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tTwo-dimensional 
ontingen
y or 
o-o

urren
e tables arise frequently in important appli
a-tions su
h as text, web-log and market-basket data analysis. A basi
 problem in 
ontingen
ytable analysis is 
o-
lustering: simultaneous 
lustering of the rows and 
olumns. A novel theo-reti
al formulation views the 
ontingen
y table as an empiri
al joint probability distribution oftwo dis
rete random variables and poses the 
o-
lustering problem as an optimization problemin information theory | the optimal 
o-
lustering maximizes the mutual information betweenthe 
lustered random variables subje
t to 
onstraints on the number of row and 
olumn 
lusters.We present a 
o-
lustering algorithm that monotoni
ally in
reases the preserved mutual infor-mation by intertwining both the row and 
olumn 
lusterings at all stages. Using the pra
ti
alexample of simultaneous word-do
ument 
lustering, we demonstrate that our algorithm workswell in pra
ti
e, espe
ially in the presen
e of sparsity.1 Introdu
tionClustering is the grouping together of similar obje
ts [12℄, and has pra
ti
al importan
e in a widevariety of appli
ations su
h as text, web-log and market-basket data analysis. Typi
ally, the datathat arises in these appli
ations is arranged as a 
ontingen
y or 
o-o

urren
e table, su
h as, word-do
ument 
o-o

urren
e table or webpage-user browsing data. Most 
lustering algorithms fo
us onone-way 
lustering, i.e., 
luster one dimension of the table based on similarities along the se
onddimension. For example, do
uments may be 
lustered based upon their word distributions whileusers may be 
lustered if they visit similar web pages. Clearly, in these appli
ations it is sometimesdesirable to 
o-
luster or simultaneously 
luster both dimensions of the 
ontingen
y table.There is a 
lear duality in 
o-
lustering rows and 
olumns; for example, just as do
uments 
an be
lustered based upon their word distributions, words may be 
lustered a

ording to the distributionof their o

urren
e in do
uments. A \natural" approa
h to this problem is to treat the (normalized)non-negative 
ontingen
y table as a joint probability distribution between two random variables.Information theory 
an then be used to give a theoreti
al formulation to the 
o-
lustering problem:the optimal 
o-
lustering is one that leads to the minimum loss in mutual information (as shown inLemma 2.1 this loss is always non-negative).In this paper, we use this information-theoreti
 formulation of 
o-
lustering, and after quantifyingthe loss in mutual information we present a novel algorithm that dire
tly optimizes this loss fun
tion.�Department of Computer S
ien
es, University of Texas, Austin, TX 78712.yDepartment of Computer S
ien
es, University of Texas, Austin, TX 78712.zIBM Almaden Resear
h Center, San Jose, CA. 1



The resulting algorithm is interesting: it intertwines both row and 
olumn 
lustering at all stages.Row 
lustering is done by assessing 
loseness of ea
h row distribution, in relative entropy, to 
ertain\row 
luster prototypes". Column 
lustering is done similarly, and this pro
ess is iterated till it
onverges to a lo
al minimum. Co-
lustering di�ers from ordinary one-sided 
lustering in that at allstages the row 
luster prototypes in
orporate 
olumn 
lustering information, and vi
e versa.We empiri
ally demonstrate that our 
o-
lustering algorithm alleviates the problems of sparsityand high dimensionality by presenting results on joint word-do
ument 
lustering. The resultingdo
ument 
lusters are observed to be superior to one-dimensional 
lustering results and to previouslyproposed information-theoreti
 approa
hes that 
luster words before 
lustering the do
uments.A word about notation: upper-
ase letters su
h as X , Y , X̂, Ŷ will denote random variables.Elements of sets will be denoted by lower-
ase letters su
h as x and y. Quantities asso
iated with
lusters will be \hatted": for example, X̂ denotes a random variable obtained from a 
lustering of Xwhile x̂ denotes a 
luster. Probability distributions will be denoted by p or q when the randomvariable is obvious or by p(X;Y ), q(X;Y; X̂; Ŷ ), p(Y jx), or q(Y jx̂) to make the random variableexpli
it. Logarithms to the base 2 are used throughout.2 Motivation & Problem FormulationLetX and Y be dis
rete random variables that take values in the sets fx1; x2; : : : ; xmg and fy1; y2; : : : ; yngrespe
tively. Let p(X;Y ) denote the joint probability distribution between X and Y . We will thinkof p(X;Y ) as a m�n matrix. In pra
ti
e, if p is not known, it may be estimated using observations.Su
h a statisti
al estimate is known as a two-dimensional 
ontingen
y table or as a two-way frequen
ytable [9℄.We are interested in simultaneously 
lustering or quantizing X into (at most) k disjoint or hard
lusters, and Y into (at most) ` disjoint or hard 
lusters. Let the k 
lusters of X be written as:fx̂1; x̂2; : : : ; x̂kg, and let the ` 
lusters of Y be written as: fŷ1; ŷ2; : : : ; ŷ`g. In other words, we areinterested in �nding maps CX and CY ,CX : fx1; x2; : : : ; xmg ! fx̂1; x̂2; : : : ; x̂kgCY : fy1; y2; : : : ; yng ! fŷ1; ŷ2; : : : ; ŷ`g:For brevity, we will often write X̂ = CX (X) and Ŷ = CY (Y ); X̂ and Ŷ are random variables that area deterministi
 fun
tion of X and Y , respe
tively. Observe that X and Y are 
lustered separately,that is, X̂ is a fun
tion of X alone and Ŷ is a fun
tion of Y alone. But, the partition fun
tions CXand CY are allowed to depend upon the entire joint distribution p(X;Y ).De�nition 2.1 We refer to the tuple (CX ; CY ) as a 
o-
lustering.Suppose we are given a 
o-
lustering. Let us \re-order" the rows of the joint distribution p su
hthat all rows mapping into x̂1 are arranged �rst, followed by all rows mapping into x̂2, and so on.Similarly, let us \re-order" the 
olumns of the joint distribution p su
h that all 
olumns mappinginto ŷ1 are arranged �rst, followed by all 
olumns mapping into ŷ2, and so on. This row-
olumnreordering has the e�e
t of dividing the distribution p into little two-dimensional blo
ks. We referto ea
h su
h blo
k as a 
o-
luster.A fundamental quantity that measures the amount of information random variable X 
ontainsabout Y (and vi
e versa) is the mutual information I(X ;Y ) [3℄. We will judge the quality of a
o-
lustering by the resulting loss in mutual information, I(X ;Y ) � I(X̂ ; Ŷ ) (any non-trivial 
o-
lustering lowers mutual information, see Lemma 2.1 below).De�nition 2.2 An optimal 
o-
lustering minimizesI(X ;Y )� I(X̂; Ŷ ) (1)subje
t to the 
onstraints on the number of row and 
olumn 
lusters.2



Let us illustrate the situation with an example. Consider the 6� 6 matrix below that representsthe joint distribution: p(X;Y ) = 26666664 :05 :05 :05 0 0 0:05 :05 :05 0 0 00 0 0 :05 :05 :050 0 0 :05 :05 :05:04 :04 0 :04 :04 :04:04 :04 :04 0 :04 :04
37777775 (2)Looking at the row distributions it is natural to group the rows into three 
lusters: x̂1 = fx1; x2g,x̂2 = fx3; x4g and x̂3 = fx5; x6g. Similarly the natural 
olumn 
lustering is: ŷ1 = fy1; y2; y3g,ŷ2 = fy4; y5; y6g. The resulting joint distribution p(X̂; Ŷ ), see (6) below, is given by:p(X̂; Ŷ ) = 24 :3 00 :3:2 :2 35 : (3)It 
an be veri�ed that the mutual information lost due to this 
o-
lustering is only :0957, and thatany other 
o-
lustering leads to a larger loss in mutual information.The question is: how 
an we eÆ
iently sear
h for a 
o-
lustering that minimizes the quantityin (1). The following lemma shows that the loss in mutual information 
an be expressed as the\distan
e" of p(X;Y ) to an approximation q(X;Y ) | this lemma will fa
ilitate our sear
h for theoptimal 
o-
lustering.Lemma 2.1 For a �xed 
o-
lustering (CX ; CY ), we 
an write the loss in mutual information asI(X ;Y )� I(X̂; Ŷ ) = D(p(X;Y )jjq(X;Y )); (4)where D(�jj�) denotes the Kullba
k-Leibler divergen
e, also known as relative entropy, and q(X;Y )is a distribution of the form q(x; y) = p(x̂; ŷ)p(xjx̂)p(yjŷ); (5)where x̂ = CX(x) and ŷ = CY (y).Proof. Sin
e we are 
onsidering hard 
lustering,p(x̂; ŷ) = Xx2x̂Xy2ŷ p(x; y); (6)p(x̂) = X̂y p(x̂; ŷ) =Xx2x̂p(x);p(ŷ) = X̂x p(x̂; ŷ) =Xy2ŷ p(y):By de�nition,I(X ;Y )� I(X̂; Ŷ ) = Xx Xy p(x; y) log p(x; y)p(x)p(y) �X̂x X̂y p(x̂; ŷ) log p(x̂; ŷ)p(x̂)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)p(x)p(y) � X̂x X̂y 0�Xx2x̂Xy2ŷ p(x; y)1A log p(x̂; ŷ)p(x̂)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)p(x̂; ŷ)p(x)p(x̂) p(y)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)q(x; y) ;3



where the last step follows sin
e p(xjx̂) = p(x)p(x̂) for x̂ = CX(x) and 0 otherwise, and similarly forp(yjŷ). tuLemma 2.1 shows that the loss in mutual information must be non-negative, and reveals that�nding an optimal 
o-
lustering is equivalent to �nding an approximating distribution q of the form(5) that is 
lose to p in Kullba
k-Leibler divergen
e subje
t to the 
onstraints on the number of rowand 
olumn 
lusters. In Se
tion 4 we will develop more intuition about the approximation q. Thedistribution q preserves marginals of p, that is, for x̂ = CX(x) and ŷ = CY (y),q(x) =Xy q(x; y) = X̂y Xy2ŷ p(x̂; ŷ)p(xjx̂)p(yjŷ) = p(x; x̂) = p(x):Similarly, q(y) = p(y).Re
all the example p(X;Y ) in (2) and the \natural" row and 
olumn 
lusterings that led to (3).It is easy to verify that the 
orresponding approximation q(X;Y ) de�ned in (5) equalsq(X;Y ) = 26666664 :054 :054 :042 0 0 0:054 :054 :042 0 0 00 0 0 :042 :054 :0540 0 0 :042 :054 :054:036 :036 :028 :028 :036 :036:036 :036 :028 :028 :036 :036
37777775 ; (7)and that D(pjjq) = :0957. Note that the marginals of p are preserved by q.We end this se
tion by providing another motivation based on the theory of sour
e 
oding andtransmission. Let us set-up an arti�
ial data 
ompression problem, where we want to transmit Xand Y from a sour
e to a destination. Let us insist that this transmission be done in two-stages: (a)�rst 
ompute X̂ = CX (X) and Ŷ = CY (Y ), and transmit the 
luster identi�ers X̂ and Ŷ jointly; and(b) separately transmit X given that the destination already knows X̂ and transmit Y given that thedestination already knows Ŷ . The �rst step will require, on an average, at least, H(X̂; Ŷ ) bits, and,the se
ond step will require, on an average, H(X jX̂) +H(Y jŶ ) bits. For every �xed 
o-
lustering,the average number of bits that must be transmitted from the sour
e to the destination is:H(X̂; Ŷ ) +H(X jX̂) +H(Y jŶ ): (8)However, by noting the parallel between (5) and (8), it easy to show that:H(X̂; Ŷ ) +H(X jX̂) +H(Y jŶ )�H(X;Y ) = D(p(X;Y )jjq(X;Y )):Thus, �nding an optimal 
o-
lustering is equivalent to �nding a 
ode that minimizes (8) subje
tto the 
onstraints on the number of row and 
olumn 
lusters. Observe that (8) 
ontains the 
ross-term H(X̂; Ŷ ) that 
aptures the intera
tion between the row and 
olumn 
lusters. This unders
oresthe fa
t that 
lustering of rows and 
olumns must intera
t in a \good" 
o-
lustering. A naivealgorithm that 
lusters rows without paying attention to 
olumns and vi
e versa will miss this
riti
al intera
tion that is the essen
e of 
o-
lustering.3 Related workMost of the 
lustering literature has fo
used on one-sided 
lustering algorithms, see [12℄ for a 
om-prehensive survey. There was some early work on 
o-
lustering, su
h as [11℄ whi
h was limited toproblems of small sizes and used a lo
al greedy splitting pro
edure to identify hierar
hi
al row and
olumn 
lusters. More re
ently [4℄ used a bipartite graph formulation and a spe
tral heuristi
 thatuses eigenve
tors to 
o-
luster do
uments and words; however, a restri
tion in [4℄ was that ea
h word4




luster was asso
iated with a do
ument 
luster. We do not impose su
h a restri
tion in this paper;in fa
t, see Se
tion 5 for examples of di�erent types of row and 
olumn 
lusters.Our information-theoreti
 formulation of preserving mutual information is similar to the Infor-mation Bottlene
k method [20℄. The Information Bottlene
k method was introdu
ed for one-sided
lustering, say X to X̂, and tries to minimize the quantity I(X; X̂) in order to gain 
ompressionin addition to maximizing the mutual information I(X̂; Y ); the overall quantity 
onsidered in [20℄is I(X; X̂)� �I(X̂; Y ) where the parameter � re
e
ts the tradeo� between 
ompression and preser-vation of mutual information. The Information Bottlene
k algorithm yields a \soft" 
lustering of thedata using a pro
edure similar to the deterministi
 annealing approa
h of [16℄. A greedy agglomer-ative hard 
lustering version of the Information Bottlene
k algorithm was used in [1, 19℄ to 
lusterwords in order to redu
e feature size for supervised text 
lassi�
ation. For this same task, re
ently [6℄proposed a divisive hard 
lustering algorithm that dire
tly minimizes the loss in mutual informationand was found to result in higher 
lassi�
ation a

ura
ies than [1, 19℄. All these algorithms wereproposed for one-sided 
lustering.An agglomerative hard 
lustering version of the Information Bottlene
k algorithmwas used in [18℄to 
luster do
uments after 
lustering words. The work in [8℄ extended the above work to repetitively
luster do
uments and then words. However, both these papers use heuristi
 pro
edures and 
lusterdo
uments and words independently using an agglomerative algorithm. In 
ontrast, in this paperwe �rst quantify the loss in mutual information due to 
o-
lustering and then propose an algorithmthat has a strong theoreti
al foundation and monotoni
ally redu
es this loss fun
tion, 
onverging toa lo
al minimum.Re
ently, when 
onsidering a general 
lustering framework using Bayesian belief networks, [10℄proposed an iterative optimizationmethod that amounts to a multivariate generalization of [20℄, and,on
e again, uses deterministi
 annealing. A later paper [17℄ presented an agglomerative algorithmfor the same problem that has advantages over [10℄ in that \it is simpler, fully deterministi
, andnon-parametri
. There is no need to identify 
luster splits whi
h is rather tri
ky." However, [17℄pointed out that their \agglomeration pro
edures do not s
ale linearly with the sample size astop down methods do : : :". In this paper, we are 
on
erned with a prin
ipled, top-down methodthat s
ales well. Finally, the results in [17℄ amount to �rst �nding a word 
lustering followed by�nding a do
ument 
lustering, whereas we present a pro
edure that intertwines word and do
ument
lusterings and 
ontinually improves both until a suitable lo
al minima is found, and, hen
e, is atrue 
o-
lustering pro
edure.4 Co-
lustering AlgorithmWe now des
ribe a novel algorithm that monotoni
ally de
reases the obje
tive fun
tion (1). Todes
ribe the algorithm and related proofs, it will be more 
onvenient to think of the joint distributionof X;Y; X̂, and Ŷ . Let p(X;Y; X̂; Ŷ ) denote this distribution. Observe that without any loss ofgenerality we 
an write: p(x; y; x̂; ŷ) = p(x̂; ŷ)p(x; yjx̂; ŷ): (9)By Lemma 2.1, for the purpose of 
o-
lustering, we will seek an approximation to p(X;Y; X̂; Ŷ )using a distribution q(X;Y; X̂; Ŷ ) of the form:q(x; y; x̂; ŷ) = p(x̂; ŷ)p(xjx̂)p(yjŷ): (10)The reader may want to 
ompare (5) and (10): observe that the latter is de�ned for all 
ombinationsof x, y, x̂, and ŷ. Note that in (10) if x̂ 6= CX (x) or ŷ 6= CY (y) then q(x; y; x̂; ŷ) is zero. We willthink of p(X;Y ) as a two-dimensional marginal of p(X;Y; X̂; Ŷ ) and q(X;Y ) as a two-dimensionalmarginal of q(X;Y; X̂; Ŷ ). Intuitively, by (9) and (10), within the 
o-
luster denoted by X̂ = x̂ andŶ = ŷ, we seek to approximate the distribution p(X;Y jX̂ = x̂; Ŷ = ŷ) by a distribution of the form5



p(X jX̂ = x̂)p(Y jŶ = ŷ). The following proposition (whi
h we state without proof) establishes thatthere is no harm in adopting su
h a formulation.Proposition 4.1 For every �xed hard 
o-
lustering,D(p(X;Y )jjq(X;Y )) = D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )):We �rst establish a few simple, but useful equalities that highlight properties of q that aredesirable in approximating p.Proposition 4.2 For a distribution q of the form (10), the following marginals and 
onditionalsare preserved: q(x̂; ŷ) = p(x̂; ŷ); q(x; x̂) = p(x; x̂) & q(y; ŷ) = p(y; ŷ): (11)Thus, p(x) = q(x); p(y) = q(y); p(x̂) = q(x̂); p(ŷ) = q(ŷ); (12)p(xjx̂) = q(xjx̂); p(yjŷ) = q(yjŷ); (13)p(ŷjx̂) = q(ŷjx̂); p(x̂jŷ) = q(x̂jŷ) (14)for all x; y; x̂, and ŷ. And, furthermore, if ŷ = CY (y) and x̂ = CX (x), thenq(yjx̂) = q(yjŷ)q(ŷjx̂); (15)q(x; y; x̂; ŷ) = p(x)q(yjx̂); (16)and, symmetri
ally, q(xjŷ) = q(xjx̂)q(x̂jŷ); (17)q(x; y; x̂; ŷ) = p(y)q(xjŷ):Proof. The equalities of the marginals in (11) are simple to show and will not be proved here forbrevity. Equalities (12), (13), and (14) easily follow from (11). Equation (15) follows fromq(yjx̂) = q(y; ŷjx̂) = q(y; ŷ; x̂)q(x̂) = q(yjŷ; x̂)q(ŷjx̂) = q(yjŷ)q(ŷjx̂):Equation (16) follows from q(x; y; x̂; ŷ) = p(x̂; ŷ)p(xjx̂)p(yjŷ)= p(x̂)p(xjx̂)p(ŷjx̂)p(yjŷ)= p(x; x̂)p(ŷjx̂)p(yjŷ)= p(x)q(ŷjx̂)q(yjŷ)= p(x)q(yjx̂);where the last equality follows from (15). tuLemma 2.1 quanti�es the loss in mutual information upon 
o-
lustering as the Kullba
k-Leiblerdivergen
e of p(X;Y ) to q(X;Y ). Next, we use the above proposition to prove a lemma that expressesthe loss in mutual information in two revealing ways. This lemma will lead to a \natural" algorithm.Lemma 4.1 The loss in mutual information 
an be expressed as (i) a weighted sum of the rela-tive entropies between row distributions p(Y jx) and \row-lumped" distributions q(Y jx̂), or as (ii)6



a weighted sum of the relative entropies between 
olumn distributions p(X jy) and \
olumn-lumped"distributions q(X jŷ), that is,D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )) = X̂x Xx:CX(x)=x̂ p(x)D(p(Y jx)jjq(Y jx̂));= X̂y Xy:CY (y)=x̂ p(y)D(p(X jy)jjq(X jŷ)):Proof. We will only show the �rst equality, the se
ond follows similarly.D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )) = X̂x;ŷ Xx:CX(x)=x̂;y:CY (y)=ŷ p(x; y; x̂; ŷ) log p(x; y; x̂; ŷ)q(x; y; x̂; ŷ)(a)= X̂x;ŷ Xx:CX(x)=x̂;y:CY (y)=ŷ p(x)p(yjx) log p(x)p(yjx)p(x)q(yjx̂)= X̂x Xx:CX(x)=x̂ p(x)Xy p(yjx) log p(yjx)q(yjx̂) ;where (a) follows sin
e when ŷ = CY (y), x̂ = CX (x) we have that p(x; y; x̂; ŷ) = p(x; y) = p(x)p(yjx)and from (16). tuThe signi�
an
e of Lemma 4.1 follows from the fa
t that it allows us to express the obje
tivefun
tion solely in terms of the row-
lustering, or in terms of the 
olumn-
lustering. Furthermore, itallows us to de�ne the distribution q(Y jx̂) as a \row-
luster prototype", and similarly, the distribu-tion q(X jŷ) as a \
olumn-
luster prototype". With this intuition, we now present the 
o-
lusteringalgorithm in Figure 1. The algorithm works as follows. It starts with an initial 
o-
lustering(C(0)X ; C(0)Y ) and iteratively re�nes it to obtain a sequen
e of 
o-
lusterings: (C(1)X ; C(1)Y ), (C(2)X ; C(2)Y ),: : :. Asso
iated with a generi
 
o-
lustering (C(t)X ; C(t)Y ) in the sequen
e, we 
ompute the distributionsp(t) and q(t) as: p(t)(x; y; x̂; ŷ) = p(t)(x̂; ŷ)p(t)(x; yjx̂; ŷ);q(t)(x; y; x̂; ŷ) = p(t)(x̂; ŷ)p(t)(xjx̂)p(t)(yjŷ):Observe that while as a fun
tion of four variables, p(t)(x; y; x̂; ŷ) depends upon the iteration indext, the marginal p(t)(x; y) is, in fa
t, independent of t. Hen
e, we will write p(x), p(y), p(xjy), p(yjx),and p(x; y), respe
tively, instead of p(t)(x), p(t)(y), p(t)(xjy), p(t)(yjx), and p(t)(x; y).In Step 1, the algorithm starts with an initial 
o-
lustering (C(0)X ; C(0)Y ) and 
omputes the requiredmarginals of the resulting approximation q(0) (the 
hoi
e of starting points is important, and will bedis
ussed in detail later in Se
tion 5). The algorithm then 
omputes the appropriate \row-
lusterprototypes" q(0)(Y jx̂). While the reader may wish to think of these as \
entroids", observe thatq(0)(Y jx̂) is not a 
entroid, i.e., q(0)(Y jx̂) 6= 1jx̂jXx2x̂ p(Y jx);where jx̂j denotes the number of rows in 
luster x̂. Rather, by (15), for every y, we writeq(t)(yjx̂) = q(t)(yjŷ)q(t)(ŷjx̂); (18)where ŷ = CY (y). Note that (18) gives a formula that would have been diÆ
ult to guess a prioriwithout the help of analysis. In Step 2, the algorithm \re-assigns" ea
h row x to a new row-
lusterwhose row-
luster prototype q(t)(Y jx̂) is 
losest to p(Y jx) in Kullba
k-Leibler divergen
e. In essen
e,Step 2 de�nes a new row-
lustering. Also, observe that the 
olumn 
lustering is not 
hanged in Step7



Algorithm Co Clustering(p,k,`,CyX ,CyY )Input: The joint probability distribution p(X;Y ), k the desired number of row 
lusters, and ` the desirednumber of 
olumn 
lusters.Output: The partition fun
tions CyX and CyY .1. Initialization: Set t = 0. Start with some initial partition fun
tions C(0)X and C(0)Y . Computeq(0)(X̂; Ŷ ); q(0)(XjX̂); q(0)(Y jŶ )and the distributions q(0)(Y jx̂), 1 � x̂ � k using (18).2. Compute row 
lusters: For ea
h row x, �nd its new 
luster index asC(t+1)X (x) = argminx̂ D �p(Y jx)jjq(t)(Y jx̂)� ;resolving ties arbitrarily. Let C(t+1)Y = C(t)Y .3. Compute q(t+1)(X̂; Ŷ ); q(t+1)(XjX̂); q(t+1)(Y jŶ )and the distributions q(t+1)(Xjŷ), 1 � ŷ � ` using (19).4. Compute 
olumn 
lusters: For ea
h 
olumn y, �nd its new 
luster index asC(t+2)Y (y) = argminŷ D �p(Xjy)jjq(t+1)(Xjŷ)� ;resolving ties arbitrarily. Let C(t+2)X = C(t+1)X .5. Compute q(t+2)(X̂; Ŷ ); q(t+2)(XjX̂); q(t+2)(Y jŶ )and distributions q(t+2)(Y jx̂), 1 � x̂ � k using (18).6. Stop and return CyX = C(t+2)X and CyY = C(t+2)Y , if the 
hange in obje
tive fun
tion value, that is,D(p(X;Y )jjq(t)(X;Y ))�D(p(X;Y )jjq(t+2)(X;Y )), is \small" (say 10�3); Else set t = t+2 and go tostep 2.Figure 1: Information theoreti
 
o-
lustering algorithm that simultaneously 
lusters both the rowsand 
olumns2. In Step 3, using the new row-
lustering and the old 
olumn 
lustering, the algorithm re
omputesthe required marginals of q(t+1). More importantly, the algorithm re
omputes the 
olumn-
lusterprototypes. On
e again, these are not ordinary 
entroids, but rather by using (17), for every x, wewrite q(t+1)(xjŷ) = q(t+1)(xjx̂)q(t+1)(x̂jŷ); (19)where x̂ = CX (x). Now, in Step 4, the algorithm \re-assigns" ea
h 
olumn y to a new 
olumn-
lusterwhose 
olumn-
luster prototype q(t+1)(X jŷ) is 
losest to p(X jy) in Kullba
k-Leibler divergen
e. Step4 de�nes a new 
olumn-
lustering while holding the row-
lustering �xed. In Step 5, the algorithmre-
omputes marginals of q(t+2). The algorithm keeps iterating Steps 2 through 5 until some desired
onvergen
e 
ondition is met. The following reassuring theorem, whi
h is our main result, guarantees
onvergen
e.Theorem 4.1 Algorithm Co Clustering monotoni
ally de
reases the obje
tive fun
tion given in Lemma 2.1.
8



Proof. D(p(t)(X;Y; X̂; Ŷ )jjq(t)(X;Y; X̂; Ŷ ))(a)= X̂x Xx:C(t)X (x)=x̂ p(x)Xy p(yjx) log p(yjx)q(t)(yjx̂)(b)� X̂x Xx:C(t)X (x)=x̂ p(x)Xy p(yjx) log p(yjx)q(t) �yjC(t+1)X (x)�(
)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t) (ŷjx̂) q(t)(yjŷ)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t)(yjŷ)| {z }I1+X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log 1q(t)(ŷjx̂)= I1 +X̂x X̂y 0B� Xx:C(t+1)X (x)=x̂ Xy:C(t+1)Y (y)=ŷ p(x)p(yjx)1CA log 1q(t)(ŷjx̂)(d)= I1 +X̂x X̂y �q(t+1)(x̂; ŷ)� log 1q(t)(ŷjx̂)= I1 +X̂x q(t+1)(x̂)X̂y q(t+1)(ŷjx̂) log 1q(t)(ŷjx̂)(e)� I1 +X̂x q(t+1)(x̂)X̂y q(t+1)(ŷjx̂) log 1q(t+1)(ŷjx̂)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t+1)(ŷjx̂)q(t)(yjŷ)(f)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t+1)(ŷjx̂)q(t+1)(yjŷ)(g)= D(p(t+1)(X;Y; X̂; Ŷ )jjq(t+1)(X;Y; X̂; Ŷ )); (20)where (a) follows from Lemma 4.1; (b) follows from Step 2 of the algorithm; (
) follows by rearrangingthe sum and from (15); (d) follows from Step 3 of the algorithm; (e) follows by non-negativity ofthe Kullba
k-Leibler divergen
e; and (f) follows sin
e we hold the 
olumn 
lusters �xed, that is,C(t+1)Y = C(t)Y , and (g) is due to (15) and Lemma 4.1.By using a virtually identi
al argument, whi
h we omit here for brevity, and by using propertiesof Steps 4 and 5, we 
an show thatD(p(t+1)(X;Y; X̂; Ŷ )jjq(t+1)(X;Y; X̂; Ŷ )) � D(p(t+2)(X;Y; X̂; Ŷ )jjq(t+2)(X;Y; X̂; Ŷ )): (21)By 
ombining (20) and (21), it follows that every iteration of the algorithm never in
reases theobje
tive fun
tion. tu9



Corollary 4.1 The algorithm in Figure 1 terminates in a �nite number of steps at a 
luster assign-ment that is lo
ally optimal, that is, the loss in mutual information 
annot be de
reased by either(a) re-assignment of a distribution p(Y jx) or p(X jy) to a di�erent 
luster distribution q(Y jx̂) orq(X jŷ), respe
tively, or by (b) de�ning a new distribution for any of the existing 
lusters.Proof. The result follows from Theorem 4.1 and sin
e the number of distin
t 
o-
lusterings is �nite.tuRemark 4.1 A 
loser examination of the above proof shows that we established that Steps 2 and3 together imply (20) and Steps 4 and 5 together imply (21). We show how to generalize the above
onvergen
e guarantee to a 
lass of iterative algorithms. In parti
ular, any algorithm that uses anarbitrary 
on
atenations of Steps 2 and 3 with Steps 4 and 5 is guaranteed to monotoni
ally de
reasethe obje
tive fun
tion. For example, 
onsider an algorithm that 
ips a 
oin at every iteration andperforms Steps 2 and 3 if the 
oin turns up head, and performs Steps 4 and 5 otherwise. As ananother example, 
onsider an algorithm that keeps iterating Steps 2 and 3, until no improvementin the obje
tive fun
tion is noti
ed. Next, it 
an keep iterating Steps 4 and 5, until no furtherimprovement in the obje
tive fun
tion is noti
ed. Now, it 
an again iterate Steps 2 and 3, and soon and so forth. Both of these algorithms as well all algorithms in the same spirit are guaranteed tomonotoni
ally de
rease the obje
tive fun
tion. Su
h algorithmi
 
exibility 
an allow 
omputationallyeÆ
ient exploration of various lo
al minimas when starting from a �xed initial random partition inStep 1.Remark 4.2 While our algorithm is in the spirit of the k-means algorithm, the pre
ise algorithmitself is quite di�erent from the usual k-means. For example, in our algorithm, the distributionq(t)(Y jx̂) serves as a \row 
luster prototype". This quantity is di�erent from the naive \
entroid"of the 
luster x̂. Similarly, the 
olumn 
luster prototype q(t+1)(X jŷ) is di�erent from the obvious
entroid of the 
luster ŷ. In fa
t, detailed analysis (as is evident from proof of Theorem 4.1) wasne
essary to identify these key quantities.Remark 4.3 In this paper, for simpli
ity, we have restri
ted attention to 
o-
lustering for jointdistributions of two random variables. However, both our algorithm and our main theorem 
an beeasily extended to 
o-
luster multi-dimensional joint distributions.4.1 Illustrative ExampleWe now illustrate how our algorithm works by showing how it dis
overs the optimal 
o-
lusteringfor the example p(X;Y ) distribution given in (2) of Se
tion 2. Table 1 shows a typi
al run of our
o-
lustering algorithm that starts with a random partition of rows and 
olumns. At ea
h iterationTable 1 shows the steps of Algorithm Co Clustering, the resulting approximation q(t)(X;Y ) to theoriginal distribution and the 
orresponding 
ompressed distribution p(t)(X̂; Ŷ ). The row and 
olumn
luster numbers are shown around the matrix to indi
ate the 
lustering at ea
h stage. Noti
e howour intertwined row and 
olumn 
o-
lustering leads to progressively better approximations to theoriginal distribution. At the end of four iterations the algorithm almost a

urately re
onstru
tsthe original distribution, dis
overs the natural row and 
olumn partitions and re
overs the ideal
ompressed distribution p(X̂; Ŷ ) given in (3). A pleasing property to observe is that at all iterationsq(t)(X;Y ) preserves the marginals of the original p(X;Y ).5 Experimental ResultsThis se
tion provides empiri
al eviden
e to show the bene�ts of our 
o-
lustering framework andalgorithm. In parti
ular we apply the algorithm to the task of do
ument 
lustering using word-do
ument 
o-o

urren
e data as the joint probability distribution. We show that the 
o-
lustering10



q(t)(X;Y ) p(t)(X̂; Ŷ )ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2x̂3 .029 .029 .019 .022 .024 .024 0.10 0.05x̂1 .036 .036 .014 .028 .018 .018 0.10 0.20x̂2 .018 .018 .028 .014 .036 .036 0.30 0.25x̂2 .018 .018 .028 .014 .036 .036x̂3 .039 .039 .025 .030 .032 .032x̂3 .039 .039 .025 .030 .032 .032# steps 2 & 3 of Figure 1ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2x̂1 .036 .036 .014 .028 .018 .018 0.20 0.10x̂1 .036 .036 .014 .028 .018 .018 0.18 0.32x̂2 .019 .019 .026 .015 .034 .034 0.12 0.08x̂2 .019 .019 .026 .015 .034 .034x̂3 .043 .043 .022 .033 .028 .028x̂2 .025 .025 .035 .020 .046 .046# steps 4 & 5 of Figure 1ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2x̂1 .054 .054 .042 0 0 0 0.30 0x̂1 .054 .054 .042 0 0 0 0.12 0.38x̂2 .013 .013 .010 .031 .041 .041 0.08 0.12x̂2 .013 .013 .010 .031 .041 .041x̂3 .028 .028 .022 .033 .043 .043x̂2 .017 .017 .013 .042 .054 .054# steps 2 & 3 of Figure 1ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2x̂1 .054 .054 .042 0 0 0 0.30 0x̂1 .054 .054 .042 0 0 0 0 0.30x̂2 0 0 0 .042 .054 .054 0.20 0.20x̂2 0 0 0 .042 .054 .054x̂3 .036 .036 .028 .028 .036 .036x̂3 .036 .036 .028 .028 .036 .036Table 1: Algorithm Co Clustering of Figure 1 gives progressively better 
lusterings and approxima-tions till the optimal is dis
overed for the example p(X;Y ) given in Se
tion 2.
11



Dataset Newsgroups in
luded #do
s Totalper group do
umentsBinary & Binary subje
t talk.politi
s.mideast, talk.politi
s.mis
 250 500Multi5 & Multi5 subje
t 
omp.graphi
s, re
.motor
y
les 100 500re
.sports.baseballs
i.spa
e.talk.politi
s.mideastMulti10 subje
t alt.atheism, 
omp.sys.ma
.hardware 50 500mis
.forsale, re
.autosre
.sport.ho
key, s
i.
rypt, s
i.ele
troni
ss
i.med, s
i.spa
e, talk.politi
s.gunTable 2: Datasets: Ea
h data set 
onsists of do
uments randomly sampled from the respe
tive newsgroups in the NG20 
orpus.approa
h over
omes sparsity yielding substantially better results than the approa
h of 
lusteringsparse data along a single dimension. We also show better results as 
ompared to previous algorithmsin [18℄ and [8℄. The latter algorithms use a greedy te
hnique to 
luster do
uments after words are
lustered using the same greedy approa
h. For brevity we will use the following notation to denotevarious algorithms in 
onsideration. We 
all the Information Bottlene
k Double Clustering methodin [18℄ as IB-Double and the Iterative Double Clustering algorithm in [8℄ as IDC. In addition weuse 1D-
lustering to denote do
ument 
lustering without any word 
lustering i.e, 
lustering along asingle dimension.5.1 Data SetsFor our experimental results we use various subsets of the 20-Newsgroup data(NG20) [13℄ and theSMART 
olle
tion from Cornell (ftp://ftp.
s.
ornell.edu/pub/smart).The NG20 data set 
onsists of approximately 20; 000 newsgroup arti
les 
olle
ted evenly from20 di�erent usenet news-groups. This data set has been used for testing several supervised text
lassi�
ation tasks [1, 19, 14, 6℄ and un-supervised do
ument 
lustering tasks [18, 8℄. Many ofthe news-groups share similar topi
s and about 4:5% of the do
uments are 
ross posted makingthe boundaries between some news-groups rather fuzzy. To make our 
omparison 
onsistent withprevious algorithms we re
onstru
ted various subsets of NG20 used in [18, 8℄. We applied the samepre-pro
essing steps as in [18℄ to all the subsets, i.e., removed stop words, ignored �le headers andsele
ted the top 2000 words by mutual information1. The spe
i�
 details of the subsets are given inTable 2.The SMART 
olle
tion 
onsists ofMEDLINE, CISI and CRANFIELD sub-
olle
tions. MED-LINE 
onsists of 1033 abstra
ts from medi
al journals, CISI 
onsists of 1460 abstra
ts from informa-tion retrieval papers and CRANFIELD 
onsists of 1400 abstra
ts from aerodynami
 systems. Afterremoving stop words and numeri
 
hara
ters we sele
ted the top 2000 words by mutual informationas part of our pre-pro
essing. We will refer to this data set as CLASSIC3.5.2 Implementation DetailsBow [15℄ is a library of C 
ode useful for writing text analysis, language modeling and informationretrieval programs. We extended Bow to implement 
o-
lustering and do
ument 
lustering and usedMATLAB to give spy plots of the matri
es.1The data sets used in [18℄ and [8℄ di�er in their pre-pro
essing steps. The latter in
ludes subje
t lines while theformer does not. So we prepared two di�erent data sets one with subje
t lines and the other without subje
t lines.12



5.3 Evaluation MeasuresValidating 
lustering results is a non-trivial task. The relevan
e of 
lustering varies from domainto domain. In the presen
e of true labels, as in the 
ase of data sets used in our experiments, one
an form a 
onfusion matrix to measure the e�e
tiveness of the algorithm. Ea
h entry(i; j) in the
onfusion matrix represents the number of do
uments in 
luster i that belong to true 
lass j. Foran obje
tive evaluation measure we use mi
ro-averaged-pre
ision. The idea is to �rst asso
iate ea
h
luster with the most dominant 
lass label in that 
luster. If our 
onfusion matrix is suÆ
ientlydiagonal this e�e
tively 
al
ulates the fra
tion of do
uments along the diagonal to the total numberof do
uments. For ea
h 
lass 
 in the data set we de�ne �(
; ŷ) to be the number of do
uments
orre
tly assigned to 
, �(
; ŷ) to be number of do
uments in
orre
tly assigned to 
 and 
(
; ŷ) tobe the number of do
uments in
orre
tly not assigned to 
. The mi
ro-averaged-pre
ision is de�nedas P (ŷ) = P
 �(
; ŷ)P
(�(
; ŷ) + �(
; ŷ))and mi
ro-averaged-re
all is de�ned asR(ŷ) = P
 �(
; ŷ)P
(�(
; ŷ) + 
(
; ŷ))Note that for uni-labeled data P (ŷ) = R(ŷ).5.4 Results and Dis
ussionFirst we demonstrate that 
o-
lustering is signi�
antly better than 
lustering along a single dimensionusing word-do
ument 
o-o

urren
e matri
es. In all our experiments sin
e we know the number oftrue do
ument 
lusters we 
an give that as input to our algorithm. For example in the 
ase of Binarydata set we ask for 2 do
ument 
lusters. We vary the number of word 
lusters over the full range ofpossibilities and give plots showing how 
o-
lustering behaves with varying number of word 
lusters.A note about our initialization: we use deterministi
 initialization of word 
lusters by 
hoosinginitial word 
luster distributions to be \maximally" far apart from ea
h other[2℄, and use a randomperturbation of the \mean" do
ument to initialize do
ument 
lusters [5℄. Sin
e this initializationhas a random 
omponent all our results are averages of �ve trials unless stated otherwise.Figure 2 shows two 
onfusion matri
es obtained on the CLASSIC3 data set using algorithms1D-
lustering and 
o-
lustering (with 200 word 
lusters). Observe that 
o-
lustering extra
ted theoriginal 
lusters almost 
orre
tly resulting in a mi
ro-averaged-pre
ision of 0:9835 while 1D-
lusteringled to a mi
ro-averaged-pre
ision of 0:9432.Co-
lustering 1D-
lustering992 4 8 944 9 9840 1452 7 71 1431 51 4 1387 18 20 1297Figure 2: Co-
lustering a

urately re
overs original 
lusters on the CLASSIC3 data set.Figure 3 shows 
onfusion matri
es obtained by using 
o-
lustering and do
ument 
lustering onBinary and Binary subje
t data sets. While 
o-
lustering a
hieves 0:852 and 0:946 mi
ro-averagedpre
ision on these data sets respe
tively, 1D-
lustering yielded only 0:67 and 0:648.We now show that 
o-
lustering 
an dis
over stru
ture in sparse word-do
ument matri
es. Fig-ure 4 shows the original word-do
ument matrix and the reordered matrix obtained by arrangingrows and 
olumns a

ording to 
luster order to reveal the various 
o-
lusters. To simplify the �gure13


