare an argument whose value is a meaning ofthe given type. This is useful, for example, in situations like the following:stmt = "traeall" "{" <stmtlist:(stmt)*> "}"== map(lambda(s:stmt){ ompile(:stmt, [[{ trae(); s } ℄℄); },map(ar, stmtlist));Here, an anonymous proedure is being used to iterate a ompilationover a olletion of statements. Without the onveniene of speifying the syn-tati type in the lambda argument list, implementing that would be somewhatmore verbose: 131

stmt = "traeall" "{" <stmtlist:(stmt)*> "}"== map(lambda(s){ ompile(:stmt,[[{ trae(); s } ℄℄,list(list(:s,:stmt,ar(s))));},stmtlist);
5.8.5 Loal VariablesLoal variables are impliitly delared by assigning to their name. They anbe used to remember values between inline ations (see below) and the ationexpression.

x expr ! id \=" x expr
5.8.6 Inline AtionsWe also permit the evaluation of meta-language ode during the reognitionpart of the parse.

pat elem ! x blok
In general, this is funtionally equivalent to de�ning a unique non-terminal Tkwith an empty pattern and the x blok as the ation, and using Tk where thex blok ours as a pattern element. That is:foo = <a:A> { F(); } <b:B> == G(a,b)132

is funtionally similar to:
foo = <a:A> Fk <b:B> == G(a,b);Fk = /* empty */ == F();

However, this kind of inline ation is supported speially in order to let anyloal variables reated by the x blok be visible to the remaining pattern ele-ments and rule ation of the urrent rule. Loal variables reated by an inlineation let the programmer parse a non-terminal in a di�erent environmentusing a variant of the pat bind form. This form is used to parse an ourreneof a non-terminal with respet to a di�erent parse environment:
pat bind ! \<" id \:" id \:" id \>"

The three id's are, respetively, the name to whih to bind the resulting mean-ing, the non-terminal to be parsed, and the name of the pattern-loal variableontaining the environment to be used.So, for example, we an say:
while_stmt = "while" <e:expr> { brkenv = � � � } <body:stmt:brkenv>

where � � � denotes some additional meta-language ode to ompute a syntaxenvironment. This allows meta-language ode to easily de�ne the environmentof ompilation for subsequent non-terminals.
5.8.7 ExampleFor a omplete example of some meta-syntax, onsider a syntax delarationfor a twie statement (the body of whih appears in Figure 5.2):

133

syntax {twie_stmt= "twie" <s:stmt>== ompile(:stmt, [[{ s s } ℄℄);}
The entire onstrut is interpreted as a kind of top-level Java dela-ration (a java tl del), omprised of a single syntax del for the non-terminaltwie stmt6.The twie stmt non-terminal is assoiated with one syntax rule thatonsists of two pattern elements, the literal identi�er \twie" followed by somekind of stmt, with the result bound to the syntax variable s.Furthermore, this delaration states that when a twie stmt is re-ognized (the ompletion step in the Earley parser), the way to ompute themeaning is to invoke the ompile operator with two arguments, the symbolstmt and the 4-token sequene { s s }. Beause s is a syntax variable inthe pattern list, the ompile operator reognizes ourrenes of the token sin the token string as referenes to the meaning omputed by parsing thenon-terminal stmt.6Note that the three names referred to in this sentene are non-terminal names:java tl del and syntax del are non-terminals of the meta-language, and twie stmt isa non-terminal of the target language. We render them with a di�erent typographial styleto emphasize the distintion, but in fat both are present in the same grammar. This fatmakes it possible to extend the extension framework from within the language, a hallmarkof a reetive system [33℄.

134

5.9 Issues and Future Work
5.9.1 Substitution ConformaneOne issue that arises when doing pattern variable substitutions at the gram-matial level is determining onformane of meaning. For example, if theoriginal prodution ompiles something as a stmt, then the meaning is inter-mediate ode appropriate for a stmt. Suh intermediate ode should probablynot be used where, for example, a del is needed.One of the problems with our method of determining onformane o-urs when there are anonymous pattern strutures. For example, in our meta-grammar, we permit onstruts like <slist:(stmt)*> (see Setion 5.3.2).However, there is no way to determine onformane for the resultingmeaning. Hene, we prohibit the use of suh a de�nition in a delarativetransformation. From an extensible language design perspetive, this impliesthat the grammar must use named non-terminals for any element whih is tobe reused in a maro pattern. Future work should asertain how to amelioratethis limitation.Some systems rely on stati type heking to ensure that pattern vari-ables are used in plaes ompatible with the obtained meaning [9, 34℄. Thisapproah is generally too restritive for our purposes, sine it requires toomuh whole-grammar analysis for orretness7.7Although it would be useful to implement stati heking where possible for grammarmodules that are developed as units. This would help address the testing problem ommonto most purely interpreted systems.

135

5.9.2 Translation ReursionThe way our approah eagerly omputes meanings as soon as onstruts arereognized (i.e., at ompletion), ombined with our approah to transforma-tional ompilation, an lead to unbounded reursion. This is similar to theproblem of left reursion in a reursive-desent parser [1℄. The problem ariseswhen one form is translated into another that ontains a ompletable instaneof itself. Eager ompletion means that a \ompletable instane" may only be apre�x of the translation string. This omes up, for example, in the translationof one-branh if to two-branh if. The natural rule to try to write is:x_onebranhif= "if" "(" <e:expr> ")" <t:x_stmt>== ompile(:x_stmt, [[if (e) t else {} ℄℄);but, beause this rule itself is ompletable after the t in the expansion, thesystem loops trying to determine the meaning of the �rst 5 tokens of thetranslation.For our meta-language extensions, we worked around this by expressingthe translation diretly in terms of a x twobranhif instead of in terms of anx stmt. This works for some ases but is not a general solution in two ways:(1) it requires knowledge of the non-terminal that bypasses the reursion, and(2) it assumes the reursion is at the top level. With respet to (2), note thatthe solution does not apply when a onstrut nested within the token stringpassed to ompile mathes the rule being parsed, for example:x_onebranhif= "if" "(" <e:expr> ")" <t:x_stmt>== ompile(:x_stmt, [[{ if (e) t else {} } ℄℄);136

triggers the same inde�nite reursion.
5.9.3 Meta-syntax SopeTo sale a language system built using our approah, a way of managing thesope of syntati identi�ers needs to be developed. In our urrent imple-mentation, syntati identi�ers are realized as symbols, and their sope isorrespondingly global, at least within a given syntax module. This is usefulin some ways { for example, a syntax module an extend the de�nition of expr{ but being able to manage these identi�ers in a more ontrolled way, withonly well-de�ned export points, would be more salable.
5.9.4 Syntax Module TemplatesThe logial next step for syntax modules is to support syntax module tem-plates, whih are parameterized modules. This would enable more sophisti-ated reuse of syntax modules, enabling a syntati onept (e.g., expressions)to be applied uniformly in di�erent areas of a language system. For exam-ple, in our system itself, the onept of expressions shows up in both themeta-language and the target language, yet we an't reuse the syntax modulebeause it generates di�erent intermediate ode. One way of parameterizingmodules would be to supply the set of intermediate ode onstrutor bindings,thereby tailoring how intermediate ode is produed.

137

Chapter 6
An Appliation of an Extensible

Language
6.1 Introdution
In this hapter, we apply our approah to the problem of de�ning an extensionto the Java language. The appliation we develop enables the simple de�ni-tion of a �nite-state mahine with ations on state transitions (i.e., a Mealymahine).The language extension we onsider is as follows:
automatondel ! \automaton" name \{" vardel� statedel+ \}"vardel ! visibility type name \=" initvalue \;"visibility ! \publi" j \private"statedel ! name [\aept"℄ \{" transition� \}"transition ! int \->" name (blok j \;")

138

start pre mid

0 01

1

post

0 0Figure 6.1: A simple string reognizer in graphial state mahine representa-tion
For simpliity, we onsider only automata over an integer voabulary.In the following example, the automaton de�ned using this extensionis onstruted to reognize strings of 1's surrounded by non-empty strings of0's and to ount the number of 1's. For example, the string \00001111000" isreognized by this automaton, and the number of 1's is four. Figure 6.1 showsthis state mahine in diagrammati form.
automaton InteriorString {publi int ount = 0;start { 0 -> pre; }pre { 1 -> mid { ount++; }0 -> pre; }mid { 1 -> mid { ount++; }0 -> post; }post aept { 0 -> post; }}

The objetive of this extension is to transform an automaton delara-tion, suh as the one above, into a Java lass of the same name that implements139

the automaton's behavior. The Java lass provides a proess method thattakes a segment of input supplied as an integer array. The publi variablesdelared in the automaton are available as publi instane variables of the Javalass. The generated lass implements the Automaton interfae, whih onsistsof the following methods:
publi void proess(int input[℄);publi String getState();publi boolean isAepting();
The proess method is responsible for exeuting the automaton withsome input symbols. This method attempts to onsume the input (sub)stringand either leaves the automaton in the appropriate state or throws a RuntimeExeptionif a partiular transition is not possible. The getState method returns theurrent state of the automaton as a string. The isAepting method answerswhether or not the urrent state of the automaton is an aepting state.

6.2 Implementation Approah
This appliation illustrates the oasional need to deonstrut meaning values(e.g., intermediate ode). This arises beause the lower-level onstruts (inthis ase, the state delarations) ontribute to di�erent top-level onstruts(in this ase, the methods of the automaton lass).To support automata delarations as an extension to Java, we de�ne asyntati extension module alled dfa that de�nes a new kind of type dela-ration. In the base Java language, a type delaration is a lass or interfae

140

delaration. Sine an automaton ats like a kind of lass, it is natural to extendthe syntati onstrut for lasses.
6.2.1 Delaring the ExtensionThe outermost portion of the extension itself is shown in Figure 6.2. Here, thename of the syntax module is being delared as dfa, and the main entry pointat type del is being installed1.
syntax dfa {type_del= "automaton" <aname:java_id>"{" <vars:(field_del)*><states:(statedel)*>"}"== htypebodyihstatedelihtransitioni}

Figure 6.2: Top-level struture of the DFA extension to Java. The field delnon-terminal is part of the underlying Java grammar.
The grammar symbol name type del, and its role in the grammar ofthe underlying language, must be known to the author of the extension. Ingeneral, our approah requires knowing something about the spei� grammarthat is used to realize the underlying language. Although this requirement1Note that we extend the type del non-terminal, whih is from the underlying Javagrammar. Likewise, we reuse field del, the grammatial element for lass �eld dela-rations. There is no need for us to rede�ne field del, sine the underlying languageprovides us what we need. In fat, we thereby get to reuse all the mahinery for parsing�eld delarations and their initializers.

141

follows from the need to install new grammatial produtions in the grammar,it does expose some details of the implementation. In pratie, we expet thatlanguage systems built to be extensible would inorporate the grammar aspart of the language spei�ation, with all the important non-terminal namesstandardized.
6.2.2 Building the Final MeaningApproahing this appliation top-down, the next thing to de�ne is the meta-level ode that ompiles the entire automaton onstrut. In Figure 6.3, thebasi struture of the automaton ompiler is laid out. The strategy is to buildup the automaton's lass de�nition from piees de�ned in subsequent setions.These piees are then assembled by the all to ompile into a single lassde�nition.As a matter of bookkeeping, the �rst statement deonstruts the mean-ings that are bound to states that mathed the (statedel)* repetitionpattern. The meaning of a repetition is a list of the meanings of the elements.However, eah element is a sequene, the meaning of whih is a list of themeaning of its elements. Hene, the meaning struture for states is a list(one entry per field del) of lists (one entry in the list is the field delmeaning itself). Sine we are only onerned with the list of field delmeanings, the �rst thing we do is pull those meanings out.This ode fragment also shows how meta-language ode an ompute thevalue of a set of syntati variables that are interpreted during parse time. Thespeial operator ompile normally takes two arguments: a symbol denotingthe non-terminal to parse, and a string of tokens that is the fragment to

142

typebody)sx = map(ar, states);hinternal-stateihproess-methodihgetstate-methodihaepting-methodihstatename-statisiompile(:type_del,[[lass aname implements Automaton { body } ℄℄,list(list(:body,:lass_body_del__star,append(list(b1),vars,statenames,list(b2, b3, b4))))); };
Figure 6.3: Meta-language ode for building the meaning of a omplete au-tomaton onstrut.
be parsed. The ompile operator also impliitly understands any syntativariables that are in sope from the pattern. For example, in Figure 6.3, theidenti�er aname in the token string passed to ompile refers to the meaningthat was parsed by the java id pattern in Figure 6.2. ompile an take anoptional third argument whih is a omputed set of syntati variables.In this ase, we are proedurally onstruting the elements that makeup the lass body. In order to insert the meaning of the parts into the �nalmeaning, we de�ne a loal syntati variable body to take on the meaningof the lass body. Furthermore, we ompute body by appending severalmeaning fragments to form the omplete body (the ode referred to by internal-state, proess-method, et., is responsible for building these fragments and is

143

desribed in detail below.)This example also illustrates what happens when a repetition onstrutis transformed by the ompiler extension framework. In our Java grammar, alass body is de�ned as follows:
lass_body= "{" <b:(lass_body_del)*> "}"== . . . ;

When the lass body del is expanded into the diret grammar representa-tion required by the Earley parser, it is transformed into something like:
lass_body= "{" <b:lass_body_del__star> "}"== . . . ;lass_body_del__star= /* empty */ == nil| lass_body_del__1 lass_body_del__star == ons($1, $2);lass_body_del__1= lass_body_del == list($1);

(The list operator on the last line is why the �rst statement in Figure 6.3appears.)Sine the onstrution of the automaton requires supplying a sequeneof lass body delarations whose length depends on proedural meta-languageode, we need to build up the entire sequene and supply it as the meaningassoiated with a lass body del star.
144

One of the bene�ts of our approah starts to beome lear here. The au-tomaton extension is written entirely in terms of a well-de�ned meta-languageand the underlying language; a lass de�nition an be onstruted without anyknowledge of the form of the intermediate ode. Only the syntati elementsof the underlying grammar need be identi�ed (i.e., as we mentioned above,that a type del is the appropriate kind of syntati objet to supply a lassde�nition.)2
6.2.3 Delaring the State-Keeping VariableOur Java lass requires an instane variable in whih to store the urrentstate of the automaton. The ode to delare this instane variable is shownin Figure 6.4. This intermediate ode fragment is inorporated into the mainlass objet when the lass body is assembled in Figure 6.3.
internal-state)b1 = ompile(:lass_body_del,[[private int state = start; ℄℄);
Figure 6.4: Meta-language ode to build the internal state variable for theresulting Java lass implementation.

The identi�er state is the literal name of the internal variable that isused to maintain the urrent state of the automaton. The token start is thename of the start state, whih is bound to an appropriate integer representationin the resulting lass by the ode generated in statename-statis (Figure 6.12).2In some ases, as we'll see, it is neessary to deonstrut the meaning values produedby the underlying grammar. In this appliation, it only beomes neessary for literal valuesand identi�ers, for whih it is easy to provide appropriate meta-language operators.
145

6.2.4 Delaring the Java Class's Entry MethodThe main entry point to the Java lass that this extension produes is theproessmethod, whih is responsible for advaning the state of the automatonaording to a sequene of input symbols represented by an array of integers.Figure 6.5 has the meta-language ode fragment that generates the proessmethod.Input symbols are represented as integers in this implementation, soproess takes an array of integers and exeutes the state mahine for eahsymbol. If a transition annot be made from a given state with a ertainsymbol as input, then a RuntimeExeption is thrown (see Setion 6.2.8).
proess-method)b2 = ompile(:lass_body_del,[[// main entry pointpubli void proess(int input[℄){ int i;for (i=0; i<input.length; i++){ int symbol = input[i℄;swith (state) { state_lauses }}}℄℄,list(list(:state_lauses,:swith_lause__star,map(adr, sx))));
Figure 6.5: Meta-language ode to build the proess method in the Java lassimplementation.

146

6.2.5 Delaring the Java Class's Aessor MethodsIn this appliation, eah generated Java lass supports two aessor methods,isAepting and getState. See Figures 6.6 and 6.7, respetively. The ap-proah to implementing both is similar and involves a swith on the urrentstate of the automaton. The swith lause for eah state returns the appropri-ate value (i.e., the state name as a string literal in the ase of the getStatevalue, and a boolean value in the ase of isAepting.) Note that the om-pilation of the atual ase lause is done when the state is being parsed, inFigure 6.8.
getstate-method)b3 = ompile(:lass_body_del,[[// urrent state inspetorpubli String getState(){ swith (state) { return_state_lauses }return "?unknown";}℄℄,list(list(:return_state_lauses,:swith_lause__star,map(addr, sx))));

Figure 6.6: Meta-language ode to build the getState method.
6.2.6 States Within an AutomatonAt this point, we are ready to desribe the part of the grammar that is re-sponsible for parsing the states within an automaton. Figure 6.8 shows the

147

aepting-method)b4 = ompile(:lass_body_del,[[// urrently in an aept state?publi boolean isAepting(){ swith (state) { return_aept_lauses }return false; // unknown state}℄℄,list(list(:return_aept_lauses,:swith_lause__star,map(adddr, sx))));
Figure 6.7: Meta-language ode to build the isAepting method.

statedel prodution. Eah state omprises:
� a state name (mathing java id and bound to the syntax variable n),
� a ag indiating whether it is an aept state (mathing aept ag,whih is de�ned at the bottom of Figure 6.8, and bound to a),
� a set of expliit transitions (bound to t), and
� a default transition whih is really the error handler (bound to d).

In this appliation, we use list-oriented data strutures to ommuniate in-termediate ode between the non-terminal statedel and type del. Figure 6.8gives the statedel fragment of ode, whih builds the main list struture weuse in this appliation. The data types we build here using lists ould beformalized, and a larger appliation may bene�t from stati type heking to148

onstrain the grammar itself (for example, see Cardelli et al. [9℄). However,our approah is dynamially typed, whih we �nd more suitable for experi-mental work. The list, whih is the meaning assoiated with statedel, has
statedel)statedel = <n:java_id> <a:aept_flag>"{" <t:(transition)*><d:default_transition>"}"== list(n,hstateswitheri,ompile(:swith_lause, [[ase n: return strform; ℄℄,list(list(:strform,:expr,literal(tostring(n))))),ompile(:swith_lause, [[ase n: return aa; ℄℄,list(list(:aa, :expr, a))));aept_flag = "aept" == ompile(:expr, [[true ℄℄)| /* empty */ == ompile(:expr, [[false ℄℄);

Figure 6.8: Sub-language for delaring states within an automaton.
four items:

� the name of the state,
� the lause that goes into the \big swith" in the proess() method (seethe de�nition of stateswither in Setion 6.2.7),
� the lause that goes into the swith statement in the getState method,and
� the lause that goes into the swith statement in the isAeptingmethod.149

These lauses are assembled into the appropriate swith statements in thetop-level ation (see Figure 6.3).In the implementation of exposing the aept ag, in whih we ompilea swith lause3 to be used in Figure 6.7, we essentially build the literal answerto the question \is this an aept state?" for eah di�erent state. We expetthat the underlying language ompiler applies some ommon subexpressionelimination to optimize the ode that appears in the resulting statement:
swith (state) {ase 0: return false;ase 1: return false;ase 2: return false;ase 3: return true;}

If the ompiler did not do so, and this bloated ode were a problem, thena little additional work at a higher level (i.e., in Figure 6.7) ould do someappliation-spei� optimization.This fragment illustrates the use of the extension framework operatorliteral, whih is responsible for produing the target language meaning thatreates a value equivalent to the meta-language argument that is its argument.For example, literal(3) produes intermediate ode whih, when exeuted,evaluates to the integer value \3" in the target language. In this ase, we areusing literal to onvert the state name identi�er (whih is a symbol objetin the metalanguage) to a string literal in the target language to be returnedas the value of the getState method.3A swith lause is a onstituent of a swith statement, whih is Java's multi-way branhstatement. A swith lause is also known as a ase statement.150

6.2.7 Building the State SwitherFigure 6.9 shows the meta-language ode that onstruts the swith lause forthe urrent state in the proess method. For eah state of the automaton, theproess method swithes on the next input symbol. The identi�er symbol inthe argument to the ompile operator refers to the loal variable delared inthe ompiled ode in Figure 6.5.
stateswither)ompile(:swith_lause, [[ase n:swith (symbol) {symlauses}break; ℄℄,list(list(:symlauses,:swith_lause__star,append(t, list(d)))))
Figure 6.9: Meta-language ode for building the swith lause for a single statethat makes up part of the \big swith" in the proess method.

The lauses whih make up the body of the swith on the input sym-bol are supplied to the ompile operator in the alias symlauses. Thesymlauses alias plays the role of a sequene of swith lauses (formally, aswith lause star), whih we onstrut by appending the ases for eah indi-vidually de�ned transition with the default (or error) transition. Setion 6.2.8shows how the swith lause intermediate ode is built up for eah transition,inluding the default.

151

6.2.8 Delaring transitionsThe transitions among the states of the automaton are delared using thegrammar elements de�ned in Figure 6.10. There are two forms for a transitiondelaration. The �rst form is used when the automaton programmer is notexeuting any ode on the state transition. The seond form is used to supplyan ation to perform when the automaton makes that transition.
transition)transition = <k:integer_literal_expr> "->" <n:name> ";"== ompile(:swith_lause,[[ase k: state = n; break; ℄℄);transition = <k:integer_literal_expr> "->" <n:name> <b:blok>== ompile(:swith_lause,[[ase k: b state = n; break; ℄℄);
Figure 6.10: Sub-language extension for the delaration of a single transitionwithin a state.

Both forms are struturally similar. In eah, there is the identi�ationof the input symbol that is used to trigger the transition. The input symbol isgrammatially an integer literal expr and is bound to k. k beomes the aseexpr in the resulting swith lause. The destination, or target, state is alsoidenti�ed by name and bound to the syntax variable n.The di�erene between the forms is that the seond form expets a Javablok, whih is bound to the syntax variable b. In turn, the user's ationblok, b, is employed just before the assignment to update the state variablein the resulting swith lause. In the sample automaton, the transition ationblok form is used to ount the number of \1" symbols in the middle of the
152

string. The meaning that we generate for a transition non-terminal is simplythe swith lause that is used when proess swithes on the input symbol.We also need to handle the ase where the input symbol is not valid inthe urrent state. The spei�ation requires that we throw a RuntimeExeptionin that ase. We ahieve this by de�ning a default transition, whih plays therole similar to that of a transition but is not spei� to any partiular inputsymbol. Figure 6.11 shows how the default transition is handled. The defaulttransition is realized as the default lause on the swith that dispathes onthe input symbol in the urrent state. We fatored this out into a separatenon-terminal partly by analogy with the other transitions, and partly as a hookfor extending the appliation to allow the user to speify a di�erent defaulttransition behavior.default-transition)default_transition= /* empty... no override of error behavior for now */== ompile(:swith_lause,[[default: throw new RuntimeExeption(); ℄℄);
Figure 6.11: Hook for delaring default transition behavior.

6.2.9 Symboli State NamesOne feature of this appliation is that states are numbered automatially; theuser does not have to deal with state identi�ers. This is analogous to the way,for example, the ya ompiler generator builds internal dispath tables withshort integer names, but the programmer only has to deal with the symbolstate names. This is the kind of detail that pratial language users demand.153

This feature is implemented by maintaining a mapping from symbolistate names to numbers assigned by the extension. A straightforward mappingis suÆient in this ase. The symbols are assigned identi�ers 0, 1, ... in theorder in whih the delarations appear in the automaton.If we also de�ne Java-level symbols to map the symbols to the internalid's, then this simpli�es the extension author's job. We do so in Figure 6.12.For eah state, a Java lass variable is de�ned that takes on the value of theinternally assigned identi�er. With these de�nitions supplied in the gener-ated Java lass, the author may now do loal ompilations using Java to mapthe symboli state names to the internal integer number. For example, seeFigure 6.8, where the ompilation of the various swith lauses an proeedwithout having to map to state numbers in meta-language ode.
statename-statis)statenames = map(lambda(k,n){ ompile(:lass_body_del,[[private final stati int name = k; ℄℄,list(list(:name, :java_id, n),list(:k, :expr, literal(k))));}, range(length(sx)),map(ar, sx));
Figure 6.12: Building the Java de�nitions of symbol state names, mappingstate names to internal identi�ers.

Usually, this is done for onveniene in implementing the language ex-tension and sometimes inurs a ost beause the underlying language is notlikely to have optimizations to deal with the generated ode strutures. In this
154

ase, we expet the underlying language ompiler to inline the values of thesesymbols (they are delared \�nal" so the ompiler knows they annot hangeat runtime), resulting in no runtime performane penalty.
6.3 Example Use of the DFA Extension
In this setion, we return to the sample �nite state mahine desribed in theintrodution of this hapter and show the Java ode equivalent to what theDFA language extension generates to implement it.
6.3.1 Sample Extended-Java FileThis is the input �le, whih imports the DFA syntax and de�nes an automatonalled InteriorString.import syntax DFA.dfa;automaton InteriorString {publi int ount = 0;start { 0 -> pre; }pre { 1 -> mid { ount++; }0 -> pre; }mid { 1 -> mid { ount++; }0 -> post; }post aept { 0 -> post; }}
6.3.2 Generated lass de�nitionHere is the Java ode generated as a result of proessing the above automatondelaration. The proess method of the lass de�nition is elaborated in thenext setion. 155

lass InteriorString implements Automaton {private int state = start;publi int ount = 0;private final stati int start = 0;private final stati int pre = 1;private final stati int mid = 2;private final stati int post = 3;publi String getState() {swith (state){ ase start:return "start";ase pre:return "pre";ase mid:return "mid";ase post:return "post";}return "?unknown";}publi void proess(int input[℄) { ... }publi boolean isAepting() {swith (state){ ase start:return false;ase pre:return false;ase mid:return false;ase post:return true;}return false;}}
156

6.3.3 Generated proess() methodHere is the proess method. Note the harateristi nested-swith struturegenerated by this Java extension and the use of symboli names to avoid extrawork in the extension itself.publi void proess(int input[℄) {int i;for (i = 0; i < input.length; i++) {int symbol = input[i℄;swith (state){ ase start:swith (symbol){ ase 0:state = pre;break;default:throw new RuntimeExeption();} break;ase pre:swith (symbol){ ase 1:{ ount++;}state = mid;break;ase 0:state = pre;break;default:throw new RuntimeExeption();}break;ase mid:swith (symbol){ ase 1: 157

{ ount++;}state = mid;break;ase 0:state = post;break;default:throw new RuntimeExeption();}break;ase post:swith (symbol){ ase 0:state = post;break;default:throw new RuntimeExeption();}break;}}}

158

Chapter 7
Final Words

7.1 Related Work
7.1.1 Syntati ExposuresEarlier work in generalizing syntati losures, syntati exposures [10℄, isalong the same lines as our approah, with the interleaving of ompilation andexpansion for the purpose of improved pattern mathing abilities. Our im-plementation handles some ases of advertent apture better, espeially whenmaros are used to de�ne maros and pattern variables are used in maropattern rules.
7.1.2 Term RewritingThere is some similarity between our general approah and the way someterm rewriting systems ompute normalized head forms eagerly. In de�ningan evaluation strategy for term rewriting, the system desribed by Nakamuraet al. [31, 32℄ omputes a funtion of the operator, whih is used as meta-159

data to drive the rewriting of terms in the expression. For example, whenpresented with an expression like x+ y, the rewriting of sub-terms x and y isontrolled by the value of the strategy funtion (+). The eager evaluationof the head form (the head form here is the operator +) is being done forthe same reason we resolve the head form �rst { in order to determine theappropriate ation to apply to the expression ontrolled by the operator. Inessene, both their approah and ours ompute the ontrol information �rstand then delegate the interpretation of the entire form based on the result ofthat ontrol information. However, our approah ahieves the e�ets withoutthe spae ost of general rewriting.
7.1.3 Hygieni Maro ExpansionAs pointed out earlier, our approah ahieves the general goals of hygienimaro expansion as desribed by Clinger and Rees [13℄. The interleaved ex-pansion and maro sanning proess desribed there is similar to our lazyproessing, although we interleave with atual ompilation. Interleaving om-pilation with maro proessing opens the door to maro dispath (i.e., patternmathing) based on the intermediate results of ompilation (synthesized at-tributes), whih we exploit in our type-reetive maros.Our general approah is similar to that of syntati losures [25℄, inthat we apture the syntati environment at the point of maro de�nition.However, our implementation separates the lexial loation (\plae") fromthe dynami loation. Among other things, this allows us to identify distintvariables in one interleaved ompilation pass instead of re-proessing the inputwith relabeled identi�ers.

160

7.1.4 Reusable Generative ProgrammingThe work by Krishnamurthi et al.onMMiMa [27℄ views extensible languagesover the Lisp family as a generative programming problem. The main thrust inthat work is to develop languages using reusable modules of linguisti featuresalled voabularies. Their voabulary development takes plae in a separatespae, so it is not reetive in the same sense. Their framework addressesthe issues of our internal ompiler meta-objet protool, an aspet that, whileimportant for its engineering onsiderations, is not the main thrust of ourwork. Their voabulary abstration is espeially interesting, as it ould ad-dress the proliferation of ompilation types in our system. That is, we haveseparate sub-ompilers for list forms, atoms, et., whih we implement usinggeneri funtion dispath. Their dispathing approah ould unify the di�erentlevels of dispath in our implementation. And, whereas we use the existing lan-guage's module framework to organize our syntati extensions, their oneptof voabularies is a useful way to abstrat extensions.Although we believe their framework ould be used to implement ourapproah, their default assumption about how to handle maros in suh a lan-guage is still based on soure!soure transformation, and hene is less eÆientand unable to leverage ompile-time knowledge to drive transformation.
7.1.5 Adaptable GrammarsIn the literature of extensible parsing, the sublass of adaptable grammarsknown as Reursive Adaptable Grammars, or RAGs, ontains a notion similarto that of ontour sensitivity, and the goals in expressiveness are similar to

161

our own [35℄. RAGs are the result of an e�ort to preserve the modeling andanalyti bene�ts of ontext free grammars while permitting loal variations inthe grammar.It is interesting to note that some would push the adaptable grammarto the point of subsuming all attribute alulations within the syntax. Forexample, Christiansen [12℄ is onerned with the use of adaptable grammarsto unify stati semantis with the grammar, similar to our example of makingbreak a valid statement only in the sope of a breakable onstrut. Thegeneral approah involves de�ning a grammar rule to store information thatis traditionally stored in a symbol table or omputed from the meaning a laattribute grammars. Our own opinion is that this goes too far and that thelanguage implementation bene�ts from having the power of both a delarativedesription of mostly-ontext-free patterns to math surfae syntax and thefull proedural expressiveness of an underlying meta-language.Furthermore, the spei� implementation desribed by Christiansen [12℄seems to utilize a global grammar table, and thus has diÆulty leaning upwhen exiting blok sopes. Although the thrust of our work is not spei�allyin the translation of stati semanti onstraints into the grammar, the easewith whih our implementation manages loal grammar hanges would makesuh a strategy somewhat more straightforward.
7.1.6 Open Compilers and MOPsIn developing a language system that makes use of an extensible grammar, thelanguage designer typially de�nes a partiular protool that an be followedby the language extender to de�ne a new language extension. This proto-

162

ol involves things like the well-de�ned non-terminals through whih most ofthe extensions are expeted to take plae. For example, we expet that mostsystems de�ning a onventional programming language will have hooks forstatements, expressions, and variable delarations, at the least. The use of vo-abularies in MMiMa [27℄ as a language extension modularity mehanism isa more formalized approah to what would be well-known hook non-terminalsin the implementation desribed here.The Intentional Programming projet [2, 36℄ is onerned with the def-inition of language abstrations as transformations on meaning strutures.However, that work operates diretly against the meaning strutures, withtextual syntax limited to an input mehanism. Furthermore, transformationsare implemented proedurally against the ompiler's meta-objets, whih un-neessarily separates the intention developer from the developer in the targetlanguage.Other work in transformational programming, suh as that of Visser [43℄,inorporates the ability to de�ne transformations in terms of the onrete syn-tax of the program, along with the ability to inorporate new syntax. How-ever, their syntax is statially de�ned (although partitioned into omposablemodules) and global for a module, whereas our system supports loal syntaxextensions.The Jakarta tool suite (JTS) is a faility that addresses the issue of lan-guage extensibility as a set of generator omponents [4℄. This has the bene�t ofsupporting modularity of the language extension features; in fat, JTS lever-ages the omponent omposition of the JTS framework itself. One of the mainfouses of the JTS work is support for omposable domain-spei� languages.Our approah ahieves syntati modularity but has no speial support for
163

modularizing its meta-language proedures. Inorporating advaned modular-ization features into our approah, as is done in JTS, is a rih area for futureresearh.The <bigwig> projet [7℄ is targeted at de�ning interative Web ser-vies and an handle syntati extensions together with the transformationsto more primitive language strutures. However, in <bigwig>, maros muststart with an identi�er, whih shares the limitations of C's maro system;for example, new in�x operators annot be introdued. Also, there is noproedural meta-language for expressing transformations more omplex thanpattern-based transformations.The Java Syntati Extender [3℄ work uses an approah similar to thatof C for de�ning maros. The set of syntati forms whih are onsideredextensible are statially limited, although JSE improves upon C by allowingstatements as well as proedure all forms to be extended. JSE is not dy-namially extensible in the sense that our system allows users to de�ne newsyntati forms of any sort.Other approahes to language extensibility have been taken. The meta-objet protool approah [24, 11℄ enables the extension author to de�ne howertain language onstruts are proessed. In these systems, the underlyingobjet system provides the strutural framework to whih the extensions areattahed. The extensions de�ned using our approah are assoiated with thesyntati representation of the programAmeta-program in our approah exeutes in the ontext of the ompiler,but is not expliitly part of the ompiler. The domain objets of the meta-programmer in our approah are meanings, parse environments, and tokenstrings. For example, using just our approah, the meta-programmer annot
164

alter the internal proessing of a built-in language onstrut suh as the lay-out of a data struture without rede�ning the syntati entities that introduethem. This is in ontrast to the open ompiler work of Lamping et.al [28℄,whih is spei�ally intended to inrementally rede�ne internal ompiler pro-essing using a ompile-time meta-objet protool.
7.2 Limitations and Future Work
7.2.1 Meta-Objet ProtoolConsiderably more formalism an be developed around the syntax and se-mantis of our meta-language itself. A more systemati development of themeta-language would allow the de�nition of a meta-objet protool (MOP) asthe foundation of the extensible language framework [28℄. With a well-de�nedMOP in plae, the meta-syntax an be onstruted in terms of that protool,enabling user-de�ned extensions to our meta-language1.
7.2.2 Error ReportingMore work is needed to determine how best to report syntati errors in theontext of a dynami grammar. As in most language systems, the emphasisin our work is on ore funtionality when presented with orret input and, toa lesser extent, on deteting inorret input. But for a language system to bepratial, it must report errors in a way that is useful to the programmer.The interpretive nature of the Earley parser is useful for error reporting1User-de�ned extensions are possible in our urrent implementation. In fat, our systemis bootstrapped in multiple stages using our own meta-syntax to do so. However, thesyntati hooks neessary to do so are not well formalized.

165

in some ways, beause it is easy to ompute the set of onstruts whih arebeing parsed at any given point, even in the presene of syntati extensions2.However, more work is needed to re�ne these apabilities in the urrent imple-mentation to report even more useful error onditions and ideally to implementerror reovery so that parsing an ontinue on a best-e�ort basis.
7.2.3 Synthesized AttributesMore work is needed to understand the relationship between the eager evalu-ation of intermediate ode and the lazier evaluation of meaning on the basisof the template. This is espeially a problem as the template may try to in-trodue binding onstruts whih, depending upon ontext, ould hange howthe pattern element should be ompiled.
Stati Syntax Type ChekingOur implementation uses dynami type heking in the meta-language. Othersystems [9, 8, 5℄ apply stati type rules to ensure that any meaning onstrutedby an extension is a valid omposition of primitive meaning operators and val-ues. Furthermore, they ensure that the ourrene of the extension onstrutin a program always produes the right kind of meaning at the right plae inthe target program. Additional work is needed to analyze appliations of ourapproah to asertain whether stati heking is helpful or a hindrane.2In fat, we found it so easy that just for the purpose of debugging the examples inChapter 6, we signi�antly improved the error reporting apabilities

166

Conveniene NotationsOne of the pratial limitations of our urrent extensible parsing system re-volves around the problem of interpolating single syntati onstruts into asequene. For example, in Figure 6.3 we had to expliitly append several pieestogether in order to form the body of a lass de�nition. We would ratherhave been able to write something like:
ompile(:type_del,[[lass aname implements Automaton{ private int state = start;varsstatenamesproess_methodgetstate_methodisaepting_method}℄℄);

and let the parsing engine do the interpolation of vars and statenames. Thereare several ways this ould be implemented within the urrent framework. Thebasi idea is to extend the expansion of the repetition onstrut. Reall thatthe repetition onstrut is responsible for transforming a Kleene star pattern(e.g., \del*") into grammatial primitives suitable for interpretation by theEarley parser.One approah would be, in the expansion of \A*," to de�ne a rule suhas: 167

A star !A star A star = append($1,$2)
This has the disadvantage of being extremely ambiguous. While this ould beparsed, it tends to degenerate into O(n2) omplexity.Another approah would be to de�ne a non-terminal name whih ouldnot be parsed diretly (all it A seq), and ould only be satis�ed by a syntatisubstitution. Then, an additional rule in the repetition expansion ould bede�ned:

A star !A seq A star = append($1,$2)
This has the disadvantage of introduing a new and irregular kind of objetinto the parsing engine.Another approah would be to require the programmer to signal theinterpolation. Then, the repetition expansion ould inlude:

A star ! \�" ident A star = append(expand($2),$3)
This runs the risk of oniting with the grammar of the target language,although for any partiular target language a suitable indiator ould be iden-ti�ed. This also ambiguates the use of the alias identi�er in the token streamas standing for itself in an expansion and standing for what it denotes as analias. In general, more appliations should be built using this approah inorder to identify the pratial limitations of the system and point the way toadditional onveniene notations. To make this work more widely available,and to test its end-to-end performane, one area of future work is to integratethe urrent extensible Java into a full ompiler. The Jikes implementation [19℄

168

looks espeially promising for this purpose, as it is fast and well strutured forreplaing the parser front end.
7.3 Conlusions
The expressive power of Lisp maros an be made available to programmers oflanguages with traditional syntax, whih allows the easy development of newlanguage features and the modular onstrution of domain-spei� languageextensions. Furthermore, integrating syntati extensibility with true ompi-lation enables the reetion of synthesized attributes into syntati proessing,whih in turn inreases the expressive range of delarative, syntax-based lan-guage extensions.This work is the �rst to eÆiently apply the onepts of delarative andproedural maro proessing to the domain of languages with a traditionalsyntax, suh as Java and C. We have shown how maro proessing an beinterleaved with ompilation, and how an eÆient, loally extensible parseran be used to exeute maro expansions at parse time.With an extensible parsing framework that inludes the apabilities ofmaro transformation, a language system that adds extensibility to Java anbe onstruted. An extensible Java implementation an be used to rapidlydevelop new language features and to de�ne domain-spei� languages as il-lustrated in Chapter 6.This is the �rst system to ombine support for loal, dynamially exten-sible ontext-free syntax with ontrol by meta-level proedures. It is lear to usthat this apability leads to a more robust programming paradigm, in whihthe roles of programmer and language author blur, and appliation-spei�

169

language extensions beome a standard mehanism for modular abstration.

170

Bibliography
[1℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Priniples,Tehniques, and Tools. Addison-Wesley, 1986.
[2℄ W. Aitken, B. Dikens, P. Kwiatkowski, O. de Moor, and D.Rihter.Transformation in intentional programming. In Proeedings Fifth Interna-tional Conferene on Software Reuse, Vitoria, B.C., Canada, June 1998.IEEE.
[3℄ Jonathan R. Bahrah and Keith Playford. The Java syntati exten-der (JSE). In Proeedings of the 2001 ACM Conferene on Objet-Oriented Programming Systems, Languages and Appliations (OOPSLA2001). ACM, 2001.
[4℄ Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: tools for im-plementing domain-spei� languages. In Proeedings Fifth InternationalConferene on Software Reuse, pages 143{53, Vitoria, B.C., Canada,June 1998. IEEE.
[5℄ Alan Bawden. First-lass maros have types. In Conf. Re. POPL '00:27th ACM Symp. Prin. of Prog. Langs., pages 133{141, 2000.

171

[6℄ Alan Bawden and Jonathan Rees. Syntati losures. In Conferene onLISP and Funtional Programming, pages 86{95, 1988.
[7℄ C. Brabrand and M. Shwartzbah. Growing languages withmetamorphi syntax maros, 2000. Submitted for publiation;http://www.bris.dk/bigwig/.
[8℄ Lua Cardelli, Florian Matthes, and Mart��n Abadi. Extensible grammarsfor language speialization. In Proeedings of the Fourth InternationalWorkshop on Database Programming Languages, August 1993, Manhat-tan, New York. Springer Verlag, 1994.
[9℄ Lua Cardelli, Florian Matthes, and Mart��n Abadi. Extensible syntaxwith lexial soping. SRC Researh Report 121, Digital Equipment Corpo-ration, 1994. ftp://gatekeeper.de.om/pub/DEC/SRC/researh-reports/.
[10℄ Stephen Paul Carl. Syntati exposures { a lexially-soped maro failityfor extensible languages. Master's thesis, University of Texas at Austin,1996. ftp://ftp.s.utexas.edu/pub/garbage/arl-msthesis.ps.
[11℄ Shigeru Chiba. A metaobjet protool for C++. In Proeedings of the1995 ACM Conferene on Objet-Oriented Programming Systems, Lan-guages and Appliations (OOPSLA 1995), 1995.
[12℄ H. Christiansen. A survey of adaptable grammars. SIGPLAN Noties,25(11):35{44, 1990.
[13℄ Will Clinger and Jonathan Rees. Maros that work. In Conferene Reordof the Eighteenth Annual ACM Symposium on Priniples of ProgrammingLanguages, pages 155{162, January 1991.172

[14℄ R. Kent Dybvig. The Sheme Programming Language. Prentie Hall,seond edition, 1996.
[15℄ Jay Earley. An EÆient Context-free Parsing Algorithm. PhD thesis,Carnegie-Mellon University, 1968.
[16℄ Jay Earley. An eÆient ontext-free parsing algorithm. Communiationsof the ACM, 13(2):94{102, February 1970.
[17℄ Paul Graham. On Lisp. Prentie Hall, 1994.
[18℄ J. Heering, P. Klint, and J. Rekers. Inremental generation of parsers.IEEE Transations on Software Engineering, 16(12):1344{1351, 1990.Also in SIGPLAN noties 24(7):179-191, 1989.
[19℄ IBM. IBM developerWorks - Open Soure Software - Jikes' Home.http://oss.software.ibm.om/developerworks/opensoure/jikes/.
[20℄ ISO. PL/I. Tehnial Report 6160, ISO, 1979.
[21℄ Steven C. Johnson. Ya: Yet another ompiler ompiler. In UNIXProgrammer's Manual, volume 2, pages 353{387. Holt, Rinehart, andWinston, New York, NY, USA, 1979.
[22℄ Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984.
[23℄ Brian W. Kernighan and Dennis M. Rithie. The C Programming Lan-guage. Prentie Hall, seond edition, 1988.
[24℄ G. Kizales, J. des Rivieres, and D. G. Bobrow. The Art of the MetaobjetProtool. MIT Press, 1991.

173

[25℄ Eugene Kohlbeker, Daniel P. Friedman, Matthias Felleisen, and BrueDuba. Hygieni maro expansion. In 1986 ACM Conferene on Lisp andFuntional Programming, pages 151{159, 1986.
[26℄ Shriram Krishnamurthi. Linguisti Reuse. PhD thesis, Rie University,2001.
[27℄ Shriram Krishnamurthi, Matthias Felleisen, and Brue F. Duba. Frommaros to reusable generative programming. Tehnial Report TR 00-364, Rie University, 2000. http://www.s.neu.edu/sheme/pubs/tr00-364.ps.gz.
[28℄ John Lamping, Gregor Kizales, Luis Rodriguez, and Erik Ruf. An arhi-teture for an open ompiler. In Proeedings of the International Work-shop on Reetion and Meta-Level Arhiteture, 1992.
[29℄ X/Open Company Ltd. DCE: Remote proedure all.Tehnial Report P312, X/Open Company Ltd., 1995.http://www.linuxworld.om/linuxworld/lw-1999-09/lw-09-orba 1-2.html.
[30℄ Philippe MLean and R. Nigel Horspool. A faster Earley parser. InProeedings of the International Conferene on Compiler Constrution,pages 281{293, 1996.
[31℄ M. Nakamura and K. Ogata. The evaluation strategy for head normalform with and without on-demand ags. In In Pro. of 3rd InternationalWorkshop on Rewriting Logi and its Appliations, WRLA'00, volume 36of Eletroni Notes in Theoretial Computer Siene. Elsevier Sienes,2001.

174

[32℄ Masaki Nakamura. Evaluation Strategies for Term Rewriting Systems.PhD thesis, Japan Advaned Institute of Siene and Tehnology, 2002.
[33℄ Christian Queinne. Lisp in Small Piees. University of Cambridge, 1994.
[34℄ Tim Sheard and Neal Nelson. Type safe abstrations using program gen-erators. Tehnial Report 95-013, Oregon Graduate Institute of Sieneand Tehnology, 1995.
[35℄ John N. Shutt. Reursive adaptable grammars. Master's thesis, WoresterPolytehni Institute, 1993.
[36℄ C. Simonyi. The death of omputer languages, the birth of intentionalprogramming. Mirosoft Tehnial Report MSR-TR-95-52, Mirosoft Re-searh, 1995.
[37℄ Mark Stikel and Rihard Waldinger. Dedutive omposition of astro-nomial software from subroutine libraries. In Twelfth International Con-ferene on Automated Dedution, pages 341{355, June 1994.
[38℄ Christopher Strahey. Fundamental onepts in programming languages.Higher-Order and Symboli Computation, 13(1/2):11{49, 2000.
[39℄ Gregory T. Sullivan. Aspet-oriented programming using reetion andmetaobjet protools. Communiations of the ACM, 44(10):95{97, 2001.
[40℄ M. Tomita. EÆient Parsing for Natural Language. Kluwer, 1985.
[41℄ Steve Upstill. The Renderman Companion: A Programmer's Guide toRealisti Computer Graphis. Addison-Wesley, 1990.

175

[42℄ Arie van Deursen. The stati semantis of pasal. In Arie van Deursen,Jan Heering, and Paul Klint, editors, Language Prototyping: An AlgebraiSpei�ation Approah, number 5 in AMAST Series in Computing, pages31{52. World Sienti�, 1996.
[43℄ Eelo Visser. Meta-programming with onrete objet syntax. TehnialReport UU-CS-2002-028, Institute of Information and Computing Si-enes, Utreht University, 2002. To appear in LNCS, Otober, 2002.
[44℄ Mason Woo, Jakie Neider, Tom Davis, and Dave Shreiner. OpenGLProgramming Guide. Addison-Wesley, third edition, 1999.

176

Vita
Donovan Mihael Kolbly was born in Apple Valley, California on Otober 30,1967, the son of Phyllis Stevenson Kolbly and Rihard Bauer Kolbly. Afterompleting his High Shool eduation at Barstow High Shool in Barstow,California, he entered the Physis program at California State PolytehniUniversity, Pomona. He reeived a Bahelor of Siene degree from that insti-tution in Marh 1990. During the summer of 1990, he attended an extensionprogram of the University of New Mexio in Los Alamos, New Mexio. Inthe Fall of that year, he entered the Graduate Shool at the University ofTexas at Austin in the Physis department. In 1991, he transfered to theComputer Sienes department, and obtained a Master of Siene degree inDeember 1994.
Permanent Address: 8710 Mosquero CirleAustin, Texas 78748
This dissertation was typeset with LATEX2" by the author.

177

