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Abstract

High dimensional directional data is becoming increasingly important in contemporary ap-
plications such as analysis of text and gene-expression data. A natural model for multi-variate
directional data is provided by the von Mises-Fisher (vMF) distribution on the unit hypersphere
that is analogous to multi-variate Gaussian distribution in R

d. In this paper, we propose mod-
eling complex directional data as a mixture of vMF distributions. We derive and analyze two
variants of the Expectation Maximization (EM) framework for estimating the parameters of this
mixture. We also propose two clustering algorithms corresponding to these variants. An inter-
esting aspect of our methodology is that the spherical kmeans algorithm (kmeans with cosine
similarity) can be shown to be a special case of both our algorithms. Thus, modeling text data
by vMF distributions lends theoretical validity to the use of cosine similarity which has been
widely used by the information retrieval community. We provide several results on modeling
high-dimensional text and gene data as experimental validation. The results indicate that our
approach yields superior clusterings especially for difficult clustering tasks in high-dimensional
space.

1 Introduction

Clustering or segmentation of data is a fundamental data analysis step that has been widely studied
across multiple disciplines[JD88, Mac67]. However, several large datasets that are being acquired
from scientific domains, as well as the world wide web, have a variety of complex characteristics that
severely challenge traditional methods for clustering. These large datasets also impose demands on
the evaluation, scalability and visualization of results [Gho03]. This article is concerned with the
clustering of high-dimensional directional data that is becoming increasingly common in several
application domains.

One can broadly categorize clustering approaches into generative and discriminative ones. In
a generative approach [Smy97, Bil98, Ros98, JH99], the data is modeled as being generated by
an underlying parametric, probabilistic process. Values for the parameters are estimated from the
input data, and properties of the clusters are then inferred from these parameters. Discriminative
approaches [Vap98, SS01, Ind99], on the other hand, make no assumptions whatsoever about how
the data points were generated. Instead, they assume that a well defined distance or similarity
measure exists between any pair of objects. The clustering process is then essentially an attempt
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to partition the objects so that intra-partition (within cluster) dissimilarities are smaller than
inter-partition (across clusters) dissimilarities1.

The performance of an approach (and of a specific method within that approach) is quite data
dependent; there is no clustering method that works the best across all types of data distributions.
Generative models, however, often provide better insight into the nature of the clusters. From
an application point of view, a lot of domain knowledge can be incorporated into the generative
models so that clustering of data brings out specific desirable patterns that one is looking for. It is
for this reason that the generative (parametric) approach is referred to as the method of particular
inference in statistical learning theory [Vap98].

Clustering algorithms using the generative model framework, often involve an appropriate ap-
plication of the Expectation Maximization (EM) algorithm [DLR77, Col97] on a properly chosen
statistical generative model for the data under consideration. At present, for vector data, there are
well studied clustering algorithms for popular generative models such as a mixture of Gaussians,
whose effect is analogous to the use of Euclidean or Mahalanobis type distances from the discrimi-
native perspective. However, in many cases such distances are not appropriate, e.g., from empirical
studies in information retrieval applications, cosine similarity has been found to be a good measure
of similarity for analyzing and clustering text documents. Thus, some domains require the use
of directional data[MJ00] — data in which only the direction of the vectors is considered and all
the vectors involved have unit Euclidean norm. In fact several large, high-dimensional datasets
exhibit directional characteristics. These motivations suggest the need for generative models that
are more appropriate for the analysis and clustering of directional data. In this article, we present
a generative mixture model for directional data on the unit hypersphere and derive two clustering
algorithms using this mixture model. We show the connection between the proposed algorithms
and a class of existing algorithms for clustering high-dimensional directional data, and present
detailed experimental comparisons among them.

In order to motivate our work, we present examples of a few important domains where directional
data is becoming increasingly common. One such domain is text analysis, and text clustering in
particular. It has been experimentally demonstrated that in order to remove the biases arising
from the length of a document, it often helps to normalize the data vectors [DM01]. Note that
running a clustering algorithm such as kmeans [DHS00, Mac67] on normalized data so that the
total Euclidean distortion in the data with respect to the cluster representative is minimized, is
not a reasonable idea since the Euclidean distortion is not a natural measure of dispersion for
normalized data. On the other hand, if the cluster representatives themselves are normalized, then
the Euclidean distortion (chordal distance) is negatively proportional to the cosine similarity in the
data with respect to the cluster representative. Given x,y ∈ R

d such that ‖x‖ = ‖y‖ = 1, we have

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2xTy = 2− 2xT y,

where the inner product xTy is the so-called cosine similarity, since it equals the cosine of the
angle between x and y. Thus, minimizing the Euclidean distortion with respect to normalized
cluster representatives is equivalent to maximizing the cosine similarity of the data points with the
cluster representatives. However, note that there is a significant conceptual difference compared to
the classical approach since, the representatives themselves are normalized in this case. Therefore,
maximizing cosine similarity in a particular clustering scheme is tantamount to considering only
the directional properties of the data. The use of cosine similarity has been shown to work well
for very high-dimensional text collections [DM01, BG02, BBM02] using the standard vector-space
model [FBY92, Sal89].

1Note that the approaches are not mutually exclusive, as kmeans can be seen as a member of both the ap-
proaches [KMN97].

2



Another domain in which directional data shows up is bioinformatics. At present, gene ex-
pression datasets are a major source of information about genes and their interactions. DNA mi-
croarrays measure the mRNA expression of all genes encoded by a genome in a single experiment
[LRM+97]. From these microarray experiments an expression vector for each gene is constructed.
The expression vector describes the expression level of a gene subject to a range of cellular condi-
tions, cell types, genetic backgrounds, etc. Thus analysis of gene expression data can prove to be a
valuable source of information for understanding and predicting functions of genes. A fundamental
analysis step is the clustering of genes that exhibit similar expression levels. Given enough indepen-
dent experiments, genes clustered in this fashion tend to be functionally related[ESBB98, MPT+99].

A similarity measure that has been found to be useful in the gene clustering domain is the
Pearson correlation coefficient of the expression levels of genes. Given x,y ∈ R

d, the Pearson
product moment correlation between them is given by

ρ(x,y) =

∑d
i=1(xi − x̄)(yi − ȳ)

√

∑d
i=1(xi − x̄)2 ×

√

∑d
i=1(yi − ȳ)2

, (1.1)

where x̄ = 1
d

∑d
i=1 xi, ȳ = 1

d

∑d
i=1 yi. Considering the mapping x 7→ x̃ such that x̃i = xi−x̄

q

Pd
i=1

(xi−x̄)2
,

we have ρ(x,y) = x̃T ỹ. Thus, the Pearson correlation is exactly the cosine similarity between x̃ and
ỹ that are obtained by a simple mapping from the given feature vectors x and y. Hence, analysis
and clustering of gene expression data using Pearson correlations is essentially a clustering problem
using directional data. In fact, any algorithm that uses Pearson correlations, e.g., a number of
standard techniques in recommender systems based on collaborative filtering [SKKR01], can be
considered as a problem involving directional data and hence should be analyzed under the domain
of directional statistics [MJ00].

In [DM01], the spkmeans algorithm for clustering spherical data was proposed. The connection
between a generative model involving von Mises-Fisher distributions and the spkmeans algorithm
was first observed in [BG02]. In this article, we propose a mixture model on the unit hypersphere
for modeling directional data based on the von Mises-Fisher (vMF) distribution and derive two EM-
based clustering algorithms based on the same. To this end, we first present the vMF distribution on
the sphere and discuss the maximum likelihood parameter estimates for a single vMF in section 2.
In section 3, we introduce the generative model for a mixture of vMF distributions and analyze
the maximum likelihood parameter estimates of the mixture model from a given dataset using
the EM framework. Based on the analysis in section 3, two clustering algorithms, using soft-
and hard-assignments respectively, are proposed in section 4. We show the connection of the
proposed algorithms to the spkmeans algorithm in section 4.1. A brief discussion of the numerical
implementation issues is in section 4.2. A summary of artificial and real life datasets used for
experimentation is presented in section 5. We discuss the experimental results on various datasets
in section 6. Some limitations of our present approach and the clustering process in general are
discussed in section 7. Section 8 presents concluding remarks and outlines directions for future
work.

A word about the notation: bold faced variables, e.g., x, µ, represent vectors; ‖ · ‖ denotes the
L2 norm; sets are represented by calligraphic upper-case letter, e.g., X , Z; R denotes the set of
reals; S

d−1 denotes the (d− 1)-dimensional unit hypersphere embedded in R
d. Probability density

functions are denoted by lower case alphabets, e.g., f , p; probability of sets of events is denoted
by capital letter, e.g., P , Q. If a random variable z is distributed as p, we denote this by z ∼ p.
Expectation of functions of a random variable z ∼ p are denoted by Ez∼p[·], or, simply Ep[·] if
the random variable is distributed as p. Unless otherwise mentioned, we study data that lies on
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the unit hypersphere, i.e., is L2-normalized — we use the terms “directional data” and “spherical
data” interchangeably when talking about such data.

2 The von Mises-Fisher (vMF) distribution

A d-dimensional unit random vector x (i.e., ‖x‖ = 1) is said to have d-variate von Mises-Fisher
(vMF) distribution Md(µ, κ), if its probability density function is given by:

f(x|µ, κ) = cd(κ)eκµ
T
x x,µ ∈ S

d−1 ⊆ R
d, κ ∈ R+ ∪ {0}. (2.1)

The normalizing constant cd(κ) is given by (see [DS03] for detailed derivations)

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2.2)

where Ir(κ) represents the modified Bessel function of the first kind of order r and argument κ
(see [AS74] for more on Bessel functions). The distribution Md(µ, κ) is parameterized by the mean
direction µ, and the concentration parameter κ, so-called because it characterizes how strongly
the unit vectors following Md(µ, κ) are concentrated about the mean direction µ. Larger values
of κ imply stronger concentration about the mean direction. In particular when κ = 0, Md(µ, κ)
reduces to the uniform distribution on S

d−1, and as κ→∞, Md(µ, κ) tends to a point distribution
concentrated at µ.

The von Mises-Fisher distribution is natural for directional data and has properties analogous
to those of the multi-variate normal distribution in R

d. Mardia and Jupp [MJ00] mention that
the density on S

d−1 that maximizes the entropy, while keeping E[x] fixed, is a vMF density. See
Rao [Rao73, pp. 172–174] and Mardia [Mar75] for a proof. A maximum likelihood characterization
says: let f(x;µ) be a probability density function on S

d−1 with mean direction µ and E[x] = ζµ

where ζ > 0. If for all random samples the sample mean direction is a maximum likelihood estimate
(m.l.e.) of µ and f(x;µ) = g(xT

µ) for all x ∈ S
d−1, where the function g is lower semi-continuous

from the left at 1, then f(x;µ) is a von Mises-Fisher density. Various other results related to the
vMF density and its genesis are given in [MJ00].

2.1 Maximum Likelihood Estimates

We now briefly discuss the maximum likelihood estimation of the parameters of a single vMF
distribution from a given data set. Let X be a finite set of sample unit vectors drawn independently
following Md(µ, κ), i.e., we have

X = {xi | xi ∼Md(µ, κ) for 1 ≤ i ≤ n}.

We want to find maximum likelihood estimates for the parameters µ and κ of the distribution
Md(µ, κ). Assuming each xi ∈ X to be independent we can write the likelihood of X as:

P (X|µ, κ) = P (x1, . . . ,xn|µ, κ) =
n
∏

i=1

f(xi|µ, κ) =
n
∏

i=1

cd(κ)eκµ
T
xi . (2.3)

Taking logarithm of both sides of (2.3), the log-likelihood of the data set X becomes

L(X|µ, κ) = ln P (X|µ, κ) = n ln cd(κ) + κµ
T r, (2.4)
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where r =
∑

i xi. To obtain the maximum likelihood parameter estimates of µ and κ, we have to
maximize (2.4), subject to the constraints µ

T
µ = 1 and κ ≥ 0. Introducing a Lagrange multiplier

λ, the Lagrangian of the objective function is given by2

L(µ, λ, κ;X ) = n ln cd(κ) + κµ
T r + λ(1− µ

T
µ). (2.5)

Now, taking derivatives of the Lagrangian with respect to µ, λ and κ and setting them to zero, we
get the following equations that the parameter estimates µ̂, λ̂ and κ̂ must satisfy:

µ̂ =
κ̂

2λ̂
r, (2.6a)

µ̂
T
µ̂ = 1, (2.6b)

nc′d(κ̂)

cd(κ̂)
= −µ̂

T r. (2.6c)

Substituting (2.6a) in (2.6b) gives us

λ̂ =
κ̂

2
‖r‖, (2.7)

µ̂ =
r

‖r‖
=

∑n
i=1 xi

‖
∑n

i=1 xi‖
, by (2.6a). (2.8)

Substituting (2.8) in (2.6c), we get
c′d(κ̂)

cd(κ̂)
= −
‖r‖

n
. (2.9)

For brevity, let us write s = d/2− 1; on differentiating (2.2) w.r.t. κ we obtain:

c′d(κ) =
sκs−1

cIs(κ)
−

κsI ′s(κ)

cI2
s (κ)

, (2.10)

where c = (2π)s+1 is a constant. The right hand side simplifies to

κs

cIs(κ)

(

s

κ
−

I ′s(κ)

Is(κ)

)

= cd(κ)

(

s

κ
−

I ′s(κ)

Is(κ)

)

. (2.11)

Using the following well known recurrence relation ([AS74] 9.6.26)

κIs+1(κ) = κI ′s(κ) − sIs(κ), (2.12)

we finally obtain:
−c′d(κ)

cd(κ)
=

Is+1(κ)

Is(κ)
=

Id/2(κ)

Id/2−1(κ)
. (2.13)

Thus we can obtain the m.l.e. κ̂ by solving

Ad(κ̂) =
‖r‖

n
, (2.14)

where Ad(κ) =
Id/2(κ)

Id/2−1(κ) . In Section 4.2 we shall discuss the computation of κ̂ from (2.14) using

various approximations.

2strictly speaking, we should introduce the inequality constraint for κ in the Lagrangian and work with the
necessary KKT conditions. If we assume κ cannot be 0, then the multiplier for the inequality constraint has to be
zero by the complementary slackness conditions, and the Lagrangian we are working with is adequate.
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3 EM on Mixture of vMFs

In this section, we introduce a mixture of k vMF (moVMF) distributions as a generative model for
directional data. We then derive the mixture-density parameter estimation update equations from
a given data set using the expectation maximization (EM) framework. The probability density
function of the moVMF generative model is given by

f(x|Θ) =
k
∑

h=1

αhfh(x|θh), (3.1)

where Θ = {α1, · · · , αk, θ1, · · · , θk}, αh ≥ 0,
∑k

h=1 αh = 1 and fh(x|θh) is a single vMF distribution
with parameters θh = (µh, κh). In order to sample a point from the generative model perspective,
the h-th vMF is chosen at random with probability αh, and then a point is sampled from S

d−1

following fh(x|θh). Let X = {x1, · · · ,xn} be a data set generated by sampling independently
following this generative model. Let Z = {z1, · · · , zn} be the corresponding set of the so-called
hidden random variables such that zi = h when xi has been generated following fh(x|θh). Then,
with the knowledge of the values of the hidden variables, the log-likelihood of the observed data is
given by

ln P (X ,Z|Θ) =
n
∑

i=1

ln (αzifzi(xi|θzi)) , (3.2)

from which maximum likelihood parameter estimates can be obtained. However, the values of
the hidden variables are not known, whereby (3.2) is really a random variable dependent on the
distribution of Z, and will be called the complete data log-likelihood. Now, for a given (X ,Θ),
it is possible to obtain an estimate of the most likely conditional distribution of Z|(X ,Θ), and
this forms the E-step of the EM framework. The exact details of how this estimation is done will
be deferred for the moment. In fact we will discuss two ways of estimating the hidden variable
distributions that lead to significantly different algorithms. For now, we will assume that the
distribution p(h|xi,Θ) = p(zi = h|x = xi,Θ),∀h, is known for all the data points.

3.1 The M-step: Parameter Estimation

Suppose the conditional distribution, p(h|xi,Θ),∀h, i, of the hidden variables Z|(X ,Θ) is known.
Unless otherwise specified, from this point onward, all expectations will taken over the distribution
of the (set of) random variable(s) Z|(X ,Θ). Now, expectation of the complete data log-likelihood
given by (3.2), over the given distribution p, is given by

Ep[ln P (X ,Z|Θ)] =

n
∑

i=1

Ep(zi|xi,Θ)[ln(αzifzi(xi|θzi))]

=
n
∑

i=1

k
∑

h=1

ln(αhfh(xi|θh)) p(h|xi,Θ)

=

k
∑

h=1

n
∑

i=1

(ln αh) p(h|xi,Θ) +

k
∑

h=1

n
∑

i=1

(ln fh(xi|θh)) p(h|xi,Θ). (3.3)

In the parameter estimation or M-step, Θ is re-estimated such that the above expression is maxi-
mized. Note that in order to maximize this expression, we can maximize the term containing αh

and the term containing θh separately since they are not related (note that p(h|xi,Θ) is fixed).
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To find the expression for αh, we introduce the Lagrangian multiplier λ with the constraint that
∑k

h=1 αh = 1 and take partial derivatives of the Lagrangian objective function w.r.t. each αh to
get

∂

∂αh

[

k
∑

h=1

n
∑

i=1

(ln αh)p(h|xi,Θ) + λ

(

k
∑

h=1

αh − 1

)]

= 0 ⇒

n
∑

i=1

p(h|xi,Θ) = −λαh, ∀h. (3.4)

Summing both sides of (3.4) over all h, we get λ = −n and hence from (3.4) we have

αh =
1

n

n
∑

i=1

p(h|xi,Θ). (3.5)

Next we concentrate on the terms containing θh = (µh, κh) under the set of constraints µ
T
h µh =

1, κh ≥ 0,∀h. Then, using Lagrange multipliers λ1, · · · , λk corresponding to these constraints, the
Lagrangian is given by

L({µh, λh, κh}
k
h=1) =

k
∑

h=1

n
∑

i=1

(ln fh(xi|θh)) p(h|xi,Θ) +

k
∑

h=1

λh

(

1− µ
T
h µh

)

=

k
∑

h=1

[

n
∑

i=1

(ln cd(κh)) p(h|xi,Θ) +

n
∑

i=1

κhµ
T
h xi p(h|xi,Θ) + λh(1− µ

T
h µh)

]

.

(3.6)

Note that (3.6) is quite similar to the Lagrangian in (2.5) for a single vMF distribution. Now,
taking partial derivatives of (3.6) with respect to {µh, λh, κh}

k
h=1 and setting them to zero, we get

the following set of equations for h = 1, 2, . . . , k:

µh =
κh

2λh

n
∑

i=1

xip(h|xi,Θ), (3.7a)

µ
T
h µh = 1 ∀h, (3.7b)

c′d(κh)

cd(κh)

n
∑

i=1

p(h|xi,Θ) = −µ
T
h

n
∑

i=1

xip(h|xi,Θ). (3.7c)

As before, substituting (3.7a) in (3.7b), we get

λh =
κh

2

∥

∥

∥

∥

n
∑

i=1

xip(h|xi,Θ)

∥

∥

∥

∥

, (3.8)

⇒ µh =

∑n
i=1 xip(h|xi,Θ)

‖
∑n

i=1 xip(h|xi,Θ)‖
, by (3.7a). (3.9)

Finally, substituting (3.9) in (3.7c), we get

c′d(κh)

cd(κh)
= −
‖
∑n

i=1 xip(h|xi,Θ)‖
∑n

i=1 p(h|xi,Θ)
, (3.10)

which simplifies to

Ad(κh) =
‖
∑n

i=1 xip(h|xi,Θ)‖
∑n

i=1 p(h|xi,Θ)
, (3.11)

where Ad(κ) =
Id/2(κ)

Id/2−1(κ) . Note that (3.9) and (3.11) are intuitive generalizations of (2.8) and (2.14)

respectively.
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3.2 The E-step: Distribution estimation

From the standard setting of the EM algorithm [DLR77, Col97, Bil98], (3.5), (3.9), and (3.11) give
the update equations of the parameters involved. Given this set of parameters, the distribution of
the hidden variables can be computed [NH98, Bil98] as:

p(h|xi,Θ) =
αh fh(xi|h,Θ)

∑k
l=1 αl fl(xi|l,Θ)

. (3.12)

It can be shown [Col97] that the incomplete data log-likelihood, ln p(X|Θ), is non-decreasing at each
iteration of the parameter and distribution update. Iteration over this set of updates forms the
basis of our algorithm soft-moVMF to be discussed in section 4.

Next, we discuss a nonstandard setting of the EM algorithm that is more practical for clustering
algorithms. In this setting, points are hard-assigned to clusters so that effectively each of the hidden
variables has a distribution that has probability 1 for one of the mixture components and zero for all
the others. We shall denote this class of distributions as H. Note that this does not follow naturally
from the mixture model setting. However, we investigate this setting because of its computational
efficiency and usability in practical clustering problems.

Consider the same mixture model setting, with the added constraint that the distributions of
the hidden variables are restricted to H. Note that H is a subset of all possible distributions on
the events, and for a typical mixture model, the distribution following (3.12) will not belong to
this subset. The important question is: is there a way to optimally pick a distribution from H and
then perform a regular M-step, and guarantee that the incomplete log-likelihood of the data is non-
decreasing at each iteration of the update? Unfortunately, this is not possible in general. However,
we show that it is possible to reasonably lower bound the incomplete log-likelihood of the data
using expectations over an optimal distribution q ∈ H. The distribution q ∈ H is called optimal
because it gives the tightest lower bound to the incomplete log-likelihood among all distributions in
H. The lower bound is reasonable in the sense that the expectation over q is itself lower bounded
by (3.3), the expectation of the complete log-likelihood over the distribution p given by (3.12).
Then, an iterative update scheme analogous to regular EM guarantees that the lower bound on
the incomplete log-likelihood is non-decreasing at each iteration of the update. The parameter
estimation, or, M-step remains practically unchanged, with p replaced by q in the update equations
(3.5), (3.9), and (3.11). In the E-step, the optimal q is estimated. Thus, until a saddle-point
is reached, this scheme does a greedy-optimal maximization of a lower bound on the incomplete
log-likelihood of the data. This justifies the use of hard-assignment for learning mixture models
and forms the basis of our algorithm hard-moVMF to be discussed in section 4.

At first, we state our hard assignment rule: if the optimal distribution in H is denoted by
q(h|xi,Θ), then

q(h|xi,Θ) =







1, if h = argmax
h′

p(h′|xi,Θ),

0, otherwise.
(3.13)

We justify this hard assignment in two steps. First we show that the expectation over q is a reason-
able lower bound of the incomplete log-likelihood of the data so that maximizing this expectation
makes sense. Then, we show that the choice of this particular hard-assignment is the optimum in
the sense that it gives the tightest lower bound among all distributions in H.

At first, following the arguments in [NH98], we introduce the function F (p̃,Θ) given by

F (p̃,Θ) = Ep̃[ln P (X ,Z|Θ)] + H(p̃). (3.14)
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This function has the property that the E- and M-steps of the EM algorithm can be shown to
alternately maximize this function. In the E-step, for a given value of Θ, the distribution p̃ is
chosen to maximize F (p̃,Θ) for that Θ, and in the M-step, for a given value of p̃, the parameters
Θ are estimated to maximize F (p̃,Θ) for the given p̃. It can be shown [NH98] that for a given Θ,
the optimal p̃ is given by (3.12). When p̃ = p, the optimal value of the function is given by

F (p,Θ) = Ep[ln P (X ,Z|Θ)] + H(p)

= Ep[ln P (X ,Z|Θ)] −Ep[ln P (Z|(X ,Θ))]

= Ep

[

ln

(

P (X ,Z|Θ)

P (Z|(X ,Θ))

)]

= Ep[ln P (X|Θ)]

= ln P (X|Θ). (3.15)

Since (3.12) gives the optimal choice of the distribution, the functional value is smaller for any
other choice of p̃. In particular, if p̃ = q as in (3.13), we have

F (q,Θ) ≤ F (p,Θ) = ln P (X|Θ). (3.16)

Now, all distributions in H have the property that their entropy is 0. In particular, H(q) = 0.
Then, from the definition of the function F , we have

Eq[ln P (X ,Z|Θ)] ≤ lnP (X|Θ). (3.17)

Thus, the expectation over q actually lower bounds the likelihood of the data. We go one step
further to show that this is in fact a reasonably tight lower bound in the sense that the expectation
over q is lower bounded by the expectation over p of the complete data log-likelihood. To this end,
at first we prove the following result.

Lemma 1 Ep[ln P (Z|(X ,Θ))] ≤ Eq[ln P (Z|(X ,Θ))]

Proof: Let h∗
i = argmax

h
p(h|xi,Θ). Then, p(h|xi,Θ) ≤ p(h∗

i |xi,Θ),∀h. Now, using the definitions

of p and q, we have

Ep[ln P (Z|(X ,Θ))] =
n
∑

i=1

k
∑

h=1

p(h|xi,Θ) ln p(h|xi,Θ)

≤

n
∑

i=1

k
∑

h=1

p(h|xi,Θ) ln p(h∗
i |xi,Θ)

=
n
∑

i=1

ln p(h∗
i |xi,Θ)

k
∑

h=1

p(h|xi,Θ) =
n
∑

i=1

ln p(h∗
i |xi,Θ)

=

n
∑

i=1

k
∑

h=1

q(h|xi,Θ) ln p(h|xi,Θ)

= Eq[ln P (Z|(X ,Θ))].

That completes the proof.

Now, adding the incomplete data log-likelihood to both sides of the inequality in Lemma 1, we have

Ep[ln P (Z|(X ,Θ))] + ln P (X|Θ) ≤ Eq[ln P (Z|(X ,Θ))] + ln P (X|Θ)

⇒ Ep[ln(P (Z|(X ,Θ))P (X|Θ))] ≤ Eq[ln(P (Z|(X ,Θ))P (X|Θ))]

⇒ Ep[ln P (X ,Z|Θ)] ≤ Eq[ln P (X ,Z|Θ)]. (3.18)

9



From, (3.17) and (3.18), we have

EZ|(X ,Θ)∼p[ln P (X ,Z|Θ)] ≤ EZ|(X ,Θ)∼q[ln P (X ,Z|Θ)] ≤ ln P (X|Θ). (3.19)

Thus, the expectation over the hard-assignment distribution lies in between the incomplete data
likelihood and the expectation over p of complete data likelihood and hence is a reasonable lower
bound to the incomplete data likelihood value.

Finally, we show that our choice of the distribution q is optimal in the sense that the expectation
over q gives the tightest lower bound among all distributions in H. Let q̃ be any other distribution
in the subset. Then,

Eq̃[ln P (X ,Z|Θ)] =
n
∑

i=1

k
∑

h=1

q̃(h|xi,Θ) ln p(h|xi,Θ) =
n
∑

i=1

ln p(hi|xi,Θ)

≤

n
∑

i=1

ln p(h∗
i |xi,Θ) =

n
∑

i=1

k
∑

h=1

q(h|xi,Θ) ln p(h|xi,Θ)

= Eq[ln P (X ,Z|Θ)].

Hence, the choice of q as in (3.13) is optimal. This analysis forms the basis of our algorithm
hard-moVMF to be discussed in section 4.

4 Algorithms

In this section, we propose two algorithms for clustering directional data based on the devel-
opment in the previous section. These two algorithms are based on soft- and hard-assignment
schemes [KMN97], and are respectively called soft-moVMF and hard-moVMF. The soft-moVMF algo-
rithm, presented in Algorithm 1, estimates the parameters of the mixture model exactly following
the derivations in section 3. Hence, it assigns soft (or probabilistic) labels to each point that are
given by the posterior probabilities of the components of the mixture conditioned on the point.
On termination, the algorithm gives the parameters Θ = {αh,µh, κh}

k
h=1 of the k vMFs that

model the data set X , as well as the soft-clustering, i.e., the posterior probabilities p(h|xi,Θ),∀h, i.
Appropriate convergence criteria determine when the algorithm should terminate.3

The hard-moVMF algorithm, presented in Algorithm 2 estimates the parameters of the mixture
model by a hard assignment, or, winner take all strategy. In other words, we do the assignment
of the points based on a derived posterior distribution given by (3.13). Thus, after the hard
assignments in every iteration, each point belongs to a single cluster. As before, the updates of the
component parameters are done using the posteriors of the components given the points. The only
difference in this case is that the posterior probabilities can take only 0/1 values. On termination,
the algorithm gives the parameters Θ = {αh,µh, κh}

k
h=1 of the k vMFs that model the data set X

under the hard assignment setup, and the hard-clustering, i.e., a disjoint k-partitioning of X based
on the conditional posteriors q on the component vMF distributions.

4.1 Revisiting spkmeans

We briefly revisit the spkmeans algorithm [DM01] that has been shown to perform quite well
for real life text clustering tasks [DM01, DFG01, BG02, BBM02]. We look at spkmeans in the

3Note that we can obtain a hybrid algorithm by combining the soft- and hard- approaches. In such an algorithm
one would first perform some iterations that do soft assignments and later perform hard assignments. Further
justification of this idea appears in section 8.
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Algorithm 1 soft-moVMF

Input: Set X of data points on S
d−1

Output: A soft clustering of X over a mixture of k vMF distributions
Initialize all αh,µh, κh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
p(xi|θh)← cd(κh)eκhµ

T
h xi

p(h|xi,Θ)←
αhp(xi|θh)

∑k
h′=1 αh′p(xi|θh′)

end for
end for
{The M (Maximization) step of EM}
for h = 1 to k do

αh ←
1

n

n
∑

i=1

p(h|xi,Θ)

µh ←

∑n
i=1 xip(h|xi,Θ)

‖
∑n

i=1 xip(h|xi,Θ)‖

κh ← A−1
d

(

‖
∑n

i=1 xip(h|xi,Θ)‖
∑n

i=1 p(h|xi,Θ)

)

end for
until convergence criteria are met

light of the developments in sections 3 and 4. Algorithm 3 outlines the spkmeans procedure.
We observe that the spkmeans algorithm can be looked upon as a special case of soft-moVMF

as well as of hard-moVMF, under certain restrictive assumptions on the generative model. More
precisely, assume that the generative model of the mixture of vMFs is such that the priors of
all the components are the same, i.e., αh = 1/k,∀h. In order to get spkmeans as a special case
of soft-moVMF, we further assume that all the components have (equal) infinite concentration
parameters, i.e., κh = κ→∞,∀h. With these assumptions, the E-step reduces to assigning a point
to its nearest cluster where nearness is computed as a cosine similarity between the point and the
cluster representative. Thus, a point xi will be assigned to cluster h∗ = argmax

h
xT

i µh, since

p(h∗|xi,Θ) = lim
κ→∞

eκ x
T
i µh∗

∑k
h′=1 eκ x

T
i µh

→ 1, (4.1)

and p(h|xi,Θ)→ 0,∀h 6= h∗ (assuming no ties).
In order show that spkmeans can also be seen as a special case of the hard-moVMF algorithm,

in addition to assuming the priors of the components to be equal, we further assume that the con-
centration parameters of all the components are equal, i.e., κh = κ,∀h. Then, hard-moVMF reduces
to spkmeans. With these assumptions on the model, the estimation of the common concentration
parameter is not needed since the hard assignment will depend only on the value of the cosine
similarity xT

i µh. Given a set of values for {µh}
k
h=1, define Xh = {x : x ∈ X , h = argmaxh′ xT

µh′}.
It is easy to see that {Xh}

k
h=1 forms a disjoint k-partitioning of X . For a given set of values for

{µh, κh}
k
h=1, we can rewrite the hard-moVMF algorithm using a similar notation of set partitions,

Xh = {x : x ∈ X , h = argmaxh′ κh′xT
µh′}.

11



Algorithm 2 hard-moVMF

Input: Set X of data points on S
d−1

Output: A disjoint k-partitioning of X
Initialize all αh,µh, κh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
p(xi|θh)← cd(κh)eκhµ

T
h xi

q(h|xi,Θ)←







1, if h = arg max
h′

αh′ p(xi|θh′)

0, otherwise.

end for
end for
{The M (Maximization) step of EM}
for h = 1 to k do

αh ←
1

n

n
∑

i=1

q(h|xi,Θ)

µh ←

∑n
i=1 xiq(h|xi,Θ)

‖
∑n

i=1 xiq(h|xi,Θ)‖

κh ← A−1
d

(

‖
∑n

i=1 xiq(h|xi,Θ)‖
∑n

i=1 q(h|xi,Θ)

)

end for
until convergence criteria are met

Algorithm 3 spkmeans [DM01]

Input: Set X of data points on S
d−1

Output: A disjoint k-partitioning {Xh}
k
h=1 of X

Initialize µh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
Set Xh ← φ, h = 1, · · · , k
for i = 1 to N do
Xh ← Xh ∪ {xi} where h = argmax

h′

xT
i µh′

end for
{The M (Maximization) step of EM}
for h = 1 to k do

µh ←

∑

x∈Xh
x

‖
∑

x∈Xh
x‖

end for
until convergence criteria are met
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4.2 Some Implementation issues

We infer from (2.14) that to calculate the m.l.e. for κ, we have to compute A−1
d (R̄). Since Ad(κ)

is a function that involves the ratio of Bessel Functions it is not possible to obtain a closed form
functional inverse. Instead we resort to numerical or asymptotic methods. Using Appendix B we
can show that for large κ, the m.l.e. κ̂ is approximately (d−1)/(2(1− R̄)). Similarly for small κ we
obtain the approximation, κ̃ ≈ dR̄. These estimates for κ̃ are not that good in practice, especially
for high dimensional data. A better estimate (see Appendix B) is given by

κ̃ =
R̄d− R̄3

1− R̄2
, (4.2)

and this is the estimate that we use in our implementation.

5 Datasets

In this section we describe the datasets that we used for our experiments. We used data drawn from
five sources: Simulation, Classic3, Yahoo News, CMU 20 Newsgroup and Yeast Gene Expressions.

• Simulated Datasets: We simulated mixtures of vMFs for testing the “quality” and cor-
rectness of our algorithms that were designed to work for moVMFs. We used a slight modi-
fication of the algorithm given in [Woo94] to generate a set of data points following a given
vMF distribution. The algorithm is shown in Table 9 and was implemented in matlab. This
algorithm allows us to sample data from a specified vMF distribution. We use this algorithm
as a subroutine when simulating a Mixture of vMFs (see Table 8). Let the tuple (N, d, k)
denote the number of sample points, the dimensionality of a sample point and the number
of clusters respectively. We present two main simulated datasets in this article. The first
dataset small-mix is just 2-dimensional and is used to illustrate soft-clustering. The second
dataset big-mix is a high-dimensional dataset that could serve as a model for real world text
datasets.

1. small-mix: This dataset had (N, d, k) = (50, 2, 2). The mean direction of each compo-
nent was set to some random vector. For each component κ was set to 4. We present
detailed results for this particular dataset later in this section.

2. big-mix: This dataset had (N, d, k) = (5000, 1000, 4). The mean direction of each com-
ponent was set to some random vector, and κ for each component was also set to a ran-
dom number of O(d). The mixing weights for each component were: (.251, .238, .252, .259).

• Classic3 Datasets: Classic3 is a well known collection of documents. Classic3 contains
documents from three well-separated sources, so the clusters that are formed should be quite
disjoint.

1. Classic3: This dataset contains 3893 files, among which 1400 Cranfield documents are
from aeronautical system papers, 1033 Medline documents are from medical journals,
and 1460 Cisi documents are from information retrieval papers. The toolkit MC [DFG01]
was used for creating the high-dimensional vector space model for the text documents
and a total of 4666 words were used. Thus, each document, after normalization, is
represented as a unit vector in a 4666 dimensional space. This is a relatively simple
dataset in the sense that the documents in the 3 clusters are on completely different
topics.
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2. Classic300: Classic300 is a subset of 300 documents that we created from the original
Classic3 dataset. This dataset has 100 documents from each of the three categories in
Classic3. The dimensionality of the data was 5471.

3. Classic400: Classic400 is a subset of 400 documents that we created from the original
Classic3 dataset. This dataset has 100 documents each from Medline and Cisi categories.
The remaining 200 documents are from the Cran category. This dataset was specifically
designed to create unbalanced clusters in an otherwise easily separable and balanced
dataset. The dimensionality of the data was 6205.

• Yahoo News dataset K-series dataset is a collection of 2340 Yahoo news articles from 20
different categories. The underlying clusters in this dataset are highly skewed in terms of the
number of documents per cluster, with sizes ranging from 9 to 494. The skewness presents
some more challenges for clustering algorithms.

• CMU Newsgroup datasets The CMU Newsgroup dataset is a well known collection of
documents. The original distribution is one that is mentioned in item 1 below. We considered
not only the original dataset but some of its subsets.

1. The News20 dataset is a collection of 19,997 messages, collected from 20 different
USENET newsgroups. A 1000 messages from 19 newsgroups, and 997 from another
were chosen at random and partitioned by newsgroup name. The headers for each of the
messages were removed so that they do not bias the results. Using the toolkit MC, the
high-dimensional model had a total of 25924 words. This is a typical text dataset that
one may encounter in real life - it very high-dimensional, sparse and there is significant
overlap between its clusters. In fact, some cross-posted articles appear multiple times
in the dataset – once under every group in which they were posted. Another feature of
this dataset is that the natural classes are perfectly balanced, i.e., the number of points
in every class is the same.

2. Small CMU 20 is a collection of 2000 messages selected from the original News20
dataset. We selected 100 messages from each category in the original dataset. Hence
this dataset has balanced classes (though there may be overlap). The dimensionality of
the data was 13406.

3. Same 100/1000 is a collection of 100/1000 messages from 3 very similar newsgroups:
comp.graphics, comp.os.ms-windows, comp.windows.x.

4. Similar 100/1000 is a collection of 100/1000 messages from 3 somewhat similar news-
groups: talk.politics.guns, talk.politics.mideast, talk.politics.misc.

5. Different 100/1000 is a collection of 100/1000 messages from 3 very different news-
groups: alt.atheism, rec.sport.baseball, sci.space.

• Yeast Gene Expression dataset: Gene expression data was selected to offer a different
clustering domain. This domain brings with it the associated troubles of cluster validation
because of the unavailability of true labels. Thus this dataset is a truer representative of a
typical clustering scenario.

Gene expression data is presented as a matrix of genes (rows) by expression values (columns).
The expression vectors are constructed using DNA microarray experiments. We used a subset
of the Rosetta Inpharmatics yeast gene expression set [HMJ+00]. The original dataset consists
of 300 experiments measuring expression of 6,048 yeast genes. Out of these we selected a
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subset of 996 genes for clustering. For each of the 996 genes the 300-element expression
vector was normalized to have unit Euclidean (L2) norm.

6 Experimental Results

In this section we compare the following four clustering algorithms on the datasets described in
Section 5:

1. Spherical K-Means [DM01]—spkmeans,

2. Frequency Sensitive K-Means [BG02]—fskmeans,

3. moVMF based clustering using hard assignments (Section 3)—hard-moVMF,

4. moVMF based clustering using soft assignments (Section 3)—soft-moVMF.

Except the gene expression dataset, performance of the algorithms on all the datasets has been
analyzed using mutual information between the cluster and class labels. Our algorithms were
implemented in both C++ and matlab. Most of the results presented in this section are based
on our C++ implementation. In all the experiments, all the algorithms were initialized with
identical starting partitions to ensure a fair comparison. For all the artificial and text datasets, the
correct underlying class labels of the data points are known. For a given clustering of the data, we
construct the class-by-cluster confusion matrix and normalize it by the total number of documents
under consideration. Now, a data point having class label c and cluster label h is an indicator of
the joint occurrence of (c, h). For a large number of documents, the normalized confusion matrix
approaches the expectation of this indicator by the law of large numbers. But since this expectation
is exactly the probability of the joint event, in the limit of large data, the normalized confusion
matrix gives the joint distribution of the class and cluster labels. The first measure we use for
performance evaluation is the mutual information (MI) of this joint distribution. The MI gives
the amount of statistical similarity between the class and cluster labels [CT91]. If X is a random
variable for the cluster assignments and Y is a random variable for the pre-existing labels on the
same data, then the mutual information is given by I(X;Y ) = EX,Y [ln p(X,Y )

p(X)p(Y ) ]. Note that we

have experimented with various normalizations of the MI (see, e.g., [SGM00, SG02]), but these
normalizations hardly make any difference in terms of analysis and interpretability of the results.
The Appendix shows all the plots with normalized values of mutual information.

6.1 Simulated data sets

This section presents the results obtained by running the experiments on data that was simulated
to have been drawn from a mixture of vMF distributions. For a description of the data see Section
5.

6.1.1 Dataset small-mix

The small-mix dataset is a collection of fifty, two-dimensional points, drawn from a mixture of
two vMF distributions. Figure 1 (a) shows a plot of the points. From the plot we observe that
there are two clusters of points. Most points belong to either one cluster or the other. Some of the
points seem to have mixed membership to each cluster. As we shall soon see, the soft-clustering
algorithm identifies these points and assigns them fractionally to either cluster.

The clustering produced by our soft cluster assignment algorithm is shown in Figure 1 (b).
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