
Representing Linear Algebra Algorithms in Code:The FLAME APIFLAME Working Note #10Robert A. van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712rvdg�
s.utexas.eduJanuary 8, 2003Abstra
tThe Formal Linear Algebra Methods Environment (FLAME) en
ompasses a methodology for derivingprovably
orre
t algorithms for dense linear algebra operations as well as an approa
h to representing(
oding) the resulting algorithms. Central to the philosophy underlying FLAME are the observationsthat it is at a high level of abstra
tion that one best reasons about the
orre
tness of algorithms, thattherefore algorithms should themselves be expressed at a high level of abstra
tion, and that
odes thatimplement su
h algorithms should themselves use an Appli
ation Programming Interfa
e (API) that
aptures this high level of abstra
tion. A key observation is that in reasoning about algorithms intri
ateindexing is typi
ally avoided and it is with the introdu
tion of intri
ate indexing that programming errorsare often en
ountered and
on�den
e in
ode is deminished. Thus a
arefully designed API avoids expli
itindexing whenever possible.In this paper, we demonstrate how to
onstru
t one su
h API for
oding linear algebra libraries inthe C programming language. The emphasis is on properties that su
h APIs should embra
e rather thanthe details of the parti
ular API. Indeed, it should be obvious how similar interfa
es
an be de�ned forother languages, in
luding Fortran, C++, and MATLAB M-s
ript.1 Introdu
tionThis paper is the fourth in a series that illustrate to the high-performan
e linear algebra library
ommunitythe bene�ts of the formal derivation of algorithms.� The �rst paper [12℄ gave a broad outline of the approa
h, introdu
ing the
on
ept of formal derivationand its appli
ation to dense linear algebra algorithms. In that paper we also showed that by introdu
ingan Appli
ation Programming Interfa
e (API) for
oding the provably
orre
t algorithms,
laims aboutthe
orre
tness of the algorithms allow
laims about the
orre
tness of the implementation to be made.Finally, we showed that ex
ellent performan
e
an be attained. The primary vehi
le for illustratingthe te
hniques in that paper was the LU fa
torization.� We showed that the method applies to more
omplex operations in the se
ond paper [21℄. In that paperwe showed how a large number of new high-performan
e algorithms for the solution of the triangularSylvester equation
an be derived using the methodology.� The third paper fo
used primarily on the derivation method [5℄. In parti
ular, that paper
ontains astep-by-step \re
ipe" that novi
e and veteran alike
an use to rapidly derive
orre
t algorithms.1

In a number of less-detailed workshop papers we also presented some of the above mentioned material [14, 4℄.This paper makes the following
ontributions:� While in the previous papers we alluded at an API that allows
ode to re
e
t algorithms that havebeen derived to be
orre
t, in this paper we expli
itly give this API. By allowing the
ode to
loselymirror the algorithms as they are naturally presented as a result of the derivation pro
ess, the proven
orre
tness of the algorithms provides a high degree of
on�den
e in the
orre
tness of the
ode.� We show that intri
ate indexing that is avoided when reasoning about the
orre
tness of algorithms
an also be avoided when
oding.� We show that by dis
arding
onventional wisdom related to the order in whi
h input and outputparameters should appear in the
alling sequen
e of a routine, formating
an be used to further allowthe
ode to mirror the algorithm.We purposely emphasize how to
apture the high level of abstra
tion used in presenting the algorithms ratherthan the parti
ular details of the interfa
e itself. This will allow one to de�ne similar interfa
es for otherlanguages, su
h as Fortran, C++, and Matlab M-s
ript [20℄. Indeed, we have also de�ned similar interfa
esfor these languages. Nonetheless, while this paper illustrates one possible interfa
e, the FLAMEinterfa
e, as presented, has been an invaluable tea
hing tool for undergraduate and graduate
ourses that in
lude the topi
 of high-performan
e
omputing [13, 6℄.Those familiar with our Parallel Linear Algebra Pa
kage (PLAPACK) [2, 23℄ will re
ognize that many ofthe same observations were in
orporated into the API for that pa
kage a half de
ade ago. In parti
ular, thePLAPACK API avoids indexing mu
h like FLAME does. However, the PLAPACK approa
h is extended inFLAME to
apitalize on the very rigid stru
ture that algorithms exhibit when developed using our derivationmethodology. The latest release of the PLAPACK API itself now also in
orporates those extensions so thata parallel PLAPACK
ode is almost identi
al to a sequential FLAME
ode.This paper is organized as follows: In Se
tion 2, we present an example of how we represent a broad
lassof linear algebra algorithms in our other papers. The most important
omponents of the API are presentedin Se
tion 3. Performan
e related issues are dis
ussed in Se
tion 4 followed by a few
on
luding remarks inSe
tion 5.2 A Typi
al Dense Linear Algebra AlgorithmIn [5℄ we introdu
ed a methodology for the systemati
 derivation of provably
orre
t algorithms for denselinear algebra algorithms. It is highly re
ommended that the reader be
ome familiar with that paper beforepro
eeding with the remainder of this paper. This se
tion gives the minimal ba
kground in an attempt tomake the present paper self-
ontained.The algorithms that result from the derivation pro
ess present themselves in a very rigid format. Weillustrate this format in Fig. 1 whi
h gives an (unblo
ked) algorithm for the
omputation of B := L�1B,where B is an m� n matrix and L is an m�m lower triangular matrix. This operation is often referred toas triangular solve with multiple right-hand sides (trsm). Noti
e that the presented algorithm was derivedin [5℄.At the top of the loop-body, it is assumed that di�erent regions of the operands L and B have been usedand/or updated in a
onsistent fashion. These regions are initialized byPartition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0Here T , B, L, and R stand for Top, Bottom, Left, and Right, respe
tively.Note 1 Of parti
ular importan
e in the algorithm are the the single and double lines used to partition andrepartition the matri
es. Double lines are used to demark regions in the matri
es that have been used and/orupdated in a
onsistent fashion. Another way of interpreting double lines is that they keep tra
k of how farinto the matri
es the
omputation has progressed. 2

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT is a row and �11 is a s
alarbT1 := bT1 � lT10B0bT1 := L�111 bT1Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1Aenddo Figure 1: Unblo
ked algorithm for the trsm example.Let B̂ equal the original
ontents of B and assume that B̂ is partitioned like B. At the top of the loopit will be assumed that BB
ontains the original
ontents B̂B while BT has been updated with the
ontentsL�1TLB̂T . As part of the loop, the boundaries between these regions are moved one row and/or
olumn at atime so that progress towards
ompletion is made. This is a

omplished byRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT is a row and �11 is a s
alar...Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1ANote 2 Single lines are introdu
ed in addition to the double lines to demark regions that are to be updatedand/or used in the next step of the algorithm. Upon
ompletion of the update, the regions de�ned by thedouble lines are updated to re
e
t that the
omputation has moved forward.Note 3 We adopt the often-used
onvention where matri
es, ve
tors, and s
alars are denoted by upper-
ase,lower-
ase, and greek letters, respe
tively.Note 4 A row ve
tor is indi
ated by adding a transpose to a ve
tor, e.g. bT1 and lT10.The repartitioning exposes submatri
es that must be updated before the boundaries
an be moved. Thatupdate is given by 3

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blo
k size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 2: Blo
ked algorithm for the trsm example.[m, n ℄ = size(B);for i=1:nb:mb = min(nb, m-b+1);B(i:i+b-1, :) = B(i:i+b-1, :) - ...L(i:i+b-1, 1:i-1) * B(1:i-1, :);B(i:i+b-1, :) = inv(L(i:i+b-1, i:i+b-1)) * B(i:i+b-1, :)end Figure 3: Matlab implementation of blo
ked trsm algorithm in Fig. 2bT1 := bT1 � lT10B0bT1 := L�111 bT1Finally, the desired result has been
omputed when LTL en
ompasses all of L so that the loop
ontinuesuntil m(LTL) 6= m(L) be
omes false. Here m(X) returns the row dimension of X .Note 5 We would like to
laim that the algorithm in Fig. 1
aptures how one might naturally explain aparti
ular algorithmi
 variant for
omputing the solution to a triangular linear system with multiple right-hand sides.Note 6 The presented algorithm only requires one to use indi
es from the sets fT;Bg, fL;Rg, and f0; 1; 2g.For performan
e reasons it is often ne
essary to formulate the algorithm as a blo
ked algorithm as il-lustrated in Fig. 2. The performan
e bene�t
omes from the fa
t that the algorithm is ri
h in matrixmultipli
ation whi
h allows pro
essors with multi-level memories to a
hieve high performan
e [10, 3, 12, 8℄.4

Note 7 The algorithm in Fig. 2 is implemented by the Matlab
ode given in Fig. 3. We would like to
laimthat the introdu
tion of indi
es to expli
itly indi
ate the regions involved in the update
ompli
ates readabilityand redu
es
on�den
e in the
orre
tness of the Matlab implementation. Indeed, an explanation of the
odewill inherently require the drawing of a pi
ture that
aptures the repartitioned matri
es in Fig. 2. In otherwords, someone experien
ed with Matlab
an easily translate the algorithm in Fig. 2 into the implementationin Fig. 3. The
onverse is
onsiderably more diÆ
ult.(We realize that the use of inv(L(i:i+nb-1, i:i+nb-1))
an introdu
e numeri
al instability andthat therefore one in pra
ti
e would a
tually
ode this as the solution of a triangular system with multipleright-hand sides.)3 An Interfa
e for Coding Linear Algebra AlgorithmsIn this se
tion we introdu
e a set of library routines that will allow us to
apture in
ode linear algebraalgorithms presented in the format illustrated in the previous se
tion. The idea is that by making the
odelook like the algorithms in Figs. 1 and 2 the opportunity for the introdu
tion of
oding errors is redu
ed.Readers familiar with MPI [11, 22℄ and/or our own PLAPACK will re
ognize the programming style,obje
t-based programming, as being very similar to that used by those (and other) interfa
es.3.1 Initializing and �nalizing FLAMEBefore using the FLAME environment one must initialize with a
all tovoid FLA_Init()Purpose: Initialize FLAME.If no more FLAME
alls are to be made, the environment is exited by
allingvoid FLA_Finalize()Purpose: Finalize FLAME.3.2 Linear algebra obje
tsNoti
e that the following attributes des
ribe a matrix as it is stored in the memory of a
omputer:� the datatype of the entries in the matrix, e.g., double or float,� m and n, the row and
olumn dimensions of the matrix,� the address where the data is stored, and� the mapping that des
ribes how the two dimensional array is mapped to one dimensional memory.The following
all
reates an obje
t (des
riptor) that des
ribes a matrix and
reates spa
e to store theentries in the matrix:void FLA_Obj_
reate(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an obje
t that des
ribes an m�n matrix and
reate the asso
iated storage array.Valid datatype values in
ludeFLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEX5

for the obvious datatypes that are
ommonly en
ountered. The leading dimension of the array that is usedto store the matrix is itself determined inside of this
all.Note 8 For simpli
ity, we
hose to limit the storage of matri
es to use
olumn-major storage. The leadingdimension of a matrix
an be thought of as the dimension of the array in whi
h the matrix is embedded(whi
h is often larger than the row-dimension of the matrix) or as the in
rement (in elements) required toaddress
onse
utive elements in a row of the matrix. Column-major storage is
hosen to be
onsistent withFortran whi
h is often still the
hoi
e of language for linear algebra appli
ations.Sometimes it will be useful to
reate a des
riptor without storage for the array. This allows a matrix thathas already been stored in a
onventional two-dimensional array to be atta
hed to an obje
t. The following
all
reates su
h a des
riptor:void FLA_Obj_
reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an obje
t that des
ribes an m�n matrix without
reating the asso
iated storagearray.On
e an obje
t has been
reated without an atta
hed storage array, an existing two-dimensional array
an be atta
hed by
allingvoid FLA_Obj_atta
h_buffer(void *buff, int ldim, FLA_Obj *matrix)Purpose: Atta
h an existing bu�er that holds a matrix stored in
olumn-major order with leadingdimension ldim to the obje
t matrix.FLAME treats ve
tors as spe
ial
ases of matri
es: an n� 1 matrix or a 1� n matrix. Thus, to
reatean obje
t for a ve
tor x of length n either of the following
alls will suÆ
e:FLA Obj
reate(FLA DOUBLE, n, 1, &x);FLA Obj
reate(FLA DOUBLE, 1, n, &x);n is an integer variable with value n.Similarly, FLAME treats s
alars as a 1� 1 matrix. Thus, to
reate a obje
t for a s
alar � the following
all is made:FLA Obj
reate(FLA DOUBLE, 1, 1, &alpha)A number of s
alars o

ur frequently and are therefore prede�ned by FLAME:MINUS ONE, ZERO, and ONE.Often it is useful to
reate a matrix that has the same datatype and dimensions as a given matrix. Forthis we provide the
allvoid FLA_Obj_
reate_
onf_to(int trans, FLA_Obj old,FLA_Obj *matrix)Purpose: Like FLA Obj
reate ex
ept that it
reates an obje
t with same datatype and dimensionsas old, transposing if desired.Valid values for trans in
ludeFLA NO TRANSPOSE and FLA TRANSPOSE.6

If trans equals FLA NO TRANSPOSE, the new obje
t has the same dimensions as old. Otherwise, it has thesame dimensions as the transpose of old.If an obje
t was
reated with FLA Obj
reate, FLA Obj
reate without buffer, or FLA Obj
reate
onf to,a
all to FLA Obj free is required to ensure that all spa
e asso
iated with the obje
t is properly released:void FLA_Obj_free(FLA_Obj *obj)Purpose: Free all spa
e allo
ated to store data asso
iated with obj.3.3 Inquiry routinesIn order to be able to work with the raw data, a number of inquiry routines
an be used to a

ess informationabout a matrix (or ve
tor or s
alar). The datatype and row and
olumn dimensions of the matrix
an beextra
ted by
allingint FLA_Obj_datatype(FLA_Obj matrix)int FLA_Obj_length (FLA_Obj matrix)int FLA_Obj_width (FLA_Obj matrix)Purpose: Extra
t datatype, row, or
olumn dimension of matrix, respe
tively.The address of the array that stores the matrix and its leading dimension
an be retrieved by
allingvoid *FLA_Obj_buffer(FLA_Obj matrix)int FLA_Obj_ldim (FLA_Obj matrix)Purpose: Extra
t address and leading dimension of the matrix, respe
tively.3.4 A most useful utility routineOur approa
h to the implementation of algorithms for linear algebra operations starts with the
arefulderivation of provably
orre
t algorithms. The stated philosophy is that if the algorithms are
orre
t, andthe API allows the algorithms to be
oded so that the
ode re
e
ts the algorithms, then the
ode will be
orre
t as well.Nonetheless, we single out one of the more useful routines in the FLAME library, whi
h is parti
ularlyhelpful for debugging:void FLA_Obj_show(
har *string1, FLA_Obj A,
har *format,
har *string2)Purpose: Print the
ontents of A.In parti
ular, the result ofFLA_Obj_show("A =[", A, "%lf ", "℄;");is something likeA = [< entries >℄;whi
h
an then be fed to Matlab. This be
omes useful when
he
king results against a Matlab implementationof an operation. 7

1 #in
lude "FLAME.h"23 main()4 {5 FLA_Obj6 A, x, y;7 int8 m, n;910 FLA_Init();1112 printf("enter matrix dimensions m and n:");13 s
anf("%d%d", &m, &n);1415 FLA_Obj_
reate(FLA_DOUBLE, m, n, &A);16 FLA_Obj_
reate(FLA_DOUBLE, m, 1, &y);17 FLA_Obj_
reate(FLA_DOUBLE, n, 1, &x);1819 fill_matrix(A);20 fill_matrix(x);2122 mv_mult(A, x, y);2324 FLA_Obj_show("A = [", A, "%lf ", "℄");25 FLA_Obj_show("x = [", x, "%lf ", "℄");26 FLA_Obj_show("y = [", y, "%lf ", "℄");2728 FLA_Obj_free(&A);29 FLA_Obj_free(&y);30 FLA_Obj_free(&x);3132 FLA_Finalize();33 } Figure 4: A simple C driver for matrix-ve
tor multipli
ation.3.5 An example: matrix-ve
tor multipli
ationWe now give an example of how to use the
alls introdu
ed so far to write a simple driver routine that
allsa routine that performs the matrix-ve
tor multipli
ation y = Ax.In Fig. 4 we give the driver routine.� line 1: FLAME program �les start by in
luding the FLAME.h header �le.� line 5{6: FLAME obje
ts A, x, and y, whi
h will hold matrix A and ve
tors x and y, are de
lared tobe of type FLA Obj.� line 10: Before any
alls to FLAME routines
an be made, the environment must be initialized by a
all to FLA Init.� line 12{13: In our example, the user inputs the row and
olumn dimension of matrix A.� line 15{17: Des
riptors are
reated for A, x, and y.� line 19{20: The routine in Fig. 5, des
ribed below, is used to �ll A and x with values.� line 22: Compute y = Ax using the routine for performing that operation given in Fig. 6.� line 24{26: Print out the
ontents of A, x, and y.� line 28{30: Free the
reated obje
ts.� line 32: Finalize FLAME. 8

1 #in
lude "FLAME.h"23 #define BUFFER(i, j) buff[(j)*lda + (i) ℄45 void fill_matrix(FLA_Obj A)6 {7 int datatype, m, n, lda;89 datatype = FLA_Obj_datatype(A);10 m = FLA_Obj_length(A);11 n = FLA_Obj_width (A);12 lda = FLA_Obj_ldim (A);1314 if (datatype == FLA_DOUBLE){15 double *buff;16 int i, j;1718 buff = (double *) FLA_Obj_buffer(A);1920 for (j=0; j<n; j++)21 for (i=0; i<m; i++)22 BUFFER(i,j) = i+j*0.01;23 }24 else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);25 } Figure 5: A simple routine for �lling a matrixA sample routine for �lling A and x with data is given in Fig. 5. Noti
e that the ma
ro de�nition in line 3is used to a

ess the matrix A stored in array A using
olumn-major ordering.The routine in Fig. 6 is itself a wrapper to the level 2 BLAS routine
blas dgemv, a
ommonly availablekernel for
omputing a matrix-ve
tor multipli
ation [9℄. Noti
e that in order to
all this routine, whi
hrequires parameters des
ribing the matrix, ve
tors, and s
alars to be expli
itly passed, requires all of theinquiry routines.3.6 ViewsAs illustrated in Figs. 1 and 2, in stating a linear algorithm one may wish to partition matri
es likePartition B ! � BTBB � and A! � ATL ATRABL ABR �where BT has k rows and ATL is k � kWe hide
ompli
ated indexing by introdu
ing the the notion of a view, whi
h is a referen
e into an existingmatrix or ve
tor. Given that A is a des
riptor of a matrix, the following
all
reates des
riptors of the fourquadrants:void FLA_Part_2x2(FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR,int mb, int nb, int quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indi
ated by quadrant ismb� nb.Here quadrant
an take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indi
ate that mb and nbindi
ate the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respe
tively.The translation of the algorithm fragment on the left results in the
ode on the right9

1 #in
lude "FLA.h"2 #in
lude "
blas.h"34 void mv_mult(FLA_Obj A, FLA_Obj x, FLA_Obj y)5 {6 int7 datatype_A, m_A, n_A, ldim_A, m_x, n_y, in
_x, m_y, n_y, in
_y;89 datatype_A = FLA_Obj_datatype(A);10 m_A = FLA_Obj_length(A);11 n_A = FLA_Obj_width (A);12 ldim_A = FLA_Obj_ldim (A);1314 m_x = FLA_Obj_length(x); m_y = FLA_Obj_length(y);15 n_x = FLA_Obj_width (x); n_y = FLA_Obj_width (y);161718 if (m_x == 1) {19 m_x = n_x;20 in
_x = FLA_Obj_ldim(x);21 }22 else in
_x = 1;2324 if (m_y == 1) {25 m_y = n_y;26 in
_y = FLA_Obj_ldim(y);27 }28 else in
_y = 1;2930 if (datatype_A == FLA_DOUBLE){31 double *buff_A, *buff_x, *buff_y;3233 buff_A = (double *) FLA_Obj_buffer(A);34 buff_x = (double *) FLA_Obj_buffer(x);35 buff_y = (double *) FLA_Obj_buffer(y);3637
blas_dgemv(CblasColMaj, CblasNoTrans,38 1.0, buff_A, ldim_A, buff_x, in
_x,39 1.0, buff_y, in
_y);40 }41 else {42 printf("datatype not yet supported\n");43 exit(0);44 }45 }Figure 6: A simple matrix-ve
tor multipli
ation routine. This routine is implemented as a wrapper to theBLAS routine
blas dgemv for matrix-ve
tor multipli
ations.
10

Figure 7: FLAME implementation of unblo
ked trsm algorithm in Fig. 1Figure 8: FLAME implementation of blo
ked trsm algorithm in Fig. 2Partition A! � ATL ATRABL ABR �where ATL is mb � nb FLA_Part_2x2(A, &ATL, /**/ &ATR,/* ************** */&ABL, /**/ &ABR,mb, /* by */ nb, /* submatrix */ FLA_TL);where parameters mb and nb have values mb and nb, respe
tively. Examples of the use of this routine
analso be found in Figs. 7 and 8.Note 9 The above example stresses the fa
t that the formatting of the
ode as well as the
areful introdu
tionof
omments
an be used to help
apture the algorithm in
ode. Clearly, mu
h of the bene�t of the API wouldbe lost if in the example the
ode appeared asFLA_Part_2x2(A, &ATL, &ATR, &ABL, &ABR, mb, nb, FLA_TL);Also from Figs. 1 and 2, we noti
e that it is useful to be able to take a 2 � 2 partitioning of a givenmatrix A and repartition this into a 3� 3 partitioning so that submatri
es that need to be updated and/orused for
omputation
an be identi�ed. To support this, we introdu
e the
allvoid FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Purpose: Repartition a 2 � 2 partitioning of matrix A into a 3 � 3 partitioning where mb � nbsubmatrix A11 is split from the quadrant indi
ated by quadrant.Here quadrant
an again take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indi
ate that mb and nbsubmatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respe
tively.ThusRepartition� ATL ATRABL LBR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is mb � nbtranslates to the
odeFLA_Repart_from_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,/* ************* */ /* ********************* */&A10, /**/ &A11, &A12,ABL, /**/ ABR, &A20, /**/ &A21, &A22,mb, nb, FLA_BR);where parameters mb and nb have values mb and nb, respe
tively. Others examples of the use of this routine
an also be found in Figs. 7 and 8. 11

Note 10 The
alling sequen
e of FLA Repart from 2x2 to 3x3 and related
alls is a testimony to throwingout the
onvention that input parameters should be listed before output parameters or vi
e versa. Noti
e thatis it spe
i�
ally by mixing input and output parameters in what on the surfa
e may appear to be
omplete
haos that the repartitioning in the algorithm
an be elegantly
aptured in
ode.Note 11 Chosing variable names
an further relate the
ode to the algorithm, as is illustrated by
omparing0� L00 0 0lT10 �11 0L20 l21 L22 1A and L00, l01, L02,l10t, lambda11, l12t,L20, l21, L22, ...in Figs. 1 and 7.On
e the
ontents of the so identi�ed submatri
es have been updated, the des
riptions of ATL, ATR,ABL, and ABR must be updated to re
e
t that progress is being made, in terms of the regions identi�ed bythe double-lines. This moving of the double-lines is a

omplished by a
all tovoid FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Purpose: Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 isadded to the quadrant indi
ated by quadrant.This time the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) indi
ates to whi
h quadrant submatrixA11 is to be added.For example,Continue with� ATL ATRABL LBR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Atranslates to the
odeFLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,A10, A11, /**/ A12,/* ************** */ /* ****************** */&ABL, /**/ &ABR, A20, A21, /**/ A22,FLA_TL);Further examples of the use of this routine
an again be found in Figs. 7 and 8.Similarly, a matrix
an be partitioned horizontally into two submatri
es with the
allvoid FLA_Part_2x1(FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Purpose: Partition matrix A into a top and bottom side where the side indi
ated by side has mbrows.Here side
an take on the values FLA TOP or FLA BOTTOM to indi
ate that mb indi
ates the row dimension ofAT or AB , respe
tively.Given that matrix A is already partitioned horizontally it
an be repartitioned into three submatri
eswith the
all 12

void FLA_Repart_from_2x1_to_3x1(FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2,int mb, int side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3 � 1 partitioning where submatrixA1 with mb rows is split from the side indi
ated by side.Here side
an take on the values FLA TOP or FLA BOTTOMn to indi
ate that mb submatrix A1 is partitionedfrom AT or AB , respe
tively.Given a 3� 1 partitioning of a given matrix A, the middle submatrix
an be appended to either the �rstor last submatrix with the
allvoid FLA_Cont_with_3x1_to_2x1(FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2,int side)Purpose: Update the 2�1 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indi
ated by side.Examples of the use of the routine that deals with the horizontal partitioning of matri
es
an be found inFigs. 7 and 8.Finally, a matrix
an be partitioned and repartitioned verti
ally with the
allsvoid FLA_Part_1x2(FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR,int nb, int side)Purpose: Partition matrix A into a left and right side where the side indi
ated by side has nb
olumns.and void FLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR,FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1 � 3 partitioning where submatrixA1 with nb
olumns is split from the side indi
ated by side.Here side
an take on the values FLA LEFT or FLA RIGHT. Adding the middle submatrix to the �rst or lastis now a

omplished by a
all tovoid FLA_Cont_with_1x3_to_1x2(FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2,int side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indi
ated by side.
13

3.7 Computational kernelsAll operations des
ribed in the last subse
tion hide the details of indexing in the linear algebra obje
ts. To
ompute with and/or update data asso
iated with a linear algebra obje
t and/or a view, one
alls subroutinesthat perform the desired operations.Su
h subroutines will typi
ally take one of three forms:� subroutines
oded using the FLAME interfa
e, or� subroutines
oded using a more traditional
oding style.� wrappers to highly optimized kernels,Naturally these are a
tually three points on a spe
trum of possibilities, sin
e one
an mix these te
hniques.A subset of
urrently supported operations is given in Appendix A.6. Here, we dis
uss how to
reatesubroutines that
ompute these operations. For additional information on supported fun
tionality, pleasevisit the webpage given at the end of this paper or [13℄.3.7.1 Subroutines
oded using the FLAME interfa
eThe subroutine itself
ould be
oded using the FLAME approa
h to deriving algorithms [5℄ and the interfa
edes
ribed in this paper.For example, the implementation in Fig. 8 of the blo
ked algorithm given in Fig. 2 requires the updateB1 := L�111 B1 whi
h
an be implemented by a
all to the unblo
ked algorithm in Fig. 7.3.7.2 Subroutine
oded using a more traditional
oding styleNoti
e that there is an overhead for the abstra
tions that we introdu
e to hide indexing. For implementationsof blo
ked algorithms, this overhead is amortized over a suÆ
ient amount of
omputation that it is typi
allynot of mu
h
onsequen
e. (In the
ase of the algorithm in Fig. 2 when B is m � n the indexing overheadis O(m=b) while the useful
omputation is O(m2n).) However, for unblo
ked algorithms or algorithms thatoperate on ve
tors, the relative
ost is more substantial. In this
ase, it may be
ome bene�
ial to
ode thesubroutine using a more traditional style that exposes indi
es. For example, the operationFLA_Inv_s
al(lambda11, b1t);
an be implemented by the subroutine in Fig. 9. (Note that it is probably more eÆ
ient to instead implementit by
alling
blas ds
al or the equivalent BLAS routine for the appropriate datatype.)3.7.3 Wrappers to highly optimized kernelsA number of matrix and/or ve
tor operations have been identi�ed to be frequently used by the linearalgebra
ommunity. These are generally referred to as the Basi
 Linear Algebra Subprograms (BLAS) [19,9, 8℄. Sin
e highly optimized implementations of these operations are supported by widely available libraryimplementations, it makes sense to provide a set of subroutines that are simply wrappers to the BLAS. Anexample of this is given in Fig. 6.4 Performan
e IssuesIn a number of papers that were already mentioned in the introdu
tion we have shown that the presented API
an be used to attain high performan
e for implementations of a broad range of linear algebra operations.Thus, we do not in
lude a traditional performan
e se
tion. Instead, we dis
uss some of the issues.Conventional wisdom used to di
tate that raising the level of abstra
tion at whi
h one
odes will adverselyimpa
t the performan
e of the implementation. We, like others, disagree for a number of reasons:14

1 #in
lude "FLA.h"23 void FLA_Inv_s
al(FLA_Obj alpha, FLA_Obj x)4 {5 int datatype_alpha, datatype_x, n_x, in
_x, i;6 double *buffer_alpha, *buffer_x, inv_alpha;78 datatype_alpha = FLA_Obj_datatype(alpha);9 datatype_x = FLA_Obj_datatype(x);1011 if (datatype_alpha != FLA_DOUBLE ||12 datatype_x != FLA_DOUBLE){13 printf("datatype not yet supported\n");14 exit(0);15 }1617 n_x = FLA_Obj_length(x);18 in
_x = 1;1920 if (n_x == 1){21 n_x = FLA_Obj_width(x);22 in
_x = FLA_Obj_ldim(x);23 }2425 buffer_alpha = (double *) FLA_Obj_buffer(alpha);26 buffer_x = (double *) FLA_Obj_buffer(x);2728 inv_alpha = 1.0 / *buffer_alpha;2930 for (i=0; i<n_x; i++)31 *buffer_x++ *= inv_alpha;3233 /* For BLAS based implementation,
omment out above loop34 and un
omment the below
all to
blas_ds
al */3536 /*
blas_ds
al(n_x, inv_alpha, buffer_x, in
_x); */37 } Figure 9: Sample implementation of FLA Inv s
al.� By raising the level of abstra
tion, more ambitious algorithms
an be implemented whi
h
an a
hievehigher performan
e [12, 21, 14, 4, 2, 23℄.One
an, of
ourse, argue that these same algorithms
an also be implemented at a lower level ofabstra
tion. While this is true for individual operations, implementing entire libraries at a low level ofabstra
tion greatly in
reases the e�ort required to implement, maintain, and verify
orre
tness.� On
e implementations are implemented with an API at a high level of abstra
tion,
omponents
an besele
tively optimized at a low level of abstra
tion. We learn from this that the API must be designedto easily a

ommodate this kind of optimization, as is also dis
ussed in Se
tion 3.7.� Re
ent
ompiler te
hnology (e.g., [16, 18, 17, 15℄) allows library developers to spe
ify dependen
iesbetween routines at a high level of abstra
tion whi
h allows
ompilers to optimizes between layers.of libraries, automati
ally a
hieving the kinds of optimizations that would otherwise be performed byhand.� Other situations in whi
h abstra
tion o�ers the opportunity for higher performan
e in
lude severalmathemati
al libraries and C++ optimization te
hniques as well. For example, PMLP [7℄ uses C++templates to support many di�erent storage formats, thereby de
oupling storage format from algorith-mi

orre
tness in
lasses of sparse linear algebra, thus allowing this degree of freedom to be exploredfor optimizing performan
e. Also, PMLP features operation sequen
es and non-blo
king operations15

in order to allow s
heduling of mathemati
al operations asyn
hronously from user threads. Templatemeta-programming and expression templates support
on
epts in
luding
ompile-time optimizationsinvolving loop fusion, expression simpli�
ation, and removal of unne
essary temporaries; these allowC++ to utilize fast kernels while removing abstra
tion barriers between kernels, and further abstra
-tion barriers between sequen
es of user operations (systems in
lude Blitz++ [24℄ and PETE [1℄). Thesete
hniques, in
onjun
tion with an appropriate FLAME-like API for C++, should allow our algorithmsto be expressed at a high level of abstra
tion without
ompromising performan
e.Note 12 The lesson to be learned is that by raising the level of abstra
tion, a high degree of
on�den
e inthe
orre
tness of the implementation
an be a
hieved while more aggressive optimizations, by hand or by a
ompiler,
an simultaneously be fa
ilitated.5 Con
lusionIn this paper, we have presented a simple interfa
e for implementing linear algebra algorithms. In isolation,the interfa
e illustrates how raising the level of abstra
tion at whi
h one
odes allows one to avoid intri
ateindexing in the
ode, whi
h redu
es the opportunity for the introdu
tion of errors and raises the
on�den
eof the
orre
tness of the
ode. In
ombination with our formal derivation methodology, the API
an be usedto implement algorithms derived using that methodology so that the proven
orre
tness of those algorithmstranslates to a high degree of
on�den
e in the implementation.We again emphasize that the presented API is merely a very simple one that illustrates the issues. Similarinterfa
es for the Fortran, C++, Matlab M-s
ript, and other languages are easily de�ned, allowing spe
ialfeatures of those languages to be used to even further raise the level of abstra
tion at whi
h one
odes. Inaddition, the API
an be extended to in
orporate di�erent datastru
tures for storing matri
es or to allowhierar
hi
al matri
es to be de�ned. (The latter
an be a
hieved by simply allowing FLA Obj as a datatype,whi
h would indi
ate that ea
h entry in the matrix is itself a matrix obje
t.)Further InformationPlease visit http://www.
s.utexas.edu/users/flame/.A
knowledgmentsAn ever-growing number of people have
ontributed to date to the methodology that underlies the FormalLinear Algebra Methods Environment. These in
lude� UT-Austin: Paolo Bientinesi, Mark Hinga, Dr. Margaret Myers, Vinod Valsalam, and Thierry Jo�rain.� IBM's T.J. Watson Resear
h Center: Dr. John Gunnels and Dr. Fred Gustavson.� University of Jaume I, Spain: Prof. Enrique Quintana Ort��.� Intel: Dr. Greg Henry.� Mississippi State University: Prof. Anthony Skjellum and Wenhao Wu.In addition, numerous students in undergraduate and graduate
ourses on high-performan
e
omputing atUT-Austin have provided valuable feedba
k.
16

Referen
es[1℄ PETE, the portable expression template engine. http://www.a
l.lanl.gov/pete Date of a

ess: O
t 24th,2002.[2℄ Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robertvan de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra pa
kage { design overview. InPro
eedings of SC97, 1997.[3℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[4℄ Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. Myers, Enrique S.Quintana-Orti, and Robert A. van de Geijn. The s
ien
e of programming high-performan
e linearalgebra libraries. In Pro
eedings of Performan
e Optimization for High-Level Languages and Libraries(POHLL-02) , a workshop in
onjun
tion with the 16th Annual ACM International Conferen
e onSuper
omputing (ICS'02), 2002.[5℄ Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort�i, and Robert A. van deGeijn. The s
ien
e of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. submitted.[6℄ Paolo Bientinesi and Robert A. van de Geijn. Developing linear algebra algorithms: Class proje
tsSpring 2002. Te
hni
al Report CS-TR-02-??, Department of Computer S
ien
es, The University ofTexas at Austin, June 2002. In preparation. http://www.
s.utexas.edu/users/flame/pubs/.[7℄ L. Birov, A. Purkayastha, A. Skjellum, Y. Dandass, and P. V. Bangalore. PMLP home page.http://www.er
.msstate.edu/labs/hp
l/pmlp, 1998.[8℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi
 linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[9℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Ri
hard J. Hanson. An extended set ofFORTRAN basi
 linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Mar
h 1988.[10℄ Ja
k J. Dongarra, Iain S. Du�, Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear Systemson Ve
tor and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.[11℄ W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 1994.[12℄ John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formallinear algebra methods environment. ACM Trans. Math. Soft., 27(4):422{455, De
ember 2001.[13℄ John A. Gunnels and Robert A. van de Geijn. Developing linear algebra algorithms: A
olle
tion of
lass proje
ts. Te
hni
al Report CS-TR-01-19, Department of Computer S
ien
es, The University ofTexas at Austin, May 2001. http://www.
s.utexas.edu/users/flame/.[14℄ John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performan
e linear algebralibraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Ar
hite
ture of S
ienti�
Software, pages 193{210. Kluwer A
ademi
 Press, 2001.[15℄ Samuel Z. Guyer, Emery Berger, and Calvin Lin. Customizing software libraries for performan
e porta-bility. In 10th SIAM Conferen
e on Parallel Pro
essing for S
ienti�
 Computing, Mar
h 2001.[16℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Se
ondConferen
e on Domain Spe
i�
 Languages, pages 39{52, O
tober 1999.[17℄ Samuel Z. Guyer and Calvin Lin. Broadway: A Software Ar
hite
ture for S
ienti�
 Computing, pages175{192. Kluwer A
ademi
 Press, O
tober 2000.17

[18℄ Samuel Z. Guyer and Calvin Lin. Optimizing the use of high performan
e software libraries. In Languagesand Compilers for Parallel Computing, pages 221{238, August 2000.[19℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[20℄ C. Moler, J. Little, and S. Bangert. Pro-Matlab, User's Guide. The Mathworks, In
., 1987.[21℄ Enrique S. Quintana-Ort�� and Robert A. van de Geijn. Formal derivation of algorithms for the triangularSylvester equation. ACM Trans. Math. Soft.
onditionally a

epted.[22℄ Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
k Dongarra. MPI: TheComplete Referen
e. The MIT Press, 1996.[23℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MIT Press, 1997.[24℄ Todd Veldhuizen et al. Blitz++. URL:http://monet.uwaterloo.
a/blitz/.

18

A Summary of FLAME routinesIn this appendix, we list a number of routines supported as part of the
urrent implementation of the FLAMElibrary. Those experien
ed with linear algebra libraries will re
ognize most routines as implementing thefun
tionality of the BLAS.A.1 NotationIn the des
riptions of the below dis
ussed routine, we use the following
onventions:� Matri
es, ve
tors, and s
alar are denoted by upper-
ase, lower-
ase, and lower-
ase Greek letters,respe
tively.� Transposition: optrans(X) = 8>><>>: X if trans == FLA NO TRANSPOSEXT if trans == FLA TRANSPOSEXC if trans == FLA CONJ TRANSPOSE�X if trans == FLA CONJUGATE :� Triangular matri
es: Parameter uplo is used to indi
ate whether a triangular matrix is stored in thelower or upper triangular part of array A. This parameter
an take on the values FLA LOWER TRIANGULARand FLA UPPER TRIANGULAR. Parameter diag is used to indi
ate the values of the diagonal elements ofmatrix A: diag Values on the diagonal of AFLA NONUNIT DIAG As stored in A.FLA UNIT DIAG Impli
itly take all diagonal elements to equal one.FLA ZERO DIAG Impli
itly take all diagonal elements to equal zero.� Symmetri
 matri
es: Only the upper or lower triangular part of a symmetri
 matrix is stored, asindi
ated by parameter uplo:uplo Storage of matrixFLA LOWER TRIANGULAR Only lower triangular part of matrix is stored.FLA UPPER TRIANGULAR Only upper triangular part of matrix is stored.Noti
e that the values in the other part of the matrix
annot be disturbed and/or used.� Unless spe
i�ed otherwise, all routines are of type void.A.2 Initializing and �nalizing FLAMEFLA_Init()Initialize FLAME.FLA_Finalize()Finalize FLAME.
19

A.3 Linear algebra obje
tsFLA_Obj_
reate(int datatype, int m, int n, FLA_Obj *matrix)Create an obje
t that des
ribes an m� n matrix and
reate the asso
iated storage array.FLA_Obj_
reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Create an obje
t that des
ribes an m� n matrix without
reating the asso
iated storage array.FLA_Obj_atta
h_buffer(*buff, int ldim, FLA_Obj *matrix)Atta
h an existing bu�er that holds a matrix stored in
olumn-major order with leading dimension ldim to the obje
tmatrix.FLA_Obj_
reate_
onf_to(int trans, FLA_Obj old, FLA_Obj *matrix)Like FLA Obj
reate ex
ept that it
reates an obje
t with same datatype and dimensions as old, transposing if desired.FLA_Obj_free(FLA_Obj *obj)Free all spa
e allo
ated to store data asso
iated with obj.int FLA_Obj_datatype(FLA_Obj matrix)Extra
t datatype of matrix.int FLA_Obj_length(FLA_Obj matrix)Extra
t row dimension of matrix.int FLA_Obj_width(FLA_Obj matrix)Extra
t
olumn dimension of matrix.void *FLA_Obj_buffer(FLA_Obj matrix)Extra
t the address where the matrix is stored.int FLA_Obj_ldim(FLA_Obj matrix)Extra
t the leading dimension for the array in whi
h the matrix is stored.A.4 ViewsFLA_Part_2x2(FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR, int mb, int nb, int quadrant)Partition matrix A into four quadrants where the quadrant indi
ated by quadrant is mb� nb.FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Repartition a 2 � 2 partitioning of matrix A into a 3 � 3 partitioning where mb � nb submatrix A11 is split from thequadrant indi
ated by quadrant.FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 is added to the quadrant indi
atedby quadrant.FLA_Part_2x1(FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Partition matrix A into a top and bottom side where the side indi
ated by side has mb rows.FLA_Repart_from_2x1_to_3x1(FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2, int mb, int side)Repartition a 2 � 1 partitioning of matrix A into a 3 � 1 partitioning where submatrix A1 with mb rows is split fromthe side indi
ated by side. 20

FLA_Cont_with_3x1_to_2x1(FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2, int side)Update the 2� 1 partitioning of matrix A by moving the boundaries so that A1 is added to the side indi
ated by side.FLA_Part_1x2(FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR, int nb, int side)Partition matrix A into a left and right side where the side indi
ated by side has nb
olumnsFLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR,FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Repartition a 1 � 2 partitioning of matrix A into a 1 � 3 partitioning where submatrix A1 with nb
olumns is splitfrom the side indi
ated by side.FLA_Cont_with_1x3_to_1x2(FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2, int side)Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is added to the side indi
ated by side.A.5 Printing the
ontents of an obje
tFLA_Obj_show(
har *string1, FLA_Obj A,
har *format,
har *string2)Print the
ontents of A.A.6 Subset of supported operationsFLA_Axpy(FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �A+ B.FLA_Axpy_x(int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A) +B.FLA_Copy(FLA_Obj A, FLA_Obj B)B := A.FLA_Copy_x(int trans, FLA_Obj A, FLA_Obj B)B := optrans(A).FLA_Dot(FLA_Obj x, FLA_Obj y, FLA_Obj rho)� := xT y.FLA_Dot_x(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj beta, FLA_Obj rho)� := �xT y + ��.FLA_Gemm(int transa, int transb, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �optransa(A)optransb(B) + �C.FLA_Gemv(int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �optrans(A)x+ �y.FLA_Ger(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A)A := �xyT + A.FLA_Iamax(FLA_Obj x, FLA_Obj k)Compute index k su
h that j�kj = kxk1. Note: This operation only works when x has unit row or
olumn dimension.FLA_Invert(FLA_Obj alpha)� := 1=�.FLA_Inv_s
al(FLA_Obj alpha, FLA_Obj A)A := 1�A. 21

FLA_Negate(FLA_Obj A)A := �A.FLA_Nrm1(FLA_Obj A, FLA_Obj alpha)� := kAk1.FLA_Nrm2(FLA_Obj x, FLA_Obj alpha)� := kxk2. Note: This operation only works when x has unit row or
olumn dimension.FLA_Nrm_inf(FLA_Obj A, FLA_Obj alpha)� := kAk1.FLA_Obj_set_to_one(FLA_Obj A)Set all elements of A to one.FLA_Obj_set_to_zero(FLA_Obj A)Set all elements of A to zero.FLA_Random_matrix(FLA_Obj A)Fill A with random values in the range (�1; 1).FLA_S
al(FLA_Obj alpha, FLA_Obj A)A := �A.FLA_Set_diagonal(FLA_Obj sigma, FLA_Obj A)Set the diagonal of A to �I. All other values in A are una�e
ted.FLA_Shift_spe
trum(FLA_Obj alpha, FLA_Obj sigma, FLA_Obj A)A := A+ ��I.FLA_Sqrt(FLA_Obj alpha)� := p�. Note: A must des
ribe a s
alar.FLA_Swap(FLA_Obj A, FLA_Obj B)A;B := B;A.FLA_Swap_x(int trans, FLA_Obj A, FLA_Obj B)A;B := optrans(A); optrans(B).FLA_Symm(int side, int uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �AB + �C or C := �BA + �C, where A is symmetri
, side indi
ates the side from whi
h A multiplies B, uploindi
ates whether A is stored in the upper or lower triangular part of A.FLA_Symmetrize(int uplo, int
onj, FLA_Obj A)A := symm(A) or A := herm(A), where uplo indi
ates whether A is originally stored only in the upper or lowertriangular part of A.FLA_Symv(int uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �Ax+ �y, where A is symmetri
 and stored in the upper or lower triangular part of A, as indi
ated by uplo.FLA_Syr(int uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A)A := �xxT +A, where A is symmetri
 and stored in the upper or lower triangular part of A, as indi
ated by uplo.FLA_Syr2(int uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A)A := �xyT + �yxT + A, where A is symmetri
 and stored in the upper or lower triangular part of A, as indi
ated byuplo.FLA_Syr2k(int uplo, int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,FLA_Obj beta, FLA_Obj C)C := �(optrans(A)optrans(B)T + optrans(B)optrans(A)T + �C, where C is symmetri
 and stored in the upper or lowertriangular part of C, as indi
ated by uplo.FLA_Syrk(int uplo, int trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj beta, FLA_Obj C)C := �optrans(A)optrans(A)T + �C, where C is symmetri
 and stored in the upper or lower triangular part of C, asindi
ated by uplo. 22

FLA_Triangularize(int uplo, int diag, FLA_Obj A)A := lower(A) or A := upper(A).FLA_Trmm(int side, int uplo, int trans, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A)B (side == FLA LEFT) or B := �Boptrans(A) (side == FLA RIGHT). where A is upper or lowertriangular, as indi
ated by uplo.FLA_Trmm_x(int side, int uplo, int transa, int transb, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C)C := �optransa(A)optransb(B) + �C (side == FLA LEFT) or C := �optransb(B)optransa(A) + �C (side == FLA RIGHT)where A is upper or lower triangular, as indi
ated by uplo.FLA_Trmv(int uplo, int trans, int diag, FLA_Obj A, FLA_Obj x)x := optrans(A)x, where A is upper or lower triangular, as indi
ated by uplo.FLA_Trmv_x(int uplo, int trans, int diag, FLA_Obj alpha,FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)Update y := �optrans(A)x+ �y, where A is upper or lower triangular, as indi
ated by uplo.FLA_Trsm(int side, int uplo, int trans, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B)B := �optrans(A)�1B (SIDE == FLA LEFT) or B := �Boptrans(A)�1 (SIDE == FLA RIGHT) where A is upper or lowertriangular, as indi
ated by uplo.FLA_Trsm_x(int side, int uplo, int transa, int transb, int diag,FLA_Obj alpha, FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C)C := �optransa(A)�1optransb(B) + �C (SIDE == FLA LEFT) or C := �optransb(B)optransa(A)�1 + �C (SIDE ==FLA RIGHT) where A is upper or lower triangular, as indi
ated by uplo.FLA_Trsv(int uplo, int trans, int diag, FLA_Obj A, FLA_Obj x)x := optrans(A)�1x, where A is upper or lower triangular, as indi
ated by uplo.FLA_Trsv_x(int uplo, int trans, int diag, FLA_Obj alpha,FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y)y := �optrans(A)�1x+ �y, where A is upper or lower triangular, as indi
ated by uplo.

23

