
On Optimizing Colle
tiveCommuni
ationMar
el Heimli
hDepartment of Computer S
ien
esThe University of Texas at Austin1 University Station C0500Austin, Texas 78712heimli
h�
s.utexas.eduMay 13, 2003Abstra
tIt has long been thought that resear
h into 
olle
tive 
ommuni
ationalgorithms on distributed memory parallel 
omputers has been exhausted.This paper demonstrates that the implementations available as part ofwidely-used libraries are still suboptimal. We demonstrate this throughthe implementation of the \redu
e-s
atter" 
olle
tive 
ommuni
ation and
omparison with the MPICH implementation of MPI. Performan
e on alarge 
luster is reported.1 Introdu
tionExtensive resear
h over the past de
ade has been reported in regards to 
olle
tive
ommuni
ation and the implementations of algorithms for distributing databetween pro
essors. It has been shown that e�e
tive 
ommuni
ation algorithms
an be implemented using sophisti
ated te
hniques [6, 1, 2, 4, 5, 3, 8, 9℄. Eventhough these algorithms have been extensively resear
hed, publi
 domain andvendor implementations are frequently still suboptimal. In this paper anotherstep is taken to a
hieve even higher performan
e than in past presentations.In this paper a set of 
olle
tive 
ommuni
ation algorithms implemented ondistributed-memory multidimensional-mesh systems are presented. These al-ready eÆ
ient algorithms are re
onstru
ted to improve performan
e. Methodsinvolving 
hanging the type of 
ommuni
ation between pro
essors are used toin
rease performan
e. Using the methods detailed in this paper it is possible tomore than double the performan
e of 
ommer
ial and publi
 domain providedimplementations.The remainder of the paper is organized as follows: In Se
tion 2 we providesome basi
 assumptions that are made for the purpose of presenting this paper.1



From that follows a se
tion on the interfa
e we use for passing messages betweenpro
essors found in Se
tion 3. In Se
tion 4 we dis
uss the 
ommuni
ationalgorithm. Performan
e results are given in Se
tion 5. In Se
tion 6 a summaryof the paper is given in a 
on
lusion.2 A model of parallel 
omputationIn order to give an analysis on the performan
e of the algorithms it is ne
essaryto present a model of parallel 
omputation. The following assumptions are madein this report:1. Target ar
hite
turesThe target ar
hite
tures are distributed-memory multidimensional-meshsystems.2. Indexing This paper assumes a parallel ar
hite
ture with p nodes. Thenodes are indexed from P0 to Pn�13. Communi
ating between nodesAt any given time ea
h node 
an send one message to any of its neighbors.The 
ommuni
ation network uses 
ut-through worm-hole routing. Theresult is that multi-hop messages do not take noti
eably longer than asingle hop message.[3℄4. Cost of 
ommuni
ationFor ea
h message of length n we model the 
ost of sending that messageby �+n� where � and � respe
tively represent the message startup timeand per data transmission time. If no network 
on
i
ts o

ur then thetime to send a message between any two neighbors is modeled by �+n�.5. Cost of 
omputation The 
ost required to perform an arithmeti
 oper-ation is denoted with a 
.6. Network 
on
i
tsIt is assumed that the path between two 
ommuni
ating nodes is 
om-pletely o

upied. Therefore if a 
ommuni
ation path is being shared bymore than two nodes then network 
on
i
ts o

ur. This extra 
ost is mod-eled with �+nk� where k is the maximum number of 
on
i
ts asso
iatedwith the links between the pro
essors.The above assumptions are useful when 
ondu
ting an analysis of 
ommuni
a-tion 
osts on a
tual ar
hite
tures.3 Message-Passing Interfa
e (MPI)The Message-Passing Interfa
e (MPI) is a standardized and portable message-passing system designed by a group of resear
hers from a
ademia and industry.2



The purpose of MPI was to fun
tion on a wide variety of parallel 
omputers.The MPI standard was developed in the early 1990's [7℄.Sharing data between pro
essors requires a send operation on the part of thepro
essor that has the data and a 
orresponding re
eive by the pro
essor thatneeds the data. The following dis
ussion details the type of sends and re
eivesused in the implementations dis
ussed herein.In MPI the send routine it 
alled by the sending node and the re
eive routineis 
alled by the re
eiving node.3.1 Standard mode, Blo
king Send and Re
eiveThis is the basi
 type of send and re
eive that 
an be used and thus the leasteÆ
ient yet sometimes ne
essary. No assumption should be made as to whethera guarantee 
an made that there is a 
ertain amount of spa
e in the outgoingbu�erTo send a message, a 
all to MPI Send is used:MPI Send(buf, 
ount, datatype, dest, tag, 
omm )� buf - initial address� 
ount - number of entries to send� datatype - datatype of ea
h entry� dest - rank of destination� tag - message tag� 
omm - des
riptor of the pro
essors involved in the 
ommuni
ationThis operation does what you would expe
t it to, whi
h is it sends data fromone pro
essor to another.To re
eive a message, a 
all to MPI Re
v is required:MPI Re
v(buf, 
ount, datatype, sour
e, tag, 
omm, status )� buf - initial address� 
ount - number of entries to send� datatype - datatype of ea
h entry� sour
e - rank of destination� tag - message tag� 
omm - des
riptor of the pro
essors involved in the 
ommuni
ation� status - information regarding the re
eived messageThe operation will re
eive the data whi
h the send operation has posted.3



3.2 Posting Nonblo
king Send and Re
eiveThe standard MPI nonblo
king posting send syntax is -MPI Isend(buf, 
ount, datatype, dest, tag, 
omm, request)� buf - initial address� 
ount - number of entries to send� datatype - datatype of ea
h entry� dest - rank of destination� tag - message tag� 
omm - 
ommuni
ator� request - request handleIf you repla
e Send with Re
v then you also have the syntax for a non-blo
king post re
eive. These operations are also 
alled \posting standard-mode,nonblo
king sends and re
eives". Noti
e here that the post send and re
eive
alls have the same names as the nonblo
king 
alls ex
ept that they have an`I' pre
eding their name whi
h denotes \immediate". This signi�es that the
all is nonblo
king. By using nonblo
king 
ommuni
ation one 
an in
rease theperforman
e of 
ertain algorithms be
ause both the sends and the re
eives 
anbe posted without the mat
hing re
eive and send, respe
tively. The use ofnonblo
king re
eives allows one to post re
eives early and so a
hieve lower 
om-muni
ation overheads without blo
king the re
eiver while it waits for the send[7℄. The di�eren
e when using nonblo
king and blo
king 
ommuni
ation is thatnonblo
king 
ommuni
ations use tags to allow identi�
ation of the 
ommuni-
ation operations. For example, a re
eiving pro
ess posts it's re
eive with tagQ while the sending operation posts it's send with tag Q. This allows the twooperations to mat
h up with one another.A non-blo
king send indi
ates that data may be 
opied out of it's bu�erwhere a non-blo
king re
eive indi
ates that data may be written to it's bu�er.The send and re
eive operations are unable to a

ess any part of these bu�ersuntil the 
alls have been 
ompleted. The prohibition of read a

ess to the sendbu�er a
tually allows better performan
e on some systems.3.3 Syn
hronous, Blo
king SendThe standard MPI nonblo
king posting send syntax is -MPI Ssend(buf, 
ount, datatype, dest, tag, 
omm)� buf - initial address� 
ount - number of entries to send4



� datatype - datatype of ea
h entry� dest - rank of destination� tag - message tag� 
omm - 
ommuni
atorThis type of send, syn
hronous mode, 
an be initiated whether a mat
hingre
eive has been posted. The send only 
ompletes, su

essfully, when a mat
hingre
eive is posted. Therefore, the 
ompletion of a syn
hronous send indi
ates the
ompletion of a message transfer and that both the sender and the re
eiver have�nished exe
ution.Noti
e that in the re
onstru
ted algorithms detailed in this paper an initialMPI Ssend is used after all the re
eives have been posted. This is to ensure thatthe 
ommuni
ation between the nodes is syn
hronized. If one were to use allReady Sends, des
ribed in Se
tion 3.4 then it 
ould not be ensured that allthe re
eives have been posted and one may blatantly send to a pro
ess that hasnot posted all of it's re
eives. Therefore by using Ssend syn
hronization 
an beensured.The 
ompletion of a syn
hronous send indi
ates that the send bu�er 
an bereused[7℄3.4 Ready-mode, Blo
king SendThe standard MPI nonblo
king posting send syntax is -MPI Rsend(buf, 
ount, datatype, dest, tag, 
omm, request)� buf - initial address� 
ount - number of entries to send� datatype - datatype of ea
h entry� dest - rank of destination� tag - message tag� 
omm - 
ommuni
ator� request - request handleThis type of 
ommuni
ation is 
alled a ready-mode blo
king send. It is sodenoted be
ause a ready mode send may only be initiated if the mat
hing re
eivehas been posted. In essen
e this allows the removal of a hand-shake betweenthe re
eive and send operation sin
e the re
eive is assumed to already havebeen posted. Sin
e the hand-shake between the 
ommuni
ators is removed thisallows an in
rease in performan
e 1. Therefore, every Rsend 
an be repla
ed by1On some systems the in
reased performan
e is not visible.5



a \standard-mode" blo
king send without any adverse e�e
ts on the programother than performan
e. It should be noti
ed that a signi�
ant amount ofperforman
e in
rease in the 
olle
tive 
ommuni
ation algorithms dis
ussed inthis paper attain their in
rease in performan
e from this type of repla
ement, i.e.repla
ing the standard mode blo
king sends with their respe
tive non-blo
kingsend. The other in
rease in performan
e is attained from the early posting ofthe re
eives dis
ussed in Se
tion 3.2.3.5 Colle
tive Communi
ationFrequently, 
ommuni
ations involving all pro
essors are required. Examples ofthis in
lude simpler 
olle
tive 
ommuni
ations like a broad
ast and more 
om-plex ones like redu
e-s
atter. These operations are implemented by a 
olle
tionof individual messages. It is the algorithm 
hosen to or
hestrate these messagesthat determines the time required for 
ompletion.For the redu
e-s
atter operation, MPI supportsMPI Redu
e s
atter(sendbuf, re
vbuf, re
v
ounts, datatype,op, 
omm )� sendbuf - starting address of the send buffer� re
vbuf - starting address of the re
eive buffer� re
v
ounts - integer array 
ontaining the number of itemsto be sent and re
eived� datatype - data type of the input buffer� op - the operation to be performed during the redu
e operation� 
omm - des
riptor of the pro
essors involved in the 
ommuni
ationThis operation (for the 
ase where the redu
e is a simple summation) 
an bedes
ribed as follows: Initially all pro
essors have ve
tors of length n items. Upon
ompletion, these ve
tors have been added element-wise, and ea
h pro
essorowns approximately 1=p of the total result ve
tor, where p equals the numberof pro
essors involved.Let us illustrate this on four pro
essors:� Before: Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3x(0)0 x(1)0 x(2)0 x(3)0x(0)1 x(1)1 x(2)1 x(3)1x(0)2 x(1)2 x(2)2 x(3)2x(0)3 x(1)3 x(2)3 x(3)3
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� After: Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3P3j=0 x(j)0 P3j=0 x(j)1 P3j=0 x(j)2 P3j=0 x(j)34 Communi
ation AlgorithmsThe 
olle
tive 
ommuni
ation algorithms dis
ussed in this paper entail thosethat allow 
ommuni
ation of short and long ve
tors of information. The spe
i�
algorithm is the redu
e-s
atter dis
ussed in Se
tion 4.1 for the short ve
tor andlong ve
tor 
ases. It turns out that, depending on the amount of data involvedin a 
olle
tive 
ommuni
ation, a di�erent algorithm is more eÆ
ient. Let usdes
ribe 
ommonly used algorithms.4.1 Short-ve
tor algorithmShort ve
tor algorithms are so named due to the nature of the size of the databeing transmitted. Basi
ally, short ve
tor algorithms transmit the data in asmall pa
kets where long ve
tor algorithms need to transmit their data in severalsmall pa
kets. Short ve
tor algorithms use what is 
alled a Minimum SpanningTree (MST) approa
h. MST algorithms in
ur dlog2(p)e startups due to theirtree like nature. On hyper
ubes a minimum spanning tree is embedded fromthe node originating the 
ommuni
ation whi
h is denoted as the root.The name of the redu
e-s
atter 
olle
tive 
ommuni
ation suggests imple-menting this operation as a redu
e-to-one (MPI Redu
e) followed by a s
atter(MPI S
atter), ea
h of whi
h is a 
olle
tive 
ommuni
ation supported by MPI.MST Redu
e-to-one :Let us illustrate this on four pro
essors:� Before:Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3x(0)0 x(1)0 x(2)0 x(3)0x(0)1 x(1)1 x(2)1 x(3)1x(0)2 x(1)2 x(2)2 x(3)2x(0)3 x(1)3 x(2)3 x(3)3
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� After: Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3P3j=0 x(j)0P3j=0 x(j)1P3j=0 x(j)2P3j=0 x(j)31. Initially all pro
essors have ve
tors of length n items. Upon 
omple-tion, these ve
tors have been added element-wise where one pro
essorowns the entire result ve
tor.2. Redu
e-to-one is an operation where the ve
tors of information areinitially lo
ated on every pro
essor. At the 
ompletion of the algo-rithm all of the data is on one pro
essor.3. The 
ommon algorithm used for a redu
e-to-one the MST approa
hwhi
h leads to a 
ost ofdlog2(p)e(�+ n� + n
):[MST S
atter℄: Let us illustrate this on four pro
essors:� Before:Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3x(0)0x(0)1x(0)2x(0)3� After: Pro
essor 0 Pro
essor 1 Pro
essor 2 Pro
essor 3x(j)0 x(j)1 x(j)2 x(j)31. Initially, one pro
essor holds the entire ve
tor of length n items. Upon
ompletion, ea
h pro
essor owns approximately 1/p of the total resultve
tor, where p equals the number of pro
essors involved.2. The S
atter operation is implemented using an MST approa
h. The
ost asso
iated with it is:dlog2(p)e(� + p� 1p n�)8



One would expe
t the estimated 
ost of a redu
e-s
atter to be that of a redu
e-to-one plus that of a s
atter.dlog2(p)e(�+ n� + n
) + dlog2(p)e�+ p� 1p n�4.2 Long-ve
tor AlgorithmsWhen implementing long ve
tor algorithms the goal is to a
hieve the optimal� term. The algorithms presented herein may not be the most eÆ
ient imple-mentations for all ar
hite
tures but the simple approa
h used guarantees thatthere are no network 
on
i
ts.Redu
e-s
atter long ve
torAt every step the 
ontribution to the lo
al data has to be added before the
ontents 
an, then, be passed along. If all nodes re
eive the same amount ofdata at the end of the redu
e-s
atter, the 
ost is(p� 1)(�+ np � + np 
) = (p� 1)�+ p� 1p n� + p� 1p n
:An illustrated pi
ture is given in Figure 1. In that �gure a notation ofPk=i:j x(k)n is introdu
ed. Here, n is the data number and k is the pro
essornumber. The i is the beginning index into the pro
essors and j is the endingindex. Noti
e that there may be some wrapping around of the numbers. i.e i =3, and j = 0 whi
h indi
ates 3,.., p-1 , 0.4.3 Comparing the two approa
hesRe
all that the 
ost of the short-ve
tor algorithms has a 
ost of2dlog2(p)e�+ (dlog2(p) + p� 1p )n� + dlog2(p)en
where the long-ve
tor algorithm has a 
ost of(p� 1)(�+ np � + np 
) = (p� 1)�+ p� 1p n� + p� 1p n
:It is important to note that there is a 
riti
al 
hoi
e to be made when 
hoos-ing between the two di�erent approa
hes. The MST algorithm is intended foruse with short ve
tors of data where the bu
ket algorithm is intended for usewith long ve
tors of data. Of 
ourse one 
ould blindly use one algorithm oranother but the 
onsequen
e of this is one that leads to very poor performan
e.
9



Pro
. 0 Pro
. 1 Pro
. 2 Pro
. 3x(0)0 x(1)0 x(2)0  x(3)0 x(0)1 x(1)1 x(2)1 x(3)1x(0)2  x(1)2 x(2)2 x(3)2x(0)3 x(1)3  x(2)3 x(3)3Pro
. 0 Pro
. 1 Pro
. 2 Pro
. 3x(0)0 x(1)0  Pk=2:3 x(k)0x(1)1 x(2)1  Pk=3:0 x(k)1 Pk=0:1 x(k)2 x(2)2 x(3)2x(0)3  Pk=1:2 x(k)3 x(3)3Pro
. 0 Pro
. 1 Pro
. 2 Pro
. 3x(0)0  Pk=1:3 x(k)0x(1)1  Pk=2:0 x(k)1x(2)2  Pk=3:1 x(k)2 Pk=0:2 x(k)3 x(3)3Pro
. 0 Pro
. 1 Pro
. 2 Pro
. 3x(0)0  Pk=1:3 x(k)0x(1)1  Pk=2:0 x(k)1x(2)2  Pk=3:1 x(k)2 Pk=0:2 x(k)3 x(3)3Pro
. 0 Pro
. 1 Pro
. 2 Pro
. 3Pk=0:3 x(k)0 Pk=1:0 x(k)1 Pk=2:1 x(k)2 Pk=3:2 x(k)3Figure 1: Bu
ket algorithm for long-ve
tor Redu
e-s
atter
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4.4 Further OptimizationsWithout Preposting Re
eivesAs des
ribed above the short-ve
tor algorithms has a 
ost of2dlog2(p)e�+ (dlog2(p) + p� 1p )n� + dlog2(p)en
. This 
ost is redu
ed by preposting re
eives. A dis
ussion follows.Preposting Re
eivesBy preposting the re
eives we de
rease the number of handshakes that is re-quired to perform ea
h send operation. If we have v send operations then wehave 3v handshakes if we do not prepost re
eives. Sin
e in our improved im-plementations of the algorithms we do prepost the re
eives then there is onlya 
ost in
urred of v handshakes per operation. This leaves us with a 2v hand-shake improvement. This 2v handshake improvement is gained from Se
tions3.2 and 3.4 as was dis
ussed previously. Modeling the formulas presented abovewe 
an a

ount for this improved performan
e, where �light is the new improvedstartup 
ost asso
iated with the de
reased handshakes. Therefore the 
ost ofthe short-ve
tor algorithm is now:2dlog2(p)e�light + (dlog2(p) + p� 1p )n� + dlog2(p)en
and the 
ost of the long ve
tor algorithm is now:(p� 1)(�light + np � + np 
) = (p� 1)�light + p� 1p n� + p� 1p n
:Noti
e that given two di�erent data distributions there is a 
riti
al 
hoi
e tobe made to determine whi
h algorithm is to be used. The 
hoi
e is dependenton the data volume, i.e whether there is a short-ve
tor of data or a long-ve
torof data.5 Performan
eHere we des
ribe the performan
e of the implementation of the algorithms. Thear
hite
ture on whi
h the implementation was ran is presented followed by theresults attained from that ar
hite
ture. The results are presented in two typesof graphs both linear and loglog.5.1 Target Ar
hite
tureThe primary target ar
hite
ture is a 300 node system 
onsisting of the following.1. Primary 2650 2-Way Compute nodes11



� Vendor Dell� Ar
hite
ture 2650 Server� Number of pro
essors per node 2� Operating System: Linux (RedHat 7.3, 2.4 kernel)� Pro
essor 2-2.4GHz Pentium 4 Pro
essors(a) Main memory size: 1024M-bytes(b) Instru
tion 
a
he size: 16K-bytes(
) Data 
a
he size: 16K-bytes(d) Se
ondary uni�ed instru
tion/data 
a
he size 512K-bytes� Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)2. Se
ondary 6650 4-way SMP nodes� Vendor Dell� Ar
hite
ture 6650 Server� Number of pro
essors per node 4� Operating System: linux (RedHat 7.3, 2.4 Kernel)� Pro
essor Des
ription 4 1.6 Ghz Pentium 4 Pro
essors, Main memorysize: 4096M-bytes, Instru
tion 
a
he size: 16K-bytes, Data 
a
hesize: 16K-bytes, Se
ondary uni�ed instru
tion/data 
a
he size: 256K-bytes, O� 
hip level 3 
a
he size: 1MB� Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)5.2 ResultsHere we des
ribe the graphs presented in Figures 2 through 7.Long-ve
torIn Figure 2 through Figure 7 the results of the long-ve
tor algorithm areshown. Figure 2 presents the results for 128 pro
essors and Figure 6 presentsthe results for 32 pro
essors. The results are shown in the �gures for the numberof pro
essor being that of 128, 64, and 32. In the odd numbered �gures, i,e, 1,3, and 5, the results are presented linearly. In the even numbered �gures, i.e.2, 4, and 6, the results are presented in a loglog graph. Noti
e the performan
ein the algorithms are mu
h better demonstrated in the even numbered ( loglog) graphs.� The send-min line is the time for a \boun
e". This is the shortest possibletime for 
ommuni
ation between two nodes using the blo
king send andre
eive 
alls.� The line labeled 'MPI' is for the MPICH publi
 domain implementation.This is the implementation that was used in 
omparison of our implemen-tations of the algorithms. 12



� The line labeled 'Bu
ket' is for the implementation used from previousresear
h 
ondu
ted by Dr. Robert van de Geijn. The implementation wasused as a base for our resear
h in this paper.� The line labeled 'Bu
ket, optimized' is the line signifying the improvedimplementation.Looking at Figure 7 one will noti
e the signi�
ant di�eren
e between the'Bu
ket'(1) and the 'Bu
ket-optimized'(2) lines. The di�eren
e between (1) and(2) for very short ve
tor lengths is approximately a fa
tor of 2. This dire
tly
orresponds with our dis
ussion of the de
rease in the number of handshakes. Asthe ve
tor length grows towards the limit one will noti
e that the algorithms tendto 
onverge toward one another, be
ause the � term be
omes less signi�
ant.Also noti
e, around message length of 102:5 there is an jump in the graph for (1).This is due to the fa
t that MPI, for short message lengths, allo
ates a bu�erspa
e that holds messages of the requested length. Therefore, the jump is 
ausedfrom the fa
t that a new bu�er spa
e has to be allo
ated to hold the longermessage lengths. There is not a jump in (2). This is in dire
t 
orresponden
ewith the fa
t that by preposting the re
eives that the bu�er spa
e is alreadyassumed to be allo
ated. At message length of 103 the performan
e in
rease isnow twi
e as mu
h as before.It should be noti
ed that by redu
ing the number of handshakes in theimplementations that there is a fa
tor of two di�eren
e. This 
orresponds tothe �light term given in our analysis. In the limit one would expe
t for allimplementations to have the same performan
e.6 Con
lusionOur resear
h has shown that by taking an already existent algorithm and mod-ifying the types of sends and re
eives one 
an attain a signi�
ant performan
ein
rease. The resear
h also shows that the algorithms whi
h we have imple-mented are better than vendor supplied algorithms. The algorithms presentedare part of a large 
lass of 
ommuni
ation algorithms for whi
h there have beenshown eÆ
ient te
hniques for implementing these algorithms. Some of thesete
hniques have been des
ribed. The improvement in the performan
e of thesealgorithms was attained through a 
hange in the way the pro
essing of thedata was performed. Therefore, it has been shown that given a set of eÆ
ientalgorithms implemented on a distributed-memory multidimensional-mesh ar-
hite
ture, a signi�
ant improvement in performan
e 
an be attained throughthe use of spe
ial types of send and re
eive messages. It should be noted thatthe vendor-supplied algorithms have still been unable to attain the same per-forman
e as the algorithms without the adjustments made. This is true eventhough a signi�
ant amount of papers on the subje
t have been published overthe past de
ade. 13


