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ABSTRACT
Group subscription is a useful mechanism for multicast con-
gestion control: RLM, RLC, FLID-DL, and WEBRC form
a promising line of multi-group protocols where receivers
provide no feedback to the sender but control congestion
via group membership regulation. Unfortunately, the group
subscription mechanism also offers receivers an opportunity
to elicit self-beneficial bandwidth allocations. In particular,
a misbehaving receiver can ignore guidelines for group sub-
scription and choose an unfairly high subscription level in a
multi-group multicast session. This poses a serious threat to
fairness of bandwidth allocation. In this paper, we present
the first solution for the problem of inflated subscription.
Our design guards access to multicast groups with dynamic
keys and consists of two independent components: DELTA
(Distribution of ELigibility To Access) – a novel method for
in-band distribution of group keys to receivers that are eligi-
ble to access the groups according to the congestion control
protocol, and SIGMA (Secure Internet Group Management
Architecture) – a generic architecture for key-based group
access at edge routers.

1. INTRODUCTION
Traditionally, congestion control protocols trust receivers

and assume their commitment to fair bandwidth sharing.
Unfortunately, due to the growth and commercialization of
the Internet, this assumption is no longer tenable. Whereas
information sources and network providers have an inter-
est in treating their customers fairly, a receiver is primarily
interested in maximizing its own throughput. Hence, the re-
ceiver may misbehave to acquire unfairly high bandwidth at
the expense of competing traffic. Furthermore, open-source
operating systems provide receivers with ample opportuni-
ties for misbehavior. Thus, robustness of congestion control
to receiver misbehavior becomes a pressing problem.

Multicast is a service for scalable dissemination of data to
a group of receivers. In IP multicast [10, 15], a receiver sub-
scribes to a multicast group by submitting the group address
to the local edge router via IGMP [12], and the network or-
ganizes its routers in a logical tree that distributes packets
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from the sender to the subscribed receivers. A single multi-
cast group, however, is often ineffective in accommodating
the diverse capabilities of receivers. To satisfy heteroge-
neous receiving capabilities, multicast sessions often include
multiple groups. This allows a receiver to align the received
rate with its capability by subscribing to a suitable subset
of the groups. In fact, group membership regulation has
emerged as a dominant mechanism for multi-group multi-
cast congestion control: RLM [20], RLC [28], FLID-DL [5],
and WEBRC [18] form a promising line of multi-group pro-
tocols where receivers control congestion primarily through
appropriate group subscription.

Unfortunately, the group subscription mechanism also of-
fers to receivers an opportunity to elicit self-beneficial band-
width allocations. In particular, a misbehaving receiver can
ignore subscription guidelines and raise its subscription un-
fairly. To understand the significance of this misbehavior,
consider a setting where receivers F1 and F2 from differ-
ent FLID-DL sessions share a 1 Mbps bottleneck link with
two TCP Reno [2] receivers T1 and T2. We simulate this
scenario using NS-2 [23] and a topology described in Sec-
tion 5. After 100 seconds into the simulation, receiver F1

starts to misbehave and inflates its subscription in violation
of the protocol. As Figure 1 illustrates, such a misbehavior
boosts the throughput of F1 to 690 Kbps at the expense of
well-behaving receivers F2, T1, and T2.

In this paper, we present DELTA and SIGMA, the first
solution for the problem of inflated subscription. First, we
argue that prevention of inflated subscription requires re-
stricted group access. Then, we show that existing archi-
tectures for group access control – such as Secure IGMP [3]
and Gothic [16] – do not protect against inflated subscrip-
tion because they define the eligibility to access a group
based on the identity, rather than the congestion status of a
receiver. DELTA and SIGMA use dynamic keys to enforce
congestion-dependent group access. Our design requires only
minimal generic changes in the edge routers, does not alter
the core of the network, and introduces no auxiliary servers.
Integration with DELTA and SIGMA makes multicast pro-
tocols robust to inflated subscription and preserves other
congestion control properties. We illustrate this by deriving
and evaluating FLID-DS, a robust adaptation of FLID-DL.

The rest of the paper is organized as follows. Section 2
formulates the inflated subscription problem, our assump-
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Figure 1: Impact of inflated subscription.

tions and design requirements. Section 3 describes DELTA
and SIGMA. Section 4 discusses properties of our design.
Section 5 evaluates the protection offered by DELTA and
SIGMA. Section 6 examines the applicability of the pro-
posed approach in end-system multicast. Finally, Section 7
summarizes our contributions.

2. PROBLEM FORMULATION
In this section, we first position the problem of inflated

subscription within the area of bandwidth attacks. Then,
we argue that protection against inflated subscription should
rely on network-supported access control where the conges-
tion status of a receiver determines its eligibility to access a
multicast group. We describe the requirements for designing
such access control and discuss our assumptions.

2.1 Threat Model
We examine attacks on congestion control where a mul-

ticast receiver abuses the group subscription mechanism to
elicit a self-beneficial bandwidth allocation. Although the
unfair bandwidth advantage comes at the expense of com-
peting traffic, there are important differences between these
self-beneficial attacks and denial-of-service attacks.

First, disruption of network services is a sole goal in denial-
of-service attacks. Consequently, the attacker strives for
highly visible disruptions, and the magnitude of the dam-
age is a measure of its success. The intentional visibility
of denial-of-service attacks facilitates their detection – an
unusually low level of service is an indicator that the net-
work is potentially under attack. On the other hand, a self-
beneficial attacker is primarily concerned with increasing its
own bandwidth consumption. The damage to other com-
munications is collateral and rather undesirable. To avoid
detection and thereby preserve the unfairly acquired band-
width, self-beneficial attacks are interested in keeping a low
profile. For example, instead of shutting down the compet-
ing traffic, the attacker has incentives to subdue this traffic
to a level that the abused parties can falsely interpret as
fair. Thus, self-beneficial attacks can be sneakier and more
difficult to discern.

Second, denial-of-service attacks enjoy a richer arsenal.
To waste bandwidth, an attacker can transmit spurious data
or subscribe to multiple sessions even if the attacker has no
interest in their content. Such attacks are purely malicious;

the attacker itself does not benefit from the wasted band-
width. Opportunities for self-beneficial attacks are less am-
ple – to acquire an unfairly high bandwidth for obtaining
the data within a session, a receiver has to manipulate its
congestion control protocol. Since the manipulation oppor-
tunities are limited, protection against self-beneficial attacks
can be more effective. Whereas defense against denial-of-
service is reactive and relies on detection and punishment,
it is possible to prevent self-beneficial attacks.

In comparison to widely publicized denial-of-service inci-
dents, insidious self-beneficial attacks have stirred much less
attention among researchers. We are not aware of any study
quantifying the extent and impact of bandwidth cheating.
On the other hand, sneaky self-beneficial misbehavior is far
from harmless. In the Internet, the population of bandwidth-
greedy users exceeds greatly the number of hackers inter-
ested only in disrupting the communications of others. Even
inside large intra-enterprise network environments, selfish
misbehavior cannot be discounted. Due to the tangible
incentives offered by self-beneficial attacks, the frequency
and cumulative impact of such attacks can be much higher.
Studies of TCP congestion control show that a misbehav-
ing receiver can substantially increase its throughput at the
expense of cross traffic [11, 25]. Thus, even if a small per-
centage of unicast receivers launches self-beneficial attacks,
this misbehavior can severely disrupt network services. In
multicast congestion control, self-beneficial receiver attacks
are more diverse and pose even more potent threats to the
network [13].

In our trust model, a misbehaving receiver only seeks a
self-beneficial bandwidth allocation but does not act from
pure malice to stage denial-of-service attacks. Local inter-
faces of edge routers are the only points of access for network
users. For instance, a receiver can subscribe to a multicast
group only by communicating with a local router. We as-
sume that information sources and network providers (and
hence network routers) are trustworthy and always adhere
to their protocols. Note that the trust in routers is essential
for fair bandwidth allocation because a router has the last
word in allocating the bandwidth of its output links.

2.2 Design Requirements
Inflated subscription can be addressed by either discour-

aging the misbehavior or preventing it altogether. The for-
mer approach punishes misbehaving receivers a posteriori,
e.g., by discriminatory dropping of their future packets [19].
In this paper, however, we focus only on mechanisms that
prevent receivers from inflating their subscription.

Since the Internet Group Management Protocol (IGMP)
does not restrict the ability of receivers to subscribe to mul-
ticast groups, a misbehaving receiver can join any multicast
group as long as it knows the address of this group. Hence, a
natural solution for preventing inflated subscription may ap-
pear to be the one that hides information about the groups
(i.e., multicast group addresses) from ineligible receivers.
Unfortunately, such information hiding is difficult to real-
ize in modern networks: since multicast group addresses are
employed for routing, receivers can abuse network monitor-
ing and debugging tools – such as MSTAT [22] – to query
routers and obtain the addresses of active multicast groups.

Based on these arguments, we conclude that to restrict
group subscription only to eligible receivers, a multicast
congestion control must regulate access to groups. Exist-
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Figure 2: Timeline for distribution and usage of keys.

ing architectures for group access control – such as Secure
IGMP [3] and Gothic [16] – rely on receiver authentication.
Unfortunately, the identity of a receiver does not reveal any
information about its congestion status. Hence, conven-
tional group access control mechanisms are inadequate for
preventing inflated subscription. Instead, multicast conges-
tion control protocols need a mechanism where the receiver
congestion status – rather than the receiver identity – forms
a foundation for group access control. This leads us to our
first design requirement.

Requirement 1. To protect against inflated subscription,
multicast congestion control protocols must rely on congestion-
dependent access control mechanisms.

Since any form of group access control requires support
from the network infrastructure (e.g., routers), deployment
considerations lead us to the following requirement.

Requirement 2. Implementation of access control mech-
anisms should require minimal modifications of the network
infrastructure.

The minimal infrastructure support requirement suggests
that access control mechanisms should be implemented at
edge routers without any changes in the network core. In
addition to limiting the amount of infrastructure changes, it
is essential for the access control functionality to be generic.
The infrastructure should support a diverse collection of ex-
isting protocols as well as future protocols.

Requirement 3. The access control functionality sup-
ported by the network infrastructure should be independent
from details of specific congestion control protocols.

Observe that the required generality of network support
poses a challenge because different multi-group protocols
specify different rules for group subscription. For instance,
in replicated multicast protocols [8, 9], each group of a ses-
sion delivers the same content at a different rate, and a
receiver reacts to congestion by switching from its only sub-
scribed group to a slower one. On the other hand, in layered
multicast protocols [5, 14, 17, 18, 20, 27, 28], groups of a ses-
sion carry cumulative layers of hierarchically encoded data,
and a receiver controls congestion by subscribing to an ap-
propriate stack of lower groups. Byers et al [6] also propose
a non-cumulative variation of layered multicast where any
combination of the groups in a session constitutes a legiti-
mate subscription level. Furthermore, while some protocols
[5, 28] reduce subscription in response to a single packet
loss, others [18] monitor a long-term history of losses to de-
termine the fair subscription level. Similarly, while some
protocols rely on packet loss as a congestion signal, others

employ explicit congestion notification. The above consid-
erations demonstrate that the right to access a group should
be a protocol-specific function of congestion.

Finally, although our primary goal is to develop mech-
anisms that protect multicast congestion control protocols
against inflated subscription, a secondary goal is to ensure
that these mechanisms have minimal, if any, impact on the
overall effectiveness of congestion control. This leads us to
our final requirement.

Requirement 4. Mechanisms for protecting against in-
flated subscription should preserve the scalability, fairness,
efficiency, responsiveness, and other properties of multicast
congestion control protocols.

3. DESIGN
Our objective is to design group access control based on

the congestion status of receivers. Direct monitoring of con-
gestion at routers is one option for congestion-dependent
access control. For example, edge routers can observe the
congestion status of a multicast session and enforce fair sub-
scriptions of local receivers. However, such schemes vio-
late our Requirement 3 because they make routers aware of
the session, its groups, and its congestion control protocol.
Hence, we select an alternative design where keys guard ac-
cess to groups. To subscribe for a group, a receiver needs to
provide a valid key to its local edge router. The edge router
verifies the key prior to granting access to the group. The
design requires edge routers to obtain, store, and validate
group keys. This functionality, however, is independent of a
specific congestion control protocol.

Since the network conditions change, keys for congestion-
dependent group access should also be dynamic. We define a
time slot as an atomic duration of group access control. The
sender updates group keys once per time slot and distributes
the updated keys to edge routers as well as to receivers that
are eligible to access the groups during a subsequent time
slot. Figure 2 depicts the timeline for key distribution and
usage: the keys distributed during time slot s control access
during time slot s + 2. Time slot s + 1 gives each receiver
enough time to reconstruct the keys and submit them to
the local edge router for validation before multicast packets
from time slot s + 2 start reaching the router.

Since the eligibility to access a group depends on the con-
gestion control protocol, distribution of keys to receivers is
protocol-specific. Thus, we separate our design into two
independent components: protocol-specific DELTA (Distri-
bution of ELigibility To Access) – a method for in-band dis-
tribution of group keys to receivers that are eligible to access
the groups according to the congestion control protocol, and
generic SIGMA (Secure Internet Group Management Archi-
tecture) – an architecture for key-based group access at edge
routers. Below, we present designs of these two components.
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3.1 DELTA
Despite differences in details, multi-group protocols share

some general features. One common notion is a subscrip-
tion level – a subset of the groups that constitutes a le-
gitimate subscription in the session. Each protocol offers
a finite number of subscription levels that can be ordered
from a minimal level to a maximal level according to their
bandwidth consumption. Although different protocols de-
fine the congested state of a receiver differently, they specify
three generic rules for fair subscription: (1) an uncongested
receiver can maintain its current subscription level, (2) a
congested receiver must decrease its subscription level, and
(3) when authorized, an uncongested receiver can increase
its subscription level.

To enforce these subscription rules, DELTA distributes
group keys among multicast packets so that:

1. Only an uncongested receiver can reconstruct updated
keys for its current subscription level.

2. A congested receiver can obtain updated keys for a
lower subscription level.

3. When authorized, an uncongested receiver can obtain
updated keys for a higher subscription level.

Different protocols implement DELTA differently depending
on their definitions for a subscription level and congested
state. Below, we first present a DELTA instantiation for
layered multicast protocols that define congestion as a sin-
gle packet loss. Then, we discuss DELTA instantiations for
other types of protocols.

3.1.1 Example of a DELTA Instantiation
FLID-DL [5] and RLC [28] are prominent representatives

of unreliable protocols for cumulative layered multicast where
congestion is defined as a single packet loss. In such a pro-
tocol, a session consists of multiple groups that carry layers
of hierarchically encoded data. We label the groups in the
order of their data layers: group 1 carries the base layer,
group 2 carries the first enhancement layer, . . . , and group N
carries the last enhancement layer. Thus, group 1 consti-
tutes the minimal subscription level in the session while the
maximal subscription level consists of all N groups. We re-
fer to groups 1 and N , respectively, as the minimal and the
maximal groups of the session. The protocol specifies the
following subscription rules: (1) an uncongested receiver can
keep its current groups, (2) a congested receiver of g groups
must drop group g, and (3) when authorized, an uncongested
receiver of g groups can add group g + 1.

A straightforward transformation of these rules into condi-
tions for in-band distribution of keys would introduce: (∇) a
congested receiver of g + 1 groups should not obtain an up-
dated key for group g + 1, and (∆) when authorized, an

uncongested receiver of g groups should obtain an updated
key for group g +1. These requirements however contradict
when group g + 1 is the only group that loses a packet, and
group g gets an upgrade authorization: according to (∇), a
subscriber to g + 1 groups should not obtain an updated key
for group g +1; on the other hand, since groups 1 through g
deliver all their packets, the subscriber should obtain this
key according to (∆). To resolve the contradiction, we al-
low such a receiver to get the updated key and maintain the
subscription to group g +1. One can view this resolution as
desirable because it helps receivers behind the same bottle-
neck link to synchronize their subscription levels. Thus, the
conditions for key distribution become as follows:

1. An uncongested receiver should obtain updated keys
for its current groups.

2. A congested receiver of g groups should obtain up-
dated keys for its lower g − 1 groups. It can obtain an
updated key for group g only if the protocol authorizes
an upgrade to group g, and groups 1 through g − 1 do
not lose packets.

3. When authorized, an uncongested receiver of g groups
should obtain an updated key for group g + 1.

Let us now derive a DELTA instantiation that satisfies
these conditions. We start with an approach where a single
key kg guards access to group g.

In the absence of an upgrade authorization for group g,
only an uncongested receiver of g groups should obtain kg.
To enforce this, the sender can attach a component cj,p to
each packet p of every group j such that 1 ≤ j ≤ g and define
kg by applying a function F to the list of these components:

kg = F (c1,1, . . . , c1,n1
, . . . . . . , cg,1, . . . , cg,ng ) (1)

where nj is the number of packets transmitted to group j
during the time slot.

If the sender defines keys k1 through kN independently
without reusing a component of one key as a component
for another key, the communication overhead of the key dis-
tribution becomes high: each packet of group j needs to
carry N − j + 1 components (one component for each key
kg such that j ≤ g ≤ N). Thus, to minimize the per-packet
overhead, each packet p from group j should carry only one
component cj,p shared by keys kj through kN .

The sharing of components, however, complicates the ful-
fillment of the distribution conditions. For example, whereas
all the components of key kg−1 are also components of key
kg, our second condition stipulates that a congested receiver
of g groups should obtain kg−1 but not kg. Then, such a re-
ceiver should not be able to obtain the shared components by
applying the inverse of F to kg−1 because this ability would



Sender Receiver

Input N number of groups in the session g current top group

Sg set of packets for group g where 1 ≤ g ≤ N Rj set of packets received from group j

lg last packet for group g where 1 ≤ g ≤ N where 1 ≤ j ≤ g

Algorithm // precomputation of keys and decrease fields for j = 2, . . . , g

for g = 1, . . . , N uj−1 ← decrease field from Rj ;

Cg ← nonce; if the receiver is congested

τ1 ← C1; then if g = 1

for g = 2, . . . , N then n ← null;

τg ← τg−1 ⊕ Cg ; δg−1 ← nonce; dg ← δg−1; else n ← g − 1;

if the protocol authorizes an upgrade to group g else ug ←
g

⊕
j=1

⊕
r∈Rj

component field from r;

then σg ← τg−1; if the protocol authorizes an upgrade

// real-time generation of component fields to group g + 1

if p ∈ Sg and p 6= lg then cg,p ← nonce; Cg ← Cg ⊕ cg,p; then n ← g + 1; ug+1 ← ug ;

if p = lg then cg,p ← Cg . else n ← g.

Output cg,p component field for packet p in Sg where 1 ≤ g ≤ N n next top group

dg decrease field for group g where 2 ≤ g ≤ N uj updated key for group j where 1 ≤ j ≤ n

τg top key for group g where 1 ≤ g ≤ N

δg decrease key for group g where 1 ≤ g ≤ N − 1

σg increase key for group g where 2 ≤ g ≤ N

Figure 4: DELTA instantiation for layered multicast protocols that define congestion as a single packet loss.

allow the congested receiver to reconstruct kg via Equation 1
when group g does not lose a packet. Therefore, F should
be a one-way function.

When the protocol authorizes an upgrade to group g, only
an uncongested receiver of g−1 groups should obtain key kg .
Thus, a receiver should be able to compute kg by applying
a function H to a list of components ij,p distributed among
all packets p of every group j such that 1 ≤ j ≤ g − 1:

kg = H(i1,1, . . . , i1,n1
, . . . . . . , ig−1,1, . . . , ig−1,ng−1

). (2)

Since the protocol can authorize an upgrade for each group 2
through N , minimizing the per-packet communication over-
head requires that each packet p of group j contains only one
component ij,p shared by all keys kj+1 through kN . Then,
each component ij,p of key kg−1 is also a component of key
kg . Once again, a congested receiver of g groups should not
be able to obtain these shared components ij,p by applying
the inverse of H to kg−1 because this ability would allow the
receiver to reconstruct kg via Equation 2 when only groups
1 through g − 2 lose packets. Hence, H should also be a
one-way function.

To reconcile Equations 1 and 2, a scheme that generates
keys and their components must resolve functions F and H
into the same value kg. Since both F and H are one-way
functions, no practical algorithm can achieve this goal.

This conclusion leads us to an idea of guarding a group
with multiple keys such that any of these keys opens access
to the group. Having more than one key per group enables
simple instantiations of DELTA by relaxing the dependen-
cies between the distribution conditions.

We instantiate DELTA by using up to three keys per
group: (1) top key, (2) decrease key, and (3) increase key (see
Figure 3). The sender communicates these keys to receivers
by adding component fields and decrease fields to multicast
packets. We define top key τg for each group g as:

τg =
g

⊕
j=1

⊕
p∈Sj

cj,p (3)

where ⊕ is an XOR operation, Sj is a set of packets sent to
group j, and cj,p is a nonce placed by the sender into the
component field of packet p from group j. Only an uncon-
gested receiver of g groups can extract all nonces cg,p and
use Equation 3 to compute key τg.

For each group j such that 1 ≤ j ≤ N − 1, the sender
generates the following decrease key δj :

δj = dj+1 (4)

where dj+1 is a nonce put into decrease field of each packet
transmitted to group j + 1. A receiver of g groups can
compute keys δ1 through δg−1 via Equation 4 as long as the
receiver gets at least one packet from each group 2 through g.
If one of these groups loses all its packets, the receiver is
forced to reduce its subscription by more than one group. In
fact, if group g loses all its packets, and any group 1 through
g − 2 loses a packet, no in-band mechanism can provide a
receiver of g groups with an updated key for group g − 1
without violating the other distribution conditions.

When the protocol authorizes an upgrade to group m
where 2 ≤ m ≤ N , the sender generates increase key σm

for group m as:

σm =
m−1

⊕
j=1

⊕
p∈Sj

cj,p (5)

and thereby enables an uncongested receiver of g groups to
reconstruct key σg+1 after receiving all components cj,p from
groups 1 through g.

Figure 4 presents our algorithm for the in-band distribu-
tion of keys to receivers. The algorithm has a nice property
that the sender precomputes the keys without knowing the
number of transmitted packets and then generates compo-
nents of the keys in real time. Thus, adopting the DELTA



Sender Receiver

Input N number of groups in the session g current group

Sg set of packets for group g where 1 ≤ g ≤ N Rg set of packets received from group g

lg last packet for group g where 1 ≤ g ≤ N

Algorithm // precomputation of keys and decrease fields if the receiver is congested

for g = 1, . . . , N then if g = 1

Cg ← nonce; τg ← Cg ; then n ← null;

for g = 2, . . . , N else n ← g − 1;

δg−1 ← nonce; dg ← δg−1; ug−1 ← decrease field from Rg ;

if the protocol authorizes an upgrade to group g else ug ← ⊕
r∈Rg

component field from r;

then σg ← τg−1; if the protocol authorizes an upgrade

// real-time generation of component fields to group g + 1

if p ∈ Sg and p 6= lg then cg,p ← nonce; Cg ← Cg ⊕ cg,p; then n ← g + 1; ug+1 ← ug ;

if p = lg then cg,p ← Cg . else n ← g.

Output cg,p component field for packet p in Sg where 1 ≤ g ≤ N n next group

dg decrease field for group g where 2 ≤ g ≤ N uj updated key for group n

τg top key for group g where 1 ≤ g ≤ N

δg decrease key for group g where 1 ≤ g ≤ N − 1

σg increase key for group g where 2 ≤ g ≤ N

Figure 5: DELTA instantiation for replicated multicast protocols.

instantiation does not change the packet transmission pat-
tern. Besides, the precomputation of the keys allows SIGMA
to distribute them to edge routers beforehand.

3.1.2 Instantiations for Other Types of Protocols
In Section 3.1.1, we derived a DELTA instantiation that

protects FLID-DL, RLC, and similar unreliable protocols for
cumulative layered multicast where congestion is defined as
a single packet loss. To protect protocols of other types, we
extend the presented approach along the following four di-
mensions: (1) reliability, (2) congestion notification, (3) ses-
sion structure, and (4) congested state.

Reliability. Reliable multicast protocols overcome losses
by transmitting additional packets, e.g., packets with re-
transmitted data or error correction codes [7]. If a reliable
protocol includes these extra packets in its definition for a
congested state, DELTA protects the protocol by distribut-
ing the keys among both the original and added packets.

Congestion notification. Instantiations of DELTA for
loss-driven congestion control can be easily adapted for net-
works where routers mark forwarded packets to indicate
congestion explicitly. To extend the protection to proto-
cols that exploit such explicit congestion notification (ECN),
edge routers simply alter the content of the component field
in each marked packet. This prevents receivers ineligible for
a group from reconstructing the group key.

Session structure. Unlike in layered multicast, each
subscription level in a replicated multicast session consists
of a single group and provides the same content but at a
different rate: minimal group 1 is the slowest, group 2 is the
second slowest, . . . , and maximal group N is the fastest.
Let us now consider a replicated multicast protocol that
differs from the protocol in Section 3.1.1 only with respect
to the subscription rules: (1) only an uncongested receiver
can stay in its current group, (2) a congested receiver of
group g can switch to group g − 1, and (3) when authorized,
an uncongested receiver of group g can switch to group g+1.

Note that the rules allow an uncongested receiver to stay
in its current group g even if the protocol authorizes an

upgrade to group g + 1. Then, the receiver can subscribe
to both groups. However, the receiver does not benefit from
such misbehavior because group g delivers the same content
but at a lower quality than group g+1. Since this paper deals
only with self-beneficial attacks, we formulate conditions for
the key distribution as follows:

1. Only an uncongested receiver should obtain an up-
dated key for its current group.

2. A congested receiver of group g should obtain an up-
dated key for group g − 1.

3. When authorized, an uncongested receiver of group g
should obtain an updated key for group g + 1.

We fulfill the conditions with a DELTA instantiation pre-
sented in Figure 5. The algorithm is basically the same as
for layered multicast: the sender computes up to three keys
per group and communicates the keys to receivers via com-

ponent and decrease fields. However, since each subscription
level in replicated multicast contains only one group, we re-
define top and increase keys for group g as:

τg = ⊕
p∈Sg

cg,p and σg = ⊕
p∈Sg−1

cg−1,p. (6)

Congested state. Multicast protocols often ignore occa-
sional loss of packets and consider a receiver to be congested
only when its loss rate exceeds a threshold. For instance, the
default threshold for each subscription level in RLM [20] is
25% of the packets transmitted to this level. MLDA [27]
and WEBRC [18] are examples of protocols that lower the
threshold for each higher subscription level and thereby de-
fine a fair subscription level for each loss rate.

For extending the protection to threshold-based protocols,
DELTA can use Shamir’s (k, n) threshold scheme [26] to dis-
tribute components of key τg for subscription level g among
all n packets transmitted to this level – the sender uses mod-
ular arithmetic, picks a polynomial q(x) of degree k − 1:

q(x) = τg + a1x + . . . + ak−1x
k−1, (7)



where a1, . . . , ak−1 are random coefficients, and puts one
component cp into each packet p:

cp =
�
p, q(p) � (8)

where p = 1, . . . , n. Only a receiver that obtains at least
k out of the n packets can find the coefficients of q(x) by
interpolation and then reconstruct the key as:

τg = q(0). (9)

In layered multicast, subscription levels share groups. Un-
fortunately, Shamir’s scheme does not enable a reuse of the
components from lower subscription levels and, therefore,
has high communication overhead. Design of more efficient
threshold schemes that reuse components remains an open
research problem.

3.2 SIGMA
Whereas instantiating DELTA enables multicast proto-

cols to distribute group keys to eligible receivers, group ac-
cess control also needs a mechanism for distributing the keys
to edge routers. As per Requirement 3 from Section 2, the
functionality of edge routers should not depend on details
of congestion control protocols. In particular, edge routers
should run protocol-independent code to obtain and store
keys as well as to enforce appropriate group access. In this
section, we present SIGMA (Secure Internet Group Man-
agement Architecture) – a generic architecture for key-based
group access control at edge routers. Below, we discuss the
two tasks of SIGMA: (1) distribution of keys to edge routers,
and (2) multicast group management.

3.2.1 Generic Distribution of Keys to Edge Routers
Our threat model assumes that the network infrastructure

is trustworthy and always adheres to protocols. SIGMA ex-
ploits this assumption for distributing keys to edge routers
via special multicast packets where tuples bind the address
of each group with the keys for accessing the group dur-
ing a time slot. For example, when the protocol from Sec-
tion 3.1.1 does not authorize an upgrade to an intermediate
group g, SIGMA communicates a tuple that links the ad-
dress of group g with top key τg and decrease key δg ; if the
protocol authorizes the upgrade, the tuple for group g also
contains increase key σg. The network-layer headers of the
special packets carry a bit instructing edge routers to in-
tercept the packets without forwarding to local interfaces.
Edge routers run the same protocol-independent code for
intercepting the special packets and storing the address-key
tuples. To ensure reliable delivery of the addresses and keys
to edge routers, SIGMA uses forward error correction.

3.2.2 Multicast Group Management
Multicast group management in SIGMA is challenging be-

cause keys change every time slot. When a receiver proves
its right to join a new group, some time may pass before the
network starts forwarding packets from the added group to
the local edge router. Besides, after the packets start reach-
ing the receiver, their first complete time slot s can enable
the receiver to obtain the group key for time slot s + 2 but
not for time slot s + 1 (see Figure 2). To allow an uncon-
gested receiver to maintain its uninterrupted subscription to
the new group, the edge router marks the local interface as
expecting the group. After packets from the added group

addresskey keyaddresstime slot

requested groups

address of the minimal group

abandoned groups

address address

(a) Session−join message

(b) Subscription message

(c) Unsubscription message

Figure 6: SIGMA messages sent by receivers.

start reaching the edge router, the router forwards them to
the interface unconditionally for two complete time slots.

Admission of a new receiver into a session is a chal-
lenge because DELTA provides updated keys only to cur-
rent receivers. SIGMA admits new receivers by allowing a
receiver to join the minimal group without a key: the re-
ceiver simply sends the local edge router a session-join mes-
sage that contains the address of the minimal group (see
Figure 6(a)). However, if the new receiver fails to submit a
valid key within two complete time slots of unrestricted ac-
cess to the minimal group, the edge router stops forwarding
the group packets for at least one time slot. This prevents
a receiver ineligible even for the minimal group from main-
taining an uninterrupted subscription to the session.

With respect to the other group management functions,
SIGMA resembles existing schemes for key-based group ac-
cess control. In what follows, we describe how SIGMA im-
plements these functions.

Subscribing to a group. A receiver subscribes to a
group for a time slot by sending the local edge router a sub-

scription message that specifies the time slot and address-key
pair for the group. Before granting access to the requested
group, the edge router verifies validity of the submitted key.
Figure 6(b) shows the general format of subscription mes-
sages. To ensure reliable subscription, the edge router ac-
knowledges each subscription message. If a receiver does
not receive an acknowledgment for its subscription message,
the receiver retransmits the message. To reduce traffic on
the local interface, a receiver does not transmit its subscrip-
tion message if the edge router has acknowledged an ear-
lier message from another receiver that reported the same
address-key pairs.

Unsubscribing from a group. Dynamic keys ensure
that failure to provide a valid key for a group results in leav-
ing the group. For example, a congested receiver is forced
to drop a group within two time slots after congestion. To
allow a receiver – e.g., an uncongested receiver parting with
its session altogether – to leave groups even quicker, SIGMA
also offers an explicit unsubscription message that contains
the addresses of the abandoned groups (see Figure 6(c)).
When a receiver leaves a group, its unsubscription message
should not harm other receivers subscribed to the group le-



gitimately on the same interface. The remaining receivers
preserve the group subscription by submitting a subscription
message that supplies a valid key for the group.

3.2.3 Incremental Deployment of SIGMA
Each edge router that replaces IGMP with SIGMA noti-

fies local receivers about its support of SIGMA. If an edge
router does not support SIGMA, local receivers of a mul-
ticast session protected with DELTA and SIGMA interact
with the router via IGMP and ignore DELTA packet fields
and SIGMA special packets. Such receivers still can in-
flate their subscription and acquire unfairly high bandwidth.
However, even a partial deployment of SIGMA edge routers
is beneficial – these routers prevent their local receivers from
inflated subscription.

4. PROPERTIES OF DELTA AND SIGMA

4.1 Revisiting the Design Requirements
We start an assessment of our design by revisiting the

requirements from Section 2 and arguing that DELTA and
SIGMA meet these requirements.

Congestion-dependent group access control. While
SIGMA guards access to groups with dynamic keys, DELTA
distributes the keys only to receivers that are eligible to
access the groups according to the congestion control pro-
tocol. DELTA instantiations protect protocols of different
types: unreliable and reliable, loss-driven and ECN-driven,
layered and replicated, reacting to a single loss and based
on a threshold for the loss rate.

Minimal changes in the network. Any architecture
for key-based group access control must enable edge routers
to obtain and store keys as well as to enforce appropri-
ate group access. SIGMA adds only this minimal required
functionality into edge routers. Furthermore, DELTA and
SIGMA need no support from core routers and introduce no
servers into the network infrastructure.

Generality of network support. To support DELTA
and SIGMA, edge routers run code that is independent from
details of protected congestion control protocols.

Preservation of congestion control properties. The
presented algorithms impose no limitations on packet trans-
mission. The sender precomputes group keys and then gen-
erates their components in real time. Consequently, adopt-
ing DELTA does not require from a protocol to change its
transmission pattern. In Section 5.3, we experimentally ver-
ify that DELTA and SIGMA also preserve other congestion
control properties of protected protocols.

4.2 Security Properties
In this section, we discuss security properties of the pro-

tection offered by DELTA and SIGMA.
Maintaining the trusted base. Our design assumes

that the network infrastructure is trustworthy. DELTA and
SIGMA implementations can realize this assumption by us-
ing conventional techniques for: (a) authentication to pre-
vent a misbehaving receiver from posing either as a sender
or as a router [24, 29], and (b) hop-by-hop or edge-to-edge
encryption to protect against snooping on network links [21].

Protection against attacks on SIGMA. As long as
a local interface provides an edge router with a valid key
for a group, the router forwards packets of the group to the
interface. A misbehaving receiver ineligible to access the

group can send the edge router numerous random keys in a
hope that one of these keys is correct. If a valid key consists
of b bits, the probability to gain the group access by guessing
the key is y/2b where y is the number of address-key pairs
that the receiver is capable of communicating to the edge
router for the time slot. To address this attack, the edge
router can count different keys submitted for the group and
interpret a large tally as a possible indicator of the attack.

Protection against attacks on DELTA. To acquire
a forbidden key, a receiver can seek vulnerabilities in the
DELTA implementation. For example, the receiver can at-
tempt to guess a missing component of the key. In the
DELTA instantiations presented in Section 3.1, keys and
components have the same size, and the component guess-
ing gives no advantage over guessing the key directly.

In this paper, we focused on self-beneficial misbehavior of
individual receivers. The presented DELTA instantiations
are vulnerable to attacks where receivers of a multicast ses-
sion collude to pass keys from a more capable receiver to
a less capable receiver that is unable to reconstruct these
keys on its own. One design that is robust to such col-
lusion attacks guards each local interface with a different
set of keys. For example, to protect the protocol described
in Section 3.1.1, edge routers can make a disseminated key
interface-specific by altering randomly the forwarded com-
ponents of the key. Then, the edge router computes two
values: an upper key from the original components, and a
lower key from the modified components. Only if the up-

per key matches a valid key provided by SIGMA, and the
interface-specific lower key matches a key provided from the
interface, the edge router opens access to the group. How-
ever, this approach is protocol-specific and sacrifices the gen-
erality of SIGMA. Design of efficient and general techniques
for protecting against collusion attacks is a topic for future
research.

5. EVALUATION
This section evaluates DELTA and SIGMA both experi-

mentally and analytically.

5.1 Experimental Settings
We implemented DELTA and SIGMA in NS-2 [23] and

integrated these implementations with FLID-DL. We refer
to the integrated protocol as FLID-DS.

We conduct experiments in a single-bottleneck topology.
Unless stated otherwise, the experimental settings are as
follows. Multicast (FLID-DL, FLID-DS) and unicast (TCP
Reno, on-off CBR) sessions compete for the bandwidth of
the only bottleneck link which is the middle link on a three-
link path of each session. The fair bandwidth share for each
session is 250 Kbps. The bottleneck link has a propagation
delay of 20 ms. Each of the other links has a propagation de-
lay of 10 ms and a capacity of 10 Mbps. The buffer space for
each link is equal to two bandwidth-delay products. Every
multicast session consists of 10 groups. The minimal group
transmits at a rate of 100 Kbps. The cumulative transmis-
sion rate of the session grows multiplicatively with a factor
of 1.5 per group. The time slot duration for FLID-DL is
set to its default value of 500 ms [5]. To provide the same
congestion control granularity in FLID-DS, we set the time
slot duration for FLID-DS to 250 ms (because SIGMA en-
forces group access with responsiveness of two time slots).
All data traffic uses 576-byte packets.
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Figure 7: Protection with DELTA and SIGMA.

5.2 Preventing Inflated Subscription
According to the results presented earlier in Figure 1, a

FLID-DL receiver can inflate its subscription to acquire un-
fairly high throughput at the expense of competing traffic.
We now repeat this experiment for FLID-DS: after 100 sec-
onds, F1 tries to inflate its subscription. Figure 7 shows that
DELTA and SIGMA preserve the fair bandwidth allocation.

5.3 Preserving Congestion Control Properties
Now, let us investigate whether FLID-DS preserves other

congestion control properties of FLID-DL.
Impact on throughput. In the experiments of this sec-

tion, we compare FLID-DL and FLID-DS with respect to
the average throughput of a multicast receiver. Each exper-
iment lasts 200 seconds. We vary the number of multicast
(FLID-DL or FLID-DS) sessions from 1 to 18. For the only
receiver of each multicast session, we measure its throughput
over the experiment duration.

First, we examine the multicast sessions in the absence
of cross traffic. Figures 8(a) and 8(b) report individual
throughput and average throughput (averaged over the num-
ber of sessions) for FLID-DL and FLID-DS receivers respec-
tively. Figure 8(c) shows that the receivers achieve similar
average throughput in FLID-DL and FLID-DS.

Then, we experiment in a setting where the number of
TCP sessions is the same as the number of multicast ses-
sions. In addition, the bottleneck link also serves an on-off
CBR session. During an on-period, the CBR session trans-
mits at a rate equal to 10% of the bottleneck link capacity.
Each on-period or off-period lasts 5 seconds. Figure 8(d)
shows that whereas the bandwidth allocation for multicast
traffic depends on the number of sessions, receivers of FLID-
DL and FLID-DS sessions have similar average throughput.

Responsiveness. To study the impact of DELTA and
SIGMA on the responsiveness of multicast congestion con-
trol, we consider a setting where the bottleneck link is shared
only by a multicast (FLID-DL or FLID-DS) session and an
on-off CBR session. The CBR session transmits its data at a
rate of 800 Kbps during the time interval between 45 seconds
and 75 seconds. Figure 8(e) shows that FLID-DS preserves
the responsiveness of the original FLID-DL protocol.

Heterogeneous round-trip times. In FLID-DL, aver-
age throughput of a receiver is relatively independent from
the round-trip time of the receiver. In this experiment,

we verify that DELTA and SIGMA preserve this property.
In the considered setting, the only multicast (FLID-DL or
FLID-DS) session has 20 receivers. The bottleneck link has
a propagation delay of 5 ms. The propagation delays of
the other links are chosen so that the round-trip times of
the receivers spread uniformly between 30 ms and 220 ms.
Figure 8(f) plots average throughput of the receivers as a
function of their round-trip times. The average throughput
of the FLID-DS receivers is almost constant and remains
close to the average throughput of the FLID-DL receivers.

Subscription convergence. When multiple receivers of
the same FLID-DL session share a bottleneck link, the re-
ceivers converge to the same subscription level even if they
join the session at different times. In our experiment, the
only multicast (FLID-DL or FLID-DS) session has 4 re-
ceivers. The receivers join the session at times 0, 10 seconds,
20 seconds, and 30 seconds respectively. As Figures 8(g)
and 8(h) indicate, the receivers converge to the same fair
subscription both in FLID-DL and FLID-DS.

5.4 Overhead
In the context of FLID-DS, we now analyze the over-

head of communicating the group keys to receivers and edge
routers via DELTA – as described in Section 3.1.1 – and
SIGMA.

Let group 1 of a FLID-DS session transmit data at rate r.
If the cumulative transmission rate grows multiplicatively
with the factor of m per group, the session transmits data
at cumulative rate R:

R = r · mN−1 (10)

where N is the number of groups in the session.
If each packet carries s bits of data, then the session trans-

mits in average

P =
R · t

s
=

r · t · mN−1

s
(11)

packets during a time slot of duration t, and

p =
r · t

s
(12)

of these packets belong to group 1.
DELTA communicates the keys to receivers by adding a

b-bit component field to each packet and b-bit decrease field
to every packet of group g such that 2 ≤ g ≤ N . Therefore,
communication overhead O∆ imposed by DELTA equals:

O∆

= { ratio of the DELTA bits to the data bits }

(2P − p)b

R · t
= { (10), (11), and (12) }

( 2r·t·mN−1

s
− r·t

s
)b

r · t · mN−1

= { simplification }�
2 −

1

mN−1 � b

s
.

SIGMA communicates the keys to edge routers via special
packets. For each time slot, these packets deliver an l-bit slot
number and one address-key tuple per group. Every tuple
contains a 32-bit multicast address and b-bit top key. Each
of the tuples for groups 1 through N −1 also includes a b-bit
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decrease key. Besides, when the protocol authorizes – with
an average frequency of fg per time slot – an upgrade to
group g, the tuple for this group carries a b-bit increase key.
To ensure reliable delivery of this information, the sender
uses forward error correction that increases the bit require-
ments by the factor of z. The headers of the special packets
consume a total of h bits. Hence, communication overhead
OΣ imposed by SIGMA is equal to:

OΣ

= { ratio of the SIGMA bits to the data bits }�
l + (32 + b)N + b(N − 1) + b

N�

g=2

fg � z + h

R · t
= { (10) and simplification }�

l + 32N + b
�
2N − 1 +

N�

g=2

fg � � z + h

r · t · mN−1
.

To quantify the derived expressions, we experiment with
a FLID-DS session that transmits its 500-byte data packets
(i.e., s = 4000) at cumulative rate R of 4 Mbps. Transmis-
sion rate r of the minimal group is 100 Kbps. Keys and
their components are 16 bits long. A slot number consists
of 8 bits. Error correction overcomes 50% packet loss. After
setting R, r, and N , we determine m from (10). During the
experiments, we record the observed values of fg , z, and h.

First, we explore the dependence of the overhead on the
number of groups. Figure 9(a) shows O∆ and OΣ for N
varying from 2 to 20 when t = 250 ms. Then, we examine
the impact of the time slot duration. Figure 9(b) plots O∆

and OΣ for t varying from 200 ms to 1 second when N = 10.
In both cases, the communication overhead remains about
0.8% for DELTA and stays under 0.6% for SIGMA. Thus,
DELTA and SIGMA protect against inflated subscription
without imposing a significant overhead.

6. DISCUSSION
Whereas this paper proposes robust mechanisms for IP

multicast congestion control, slow deployment of IP multi-
cast has stirred an interest in end-system multicast. Emerged
designs for end-system multicast can be classified into server-
based and peer-to-peer architectures.

In server-based multicast, trusted managed servers – e.g.,
edge servers from Akamai [1] – form multicast forwarding
hierarchies. Server-based architectures can adopt DELTA
and SIGMA straightforwardly to acquire robustness against
inflated subscription: edge servers can enforce (in the same
fashion as edge routers do it for IP multicast) appropriate
congestion-dependent access of local receivers to multicast
groups.

In peer-to-peer architectures, receivers themselves form
multicast forwarding hierarchies [4]. Then, the path from
the sender to a receiver can traverse another receiver that
forwards the data at a lower than fair rate. Denial-of-service
is not the only rationale for such an attack. The slow for-
warding can enable the misbehaving intermediary to im-
prove its own reception by acquiring the released bandwidth
(e.g., when the bandwidth bottleneck is the wireless connec-
tion of the intermediary to the network). Since DELTA and
SIGMA assume trusted intermediaries, our design is insuffi-

cient for providing robust congestion control in peer-to-peer
architectures. One promising approach for robust peer-to-
peer multicast is to give a receiver some control over choos-
ing the peers on its path. The receiver-guided path forma-
tion faces, however, the following challenges:

• A misbehaving receiver can seek a self-beneficial for-
warding hierarchy at the expense of others. For exam-
ple, the slowest receiver can attempt to obtain a direct
connection to the sender by displacing faster receivers
to lower levels of the multicast hierarchy.

• A misbehaving intermediary is difficult to detect. Due
to heterogeneous network conditions, a receiver has no
easy ways to verify the fairness of the received rate.
For instance, the receiver cannot rely on comparing
the rates from disjoint paths because the fair rates for
such paths can be different.

We plan to address the above challenges in our future archi-
tecture for robust peer-to-peer multicast.

7. CONCLUSION
Group subscription is a useful mechanism for multicast

congestion control. Unfortunately, this mechanism also pro-
vides receivers with opportunities to inflate subscription and
thereby acquire unfairly high bandwidth. In this paper, we
presented DELTA and SIGMA, the first solution for the
problem of inflated subscription. DELTA and SIGMA use
dynamic keys to enforce congestion-dependent group access.
Our design requires only minimal generic changes in the edge
routers, does not alter the core of the network, and intro-
duces no auxiliary servers. Integration with DELTA and
SIGMA makes multicast protocols robust to inflated sub-
scription and preserves other congestion control properties.
We illustrated this by deriving and evaluating FLID-DS, a
robust adaptation of FLID-DL.
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