
On Optimizing ColletiveCommuniationMarel HeimlihDepartment of Computer SienesThe University of Texas at Austin1 University Station C0500Austin, Texas 78712heimlih�s.utexas.eduMay 13, 2003AbstratIt has long been thought that researh into olletive ommuniationalgorithms on distributed memory parallel omputers has been exhausted.This paper demonstrates that the implementations available as part ofwidely-used libraries are still suboptimal. We demonstrate this throughthe implementation of the \redue-satter" olletive ommuniation andomparison with the MPICH implementation of MPI. Performane on alarge luster is reported.1 IntrodutionExtensive researh over the past deade has been reported in regards to olletiveommuniation and the implementations of algorithms for distributing databetween proessors. It has been shown that e�etive ommuniation algorithmsan be implemented using sophistiated tehniques [6, 1, 2, 4, 5, 3, 8, 9℄. Eventhough these algorithms have been extensively researhed, publi domain andvendor implementations are frequently still suboptimal. In this paper anotherstep is taken to ahieve even higher performane than in past presentations.In this paper a set of olletive ommuniation algorithms implemented ondistributed-memory multidimensional-mesh systems are presented. These al-ready eÆient algorithms are reonstruted to improve performane. Methodsinvolving hanging the type of ommuniation between proessors are used toinrease performane. Using the methods detailed in this paper it is possible tomore than double the performane of ommerial and publi domain providedimplementations.The remainder of the paper is organized as follows: In Setion 2 we providesome basi assumptions that are made for the purpose of presenting this paper.1

From that follows a setion on the interfae we use for passing messages betweenproessors found in Setion 3. In Setion 4 we disuss the ommuniationalgorithm. Performane results are given in Setion 5. In Setion 6 a summaryof the paper is given in a onlusion.2 A model of parallel omputationIn order to give an analysis on the performane of the algorithms it is neessaryto present a model of parallel omputation. The following assumptions are madein this report:1. Target arhiteturesThe target arhitetures are distributed-memory multidimensional-meshsystems.2. Indexing This paper assumes a parallel arhiteture with p nodes. Thenodes are indexed from P0 to Pn�13. Communiating between nodesAt any given time eah node an send one message to any of its neighbors.The ommuniation network uses ut-through worm-hole routing. Theresult is that multi-hop messages do not take notieably longer than asingle hop message.[3℄4. Cost of ommuniationFor eah message of length n we model the ost of sending that messageby �+n� where � and � respetively represent the message startup timeand per data transmission time. If no network onits our then thetime to send a message between any two neighbors is modeled by �+n�.5. Cost of omputation The ost required to perform an arithmeti oper-ation is denoted with a .6. Network onitsIt is assumed that the path between two ommuniating nodes is om-pletely oupied. Therefore if a ommuniation path is being shared bymore than two nodes then network onits our. This extra ost is mod-eled with �+nk� where k is the maximum number of onits assoiatedwith the links between the proessors.The above assumptions are useful when onduting an analysis of ommunia-tion osts on atual arhitetures.3 Message-Passing Interfae (MPI)The Message-Passing Interfae (MPI) is a standardized and portable message-passing system designed by a group of researhers from aademia and industry.2

The purpose of MPI was to funtion on a wide variety of parallel omputers.The MPI standard was developed in the early 1990's [7℄.Sharing data between proessors requires a send operation on the part of theproessor that has the data and a orresponding reeive by the proessor thatneeds the data. The following disussion details the type of sends and reeivesused in the implementations disussed herein.In MPI the send routine it alled by the sending node and the reeive routineis alled by the reeiving node.3.1 Standard mode, Bloking Send and ReeiveThis is the basi type of send and reeive that an be used and thus the leasteÆient yet sometimes neessary. No assumption should be made as to whethera guarantee an made that there is a ertain amount of spae in the outgoingbu�erTo send a message, a all to MPI Send is used:MPI Send(buf, ount, datatype, dest, tag, omm)� buf - initial address� ount - number of entries to send� datatype - datatype of eah entry� dest - rank of destination� tag - message tag� omm - desriptor of the proessors involved in the ommuniationThis operation does what you would expet it to, whih is it sends data fromone proessor to another.To reeive a message, a all to MPI Rev is required:MPI Rev(buf, ount, datatype, soure, tag, omm, status)� buf - initial address� ount - number of entries to send� datatype - datatype of eah entry� soure - rank of destination� tag - message tag� omm - desriptor of the proessors involved in the ommuniation� status - information regarding the reeived messageThe operation will reeive the data whih the send operation has posted.3

3.2 Posting Nonbloking Send and ReeiveThe standard MPI nonbloking posting send syntax is -MPI Isend(buf, ount, datatype, dest, tag, omm, request)� buf - initial address� ount - number of entries to send� datatype - datatype of eah entry� dest - rank of destination� tag - message tag� omm - ommuniator� request - request handleIf you replae Send with Rev then you also have the syntax for a non-bloking post reeive. These operations are also alled \posting standard-mode,nonbloking sends and reeives". Notie here that the post send and reeivealls have the same names as the nonbloking alls exept that they have an`I' preeding their name whih denotes \immediate". This signi�es that theall is nonbloking. By using nonbloking ommuniation one an inrease theperformane of ertain algorithms beause both the sends and the reeives anbe posted without the mathing reeive and send, respetively. The use ofnonbloking reeives allows one to post reeives early and so ahieve lower om-muniation overheads without bloking the reeiver while it waits for the send[7℄. The di�erene when using nonbloking and bloking ommuniation is thatnonbloking ommuniations use tags to allow identi�ation of the ommuni-ation operations. For example, a reeiving proess posts it's reeive with tagQ while the sending operation posts it's send with tag Q. This allows the twooperations to math up with one another.A non-bloking send indiates that data may be opied out of it's bu�erwhere a non-bloking reeive indiates that data may be written to it's bu�er.The send and reeive operations are unable to aess any part of these bu�ersuntil the alls have been ompleted. The prohibition of read aess to the sendbu�er atually allows better performane on some systems.3.3 Synhronous, Bloking SendThe standard MPI nonbloking posting send syntax is -MPI Ssend(buf, ount, datatype, dest, tag, omm)� buf - initial address� ount - number of entries to send4

� datatype - datatype of eah entry� dest - rank of destination� tag - message tag� omm - ommuniatorThis type of send, synhronous mode, an be initiated whether a mathingreeive has been posted. The send only ompletes, suessfully, when a mathingreeive is posted. Therefore, the ompletion of a synhronous send indiates theompletion of a message transfer and that both the sender and the reeiver have�nished exeution.Notie that in the reonstruted algorithms detailed in this paper an initialMPI Ssend is used after all the reeives have been posted. This is to ensure thatthe ommuniation between the nodes is synhronized. If one were to use allReady Sends, desribed in Setion 3.4 then it ould not be ensured that allthe reeives have been posted and one may blatantly send to a proess that hasnot posted all of it's reeives. Therefore by using Ssend synhronization an beensured.The ompletion of a synhronous send indiates that the send bu�er an bereused[7℄3.4 Ready-mode, Bloking SendThe standard MPI nonbloking posting send syntax is -MPI Rsend(buf, ount, datatype, dest, tag, omm, request)� buf - initial address� ount - number of entries to send� datatype - datatype of eah entry� dest - rank of destination� tag - message tag� omm - ommuniator� request - request handleThis type of ommuniation is alled a ready-mode bloking send. It is sodenoted beause a ready mode send may only be initiated if the mathing reeivehas been posted. In essene this allows the removal of a hand-shake betweenthe reeive and send operation sine the reeive is assumed to already havebeen posted. Sine the hand-shake between the ommuniators is removed thisallows an inrease in performane 1. Therefore, every Rsend an be replaed by1On some systems the inreased performane is not visible.5

a \standard-mode" bloking send without any adverse e�ets on the programother than performane. It should be notied that a signi�ant amount ofperformane inrease in the olletive ommuniation algorithms disussed inthis paper attain their inrease in performane from this type of replaement, i.e.replaing the standard mode bloking sends with their respetive non-blokingsend. The other inrease in performane is attained from the early posting ofthe reeives disussed in Setion 3.2.3.5 Colletive CommuniationFrequently, ommuniations involving all proessors are required. Examples ofthis inlude simpler olletive ommuniations like a broadast and more om-plex ones like redue-satter. These operations are implemented by a olletionof individual messages. It is the algorithm hosen to orhestrate these messagesthat determines the time required for ompletion.For the redue-satter operation, MPI supportsMPI Redue satter(sendbuf, revbuf, revounts, datatype,op, omm)� sendbuf - starting address of the send buffer� revbuf - starting address of the reeive buffer� revounts - integer array ontaining the number of itemsto be sent and reeived� datatype - data type of the input buffer� op - the operation to be performed during the redue operation� omm - desriptor of the proessors involved in the ommuniationThis operation (for the ase where the redue is a simple summation) an bedesribed as follows: Initially all proessors have vetors of length n items. Uponompletion, these vetors have been added element-wise, and eah proessorowns approximately 1=p of the total result vetor, where p equals the numberof proessors involved.Let us illustrate this on four proessors:� Before: Proessor 0 Proessor 1 Proessor 2 Proessor 3x(0)0 x(1)0 x(2)0 x(3)0x(0)1 x(1)1 x(2)1 x(3)1x(0)2 x(1)2 x(2)2 x(3)2x(0)3 x(1)3 x(2)3 x(3)3
6

� After: Proessor 0 Proessor 1 Proessor 2 Proessor 3P3j=0 x(j)0 P3j=0 x(j)1 P3j=0 x(j)2 P3j=0 x(j)34 Communiation AlgorithmsThe olletive ommuniation algorithms disussed in this paper entail thosethat allow ommuniation of short and long vetors of information. The spei�algorithm is the redue-satter disussed in Setion 4.1 for the short vetor andlong vetor ases. It turns out that, depending on the amount of data involvedin a olletive ommuniation, a di�erent algorithm is more eÆient. Let usdesribe ommonly used algorithms.4.1 Short-vetor algorithmShort vetor algorithms are so named due to the nature of the size of the databeing transmitted. Basially, short vetor algorithms transmit the data in asmall pakets where long vetor algorithms need to transmit their data in severalsmall pakets. Short vetor algorithms use what is alled a Minimum SpanningTree (MST) approah. MST algorithms inur dlog2(p)e startups due to theirtree like nature. On hyperubes a minimum spanning tree is embedded fromthe node originating the ommuniation whih is denoted as the root.The name of the redue-satter olletive ommuniation suggests imple-menting this operation as a redue-to-one (MPI Redue) followed by a satter(MPI Satter), eah of whih is a olletive ommuniation supported by MPI.MST Redue-to-one :Let us illustrate this on four proessors:� Before:Proessor 0 Proessor 1 Proessor 2 Proessor 3x(0)0 x(1)0 x(2)0 x(3)0x(0)1 x(1)1 x(2)1 x(3)1x(0)2 x(1)2 x(2)2 x(3)2x(0)3 x(1)3 x(2)3 x(3)3
7

� After: Proessor 0 Proessor 1 Proessor 2 Proessor 3P3j=0 x(j)0P3j=0 x(j)1P3j=0 x(j)2P3j=0 x(j)31. Initially all proessors have vetors of length n items. Upon omple-tion, these vetors have been added element-wise where one proessorowns the entire result vetor.2. Redue-to-one is an operation where the vetors of information areinitially loated on every proessor. At the ompletion of the algo-rithm all of the data is on one proessor.3. The ommon algorithm used for a redue-to-one the MST approahwhih leads to a ost ofdlog2(p)e(�+ n� + n):[MST Satter℄: Let us illustrate this on four proessors:� Before:Proessor 0 Proessor 1 Proessor 2 Proessor 3x(0)0x(0)1x(0)2x(0)3� After: Proessor 0 Proessor 1 Proessor 2 Proessor 3x(j)0 x(j)1 x(j)2 x(j)31. Initially, one proessor holds the entire vetor of length n items. Uponompletion, eah proessor owns approximately 1/p of the total resultvetor, where p equals the number of proessors involved.2. The Satter operation is implemented using an MST approah. Theost assoiated with it is:dlog2(p)e(� + p� 1p n�)8

One would expet the estimated ost of a redue-satter to be that of a redue-to-one plus that of a satter.dlog2(p)e(�+ n� + n) + dlog2(p)e�+ p� 1p n�4.2 Long-vetor AlgorithmsWhen implementing long vetor algorithms the goal is to ahieve the optimal� term. The algorithms presented herein may not be the most eÆient imple-mentations for all arhitetures but the simple approah used guarantees thatthere are no network onits.Redue-satter long vetorAt every step the ontribution to the loal data has to be added before theontents an, then, be passed along. If all nodes reeive the same amount ofdata at the end of the redue-satter, the ost is(p� 1)(�+ np � + np) = (p� 1)�+ p� 1p n� + p� 1p n:An illustrated piture is given in Figure 1. In that �gure a notation ofPk=i:j x(k)n is introdued. Here, n is the data number and k is the proessornumber. The i is the beginning index into the proessors and j is the endingindex. Notie that there may be some wrapping around of the numbers. i.e i =3, and j = 0 whih indiates 3,.., p-1 , 0.4.3 Comparing the two approahesReall that the ost of the short-vetor algorithms has a ost of2dlog2(p)e�+ (dlog2(p) + p� 1p)n� + dlog2(p)enwhere the long-vetor algorithm has a ost of(p� 1)(�+ np � + np) = (p� 1)�+ p� 1p n� + p� 1p n:It is important to note that there is a ritial hoie to be made when hoos-ing between the two di�erent approahes. The MST algorithm is intended foruse with short vetors of data where the buket algorithm is intended for usewith long vetors of data. Of ourse one ould blindly use one algorithm oranother but the onsequene of this is one that leads to very poor performane.
9

Pro. 0 Pro. 1 Pro. 2 Pro. 3x(0)0 x(1)0 x(2)0 x(3)0 x(0)1 x(1)1 x(2)1 x(3)1x(0)2 x(1)2 x(2)2 x(3)2x(0)3 x(1)3 x(2)3 x(3)3Pro. 0 Pro. 1 Pro. 2 Pro. 3x(0)0 x(1)0 Pk=2:3 x(k)0x(1)1 x(2)1 Pk=3:0 x(k)1 Pk=0:1 x(k)2 x(2)2 x(3)2x(0)3 Pk=1:2 x(k)3 x(3)3Pro. 0 Pro. 1 Pro. 2 Pro. 3x(0)0 Pk=1:3 x(k)0x(1)1 Pk=2:0 x(k)1x(2)2 Pk=3:1 x(k)2 Pk=0:2 x(k)3 x(3)3Pro. 0 Pro. 1 Pro. 2 Pro. 3x(0)0 Pk=1:3 x(k)0x(1)1 Pk=2:0 x(k)1x(2)2 Pk=3:1 x(k)2 Pk=0:2 x(k)3 x(3)3Pro. 0 Pro. 1 Pro. 2 Pro. 3Pk=0:3 x(k)0 Pk=1:0 x(k)1 Pk=2:1 x(k)2 Pk=3:2 x(k)3Figure 1: Buket algorithm for long-vetor Redue-satter
10

4.4 Further OptimizationsWithout Preposting ReeivesAs desribed above the short-vetor algorithms has a ost of2dlog2(p)e�+ (dlog2(p) + p� 1p)n� + dlog2(p)en. This ost is redued by preposting reeives. A disussion follows.Preposting ReeivesBy preposting the reeives we derease the number of handshakes that is re-quired to perform eah send operation. If we have v send operations then wehave 3v handshakes if we do not prepost reeives. Sine in our improved im-plementations of the algorithms we do prepost the reeives then there is onlya ost inurred of v handshakes per operation. This leaves us with a 2v hand-shake improvement. This 2v handshake improvement is gained from Setions3.2 and 3.4 as was disussed previously. Modeling the formulas presented abovewe an aount for this improved performane, where �light is the new improvedstartup ost assoiated with the dereased handshakes. Therefore the ost ofthe short-vetor algorithm is now:2dlog2(p)e�light + (dlog2(p) + p� 1p)n� + dlog2(p)enand the ost of the long vetor algorithm is now:(p� 1)(�light + np � + np) = (p� 1)�light + p� 1p n� + p� 1p n:Notie that given two di�erent data distributions there is a ritial hoie tobe made to determine whih algorithm is to be used. The hoie is dependenton the data volume, i.e whether there is a short-vetor of data or a long-vetorof data.5 PerformaneHere we desribe the performane of the implementation of the algorithms. Thearhiteture on whih the implementation was ran is presented followed by theresults attained from that arhiteture. The results are presented in two typesof graphs both linear and loglog.5.1 Target ArhitetureThe primary target arhiteture is a 300 node system onsisting of the following.1. Primary 2650 2-Way Compute nodes11

� Vendor Dell� Arhiteture 2650 Server� Number of proessors per node 2� Operating System: Linux (RedHat 7.3, 2.4 kernel)� Proessor 2-2.4GHz Pentium 4 Proessors(a) Main memory size: 1024M-bytes(b) Instrution ahe size: 16K-bytes() Data ahe size: 16K-bytes(d) Seondary uni�ed instrution/data ahe size 512K-bytes� Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)2. Seondary 6650 4-way SMP nodes� Vendor Dell� Arhiteture 6650 Server� Number of proessors per node 4� Operating System: linux (RedHat 7.3, 2.4 Kernel)� Proessor Desription 4 1.6 Ghz Pentium 4 Proessors, Main memorysize: 4096M-bytes, Instrution ahe size: 16K-bytes, Data ahesize: 16K-bytes, Seondary uni�ed instrution/data ahe size: 256K-bytes, O� hip level 3 ahe size: 1MB� Myrinet 2000 M3F-PCI-64C Network Card(2Gb/s)5.2 ResultsHere we desribe the graphs presented in Figures 2 through 7.Long-vetorIn Figure 2 through Figure 7 the results of the long-vetor algorithm areshown. Figure 2 presents the results for 128 proessors and Figure 6 presentsthe results for 32 proessors. The results are shown in the �gures for the numberof proessor being that of 128, 64, and 32. In the odd numbered �gures, i,e, 1,3, and 5, the results are presented linearly. In the even numbered �gures, i.e.2, 4, and 6, the results are presented in a loglog graph. Notie the performanein the algorithms are muh better demonstrated in the even numbered (loglog) graphs.� The send-min line is the time for a \boune". This is the shortest possibletime for ommuniation between two nodes using the bloking send andreeive alls.� The line labeled 'MPI' is for the MPICH publi domain implementation.This is the implementation that was used in omparison of our implemen-tations of the algorithms. 12

� The line labeled 'Buket' is for the implementation used from previousresearh onduted by Dr. Robert van de Geijn. The implementation wasused as a base for our researh in this paper.� The line labeled 'Buket, optimized' is the line signifying the improvedimplementation.Looking at Figure 7 one will notie the signi�ant di�erene between the'Buket'(1) and the 'Buket-optimized'(2) lines. The di�erene between (1) and(2) for very short vetor lengths is approximately a fator of 2. This diretlyorresponds with our disussion of the derease in the number of handshakes. Asthe vetor length grows towards the limit one will notie that the algorithms tendto onverge toward one another, beause the � term beomes less signi�ant.Also notie, around message length of 102:5 there is an jump in the graph for (1).This is due to the fat that MPI, for short message lengths, alloates a bu�erspae that holds messages of the requested length. Therefore, the jump is ausedfrom the fat that a new bu�er spae has to be alloated to hold the longermessage lengths. There is not a jump in (2). This is in diret orrespondenewith the fat that by preposting the reeives that the bu�er spae is alreadyassumed to be alloated. At message length of 103 the performane inrease isnow twie as muh as before.It should be notied that by reduing the number of handshakes in theimplementations that there is a fator of two di�erene. This orresponds tothe �light term given in our analysis. In the limit one would expet for allimplementations to have the same performane.6 ConlusionOur researh has shown that by taking an already existent algorithm and mod-ifying the types of sends and reeives one an attain a signi�ant performaneinrease. The researh also shows that the algorithms whih we have imple-mented are better than vendor supplied algorithms. The algorithms presentedare part of a large lass of ommuniation algorithms for whih there have beenshown eÆient tehniques for implementing these algorithms. Some of thesetehniques have been desribed. The improvement in the performane of thesealgorithms was attained through a hange in the way the proessing of thedata was performed. Therefore, it has been shown that given a set of eÆientalgorithms implemented on a distributed-memory multidimensional-mesh ar-hiteture, a signi�ant improvement in performane an be attained throughthe use of speial types of send and reeive messages. It should be noted thatthe vendor-supplied algorithms have still been unable to attain the same per-formane as the algorithms without the adjustments made. This is true eventhough a signi�ant amount of papers on the subjet have been published overthe past deade. 13

