Dynamic SimpleScalar: Simulating Java Virtual Machines

Xianglong Huang* J. Eliot B. Moss™ Kathryn S. McKinley* Steve Blackburn* Doug Burger*

*Department of Computer Sciences TDepartment of Computer Science *Department of Computer Science

The University of Texas at Austin University of Massachusetts Australian National University
Austin, Texas 78712 Ambherst, Massachusetts 01003 Canberra, ACT, 0200, Australia
{xI huang, ntkinley, dburger} noss@s. unass. edu St eve. Bl ackbur n@nu. edu. au

@s. ut exas. edu

ABSTRACT on a PowerPC architecture, and show that DSS loyally refteets

Current user-mode machine simulators typically do not etpp  Performance trends of a real JVM system. We then presentad set
simulation of dynamic compilation, threads, or garbagéectibn, results using DSS. On the SPECjvm98 benchmarks, we study the
all of which Java Virtual Machines (JVMs) require. In thispea, best heap size for three different copying garbage coliectind

we describe, evaluate, and valid&@gnamic SmpleScalar (DSS). measure total, mutator, and collector memory characiesisiVe

DSS is a tool that simulates Java programs running on a JVM, us compare our results with previous work, pointing out nevights,

ing just-in-time compilation, executing on a simulated tiwlay differences, and similarities. For example, we show theeetrade
issue, out-of-order execution superscalar processoravithphis-  Off between the locality benefits of copying collectors anei time
ticated memory system. We describe the implementation ef th to collect.

minimal support necessary for simulating a JVM in Simpld&gta

1. Introduction

including signals, thread scheduling, synchronizatiowl, dynamic
code generation, all required by a JVM. We validate our Sataul The Java programming environment is appealing becausepit su

using IBM Research’s Jikes RVM, a state-of-the-art JVM toas ports dynamic compilation, is object-oriented, has autismem-

ory management, and is platform independent. However, ¢he p
formance of Java currently lags behind more traditionadjleges

such as C and C++. To mitigate Java’s performance losses s

Submitting to the First Annual |EEE/ACM International Sympo-

sium On Code Generation and Optimization. in Java hardware support is necessary, as well as undersjant
This work is supported by NSF ITR grant CCR-0085792, and DARRnNts

F30602-98-1-0101 and F33615-01-C-1892, and InterndtBusiness Ma- ) ] ]

chines Corporation. tuning the low-level behavior of the run-time system. Fareple,



further innovation requires that we understand variatioperfor-
mance across architectural configurations in the preseidiéfer-
ent garbage collection algorithms, dynamic code generatiod

synchronization.

Simulation is now widely used to perform research on hardwar

and low-level software support for many different applicas. Un-
fortunately, no widely available, public tools currentlsopide de-
tailed, cycle-accurate hardware simulation of a Java ®irMa-
chine, with support for dynamic compilation. Previous wak
characterizing and simulating Java programs [14, 15, 20kei
used tools that did not provide cycle-level results, wemppetary

and therefore unavailable, or lacked key software funetipnnec-

Our new tool, called Dynamic SimpleScalar (DSS), impleraent
support for dynamic code generation, thread schedulingsgnel
chronization, as well as a general signal mechanism thatostgp
exception delivery and recovery. The target microarchitecmod-
eled by SimpleScalar is quite different from that of our h@etv-
erPC platform, so absolute performance results differiSagmtly,
and a cycle-accurate validation is not possible. Howevershow
that the functionally complete JVM incorporated into DS8Biages
results that closely follow execution performance trermtsfset of
Java programs from SPECjvm98. Our validation shows tha¢ onc
we normalize for the performance variation caused by theaare

chitectural differences, the differences in performaneeds do not

essary for comprehensive research in this area. For exalripe exceed 5.63%, and average under 1.33%, even though the-perfo

al.'s work [15], which used SimOS, did not employ detailed, eycl mance of both systems varies by as much as 386% due to changes

level simulation. Although tools such as SimOS, couplechvait in the heap size. These results increase confidence thatetbr m

detailed architecture model provide this functionalibgluding all
of the operating system behavior is often too expensive anda+
essary. Section 3 discusses these issues.

In this paper, we describe a series of major extensions fodpe
ular SimpleScalar [8] tools. These extensions permit sitih of

a full Java run-time environment on a detailed simulatedivare

platform. The Java system that runs on our simulated madkine

the IBM Jikes RVM system, which provides an aggressive agtim
ing compiler, including adaptive and just-in-time compda, and
which is itselfimplemented in Java [1, 2]. The Jikes RVM proes
PowerPC or x86 instructions. The Jikes RVM system requinps s
port for multithreading, dynamic code generation, and Wware

and software exceptions (Unix signals).

ods for incorporating a run-time Java system (with dynanoimc
pilation) into SimpleScalar capture the extensions’ béraaccu-
rately.

We then present performance results obtained with the SPESS]

benchmarks using DSS. We determine the best heap size for 3

copying collectors (semi-space, fixed-nursery generati@nd an
Appel-style flexible-nursery generational [4]) and explte trade-
off between the frequency of garbage collection (GC) anddhe
cality benefits of copying. We compare the effect of the avdes
on program behavior and quantify the contributions fromrthe
tator and collector phases. (This experiment is not passibing
performance counters since applications cannot turn thessnd

off as currently implemented [3, 10]) We find the mutator egcl



and memory behavior of Java programs are barely affectetidoy t
choice of copying collector or heap size. The choice of celle
tor and heap size, however, dramatically affects totalgoerénce.
The differences among different collectors is the numbeinoés
GC is triggered during program execution. The cache migs 1ait
the different copying collectors are similar across heapssiThese
results differ from the study by Kim et al. [14], which showtbat

the results for mark-sweep collectors vary with heap size.

The Jikes RVM is a virtual machine for Java programs written i
Java and developed by IBM's T. J. Watson Research Centege Sin
the Jikes RVM was designed for research and experimentgiion
ticular attention was given to making it modular and easxien-
sible. Its dynamic optimizing compiler exploits modern dwaare
features to generate high-quality machine code. Its adaptm-
piler uses sampling to trigger selective optimization efgnently

executed methods. Because the Jikes RVM is written in Java; ¢

The remainder of the paper is organized as follows. We first piling the optimizing compiler is optionally part of runmjthe sys-

present background on the Jikes RVM. Then we discuss the fea-tem.

tures of several current simulators and compare theserésata
the requirements of simulating the Jikes RVM. In the sinarat
extensions section, we describe the original SimpleSeaidrthe
extensions we implement, such as the support for signaksadh
scheduling and synchronization, and support for dynaniie ¢een-

eration. In our validation section, we compare running SRE08

A running Java program involves four layers of functionalthe
user code, the virtual machine, the operating system, antatd-
ware. By moving the boundary between Java and non-Java below
the virtual machine rather than above it, the Jikes RVM rediibe
boundary-crossing overhead and opens up more opportufitie

optimizations. These and other advanced techniques ustet in

on DSS against executing the benchmarks directly on a P@verP Jikes RVM, such as dynamic optimization in its compiler, m#k

machine. Section 6 gives a sample application of our simuthat
explores the relationship between heap size and total jpeafuce
with a semi-space collector, a fixed-nursery generatiooligctor,
and an Appel-style flexible-nursery generational garbajector.
Section 7 summarizes our contributions on how to build a Kitou

for JVMs and our initial results from using this tool.

2. TheldikesRVM

In this section, we describe the basic structure of the Jkéd and
explain its requirements that prevent the unmodified Si®gddar

tools from simulating Java run-time systems.

performance competitive with top commercial systems.

To expose issues of simulating the Jikes RVM and identify new
features we add to SimpleScalar, we briefly discuss each ef fiv
key components of the Jikes RVM: an object model, the rurtim
subsystem, the thread and synchronization subsystem,ehemng

management subsystem, and the compiler subsystem [2, 1].

2.1 TheObject Model and Memory Layout

The object model provides fast access to fields and arrayesiesm
fast virtual method dispatch, and memory protection. Famex

ple, dereferencing a null pointer results in referring axsggv



signal to the user program. The Jikes RVM intercepts thisaig  multi-threaded Java programs running on one processor.

and raises a Java null pointer exception. The SimpleSocadds t The Jikes RVM uses simple time slicing within each pthread to
do not support a memory protection model, nor do they check fo schedule the Java threads assigned to that pthread/CPtéfdiee
violations. the Jikes RVM thread scheduler requires timer signals tadad

Java thread switches. After the timer is initialized, theestuler
2.2 Run-time Subsystem

proceeds as follows:

Run-time services include (Java) exception handling, chjoaype 1. A timer expires at a regular interval and generates a timer

checking, dynamic class loading, interface invocatiod, l&D. They signal, which is sent to the JVM,
are usually implemented imative methods written in C, C++, or
2. When the Jikes RVM C signal handler catches the timer sig-

assembly. In the Jikes RVM, these services are implemented p

nal, it sets a special bit in the running thread’s state tiit i
marily in Java, but also rely on the sighal mechanism of th¢e€O$

cates the end of the time-slice.
the Jikes RVM uses a software exception to handle an arraydsou

check failure). To simulate these features, we added stioolaf 3. At compile time, the Jikes RVM compiler inserts frequent

. . tests of this bit asafe points, i.e., points where thread switch-
signals to SimpleScalar.

ing will preserve program semantics.

2.3 Thread and synchronization subsystem
4. If a check occurs when the bit is set, the code invokes the

Simulation of the thread and synchronization subsysteimeidikes scheduler, which selects and runs a new thread and resets the
RVM require several changes to SimpleScalar. bit.
Thread Scheduling In DSS, we incorporated an interval timer and its signal to-su

port the Jikes RVM thread scheduling scheme, as we discuss in
The Jikes RVM uses Posix kernel-level threads (pthreadsghw Section 4.

are light-weight processes, to do scheduling among CPU® Th

Locks
operating system scheduler takes care of the schedulirtgrefgals.
The Jikes RVM usually maps one pthread to each CPU, and does To support system and user synchronization, the Jikes R\&d us
its own multiplexing of many Java threads onto what is tyihjca three kinds of locksprocessor locks, thin locks, andthick locks.
smaller number of pthreads. Since SimpleScalar is a urggsmy All three locks are built using thewar x andst wex instructions.

simulator, we limit the number of CPUs to one, thus schedulin  These instructions perform an atomic read-modify-writeration

all Java threads on one CPU. With this technique, we can ateul  to storage. The program first issuekvar x instruction to reserve



the memory address, and thestawcx instruction attempts to store
possibly new data to the address. If the store succeeds,nthen
other processor or mechanism has modified the target memory |
cation between the time thewvar x instruction is executed and the
time thest wex instruction completes. If the store fails, then gener-
ally the software retries the operation. We added thesguctgins

to DSS, since they are not supported in SimpleScalar.

2.4 Compiler Subsystem

The Jikes RVM has three compilers: thaseline compiler, which
essentially macro-expands each byte code using an expioziel

in memory of the Java evaluation stack, and hence does net-gen
ate high-quality code; theptimizing compiler, which applies tra-
ditional static compiler optimizations as well as a numbleoti-
mizations specific to object-oriented features and the mymdava
context; and thedaptive compiler, which first applies the baseline
compiler and then, using dynamic measurements of frequehcy
execution of code, selects methods for optimizing comipitatAll
the compilers generate machine code at run time, which megjui
DSS to support dynamic code generation. This feature res|uis
either to predecode dynamically, or to eliminate predeupdiln

our system, the latter is less expensive.

25 Memory Management Subsystem

Memory management includes object allocation and garbegge c
lection. Because Java code lives in the heap, the garbalgetool
can move it to another memory location, which requires DSS to

perform operations such as invalidating the instructiochea A

more detailed description of the instructions we suppartfove-

ment and modification of code appears in Section 4.

3. Related Work

In this section, we first present several simulators that ovesicl-
ered using to simulate the Jikes RVM. Then we discuss related

work on characterizing and simulating Java.

3.1 Simulators

In the previous section, we described several featureeafikes
RVM which are often not supported by simulators, such asithe s
nals, dynamic code generation, and support for concurrandy
synchronization. We now discuss a number of simulators lagid t
features in light of the demands of simulating the Jikes Ruid a
our requirement of detailed cache and memory simulatiocaBse
the Jikes RVM only runs on PowerPC (with AIX or Linux) and x86

architectures, our discussion focuses on PowerPC simsilato

PSIM

PSIM is a program that emulates the ISA of the PowerPC mi-
croprocessor family [9]. It was developed by Andrew Cagnay a
his colleagues and is now an open source program bundledheith
GNU debuggergdb. The version of PSIM that can run Linux pro-
grams (it does not support AlX) does not have a detailed cantle
memory simulation, which is essential for our experimefrisw-
ever, PSIM does not support dynamic code generation, naritoe

fully implement signals.

RSIM and L-RSIM



RSIM [16] has detailed cycle-level simulation of a dynanfica 15, 20].
scheduled processor and memory hierarchy with a multipleye- Kim et al. [14] studied memory behavior by feeding memory ac-
tem bus. L-RSIM [19] is a simulation environment for /O inséve cess traces to cache simulators. The garbage collectionitain
workloads based on RSIM. The original L-RSIM added an I/G-sub  they studied was mark and sweep GC. In our study, we examgne th
system which consists of a real time clock, a PCI bus and a SCSI behavior of Java programs in the context of semi-space, fivest
adaptor with one or more disk devices connected to it. Thelsim ery generational and variable nursery generational (Appaé)
lation of I/O requires some similar techniques to the sirtioitaof garbage collectors. The Appel-style collector is the bestgom-
signals. Neither RSIM nor L-RSIM support dynamic code gener ing generational copying collector [6].
ation as they predecode programs before simulation. Funtre, Li et al. [15] studied the performance characteristics of SPECjvm98
although L-RSIM simulates I/O, it is inadequate for our riegu Java programs. They used SimOS in their experiments. They di
ment of simulating signals. not differentiate the impact of mutator and GC, which, as vile w
show later, exhibit different memory behaviors. As we stdie-

SimOS
fore, SIMOS does not have a cycle-level processor modektafy

SimOS [13, 17, 12] simulates hardware in sufficient detaitto the accuracy of their results.

a complete commercial operating system. We explored Simos- Shufét . [20] use a very similar methodology to Kirt al.

PPC, a version of SimOS developed by IBM which simulates the They generated traces and simulated memory behavior by usin

PowerPC processor and runs AIX. SimOS simulates both signal € trace on a cache simulator. They adopted a very largesiieap

handling and dynamic code generation and therefore satitfee essentially ignoring the impact of GC. Also, because ofrthee

requirements for running the Jikes RVM. However Simos-ppc ©f unusually large heaps, TLB misses are a significant feaér

does not have a detailed processor model and does not sigtiport t1€ir results. In our study, we use different heap sizes antyshe

of the instructions used by the Jikes RVM. Moreover, SImQs si effects of GC and the interaction between mutator and GC.

ulates the entire machine, including the operating systemth is
4. SimpleScalar and DSS

computationally expensive and unnecessary in the contextnu-

lating a JVM. We now introduce the SimpleScalar simulator tool set [8] exd

! ) plain the extensions required to support simulating thesJRVM.
3.2 Simulating Java
We then group the issues and mechanisms needed into the-follo

There have been several studies on the characteristice ofi¢in- ing categories and discuss them in turn: the signal meafmasisp-

ory behavior and performance of Java programs by simul§tién port for thread scheduling and synchronization, and sugpody-



namic code generation. implementing system calls by using the host machine as ayprox

to execute the system call. When the simulated program nmekes
4.1 SimpleScalar ) )
system call, the simulator obtains the arguments passéx tcel

) ) ) and makes the call at the source level by calling the corratipg
We started with the version of SimpleScalar that suppoms th

] ) ) ) user level function call. Since the PowerPC binaries maks t@
PowerPC instruction set architecture [18, 8]. The Simpds8c¢ool

] ] ) ) ] C library routines that ultimately call the operating systkernel,
set provides functional emulation of a target machine’s (B&his

) ) ) ) the PowerPC system replaces each of those library callsveiie-
case PowerPC), dynamic trace-driven evaluation of program

) ) cial instruction to signal a proxy call (trex instruction), which is
pact on underlying hardware such as caches and branch fomsdic

S ) ) ] not used in user-level code by AlX-generated binaries. When
and timing simulation of an out-of-order issue micropremesore

) ) simulator encounters the instruction it emulates the system call
with the associated memory system.

] ) ] determined by arguments in the current register values.
We made only one major change to the simulator internals; the

] ) ] ) We needed to ensure that theinstruction appeared in all code,
other changes, described below, mainly add functionaliti the

) ] ) ) including that code produced dynamically. Since the JiKéMR
appropriate hooks. In SimpleScalar, the simulated progsaone-

) ] ] ) has system calls only within a small static portion of theteys
decoded before the simulation starts, to speed simulatiandk-

o ) ) o ) written in C, we did not need to rewrite system calls in dyreathy
ing instruction emulation more efficient. SimpleScalarde®odes

) ) ] ) ) ) generated code. Thus we do a single rewriting pass over baly t
every instruction by looking up the function that simulaties in-

) ) ) ) ) static code available when the system starts up.
struction’s opcode, and replacing the instructions in iheutated

) ) ) ) ) ) The other major change to DSS internals was to add a virtual
memory with pointers to the simulation functions for thasstiuc-

] memory model that includes support for signaling a segntienta
tions.

] ) o ) violation when a program attempts to access unmapped Mingr-
Since dynamic compilation systems (such as the Jikes RVM)

) ] ) ) ory. The Jikes RVM needs this functionality to support itscime
generate and modify code during execution, the predecoaling

) -~ o anism for detecting attempts to dereference a null pointéiis
provided needed to be modified or extended. The two pos#kili

) B ) _extension is significant in that it affects all simulator étions that
are re-decoding any new or modified code, or decoding each in-

) ] ) model access to the simulated memory. The segmentatioa-viol
struction on the fly. We found that it was cheaper simply toodec

) ] ] tion functionality also relies on the signal support wedniced in
as the target system’s instructions are fetched from its ongnas

) ) ) DSS.
discussed further in Section 4.2.
The predecoding issue created a separate issue when fgandlin ) )
4.2 Major Extensions

system calls. SimpleScalar simulates only user mode itttns,



| System call | Description
mmap manages virtual memory existence and protection
sigprocmask | changes the list of currently blocked signals
sigstack sets and gets signal stack context
sigaction specifies the action to take when a signal happgns
kill sends a signal to a running process
gettimerid allocates an interval timer
incinterval sets the value of a timer to a given offset

Table 1: List of system calls implemented in Dynamic Sim-
pleScalar

Instruction | Description

dcbst update memory from data cache
sync wait for memory operations

i chi invalidate code in instruction cache

i sync perform instruction fetch synchronizatign
nf spr move from special purpose register
nfth move from time base

| war x load-and-reserve (a.k.a. load-linked)
st wex store-conditionally

eieio enforce in-order execution of I/O

twi trap when a specified condition is true
tw trap when a specified condition is true

Table 2. List of instructions added/changed in Dynamic Sim-
pleScalar

We now describe the major extensions to the SimpleScalar fun
tionality, including support for threads, dynamic compda, and
signals. We add a number of operating system features, hubtdo
move to whole system simulation, for two reasons. One isdhat
user-mode simulator will almost certainly run significgnfthster
than a whole system simulator. The other is that whole system
ulation is much more complex, both the implement, and to use,
since one must accurately model many more details of the- hard

ware, including protected mode and attached hardware eevic

The original SimpleScalar offered no support for Unix sign&ince
the Jikes RVM uses a number of signals and traps (which ttion in
signals), thread scheduling and other common functionghese
to implement a general signal mechanism.
Signal Generation, Delivery, and Handling

Our signal implementation includes: signal generatioceirgéng
(or blocking) signals, handling signals, and recoverimgrfrsignal
handlers. The signal masks and signal handlers are set bethe
ginning of simulationsigprocmask andsigaction calls can change
them during the simulation.

Figure 1 offers an overview of our signal delivery system.r Ou
implementation maintains a stack of not-yet-deliveredaig. The
diamond in the figure labeled “A signal arrived” tests whettie

stack of pending (unmasked) signals is non-empty.

Main simulation loop

Set the signal maskesg
and the signal hanlders

Emulate an
instruction

Restore saved register

1. Save the register

2. Save environment
values for signal
handler

2. Set PC to the start of
signal handler

3. Set the return addre
to SIGRET

A signal
arrived

Figure 1. Overview of signal system in simulator

Tables 1 lists the system calls we added to DSS, and Table 2 We describe the implementation in more detail below.

gives the hardware instructions we added.

The Signal Mechanism

1. Generating signals: If the simulated program issuekithe

system call, then DSS generates the signal (pushes it on the



signal delivery stack). DSS also generates the followingeh

signals internally:

(a) SI GSEGV: Whenever a memory operation tries to ac-
cess an invalid memory address, DSS serslSGSEGY

to the simulated program.

(b) Sl GALRMm The Jikes RVM sets up the timer by call-
ing gettimerid andincinterval. These functions set the
value of the timer and start it. DSS updates the timer
with the simulated time, which is proportional to the
number of cycles elapsed since the program starts. When
the timer goes off, DSS generateSiaGALRMand deliv-
ersitto the Jikes RVM. Depending on the parameters of
incinterval, the Jikes RVM starts or resets the timer, or

terminates the thread, to implement thread scheduling.

(c) Sl GTRAP: The PowerPC has trap instructionsy and
twi , which generate thel GTRAP signal. The Jikes
RVM uses these instructions to generate exceptions such

as array bounds checking, and divide-by-zero checking.

2. Delivering signals: As previously mentioned, we constau

stack that stores the most recent signal on top. At the end of
emulation of each instruction, DSS checks the stack for sig-
nals that arrived during execution of the current instircti

If there is a signal, but the signal is blocked, DSS ignores th
signal. (A signal could be blocked by setting the signal mask
by sigaction andsigprocmask). Otherwise, DSS handles the

signal.

3. Handling signals: When the user program usesitljgetion

system call to set up a signal handler, DSS associates the
signal number with the function address of the signal handle
This system call also causes DSS to block some signals while
executing the signal handler. When DSS detects a signal and
calls the signal handler, it performs the following opeva$

on the simulated processor state:

(a) Save the current contents of the registers.

(b) Setthe next PC to the start address of the signal handler.

(c) Set the signal mask of this signal to prevent recursive

triggering of the same signal, as requiredsmyaction.

(d) Set the registers and other global variables apprapriat
to the signal and pass these values to the signal handler
by storing them in simulated memory. For example, on
an invalid memory access that trigg@IsGSEGV, DSS

passes the address for which access failed.

(e) Set the return address of the handler functiosito

GRET, a special constant value that will never appear as

a return address in a normal program.

Then DSS returns to the main simulation loop and continues

the simulation.

. Return from exceptions: When the signal handler finistses i

execution, it will try to jump to an instruction with the PC
value ofSI GRET. DSS detects this jump, restores the saved
register contents, and continues simulating the user anogr
Note that handlers may update the saved register statetso tha
when the program returns from handling the signal it resumes

execution somewhere else. This update is necessary in order



to support the technique that the Jikes RVM uses to turn sig-

nals into throws of Java exceptions.

Precise Interrupts

SimpleScalar’s out-of-order execution did not implemeetjse
interrupts for exceptions because it did not handle exorgtiWe
thus implemented precise interrupts in DSS for exceptitmst-
tain correct timing and program behavior in DSS. There arersé
methods we could have used to implement precise interrsipt$,
as a reorder buffer, a history buffer, or a future file [21].desmany
current microarchitectures, we use a reorder buffer to lsitadhe

timing effects of precise interrupts.

for thel war x instruction (the address being loaded).

3. Load the data from memory and put it in the destination reg-

ister.

An st wex causes the following actions:

1. DSS checks if the reservation is 1 and the reservatioreaddr
equals the effective address of thiencx. If either is false,

instruction execution fails and the store is not performed.

2. Otherwise, DSS stores the value to memory and resets the

reservation bit to 0.

In DSS, we support only one processor, so the only instrostio

As we described previously, DSS checks for exceptions after that will change the reservation addresslaver x andst wex. Fur-

each instruction, and if one is found, it flushes all entrieshie
reorder buffer after the faulting instruction. When we sliate
branch prediction for the executing the program, DSS sptivaly
executes instructions on the mispredicted path, but doeshsak
or receive signals on the mispredicted path, waiting uhél mis-
predicting instruction reaches the commit stage beforeigng a

signal.

Thread Scheduling and Synchronization

To support thread scheduling in Jikes, DSS needs suppt & RM

as described above. In addition, DSS must support locksrefhe

fore, we implement thewar x andst wex instructions in DSS.

In our implementation,, war x executes as follows:

1. Set the reservation bit to 1.

2. Setthe reservation address to the effective addressutethp

10

ther, the Jikes RVM never uses an ordinary store to an adthvass
might be reserved, so we did not need to add reservationirdear
code to ordinary stores. If we need to support multiple pseoes
or there may be some other instructions that affect resenst
we will need to change the implementation of store instamndito
clear reservations as appropriate. This change is easypi@im
ment but may significantly increase simulation time. Aduitl
investigation may find a more efficient solution and extensifor

simulating multiprocessors.

Dynamic Code Generation

Here we first discuss how DSS handles the special case ofsyste
calls, and then the more general technique that handlesrdgally

generated, moved, or patched code.

System Call Instruction Decoding



SimpleScalar predecodes the text segment of the programn aft
the program is loaded into simulated memory and before sitioul
starts. The predecoding process patches calls to systeinasu
and decodes the opcode of instructions to speed up simul&i®S
builds on this structure for system calls and dynamicallyegated

code.

Dynamic Instruction Decoding

The original SimpleScalar predecodes all the instructimfsre
simulation to save repeatedly decoding opcodes for the same
struction during simulation. We had to change this schercause
the Jikes RVM generates, moves, and changes machine code dur

ing the execution of a Java program. We implemented two nastho

The Jikes RVM is designed to run as a user-level process. As for dynamic decoding:

such, it accesses the underlying file system, network, aockpr
Sor resources via operating system calls. In the Jikes R\Vdvhail
portion of the code is written in C and only this code can make
system calls to the kernel. This code is in the text segmeutjs
never modified or moved by the Jikes RVM. So in DSS, we pre-
decode system calls in the text segment before simulategbr
gram. After simulation starts, DSS does no further checkingor
translation of, system calls, because there is no need. kdwt
be very difficult to add dynamic rewriting of system callspshd
one desire to simulate programs needing that functionality
SimpleScalar simulates operating system calls at the el
library calls. The library routines generally (but not ajs boil
down to a correspondinggc instruction. However, thec level in-
terface to the operating is not published, and further, vievethat
the AlX libraries rely on special support from the operatiygtem,
which we cannot replicate in a user-mode simulator. Heneezail
a corresponding host systdihrary routine at the point where the
simulated program would makdi@rary call. In current work port-
ing DSS to Linux we believe we can support simulation attbe
level, which eliminates the need for locating and rewritiibgary

calls.

11

1. The simpler scheme decodes each instruction every tiige it
executed, by fetching it from simulated memory. This mech-
anism is correct because we propagate updates to simulated

memory immediately.

2. The more complex scheme predecodes instructions, manag-
ing a “cache” of pages that have been predecoded. If DSS
attempts to execute an instruction from a non-predecoded
page, it predecodes the page. The simulator invalidatesspag

in the predecoded cache.

We compared the results of both schemes and found that the firs
scheme is about 30% faster than the second one. Becausesthe fir
scheme requires less code in the critical simulation lobpei-
forms better and we use itin DSS.

There are other alternatives for implementing decoding.exe
ample, we can predecode code when it is created and detent whe
new code is generated or the old code is changed in the simlat
program.

The cache coherence of the instruction cache is anothe issu
dynamic code generation. Since the Jikes RVM generatesesnov

and modifies machine instructions during execution, it spegial



instructions to manipulate the caches to make sure the piope thei cbi instruction to invalidate updated code locations. In
structions are fetched and executed. DSS must implemesg¢ the DSS, we implement it by invalidating cache lines, causing
special instructions, which were not supported by SimpéScto misses on new accesses to those instructions.

ensure correct semantics and correct timing results. (Wairob
3. The Jikes RVM then does async, to insure that thé cbi

correct semantics because there is in fact just one copy of-me
instruction completes before proceeding to the followimg i

ory data, in the simulated memory locations, but timing isgiloly
structions. We implementeidsync assync, which would

an issue.) The cache behavior the Jikes RVM expects on the IBM
stop subsequent instructions from executing before pusvio

PowerPC 604 architecture is as follows:
instructions finish their execution. Thesync instruction
1. After the compiler writes code (be it new code, modified will also flush any instruction that is already in the pipelin
code, or copied code), the program must first force the up- because it could be stale.
dated data cache lines to be stored into memory. The data .
Evaluation

must go through memory because there is no direct path
from the data cache to the instruction cache (i-cache). The In this section, we describe our experimental setup, inotudur

Jikes RVM uses the PowerPC instructidabst to force simulator environment, the architecture against which alielated,

dirty cache lines to memory. The program must then perform and our benchmark programs. We then present results fouexec

async, to insure the memory writes have finished before it tions on both the DSS simulator and a PowerPC machine.

proceeds. 5.1 Experimental Setup

To simulate the timing correctly, thécbst instruction for

JikesRVM and GCTk: We used Jikes RVM 2.0.3 in these exper-
dirty cache lines must take the same number of cycles as a

iments. We use th&astTiming configuration in which the Jikes
write to memory. Theync instruction also stalls all subse-

RVM compiles and executes all methods for these experiments
guent instructions untiicbst completes.
This configuration exaggerates the effect of the compilerum
2. The user program must then insure that those memory loca-time compared to the adaptive configuration, which commldg
tions are not in the i-cache. It is possible (though perhaps the frequently executed methods. The adaptive configurainot
unlikely) for code in location X to be (1) loaded in the i- deterministic, which prevents repeatable accurate siioukand
cache, (2) copied somewhere else by the GC, and then (3) precludes its use here.

some other code written to location X later. Thus it is pos- Our research group recently developed a new garbage awllect

sible for i-cache contents to be stale. The Jikes RVM use (GC) toolkit for Jikes RVM, called GCTk [5, 6]. We have writte

12



a number of GC algorithms in GCTk; in these experiments, vee us
our GCTk implementation of Appel’s generational collecfdy,
and run our benchmarks with various heap sizes. This colléxta
very good two generational copying GC [6]. It has a flexiblyesi
nursery, which is initially the entire heap. Each collectreduces
the nursery size by the survivors until the heap is full, vahtiég-
gers afull heap collection. It performs much better thanexfizize
nursery collector in previous experiments [6]. We compappei-
style, fixed-size nursery, and semi-space garbage caitetahe
next section.

Benchmarks: We use benchmarks from the SPECjvm98 suite
in this experiment. SPECjvm98 programs are designed touneas
the performance of entire Java platforms, including Jastaai ma-
chines, operating systems, and underlying hardware. Aleéta
analysis of SPECjvm98 is given by Dieckman and Holzle [THe

eight benchmark programs we use are:

_201 compress, a Java port of the 129.compress benchmark

from SPEC CPU95

_202 jess, an expert system shell

_205 raytrace, a ray tracing program

_209.db, which simulates a database system

_213javac, the Sun JDK 1.02 Java compiler, compiling jess

_222 mpegaudio, a decoder to decompress MPEG-3 audio

files

_227_mtrt, a multithreaded raytracer

_228 jack, which generates a parser repeatedly

13

Power PC Architecture and PMAPI: We use a PowerPC ma-
chine running AlX 4.3.3 as the target machine for validativve
collected data using the PMAPI librdrinstalled on this machine.
PMAPI is an application programming interface for accegsire
performance counters inside certain PowerPC machines.

We run each configuration (a specific heap size for a specific
benchmark) three times in single-user mode, and used theitiain
the smallest number of cycles (i.e., the one least distubblyesther
effects in the system) in our validation.

The memory hierarchy configuration of the PowerPC machine

we use is as follows:

e L1 datacache: 64KB, 128 byte line, 128 way, 1 cycle latency

L1 instruction cache: 16KB, 32 byte line, 8 way, 1 cycle

latency

L2 unified cache: 4M, 128 byte line, direct mapped, 6-7 cy-

cle latency

Instruction TLB: 128 entry, 2 way

Data TLB: 256 entries, 2 way

Memory: latency approximately 35 cycles

DSS: DSS uses the same memory hierarchy as the PowerPC ma-
chine. DSS uses the five-stage pipeline model of Simple&ddia

details of the simulated micro-processor are as follows:

e Five-stage pipeline based on a Register Update Unit, which
combines the physical register file, reorder buffer, andess

window into a single data structure

Ihttp://www.alphaworks.ibm.com/tech/pmapi



e Out-of-order issue, including speculative execution performance and real machine performance, separately)eio t
best performance across all heap sizes. Thus DSS perfoemanc
e Issue width, decode width, and commit width are 4, The size

at heap sizé is plotted as the DSS cycle count for heap giz-
of the RUU is 16

vided by the count for the best heap size. Likewise, the ntedsu

e Bimodal branch predictor with table of 2048 entries . .
performance ah is plotted as the measured cycleativided by

o Load-store queue has 8 entries the measured performance at the best heap size. The grapits sh

that the trends are very similar across heap sizes and bamnkfim
The host machine for the simulator is a SPARC running Sofa8s

Table 2 offers detailed comparison of the normalized cyoients
5.2 Validation o ) ) )
plotted in Figure 4. The arithmetic average of the ratios @f n
] ) malized cycle counts for all benchmarks and heap sizes 894..3
Although we configure DSS to have the same memory hierarchy

] ) ] The maximum difference across all benchmarks and heap isizes
as the PowerPC machine, the real machine has a more coreglicat

) 5.63% for_222 mpegaudio with heap size 10M. Clearly, executions
memory system than the simulator. For example, DSS does not

) ) on DSS and on the PowerPC machine have very similar trends in
simulate the effects of the memory controller and memorgid®i

) ) o cycle counts.
in the real machine. Likewise, DSS does not model performanc

) ) Tables 2 shows that these trends are borne out for other event
effects of operating system code. Therefore, executionD$8

) ) counts from the traces. The one measure that does not ‘elidat
and the real machine produce different cycle counts (aret otiea-

) as well is TLB misses, which are probably strongly affectgd b
sures). However the performance curves of both executioixSS

) interrupts and operating system code.
and PowerPC machine should have the same trends because they
are very similar.
6. Example Study

Table 2 presents statistics for each benchmark with a heap si
of 2 times the minimal heap size for that benchmark. The ta-  This section describes two examples studies using DSS te cha
ble contains execution results for the number of cyclesrunton acterize the performance of Java programs. The first commplage
numbers, L1 instruction cache misses, L1 data cache misk8s, effect of heap size on total time. The second compares ayarfie
misses, and GCs. It also contains the comparison with thdtses  copying collectors and heap sizes and studies aggregatatanu
from the native PowerPC machine. and GC behavior. As in the validation section, we useFdBETim-

Figure 4 compares cycle counts for DSS simulations and execu ing configuration in which the Jikes RVM compiles and executes

tions on the PowerPC machine. Because we are interested in re all methods and the same hardware configuration for thesriexp

ative trends rather than absolute cycle counts, we norm@8li2S ments.

14



Program| Heap| Platform| Cycle (1) | Inst (1®) | I-L1 miss (1%) | D-L1 miss (16) | TLB miss (1G) | # of GCs]

oamaru:_209.db 50 | PowerPC 15920 9325 7224 161096 74917 12
DSS 8989 9290 7853 157283 83759 12

Diff -43.54% -0.38% 8.71% -2.37% 11.80% 0.00%

_213 javac 50 | PowerPC 14370 11853 49346 76511 19541 110
DSS 9796 11876 60101 57068 29959 102

Diff -31.83% 0.19% 21.80% -25.41% 53.31% | -7.27%

202 jess 30 | PowerPC 8199 7094 18944 52714 10200 88
DSS 5708 7082 18785 43071 11918 88

Diff -30.38% -0.17% -0.84% -18.29% 16.84% 0.00%

228 jack 30 | PowerPC 11862 10906 44185 49673 10092 139
DSS 7549 10479 21765 35161 10540 150

Diff -36.36% -3.92% -50.74% -29.22% 4.44% 7.91%

_201compress| 40 | PowerPC 9248 10455 6071 164277 7560 21
DSS 6927 10464 7056 150994 11225 21

Diff -25.10% 0.09% 16.22% -8.09% 48.48% 0.00%

_205 raytrace 30 | PowerPC 5913 5330 12743 47456 4696 38
DSS 3982 5331 11517 39925 4045 38

Diff -32.66% 0.02% -9.62% -15.87% -13.86% 0.00%

_222 mpegaudio| 20 | PowerPC 10326 12247 10986 36014 16269 42
DSS 9198 12223 13415 25076 23478 46

Diff -10.92% -0.20% 22.11% -30.37% 44.31% 9.52%

227 mitrt 50 | PowerPC 5687 5086 12869 47014 4324 16
DSS 3799 5100 11650 40204 3874 16

Diff -33.20% 0.28% -9.47% -14.49% -10.41% 0.00%

Figure2: DSS Simulated Results (for Heap Size = 2*Minimal Heap Size)

| Program| Heap (MB) | Cycle (1) | Inst (1®) | I-L1 miss (16) | D-L1 miss (18) | TLB miss (1) | # of GCs|

db 25 9879 10207 7979 158773 89319 65
37.5 9185 9526 7906 158151 80719 35

50 8989 9290 7853 157283 83759 12

62.5 8232 9145 7828 151310 52998 7

75 8714 9126 7830 149148 80140 5

Figure3: DSSsimulated results

15



