
Representing Linear Algebra Algorithms in Code:The FLAME APIFLAME Working Note #10Robert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712rvdg�s.utexas.eduJanuary 8, 2003AbstratThe Formal Linear Algebra Methods Environment (FLAME) enompasses a methodology for derivingprovably orret algorithms for dense linear algebra operations as well as an approah to representing(oding) the resulting algorithms. Central to the philosophy underlying FLAME are the observationsthat it is at a high level of abstration that one best reasons about the orretness of algorithms, thattherefore algorithms should themselves be expressed at a high level of abstration, and that odes thatimplement suh algorithms should themselves use an Appliation Programming Interfae (API) thataptures this high level of abstration. A key observation is that in reasoning about algorithms intriateindexing is typially avoided and it is with the introdution of intriate indexing that programming errorsare often enountered and on�dene in ode is deminished. Thus a arefully designed API avoids expliitindexing whenever possible.In this paper, we demonstrate how to onstrut one suh API for oding linear algebra libraries inthe C programming language. The emphasis is on properties that suh APIs should embrae rather thanthe details of the partiular API. Indeed, it should be obvious how similar interfaes an be de�ned forother languages, inluding Fortran, C++, and MATLAB M-sript.1 IntrodutionThis paper is the fourth in a series that illustrate to the high-performane linear algebra library ommunitythe bene�ts of the formal derivation of algorithms.� The �rst paper [12℄ gave a broad outline of the approah, introduing the onept of formal derivationand its appliation to dense linear algebra algorithms. In that paper we also showed that by introduingan Appliation Programming Interfae (API) for oding the provably orret algorithms, laims aboutthe orretness of the algorithms allow laims about the orretness of the implementation to be made.Finally, we showed that exellent performane an be attained. The primary vehile for illustratingthe tehniques in that paper was the LU fatorization.� We showed that the method applies to more omplex operations in the seond paper [21℄. In that paperwe showed how a large number of new high-performane algorithms for the solution of the triangularSylvester equation an be derived using the methodology.� The third paper foused primarily on the derivation method [5℄. In partiular, that paper ontains astep-by-step \reipe" that novie and veteran alike an use to rapidly derive orret algorithms.1

In a number of less-detailed workshop papers we also presented some of the above mentioned material [14, 4℄.This paper makes the following ontributions:� While in the previous papers we alluded at an API that allows ode to reet algorithms that havebeen derived to be orret, in this paper we expliitly give this API. By allowing the ode to loselymirror the algorithms as they are naturally presented as a result of the derivation proess, the provenorretness of the algorithms provides a high degree of on�dene in the orretness of the ode.� We show that intriate indexing that is avoided when reasoning about the orretness of algorithmsan also be avoided when oding.� We show that by disarding onventional wisdom related to the order in whih input and outputparameters should appear in the alling sequene of a routine, formating an be used to further allowthe ode to mirror the algorithm.We purposely emphasize how to apture the high level of abstration used in presenting the algorithms ratherthan the partiular details of the interfae itself. This will allow one to de�ne similar interfaes for otherlanguages, suh as Fortran, C++, and Matlab M-sript [20℄. Indeed, we have also de�ned similar interfaesfor these languages. Nonetheless, while this paper illustrates one possible interfae, the FLAMEinterfae, as presented, has been an invaluable teahing tool for undergraduate and graduateourses that inlude the topi of high-performane omputing [13, 6℄.Those familiar with our Parallel Linear Algebra Pakage (PLAPACK) [2, 23℄ will reognize that many ofthe same observations were inorporated into the API for that pakage a half deade ago. In partiular, thePLAPACK API avoids indexing muh like FLAME does. However, the PLAPACK approah is extended inFLAME to apitalize on the very rigid struture that algorithms exhibit when developed using our derivationmethodology. The latest release of the PLAPACK API itself now also inorporates those extensions so thata parallel PLAPACK ode is almost idential to a sequential FLAME ode.This paper is organized as follows: In Setion 2, we present an example of how we represent a broad lassof linear algebra algorithms in our other papers. The most important omponents of the API are presentedin Setion 3. Performane related issues are disussed in Setion 4 followed by a few onluding remarks inSetion 5.2 A Typial Dense Linear Algebra AlgorithmIn [5℄ we introdued a methodology for the systemati derivation of provably orret algorithms for denselinear algebra algorithms. It is highly reommended that the reader beome familiar with that paper beforeproeeding with the remainder of this paper. This setion gives the minimal bakground in an attempt tomake the present paper self-ontained.The algorithms that result from the derivation proess present themselves in a very rigid format. Weillustrate this format in Fig. 1 whih gives an (unbloked) algorithm for the omputation of B := L�1B,where B is an m� n matrix and L is an m�m lower triangular matrix. This operation is often referred toas triangular solve with multiple right-hand sides (trsm). Notie that the presented algorithm was derivedin [5℄.At the top of the loop-body, it is assumed that di�erent regions of the operands L and B have been usedand/or updated in a onsistent fashion. These regions are initialized byPartition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0Here T , B, L, and R stand for Top, Bottom, Left, and Right, respetively.Note 1 Of partiular importane in the algorithm are the the single and double lines used to partition andrepartition the matries. Double lines are used to demark regions in the matries that have been used and/orupdated in a onsistent fashion. Another way of interpreting double lines is that they keep trak of how farinto the matries the omputation has progressed. 2

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT is a row and �11 is a salarbT1 := bT1 � lT10B0bT1 := L�111 bT1Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1Aenddo Figure 1: Unbloked algorithm for the trsm example.Let B̂ equal the original ontents of B and assume that B̂ is partitioned like B. At the top of the loopit will be assumed that BB ontains the original ontents B̂B while BT has been updated with the ontentsL�1TLB̂T . As part of the loop, the boundaries between these regions are moved one row and/or olumn at atime so that progress towards ompletion is made. This is aomplished byRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT is a row and �11 is a salar...Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1ANote 2 Single lines are introdued in addition to the double lines to demark regions that are to be updatedand/or used in the next step of the algorithm. Upon ompletion of the update, the regions de�ned by thedouble lines are updated to reet that the omputation has moved forward.Note 3 We adopt the often-used onvention where matries, vetors, and salars are denoted by upper-ase,lower-ase, and greek letters, respetively.Note 4 A row vetor is indiated by adding a transpose to a vetor, e.g. bT1 and lT10.The repartitioning exposes submatries that must be updated before the boundaries an be moved. Thatupdate is given by 3

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blok size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 2: Bloked algorithm for the trsm example.[m, n ℄ = size(B);for i=1:nb:mb = min(nb, m-b+1);B(i:i+b-1, :) = B(i:i+b-1, :) - ...L(i:i+b-1, 1:i-1) * B(1:i-1, :);B(i:i+b-1, :) = inv(L(i:i+b-1, i:i+b-1)) * B(i:i+b-1, :)end Figure 3: Matlab implementation of bloked trsm algorithm in Fig. 2bT1 := bT1 � lT10B0bT1 := L�111 bT1Finally, the desired result has been omputed when LTL enompasses all of L so that the loop ontinuesuntil m(LTL) 6= m(L) beomes false. Here m(X) returns the row dimension of X .Note 5 We would like to laim that the algorithm in Fig. 1 aptures how one might naturally explain apartiular algorithmi variant for omputing the solution to a triangular linear system with multiple right-hand sides.Note 6 The presented algorithm only requires one to use indies from the sets fT;Bg, fL;Rg, and f0; 1; 2g.For performane reasons it is often neessary to formulate the algorithm as a bloked algorithm as il-lustrated in Fig. 2. The performane bene�t omes from the fat that the algorithm is rih in matrixmultipliation whih allows proessors with multi-level memories to ahieve high performane [10, 3, 12, 8℄.4

Note 7 The algorithm in Fig. 2 is implemented by the Matlab ode given in Fig. 3. We would like to laimthat the introdution of indies to expliitly indiate the regions involved in the update ompliates readabilityand redues on�dene in the orretness of the Matlab implementation. Indeed, an explanation of the odewill inherently require the drawing of a piture that aptures the repartitioned matries in Fig. 2. In otherwords, someone experiened with Matlab an easily translate the algorithm in Fig. 2 into the implementationin Fig. 3. The onverse is onsiderably more diÆult.(We realize that the use of inv(L(i:i+nb-1, i:i+nb-1)) an introdue numerial instability andthat therefore one in pratie would atually ode this as the solution of a triangular system with multipleright-hand sides.)3 An Interfae for Coding Linear Algebra AlgorithmsIn this setion we introdue a set of library routines that will allow us to apture in ode linear algebraalgorithms presented in the format illustrated in the previous setion. The idea is that by making the odelook like the algorithms in Figs. 1 and 2 the opportunity for the introdution of oding errors is redued.Readers familiar with MPI [11, 22℄ and/or our own PLAPACK will reognize the programming style,objet-based programming, as being very similar to that used by those (and other) interfaes.3.1 Initializing and �nalizing FLAMEBefore using the FLAME environment one must initialize with a all tovoid FLA_Init()Purpose: Initialize FLAME.If no more FLAME alls are to be made, the environment is exited by allingvoid FLA_Finalize()Purpose: Finalize FLAME.3.2 Linear algebra objetsNotie that the following attributes desribe a matrix as it is stored in the memory of a omputer:� the datatype of the entries in the matrix, e.g., double or float,� m and n, the row and olumn dimensions of the matrix,� the address where the data is stored, and� the mapping that desribes how the two dimensional array is mapped to one dimensional memory.The following all reates an objet (desriptor) that desribes a matrix and reates spae to store theentries in the matrix:void FLA_Obj_reate(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an objet that desribes an m�n matrix and reate the assoiated storage array.Valid datatype values inludeFLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEX5

for the obvious datatypes that are ommonly enountered. The leading dimension of the array that is usedto store the matrix is itself determined inside of this all.Note 8 For simpliity, we hose to limit the storage of matries to use olumn-major storage. The leadingdimension of a matrix an be thought of as the dimension of the array in whih the matrix is embedded(whih is often larger than the row-dimension of the matrix) or as the inrement (in elements) required toaddress onseutive elements in a row of the matrix. Column-major storage is hosen to be onsistent withFortran whih is often still the hoie of language for linear algebra appliations.Sometimes it will be useful to reate a desriptor without storage for the array. This allows a matrix thathas already been stored in a onventional two-dimensional array to be attahed to an objet. The followingall reates suh a desriptor:void FLA_Obj_reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an objet that desribes an m�n matrix without reating the assoiated storagearray.One an objet has been reated without an attahed storage array, an existing two-dimensional arrayan be attahed by allingvoid FLA_Obj_attah_buffer(void *buff, int ldim, FLA_Obj *matrix)Purpose: Attah an existing bu�er that holds a matrix stored in olumn-major order with leadingdimension ldim to the objet matrix.FLAME treats vetors as speial ases of matries: an n� 1 matrix or a 1� n matrix. Thus, to reatean objet for a vetor x of length n either of the following alls will suÆe:FLA Obj reate(FLA DOUBLE, n, 1, &x);FLA Obj reate(FLA DOUBLE, 1, n, &x);n is an integer variable with value n.Similarly, FLAME treats salars as a 1� 1 matrix. Thus, to reate a objet for a salar � the followingall is made:FLA Obj reate(FLA DOUBLE, 1, 1, &alpha)A number of salars our frequently and are therefore prede�ned by FLAME:MINUS ONE, ZERO, and ONE.Often it is useful to reate a matrix that has the same datatype and dimensions as a given matrix. Forthis we provide the allvoid FLA_Obj_reate_onf_to(int trans, FLA_Obj old,FLA_Obj *matrix)Purpose: Like FLA Obj reate exept that it reates an objet with same datatype and dimensionsas old, transposing if desired.Valid values for trans inludeFLA NO TRANSPOSE and FLA TRANSPOSE.6

If trans equals FLA NO TRANSPOSE, the new objet has the same dimensions as old. Otherwise, it has thesame dimensions as the transpose of old.If an objet was reated with FLA Obj reate, FLA Obj reate without buffer, or FLA Obj reate onf to,a all to FLA Obj free is required to ensure that all spae assoiated with the objet is properly released:void FLA_Obj_free(FLA_Obj *obj)Purpose: Free all spae alloated to store data assoiated with obj.3.3 Inquiry routinesIn order to be able to work with the raw data, a number of inquiry routines an be used to aess informationabout a matrix (or vetor or salar). The datatype and row and olumn dimensions of the matrix an beextrated by allingint FLA_Obj_datatype(FLA_Obj matrix)int FLA_Obj_length (FLA_Obj matrix)int FLA_Obj_width (FLA_Obj matrix)Purpose: Extrat datatype, row, or olumn dimension of matrix, respetively.The address of the array that stores the matrix and its leading dimension an be retrieved by allingvoid *FLA_Obj_buffer(FLA_Obj matrix)int FLA_Obj_ldim (FLA_Obj matrix)Purpose: Extrat address and leading dimension of the matrix, respetively.3.4 A most useful utility routineOur approah to the implementation of algorithms for linear algebra operations starts with the arefulderivation of provably orret algorithms. The stated philosophy is that if the algorithms are orret, andthe API allows the algorithms to be oded so that the ode reets the algorithms, then the ode will beorret as well.Nonetheless, we single out one of the more useful routines in the FLAME library, whih is partiularlyhelpful for debugging:void FLA_Obj_show(har *string1, FLA_Obj A, har *format,har *string2)Purpose: Print the ontents of A.In partiular, the result ofFLA_Obj_show("A =[", A, "%lf ", "℄;");is something likeA = [< entries >℄;whih an then be fed to Matlab. This beomes useful when heking results against a Matlab implementationof an operation. 7

1 #inlude "FLAME.h"23 main()4 {5 FLA_Obj6 A, x, y;7 int8 m, n;910 FLA_Init();1112 printf("enter matrix dimensions m and n:");13 sanf("%d%d", &m, &n);1415 FLA_Obj_reate(FLA_DOUBLE, m, n, &A);16 FLA_Obj_reate(FLA_DOUBLE, m, 1, &y);17 FLA_Obj_reate(FLA_DOUBLE, n, 1, &x);1819 fill_matrix(A);20 fill_matrix(x);2122 mv_mult(A, x, y);2324 FLA_Obj_show("A = [", A, "%lf ", "℄");25 FLA_Obj_show("x = [", x, "%lf ", "℄");26 FLA_Obj_show("y = [", y, "%lf ", "℄");2728 FLA_Obj_free(&A);29 FLA_Obj_free(&y);30 FLA_Obj_free(&x);3132 FLA_Finalize();33 } Figure 4: A simple C driver for matrix-vetor multipliation.3.5 An example: matrix-vetor multipliationWe now give an example of how to use the alls introdued so far to write a simple driver routine that allsa routine that performs the matrix-vetor multipliation y = Ax.In Fig. 4 we give the driver routine.� line 1: FLAME program �les start by inluding the FLAME.h header �le.� line 5{6: FLAME objets A, x, and y, whih will hold matrix A and vetors x and y, are delared tobe of type FLA Obj.� line 10: Before any alls to FLAME routines an be made, the environment must be initialized by aall to FLA Init.� line 12{13: In our example, the user inputs the row and olumn dimension of matrix A.� line 15{17: Desriptors are reated for A, x, and y.� line 19{20: The routine in Fig. 5, desribed below, is used to �ll A and x with values.� line 22: Compute y = Ax using the routine for performing that operation given in Fig. 6.� line 24{26: Print out the ontents of A, x, and y.� line 28{30: Free the reated objets.� line 32: Finalize FLAME. 8

1 #inlude "FLAME.h"23 #define BUFFER(i, j) buff[(j)*lda + (i) ℄45 void fill_matrix(FLA_Obj A)6 {7 int datatype, m, n, lda;89 datatype = FLA_Obj_datatype(A);10 m = FLA_Obj_length(A);11 n = FLA_Obj_width (A);12 lda = FLA_Obj_ldim (A);1314 if (datatype == FLA_DOUBLE){15 double *buff;16 int i, j;1718 buff = (double *) FLA_Obj_buffer(A);1920 for (j=0; j<n; j++)21 for (i=0; i<m; i++)22 BUFFER(i,j) = i+j*0.01;23 }24 else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);25 } Figure 5: A simple routine for �lling a matrixA sample routine for �lling A and x with data is given in Fig. 5. Notie that the maro de�nition in line 3is used to aess the matrix A stored in array A using olumn-major ordering.The routine in Fig. 6 is itself a wrapper to the level 2 BLAS routine blas dgemv, a ommonly availablekernel for omputing a matrix-vetor multipliation [9℄. Notie that in order to all this routine, whihrequires parameters desribing the matrix, vetors, and salars to be expliitly passed, requires all of theinquiry routines.3.6 ViewsAs illustrated in Figs. 1 and 2, in stating a linear algorithm one may wish to partition matries likePartition B ! � BTBB � and A! � ATL ATRABL ABR �where BT has k rows and ATL is k � kWe hide ompliated indexing by introduing the the notion of a view, whih is a referene into an existingmatrix or vetor. Given that A is a desriptor of a matrix, the following all reates desriptors of the fourquadrants:void FLA_Part_2x2(FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR,int mb, int nb, int quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indiated by quadrant ismb� nb.Here quadrant an take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indiate that mb and nbindiate the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respetively.The translation of the algorithm fragment on the left results in the ode on the right9

1 #inlude "FLA.h"2 #inlude "blas.h"34 void mv_mult(FLA_Obj A, FLA_Obj x, FLA_Obj y)5 {6 int7 datatype_A, m_A, n_A, ldim_A, m_x, n_y, in_x, m_y, n_y, in_y;89 datatype_A = FLA_Obj_datatype(A);10 m_A = FLA_Obj_length(A);11 n_A = FLA_Obj_width (A);12 ldim_A = FLA_Obj_ldim (A);1314 m_x = FLA_Obj_length(x); m_y = FLA_Obj_length(y);15 n_x = FLA_Obj_width (x); n_y = FLA_Obj_width (y);161718 if (m_x == 1) {19 m_x = n_x;20 in_x = FLA_Obj_ldim(x);21 }22 else in_x = 1;2324 if (m_y == 1) {25 m_y = n_y;26 in_y = FLA_Obj_ldim(y);27 }28 else in_y = 1;2930 if (datatype_A == FLA_DOUBLE){31 double *buff_A, *buff_x, *buff_y;3233 buff_A = (double *) FLA_Obj_buffer(A);34 buff_x = (double *) FLA_Obj_buffer(x);35 buff_y = (double *) FLA_Obj_buffer(y);3637 blas_dgemv(CblasColMaj, CblasNoTrans,38 1.0, buff_A, ldim_A, buff_x, in_x,39 1.0, buff_y, in_y);40 }41 else {42 printf("datatype not yet supported\n");43 exit(0);44 }45 }Figure 6: A simple matrix-vetor multipliation routine. This routine is implemented as a wrapper to theBLAS routine blas dgemv for matrix-vetor multipliations.
10

Figure 7: FLAME implementation of unbloked trsm algorithm in Fig. 1Figure 8: FLAME implementation of bloked trsm algorithm in Fig. 2Partition A! � ATL ATRABL ABR �where ATL is mb � nb FLA_Part_2x2(A, &ATL, /**/ &ATR,/* ************** */&ABL, /**/ &ABR,mb, /* by */ nb, /* submatrix */ FLA_TL);where parameters mb and nb have values mb and nb, respetively. Examples of the use of this routine analso be found in Figs. 7 and 8.Note 9 The above example stresses the fat that the formatting of the ode as well as the areful introdutionof omments an be used to help apture the algorithm in ode. Clearly, muh of the bene�t of the API wouldbe lost if in the example the ode appeared asFLA_Part_2x2(A, &ATL, &ATR, &ABL, &ABR, mb, nb, FLA_TL);Also from Figs. 1 and 2, we notie that it is useful to be able to take a 2 � 2 partitioning of a givenmatrix A and repartition this into a 3� 3 partitioning so that submatries that need to be updated and/orused for omputation an be identi�ed. To support this, we introdue the allvoid FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Purpose: Repartition a 2 � 2 partitioning of matrix A into a 3 � 3 partitioning where mb � nbsubmatrix A11 is split from the quadrant indiated by quadrant.Here quadrant an again take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indiate that mb and nbsubmatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respetively.ThusRepartition� ATL ATRABL LBR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is mb � nbtranslates to the odeFLA_Repart_from_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,/* ************* */ /* ********************* */&A10, /**/ &A11, &A12,ABL, /**/ ABR, &A20, /**/ &A21, &A22,mb, nb, FLA_BR);where parameters mb and nb have values mb and nb, respetively. Others examples of the use of this routinean also be found in Figs. 7 and 8. 11

Note 10 The alling sequene of FLA Repart from 2x2 to 3x3 and related alls is a testimony to throwingout the onvention that input parameters should be listed before output parameters or vie versa. Notie thatis it spei�ally by mixing input and output parameters in what on the surfae may appear to be ompletehaos that the repartitioning in the algorithm an be elegantly aptured in ode.Note 11 Chosing variable names an further relate the ode to the algorithm, as is illustrated by omparing0� L00 0 0lT10 �11 0L20 l21 L22 1A and L00, l01, L02,l10t, lambda11, l12t,L20, l21, L22, ...in Figs. 1 and 7.One the ontents of the so identi�ed submatries have been updated, the desriptions of ATL, ATR,ABL, and ABR must be updated to reet that progress is being made, in terms of the regions identi�ed bythe double-lines. This moving of the double-lines is aomplished by a all tovoid FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Purpose: Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 isadded to the quadrant indiated by quadrant.This time the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) indiates to whih quadrant submatrixA11 is to be added.For example,Continue with� ATL ATRABL LBR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Atranslates to the odeFLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,A10, A11, /**/ A12,/* ************** */ /* ****************** */&ABL, /**/ &ABR, A20, A21, /**/ A22,FLA_TL);Further examples of the use of this routine an again be found in Figs. 7 and 8.Similarly, a matrix an be partitioned horizontally into two submatries with the allvoid FLA_Part_2x1(FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Purpose: Partition matrix A into a top and bottom side where the side indiated by side has mbrows.Here side an take on the values FLA TOP or FLA BOTTOM to indiate that mb indiates the row dimension ofAT or AB , respetively.Given that matrix A is already partitioned horizontally it an be repartitioned into three submatrieswith the all 12

void FLA_Repart_from_2x1_to_3x1(FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2,int mb, int side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3 � 1 partitioning where submatrixA1 with mb rows is split from the side indiated by side.Here side an take on the values FLA TOP or FLA BOTTOMn to indiate that mb submatrix A1 is partitionedfrom AT or AB , respetively.Given a 3� 1 partitioning of a given matrix A, the middle submatrix an be appended to either the �rstor last submatrix with the allvoid FLA_Cont_with_3x1_to_2x1(FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2,int side)Purpose: Update the 2�1 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indiated by side.Examples of the use of the routine that deals with the horizontal partitioning of matries an be found inFigs. 7 and 8.Finally, a matrix an be partitioned and repartitioned vertially with the allsvoid FLA_Part_1x2(FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR,int nb, int side)Purpose: Partition matrix A into a left and right side where the side indiated by side has nbolumns.and void FLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR,FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1 � 3 partitioning where submatrixA1 with nb olumns is split from the side indiated by side.Here side an take on the values FLA LEFT or FLA RIGHT. Adding the middle submatrix to the �rst or lastis now aomplished by a all tovoid FLA_Cont_with_1x3_to_1x2(FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2,int side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indiated by side.
13

3.7 Computational kernelsAll operations desribed in the last subsetion hide the details of indexing in the linear algebra objets. Toompute with and/or update data assoiated with a linear algebra objet and/or a view, one alls subroutinesthat perform the desired operations.Suh subroutines will typially take one of three forms:� subroutines oded using the FLAME interfae, or� subroutines oded using a more traditional oding style.� wrappers to highly optimized kernels,Naturally these are atually three points on a spetrum of possibilities, sine one an mix these tehniques.A subset of urrently supported operations is given in Appendix A.6. Here, we disuss how to reatesubroutines that ompute these operations. For additional information on supported funtionality, pleasevisit the webpage given at the end of this paper or [13℄.3.7.1 Subroutines oded using the FLAME interfaeThe subroutine itself ould be oded using the FLAME approah to deriving algorithms [5℄ and the interfaedesribed in this paper.For example, the implementation in Fig. 8 of the bloked algorithm given in Fig. 2 requires the updateB1 := L�111 B1 whih an be implemented by a all to the unbloked algorithm in Fig. 7.3.7.2 Subroutine oded using a more traditional oding styleNotie that there is an overhead for the abstrations that we introdue to hide indexing. For implementationsof bloked algorithms, this overhead is amortized over a suÆient amount of omputation that it is typiallynot of muh onsequene. (In the ase of the algorithm in Fig. 2 when B is m � n the indexing overheadis O(m=b) while the useful omputation is O(m2n).) However, for unbloked algorithms or algorithms thatoperate on vetors, the relative ost is more substantial. In this ase, it may beome bene�ial to ode thesubroutine using a more traditional style that exposes indies. For example, the operationFLA_Inv_sal(lambda11, b1t);an be implemented by the subroutine in Fig. 9. (Note that it is probably more eÆient to instead implementit by alling blas dsal or the equivalent BLAS routine for the appropriate datatype.)3.7.3 Wrappers to highly optimized kernelsA number of matrix and/or vetor operations have been identi�ed to be frequently used by the linearalgebra ommunity. These are generally referred to as the Basi Linear Algebra Subprograms (BLAS) [19,9, 8℄. Sine highly optimized implementations of these operations are supported by widely available libraryimplementations, it makes sense to provide a set of subroutines that are simply wrappers to the BLAS. Anexample of this is given in Fig. 6.4 Performane IssuesIn a number of papers that were already mentioned in the introdution we have shown that the presented APIan be used to attain high performane for implementations of a broad range of linear algebra operations.Thus, we do not inlude a traditional performane setion. Instead, we disuss some of the issues.Conventional wisdom used to ditate that raising the level of abstration at whih one odes will adverselyimpat the performane of the implementation. We, like others, disagree for a number of reasons:14

1 #inlude "FLA.h"23 void FLA_Inv_sal(FLA_Obj alpha, FLA_Obj x)4 {5 int datatype_alpha, datatype_x, n_x, in_x, i;6 double *buffer_alpha, *buffer_x, inv_alpha;78 datatype_alpha = FLA_Obj_datatype(alpha);9 datatype_x = FLA_Obj_datatype(x);1011 if (datatype_alpha != FLA_DOUBLE ||12 datatype_x != FLA_DOUBLE){13 printf("datatype not yet supported\n");14 exit(0);15 }1617 n_x = FLA_Obj_length(x);18 in_x = 1;1920 if (n_x == 1){21 n_x = FLA_Obj_width(x);22 in_x = FLA_Obj_ldim(x);23 }2425 buffer_alpha = (double *) FLA_Obj_buffer(alpha);26 buffer_x = (double *) FLA_Obj_buffer(x);2728 inv_alpha = 1.0 / *buffer_alpha;2930 for (i=0; i<n_x; i++)31 *buffer_x++ *= inv_alpha;3233 /* For BLAS based implementation, omment out above loop34 and unomment the below all to blas_dsal */3536 /* blas_dsal(n_x, inv_alpha, buffer_x, in_x); */37 } Figure 9: Sample implementation of FLA Inv sal.� By raising the level of abstration, more ambitious algorithms an be implemented whih an ahievehigher performane [12, 21, 14, 4, 2, 23℄.One an, of ourse, argue that these same algorithms an also be implemented at a lower level ofabstration. While this is true for individual operations, implementing entire libraries at a low level ofabstration greatly inreases the e�ort required to implement, maintain, and verify orretness.� One implementations are implemented with an API at a high level of abstration, omponents an beseletively optimized at a low level of abstration. We learn from this that the API must be designedto easily aommodate this kind of optimization, as is also disussed in Setion 3.7.� Reent ompiler tehnology (e.g., [16, 18, 17, 15℄) allows library developers to speify dependeniesbetween routines at a high level of abstration whih allows ompilers to optimizes between layers.of libraries, automatially ahieving the kinds of optimizations that would otherwise be performed byhand.� Other situations in whih abstration o�ers the opportunity for higher performane inlude severalmathematial libraries and C++ optimization tehniques as well. For example, PMLP [7℄ uses C++templates to support many di�erent storage formats, thereby deoupling storage format from algorith-mi orretness in lasses of sparse linear algebra, thus allowing this degree of freedom to be exploredfor optimizing performane. Also, PMLP features operation sequenes and non-bloking operations15

in order to allow sheduling of mathematial operations asynhronously from user threads. Templatemeta-programming and expression templates support onepts inluding ompile-time optimizationsinvolving loop fusion, expression simpli�ation, and removal of unneessary temporaries; these allowC++ to utilize fast kernels while removing abstration barriers between kernels, and further abstra-tion barriers between sequenes of user operations (systems inlude Blitz++ [24℄ and PETE [1℄). Thesetehniques, in onjuntion with an appropriate FLAME-like API for C++, should allow our algorithmsto be expressed at a high level of abstration without ompromising performane.Note 12 The lesson to be learned is that by raising the level of abstration, a high degree of on�dene inthe orretness of the implementation an be ahieved while more aggressive optimizations, by hand or by aompiler, an simultaneously be failitated.5 ConlusionIn this paper, we have presented a simple interfae for implementing linear algebra algorithms. In isolation,the interfae illustrates how raising the level of abstration at whih one odes allows one to avoid intriateindexing in the ode, whih redues the opportunity for the introdution of errors and raises the on�deneof the orretness of the ode. In ombination with our formal derivation methodology, the API an be usedto implement algorithms derived using that methodology so that the proven orretness of those algorithmstranslates to a high degree of on�dene in the implementation.We again emphasize that the presented API is merely a very simple one that illustrates the issues. Similarinterfaes for the Fortran, C++, Matlab M-sript, and other languages are easily de�ned, allowing speialfeatures of those languages to be used to even further raise the level of abstration at whih one odes. Inaddition, the API an be extended to inorporate di�erent datastrutures for storing matries or to allowhierarhial matries to be de�ned. (The latter an be ahieved by simply allowing FLA Obj as a datatype,whih would indiate that eah entry in the matrix is itself a matrix objet.)Further InformationPlease visit http://www.s.utexas.edu/users/flame/.AknowledgmentsAn ever-growing number of people have ontributed to date to the methodology that underlies the FormalLinear Algebra Methods Environment. These inlude� UT-Austin: Paolo Bientinesi, Mark Hinga, Dr. Margaret Myers, Vinod Valsalam, and Thierry Jo�rain.� IBM's T.J. Watson Researh Center: Dr. John Gunnels and Dr. Fred Gustavson.� University of Jaume I, Spain: Prof. Enrique Quintana Ort��.� Intel: Dr. Greg Henry.� Mississippi State University: Prof. Anthony Skjellum and Wenhao Wu.In addition, numerous students in undergraduate and graduate ourses on high-performane omputing atUT-Austin have provided valuable feedbak.
16

Referenes[1℄ PETE, the portable expression template engine. http://www.al.lanl.gov/pete Date of aess: Ot 24th,2002.[2℄ Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robertvan de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra pakage { design overview. InProeedings of SC97, 1997.[3℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.MKenney, S. Ostrouhov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[4℄ Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. Myers, Enrique S.Quintana-Orti, and Robert A. van de Geijn. The siene of programming high-performane linearalgebra libraries. In Proeedings of Performane Optimization for High-Level Languages and Libraries(POHLL-02) , a workshop in onjuntion with the 16th Annual ACM International Conferene onSuperomputing (ICS'02), 2002.[5℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort�i, and Robert A. van deGeijn. The siene of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. submitted.[6℄ Paolo Bientinesi and Robert A. van de Geijn. Developing linear algebra algorithms: Class projetsSpring 2002. Tehnial Report CS-TR-02-??, Department of Computer Sienes, The University ofTexas at Austin, June 2002. In preparation. http://www.s.utexas.edu/users/flame/pubs/.[7℄ L. Birov, A. Purkayastha, A. Skjellum, Y. Dandass, and P. V. Bangalore. PMLP home page.http://www.er.msstate.edu/labs/hpl/pmlp, 1998.[8℄ Jak J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Marh 1990.[9℄ Jak J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Rihard J. Hanson. An extended set ofFORTRAN basi linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Marh 1988.[10℄ Jak J. Dongarra, Iain S. Du�, Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear Systemson Vetor and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.[11℄ W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 1994.[12℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, Deember 2001.[13℄ John A. Gunnels and Robert A. van de Geijn. Developing linear algebra algorithms: A olletion oflass projets. Tehnial Report CS-TR-01-19, Department of Computer Sienes, The University ofTexas at Austin, May 2001. http://www.s.utexas.edu/users/flame/.[14℄ John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performane linear algebralibraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Arhiteture of Sienti�Software, pages 193{210. Kluwer Aademi Press, 2001.[15℄ Samuel Z. Guyer, Emery Berger, and Calvin Lin. Customizing software libraries for performane porta-bility. In 10th SIAM Conferene on Parallel Proessing for Sienti� Computing, Marh 2001.[16℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In SeondConferene on Domain Spei� Languages, pages 39{52, Otober 1999.[17℄ Samuel Z. Guyer and Calvin Lin. Broadway: A Software Arhiteture for Sienti� Computing, pages175{192. Kluwer Aademi Press, Otober 2000.17

[18℄ Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performane software libraries. In Languagesand Compilers for Parallel Computing, pages 221{238, August 2000.[19℄ C. L. Lawson, R. J. Hanson, D. R. Kinaid, and F. T. Krogh. Basi linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[20℄ C. Moler, J. Little, and S. Bangert. Pro-Matlab, User's Guide. The Mathworks, In., 1987.[21℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms for the triangularSylvester equation. ACM Trans. Math. Soft. onditionally aepted.[22℄ Mar Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jak Dongarra. MPI: TheComplete Referene. The MIT Press, 1996.[23℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pakage. The MIT Press, 1997.[24℄ Todd Veldhuizen et al. Blitz++. URL:http://monet.uwaterloo.a/blitz/.

18

A Summary of FLAME routinesIn this appendix, we list a number of routines supported as part of the urrent implementation of the FLAMElibrary. Those experiened with linear algebra libraries will reognize most routines as implementing thefuntionality of the BLAS.A.1 NotationIn the desriptions of the below disussed routine, we use the following onventions:� Matries, vetors, and salar are denoted by upper-ase, lower-ase, and lower-ase Greek letters,respetively.� Transposition: optrans(X) = 8>><>>: X if trans == FLA NO TRANSPOSEXT if trans == FLA TRANSPOSEXC if trans == FLA CONJ TRANSPOSE�X if trans == FLA CONJUGATE :� Triangular matries: Parameter uplo is used to indiate whether a triangular matrix is stored in thelower or upper triangular part of array A. This parameter an take on the values FLA LOWER TRIANGULARand FLA UPPER TRIANGULAR. Parameter diag is used to indiate the values of the diagonal elements ofmatrix A: diag Values on the diagonal of AFLA NONUNIT DIAG As stored in A.FLA UNIT DIAG Impliitly take all diagonal elements to equal one.FLA ZERO DIAG Impliitly take all diagonal elements to equal zero.� Symmetri matries: Only the upper or lower triangular part of a symmetri matrix is stored, asindiated by parameter uplo:uplo Storage of matrixFLA LOWER TRIANGULAR Only lower triangular part of matrix is stored.FLA UPPER TRIANGULAR Only upper triangular part of matrix is stored.Notie that the values in the other part of the matrix annot be disturbed and/or used.� Unless spei�ed otherwise, all routines are of type void.A.2 Initializing and �nalizing FLAMEFLA_Init()Initialize FLAME.FLA_Finalize()Finalize FLAME.
19

A.3 Linear algebra objetsFLA_Obj_reate(int datatype, int m, int n, FLA_Obj *matrix)Create an objet that desribes an m� n matrix and reate the assoiated storage array.FLA_Obj_reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Create an objet that desribes an m� n matrix without reating the assoiated storage array.FLA_Obj_attah_buffer(*buff, int ldim, FLA_Obj *matrix)Attah an existing bu�er that holds a matrix stored in olumn-major order with leading dimension ldim to the objetmatrix.FLA_Obj_reate_onf_to(int trans, FLA_Obj old, FLA_Obj *matrix)Like FLA Obj reate exept that it reates an objet with same datatype and dimensions as old, transposing if desired.FLA_Obj_free(FLA_Obj *obj)Free all spae alloated to store data assoiated with obj.int FLA_Obj_datatype(FLA_Obj matrix)Extrat datatype of matrix.int FLA_Obj_length(FLA_Obj matrix)Extrat row dimension of matrix.int FLA_Obj_width(FLA_Obj matrix)Extrat olumn dimension of matrix.void *FLA_Obj_buffer(FLA_Obj matrix)Extrat the address where the matrix is stored.int FLA_Obj_ldim(FLA_Obj matrix)Extrat the leading dimension for the array in whih the matrix is stored.A.4 ViewsFLA_Part_2x2(FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR, int mb, int nb, int quadrant)Partition matrix A into four quadrants where the quadrant indiated by quadrant is mb� nb.FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Repartition a 2 � 2 partitioning of matrix A into a 3 � 3 partitioning where mb � nb submatrix A11 is split from thequadrant indiated by quadrant.FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 is added to the quadrant indiatedby quadrant.FLA_Part_2x1(FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Partition matrix A into a top and bottom side where the side indiated by side has mb rows.FLA_Repart_from_2x1_to_3x1(FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2, int mb, int side)Repartition a 2 � 1 partitioning of matrix A into a 3 � 1 partitioning where submatrix A1 with mb rows is split fromthe side indiated by side. 20

FLA_Cont_with_3x1_to_2x1(FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2, int side)Update the 2� 1 partitioning of matrix A by moving the boundaries so that A1 is added to the side indiated by side.FLA_Part_1x2(FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR, int nb, int side)Partition matrix A into a left and right side where the side indiated by side has nb olumnsFLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR,FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Repartition a 1 � 2 partitioning of matrix A into a 1 � 3 partitioning where submatrix A1 with nb olumns is splitfrom the side indiated by side.FLA_Cont_with_1x3_to_1x2(FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2, int side)Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is added to the side indiated by side.A.5 Printing the ontents of an objetFLA_Obj_show(har *string1, FLA_Obj A, har *format, har *string2)Print the ontents of A.A.6 Subset of supported operationsFLA_Axpy(FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �A+ B.FLA_Axpy_x(int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A) +B.FLA_Copy(FLA_Obj A, FLA_Obj B)B := A.FLA_Copy_x(int trans, FLA_Obj A, FLA_Obj B)B := optrans(A).FLA_Dot(FLA_Obj x, FLA_Obj y, FLA_Obj rho)� := xT y.FLA_Dot_x(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj beta, FLA_Obj rho)� := �xT y + ��.FLA_Gemm(int transa, int transb, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �optransa(A)optransb(B) + �C.FLA_Gemv(int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �optrans(A)x+ �y.FLA_Ger(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A)A := �xyT + A.FLA_Iamax(FLA_Obj x, FLA_Obj k)Compute index k suh that j�kj = kxk1. Note: This operation only works when x has unit row or olumn dimension.FLA_Invert(FLA_Obj alpha)� := 1=�.FLA_Inv_sal(FLA_Obj alpha, FLA_Obj A)A := 1�A. 21

FLA_Negate(FLA_Obj A)A := �A.FLA_Nrm1(FLA_Obj A, FLA_Obj alpha)� := kAk1.FLA_Nrm2(FLA_Obj x, FLA_Obj alpha)� := kxk2. Note: This operation only works when x has unit row or olumn dimension.FLA_Nrm_inf(FLA_Obj A, FLA_Obj alpha)� := kAk1.FLA_Obj_set_to_one(FLA_Obj A)Set all elements of A to one.FLA_Obj_set_to_zero(FLA_Obj A)Set all elements of A to zero.FLA_Random_matrix(FLA_Obj A)Fill A with random values in the range (�1; 1).FLA_Sal(FLA_Obj alpha, FLA_Obj A)A := �A.FLA_Set_diagonal(FLA_Obj sigma, FLA_Obj A)Set the diagonal of A to �I. All other values in A are una�eted.FLA_Shift_spetrum(FLA_Obj alpha, FLA_Obj sigma, FLA_Obj A)A := A+ ��I.FLA_Sqrt(FLA_Obj alpha)� := p�. Note: A must desribe a salar.FLA_Swap(FLA_Obj A, FLA_Obj B)A;B := B;A.FLA_Swap_x(int trans, FLA_Obj A, FLA_Obj B)A;B := optrans(A); optrans(B).FLA_Symm(int side, int uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �AB + �C or C := �BA + �C, where A is symmetri, side indiates the side from whih A multiplies B, uploindiates whether A is stored in the upper or lower triangular part of A.FLA_Symmetrize(int uplo, int onj, FLA_Obj A)A := symm(A) or A := herm(A), where uplo indiates whether A is originally stored only in the upper or lowertriangular part of A.FLA_Symv(int uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �Ax+ �y, where A is symmetri and stored in the upper or lower triangular part of A, as indiated by uplo.FLA_Syr(int uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A)A := �xxT +A, where A is symmetri and stored in the upper or lower triangular part of A, as indiated by uplo.FLA_Syr2(int uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A)A := �xyT + �yxT + A, where A is symmetri and stored in the upper or lower triangular part of A, as indiated byuplo.FLA_Syr2k(int uplo, int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �(optrans(A)optrans(B)T + optrans(B)optrans(A)T + �C, where C is symmetri and stored in the upper or lowertriangular part of C, as indiated by uplo.FLA_Syrk(int uplo, int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj beta, FLA_Obj C)C := �optrans(A)optrans(A)T + �C, where C is symmetri and stored in the upper or lower triangular part of C, asindiated by uplo. 22

FLA_Triangularize(int uplo, int diag, FLA_Obj A)A := lower(A) or A := upper(A).FLA_Trmm(int side, int uplo, int trans, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A)B (side == FLA LEFT) or B := �Boptrans(A) (side == FLA RIGHT). where A is upper or lowertriangular, as indiated by uplo.FLA_Trmm_x(int side, int uplo, int transa, int transb, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C)C := �optransa(A)optransb(B) + �C (side == FLA LEFT) or C := �optransb(B)optransa(A) + �C (side == FLA RIGHT)where A is upper or lower triangular, as indiated by uplo.FLA_Trmv(int uplo, int trans, int diag, FLA_Obj A, FLA_Obj x)x := optrans(A)x, where A is upper or lower triangular, as indiated by uplo.FLA_Trmv_x(int uplo, int trans, int diag, FLA_Obj alpha,FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)Update y := �optrans(A)x+ �y, where A is upper or lower triangular, as indiated by uplo.FLA_Trsm(int side, int uplo, int trans, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A)�1B (SIDE == FLA LEFT) or B := �Boptrans(A)�1 (SIDE == FLA RIGHT) where A is upper or lowertriangular, as indiated by uplo.FLA_Trsm_x(int side, int uplo, int transa, int transb, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C)C := �optransa(A)�1optransb(B) + �C (SIDE == FLA LEFT) or C := �optransb(B)optransa(A)�1 + �C (SIDE ==FLA RIGHT) where A is upper or lower triangular, as indiated by uplo.FLA_Trsv(int uplo, int trans, int diag, FLA_Obj A, FLA_Obj x)x := optrans(A)�1x, where A is upper or lower triangular, as indiated by uplo.FLA_Trsv_x(int uplo, int trans, int diag, FLA_Obj alpha,FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �optrans(A)�1x+ �y, where A is upper or lower triangular, as indiated by uplo.

23

