
A Heap-Based Optimal Inversions-SensitiveSorting Algorithm �Undergraduate Senior Honors Thesis - Srinath SridharSupervising Professor: Vijaya RamahandranApril 18, 2003We introdue a heap-based sorting algorithm that makes n lg(I=n) +O(n lg lg(I=n) + n) omparisons and runs in time O(n lg(I=n) + n), whereI is the number of inversions in the input sequene and n the number ofitems to be sorted. The oeÆient 1 in the leading term for the number ofomparisons mathes the information-theoreti lower bound. The algorithmis simple and uses elementary data strutures.1 IntrodutionWe onsider the problem of designing a sorting algorithm that is adaptive tothe pre-sortedness in the input sequene as measured by the number of in-versions. Adaptive algorithms are partiularly useful when handling applia-tions where input sequenes are partially sorted. Mannila [Ma85℄ formalizedthe onept of presortedness, and identi�ed the number of inversions as animportant measure.We assume the input sequene X =< x1; x2; � � � ; xn > has distint keys.An inversion is an ordered pair (i; j), where xi > xj and i < j. Hene thetotal number of inversions in X isI = Inv(X) = jf(i; j)j1 � i < j � n and xi > xjgj�Supported in part by Undergraduate Researh Opportunities Program (UROP) atUT-Austin for whih funding was provided by Ciso Systems and Protor & Gamble.Srinath Sridhar is also a reipient of the Nortel Networks sholarship.1

The information-theoreti lower bound on the number of omparisonsrequired to sortX was shown to be n lg(I=n)+O(n)1 in [GMPR77℄. Hene analgorithm is time-optimal if it runs in O(n lg(I=n)+n). It is well-known thattrying to measure the atual onstants involved in an algorithm is not useful.However the number of omparisons performed by an algorithm remainsinvariant aross di�erent mahines and platforms. For operations suh assorting big reords or �les, omparisons onsume signi�ant amount of time.This makes measuring the number of omparisons performed by an algorithmimportant.In this paper, we desribe a new time-optimal algorithm that makesn lg(I=n) + O(n lg lg(I=n) + n) omparisons. This is an optimal algorithmfor inversions-sensitive sorting in the sense that it is time-optimal and thenumber of omparisons it performs mathes the information-theoreti lowerbound up to lower order terms. (To be preise, the number of omparisonsperformed by our algorithm is optimal with respet to its leading term andnear optimal with respet to the seond term. This is explained in the fol-lowing setion.)2 Earlier ResultsAdaptive sorting using the �nger trees data struture introdued in [GMPR77℄,was the �rst inversions-sensitive time-optimal sorting algorithm. Mehlhorn[Me79℄ introdued an algorithm with the same time bounds as �nger trees.Both of these algorithms are onsidered impratial. As summarized by El-masry [El02℄, other algorithms that are time-optimal and inversions-sensitiveare Bloksort [LP96℄ whih runs in plae and tree-based Mergesort [MEP96℄whih is time-optimal with respet to several other measures of pre-sortedness.Splitsort [LP91℄ and adaptive Heapsort [LP93℄ require 2:5n lgn omparisons.Splaysort by repeated insertions [ST85℄ is another time-optimal algorithmshown in [MPW98℄ to be pratially eÆient. A survey of adaptive sortingalgorithms is given in [Ca92℄.Elmasry [El02℄ introdued Binomial and Trinomial Sort algorithms. Bi-nomial Sort algorithm requires 2n lg(I=n)+O(n) omparisons and TrinomialSort algorithm requires 1:89n lg(I=n) + O(n) omparisons. The algorithms1For the rest of the paper we use lg to denote log22

use strutures similar to binomial and trinomial heaps. However there ap-pears to be a major problem with the `glue' step in Binomial Sort. In thiswrite-up, we orret this error and also redue the number of omparisons.We desribe an algorithm that makes n lg(I=n)+O(n lg lg(I=n)+n) om-parisons and is time-optimal. Our algorithm is based on Binomial Sort [El02℄,but we hanged the invariants, modi�ed some of the proedures and removedthe problemati glue step. We have also added new omponents to improvethe upper bound on omparisons. Therefore, we desribe our algorithm fromsrath.Very reently Elmasry and Fredman have developed an optimal (time andomparisons) inversions-sensitive sorting algorithm [EF03℄. The number ofomparisons performed by their algorithm is n lg(I=n) + O(n). It is basedon an insertion sort approah. From a theoretial stand point, both ouralgorithm and the Elmasry-Fredman algorithm ahieve the oeÆient 1 inthe leading term for omparisons. Their algorithm has a better lower orderterm. However, we note that [EF03℄ state that they have insetion-sort andmerge-sort based approahes. They however do not refer to any heap-basedalgorithm. Our algorithm is heap-based. Also, [EF03℄ refer to the TrinomialSort algorithm in [El02℄ as a pratial algorithm, and they ask for a pratialalgorithm that is ompetitive in the worst-ase with the best non-optimalalgorithms. Sine our algorithm is arguably simpler than Trinomial Sort, itould serve as a andidate for a pratial, optimal adaptive sorting algorithm.Also our algorithm is based on very simple data strutures, and our resultsare entirely self-ontained. In ontrast, the algorithm in [EF03℄ uses the moreinvolved data struture in [AL90℄. (We do not know whether our algorithmis ompetitive in the strong sense asked by Elmasry and Fredman. This willrequire experimentation).3 The Main Algorithm3.1 An Overview of the AlgorithmA high-level desription of the algorithm is given in pseudo-ode 1. Termsand details are desribed later. The onept of an Inv-Adaptive transform[El02℄ is explained in setion 3.2.2. The `Orale' mentioned in lines 2 and3 is treated as a blakbox in this setion, and is desribed and analyzed in3

setion 4 and 5.3.1.1 Pseudo-ode 1: A High level desription1. Perform an Inv-Adaptive Binomial Build-Heap to obtain a binomialheap P , with at most lgn roots, plaed in the \root-list".2. Initialize an Orale that return the root-node with the minimum key.3. Loop for n times. (Main Loop)(a) w := find-min(Orale), print key(w)(b) Delete w from root-list and perform fix-up step() Update Orale3.2 Terms3.2.1 Binomial QueueA rank k binomial tree Bk [Vu78℄ is de�ned reursively. The rank of abinomial tree is equal to its height and the rank of a node in a binomial treeis equal to the height of the subtree rooted at that node. B0 is a single nodetree. Tree Bk onsists of 2 opies of Bk�1 linked together making the root ofone of the trees, the rightmost hild of the other. We will use binomial treeswith the following properties for Bk, a rank k binomial tree:1. There are 2k nodes.2. The height of the tree is k3. The root has k hildren and if the hildren of the root are numberedfrom left to right by 0; 1; � � � ; k � 1, hild i is the root of subtree Bi.4. There are max(1, 2k�i�1) nodes of rank i in a binomial tree Bk where0 � i � kA binomial queue [Vu78℄ has the struture of a binomial tree. Assoiatedwith eah node is a key, and heap property is maintained. We assume a4

good implementation of a binomial queue, where onstant time aess to theleftmost hild, rightmost hild and the right sibling of a node is possible.Properties 1-3 are well known and an be found in Algorithms books suhas [CLRS01℄. We show the proof for the 4th property of Binomial Trees.Proof by Indution (of the 4th property of binomial trees): B0 hasone node of rank 0. Tree B1 has one node of rank 1 and 1 node of rank 0.By indutive hypothesis let the above property be true for all trees Bk wherek � p�1. Now onsider Bp. It is omposed of two Bp�1 trees linked together.The root of Bp is the only node whose rank is inreased (from Bp�1). Therank of the root of Bp is one greater than the rank of the root of Bp � 1.Now onsider any i, 0 � i � p� 2. By indutive hypothesis, the number ofnodes of rank i on eah of the two Bp�1 trees is 2p�1�i�1. Hene, the numberof nodes of rank i on Bp�1 is 2p�i�1. There is only one node of rank p � 1and only one node of rank p. This ompletes the proof by indution.3.2.2 Inv-Adaptive Transformation:Given a forest F of rooted ordered trees with a key at eah node, Pre(F) isde�ned as the pre-order traversal of F . The trees and the hildren of a nodeare traversed in left to right order. A transformation on F that results in F 0is alled Inv-Adaptive if the number of inversions in Pre(F 0) is no more thanthe number of inversions in Pre(F) [El02℄.3.3 Basi Steps3.3.1 Heapify:This operation is performed at a root when the heap property holds at allnodes of the queue exept the root. Heapify amounts to sinking the keyat the root to the orret position. We now desribe the version of heapifygiven in [El02℄. In order to perform heapify, we maintain at eah node apre�x minimum pointer (pm), pointing to the node with the minimum keyamong its left siblings. Heapify starts by �nding the path from the root tothe leaf, where every node has the smallest key among its siblings. This isdone by following the pm pointers of the rightmost hild at eah level. The5

key value of the root is ompared to nodes of the minimum path in a bottom-up manner. The key of the root is inserted in the appropriate position andall the keys above this position are shifted up. The pm pointers are updated.The number of omparisons required for this proedure is lg k + 1, where kis the size of the tree [El02℄. Sine for nodes in the minimum path, eitherthe pm pointer is updated or a omparison with the root is made, but notboth. The length of the minimum path and the number of right siblings tothe nodes in the minimum path adds up to lgn.We use the above method with one hange. We plae the hildren of eahroot on a heap instead of maintaining pm pointers. This heap is updatedduring heapify. With this addition the number of omparisons made duringheapify is inreased to lgn+1+O(lg lgn), but the bene�t is that we an alsoperform a onstant number of insertions and deletions on this heap within thesame bound. The reason for performing heapify in this manner will beomelear later.3.3.2 Build-Heap:This operation is performed in step 1 to onvert the input sequene of nitems into a binomial queue. To build a binomial queue Bk, we �rst link twoBk�1 roots without a omparison by making the right root, the rightmosthild of the left root. If the key of the root of the right queue is smallerthan the key of the root of the left queue, then the two values are swappedand a heapify is performed on the root of the right queue. This swap istherefore Inv-Adaptive. The number of omparisons needed to build a heapis de�ned by the reurrene: B(n) = 2B(n=2) + lgn + 2 and B(2) = 1,hene B(n) = �(n):3.4 Pseudo-rank, Invariants and LightnessAssoiated with eah node is a non-negative integer pseudo-rank. The pseudo-rank rx of a node x is an approximation to its binomial rank. This is similarto, though not the same as, the `pseudo-rank' in [El02℄.The following invariants will hold at the start of eah iteration of theMain Loop (step 3 of pseudo-ode 1).Invariant 1: For all roots x, rx is stritly greater than the pseudo-ranks ofall the roots in the root-list to the left of x.6

Invariant 2: A root of pseudo-rank r has hildren with onseutively in-reasing pseudo-ranks from 0 to r � 2, r � 1 or rInvariant 3: If a hild of the root has pseudo-rank r, then its struture isidential to either Br or Br�1.Invariant 4: For any node x that is neither the root nor the hild of theroot, the sub-tree rooted at x is a binomial tree and its pseudo-rank equalsits binomial-rank.A root node of pseudo-rank r is a light node if its rightmost hild has pseudo-rank r � 2. A hild of a root is a light node if its pseudo-rank is one greaterthan its binomial rank. (A leaf is never light.) All other nodes are normalnodes. Initially, when we have a olletion of binomial trees, the pseudo-rank equals the binomial rank for every node, hene all nodes are normal,and invariants 1-4 hold.Lemma 1: If x is the root of any tree T , then 2rx�2 < size(T) � 2rx+1.Proof: The quantity size(T) is maximized when x has hildren of pseudo-ranks 0 through rx and all the hildren are normal nodes. Therefore, size(T) =1+20+21+ :::+2rx = 2rx+1. The quantity size(T) is minimized when x hashildren of pseudo-ranks 0 through rx�2 and all the hildren are light(exeptthe node of pseudo-rank 0). Hene, size(T) = 1 + 1+ 20 + 21 + :::+ 2rx�3 =1 + 2rx�2.[℄3.5 Fix-upA root node, say w, has been removed. The goal of �x-up is to proess thehildren of w, so that we an merge new roots into the root-list while main-taining invariants 1-4. The �x-up step performs two operations: Combine(to enfore invariant 2) and Fusion (to enfore invariant 1). Pseudo-ode 2desribes the �x-up step. The Combine and Fusion pseudo-odes are alledduring the �x-up routine.3.5.1 Pseudo-ode 2: Pre-proessing for �x-upReall that P is the Inv-adaptive heap whih was built in step 1 of pseudo-ode 1; w is the node deleted in the Main Loop; For node x, let kx denoteits key. 7

1. x := root to the immediate left of w in the root-list of P before w'sdeletion2. If x does not exist then merge the remaining hildren of w as roots intothe root-list of P and return3. else do(a) y := leftmost hild of w(b) De�ne Working Forest WF :=sub-list of siblings of y up to eitheri. node with pseudo-rank rx + 1 if present, elseii. node with pseudo-rank rx if present, elseiii. the node with pseudo-rank rx � 1() If WF ontains only one node (whih is y) then doi. If x ontains hildren then perform fusion step (pseudo-ode4)ii. else do (this is a speial ase of fusion)A. Make x the parent of y and update CxB. If kx > ky then swap the two keys(not nodes). �.C. rx := 1 and merge x and the remaining hildren of w asroots into the root-list of P(d) else perform ombine step (pseudo-ode 3)3.5.2 Pseudo-ode 3: Combine1. ry := rx + 1 and make y the parent of all the other nodes of WF2. Convert Cw to Cy.3. Traverse through the nodes in WF to �nd the �rst normal node h4. If h is found then do(a) Derease the pseudo-ranks of all left siblings of h by 1(b) s := the rightmost hild of h8

() Splie out the sub-tree rooted at s and make it the immediateright sibling of h(d) rs := rh; rh := rh � 1 and update Cy5. else(a) Derease the pseudo-ranks of all hildren of y by 1(b) Case 1: Rightmost hild of y has pseudo-rank rxor Case 2: Rightmost hild of y has pseudo-rank rx � 1ry := rx + 1() Case 3: Rightmost hild of y has pseudo-rank rx � 2Perform heapify and fusion on y and return.6. Perform heapify on y7. Merge the new roots reated during the ombine/fusion steps and theother hildren of w as roots into the root-list of P3.5.3 Pseudo-ode 4: Fusion1. z := the rightmost hild of x2. Case 1: rz = rx � 2(a) If kx > ky then doSwap the keys (not nodes) of x and y and perform heapify ony(b) ry := rx � 1 and make y the rightmost hild of x and update Cx3. Case 2: rz = rx � 1(a) If kx > ky then doSwap the keys (not nodes) of x and y and perform heapify ony(b) ry := rx and make y the rightmost hild of x and update Cx4. Case 3: rz = rx 9

(a) Splie out the sub-tree rooted at z, make z a new root and initializeCz.(b) If kz > ky then doSwap the keys (not nodes) of z and y and perform heapify ony() Case a: z has struture Brxry := rx, y := the rightmost hild of z, rz := rx + 1; updateCz(d) Case b: z has struture Brx�1ry := rx�1, y := the rightmost hild of z, rz := rx+1; updateCz3.6 CorretnessInvariants 1 through 4 hold at the start of the �rst iteration of the Main Loop,when the root-list of P is a olletion of binomial trees. In pseudo-ode 2,sine rw � rx + 1, by Invariant 2, w has a hild of pseudo-rank rx � 1, andhene WF ontains nodes of pseudo-ranks 0; � � � ; r, where rx�1 � r � rx+1.We now argue that the invariants are restored after Combine and Fusion, andhene after Fix-up. Step 3()(ii)C in Pseudoode 2 is analyzed at the end ofthis setion.3.6.1 Combine:A new root y is reated at the end of ombine. We show that ry does notviolate invariant 1 and that hildren of y preserve invariants 2 and 3.Case when h is found (line 4): After y was made the root, its hildren formedan inreasing sequene of pseudo-ranks 1, 2, � � �, rh�1, rh, rh+1, � � �. Whenthe pseudo-ranks of all the nodes to the left of h is dereased by 1, thesequene of pseudo-ranks beomes 0, 1, 2, � � �, rh � 2, rh, rh + 1, � � � Toresolve the di�erene of 2 in pseudo-rank between h and its left sibling, wesplit h in suh a way that we ould assign rh�1 to one part and rh to another.Sine h was a normal node, its struture is idential to Brh. The sub-treerooted at s has the struture of Brh�1. This allows us to assign the sub-treerooted at s pseudo-rank rh and make it a light node. The remaining sub-tree10

rooted at h has struture of Brh�1 and an be given a pseudo-rank rh � 1.Hene the split obeys invariant 3. This restores the inreasing sequene ofpseudo-ranks. Hene invariant 2 is also maintained. Even if the last hild ofy has pseudo-rank ry�2 and gets split, it would beome a light node of rankry � 2. This preserves invariants 1-4.Case when h is not found (line 5): If the rightmost hild of y has pseudo-rank rx or rx � 1, we an assign y pseudo-rank rx + 1 without violatinginvariant 2. If the rightmost hild of y has pseudo-rank rx � 2 then weannot assign y pseudo-rank rx + 1. In this ase we perform a fusion step.3.6.2 Fusion:Lemma 2: If a new root of tree T with pseudo-rank r is reated, size(T) �2r�1. (In other words, the new root is either a normal node, or a light rootof a binomial tree Br�1)Proof: Below along with the rest of the orretness, we disuss the aseswhen new roots an be reated and show that this property is true. This isin ase 3 in fusion and in the setion on merging new roots.[℄Lemma 3: If a fusion step is required then the tree rooted at node y is abinomial tree of pseudo-rank rx � 1.Proof: A fusion step is required only if all the hildren of y were found tobe light. Therefore using invariant 3, we an say that the sub-trees rooted atthe hildren of y (after ombine & before fusion) have strutures B0; � � � ; Br,where r = rx�2 or rx�1 or rx. Now, all the hildren of y are normal nodes.Moreover, if the fusion step is required then the hildren of y need to forma sequene of B0; � � � ; Brx�2 . Therefore, y would have struture Brx�1, abinomial tree with pseudo-rank = binomial-rank = rx � 1.[℄We now prove the orretness of the di�erent ases of fusion step. Weshow that nodes rx and rz do not violate invariant 1. The hildren of x andz ould hange during fusion. We show that invariants 2 and 3 hold for allhildren of x and z. We also show that z does not violate Lemma 2.Case 1: rz = rx� 2. If kx > ky then swapping the two keys is Inv-adaptive.This is beause ky is smaller than the keys of all desendants of x and y.Hene shifting the key of y to the �rst plae among trees rooted at x and yan only redue inversions. Heapify is inv-adaptive. Making y the rightmosthild of x does not hange the pre-order traversal, and so is inv-adaptive.Sine y has the struture Brx�1, assigning it pseudo-rank rx � 1 preserves11

invariants 2 and 3.Case 2: rz = rx� 1. This ase is similar to ase 1, the only di�erene beingthat y is assigned pseudo-rank rx. This makes y a light node. Invariants 2and 3 are preserved.Case 3: rz = rx. Spliing out z and making it a new root does not hangethe pre-order traversal and therefore is inv-adaptive. Sine z was a hild ofthe root, by invariant 3, the sub-tree rooted at z is binomial.Case 3a: z has struture Brx. Sine we inrement rz to rx + 1, it is allowedto have hildren with pseudo-rank up to rx + 1. We assign y pseudo-rank rxand make it the rightmost hild of z. This preserves invariant 2. Invariant3 is preserved sine y is a binomial tree Brx�1. Before being fused with y, zwas the root of a binomial tree Brz . Hene the size of the tree rooted at z is� 2rz . This preserves Lemma 2.Case 3b: z has struture Brx�1. We assign y pseudo-rank rx � 1 whih is 2lower than rx + 1. Hene invariant 2 holds. Invariant 3 holds sine y is rootof a binomial tree Brx�1. The size of the tree rooted at z before being fusedwith y is 2rx�1 and size of the tree rooted at y is 2rx�1. Therefore, size ofthe new root z after fusion is 2rx (This tree is a binomial tree Brx). HeneLemma 2 holds.3.6.3 Merging new rootsIn step 3()(ii)C of pseudo-ode 2 and at the end of the ombine, we mergethe new roots into the root-list. Eah hild of w that lies outside WF hasthe property that rx+1 < r < rw+1. This is beause if r � rx+1 it wouldbe a part of WF . Also r � rw by invariant 2. The root reated during theombine and fusion is a root of pseudo-rank rx + 1. The �rst root to theright of w (before its deletion) has pseudo-rank > rw. Hene the new rootreated in ombine/fusion and the other hildren of w an be merged intothe root-list without violating Invariant 1.Also onsider any hild of w that lies outside WF and beomes a newroot. Let it have pseudo-rank r. By invariant 3, has the struture of Bror Br�1. Hene the size of the sub-tree rooted at is � 2r�1. This preservesLemma 2.
12

3.7 Time Complexity Analysis3.7.1 Analysis of Combine:Consider the jth iteration of the Main Loop. We perform one heapify op-eration on a tree of pseudo-rank rx + 1. By Lemma 1, this takes less thanrx + 3 + O(lg rx) omparisons. Now kw < kx < kz where z is any desen-dant of x. Hene by Lemma 1, there are at least 2rx�2 = Ij (say) inversionsassoiated with w. Hene, rx + 3 +O(lg rx) = lg(Ij) + 5 +O(lg lg Ij)Hene, total number of omparisons over the entire algorithm for theombine operation is bounded by Pj=nj=1 (lg(Ij)+O(lg lg(Ij))+5): For a onvexfuntion f(x) and for any funtion p(x) with for all x, 0 � p(x) � 1 andP p(x) = 1, aording to Jensen's inequality,Xx p(x)f(x) � f(Xx p(x)x):Using the onvexity of � lg(x) we get,x=nXx=1 (1=n)(� lg(Ix)) � � lg(x=nXx=1 (Ix)=n)x=nXx=1 (1=n)(lg(Ix)) � lg(x=nXx=1 (Ix)=n)x=nXx=1 (lg(Ix)) � n lg(x=nXx=1 (Ix)=n)� n lg(I=n)sine I1 + I2 + ::: + In � I.Similarly Using the onvexity of � lg lg(x) we get,x=nXx=1 (1=n)(� lg lg(Ix)) � � lg lg(x=nXx=1 (Ix)=n)x=nXx=1 (1=n)(lg lg(Ix)) � lg lg(x=nXx=1 (Ix)=n)x=nXx=1 (lg lg(Ix)) � n lg lg(x=nXx=1 (Ix)=n)� n lg lg(I=n)sine I1 + I2 + ::: + In � I.Therefore the entire time is bounded by n lg(I=n) +O(n lg lg(I=n)) + 5n13

3.7.2 Analysis of Fusion:In the Fusion step we perform at most one heapify operation, one initializa-tion of C and one update of C on a tree with pseudo-rank rx. This requiresless than 2rx + 4 + O(lg rx) omparisons. The O(lg rx) terms omes fromupdating the C heap. The fusion step ours only in the ase when y hadlight hildren of pseudo-ranks from 1 to rx � 1. Using Lemma 2, we an saythat there should have been a root of pseudo-rank rx+1 in the root-list of Pfor 2rx�2rx�1 = 2rx�1 deletions and no fusion ould have taken plae on thistree. Borrowing a onstant from eah of these deletions would be suÆientto pay o� for the omparisons performed during the fusion step. Hene, allfusion steps during the algorithm would require only O(n) omparisons.3.7.3 Initialization of the C heaps:For any root x, Cx is a separate heap ontaining its hildren. It takes O(lg k)time to initialize Cx if the size of the subtree rooted at x is k. Durin Fix-upwe need to update Cw so that it orresponds to Cy. This an be done byperforming multiple deletes for eah of the hildren of w that are not hildrenof y from highest to lowest pseudo-ranks. The analysis for the total numberof omparisons required for the initialization of all C's is deferred until ase1.2 of setion 5.4, where we prove that this is linear.Elmasry [El03℄ has pointed out to us a di�erent approah that does notuse the C heaps, but instead slightly modi�es the way a node is promotedas a root during the ombine step, as follows. After the root is removed,in the above desription a node of pseudo-rank 0 (node y) beomes the newroot (line 1 of pseudo-ode 3). Instead of this, we ompare the keys of yand the right sibling of y and promote the node with the larger key. Thisway, the pre�x-minima pointers of the other right siblings of y need not beupdated. Though this operation is no longer Inv-Adaptive it an reate atmost n inversions during the ourse of the algorithm and therefore would nota�et the time-omplexity.4 A Simple OraleIn setion 3 we treated the orale as a blak-box and desribed the algorithm.We now provide two di�erent tehniques to realize the orale. In this setion14

we desribe a simple method that is optimal when the number of inversionsin the input is !(1)n lg lgn. This sets up the basi idea whih is used in themain orale, desribed in setion 5, to ahieve optimal bounds in general.The main idea in the simple orale to arrange the nodes of the root-listin a seondary binary heap S. The reason for performing the right to leftinremental pairing pass in the Binomial Sort algorithm [El02℄ was to �ndthe node with the minimum key. By arranging the nodes in S, the strutureof P beomes more rigorous.4.1 Desription of the Sorting Algorithm Using a Sim-ple OraleWe now go bak to pseudo-ode 1. Lines 1 and 2 are self-explanatory.Wenow walk through one iteration of the loop in lines 3-7. In line 4, the rootw in the root-list of P is found by querying the Orale. Line 5 performs the�x-up step. Sine the �x-up ould reate new roots, the Orale is updatedin line 6.Time taken by the algorithm is the sum of the time taken for all the �x-up steps and the time taken for updating the Orale. It is assumed that theorale an answer eah query in onstant time. The number of omparisonssimilarly is the sum of the number of omparisons spent over all the �x-upsteps and the number of omparisons for updating the Orale.4.2 Desription and Analysis4.2.1 Initialization:We just insert all the roots into S one by one. Time for eah insertion intoS is bounded by O(lg lgn). There an be at most lgn nodes in the root-list.Therefore the total time for initializing the Orale is O(lgn lg lgn).4.2.2 Updates:If w has no hildren, then it an be removed from P by hanging its key valueto 1 performing a heapify operation. This would take time O(lg lgn). If whas hildren then we handle three ases.15

Case 1: The root-list of P ontains x, a new root w' with rw0 = rx+1 andnew roots to the right of w0.Case 2: The root-list of P ontains x, whih was fused together with ahild of w. No new roots are to the right of x.Case 3: The root-list of P ontains x, a new root z that was formerly ahild of x and w' was fused into z. No new roots are present to the right of zCase 1: The minimum heap node of S, w is now replaed with w0. A heapifystep on S is performed so that w0 sinks to its orret loation in S. The newroots to the right of w0 in P are inserted into S.Case 2: During the fusion step the key of x in P ould have hanged. Thevalue kx ould have only dereased. Hene we perform a derease-key oper-ation in S on the node x. The �rst new root is inserted into S by hangingthe node w and performing a heapify on S. Other new roots are inserted innormal manner into S.Case 3: The minimum heap node of S, w is now replaed with z. A heapifystep on S is performed so that z sinks to its orret loation in S. The newroots to the right of w0 in P are inserted into S.The analysis is quite straight-forward. A node is inserted into S at mostone. This implies that the time spent and the number of omparisons onall the heapify operations is O(n lg lgn). Also, at most one derease-key orone delete (implemented by hanging key to 1 and performing a heapify)operation might be performed during eah iteration of the loop. The totaltime and number of omparisons for all the derease-key/delete operationsis bounded by O(n lg lgn). Hene the bound on the time/omparisons forthe entire Orale is O(n lg lgn). Using this Orale the new algorithm wouldrequire at most n lg(I=n) +O(n lg lgn) omparisons.4.2.3 Optimality:If the number of inversions I > n lg!(1) n, thenI=n > lg!(1) nlg(I=n) > !(1) lg lgnn lg(I=n) > !(1)n lg lgn16

In this ase, the above algorithm runs in optimal time. Moreover thenumber of omparisons is n lg(I=n)+o(n lg(I=n)) whih ahieves the onstantoeÆient 1 in the leading term, mathing that of the information theoretilower bound.5 The Main OraleThe Orale is used in steps 2 and 3 of pseudo-ode 1 to extrat the minimumkey in eah iteration of the Main Loop. In this setion we desribe andanalyze the Orale.Reall that the primary heap P is the main heap that is used in pseudo-ode 1. In the Orale we use seondary binary heaps S[1 � � � lg lgn + 1℄,ontaining the keys at the roots of the trees in P . We also use tertiarybinary heaps T [1 � � � lg lg lgn + 1℄, ontaining the keys at the roots of heapsin S.5.1 Desription and InitializationThe roots of the binomial queues in P are divided into lg lgn + 1 groups.Group i ontains roots of P that have pseudo-ranks in the interval [2i�1; 2i).This is maintained as an invariant throughout the algorithm. The (lg lgn +1)th group ontains roots of pseudo-rank up to 2lg lg n = lgn. Sine themaximum pseudo-rank of a root is lgn, lg lgn + 1 groups are suÆient toinlude all the roots. We plae the roots in group i in a binary heap S[i℄. Wenow reate a new list `higher-list' of nodes orresponding to the minimum keyof eah group. We de�ne a olletion i to be the set of all nodes in higher-listof pseudo-ranks in [22i�1 ; 22i). The Tertiary binary heap T [i℄ ontains nodesin olletion i and also the minimum node of olletion i + 1 (if it exists).Hene the minimum node of T [i℄ is the suÆx minimum of roots in P withpseudo-ranks in [22i�1 ; lgn℄.5.2 InitializationWe begin with a build-heap step on the nodes of group (lg lgn+1) to reateS[lg lgn+1℄. Build-heap is then performed on group lg lgn to reate S[lg lgn℄.This ontinues up to S[1℄. Now we perform a build-heap on the nodes of17

olletion (lg lg lgn + 1) to reate T [lg lg lgn + 1℄. After this, we perform abuild-heap on the nodes of olletion (lg lg lgn) along with the minimum ofT [lg lg lgn + 1℄ to form T [lg lg lgn℄. This proedure to reate T [i℄ ontinuesuntil a Build-Heap reates T [1℄. Now the heap minimum of T [1℄, is theminimum of all the roots of P .5.2.1 Analysis:The number of nodes in the root-list of P is lgn. Sine build-heap takeslinear time, the time to reate S is O(lgn). Similarly, the time to reate T isbounded by O(lg lgn) sine there are O(lg lgn) groups. Initialization of theOrale is therefore sub-linear.5.3 UpdatesAfter the �x-up of the root-list of P , we need to update the Orale. Herewe may enounter one of the following two ases (and sub-ases). We usethe same notation as �x-up. Let y be the new root formed at the end of theombine step.Case 1: No fusion ours.Case 1.1: ry = rx + 1 = rw. No new root other than y remains in P .Case 1.2: Several new roots that were formerly the hildren of w are presentto the right of y with pseudo� rank > ry.Case 2: Fusion ours.Case 2.1: x is fused with y. No new root remains in the root-list of P .Case 2.2: During the fusion step, z beomes a new root. Node y is fused withz. No other new root remains in P .We now desribe the updates for the above ases.Case 1.1: First we will deal with the ase when all hildren of w are ombinedtogether to form a single tree rooted at y. Sine w was the smallest elementof the root-list, it should be the smallest element in its seondary heap, sayS[j℄, and also in its tertiary heap say T [l℄ and all tertiary heaps to the leftof T [l℄. In S[j℄, the key of w is hanged to that of y. Now this new keyrepresenting y is sunk into the orret position in heap S[j℄, by a heapifyoperation. Similarly w in T [l℄ is hanged to the new minimum of S[j℄ and a18

binary heapify is performed in T [l℄. Heap T [l℄ now ontains a new minimumnode say u. We proeed to hange the �eld of w to that of u in T [l� 1℄ andperform a heapify on T [l�1℄ to obtain a new minimum node. This proedure(alled `propagate' for future referene) of hanging the node orrespondingto w with the node orresponding to the minimum of the tertiary heap tothe right goes all the way up to T [1℄.Case 1.2: We insert all new roots to the right of x into their respetive heapsin S and T . We start from the rightmost new root z0 (say) and insert it intoS and T as with y in ase 1.1 (if z0 is in the same group as w, it replaesw). The other new roots to its left are then inserted one by one into S andif needed into T . We extrat w out of heaps S and T (if present). We nowperform propagate starting from T [l℄.Case 2.1: Key(x) ould have dereased during the fusion step. First weperform a derease-key operation on node x in S[j 0℄ where j 0 is the group inwhih x is present. If x was previously present in olletion l0, we performa derease-key on node x in T [l0℄. If x beause of the derease-key in S[j 0℄beame the minimum of S[j 0℄, then it replaes the previous minimum of S[j 0℄in T [l0℄ and a derease-key is performed. We delete w from S[j℄ and T [l℄where j and l is the group and olletion in whih w was present and thenperform propagate.Case 2.2: Proessing of z in this ase is idential to that of y in ase 1.1.5.4 Analysis:In this setion we analyze the number of omparisons performed in eahof the ases mentioned above. We note here that every node ontains two�elds: key and pseudo-rank. Throughout the algorithm, keys of the nodesare swapped and not the nodes themselves. Hene unless expliitly hanged,a node's pseudo-rank remains the same.Case 1.1: Let rw = ry = p. Sine size of S[j℄ � p, time to update S[j℄is O(lg p). Sine size of T [l℄ � lg p time to update T [l℄ is O(lg lg p). Node wbelongs to olletion dlg(dlg pe+ 1)e+ 1. Therefore the total time bound onall the heapify alls in T is O(lg lg p).As omputed in setion 5.4, number of inversions with respet to w is� 2p�2 = Ij. Therefore the time taken and the number of omparisons madeduring one update of the Orale exeuting ase 1.1 is O(lg lg Ij).19

Case 1.2: We de�ne an interior node as any node in P that is not the root. Anold root is de�ned as a root that was not reated during the urrent iterationof the Main Loop. A new root is any root reated during the urrent iterationof the Main Loop.Inserting y and other new roots: Analysis for inserting y into S and intoT follows from ase 1.1 and takes O(lg lg Ij) time. We now analyze the ostto insert the other new roots. During the ourse of the algorithm a node'spseudo-rank is inreased only when it is made a new root during ombine,or when it beomes a new root during fusion. Also note that one a nodebeomes a root, it never beomes an interior node.Now onsider any new root � that was reated with pseudo-rank r� andurrently has pseudo-rank r0�. We onsider the ases: r0� � r� and r0� > r�.Briey, in the �rst ase we use the binomial tree property 4 to show that thenumber of omparisons over all insertions in S and T is O(n). In the seondase we amortize the ost of insertions in S and T against other osts.Case 1.2.A: r0� � r�. Sine at the �rst iteration of the Main Loop, P is aolletion of binomial trees, the number of times nodes of initial pseudo-rankr are inserted into S and T during the ourse of the algorithm is no morethan 2lg n�(r+1), using property 4 of binomial trees. Inserting � in S and Ttakes time O(lg r0�) = O(lg r�). Hene, the ost of insertions into S and T ofall nodes � whose pseudo-rank r0� at insertion is � the initial pseudo-rank r�is bounded byO(2lg n�3 lg 2 + 2lg n�4 lg 3 + � � �+ 2lg n�lg n lg(lgn� 1))= O(n=23 lg 2 + n=24 lg 3 + � � �+ n=2lg n lg(lgn� 1))= O(n(lg 2=23 + lg 3=24 + � � �+ lg(lgn� 1)=2lg n�1))We now bound the dereasing series P1i=2 lg i=2i a2 � 0:5Ratio between suessive terms � (lg 4=16)=(lg 3=8) = 1= lg 3 � 0:6 There-fore, P1i=2 lg i=2i � 0:5(1=(1� 0:6)) = 1:25 Hene, the total number of om-parisons during all ase 1.2.A exeutions of Orale is O(n).Case 1.2.B: r0� > r�. Node � was a hild of w in the previous iteration - aninternal node. The only way in whih an interior node ould have greater20

pseudo-rank than it initially had, would be if it was promoted during ombineand immediately was fused. As explained in setion 5.4, fusion ours rarely.Moreover the analysis of fusion aounted for 2rx+O(lg rx) omparisons perfusion involving x. All instanes of ase 1.2.B an be harged on the O(lg rx)fator.Updating Cy: We perform a number of deletes from Cw to reate Cy. Wenote that eah node of pseudo-rank r that is deleted from Cw is also insertedinto S with the same pseudo-rank. Hene eah suh deletion an be hargedagainst the O(lg r) omparisons spent for its insertion into S. Hene thenumber of omparisons made to onvert Cw to Cy throughout the algorithmis linear.Case 2.1: The analysis is the similar to ase 1.1Case 2.2: The analysis is idential to ase 1.1The total time spent by the Orale over all alls is bounded by O(Pj=nj=1 lg lg Ij)+O(n). We now use Lagrange's multipliers to maximize f(I1; I2; :::; In) =Pi=ni=1 lg lg(Ii) subjet to the onstraint g(I1; I2; :::; In) = Pi=ni=1 Ii � I, whereI is the total number of inversions in the input sequene. We want to �nd asalar � suh that 5f = �5 g.�f�Ii = � ln ln Iiln2�Ii= 1Ii ln 2 ln Ii� �g�Ii = �Therefore,(1=�) = I1 ln 2 ln I1 = I2 ln 2 ln I2 = � � � = In ln 2 ln Inand so, I1 = I2 = � � � = InTherefore, f is maximized at Ii = I=n for all i and the maximum is n lg lg(I=n).21

Hene the total time spent by the Orale is O(n lg lg(I=n) + n).This gives us the main theorem.Theorem: The heap-based algorithm sorts a sequene of n items with I in-versions in timeO(n lg(I=n)+n) and makes at most n lg(I=n)+O(n lg lg(I=n)+n) omparisons.Proof: The proof follows from the invariants, lemmas 1-3 and the analysisof the Orale.6 Disussion6.0.1 Lower order terms:An open question is whether we an redue the O(n lg lg(I=n)) term to O(n)thus mathing the lower bound to within a onstant fator of the lower orderterm. However we onsider this a minor theoretial question sine this hasalready been ahieved with insertion and merge sort based tehniques [EF03℄.The main issue here is whether this an be done by a method that uses simpledata strutures. Note that the n lg lg(I=n) term in our algorithm is mainlyontributed by n delete-min operations on heaps of size about log(I=n). Sinelog logn is less than 6 for input sizes that we may expet to deal with in theforeseeable future, for pratial purposes that term in our bound an beviewed as a linear term with a modest onstant fator.It is not possible to improve the O(n lg lg(I=n)) to O(n) in this exatframework by improving the Orale. This is beause if eah update of theOrale an be performed in o(lg lg k) time where lg k is the number of roots,then we an sort a sequene of lg k items in o(lg k lg lg k) time. This is notpossible beause of the sorting lower-bound.6.0.2 Single opy of keys:We need to maintain just one opy of the keys. The Seondary and Tertiaryheaps maintain pointers to the primary heap items.
22

6.0.3 Choie & implementation of S and T :Several versions of S and T would work inluding other types of heaps. Weexplain one method below. We always have no more than lgn nodes in Sfor the simple Orale and a �xed number of nodes for eah S[i℄ and T [i℄in the main Orale. The nodes that are in S or T but not in the root-listhave key value 1. Insertions into S and T , an be implemented as standardderease-key operations reduing keys from1 to �nite values. The array forthe binary heap an be initialized at the beginning with 1 values. Sine theroot-list would never ontain more than lgn nodes for the simple Orale andthe �xed limit for the main Orale, S and T would never run out of spae.7 Aknowledgements:I greatly thank Prof. Vijaya Ramahandran for her guidane and enourage-ment. I also thank Prof. Mike Fredman for his omments on the write-up.Referenes[AL90℄ A. Anderson and T. W. Lai. Fast updating of well-balaned trees. Pro-eedings of Sandinavian Workshop on Algorithm Theory (1990), 111-121[Br78℄ M.Brown. Implementation and analysis of binomial queue algorithms.SIAM J. Comput. 7 (1978), 298-319.[BT80℄ M.Brown and R.Tarjan. Design and analysis of data strutures for repre-senting sorted lists.SIAM J.Comput. 9 (1980), 594-614.[Co00℄ R.Cole. On the dynami �nger onjeture for splay trees. Part II:Theproof. SIAM J.Comput. 30 (2000), 44-85.[Ca92℄ V.Estivill-Castro. A survey of adaptive sorting algorithms ACM Comput.Surv. vol 24(4)(1992), 441-476.[CLRS01℄ T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introdution to Algo-rithms. MIT Press, 2001[El02℄ A. Elmasry. Priority Queues, Pairing and Adaptive Sorting. ICALP 2002Proeedings LNCS 2380: p 183 23

[El03℄ A. Elmasry. Private ommuniation, February 2003.[EF03℄ A. Elmasry and M. Fredman. Adaptive Sorting and the Information The-oreti Lower Bound STACS 2003 Proeedings[GMPR77℄ L.Guibas, E.MCreight, M.Plass and J.Roberts. A new representationof linear lists. ACM Symp. Theory of Computing. 9 (1977), 49-60.[Kn98℄ D.Knuth. The Art of Computer Programming.Vol III:Sorting and Searh-ing. Addison-Wesley, seond edition. (1998).[LP91℄ C.Levopoulos and O.Petersson. Splitsort -An adaptive sorting algorithm.Information Proessing Letters. 39 (1991), 205-211.[LP93℄ C.Levopoulos and O.Petersson. Adaptive Heapsort. Journal of Alg. 14(1993), 395-413.[LP96℄ C.Levopoulos and O.Petersson. Exploiting few inversions when sorting:Sequential and parallel algorithms. Theoretial Computer Siene. 163(1996), 211-238.[Ma85℄ H.Mannila. Measures of presortedness and optimal sorting algorithms.IEEE Trans. Comput. C-34 (1985), 318-325.[Me79℄ K.Mehlhorn. Sorting presorted �les. Pro. 4th GI Conferene on Theoryof Computer Siene. , LNCS 67 (1979), 199-212.[Me84℄ K.Mehlhorn Data Strutures and Algorithms. Vol.1. Sorting and Searh-ing. Springer-Verlag, Berlin/Heidelberg. (1984).[MEP96℄ A.Mo�at, G.Eddy and O. Petersson Splaysort: fast, versatile, pratial.Softw. Prat. and Exper. Vol. 126(7)(1996), 781-797.[MPW98℄ A.Mo�at, O.Petersson and N.Wormald A tree-based Mergesort. AtaInformatia, Springer-Verlag. (1998), 775-793.[ST85℄ D.Sleator and R.Tarjan. Self-adjusting binary searh trees. J.ACM32(3)(1985), 652-686.[Vu78℄ J.Vuillemin. A data struture for manipulating priority queues. CACM21(4) (1978),309-314. 24

