Sharing Speculation : A Mechanism for Low-Latency Access to
Falsely Shared Data

Rajagopalan Desikan Jaehyuk Huh Doug Burger Stephen W. Keckler
*Department of Electrical and Computer Engineering
Computer Architecture and Technology Laboratory
Department of Computer Sciences

The University of Texas at Austin
cart @s. utexas. edu - www. cs. ut exas. edu/ users/cart

Department of Computer Sciences
Tech Report TR-03-05
The University of Texas at Austin

May 12, 2003

Abstract

False sharing of data is an important phenomenon affectarfppmance in shared memory multiprocessors. False

sharing results in unnecessary coherency overhead by mgursvalidation of the shared cache line, and increasing
the latency of the load accessing the cache line. As micogssors incorporate increasingly large caches with

large cache lines, false sharing will become more commod uentess methods are proposed to alleviate, can reduce
the performance of shared memory multiprocessors. In #p®nt, we propose sharing speculation, a mechanism
to speculatively load values from cache lines that are falshared to reduce the latency of these loads, and later
validating the speculation when the coherence permissaomgventually granted. We give a specific example of our
proposed mechanism in the context of the Grid Processorshad how the inherent data speculation mechanisms in

the Grid Processor lend themselves to the efficient impl&atien of sharing speculation.

1 Introduction

The shared memory paradigm is the programming model pregontty used in chip multiprocessors.
Shared memory results in a simpler programming model, andehleas emerged as the most popular choice
for multiprocessor systems. Chip multiprocessors are agrging class of systems that are expected to use
this programming model. The availability of a large numbktransistors in these systems also facilitates
fabrication of large, high bandwidth on-chip caches witlyéacache lines. Large cache lines usually in-
crease spatial locality, and hence the hit ratio, thus tieguin fewer bus transactions. However, they also
result in the co-location of unrelated data in the same Il ight be used by different processors. This
phenomenon is called false sharing, because even thougfathe line is shared between processors, the
individual data elements are not actually shared by thegasmrs [7]. False sharing results in unnecessary
coherence traffic and longer latency to data in the shared lin

Researchers have proposed methods to reduce false stmanmudtiprocessor systems [6, 5, 2, 9]. How-
ever, false sharing cannot be completely eliminated, derdiit programs have different sharing granu-
larities, that cannot always match the cache line size. irdport, we propossharing speculationa
mechanism to load falsely shared data from cache spealiativhile initiating the coherence mechanism
in parallel, in order to reduce the latency of access to ffialdgared data. Using sharing speculation, a cache
can speculate on shared data and and service a read requesirasit is falsely shared. When the false
sharing is resolved, the cache can validate or invalidatespgeculation depending on the outcome of the
coherence operation. Depending on the cost to recover fatan@lue mis-speculation, sharing speculation
can result in substantial speedup for applications thatbéx$ignificant false sharing. Using confidence
predictors, sharing speculation can also be tuned for gaglication.

2 False Sharing and Sharing Speculation

The granularity of data storage in caches is a cache linehelawes are normally much larger than the size
of data accessed by processors. This mismatch in size aalhiredata accessed by different processors to
reside in the same cache line, resulting in what is callexéfaharing [7]. False sharing results in processors
invalidating and loading entire cache lines, even thougly thodify only a part of the cache line.

False sharing can degrade performance in two ways. Fitse fnaring results in a large number of
unnecessary coherence messages. Second, loads to félasdyl slata are unnecessarily stalled till the
cache line is in a valid state. A number of techniques have peeposed to reduce false sharing. In this
report we propose sharing speculation, a mechanism to &sely shared data from the cache speculatively
while initiating the coherence mechanism in parallel. Wtiencoherence operation completes, the data are
checked to see if there is false sharing and an appropriateage is sent to the processor either validating
or invalidating the original load. Sharing speculationentsuccessful, will mitigate coherence latencies but
not reduce the number of coherence messages in the system.

Sharing speculation is a form of data value speculation,revitiee cache speculates on the value of
a load to an invalid line. When the cache receives a load fdactwthere is a valid tag match but the
line is in the invalid state, it sends the data back to the gssor but marks it as speculative. The cache
also simultaneously initiates coherence operations taoghtie line to one of the valid states. When the
cache line is updated, the cache checks the new value of éldedodata with the previous value. If the
value is the same (as will happen in the case of false shatimg)cache sends a message to the processor
validating the speculation. If the data value changes dftercoherence operation, the cache sends the
correct non-speculative value to the processor. The psocdken initiates recovery from incorrect data
value speculation. A flow chart depicting sharing specnitats shown in Figure 1.

The benefits of sharing speculation will depend upon botldiseof data value mis-speculation recovery

Processor P1 initiates load tg
a shared cache line

Y
Cache finds the line to be
invalid. Speculates on the
data and sends the data in
the line to the processor.
Initiates coherence operation.

|

Coherence operation

completes.

Has
data value
changed?

Y Y

Cache initiates recovery Cache validates speculation

Figure 1: Flow chart depicting sharing speculation

and the amount of false sharing exhibited by an applicatitsing confidence predictors in each cache line,
we can vary the amount of speculation during run time in otdevbtain optimal performance for each
application. Sharing speculation can also be greatly aifidte processor supports a light weight data
speculation recovery mechanism. One such mechanism, déisabden proposed for the Grid Processor
Architectures, is selective re-execution. We describ& riiiechanism in the next section.

3 Sharing Speculation in the Grid Processor

Grid Processor Architectures (GPA) are a family of architezs that was designed to scale to high perfor-
mance in future, wire dominated technologies [10]. In a GiR&tructions are statically scheduled by the
compiler onto a two-dimensional array of ALUs but are dynaatly issued and execute in dataflow fashion.

In a GPA, blocks of instructions are fetched as a single umpped on the ALUs in the processor, and
after execution, are retired in a single atomic operatidre Block of instructions has a single entry point at
the top, no internal loops, and possibly multiple exit pgirfthe data within a block consists of block inputs,
block temporaries, and block outputs. Within the grid pesce, a mapped instruction fires when all of its
input operands arrive at the node and forwards its resulteé@onsumer(s) of the instruction. The compiler
explicitly encodes the physical destinations of an ingtomés result in the opcode of the instruction. Thus,
operands are delivered point-to-point within the gridheatthan being broadcast to all ALUs.

The data flow execution in the GPA facilitates a low cost datae/speculation mechanism called selec-
tive re-execution. The selective re-execution protocabdes simple, distributed selective re-execution,
which is a light-weight mechanism for recovering from datdue mis-speculation. The selective re-
execution protocol in the GPA is proposed as a general mexrhdar different types of data value specula-
tion. Hence, it can be easily used for implementing sharpegslation.

The GPA uses a versioning system to support selective mitima. The versioning system allows
multiple waves of speculation to traverse the GPA conctisrertach operand in the GPA has a version
number and a commit bit associated with it. Multiple copiéamoperand have different version numbers
and it is guaranteed that the non-speculative value of araogewill have the highest version number. The
non-speculative value of an operand also has the commigebitisstructions fire speculatively as soon as
they receive all their input operands. If any of the inputrapels is speculative, then the instruction result is
also speculative. When an instruction receives all thespeeulative values of its input, it forwards a non-
speculative value of its result to all the consumers. Theigarnumbers and the commit bits enable only
version numbers and commit bits to be forwarded inside tite gihen the speculation is correct, instead
of actual data values. Hence, to implement sharing spéaajdhe caches or the MSHRs [8] in the system
would need logic to use the selective re-execution meciraimglemented in the GPA, to inject speculative
values into the processor. It is worth noting that if misespation recovery overhead is sufficiently low, as
in the GPA, then it is always better to speculate, since mgitdr speculation confirmation costs the same
as waiting for the value.

4 Potential Benefit of Sharing Speculation

In this section, we use a multiprocessor simulator to evaltize amount of false sharing present in six
benchmarks taken from various scientific application suie simulated four shared-memory benchmarks,
barnes mdcask ocean and sppmand two MPI-based benchmarkis, and smg2k Our simulated chip
multiprocessor is an extension to the SIMOS system [11]. grbeessor model in the simulator uses sim-
outorder, an out-of-order simulator that is part of the sempalar suite [1]. The system uses a MESI
coherence protocol and runs AlX version 4.3.1. We used am&gsor configuration, with 1 MB level-2
(L2) cache for each processor.

Figure 2 shows the breakdown of L2 cache misses across gltdkessors in the system for each bench-
mark. We classify the misses into two broad categories, @nidsie to invalid coherence state (coherence
misses) and other misses, that includes cold, capacitycanfliict misses. Within the coherence misses
category, we sub-classify the data into false coherenceasniand true coherence misses. False coherence
misses have the same data value before and after the coberparation, and true coherence misses have
different data value after the completion of the coherermeration. Note that higher fraction of false co-
herence misses results in a larger benefit due to sharinglajea.

We see from Figure 2 that for a number of benchmarks, a lasggidn of coherence misses is false
coherence missebarnesiu, andsmgZ2kall have a significant fraction of false coherence misseshande
can have significant improvement in performance with slgasipeculation.oceanhas very few coherence
misses andndcaskand sppmhave a larger fraction of true coherence misses. These bemkh may
not benefit significantly from sharing speculation. Howewussing confidence predictors and selective re-
execution, we can ensure that sharing speculation doesurtgpdrformance for these benchmarks.

