ON OPTIMIZING COLLECTIVE
COMMUNICATION

Marcel Heimlich
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, Texas 78712
heimlich@cs.utexas.edu

May 13, 2003

Abstract

It has long been thought that research into collective communication
algorithms on distributed memory parallel computers has been exhausted.
This paper demonstrates that the implementations available as part of
widely-used libraries are still suboptimal. We demonstrate this through
the implementation of the “reduce-scatter” collective communication and
comparison with the MPICH implementation of MPI. Performance on a
large cluster is reported.

1 Introduction

Extensive research over the past decade has been reported in regards to collective
communication and the implementations of algorithms for distributing data
between processors. It has been shown that effective communication algorithms
can be implemented using sophisticated techniques [6, 1, 2, 4, 5, 3, 8, 9]. Even
though these algorithms have been extensively researched, public domain and
vendor implementations are frequently still suboptimal. In this paper another
step is taken to achieve even higher performance than in past presentations.

In this paper a set of collective communication algorithms implemented on
distributed-memory multidimensional-mesh systems are presented. These al-
ready efficient algorithms are reconstructed to improve performance. Methods
involving changing the type of communication between processors are used to
increase performance. Using the methods detailed in this paper it is possible to
more than double the performance of commercial and public domain provided
implementations.

The remainder of the paper is organized as follows: In Section 2 we provide
some basic assumptions that are made for the purpose of presenting this paper.

From that follows a section on the interface we use for passing messages between
processors found in Section 3. In Section 4 we discuss the communication
algorithm. Performance results are given in Section 5. In Section 6 a summary
of the paper is given in a conclusion.

2 A model of parallel computation

In order to give an analysis on the performance of the algorithms it is necessary
to present a model of parallel computation. The following assumptions are made
in this report:

1. Target architectures
The target architectures are distributed-memory multidimensional-mesh
systems.

2. Indexing This paper assumes a parallel architecture with p nodes. The
nodes are indexed from Py to P,,_1

3. Communicating between nodes
At any given time each node can send one message to any of its neighbors.
The communication network uses cut-through worm-hole routing. The
result is that multi-hop messages do not take noticeably longer than a
single hop message.[3]

4. Cost of communication
For each message of length n we model the cost of sending that message
by a4+ nf where a and g respectively represent the message startup time
and per data transmission time. If no network conflicts occur then the
time to send a message between any two neighbors is modeled by a + ng.

5. Cost of computation The cost required to perform an arithmetic oper-
ation is denoted with a .

6. Network conflicts
It is assumed that the path between two communicating nodes is com-
pletely occupied. Therefore if a communication path is being shared by
more than two nodes then network conflicts occur. This extra cost is mod-
eled with a4+ nkf where k is the maximum number of conflicts associated
with the links between the processors.

The above assumptions are useful when conducting an analysis of communica-
tion costs on actual architectures.

3 Message-Passing Interface (MPI)

The Message-Passing Interface (MPI) is a standardized and portable message-
passing system designed by a group of researchers from academia and industry.

The purpose of MPI was to function on a wide variety of parallel computers.
The MPI standard was developed in the early 1990’s [7].

Sharing data between processors requires a send operation on the part of the
processor that has the data and a corresponding receive by the processor that
needs the data. The following discussion details the type of sends and receives
used in the implementations discussed herein.

In MPT the send routine it called by the sending node and the receive routine
is called by the receiving node.

3.1 Standard mode, Blocking Send and Receive

This is the basic type of send and receive that can be used and thus the least
efficient yet sometimes necessary. No assumption should be made as to whether
a guarantee can made that there is a certain amount of space in the outgoing
buffer

To send a message, a call to MPI_Send is used:

MPI_Send(buf, count, datatype, dest, tag, comm)
e buf - initial address

e count - number of entries to send

datatype - datatype of each entry
e dest - rank of destination

e tag - message tag

e comm - descriptor of the processors involved in the communication

This operation does what you would expect it to, which is it sends data from
one processor to another.
To receive a message, a call to MPI_Recv is required:

MPI Recv(buf, count, datatype, source, tag, comm, status)
e buf - initial address

e count - number of entries to send

e datatype - datatype of each entry

e source — rank of destination

® tag - message tag

e comm - descriptor of the processors involved in the communication

e status - information regarding the received message

The operation will receive the data which the send operation has posted.

3.2 Posting Nonblocking Send and Receive
The standard MPI nonblocking posting send syntax is -

MPI_Isend(buf, count, datatype, dest, tag, comm, request)
e buf - initial address

e count - number of entries to send

e datatype - datatype of each entry

e dest - rank of destination

® tag - message tag

e comm - communicator

e request - request handle

If you replace Send with Recv then you also have the syntax for a non-
blocking post receive. These operations are also called “posting standard-mode,
nonblocking sends and receives”. Notice here that the post send and receive
calls have the same names as the nonblocking calls except that they have an
‘I’ preceding their name which denotes “immediate”. This signifies that the
call is nonblocking. By using nonblocking communication one can increase the
performance of certain algorithms because both the sends and the receives can
be posted without the matching receive and send, respectively. The use of
nonblocking receives allows one to post receives early and so achieve lower com-
munication overheads without blocking the receiver while it waits for the send
[7]. The difference when using nonblocking and blocking communication is that
nonblocking communications use tags to allow identification of the communi-
cation operations. For example, a receiving process posts it’s receive with tag
@ while the sending operation posts it’s send with tag). This allows the two
operations to match up with one another.

A non-blocking send indicates that data may be copied out of it’s buffer
where a non-blocking receive indicates that data may be written to it’s buffer.
The send and receive operations are unable to access any part of these buffers
until the calls have been completed. The prohibition of read access to the send
buffer actually allows better performance on some systems.

3.3 Synchronous, Blocking Send
The standard MPI nonblocking posting send syntax is -

MPI_Ssend(buf, count, datatype, dest, tag, comm)
e buf - initial address

e count - number of entries to send

datatype - datatype of each entry
e dest - rank of destination

e tag - message tag

e comm - communicator

This type of send, synchronous mode, can be initiated whether a matching
receive has been posted. The send only completes, successfully, when a matching
receive is posted. Therefore, the completion of a synchronous send indicates the
completion of a message transfer and that both the sender and the receiver have
finished execution.

Notice that in the reconstructed algorithms detailed in this paper an initial
MPI_Ssend is used after all the receives have been posted. This is to ensure that
the communication between the nodes is synchronized. If one were to use all
Ready Sends, described in Section 3.4 then it could not be ensured that all
the receives have been posted and one may blatantly send to a process that has
not posted all of it’s receives. Therefore by using Ssend synchronization can be
ensured.

The completion of a synchronous send indicates that the send buffer can be
reused|[7]

3.4 Ready-mode, Blocking Send
The standard MPI nonblocking posting send syntax is -

MPI Rsend(buf, count, datatype, dest, tag, comm, request)
e buf - initial address

e count - number of entries to send

e datatype - datatype of each entry

e dest - rank of destination

® tag - message tag

e comm - communicator

e request - request handle

This type of communication is called a ready-mode blocking send. It is so
denoted because a ready mode send may only be initiated if the matching receive
has been posted. In essence this allows the removal of a hand-shake between
the receive and send operation since the receive is assumed to already have
been posted. Since the hand-shake between the communicators is removed this
allows an increase in performance '. Therefore, every Rsend can be replaced by

1On some systems the increased performance is not visible.

a “standard-mode” blocking send without any adverse effects on the program
other than performance. It should be noticed that a significant amount of
performance increase in the collective communication algorithms discussed in
this paper attain their increase in performance from this type of replacement, i.e.
replacing the standard mode blocking sends with their respective non-blocking
send. The other increase in performance is attained from the early posting of
the receives discussed in Section 3.2.

3.5 Collective Communication

Frequently, communications involving all processors are required. Examples of
this include simpler collective communications like a broadcast and more com-
plex ones like reduce-scatter. These operations are implemented by a collection
of individual messages. It is the algorithm chosen to orchestrate these messages
that determines the time required for completion.

For the reduce-scatter operation, MPI supports

MPI Reduce_scatter (sendbuf, recvbuf, recvcounts, datatype,
op, comm)

e sendbuf - starting address of the send buffer

e recvbuf - starting address of the receive buffer

e recvcounts - integer array containing the number of items
to be sent and received

e datatype - data type of the input buffer

e op - the operation to be performed during the reduce operation

e comm - descriptor of the processors involved in the communication

This operation (for the case where the reduce is a simple summation) can be
described as follows: Initially all processors have vectors of length n items. Upon
completion, these vectors have been added element-wise, and each processor
owns approximately 1/p of the total result vector, where p equals the number
of processors involved.

Let us illustrate this on four processors:

e Before:

Processor 0 | Processor 1 | Processor 2 | Processor 3

x(()o) CU(()l) CU(()2) CU(()3)
xgo) xgl) I§2) x§3)
Igo) Igl) IgZ) Ig3)
xgo) xgl) ng) ng)

o After:

Processor 0 | Processor 1 | Processor 2 | Processor 3
3)
> j=0To

Zj:o xgj)
5)
Zj:o xg])
5)
Zj:o xgj)

4 Communication Algorithms

The collective communication algorithms discussed in this paper entail those
that allow communication of short and long vectors of information. The specific
algorithm is the reduce-scatter discussed in Section 4.1 for the short vector and
long vector cases. It turns out that, depending on the amount of data involved
in a collective communication, a different algorithm is more efficient. Let us
describe commonly used algorithms.

4.1 Short-vector algorithm

Short vector algorithms are so named due to the nature of the size of the data
being transmitted. Basically, short vector algorithms transmit the data in a
small packets where long vector algorithms need to transmit their data in several
small packets. Short vector algorithms use what is called a Minimum Spanning
Tree (MST) approach. MST algorithms incur [log,(p)] startups due to their
tree like nature. On hypercubes a minimum spanning tree is embedded from
the node originating the communication which is denoted as the root.

The name of the reduce-scatter collective communication suggests imple-
menting this operation as a reduce-to-one (MPI_Reduce) followed by a scatter
(MPI_Scatter), each of which is a collective communication supported by MPIL

MST Reduce-to-one :
Let us illustrate this on four processors:
e Before:

Processor 0 | Processor 1 | Processor 2 | Processor 3

x(()o) CU(()l) CU(()2) CU(()3)
xgo) xgl) I§2) x§3)
CUgO) Cﬂgl) 5652) :653)
xgo) xgl) $g2) $g3)

o After:

Processor 0 | Processor 1 | Processor 2 | Processor 3
Z?:o xéj)
Z?:o z gj)
Z?:o ng)
Z?:o xéj)
1. Initially all processors have vectors of length n items. Upon comple-

tion, these vectors have been added element-wise where one processor
owns the entire result vector.

2. Reduce-to-one is an operation where the vectors of information are
initially located on every processor. At the completion of the algo-
rithm all of the data is on one processor.

3. The common algorithm used for a reduce-to-one the MST approach
which leads to a cost of

[log, ()] (e +nf +ny).
[MST Scatter]: Let us illustrate this on four processors:
e Before:

Processor 0 | Processor 1 | Processor 2 | Processor 3
Q)

0
o
RO

2
o0

o After:

Processor 0 | Processor 1 | Processor 2 | Processor 3
()
Lo

2

2

1. Initially, one processor holds the entire vector of length n items. Upon
completion, each processor owns approximately 1/p of the total result
vector, where p equals the number of processors involved.

2. The Scatter operation is implemented using an MST approach. The
cost associated with it is:

p—1
[log, (p)] (e + T"ﬂ)

One would expect the estimated cost of a reduce-scatter to be that of a reduce-
to-one plus that of a scatter.

p—1

[log, (p) (e 4+ nfB + ny) + [logy(p) o + nf

4.2 Long-vector Algorithms

When implementing long vector algorithms the goal is to achieve the optimal
B term. The algorithms presented herein may not be the most efficient imple-
mentations for all architectures but the simple approach used guarantees that
there are no network conflicts.

Reduce-scatter long vector

At every step the contribution to the local data has to be added before the
contents can, then, be passed along. If all nodes receive the same amount of
data at the end of the reduce-scatter, the cost is

p—1 p—1

n n
(p—l)(a+;ﬁ+;7)—(p—l)a+7nﬁ+

ny.

An illustrated picture is given in Figure 1. In that figure a notation of
Dokeiij 2\ is introduced. Here, n is the data number and k is the processor
number. The ¢ is the beginning index into the processors and j is the ending
index. Notice that there may be some wrapping around of the numbers. i.e i =
3, and 7 = 0 which indicates 3,.., p-1 , 0.

4.3 Comparing the two approaches
Recall that the cost of the short-vector algorithms has a cost of

-1

2[og, (p)]a + ([logy (p) + Z——)n + [logy (p)ny

where the long-vector algorithm has a cost of

p—1 p—1

n n
(p—l)(a+;ﬁ+;7)—(p—l)a+7nﬁ+

ny.

It is important to note that there is a critical choice to be made when choos-
ing between the two different approaches. The MST algorithm is intended for
use with short vectors of data where the bucket algorithm is intended for use
with long vectors of data. Of course one could blindly use one algorithm or
another but the consequence of this is one that leads to very poor performance.

Proc. 0 Proc. 1 Proc. 2 Proc. 3
D 2D C PUE)
l'go) xgl) wgz) .1'53)
ONE DR (Y o) NO
x§0) wgl) wz(f) x§3)
Proc. 0 Proc. 1 Proc. 2 Proc. 3
=’ mgi © Ligs w0 (k)
zj Ty < Dp—z0 L1
=Yg 28 x5! zy)
wéo Dk mgk) 37;3)
Proc. 0 Proc. 1 Proc. 2 Proc. 3
20 — 3, ")
0 k=1:3 L0
xg1) < Dk=20 xgk)
5552 < ks wgk)
< k=02 2§ zs”
Proc. 0 Proc. 1 Proc. 2 Proc. 3
20 “ 3, 2
0 k=1:3 Lo
mgl A Zk;zzo wgk)
xéz) Dk xék)
< k=02 xék) $§3)
Proc. 0 Proc. 1 Proc. 2 Proc. 3
2 k=0:3 xék)
> k=1:0 xgk)
D k=21 mgk)
D k=32 xgk)

Figure 1: Bucket algorithm for long-vector Reduce-scatter

10

4.4 Further Optimizations
Without Preposting Receives

As described above the short-vector algorithms has a cost of

-1

2[log, (p)]a + ([logy (p) + Z——)n + [log,(p)ny

. This cost is reduced by preposting receives. A discussion follows.

Preposting Receives

By preposting the receives we decrease the number of handshakes that is re-
quired to perform each send operation. If we have v send operations then we
have 3v handshakes if we do not prepost receives. Since in our improved im-
plementations of the algorithms we do prepost the receives then there is only
a cost incurred of v handshakes per operation. This leaves us with a 2v hand-
shake improvement. This 2v handshake improvement is gained from Sections
3.2 and 3.4 as was discussed previously. Modeling the formulas presented above
we can account for this improved performance, where aign is the new improved
startup cost associated with the decreased handshakes. Therefore the cost of
the short-vector algorithm is now:

2[10g, ()] aigns + ([1ogs(p) + E—=)n + [log, (p) 10y

and the cost of the long vector algorithm is now:

p—1

n n p—1
(p — 1) (cuight + Eﬂ + 57) = (p — Daight + T”ﬂ + nwy.

Notice that given two different data distributions there is a critical choice to
be made to determine which algorithm is to be used. The choice is dependent
on the data volume, i.e whether there is a short-vector of data or a long-vector
of data.

5 Performance

Here we describe the performance of the implementation of the algorithms. The
architecture on which the implementation was ran is presented followed by the
results attained from that architecture. The results are presented in two types
of graphs both linear and loglog.

5.1 Target Architecture
The primary target architecture is a 300 node system consisting of the following.

1. Primary 2650 2-Way Compute nodes

11

Vendor Dell

Architecture 2650 Server

Number of processors per node 2

Operating System: Linux (RedHat 7.3, 2.4 kernel)
Processor 2-2.4GHz Pentium 4 Processors

(a) Main memory size: 1024M-bytes

(b) Instruction cache size: 16K-bytes

(c) Data cache size: 16K-bytes

(d) Secondary unified instruction/data cache size 512K-bytes

e Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)
2. Secondary 6650 4-way SMP nodes

e Vendor Dell

o Architecture 6650 Server

e Number of processors per node 4

e Operating System: linux (RedHat 7.3, 2.4 Kernel)

e Processor Description 4 1.6 Ghz Pentium 4 Processors, Main memory
size: 4096M-bytes, Instruction cache size: 16K-bytes, Data cache
size: 16K-bytes, Secondary unified instruction/data cache size: 256
K-bytes, Off chip level 3 cache size: 1MB

e Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)

5.2 Results
Here we describe the graphs presented in Figures 2 through 7.

Long-vector

In Figure 2 through Figure 7 the results of the long-vector algorithm are
shown. Figure 2 presents the results for 128 processors and Figure 6 presents
the results for 32 processors. The results are shown in the figures for the number
of processor being that of 128, 64, and 32. In the odd numbered figures, i,e, 1,
3, and 5, the results are presented linearly. In the even numbered figures, i.e.
2, 4, and 6, the results are presented in a loglog graph. Notice the performance
in the algorithms are much better demonstrated in the even numbered (loglog
) graphs.

e The send-min line is the time for a “bounce”. This is the shortest possible
time for communication between two nodes using the blocking send and
receive calls.

e The line labeled "MPT is for the MPICH public domain implementation.
This is the implementation that was used in comparison of our implemen-
tations of the algorithms.

12

e The line labeled 'Bucket’ is for the implementation used from previous
research conducted by Dr. Robert van de Geijn. The implementation was
used as a base for our research in this paper.

e The line labeled 'Bucket, optimized’ is the line signifying the improved
implementation.

Looking at Figure 7 one will notice the significant difference between the
"Bucket’(1) and the 'Bucket-optimized’(2) lines. The difference between (1) and
(2) for very short vector lengths is approximately a factor of 2. This directly
corresponds with our discussion of the decrease in the number of handshakes. As
the vector length grows towards the limit one will notice that the algorithms tend
to converge toward one another, because the a term becomes less significant.
Also notice, around message length of 102 there is an jump in the graph for (1).
This is due to the fact that MPI, for short message lengths, allocates a buffer
space that holds messages of the requested length. Therefore, the jump is caused
from the fact that a new buffer space has to be allocated to hold the longer
message lengths. There is not a jump in (2). This is in direct correspondence
with the fact that by preposting the receives that the buffer space is already
assumed to be allocated. At message length of 10% the performance increase is
now twice as much as before.

It should be noticed that by reducing the number of handshakes in the
implementations that there is a factor of two difference. This corresponds to
the aijigne term given in our analysis. In the limit one would expect for all
implementations to have the same performance.

6 Conclusion

Our research has shown that by taking an already existent algorithm and mod-
ifying the types of sends and receives one can attain a significant performance
increase. The research also shows that the algorithms which we have imple-
mented are better than vendor supplied algorithms. The algorithms presented
are part of a large class of communication algorithms for which there have been
shown efficient techniques for implementing these algorithms. Some of these
techniques have been described. The improvement in the performance of these
algorithms was attained through a change in the way the processing of the
data was performed. Therefore, it has been shown that given a set of efficient
algorithms implemented on a distributed-memory multidimensional-mesh ar-
chitecture, a significant improvement in performance can be attained through
the use of special types of send and receive messages. It should be noted that
the vendor-supplied algorithms have still been unable to attain the same per-
formance as the algorithms without the adjustments made. This is true even
though a significant amount of papers on the subject have been published over
the past decade.

13

