
Information-Theoreti Co-ClusteringInderjit S. Dhilloninderjit�s.utexas.edu � Subramanyam Mallelamanyam�s.utexas.edu y Dharmendra S. Modhadmodha�us.ibm.om zUT CS Tehnial Report # TR-03-12April, 2003AbstratTwo-dimensional ontingeny or o-ourrene tables arise frequently in important applia-tions suh as text, web-log and market-basket data analysis. A basi problem in ontingenytable analysis is o-lustering: simultaneous lustering of the rows and olumns. A novel theo-retial formulation views the ontingeny table as an empirial joint probability distribution oftwo disrete random variables and poses the o-lustering problem as an optimization problemin information theory | the optimal o-lustering maximizes the mutual information betweenthe lustered random variables subjet to onstraints on the number of row and olumn lusters.We present a o-lustering algorithm that monotonially inreases the preserved mutual infor-mation by intertwining both the row and olumn lusterings at all stages. Using the pratialexample of simultaneous word-doument lustering, we demonstrate that our algorithm workswell in pratie, espeially in the presene of sparsity.1 IntrodutionClustering is the grouping together of similar objets [12℄, and has pratial importane in a widevariety of appliations suh as text, web-log and market-basket data analysis. Typially, the datathat arises in these appliations is arranged as a ontingeny or o-ourrene table, suh as, word-doument o-ourrene table or webpage-user browsing data. Most lustering algorithms fous onone-way lustering, i.e., luster one dimension of the table based on similarities along the seonddimension. For example, douments may be lustered based upon their word distributions whileusers may be lustered if they visit similar web pages. Clearly, in these appliations it is sometimesdesirable to o-luster or simultaneously luster both dimensions of the ontingeny table.There is a lear duality in o-lustering rows and olumns; for example, just as douments an belustered based upon their word distributions, words may be lustered aording to the distributionof their ourrene in douments. A \natural" approah to this problem is to treat the (normalized)non-negative ontingeny table as a joint probability distribution between two random variables.Information theory an then be used to give a theoretial formulation to the o-lustering problem:the optimal o-lustering is one that leads to the minimum loss in mutual information (as shown inLemma 2.1 this loss is always non-negative).In this paper, we use this information-theoreti formulation of o-lustering, and after quantifyingthe loss in mutual information we present a novel algorithm that diretly optimizes this loss funtion.�Department of Computer Sienes, University of Texas, Austin, TX 78712.yDepartment of Computer Sienes, University of Texas, Austin, TX 78712.zIBM Almaden Researh Center, San Jose, CA. 1



The resulting algorithm is interesting: it intertwines both row and olumn lustering at all stages.Row lustering is done by assessing loseness of eah row distribution, in relative entropy, to ertain\row luster prototypes". Column lustering is done similarly, and this proess is iterated till itonverges to a loal minimum. Co-lustering di�ers from ordinary one-sided lustering in that at allstages the row luster prototypes inorporate olumn lustering information, and vie versa.We empirially demonstrate that our o-lustering algorithm alleviates the problems of sparsityand high dimensionality by presenting results on joint word-doument lustering. The resultingdoument lusters are observed to be superior to one-dimensional lustering results and to previouslyproposed information-theoreti approahes that luster words before lustering the douments.A word about notation: upper-ase letters suh as X , Y , X̂, Ŷ will denote random variables.Elements of sets will be denoted by lower-ase letters suh as x and y. Quantities assoiated withlusters will be \hatted": for example, X̂ denotes a random variable obtained from a lustering of Xwhile x̂ denotes a luster. Probability distributions will be denoted by p or q when the randomvariable is obvious or by p(X;Y ), q(X;Y; X̂; Ŷ ), p(Y jx), or q(Y jx̂) to make the random variableexpliit. Logarithms to the base 2 are used throughout.2 Motivation & Problem FormulationLetX and Y be disrete random variables that take values in the sets fx1; x2; : : : ; xmg and fy1; y2; : : : ; yngrespetively. Let p(X;Y ) denote the joint probability distribution between X and Y . We will thinkof p(X;Y ) as a m�n matrix. In pratie, if p is not known, it may be estimated using observations.Suh a statistial estimate is known as a two-dimensional ontingeny table or as a two-way frequenytable [9℄.We are interested in simultaneously lustering or quantizing X into (at most) k disjoint or hardlusters, and Y into (at most) ` disjoint or hard lusters. Let the k lusters of X be written as:fx̂1; x̂2; : : : ; x̂kg, and let the ` lusters of Y be written as: fŷ1; ŷ2; : : : ; ŷ`g. In other words, we areinterested in �nding maps CX and CY ,CX : fx1; x2; : : : ; xmg ! fx̂1; x̂2; : : : ; x̂kgCY : fy1; y2; : : : ; yng ! fŷ1; ŷ2; : : : ; ŷ`g:For brevity, we will often write X̂ = CX (X) and Ŷ = CY (Y ); X̂ and Ŷ are random variables that area deterministi funtion of X and Y , respetively. Observe that X and Y are lustered separately,that is, X̂ is a funtion of X alone and Ŷ is a funtion of Y alone. But, the partition funtions CXand CY are allowed to depend upon the entire joint distribution p(X;Y ).De�nition 2.1 We refer to the tuple (CX ; CY ) as a o-lustering.Suppose we are given a o-lustering. Let us \re-order" the rows of the joint distribution p suhthat all rows mapping into x̂1 are arranged �rst, followed by all rows mapping into x̂2, and so on.Similarly, let us \re-order" the olumns of the joint distribution p suh that all olumns mappinginto ŷ1 are arranged �rst, followed by all olumns mapping into ŷ2, and so on. This row-olumnreordering has the e�et of dividing the distribution p into little two-dimensional bloks. We referto eah suh blok as a o-luster.A fundamental quantity that measures the amount of information random variable X ontainsabout Y (and vie versa) is the mutual information I(X ;Y ) [3℄. We will judge the quality of ao-lustering by the resulting loss in mutual information, I(X ;Y ) � I(X̂ ; Ŷ ) (any non-trivial o-lustering lowers mutual information, see Lemma 2.1 below).De�nition 2.2 An optimal o-lustering minimizesI(X ;Y )� I(X̂; Ŷ ) (1)subjet to the onstraints on the number of row and olumn lusters.2



Let us illustrate the situation with an example. Consider the 6� 6 matrix below that representsthe joint distribution: p(X;Y ) = 26666664 :05 :05 :05 0 0 0:05 :05 :05 0 0 00 0 0 :05 :05 :050 0 0 :05 :05 :05:04 :04 0 :04 :04 :04:04 :04 :04 0 :04 :04
37777775 (2)Looking at the row distributions it is natural to group the rows into three lusters: x̂1 = fx1; x2g,x̂2 = fx3; x4g and x̂3 = fx5; x6g. Similarly the natural olumn lustering is: ŷ1 = fy1; y2; y3g,ŷ2 = fy4; y5; y6g. The resulting joint distribution p(X̂; Ŷ ), see (6) below, is given by:p(X̂; Ŷ ) = 24 :3 00 :3:2 :2 35 : (3)It an be veri�ed that the mutual information lost due to this o-lustering is only :0957, and thatany other o-lustering leads to a larger loss in mutual information.The question is: how an we eÆiently searh for a o-lustering that minimizes the quantityin (1). The following lemma shows that the loss in mutual information an be expressed as the\distane" of p(X;Y ) to an approximation q(X;Y ) | this lemma will failitate our searh for theoptimal o-lustering.Lemma 2.1 For a �xed o-lustering (CX ; CY ), we an write the loss in mutual information asI(X ;Y )� I(X̂; Ŷ ) = D(p(X;Y )jjq(X;Y )); (4)where D(�jj�) denotes the Kullbak-Leibler divergene, also known as relative entropy, and q(X;Y )is a distribution of the form q(x; y) = p(x̂; ŷ)p(xjx̂)p(yjŷ); (5)where x̂ = CX(x) and ŷ = CY (y).Proof. Sine we are onsidering hard lustering,p(x̂; ŷ) = Xx2x̂Xy2ŷ p(x; y); (6)p(x̂) = X̂y p(x̂; ŷ) =Xx2x̂p(x);p(ŷ) = X̂x p(x̂; ŷ) =Xy2ŷ p(y):By de�nition,I(X ;Y )� I(X̂; Ŷ ) = Xx Xy p(x; y) log p(x; y)p(x)p(y) �X̂x X̂y p(x̂; ŷ) log p(x̂; ŷ)p(x̂)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)p(x)p(y) � X̂x X̂y 0�Xx2x̂Xy2ŷ p(x; y)1A log p(x̂; ŷ)p(x̂)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)p(x̂; ŷ)p(x)p(x̂) p(y)p(ŷ)= X̂x X̂y Xx2x̂Xy2ŷ p(x; y) log p(x; y)q(x; y) ;3



where the last step follows sine p(xjx̂) = p(x)p(x̂) for x̂ = CX(x) and 0 otherwise, and similarly forp(yjŷ). tuLemma 2.1 shows that the loss in mutual information must be non-negative, and reveals that�nding an optimal o-lustering is equivalent to �nding an approximating distribution q of the form(5) that is lose to p in Kullbak-Leibler divergene subjet to the onstraints on the number of rowand olumn lusters. In Setion 4 we will develop more intuition about the approximation q. Thedistribution q preserves marginals of p, that is, for x̂ = CX(x) and ŷ = CY (y),q(x) =Xy q(x; y) = X̂y Xy2ŷ p(x̂; ŷ)p(xjx̂)p(yjŷ) = p(x; x̂) = p(x):Similarly, q(y) = p(y).Reall the example p(X;Y ) in (2) and the \natural" row and olumn lusterings that led to (3).It is easy to verify that the orresponding approximation q(X;Y ) de�ned in (5) equalsq(X;Y ) = 26666664 :054 :054 :042 0 0 0:054 :054 :042 0 0 00 0 0 :042 :054 :0540 0 0 :042 :054 :054:036 :036 :028 :028 :036 :036:036 :036 :028 :028 :036 :036
37777775 ; (7)and that D(pjjq) = :0957. Note that the marginals of p are preserved by q.We end this setion by providing another motivation based on the theory of soure oding andtransmission. Let us set-up an arti�ial data ompression problem, where we want to transmit Xand Y from a soure to a destination. Let us insist that this transmission be done in two-stages: (a)�rst ompute X̂ = CX (X) and Ŷ = CY (Y ), and transmit the luster identi�ers X̂ and Ŷ jointly; and(b) separately transmit X given that the destination already knows X̂ and transmit Y given that thedestination already knows Ŷ . The �rst step will require, on an average, at least, H(X̂; Ŷ ) bits, and,the seond step will require, on an average, H(X jX̂) +H(Y jŶ ) bits. For every �xed o-lustering,the average number of bits that must be transmitted from the soure to the destination is:H(X̂; Ŷ ) +H(X jX̂) +H(Y jŶ ): (8)However, by noting the parallel between (5) and (8), it easy to show that:H(X̂; Ŷ ) +H(X jX̂) +H(Y jŶ )�H(X;Y ) = D(p(X;Y )jjq(X;Y )):Thus, �nding an optimal o-lustering is equivalent to �nding a ode that minimizes (8) subjetto the onstraints on the number of row and olumn lusters. Observe that (8) ontains the ross-term H(X̂; Ŷ ) that aptures the interation between the row and olumn lusters. This undersoresthe fat that lustering of rows and olumns must interat in a \good" o-lustering. A naivealgorithm that lusters rows without paying attention to olumns and vie versa will miss thisritial interation that is the essene of o-lustering.3 Related workMost of the lustering literature has foused on one-sided lustering algorithms, see [12℄ for a om-prehensive survey. There was some early work on o-lustering, suh as [11℄ whih was limited toproblems of small sizes and used a loal greedy splitting proedure to identify hierarhial row andolumn lusters. More reently [4℄ used a bipartite graph formulation and a spetral heuristi thatuses eigenvetors to o-luster douments and words; however, a restrition in [4℄ was that eah word4



luster was assoiated with a doument luster. We do not impose suh a restrition in this paper;in fat, see Setion 5 for examples of di�erent types of row and olumn lusters.Our information-theoreti formulation of preserving mutual information is similar to the Infor-mation Bottlenek method [20℄. The Information Bottlenek method was introdued for one-sidedlustering, say X to X̂, and tries to minimize the quantity I(X; X̂) in order to gain ompressionin addition to maximizing the mutual information I(X̂; Y ); the overall quantity onsidered in [20℄is I(X; X̂)� �I(X̂; Y ) where the parameter � reets the tradeo� between ompression and preser-vation of mutual information. The Information Bottlenek algorithm yields a \soft" lustering of thedata using a proedure similar to the deterministi annealing approah of [16℄. A greedy agglomer-ative hard lustering version of the Information Bottlenek algorithm was used in [1, 19℄ to lusterwords in order to redue feature size for supervised text lassi�ation. For this same task, reently [6℄proposed a divisive hard lustering algorithm that diretly minimizes the loss in mutual informationand was found to result in higher lassi�ation auraies than [1, 19℄. All these algorithms wereproposed for one-sided lustering.An agglomerative hard lustering version of the Information Bottlenek algorithmwas used in [18℄to luster douments after lustering words. The work in [8℄ extended the above work to repetitivelyluster douments and then words. However, both these papers use heuristi proedures and lusterdouments and words independently using an agglomerative algorithm. In ontrast, in this paperwe �rst quantify the loss in mutual information due to o-lustering and then propose an algorithmthat has a strong theoretial foundation and monotonially redues this loss funtion, onverging toa loal minimum.Reently, when onsidering a general lustering framework using Bayesian belief networks, [10℄proposed an iterative optimizationmethod that amounts to a multivariate generalization of [20℄, and,one again, uses deterministi annealing. A later paper [17℄ presented an agglomerative algorithmfor the same problem that has advantages over [10℄ in that \it is simpler, fully deterministi, andnon-parametri. There is no need to identify luster splits whih is rather triky." However, [17℄pointed out that their \agglomeration proedures do not sale linearly with the sample size astop down methods do : : :". In this paper, we are onerned with a prinipled, top-down methodthat sales well. Finally, the results in [17℄ amount to �rst �nding a word lustering followed by�nding a doument lustering, whereas we present a proedure that intertwines word and doumentlusterings and ontinually improves both until a suitable loal minima is found, and, hene, is atrue o-lustering proedure.4 Co-lustering AlgorithmWe now desribe a novel algorithm that monotonially dereases the objetive funtion (1). Todesribe the algorithm and related proofs, it will be more onvenient to think of the joint distributionof X;Y; X̂, and Ŷ . Let p(X;Y; X̂; Ŷ ) denote this distribution. Observe that without any loss ofgenerality we an write: p(x; y; x̂; ŷ) = p(x̂; ŷ)p(x; yjx̂; ŷ): (9)By Lemma 2.1, for the purpose of o-lustering, we will seek an approximation to p(X;Y; X̂; Ŷ )using a distribution q(X;Y; X̂; Ŷ ) of the form:q(x; y; x̂; ŷ) = p(x̂; ŷ)p(xjx̂)p(yjŷ): (10)The reader may want to ompare (5) and (10): observe that the latter is de�ned for all ombinationsof x, y, x̂, and ŷ. Note that in (10) if x̂ 6= CX (x) or ŷ 6= CY (y) then q(x; y; x̂; ŷ) is zero. We willthink of p(X;Y ) as a two-dimensional marginal of p(X;Y; X̂; Ŷ ) and q(X;Y ) as a two-dimensionalmarginal of q(X;Y; X̂; Ŷ ). Intuitively, by (9) and (10), within the o-luster denoted by X̂ = x̂ andŶ = ŷ, we seek to approximate the distribution p(X;Y jX̂ = x̂; Ŷ = ŷ) by a distribution of the form5



p(X jX̂ = x̂)p(Y jŶ = ŷ). The following proposition (whih we state without proof) establishes thatthere is no harm in adopting suh a formulation.Proposition 4.1 For every �xed hard o-lustering,D(p(X;Y )jjq(X;Y )) = D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )):We �rst establish a few simple, but useful equalities that highlight properties of q that aredesirable in approximating p.Proposition 4.2 For a distribution q of the form (10), the following marginals and onditionalsare preserved: q(x̂; ŷ) = p(x̂; ŷ); q(x; x̂) = p(x; x̂) & q(y; ŷ) = p(y; ŷ): (11)Thus, p(x) = q(x); p(y) = q(y); p(x̂) = q(x̂); p(ŷ) = q(ŷ); (12)p(xjx̂) = q(xjx̂); p(yjŷ) = q(yjŷ); (13)p(ŷjx̂) = q(ŷjx̂); p(x̂jŷ) = q(x̂jŷ) (14)for all x; y; x̂, and ŷ. And, furthermore, if ŷ = CY (y) and x̂ = CX (x), thenq(yjx̂) = q(yjŷ)q(ŷjx̂); (15)q(x; y; x̂; ŷ) = p(x)q(yjx̂); (16)and, symmetrially, q(xjŷ) = q(xjx̂)q(x̂jŷ); (17)q(x; y; x̂; ŷ) = p(y)q(xjŷ):Proof. The equalities of the marginals in (11) are simple to show and will not be proved here forbrevity. Equalities (12), (13), and (14) easily follow from (11). Equation (15) follows fromq(yjx̂) = q(y; ŷjx̂) = q(y; ŷ; x̂)q(x̂) = q(yjŷ; x̂)q(ŷjx̂) = q(yjŷ)q(ŷjx̂):Equation (16) follows from q(x; y; x̂; ŷ) = p(x̂; ŷ)p(xjx̂)p(yjŷ)= p(x̂)p(xjx̂)p(ŷjx̂)p(yjŷ)= p(x; x̂)p(ŷjx̂)p(yjŷ)= p(x)q(ŷjx̂)q(yjŷ)= p(x)q(yjx̂);where the last equality follows from (15). tuLemma 2.1 quanti�es the loss in mutual information upon o-lustering as the Kullbak-Leiblerdivergene of p(X;Y ) to q(X;Y ). Next, we use the above proposition to prove a lemma that expressesthe loss in mutual information in two revealing ways. This lemma will lead to a \natural" algorithm.Lemma 4.1 The loss in mutual information an be expressed as (i) a weighted sum of the rela-tive entropies between row distributions p(Y jx) and \row-lumped" distributions q(Y jx̂), or as (ii)6



a weighted sum of the relative entropies between olumn distributions p(X jy) and \olumn-lumped"distributions q(X jŷ), that is,D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )) = X̂x Xx:CX(x)=x̂ p(x)D(p(Y jx)jjq(Y jx̂));= X̂y Xy:CY (y)=x̂ p(y)D(p(X jy)jjq(X jŷ)):Proof. We will only show the �rst equality, the seond follows similarly.D(p(X;Y; X̂; Ŷ )jjq(X;Y; X̂; Ŷ )) = X̂x;ŷ Xx:CX(x)=x̂;y:CY (y)=ŷ p(x; y; x̂; ŷ) log p(x; y; x̂; ŷ)q(x; y; x̂; ŷ)(a)= X̂x;ŷ Xx:CX(x)=x̂;y:CY (y)=ŷ p(x)p(yjx) log p(x)p(yjx)p(x)q(yjx̂)= X̂x Xx:CX(x)=x̂ p(x)Xy p(yjx) log p(yjx)q(yjx̂) ;where (a) follows sine when ŷ = CY (y), x̂ = CX (x) we have that p(x; y; x̂; ŷ) = p(x; y) = p(x)p(yjx)and from (16). tuThe signi�ane of Lemma 4.1 follows from the fat that it allows us to express the objetivefuntion solely in terms of the row-lustering, or in terms of the olumn-lustering. Furthermore, itallows us to de�ne the distribution q(Y jx̂) as a \row-luster prototype", and similarly, the distribu-tion q(X jŷ) as a \olumn-luster prototype". With this intuition, we now present the o-lusteringalgorithm in Figure 1. The algorithm works as follows. It starts with an initial o-lustering(C(0)X ; C(0)Y ) and iteratively re�nes it to obtain a sequene of o-lusterings: (C(1)X ; C(1)Y ), (C(2)X ; C(2)Y ),: : :. Assoiated with a generi o-lustering (C(t)X ; C(t)Y ) in the sequene, we ompute the distributionsp(t) and q(t) as: p(t)(x; y; x̂; ŷ) = p(t)(x̂; ŷ)p(t)(x; yjx̂; ŷ);q(t)(x; y; x̂; ŷ) = p(t)(x̂; ŷ)p(t)(xjx̂)p(t)(yjŷ):Observe that while as a funtion of four variables, p(t)(x; y; x̂; ŷ) depends upon the iteration indext, the marginal p(t)(x; y) is, in fat, independent of t. Hene, we will write p(x), p(y), p(xjy), p(yjx),and p(x; y), respetively, instead of p(t)(x), p(t)(y), p(t)(xjy), p(t)(yjx), and p(t)(x; y).In Step 1, the algorithm starts with an initial o-lustering (C(0)X ; C(0)Y ) and omputes the requiredmarginals of the resulting approximation q(0) (the hoie of starting points is important, and will bedisussed in detail later in Setion 5). The algorithm then omputes the appropriate \row-lusterprototypes" q(0)(Y jx̂). While the reader may wish to think of these as \entroids", observe thatq(0)(Y jx̂) is not a entroid, i.e., q(0)(Y jx̂) 6= 1jx̂jXx2x̂ p(Y jx);where jx̂j denotes the number of rows in luster x̂. Rather, by (15), for every y, we writeq(t)(yjx̂) = q(t)(yjŷ)q(t)(ŷjx̂); (18)where ŷ = CY (y). Note that (18) gives a formula that would have been diÆult to guess a prioriwithout the help of analysis. In Step 2, the algorithm \re-assigns" eah row x to a new row-lusterwhose row-luster prototype q(t)(Y jx̂) is losest to p(Y jx) in Kullbak-Leibler divergene. In essene,Step 2 de�nes a new row-lustering. Also, observe that the olumn lustering is not hanged in Step7



Algorithm Co Clustering(p,k,`,CyX ,CyY )Input: The joint probability distribution p(X;Y ), k the desired number of row lusters, and ` the desirednumber of olumn lusters.Output: The partition funtions CyX and CyY .1. Initialization: Set t = 0. Start with some initial partition funtions C(0)X and C(0)Y . Computeq(0)(X̂; Ŷ ); q(0)(XjX̂); q(0)(Y jŶ )and the distributions q(0)(Y jx̂), 1 � x̂ � k using (18).2. Compute row lusters: For eah row x, �nd its new luster index asC(t+1)X (x) = argminx̂ D �p(Y jx)jjq(t)(Y jx̂)� ;resolving ties arbitrarily. Let C(t+1)Y = C(t)Y .3. Compute q(t+1)(X̂; Ŷ ); q(t+1)(XjX̂); q(t+1)(Y jŶ )and the distributions q(t+1)(Xjŷ), 1 � ŷ � ` using (19).4. Compute olumn lusters: For eah olumn y, �nd its new luster index asC(t+2)Y (y) = argminŷ D �p(Xjy)jjq(t+1)(Xjŷ)� ;resolving ties arbitrarily. Let C(t+2)X = C(t+1)X .5. Compute q(t+2)(X̂; Ŷ ); q(t+2)(XjX̂); q(t+2)(Y jŶ )and distributions q(t+2)(Y jx̂), 1 � x̂ � k using (18).6. Stop and return CyX = C(t+2)X and CyY = C(t+2)Y , if the hange in objetive funtion value, that is,D(p(X;Y )jjq(t)(X;Y ))�D(p(X;Y )jjq(t+2)(X;Y )), is \small" (say 10�3); Else set t = t+2 and go tostep 2.Figure 1: Information theoreti o-lustering algorithm that simultaneously lusters both the rowsand olumns2. In Step 3, using the new row-lustering and the old olumn lustering, the algorithm reomputesthe required marginals of q(t+1). More importantly, the algorithm reomputes the olumn-lusterprototypes. One again, these are not ordinary entroids, but rather by using (17), for every x, wewrite q(t+1)(xjŷ) = q(t+1)(xjx̂)q(t+1)(x̂jŷ); (19)where x̂ = CX (x). Now, in Step 4, the algorithm \re-assigns" eah olumn y to a new olumn-lusterwhose olumn-luster prototype q(t+1)(X jŷ) is losest to p(X jy) in Kullbak-Leibler divergene. Step4 de�nes a new olumn-lustering while holding the row-lustering �xed. In Step 5, the algorithmre-omputes marginals of q(t+2). The algorithm keeps iterating Steps 2 through 5 until some desiredonvergene ondition is met. The following reassuring theorem, whih is our main result, guaranteesonvergene.Theorem 4.1 Algorithm Co Clustering monotonially dereases the objetive funtion given in Lemma 2.1.
8



Proof. D(p(t)(X;Y; X̂; Ŷ )jjq(t)(X;Y; X̂; Ŷ ))(a)= X̂x Xx:C(t)X (x)=x̂ p(x)Xy p(yjx) log p(yjx)q(t)(yjx̂)(b)� X̂x Xx:C(t)X (x)=x̂ p(x)Xy p(yjx) log p(yjx)q(t) �yjC(t+1)X (x)�()= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t) (ŷjx̂) q(t)(yjŷ)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t)(yjŷ)| {z }I1+X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log 1q(t)(ŷjx̂)= I1 +X̂x X̂y 0B� Xx:C(t+1)X (x)=x̂ Xy:C(t+1)Y (y)=ŷ p(x)p(yjx)1CA log 1q(t)(ŷjx̂)(d)= I1 +X̂x X̂y �q(t+1)(x̂; ŷ)� log 1q(t)(ŷjx̂)= I1 +X̂x q(t+1)(x̂)X̂y q(t+1)(ŷjx̂) log 1q(t)(ŷjx̂)(e)� I1 +X̂x q(t+1)(x̂)X̂y q(t+1)(ŷjx̂) log 1q(t+1)(ŷjx̂)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t+1)(ŷjx̂)q(t)(yjŷ)(f)= X̂x Xx:C(t+1)X (x)=x̂ p(x)X̂y Xy:C(t+1)Y (y)=ŷ p(yjx) log p(yjx)q(t+1)(ŷjx̂)q(t+1)(yjŷ)(g)= D(p(t+1)(X;Y; X̂; Ŷ )jjq(t+1)(X;Y; X̂; Ŷ )); (20)where (a) follows from Lemma 4.1; (b) follows from Step 2 of the algorithm; () follows by rearrangingthe sum and from (15); (d) follows from Step 3 of the algorithm; (e) follows by non-negativity ofthe Kullbak-Leibler divergene; and (f) follows sine we hold the olumn lusters �xed, that is,C(t+1)Y = C(t)Y , and (g) is due to (15) and Lemma 4.1.By using a virtually idential argument, whih we omit here for brevity, and by using propertiesof Steps 4 and 5, we an show thatD(p(t+1)(X;Y; X̂; Ŷ )jjq(t+1)(X;Y; X̂; Ŷ )) � D(p(t+2)(X;Y; X̂; Ŷ )jjq(t+2)(X;Y; X̂; Ŷ )): (21)By ombining (20) and (21), it follows that every iteration of the algorithm never inreases theobjetive funtion. tu9



Corollary 4.1 The algorithm in Figure 1 terminates in a �nite number of steps at a luster assign-ment that is loally optimal, that is, the loss in mutual information annot be dereased by either(a) re-assignment of a distribution p(Y jx) or p(X jy) to a di�erent luster distribution q(Y jx̂) orq(X jŷ), respetively, or by (b) de�ning a new distribution for any of the existing lusters.Proof. The result follows from Theorem 4.1 and sine the number of distint o-lusterings is �nite.tuRemark 4.1 A loser examination of the above proof shows that we established that Steps 2 and3 together imply (20) and Steps 4 and 5 together imply (21). We show how to generalize the aboveonvergene guarantee to a lass of iterative algorithms. In partiular, any algorithm that uses anarbitrary onatenations of Steps 2 and 3 with Steps 4 and 5 is guaranteed to monotonially dereasethe objetive funtion. For example, onsider an algorithm that ips a oin at every iteration andperforms Steps 2 and 3 if the oin turns up head, and performs Steps 4 and 5 otherwise. As ananother example, onsider an algorithm that keeps iterating Steps 2 and 3, until no improvementin the objetive funtion is notied. Next, it an keep iterating Steps 4 and 5, until no furtherimprovement in the objetive funtion is notied. Now, it an again iterate Steps 2 and 3, and soon and so forth. Both of these algorithms as well all algorithms in the same spirit are guaranteed tomonotonially derease the objetive funtion. Suh algorithmi exibility an allow omputationallyeÆient exploration of various loal minimas when starting from a �xed initial random partition inStep 1.Remark 4.2 While our algorithm is in the spirit of the k-means algorithm, the preise algorithmitself is quite di�erent from the usual k-means. For example, in our algorithm, the distributionq(t)(Y jx̂) serves as a \row luster prototype". This quantity is di�erent from the naive \entroid"of the luster x̂. Similarly, the olumn luster prototype q(t+1)(X jŷ) is di�erent from the obviousentroid of the luster ŷ. In fat, detailed analysis (as is evident from proof of Theorem 4.1) wasneessary to identify these key quantities.Remark 4.3 In this paper, for simpliity, we have restrited attention to o-lustering for jointdistributions of two random variables. However, both our algorithm and our main theorem an beeasily extended to o-luster multi-dimensional joint distributions.4.1 Illustrative ExampleWe now illustrate how our algorithm works by showing how it disovers the optimal o-lusteringfor the example p(X;Y ) distribution given in (2) of Setion 2. Table 1 shows a typial run of ouro-lustering algorithm that starts with a random partition of rows and olumns. At eah iterationTable 1 shows the steps of Algorithm Co Clustering, the resulting approximation q(t)(X;Y ) to theoriginal distribution and the orresponding ompressed distribution p(t)(X̂; Ŷ ). The row and olumnluster numbers are shown around the matrix to indiate the lustering at eah stage. Notie howour intertwined row and olumn o-lustering leads to progressively better approximations to theoriginal distribution. At the end of four iterations the algorithm almost aurately reonstrutsthe original distribution, disovers the natural row and olumn partitions and reovers the idealompressed distribution p(X̂; Ŷ ) given in (3). A pleasing property to observe is that at all iterationsq(t)(X;Y ) preserves the marginals of the original p(X;Y ).5 Experimental ResultsThis setion provides empirial evidene to show the bene�ts of our o-lustering framework andalgorithm. In partiular we apply the algorithm to the task of doument lustering using word-doument o-ourrene data as the joint probability distribution. We show that the o-lustering10



q(t)(X;Y ) p(t)(X̂; Ŷ )ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2x̂3 .029 .029 .019 .022 .024 .024 0.10 0.05x̂1 .036 .036 .014 .028 .018 .018 0.10 0.20x̂2 .018 .018 .028 .014 .036 .036 0.30 0.25x̂2 .018 .018 .028 .014 .036 .036x̂3 .039 .039 .025 .030 .032 .032x̂3 .039 .039 .025 .030 .032 .032# steps 2 & 3 of Figure 1ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2x̂1 .036 .036 .014 .028 .018 .018 0.20 0.10x̂1 .036 .036 .014 .028 .018 .018 0.18 0.32x̂2 .019 .019 .026 .015 .034 .034 0.12 0.08x̂2 .019 .019 .026 .015 .034 .034x̂3 .043 .043 .022 .033 .028 .028x̂2 .025 .025 .035 .020 .046 .046# steps 4 & 5 of Figure 1ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2x̂1 .054 .054 .042 0 0 0 0.30 0x̂1 .054 .054 .042 0 0 0 0.12 0.38x̂2 .013 .013 .010 .031 .041 .041 0.08 0.12x̂2 .013 .013 .010 .031 .041 .041x̂3 .028 .028 .022 .033 .043 .043x̂2 .017 .017 .013 .042 .054 .054# steps 2 & 3 of Figure 1ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2x̂1 .054 .054 .042 0 0 0 0.30 0x̂1 .054 .054 .042 0 0 0 0 0.30x̂2 0 0 0 .042 .054 .054 0.20 0.20x̂2 0 0 0 .042 .054 .054x̂3 .036 .036 .028 .028 .036 .036x̂3 .036 .036 .028 .028 .036 .036Table 1: Algorithm Co Clustering of Figure 1 gives progressively better lusterings and approxima-tions till the optimal is disovered for the example p(X;Y ) given in Setion 2.
11



Dataset Newsgroups inluded #dos Totalper group doumentsBinary & Binary subjet talk.politis.mideast, talk.politis.mis 250 500Multi5 & Multi5 subjet omp.graphis, re.motoryles 100 500re.sports.baseballsi.spae.talk.politis.mideastMulti10 subjet alt.atheism, omp.sys.ma.hardware 50 500mis.forsale, re.autosre.sport.hokey, si.rypt, si.eletronissi.med, si.spae, talk.politis.gunTable 2: Datasets: Eah data set onsists of douments randomly sampled from the respetive newsgroups in the NG20 orpus.approah overomes sparsity yielding substantially better results than the approah of lusteringsparse data along a single dimension. We also show better results as ompared to previous algorithmsin [18℄ and [8℄. The latter algorithms use a greedy tehnique to luster douments after words arelustered using the same greedy approah. For brevity we will use the following notation to denotevarious algorithms in onsideration. We all the Information Bottlenek Double Clustering methodin [18℄ as IB-Double and the Iterative Double Clustering algorithm in [8℄ as IDC. In addition weuse 1D-lustering to denote doument lustering without any word lustering i.e, lustering along asingle dimension.5.1 Data SetsFor our experimental results we use various subsets of the 20-Newsgroup data(NG20) [13℄ and theSMART olletion from Cornell (ftp://ftp.s.ornell.edu/pub/smart).The NG20 data set onsists of approximately 20; 000 newsgroup artiles olleted evenly from20 di�erent usenet news-groups. This data set has been used for testing several supervised textlassi�ation tasks [1, 19, 14, 6℄ and un-supervised doument lustering tasks [18, 8℄. Many ofthe news-groups share similar topis and about 4:5% of the douments are ross posted makingthe boundaries between some news-groups rather fuzzy. To make our omparison onsistent withprevious algorithms we reonstruted various subsets of NG20 used in [18, 8℄. We applied the samepre-proessing steps as in [18℄ to all the subsets, i.e., removed stop words, ignored �le headers andseleted the top 2000 words by mutual information1. The spei� details of the subsets are given inTable 2.The SMART olletion onsists ofMEDLINE, CISI and CRANFIELD sub-olletions. MED-LINE onsists of 1033 abstrats from medial journals, CISI onsists of 1460 abstrats from informa-tion retrieval papers and CRANFIELD onsists of 1400 abstrats from aerodynami systems. Afterremoving stop words and numeri haraters we seleted the top 2000 words by mutual informationas part of our pre-proessing. We will refer to this data set as CLASSIC3.5.2 Implementation DetailsBow [15℄ is a library of C ode useful for writing text analysis, language modeling and informationretrieval programs. We extended Bow to implement o-lustering and doument lustering and usedMATLAB to give spy plots of the matries.1The data sets used in [18℄ and [8℄ di�er in their pre-proessing steps. The latter inludes subjet lines while theformer does not. So we prepared two di�erent data sets one with subjet lines and the other without subjet lines.12



5.3 Evaluation MeasuresValidating lustering results is a non-trivial task. The relevane of lustering varies from domainto domain. In the presene of true labels, as in the ase of data sets used in our experiments, onean form a onfusion matrix to measure the e�etiveness of the algorithm. Eah entry(i; j) in theonfusion matrix represents the number of douments in luster i that belong to true lass j. Foran objetive evaluation measure we use miro-averaged-preision. The idea is to �rst assoiate eahluster with the most dominant lass label in that luster. If our onfusion matrix is suÆientlydiagonal this e�etively alulates the fration of douments along the diagonal to the total numberof douments. For eah lass  in the data set we de�ne �(; ŷ) to be the number of doumentsorretly assigned to , �(; ŷ) to be number of douments inorretly assigned to  and (; ŷ) tobe the number of douments inorretly not assigned to . The miro-averaged-preision is de�nedas P (ŷ) = P �(; ŷ)P(�(; ŷ) + �(; ŷ))and miro-averaged-reall is de�ned asR(ŷ) = P �(; ŷ)P(�(; ŷ) + (; ŷ))Note that for uni-labeled data P (ŷ) = R(ŷ).5.4 Results and DisussionFirst we demonstrate that o-lustering is signi�antly better than lustering along a single dimensionusing word-doument o-ourrene matries. In all our experiments sine we know the number oftrue doument lusters we an give that as input to our algorithm. For example in the ase of Binarydata set we ask for 2 doument lusters. We vary the number of word lusters over the full range ofpossibilities and give plots showing how o-lustering behaves with varying number of word lusters.A note about our initialization: we use deterministi initialization of word lusters by hoosinginitial word luster distributions to be \maximally" far apart from eah other[2℄, and use a randomperturbation of the \mean" doument to initialize doument lusters [5℄. Sine this initializationhas a random omponent all our results are averages of �ve trials unless stated otherwise.Figure 2 shows two onfusion matries obtained on the CLASSIC3 data set using algorithms1D-lustering and o-lustering (with 200 word lusters). Observe that o-lustering extrated theoriginal lusters almost orretly resulting in a miro-averaged-preision of 0:9835 while 1D-lusteringled to a miro-averaged-preision of 0:9432.Co-lustering 1D-lustering992 4 8 944 9 9840 1452 7 71 1431 51 4 1387 18 20 1297Figure 2: Co-lustering aurately reovers original lusters on the CLASSIC3 data set.Figure 3 shows onfusion matries obtained by using o-lustering and doument lustering onBinary and Binary subjet data sets. While o-lustering ahieves 0:852 and 0:946 miro-averagedpreision on these data sets respetively, 1D-lustering yielded only 0:67 and 0:648.We now show that o-lustering an disover struture in sparse word-doument matries. Fig-ure 4 shows the original word-doument matrix and the reordered matrix obtained by arrangingrows and olumns aording to luster order to reveal the various o-lusters. To simplify the �gure13


