
Dynamic SimpleScalar: Simulating Java Virtual Machines

Xianglong Huang� J. Eliot B. Moss† Kathryn S. McKinley� Steve Blackburn‡ Doug Burger��Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712fxlhuang, mckinley, dburgerg
@cs.utexas.edu

†Department of Computer Science

University of Massachusetts

Amherst, Massachusetts 01003

moss@cs.umass.edu

‡Department of Computer Science

Australian National University

Canberra, ACT, 0200, Australia

Steve.Blackburn@anu.edu.au

ABSTRACT

Current user-mode machine simulators typically do not support

simulation of dynamic compilation, threads, or garbage collection,

all of which Java Virtual Machines (JVMs) require. In this paper,

we describe, evaluate, and validateDynamic SimpleScalar (DSS).

DSS is a tool that simulates Java programs running on a JVM, us-

ing just-in-time compilation, executing on a simulated multi-way

issue, out-of-order execution superscalar processor witha sophis-

ticated memory system. We describe the implementation of the

minimal support necessary for simulating a JVM in SimpleScalar,

including signals, thread scheduling, synchronization, and dynamic

code generation, all required by a JVM. We validate our simulator

using IBM Research’s Jikes RVM, a state-of-the-art JVM thatruns

Submitting to the First Annual IEEE/ACM International Sympo-
sium On Code Generation and Optimization.
This work is supported by NSF ITR grant CCR-0085792, and DARPA grants
F30602-98-1-0101 and F33615-01-C-1892, and International Business Ma-
chines Corporation.

on a PowerPC architecture, and show that DSS loyally reflectsthe

performance trends of a real JVM system. We then present a setof

results using DSS. On the SPECjvm98 benchmarks, we study the

best heap size for three different copying garbage collectors, and

measure total, mutator, and collector memory characteristics. We

compare our results with previous work, pointing out new insights,

differences, and similarities. For example, we show there is a trade

off between the locality benefits of copying collectors and the time

to collect.

1. Introduction

The Java programming environment is appealing because it sup-

ports dynamic compilation, is object-oriented, has automatic mem-

ory management, and is platform independent. However, the per-

formance of Java currently lags behind more traditional languages

such as C and C++. To mitigate Java’s performance losses, research

in Java hardware support is necessary, as well as understanding and

tuning the low-level behavior of the run-time system. For example,

1



further innovation requires that we understand variation in perfor-

mance across architectural configurations in the presence of differ-

ent garbage collection algorithms, dynamic code generation, and

synchronization.

Simulation is now widely used to perform research on hardware

and low-level software support for many different applications. Un-

fortunately, no widely available, public tools currently provide de-

tailed, cycle-accurate hardware simulation of a Java Virtual Ma-

chine, with support for dynamic compilation. Previous workon

characterizing and simulating Java programs [14, 15, 20] either

used tools that did not provide cycle-level results, were proprietary

and therefore unavailable, or lacked key software functionality nec-

essary for comprehensive research in this area. For example, Li et

al.’s work [15], which used SimOS, did not employ detailed, cycle-

level simulation. Although tools such as SimOS, coupled with a

detailed architecture model provide this functionality, including all

of the operating system behavior is often too expensive and unnec-

essary. Section 3 discusses these issues.

In this paper, we describe a series of major extensions to thepop-

ular SimpleScalar [8] tools. These extensions permit simulation of

a full Java run-time environment on a detailed simulated hardware

platform. The Java system that runs on our simulated machineis

the IBM Jikes RVM system, which provides an aggressive optimiz-

ing compiler, including adaptive and just-in-time compilation, and

which is itself implemented in Java [1, 2]. The Jikes RVM produces

PowerPC or x86 instructions. The Jikes RVM system requires sup-

port for multithreading, dynamic code generation, and hardware

and software exceptions (Unix signals).

Our new tool, called Dynamic SimpleScalar (DSS), implements

support for dynamic code generation, thread scheduling andsyn-

chronization, as well as a general signal mechanism that supports

exception delivery and recovery. The target microarchitecture mod-

eled by SimpleScalar is quite different from that of our hostPow-

erPC platform, so absolute performance results differ significantly,

and a cycle-accurate validation is not possible. However, we show

that the functionally complete JVM incorporated into DSS achieves

results that closely follow execution performance trends for a set of

Java programs from SPECjvm98. Our validation shows that once

we normalize for the performance variation caused by the microar-

chitectural differences, the differences in performance trends do not

exceed 5.63%, and average under 1.33%, even though the perfor-

mance of both systems varies by as much as 386% due to changes

in the heap size. These results increase confidence that our meth-

ods for incorporating a run-time Java system (with dynamic com-

pilation) into SimpleScalar capture the extensions’ behavior accu-

rately.

We then present performance results obtained with the SPECjvm98

benchmarks using DSS. We determine the best heap size for 3

copying collectors (semi-space, fixed-nursery generational, and an

Appel-style flexible-nursery generational [4]) and explore the trade-

off between the frequency of garbage collection (GC) and thelo-

cality benefits of copying. We compare the effect of the collectors

on program behavior and quantify the contributions from themu-

tator and collector phases. (This experiment is not possible using

performance counters since applications cannot turn them on and

off as currently implemented [3, 10]) We find the mutator cycles

2



and memory behavior of Java programs are barely affected by the

choice of copying collector or heap size. The choice of collec-

tor and heap size, however, dramatically affects total performance.

The differences among different collectors is the number oftimes

GC is triggered during program execution. The cache miss rates of

the different copying collectors are similar across heap sizes. These

results differ from the study by Kim et al. [14], which showedthat

the results for mark-sweep collectors vary with heap size.

The remainder of the paper is organized as follows. We first

present background on the Jikes RVM. Then we discuss the fea-

tures of several current simulators and compare these features to

the requirements of simulating the Jikes RVM. In the simulator

extensions section, we describe the original SimpleScalarand the

extensions we implement, such as the support for signals, thread

scheduling and synchronization, and support for dynamic code gen-

eration. In our validation section, we compare running SPECjvm98

on DSS against executing the benchmarks directly on a PowerPC

machine. Section 6 gives a sample application of our simulator that

explores the relationship between heap size and total performance

with a semi-space collector, a fixed-nursery generational collector,

and an Appel-style flexible-nursery generational garbage collector.

Section 7 summarizes our contributions on how to build a simulator

for JVMs and our initial results from using this tool.

2. The Jikes RVM

In this section, we describe the basic structure of the JikesRVM and

explain its requirements that prevent the unmodified SimpleScalar

tools from simulating Java run-time systems.

The Jikes RVM is a virtual machine for Java programs written in

Java and developed by IBM’s T. J. Watson Research Center. Since

the Jikes RVM was designed for research and experimentation, par-

ticular attention was given to making it modular and easily exten-

sible. Its dynamic optimizing compiler exploits modern hardware

features to generate high-quality machine code. Its adaptive com-

piler uses sampling to trigger selective optimization of frequently

executed methods. Because the Jikes RVM is written in Java, com-

piling the optimizing compiler is optionally part of running the sys-

tem.

A running Java program involves four layers of functionality: the

user code, the virtual machine, the operating system, and the hard-

ware. By moving the boundary between Java and non-Java below

the virtual machine rather than above it, the Jikes RVM reduces the

boundary-crossing overhead and opens up more opportunities for

optimizations. These and other advanced techniques used inthe

Jikes RVM, such as dynamic optimization in its compiler, make its

performance competitive with top commercial systems.

To expose issues of simulating the Jikes RVM and identify new

features we add to SimpleScalar, we briefly discuss each of five

key components of the Jikes RVM: an object model, the run-time

subsystem, the thread and synchronization subsystem, the memory

management subsystem, and the compiler subsystem [2, 1].

2.1 The Object Model and Memory Layout

The object model provides fast access to fields and array elements,

fast virtual method dispatch, and memory protection. For exam-

ple, dereferencing a null pointer results in referring a Unix segv

3



signal to the user program. The Jikes RVM intercepts this signal

and raises a Java null pointer exception. The SimpleScalar tools

do not support a memory protection model, nor do they check for

violations.

2.2 Run-time Subsystem

Run-time services include (Java) exception handling, dynamic type

checking, dynamic class loading, interface invocation, and I/O. They

are usually implemented innative methods written in C, C++, or

assembly. In the Jikes RVM, these services are implemented pri-

marily in Java, but also rely on the signal mechanism of the OS(e.g.

the Jikes RVM uses a software exception to handle an array bounds

check failure). To simulate these features, we added simulation of

signals to SimpleScalar.

2.3 Thread and synchronization subsystem

Simulation of the thread and synchronization subsystem in the Jikes

RVM require several changes to SimpleScalar.

Thread Scheduling

The Jikes RVM uses Posix kernel-level threads (pthreads), which

are light-weight processes, to do scheduling among CPUs. The

operating system scheduler takes care of the scheduling of pthreads.

The Jikes RVM usually maps one pthread to each CPU, and does

its own multiplexing of many Java threads onto what is typically a

smaller number of pthreads. Since SimpleScalar is a uniprocessor

simulator, we limit the number of CPUs to one, thus scheduling

all Java threads on one CPU. With this technique, we can simulate

multi-threaded Java programs running on one processor.

The Jikes RVM uses simple time slicing within each pthread to

schedule the Java threads assigned to that pthread/CPU. Therefore

the Jikes RVM thread scheduler requires timer signals to induce

Java thread switches. After the timer is initialized, the scheduler

proceeds as follows:

1. A timer expires at a regular interval and generates a timer

signal, which is sent to the JVM.

2. When the Jikes RVM C signal handler catches the timer sig-

nal, it sets a special bit in the running thread’s state that indi-

cates the end of the time-slice.

3. At compile time, the Jikes RVM compiler inserts frequent

tests of this bit atsafe points, i.e., points where thread switch-

ing will preserve program semantics.

4. If a check occurs when the bit is set, the code invokes the

scheduler, which selects and runs a new thread and resets the

bit.

In DSS, we incorporated an interval timer and its signal to sup-

port the Jikes RVM thread scheduling scheme, as we discuss in

Section 4.

Locks

To support system and user synchronization, the Jikes RVM uses

three kinds of locks:processor locks, thin locks, andthick locks.

All three locks are built using thelwarx andstwcx instructions.

These instructions perform an atomic read-modify-write operation

to storage. The program first issues alwarx instruction to reserve

4



the memory address, and then astwcx instruction attempts to store

possibly new data to the address. If the store succeeds, thenno

other processor or mechanism has modified the target memory lo-

cation between the time thelwarx instruction is executed and the

time thestwcx instruction completes. If the store fails, then gener-

ally the software retries the operation. We added these instructions

to DSS, since they are not supported in SimpleScalar.

2.4 Compiler Subsystem

The Jikes RVM has three compilers: thebaseline compiler, which

essentially macro-expands each byte code using an explicitmodel

in memory of the Java evaluation stack, and hence does not gener-

ate high-quality code; theoptimizing compiler, which applies tra-

ditional static compiler optimizations as well as a number of opti-

mizations specific to object-oriented features and the dynamic Java

context; and theadaptive compiler, which first applies the baseline

compiler and then, using dynamic measurements of frequencyof

execution of code, selects methods for optimizing compilation. All

the compilers generate machine code at run time, which requires

DSS to support dynamic code generation. This feature requires us

either to predecode dynamically, or to eliminate predecoding. In

our system, the latter is less expensive.

2.5 Memory Management Subsystem

Memory management includes object allocation and garbage col-

lection. Because Java code lives in the heap, the garbage collector

can move it to another memory location, which requires DSS to

perform operations such as invalidating the instruction cache. A

more detailed description of the instructions we support for move-

ment and modification of code appears in Section 4.

3. Related Work

In this section, we first present several simulators that we consid-

ered using to simulate the Jikes RVM. Then we discuss related

work on characterizing and simulating Java.

3.1 Simulators

In the previous section, we described several features of the Jikes

RVM which are often not supported by simulators, such as the sig-

nals, dynamic code generation, and support for concurrencyand

synchronization. We now discuss a number of simulators and their

features in light of the demands of simulating the Jikes RVM and

our requirement of detailed cache and memory simulation. Because

the Jikes RVM only runs on PowerPC (with AIX or Linux) and x86

architectures, our discussion focuses on PowerPC simulators.

PSIM

PSIM is a program that emulates the ISA of the PowerPC mi-

croprocessor family [9]. It was developed by Andrew Cagney and

his colleagues and is now an open source program bundled withthe

GNU debugger,gdb. The version of PSIM that can run Linux pro-

grams (it does not support AIX) does not have a detailed cacheand

memory simulation, which is essential for our experiments.How-

ever, PSIM does not support dynamic code generation, nor does it

fully implement signals.

RSIM and L-RSIM

5



RSIM [16] has detailed cycle-level simulation of a dynamically

scheduled processor and memory hierarchy with a multiplexed sys-

tem bus. L-RSIM [19] is a simulation environment for I/O intensive

workloads based on RSIM. The original L-RSIM added an I/O sub-

system which consists of a real time clock, a PCI bus and a SCSI

adaptor with one or more disk devices connected to it. The simu-

lation of I/O requires some similar techniques to the simulation of

signals. Neither RSIM nor L-RSIM support dynamic code gener-

ation as they predecode programs before simulation. Furthermore,

although L-RSIM simulates I/O, it is inadequate for our require-

ment of simulating signals.

SimOS

SimOS [13, 17, 12] simulates hardware in sufficient detail torun

a complete commercial operating system. We explored SimOS-

PPC, a version of SimOS developed by IBM which simulates the

PowerPC processor and runs AIX. SimOS simulates both signal

handling and dynamic code generation and therefore satisfies the

requirements for running the Jikes RVM. However SimOS-PPC

does not have a detailed processor model and does not supportall

of the instructions used by the Jikes RVM. Moreover, SimOS sim-

ulates the entire machine, including the operating system,which is

computationally expensive and unnecessary in the context of simu-

lating a JVM.

3.2 Simulating Java

There have been several studies on the characteristics of the mem-

ory behavior and performance of Java programs by simulation[14,

15, 20].

Kim et al. [14] studied memory behavior by feeding memory ac-

cess traces to cache simulators. The garbage collection algorithm

they studied was mark and sweep GC. In our study, we examine the

behavior of Java programs in the context of semi-space, fixednurs-

ery generational and variable nursery generational (Appel-style)

garbage collectors. The Appel-style collector is the best perform-

ing generational copying collector [6].

Li et al. [15] studied the performance characteristics of SPECjvm98

Java programs. They used SimOS in their experiments. They did

not differentiate the impact of mutator and GC, which, as we will

show later, exhibit different memory behaviors. As we stated be-

fore, SimOS does not have a cycle-level processor model, affecting

the accuracy of their results.

Shuf et al. [20] use a very similar methodology to Kimet al.

They generated traces and simulated memory behavior by using

the trace on a cache simulator. They adopted a very large heapsize,

essentially ignoring the impact of GC. Also, because of their use

of unusually large heaps, TLB misses are a significant feature of

their results. In our study, we use different heap sizes and study the

effects of GC and the interaction between mutator and GC.

4. SimpleScalar and DSS

We now introduce the SimpleScalar simulator tool set [8] andex-

plain the extensions required to support simulating the Jikes RVM.

We then group the issues and mechanisms needed into the follow-

ing categories and discuss them in turn: the signal mechanism, sup-

port for thread scheduling and synchronization, and support for dy-

6



namic code generation.

4.1 SimpleScalar

We started with the version of SimpleScalar that supports the

PowerPC instruction set architecture [18, 8]. The SimpleScalar tool

set provides functional emulation of a target machine’s ISA(in this

case PowerPC), dynamic trace-driven evaluation of programim-

pact on underlying hardware such as caches and branch predictors,

and timing simulation of an out-of-order issue microprocessor core

with the associated memory system.

We made only one major change to the simulator internals; the

other changes, described below, mainly add functionality with the

appropriate hooks. In SimpleScalar, the simulated programis pre-

decoded before the simulation starts, to speed simulation by mak-

ing instruction emulation more efficient. SimpleScalar predecodes

every instruction by looking up the function that simulatesthe in-

struction’s opcode, and replacing the instructions in the simulated

memory with pointers to the simulation functions for those instruc-

tions.

Since dynamic compilation systems (such as the Jikes RVM)

generate and modify code during execution, the predecodingas

provided needed to be modified or extended. The two possibilities

are re-decoding any new or modified code, or decoding each in-

struction on the fly. We found that it was cheaper simply to decode

as the target system’s instructions are fetched from its memory, as

discussed further in Section 4.2.

The predecoding issue created a separate issue when handling

system calls. SimpleScalar simulates only user mode instructions,

implementing system calls by using the host machine as a proxy

to execute the system call. When the simulated program makesa

system call, the simulator obtains the arguments passed to the call

and makes the call at the source level by calling the corresponding

user level function call. Since the PowerPC binaries make calls to

C library routines that ultimately call the operating system kernel,

the PowerPC system replaces each of those library calls witha spe-

cial instruction to signal a proxy call (thesc instruction), which is

not used in user-level code by AIX-generated binaries. Whenthe

simulator encounters thesc instruction it emulates the system call

determined by arguments in the current register values.

We needed to ensure that thesc instruction appeared in all code,

including that code produced dynamically. Since the Jikes RVM

has system calls only within a small static portion of the system

written in C, we did not need to rewrite system calls in dynamically

generated code. Thus we do a single rewriting pass over only the

static code available when the system starts up.

The other major change to DSS internals was to add a virtual

memory model that includes support for signaling a segmentation

violation when a program attempts to access unmapped virtual mem-

ory. The Jikes RVM needs this functionality to support its mech-

anism for detecting attempts to dereference a null pointer.This

extension is significant in that it affects all simulator functions that

model access to the simulated memory. The segmentation viola-

tion functionality also relies on the signal support we introduced in

DSS.

4.2 Major Extensions

7



System call Description

mmap manages virtual memory existence and protection
sigprocmask changes the list of currently blocked signals
sigstack sets and gets signal stack context
sigaction specifies the action to take when a signal happens
kill sends a signal to a running process
gettimerid allocates an interval timer
incinterval sets the value of a timer to a given offset

Table 1: List of system calls implemented in Dynamic Sim-
pleScalar

Instruction Description

dcbst update memory from data cache
sync wait for memory operations
icbi invalidate code in instruction cache
isync perform instruction fetch synchronization
mfspr move from special purpose register
mftb move from time base
lwarx load-and-reserve (a.k.a. load-linked)
stwcx store-conditionally
eieio enforce in-order execution of I/O
twi trap when a specified condition is true
tw trap when a specified condition is true

Table 2: List of instructions added/changed in Dynamic Sim-
pleScalar

We now describe the major extensions to the SimpleScalar func-

tionality, including support for threads, dynamic compilation, and

signals. We add a number of operating system features, but donot

move to whole system simulation, for two reasons. One is thata

user-mode simulator will almost certainly run significantly faster

than a whole system simulator. The other is that whole systemsim-

ulation is much more complex, both the implement, and to use,

since one must accurately model many more details of the hard-

ware, including protected mode and attached hardware devices.

Tables 1 lists the system calls we added to DSS, and Table 2

gives the hardware instructions we added.

The Signal Mechanism

The original SimpleScalar offered no support for Unix signals. Since

the Jikes RVM uses a number of signals and traps (which turn into

signals), thread scheduling and other common functions, wechose

to implement a general signal mechanism.

Signal Generation, Delivery, and Handling

Our signal implementation includes: signal generation, receiving

(or blocking) signals, handling signals, and recovering from signal

handlers. The signal masks and signal handlers are set at thebe-

ginning of simulation;sigprocmask andsigaction calls can change

them during the simulation.

Figure 1 offers an overview of our signal delivery system. Our

implementation maintains a stack of not-yet-delivered signals. The

diamond in the figure labeled “A signal arrived” tests whether the

stack of pending (unmasked) signals is non-empty.

A signal
arrived

Yes

No

Main simulation loop

Restore saved registersIf jump to 
SIGRET?

No

Yes

instruction
Emulate an

handler
2. Set PC to the start of 
signal handler
3. Set the return address
to SIGRET

Set the signal maskes
and the signal hanlders

1. Save the register
2. Save environment
values for signal 

Figure 1: Overview of signal system in simulator

We describe the implementation in more detail below.

1. Generating signals: If the simulated program issues thekill

system call, then DSS generates the signal (pushes it on the

8



signal delivery stack). DSS also generates the following three

signals internally:

(a) SIGSEGV: Whenever a memory operation tries to ac-

cess an invalid memory address, DSS sends aSIGSEGV

to the simulated program.

(b) SIGALRM: The Jikes RVM sets up the timer by call-

ing gettimerid andincinterval. These functions set the

value of the timer and start it. DSS updates the timer

with the simulated time, which is proportional to the

number of cycles elapsed since the program starts. When

the timer goes off, DSS generates aSIGALRM and deliv-

ers it to the Jikes RVM. Depending on the parameters of

incinterval, the Jikes RVM starts or resets the timer, or

terminates the thread, to implement thread scheduling.

(c) SIGTRAP: The PowerPC has trap instructions,tw and

twi, which generate theSIGTRAP signal. The Jikes

RVM uses these instructions to generate exceptions such

as array bounds checking, and divide-by-zero checking.

2. Delivering signals: As previously mentioned, we construct a

stack that stores the most recent signal on top. At the end of

emulation of each instruction, DSS checks the stack for sig-

nals that arrived during execution of the current instruction.

If there is a signal, but the signal is blocked, DSS ignores the

signal. (A signal could be blocked by setting the signal mask

by sigaction andsigprocmask). Otherwise, DSS handles the

signal.

3. Handling signals: When the user program uses thesigaction

system call to set up a signal handler, DSS associates the

signal number with the function address of the signal handler.

This system call also causes DSS to block some signals while

executing the signal handler. When DSS detects a signal and

calls the signal handler, it performs the following operations

on the simulated processor state:

(a) Save the current contents of the registers.

(b) Set the next PC to the start address of the signal handler.

(c) Set the signal mask of this signal to prevent recursive

triggering of the same signal, as required bysigaction.

(d) Set the registers and other global variables appropriate

to the signal and pass these values to the signal handler

by storing them in simulated memory. For example, on

an invalid memory access that triggersSIGSEGV, DSS

passes the address for which access failed.

(e) Set the return address of the handler function toSI-

GRET, a special constant value that will never appear as

a return address in a normal program.

Then DSS returns to the main simulation loop and continues

the simulation.

4. Return from exceptions: When the signal handler finishes its

execution, it will try to jump to an instruction with the PC

value ofSIGRET. DSS detects this jump, restores the saved

register contents, and continues simulating the user program.

Note that handlers may update the saved register state so that

when the program returns from handling the signal it resumes

execution somewhere else. This update is necessary in order

9



to support the technique that the Jikes RVM uses to turn sig-

nals into throws of Java exceptions.

Precise Interrupts

SimpleScalar’s out-of-order execution did not implement precise

interrupts for exceptions because it did not handle exceptions. We

thus implemented precise interrupts in DSS for exceptions,to at-

tain correct timing and program behavior in DSS. There are several

methods we could have used to implement precise interrupts,such

as a reorder buffer, a history buffer, or a future file [21]. Asdo many

current microarchitectures, we use a reorder buffer to simulate the

timing effects of precise interrupts.

As we described previously, DSS checks for exceptions after

each instruction, and if one is found, it flushes all entries in the

reorder buffer after the faulting instruction. When we simulate

branch prediction for the executing the program, DSS speculatively

executes instructions on the mispredicted path, but does not check

or receive signals on the mispredicted path, waiting until the mis-

predicting instruction reaches the commit stage before servicing a

signal.

Thread Scheduling and Synchronization

To support thread scheduling in Jikes, DSS needs support forSIGALRM

as described above. In addition, DSS must support locks. There-

fore, we implement thelwarx andstwcx instructions in DSS.

In our implementation,lwarx executes as follows:

1. Set the reservation bit to 1.

2. Set the reservation address to the effective address computed

for thelwarx instruction (the address being loaded).

3. Load the data from memory and put it in the destination reg-

ister.

An stwcx causes the following actions:

1. DSS checks if the reservation is 1 and the reservation address

equals the effective address of thestwcx. If either is false,

instruction execution fails and the store is not performed.

2. Otherwise, DSS stores the value to memory and resets the

reservation bit to 0.

In DSS, we support only one processor, so the only instructions

that will change the reservation address arelwarx andstwcx. Fur-

ther, the Jikes RVM never uses an ordinary store to an addressthat

might be reserved, so we did not need to add reservation clearing

code to ordinary stores. If we need to support multiple processors

or there may be some other instructions that affect reservations,

we will need to change the implementation of store instructions to

clear reservations as appropriate. This change is easy to imple-

ment but may significantly increase simulation time. Additional

investigation may find a more efficient solution and extensions for

simulating multiprocessors.

Dynamic Code Generation

Here we first discuss how DSS handles the special case of system

calls, and then the more general technique that handles dynamically

generated, moved, or patched code.

System Call Instruction Decoding

10



SimpleScalar predecodes the text segment of the program after

the program is loaded into simulated memory and before simulation

starts. The predecoding process patches calls to system routines

and decodes the opcode of instructions to speed up simulation. DSS

builds on this structure for system calls and dynamically generated

code.

The Jikes RVM is designed to run as a user-level process. As

such, it accesses the underlying file system, network, and proces-

sor resources via operating system calls. In the Jikes RVM, asmall

portion of the code is written in C and only this code can make

system calls to the kernel. This code is in the text segment, and is

never modified or moved by the Jikes RVM. So in DSS, we pre-

decode system calls in the text segment before simulating the pro-

gram. After simulation starts, DSS does no further checkingfor, or

translation of, system calls, because there is no need. It would not

be very difficult to add dynamic rewriting of system calls, should

one desire to simulate programs needing that functionality.

SimpleScalar simulates operating system calls at the levelof C

library calls. The library routines generally (but not always) boil

down to a correspondingsc instruction. However, thesc level in-

terface to the operating is not published, and further, we believe that

the AIX libraries rely on special support from the operatingsystem,

which we cannot replicate in a user-mode simulator. Hence, we call

a corresponding host systemlibrary routine at the point where the

simulated program would make alibrary call. In current work port-

ing DSS to Linux we believe we can support simulation at thesc

level, which eliminates the need for locating and rewritinglibrary

calls.

Dynamic Instruction Decoding

The original SimpleScalar predecodes all the instructionsbefore

simulation to save repeatedly decoding opcodes for the samein-

struction during simulation. We had to change this scheme because

the Jikes RVM generates, moves, and changes machine code dur-

ing the execution of a Java program. We implemented two methods

for dynamic decoding:

1. The simpler scheme decodes each instruction every time itis

executed, by fetching it from simulated memory. This mech-

anism is correct because we propagate updates to simulated

memory immediately.

2. The more complex scheme predecodes instructions, manag-

ing a “cache” of pages that have been predecoded. If DSS

attempts to execute an instruction from a non-predecoded

page, it predecodes the page. The simulator invalidates pages

in the predecoded cache.

We compared the results of both schemes and found that the first

scheme is about 30% faster than the second one. Because the first

scheme requires less code in the critical simulation loop, it per-

forms better and we use it in DSS.

There are other alternatives for implementing decoding. For ex-

ample, we can predecode code when it is created and detect when

new code is generated or the old code is changed in the simulating

program.

The cache coherence of the instruction cache is another issue in

dynamic code generation. Since the Jikes RVM generates, moves,

and modifies machine instructions during execution, it usesspecial

11



instructions to manipulate the caches to make sure the proper in-

structions are fetched and executed. DSS must implement these

special instructions, which were not supported by SimpleScalar, to

ensure correct semantics and correct timing results. (We obtain

correct semantics because there is in fact just one copy of mem-

ory data, in the simulated memory locations, but timing is possibly

an issue.) The cache behavior the Jikes RVM expects on the IBM

PowerPC 604 architecture is as follows:

1. After the compiler writes code (be it new code, modified

code, or copied code), the program must first force the up-

dated data cache lines to be stored into memory. The data

must go through memory because there is no direct path

from the data cache to the instruction cache (i-cache). The

Jikes RVM uses the PowerPC instructiondcbst to force

dirty cache lines to memory. The program must then perform

a sync, to insure the memory writes have finished before it

proceeds.

To simulate the timing correctly, thedcbst instruction for

dirty cache lines must take the same number of cycles as a

write to memory. Thesync instruction also stalls all subse-

quent instructions untildcbst completes.

2. The user program must then insure that those memory loca-

tions are not in the i-cache. It is possible (though perhaps

unlikely) for code in location X to be (1) loaded in the i-

cache, (2) copied somewhere else by the GC, and then (3)

some other code written to location X later. Thus it is pos-

sible for i-cache contents to be stale. The Jikes RVM use

theicbi instruction to invalidate updated code locations. In

DSS, we implement it by invalidating cache lines, causing

misses on new accesses to those instructions.

3. The Jikes RVM then does anisync, to insure that theicbi

instruction completes before proceeding to the following in-

structions. We implementedisync assync, which would

stop subsequent instructions from executing before previous

instructions finish their execution. Theisync instruction

will also flush any instruction that is already in the pipeline

because it could be stale.

5. Evaluation

In this section, we describe our experimental setup, including our

simulator environment, the architecture against which we validated,

and our benchmark programs. We then present results for execu-

tions on both the DSS simulator and a PowerPC machine.

5.1 Experimental Setup

Jikes RVM and GCTk: We used Jikes RVM 2.0.3 in these exper-

iments. We use theFastTiming configuration in which the Jikes

RVM compiles and executes all methods for these experiments.

This configuration exaggerates the effect of the compiler onrun-

time compared to the adaptive configuration, which compilesonly

the frequently executed methods. The adaptive configuration is not

deterministic, which prevents repeatable accurate simulations and

precludes its use here.

Our research group recently developed a new garbage collector

(GC) toolkit for Jikes RVM, called GCTk [5, 6]. We have written

12



a number of GC algorithms in GCTk; in these experiments, we use

our GCTk implementation of Appel’s generational collector[4],

and run our benchmarks with various heap sizes. This collector is a

very good two generational copying GC [6]. It has a flexibly sized

nursery, which is initially the entire heap. Each collection reduces

the nursery size by the survivors until the heap is full, which trig-

gers a full heap collection. It performs much better than a fixed-size

nursery collector in previous experiments [6]. We compare Appel-

style, fixed-size nursery, and semi-space garbage collectors in the

next section.

Benchmarks: We use benchmarks from the SPECjvm98 suite

in this experiment. SPECjvm98 programs are designed to measure

the performance of entire Java platforms, including Java virtual ma-

chines, operating systems, and underlying hardware. A detailed

analysis of SPECjvm98 is given by Dieckman and Hölzle [11].The

eight benchmark programs we use are:� 201 compress, a Java port of the 129.compress benchmark

from SPEC CPU95� 202 jess, an expert system shell� 205 raytrace, a ray tracing program� 209 db, which simulates a database system� 213 javac, the Sun JDK 1.02 Java compiler, compiling jess� 222 mpegaudio, a decoder to decompress MPEG-3 audio

files� 227 mtrt, a multithreaded raytracer� 228 jack, which generates a parser repeatedly

PowerPC Architecture and PMAPI: We use a PowerPC ma-

chine running AIX 4.3.3 as the target machine for validation. We

collected data using the PMAPI library1 installed on this machine.

PMAPI is an application programming interface for accessing the

performance counters inside certain PowerPC machines.

We run each configuration (a specific heap size for a specific

benchmark) three times in single-user mode, and used the runwith

the smallest number of cycles (i.e., the one least disturbedby other

effects in the system) in our validation.

The memory hierarchy configuration of the PowerPC machine

we use is as follows:� L1 data cache: 64KB, 128 byte line, 128 way, 1 cycle latency� L1 instruction cache: 16KB, 32 byte line, 8 way, 1 cycle

latency� L2 unified cache: 4M, 128 byte line, direct mapped, 6-7 cy-

cle latency� Instruction TLB: 128 entry, 2 way� Data TLB: 256 entries, 2 way� Memory: latency approximately 35 cycles

DSS: DSS uses the same memory hierarchy as the PowerPC ma-

chine. DSS uses the five-stage pipeline model of SimpleScalar. The

details of the simulated micro-processor are as follows:� Five-stage pipeline based on a Register Update Unit, which

combines the physical register file, reorder buffer, and issue

window into a single data structure

1http://www.alphaworks.ibm.com/tech/pmapi

13



� Out-of-order issue, including speculative execution� Issue width, decode width, and commit width are 4, The size

of the RUU is 16� Bimodal branch predictor with table of 2048 entries� Load-store queue has 8 entries

The host machine for the simulator is a SPARC running Solaris5.8.

5.2 Validation

Although we configure DSS to have the same memory hierarchy

as the PowerPC machine, the real machine has a more complicated

memory system than the simulator. For example, DSS does not

simulate the effects of the memory controller and memory bridge

in the real machine. Likewise, DSS does not model performance

effects of operating system code. Therefore, executions onDSS

and the real machine produce different cycle counts (and other mea-

sures). However the performance curves of both executions on DSS

and PowerPC machine should have the same trends because they

are very similar.

Table 2 presents statistics for each benchmark with a heap size

of 2 times the minimal heap size for that benchmark. The ta-

ble contains execution results for the number of cycles, instruction

numbers, L1 instruction cache misses, L1 data cache misses,TLB

misses, and GCs. It also contains the comparison with the results

from the native PowerPC machine.

Figure 4 compares cycle counts for DSS simulations and execu-

tions on the PowerPC machine. Because we are interested in rel-

ative trends rather than absolute cycle counts, we normalize DSS

performance and real machine performance, separately, to their

best performance across all heap sizes. Thus DSS performance

at heap sizeh is plotted as the DSS cycle count for heap sizeh di-

vided by the count for the best heap size. Likewise, the measured

performance ath is plotted as the measured cycles ath divided by

the measured performance at the best heap size. The graphs show

that the trends are very similar across heap sizes and benchmarks.

Table 2 offers detailed comparison of the normalized cycle counts

plotted in Figure 4. The arithmetic average of the ratios of nor-

malized cycle counts for all benchmarks and heap sizes is 1.33%.

The maximum difference across all benchmarks and heap sizesis

5.63% for 222 mpegaudio with heap size 10M. Clearly, executions

on DSS and on the PowerPC machine have very similar trends in

cycle counts.

Tables 2 shows that these trends are borne out for other event

counts from the traces. The one measure that does not validate

as well is TLB misses, which are probably strongly affected by

interrupts and operating system code.

6. Example Study

This section describes two examples studies using DSS to char-

acterize the performance of Java programs. The first compares the

effect of heap size on total time. The second compares a variety of

copying collectors and heap sizes and studies aggregate, mutator,

and GC behavior. As in the validation section, we use theFastTim-

ing configuration in which the Jikes RVM compiles and executes

all methods and the same hardware configuration for these experi-

ments.

14



Program Heap Platform Cycle (106) Inst (106) I-L1 miss (103) D-L1 miss (103) TLB miss (103) # of GCs

oamaru: 209 db 50 PowerPC 15920 9325 7224 161096 74917 12
DSS 8989 9290 7853 157283 83759 12
Diff -43.54% -0.38% 8.71% -2.37% 11.80% 0.00%

213 javac 50 PowerPC 14370 11853 49346 76511 19541 110
DSS 9796 11876 60101 57068 29959 102
Diff -31.83% 0.19% 21.80% -25.41% 53.31% -7.27%

202 jess 30 PowerPC 8199 7094 18944 52714 10200 88
DSS 5708 7082 18785 43071 11918 88
Diff -30.38% -0.17% -0.84% -18.29% 16.84% 0.00%

228 jack 30 PowerPC 11862 10906 44185 49673 10092 139
DSS 7549 10479 21765 35161 10540 150
Diff -36.36% -3.92% -50.74% -29.22% 4.44% 7.91%

201 compress 40 PowerPC 9248 10455 6071 164277 7560 21
DSS 6927 10464 7056 150994 11225 21
Diff -25.10% 0.09% 16.22% -8.09% 48.48% 0.00%

205 raytrace 30 PowerPC 5913 5330 12743 47456 4696 38
DSS 3982 5331 11517 39925 4045 38
Diff -32.66% 0.02% -9.62% -15.87% -13.86% 0.00%

222 mpegaudio 20 PowerPC 10326 12247 10986 36014 16269 42
DSS 9198 12223 13415 25076 23478 46
Diff -10.92% -0.20% 22.11% -30.37% 44.31% 9.52%

227 mtrt 50 PowerPC 5687 5086 12869 47014 4324 16
DSS 3799 5100 11650 40204 3874 16
Diff -33.20% 0.28% -9.47% -14.49% -10.41% 0.00%

Figure 2: DSS Simulated Results (for Heap Size = 2*Minimal Heap Size)

Program Heap (MB) Cycle (106) Inst (106) I-L1 miss (103) D-L1 miss (103) TLB miss (103) # of GCs

db 25 9879 10207 7979 158773 89319 65
37.5 9185 9526 7906 158151 80719 35

50 8989 9290 7853 157283 83759 12
62.5 8232 9145 7828 151310 52998 7

75 8714 9126 7830 149148 80140 5

Figure 3: DSS simulated results

15


