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Abstract

Two-dimensional contingency or co-occurrence tables arise frequently in important applica-
tions such as text, web-log and market-basket data analysis. A basic problem in contingency
table analysis is co-clustering: simultaneous clustering of the rows and columns. A novel theo-
retical formulation views the contingency table as an empirical joint probability distribution of
two discrete random variables and poses the co-clustering problem as an optimization problem
in information theory — the optimal co-clustering maximizes the mutual information between
the clustered random variables subject to constraints on the number of row and column clusters.
We present a co-clustering algorithm that monotonically increases the preserved mutual infor-
mation by intertwining both the row and column clusterings at all stages. Using the practical
example of simultaneous word-document clustering, we demonstrate that our algorithm works
well in practice, especially in the presence of sparsity.

1 Introduction

Clustering is the grouping together of similar objects [12], and has practical importance in a wide
variety of applications such as text, web-log and market-basket data analysis. Typically, the data
that arises in these applications is arranged as a contingency or co-occurrence table, such as, word-
document co-occurrence table or webpage-user browsing data. Most clustering algorithms focus on
one-way clustering, i.e., cluster one dimension of the table based on similarities along the second
dimension. For example, documents may be clustered based upon their word distributions while
users may be clustered if they visit similar web pages. Clearly, in these applications it is sometimes
desirable to co-cluster or simultaneously cluster both dimensions of the contingency table.

There is a clear duality in co-clustering rows and columns; for example, just as documents can be
clustered based upon their word distributions, words may be clustered according to the distribution
of their occurrence in documents. A “natural” approach to this problem is to treat the (normalized)
non-negative contingency table as a joint probability distribution between two random variables.
Information theory can then be used to give a theoretical formulation to the co-clustering problem:
the optimal co-clustering is one that leads to the minimum loss in mutual information (as shown in
Lemma 2.1 this loss is always non-negative).

In this paper, we use this information-theoretic formulation of co-clustering, and after quantifying
the loss in mutual information we present a novel algorithm that directly optimizes this loss function.
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The resulting algorithm is interesting: it intertwines both row and column clustering at all stages.
Row clustering is done by assessing closeness of each row distribution, in relative entropy, to certain
“row cluster prototypes”. Column clustering is done similarly, and this process is iterated till it
converges to a local minimum. Co-clustering differs from ordinary one-sided clustering in that at all
stages the row cluster prototypes incorporate column clustering information, and vice versa.

We empirically demonstrate that our co-clustering algorithm alleviates the problems of sparsity
and high dimensionality by presenting results on joint word-document clustering. The resulting
document clusters are observed to be superior to one-dimensional clustering results and to previously
proposed information-theoretic approaches that cluster words before clustering the documents.

A word about notation: upper-case letters such as X, Y, X , Y will denote random variables.
Elements of sets will be denoted by lower-case letters such as ¢ and y. Quantities associated with
clusters will be “hatted”: for example, X denotes a random variable obtained from a clustering of X
while & denotes a cluster. Probability distributions will be denoted by p or ¢ when the random
variable is obvious or by p(X,Y), ¢(X, Y,X,Y), p(Y|z), or ¢(Y|Z) to make the random variable
explicit. Logarithms to the base 2 are used throughout.

2 Motivation & Problem Formulation

Let X and Y be discrete random variables that take values in the sets {1, 2, ...,z } and {y1,92, ..., Yn}
respectively. Let p(X,Y’) denote the joint probability distribution between X and Y. We will think

of p(X,Y) as am x n matrix. In practice, if p is not known, it may be estimated using observations.
Such a statistical estimate is known as a two-dimensional contingency table or as a two-way frequency
table [9].

We are interested in simultaneously clustering or quantizing X into (at most) & disjoint or hard
clusters, and Y into (at most) ¢ disjoint or hard clusters. Let the k clusters of X be written as:
{#1,&2,...,2r}, and let the ¢ clusters of Y be written as: {§1,92,..-,0¢}. In other words, we are
interested in finding maps Cx and Cv,

Cx: {xl,mz,...,xm}—){3%1,3%2,...,9316}
Cy : {ylvy%---vyn} - {glag%'-wgl}-

For brevity, we will often write X = Cx(X) and Y = Cy(Y); X and Y are random variables that are
a deterministic function of X and Y, respectively. Observe that X and Y are clustered separately,
that is, X is a function of X alone and Y is a function of Y alone. But, the partition functions Cx
and Cy are allowed to depend upon the entire joint distribution p(X,Y).

Definition 2.1 We refer to the tuple (Cx,Cy) as a co-clustering.

Suppose we are given a co-clustering. Let us “re-order” the rows of the joint distribution p such
that all rows mapping into Z; are arranged first, followed by all rows mapping into £z, and so on.
Similarly, let us “re-order” the columns of the joint distribution p such that all columns mapping
into ¢; are arranged first, followed by all columns mapping into g2, and so on. This row-column
reordering has the effect of dividing the distribution p into little two-dimensional blocks. We refer
to each such block as a co-cluster.

A fundamental quantity that measures the amount of information random variable X contains
about Y (and vice versa) is the mutual information I(X;Y) [3]. We will judge the quality of a
co-clustering by the resulting loss in mutual information, I(X;Y) — I(X;Y) (any non-trivial co-
clustering lowers mutual information, see Lemma 2.1 below).

Definition 2.2 An optimal co-clustering minimizes
I(X;Y) - I(X;Y) (1)

subject to the constraints on the number of row and column clusters.



Let us illustrate the situation with an example. Consider the 6 x 6 matrix below that represents
the joint distribution:
.05 .05 .05 0 0 0
.05 .05 .05 0 0 0
0 0 0 .05 .05 .05
PEY)=1 "9 o 0 05 05 .05 (2)
.04 .04 0 .04 .04 .04

.04 .04 .04 0 .04 .04

Looking at the row distributions it is natural to group the rows into three clusters: #; = {z1,z2},
& = {®3,z4} and &3 = {ws5,z6}. Similarly the natural column clustering is: 91 = {y1,y2,ys},
92 = {y4, Y5, ys }. The resulting joint distribution p(X,Y’), see (6) below, is given by:

30
p(X,Y)=| 0 3. (3)
2 2

It can be verified that the mutual information lost due to this co-clustering is only .0957, and that
any other co-clustering leads to a larger loss in mutual information.

The question is: how can we efficiently search for a co-clustering that minimizes the quantity
in (1). The following lemma shows that the loss in mutual information can be expressed as the
“distance” of p(X,Y) to an approximation ¢(X,Y) — this lemma will facilitate our search for the
optimal co-clustering.

Lemma 2.1 For a fized co-clustering (Cx,Cy), we can write the loss in mutual information as
I(X;Y) = I(X,Y) = D(p(X,Y)[|a(X,Y)), (4)

where D(-||-) denotes the Kullback-Leibler divergence, also known as relative entropy, and q(X,Y)
is a distribution of the form

q(z,y) = p(&,9)p(z|2)p(y|9), (5)
where & = Cx(z) and § = Cy (y).

Proof. Since we are considering hard clustering,

p&9) = D> p,y), (6)
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where the last step follows since p(z|2) = 6 for # = Cx(x) and 0 otherwise, and similarly for

p(yl9)- O
Lemma 2.1 shows that the loss in mutual information must be non-negative, and reveals that

finding an optimal co-clustering is equivalent to finding an approximating distribution g of the form
(5) that is close to p in Kullback-Leibler divergence subject to the constraints on the number of row
and column clusters. In Section 4 we will develop more intuition about the approximation q. The
distribution ¢ preserves marginals of p, that is, for Z = Cx(z) and § = Cy (y),

(@) =Y qlz,y) =D > p(9)p(|2)pli) = p(z, &) = p(x).

g yeY

Similarly, q(y) = p(y).
Recall the example p(X,Y) in (2) and the “natural” row and column clusterings that led to (3).

It is easy to verify that the corresponding approximation ¢(X,Y) defined in (5) equals

054 054 042 0 0 0
054 054 042 0 0 0
0 0 0 .042 .054 .054

¢(X,Y) = 0 0 0 .042 .054 .054 |° (7)
036 .036 .028 .028 .036 .036

.036 .036 .028 .028 .036 .036

and that D(p||¢) = .0957. Note that the marginals of p are preserved by gq.

We end this section by providing another motivation based on the theory of source coding and
transmission. Let us set-up an artificial data compression problem, where we want to transmit X
and Y from a source to a destination. Let us insist that this transmission be done in two-stages: (a)
first compute X = Cx (X) and Y =Cy (Y), and transmit the cluster identifiers X and Y jointly; and
(b) separately transmit X given that the destination already knows X and transmit Y given that the
destination already knows Y. The first step will require, on an average, at least, H (X' , f’) bits, and,
the second step will require, on an average, H(X|X) + H(Y|Y) bits. For every fixed co-clustering,
the average number of bits that must be transmitted from the source to the destination is:

HX,Y)+ HX|X)+ H(YY). (8)
However, by noting the parallel between (5) and (8), it easy to show that:
H(X,Y)+ H(X|X) + HY|Y) - H(X,Y) = D(p(X,Y)[|g(X,Y)).

Thus, finding an optimal co-clustering is equivalent to finding a code that minimizes (8) subject
to the constraints on the number of row and column clusters. Observe that (8) contains the cross-
term H(X,Y) that captures the interaction between the row and column clusters. This underscores
the fact that clustering of rows and columns must interact in a “good” co-clustering. A naive
algorithm that clusters rows without paying attention to columns and vice versa will miss this
critical interaction that is the essence of co-clustering.

3 Related work

Most of the clustering literature has focused on one-sided clustering algorithms, see [12] for a com-
prehensive survey. There was some early work on co-clustering, such as [11] which was limited to
problems of small sizes and used a local greedy splitting procedure to identify hierarchical row and
column clusters. More recently [4] used a bipartite graph formulation and a spectral heuristic that
uses eigenvectors to co-cluster documents and words; however, a restriction in [4] was that each word



cluster was associated with a document cluster. We do not impose such a restriction in this paper;
in fact, see Section 5 for examples of different types of row and column clusters.

Our information-theoretic formulation of preserving mutual information is similar to the Infor-
mation Bottleneck method [20]. The Information Bottleneck method was introduced for one-sided
clustering, say X to X and tries to minimize the quantity / (X, X ) in order to gain compression
in addition to maximizing the mutual information I(X,Y); the overall quantity considered in [20]
is I(X, X) — BI(X,Y) where the parameter £ reflects the tradeoff between compression and preser-
vation of mutual information. The Information Bottleneck algorithm yields a “soft” clustering of the
data using a procedure similar to the deterministic annealing approach of [16]. A greedy agglomer-
ative hard clustering version of the Information Bottleneck algorithm was used in [1, 19] to cluster
words in order to reduce feature size for supervised text classification. For this same task, recently [6]
proposed a divisive hard clustering algorithm that directly minimizes the loss in mutual information
and was found to result in higher classification accuracies than [1, 19]. All these algorithms were
proposed for one-sided clustering.

An agglomerative hard clustering version of the Information Bottleneck algorithm was used in [18]
to cluster documents after clustering words. The work in [8] extended the above work to repetitively
cluster documents and then words. However, both these papers use heuristic procedures and cluster
documents and words independently using an agglomerative algorithm. In contrast, in this paper
we first quantify the loss in mutual information due to co-clustering and then propose an algorithm
that has a strong theoretical foundation and monotonically reduces this loss function, converging to
a local minimum.

Recently, when considering a general clustering framework using Bayesian belief networks, [10]
proposed an iterative optimization method that amounts to a multivariate generalization of [20], and,
once again, uses deterministic annealing. A later paper [17] presented an agglomerative algorithm
for the same problem that has advantages over [10] in that “it is simpler, fully deterministic, and
non-parametric. There is no need to identify cluster splits which is rather tricky.” However, [17]
pointed out that their “agglomeration procedures do not scale linearly with the sample size as
top down methods do ...”. In this paper, we are concerned with a principled, top-down method
that scales well. Finally, the results in [17] amount to first finding a word clustering followed by
finding a document clustering, whereas we present a procedure that intertwines word and document
clusterings and continually improves both until a suitable local minima is found, and, hence, is a
true co-clustering procedure.

4 Co-clustering Algorithm

We now describe a novel algorithm that monotonically decreases the objective function (1). To
describe the algorithm and related proofs, it will be more convenient to think of the joint distribution
of X,Y, X, and Y. Let p(X, Y, X ,Y) denote this distribution. Observe that without any loss of
generality we can write:

p(z,y,&,9) = p(2,9)p(z,y|2,9). (9)
By Lemma 2.1, for the purpose of co-clustering, we will seek an approximation to p(X, Y,X',Y)
using a distribution ¢(X,Y, X,Y") of the form:

q(z,y,2,9) = p(2,9)p(z|2)p(yl9)- (10)

The reader may want to compare (5) and (10): observe that the latter is defined for all combinations
of z, y, #, and §. Note that in (10) if # # Cx(z) or § # Cy(y) then q(z,y,Z,§) is zero. We will
think of p(X,Y) as a two-dimensional marginal of p(X, Y, X,Y) and ¢(X,Y) as a two- dimensional
marginal of ¢(X,Y, X,Y). Intuitively, by (9) and (10), within the co-cluster denoted by X =i and
Y = §, we seek to approximate the distribution p(X,Y|X = &,V = §) by a distribution of the form



p(X|X = 2)p(Y|Y = §). The following proposition (which we state without proof) establishes that
there is no harm in adopting such a formulation.

Proposition 4.1 For every fized hard co-clustering,
D(p(X,Y)llg(X,Y)) = D(p(X,Y, X,Y)[lg(X,Y, X, Y)).

We first establish a few simple, but useful equalities that highlight properties of ¢ that are
desirable in approximating p.

Proposition 4.2 For a distribution q of the form (10), the following marginals and conditionals
are preserved:

q(2,9) = p(2,9), q(z, &) = p(z,z) & q(y,9) = p(y,9)- (11)
Thus,
p(z) = q(x), p(y) = q(y), p(Z) = q(&), p(9) = ¢(9), (12
p(z|2) = q(z|2), p(y|9) = q(yl9), (13
p(912) = q(912), p(2]9) = q(2|9) (14

aylz) = q(yl9)a(gl2), (15)
q(z,y,2,9) = ple)g(yle), (16)
and, symmetrically,
a(zlg) = q(z|2)q(2(9), (17)
q(z,y,2,9) = py)a(zlg).

Proof. The equalities of the marginals in (11) are simple to show and will not be proved here for
brevity. Equalities (12), (13), and (14) easily follow from (11). Equation (15) follows from

. sy 9y, 9, S s NPT
o(018) = a0, 31) = L2 — o019, 2)4(310) = a1
Equation (16) follows from
a(z,y,2,9) = p(@,9)p(z|2)p(yl9)
= p(@)p([2)p(9]2)p(y|9)
= p(z,2)p(9|2)p(y|9)
= p(z)q(912)q(yl9)
= p(z)q(y[2),
where the last equality follows from (15). O

Lemma 2.1 quantifies the loss in mutual information upon co-clustering as the Kullback-Leibler
divergence of p(X,Y) to ¢(X,Y). Next, we use the above proposition to prove a lemma that expresses
the loss in mutual information in two revealing ways. This lemma will lead to a “natural” algorithm.

Lemma 4.1 The loss in mutual information can be expressed as (i) a weighted sum of the rela-
tive entropies between row distributions p(Y|z) and “row-lumped” distributions q(Y'|%), or as (i)



a weighted sum of the relative entropies between column distributions p(X|y) and “column-lumped”
distributions q(X|9), that is,

Dp(X,Y,X,V)[la(X,Y,X,¥)) = > > p@D@Y|)llaY2)),

z z:Cx(z)=&

Yo Y pW)DEXy)lla(X9)-

9 y:Cy(y)=2
Proof. We will only show the first equality, the second follows similarly.

A~ A~ A A A A~ p a:7y7 j’ﬁ
DX Y XD X)) = 5 % ettt
2,9 2:Cx(z)=2,y:Cy (y)=9

(]
£ > p(2)p(y|z) log pi(z)pgy z;

2,§ :Cx(z)=2,y:Cy (y)=7

_ R
= > > )zy:p(yl)lgq(ym,

2 z:Cx(z)=%

where (a) follows since when § = Cy (y), & = Cx(z) we have that p(z,y, Z,9) = p(z,y) = p(z)p(y|z)
and from (16). O
The significance of Lemma 4.1 follows from the fact that it allows us to express the objective
function solely in terms of the row-clustering, or in terms of the column-clustering. Furthermore, it
allows us to define the distribution ¢(Y'|Z) as a “row-cluster prototype”, and similarly, the distribu-
tion ¢(X|g) as a “column-cluster prototype”. With this intuition, we now present the co-clustering
algorithm in Figure 1. The algorithm works as follows. It starts with an initial co-clustering
(Cg?) , Cg,o)) and iteratively refines it to obtain a sequence of co-clusterings: (C’g), C’}(,l)), (C’g?), Cg?)),
.. Associated with a generic co-clustering (ng), C’}(f)) in the sequence, we compute the distributions
p® and ¢ as:

P(e,y,89) = p? 9)p? (s,
g = POl
Observe that while as a function of four variables, p*)(z,v, Z,9) depends upon the iteration index

t, the marginal p'*) (z,y) is, in fact, independent of ¢t. Hence, we will write p(z), p(y), p(z|y), p(y|z),
and p(z,y), respectively, instead of p*) (z), p® (y), p'¥) (z|y), p'*) (y|z), and p® (2, y).

‘Q>
N

y|§;,g)
) (y 7).

In Step 1, the algorithm starts with an initial co-clustering (Cg?), C’,@ )) and computes the required
marginals of the resulting approximation ¢(°) (the choice of starting points is important, and will be
discussed in detail later in Section 5). The algorithm then computes the appropriate “row-cluster
prototypes” ¢(®) (Y'|Z). While the reader may wish to think of these as “centroids”, observe that
¢©(Y'|#) is not a centroid, i.e.,

g ar Zp (Yz),

TET

where |#| denotes the number of rows in cluster #. Rather, by (15), for every y, we write

D (ylz) = ¢ (wl9)d"? (912), (18)

where § = Cy (y). Note that (18) gives a formula that would have been difficult to guess a priori
without the help of analysis. In Step 2, the algorithm “re-assigns” each row = to a new row-cluster
whose row-cluster prototype ¢ (Y |2) is closest to p(Y'|x) in Kullback-Leibler divergence. In essence,
Step 2 defines a new row-clustering. Also, observe that the column clustering is not changed in Step



Algorithm Co_Clustering(p,k,E,C’}},C;\, )

Input: The joint probability distribution p(X,Y), k the desired number of row clusters, and £ the desired
number of column clusters.

Output: The partition functions C}} and CI,.

1. Initialization: Set ¢ = 0. Start with some initial partition functions C;?) and C)(,O). Compute
¢(X,7), ¢ (X|X), ¢V (YY)
<

and the distributions ¢© (Y'|£), 1 < & < k using (18).

2. Compute row clusters: For each row z, find its new cluster index as
C¢*V (@) = argmin, D (p(Ylo)llg® (Y1) ,

resolving ties arbitrarily. Let Cl(,H'l) = Cl(,t).

3. Compute

¢“(X,Y), ¢ (XIX), ¢TI (YIY)
and the distributions ¢***V(X|9), 1 < § < £ using (19).

4. Compute column clusters: For each column y, find its new cluster index as
CY ) (y) = argmin, D (p(X|y)lla" ™ (X19)),

resolving ties arbitrarily. Let C§§+2) = Cgéﬂ).

5. Compute

X, Y), ¢ (XIX), ¢ (YY)
and distributions ¢**?(Y|2), 1 < & < k using (18).
6. Stop and return C}} = C)((Hz) and CI, = Cl(,HZ), if the change in objective function value, that is,

D(p(X,Y)|lg(X,Y)) — D(p(X,Y)||g"*?(X,Y)), is “small” (say 10~%); Else set t = ¢ + 2 and go to
step 2.

Figure 1: Information theoretic co-clustering algorithm that simultaneously clusters both the rows
and columns

2. In Step 3, using the new row-clustering and the old column clustering, the algorithm recomputes
the required marginals of ¢(**1). More importantly, the algorithm recomputes the column-cluster
prototypes. Once again, these are not ordinary centroids, but rather by using (17), for every z, we
write

¢ (2]g) = ¢V (2]2)g" Y (219), (19)

where & = C'x (z). Now, in Step 4, the algorithm “re-assigns” each column y to a new column-cluster
whose column-cluster prototype ¢(*+1)(X|9) is closest to p(X|y) in Kullback-Leibler divergence. Step
4 defines a new column-clustering while holding the row-clustering fixed. In Step 5, the algorithm
re-computes marginals of ¢(**?), The algorithm keeps iterating Steps 2 through 5 until some desired
convergence condition is met. The following reassuring theorem, which is our main result, guarantees
convergence.

Theorem 4.1 Algorithm Co_Clustering monotonically decreases the objective function given in Lemma 2.1.



Proof.
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2 pEE(X,Y, X, V)|l¢ (X, Y, X, 1)), (20)

where (a) follows from Lemma 4.1; (b) follows from Step 2 of the algorithm; (c) follows by rearranging
the sum and from (15); (d) follows from Step 3 of the algorithm; (e) follows by non-negativity of
the Kullback-Leibler divergence; and (f) follows since we hold the column clusters fixed, that is,
Cg,tﬂ) = C}(f), and (g) is due to (15) and Lemma 4.1.

By using a virtually identical argument, which we omit here for brevity, and by using properties
of Steps 4 and 5, we can show that

DI (XY, X, Y)|lf" (X, Y, X, V) = D (X, Y, X, Y)[[¢ (X, Y, X, V). (21)

By combining (20) and (21), it follows that every iteration of the algorithm never increases the
objective function. O



Corollary 4.1 The algorithm in Figure 1 terminates in a finite number of steps at a cluster assign-
ment that is locally optimal, that is, the loss in mutual information cannot be decreased by either
(a) re-assignment of a distribution p(Y|z) or p(X|y) to a different cluster distribution q(Y'|Z) or
q(X|9), respectively, or by (b) defining a new distribution for any of the ezxisting clusters.

Proof. The result follows from Theorem 4.1 and since the number of distinct co-clusterings is finite.
O

Remark 4.1 A closer examination of the above proof shows that we established that Steps 2 and
3 together imply (20) and Steps 4 and 5 together imply (21). We show how to generalize the above
convergence guarantee to a class of iterative algorithms. In particular, any algorithm that uses an
arbitrary concatenations of Steps 2 and 3 with Steps 4 and 5 is guaranteed to monotonically decrease
the objective function. For example, consider an algorithm that flips a coin at every iteration and
performs Steps 2 and 3 if the coin turns up head, and performs Steps 4 and 5 otherwise. As an
another example, consider an algorithm that keeps iterating Steps 2 and 3, until no improvement
in the objective function is noticed. Next, it can keep iterating Steps 4 and 5, until no further
improvement in the objective function is noticed. Now, it can again iterate Steps 2 and 3, and so
on and so forth. Both of these algorithms as well all algorithms in the same spirit are guaranteed to
monotonically decrease the objective function. Such algorithmic flexibility can allow computationally
efficient exploration of various local minimas when starting from a fixed initial random partition in
Step 1.

Remark 4.2 While our algorithm is in the spirit of the k-means algorithm, the precise algorithm
itself is quite different from the usual k-means. For example, in our algorithm, the distribution
¢ (Y|z) serves as a “row cluster prototype”. This quantity is different from the naive “centroid”
of the cluster Z. Similarly, the column cluster prototype ¢(**1)(X|9) is different from the obvious
centroid of the cluster §. In fact, detailed analysis (as is evident from proof of Theorem 4.1) was
necessary to identify these key quantities.

Remark 4.3 In this paper, for simplicity, we have restricted attention to co-clustering for joint
distributions of two random variables. However, both our algorithm and our main theorem can be
easily extended to co-cluster multi-dimensional joint distributions.

4.1 Illustrative Example

We now illustrate how our algorithm works by showing how it discovers the optimal co-clustering
for the example p(X,Y’) distribution given in (2) of Section 2. Table 1 shows a typical run of our
co-clustering algorithm that starts with a random partition of rows and columns. At each iteration
Table 1 shows the steps of Algorithm Co_Clustering, the resulting approximation ¢ (X,Y) to the
original distribution and the corresponding compressed distribution p(*) (X , Y) The row and column
cluster numbers are shown around the matrix to indicate the clustering at each stage. Notice how
our intertwined row and column co-clustering leads to progressively better approximations to the
original distribution. At the end of four iterations the algorithm almost accurately reconstructs
the original distribution, discovers the natural row and column partitions and recovers the ideal
compressed distribution p(X,Y) given in (3). A pleasing property to observe is that at all iterations
¢®(X,Y) preserves the marginals of the original p(X,Y).

5 Experimental Results
This section provides empirical evidence to show the benefits of our co-clustering framework and

algorithm. In particular we apply the algorithm to the task of document clustering using word-
document co-occurrence data as the joint probability distribution. We show that the co-clustering
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¢V (X,Y) p(X,Y)
%1 91 Y2 U2 G2
T3 | .029 .029 .019 .022 .024 .024 | 0.10 0.05
Z; | .036 .036 .014 .028 .018 .018 | 0.10 0.20
%o | .018 .018 .028 .014 .036 .036 | 0.30 0.25
%o | .018 .018 .028 .014 .036 .036
Z3 | .039 .039 .025 .030 .032 .032
Z3 | .039 .039 .025 .030 .032 .032
1 steps 2 & 3 of Figure 1
%1 91 Y2 U2 G2
Z; | .036 .036 .014 .028 .018 .018 | 0.20 0.10
Z; | .036 .036 .014 .028 .018 .018 | 0.18 0.32
Ty | 019 019 .026 .015 .034 .034 | 0.12 0.08
Ty | 019 019 .026 .015 .034 .034
Z3 | .043 .043 .022 .033 .028 .028
Z2 | .025 .025 .035 .020 .046 .046
1 steps 4 & 5 of Figure 1
%1 91 % G2 U2 G2
Z; | .054 .054 .042 0 0 01 0.30 0
Z; | .054 .054 .042 0 0 0012 0.38
Tp | .013 .013 .010 .031 .041 .041 | 0.08 0.12
Ty | 013 .013 .010 .031 .041 .041
Z3 | 028 .028 .022 .033 .043 .043
To | 017 .017 .013 .042 .054 .054
1 steps 2 & 3 of Figure 1
R S S - R
Z; | .054 .054 .042 0 0 01 0.30 0
Z; | .054 .054 .042 0 0 0 0 0.30
Za 0 0 0 .042 .054 .054 | 0.20 0.20
T 0 0 0 .042 .054 .054
Z3 | .036 .036 .028 .028 .036 .036
Z3 | .036 .036 .028 .028 .036 .036

Table 1: Algorithm Co_Clustering of Figure 1 gives progressively better clusterings and approxima-

tions till the optimal is discovered for the example p(X,Y’) given in Section 2.
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Dataset Newsgroups included #docs Total
per group | documents

Binary & Binary subject | talk.politics.mideast, talk.politics.misc 250 500

Multi5 & Multi5_subject | comp.graphics, rec.motorcycles 100 500
rec.sports.baseball
sci.space.talk.politics.mideast

Multil0_subject alt.atheism, comp.sys.mac.hardware 50 500
misc.forsale, rec.autos

rec.sport.hockey, sci.crypt, sci.electronics
sci.med, sci.space, talk.politics.gun

Table 2: Datasets: Each data set consists of documents randomly sampled from the respective news
groups in the NG20 corpus.

approach overcomes sparsity yielding substantially better results than the approach of clustering
sparse data along a single dimension. We also show better results as compared to previous algorithms
in [18] and [8]. The latter algorithms use a greedy technique to cluster documents after words are
clustered using the same greedy approach. For brevity we will use the following notation to denote
various algorithms in consideration. We call the Information Bottleneck Double Clustering method
in [18] as IB-Double and the Iterative Double Clustering algorithm in [8] as IDC. In addition we
use 1D-clustering to denote document clustering without any word clustering i.e, clustering along a
single dimension.

5.1 Data Sets

For our experimental results we use various subsets of the 20-Newsgroup data(NG20) [13] and the
SMART collection from Cornell (ftp://ftp.cs.cornell.edu/pub/smart).

The NG20 data set consists of approximately 20,000 newsgroup articles collected evenly from
20 different usenet news-groups. This data set has been used for testing several supervised text
classification tasks [1, 19, 14, 6] and un-supervised document clustering tasks [18, 8]. Many of
the news-groups share similar topics and about 4.5% of the documents are cross posted making
the boundaries between some news-groups rather fuzzy. To make our comparison consistent with
previous algorithms we reconstructed various subsets of NG20 used in [18, 8]. We applied the same
pre-processing steps as in [18] to all the subsets, i.e., removed stop words, ignored file headers and
selected the top 2000 words by mutual information'. The specific details of the subsets are given in
Table 2.

The SMART collection consists of MEDLINE, CISI and CRANFIELD sub-collections. MED-
LINE consists of 1033 abstracts from medical journals, CISI consists of 1460 abstracts from informa-
tion retrieval papers and CRANFIELD consists of 1400 abstracts from aerodynamic systems. After
removing stop words and numeric characters we selected the top 2000 words by mutual information
as part of our pre-processing. We will refer to this data set as CLASSICS.

5.2 Implementation Details

Bow [15] is a library of C code useful for writing text analysis, language modeling and information
retrieval programs. We extended Bow to implement co-clustering and document clustering and used
MATLAB to give spy plots of the matrices.

1The data sets used in [18] and [8] differ in their pre-processing steps. The latter includes subject lines while the
former does not. So we prepared two different data sets one with subject lines and the other without subject lines.
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5.3 Evaluation Measures

Validating clustering results is a non-trivial task. The relevance of clustering varies from domain
to domain. In the presence of true labels, as in the case of data sets used in our experiments, one
can form a confusion matrix to measure the effectiveness of the algorithm. Each entry(, ) in the
confusion matrix represents the number of documents in cluster ¢ that belong to true class j. For
an objective evaluation measure we use micro-averaged-precision. The idea is to first associate each
cluster with the most dominant class label in that cluster. If our confusion matrix is sufficiently
diagonal this effectively calculates the fraction of documents along the diagonal to the total number
of documents. For each class ¢ in the data set we define a(c,g) to be the number of documents
correctly assigned to ¢, B(c,§) to be number of documents incorrectly assigned to ¢ and (¢, §) to
be the number of documents incorrectly not assigned to c¢. The micro-averaged-precision is defined
as

2.caleg)
2cale, ) + B(c, 9))

P@g) =

and micro-averaged-recall is defined as

N 26 d)
R(y) - Ot(C
Note that for uni-labeled data P(g) = R(9).

5.4 Results and Discussion

First we demonstrate that co-clustering is significantly better than clustering along a single dimension
using word-document co-occurrence matrices. In all our experiments since we know the number of
true document clusters we can give that as input to our algorithm. For example in the case of Binary
data set we ask for 2 document clusters. We vary the number of word clusters over the full range of
possibilities and give plots showing how co-clustering behaves with varying number of word clusters.
A note about our initialization: we use deterministic initialization of word clusters by choosing
initial word cluster distributions to be “maximally” far apart from each other[2], and use a random
perturbation of the “mean” document to initialize document clusters [5]. Since this initialization
has a random component all our results are averages of five trials unless stated otherwise.

Figure 2 shows two confusion matrices obtained on the CLASSIC3 data set using algorithms
1D-clustering and co-clustering (with 200 word clusters). Observe that co-clustering extracted the
original clusters almost correctly resulting in a micro-averaged-precision of 0.9835 while 1D-clustering
led to a micro-averaged-precision of 0.9432.

Co-clustering 1D-clustering
992 4 8 944 9 98
40 1452 7 71 1431 5
1 4 1387 | 18 20 1297

Figure 2: Co-clustering accurately recovers original clusters on the CLASSICS data set.

Figure 3 shows confusion matrices obtained by using co-clustering and document clustering on
Binary and Binary_subject data sets. While co-clustering achieves 0.852 and 0.946 micro-averaged
precision on these data sets respectively, 1D-clustering yielded only 0.67 and 0.648.

We now show that co-clustering can discover structure in sparse word-document matrices. Fig-
ure 4 shows the original word-document matrix and the reordered matrix obtained by arranging
rows and columns according to cluster order to reveal the various co-clusters. To simplify the figure
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