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handranApril 18, 2003We introdu
e a heap-based sorting algorithm that makes n lg(I=n) +O(n lg lg(I=n) + n) 
omparisons and runs in time O(n lg(I=n) + n), whereI is the number of inversions in the input sequen
e and n the number ofitems to be sorted. The 
oeÆ
ient 1 in the leading term for the number of
omparisons mat
hes the information-theoreti
 lower bound. The algorithmis simple and uses elementary data stru
tures.1 Introdu
tionWe 
onsider the problem of designing a sorting algorithm that is adaptive tothe pre-sortedness in the input sequen
e as measured by the number of in-versions. Adaptive algorithms are parti
ularly useful when handling appli
a-tions where input sequen
es are partially sorted. Mannila [Ma85℄ formalizedthe 
on
ept of presortedness, and identi�ed the number of inversions as animportant measure.We assume the input sequen
e X =< x1; x2; � � � ; xn > has distin
t keys.An inversion is an ordered pair (i; j), where xi > xj and i < j. Hen
e thetotal number of inversions in X isI = Inv(X) = jf(i; j)j1 � i < j � n and xi > xjgj�Supported in part by Undergraduate Resear
h Opportunities Program (UROP) atUT-Austin for whi
h funding was provided by Cis
o Systems and Pro
tor & Gamble.Srinath Sridhar is also a re
ipient of the Nortel Networks s
holarship.1



The information-theoreti
 lower bound on the number of 
omparisonsrequired to sortX was shown to be n lg(I=n)+O(n)1 in [GMPR77℄. Hen
e analgorithm is time-optimal if it runs in O(n lg(I=n)+n). It is well-known thattrying to measure the a
tual 
onstants involved in an algorithm is not useful.However the number of 
omparisons performed by an algorithm remainsinvariant a
ross di�erent ma
hines and platforms. For operations su
h assorting big re
ords or �les, 
omparisons 
onsume signi�
ant amount of time.This makes measuring the number of 
omparisons performed by an algorithmimportant.In this paper, we des
ribe a new time-optimal algorithm that makesn lg(I=n) + O(n lg lg(I=n) + n) 
omparisons. This is an optimal algorithmfor inversions-sensitive sorting in the sense that it is time-optimal and thenumber of 
omparisons it performs mat
hes the information-theoreti
 lowerbound up to lower order terms. (To be pre
ise, the number of 
omparisonsperformed by our algorithm is optimal with respe
t to its leading term andnear optimal with respe
t to the se
ond term. This is explained in the fol-lowing se
tion.)2 Earlier ResultsAdaptive sorting using the �nger trees data stru
ture introdu
ed in [GMPR77℄,was the �rst inversions-sensitive time-optimal sorting algorithm. Mehlhorn[Me79℄ introdu
ed an algorithm with the same time bounds as �nger trees.Both of these algorithms are 
onsidered impra
ti
al. As summarized by El-masry [El02℄, other algorithms that are time-optimal and inversions-sensitiveare Blo
ksort [LP96℄ whi
h runs in pla
e and tree-based Mergesort [MEP96℄whi
h is time-optimal with respe
t to several other measures of pre-sortedness.Splitsort [LP91℄ and adaptive Heapsort [LP93℄ require 2:5n lgn 
omparisons.Splaysort by repeated insertions [ST85℄ is another time-optimal algorithmshown in [MPW98℄ to be pra
ti
ally eÆ
ient. A survey of adaptive sortingalgorithms is given in [Ca92℄.Elmasry [El02℄ introdu
ed Binomial and Trinomial Sort algorithms. Bi-nomial Sort algorithm requires 2n lg(I=n)+O(n) 
omparisons and TrinomialSort algorithm requires 1:89n lg(I=n) + O(n) 
omparisons. The algorithms1For the rest of the paper we use lg to denote log22



use stru
tures similar to binomial and trinomial heaps. However there ap-pears to be a major problem with the `glue' step in Binomial Sort. In thiswrite-up, we 
orre
t this error and also redu
e the number of 
omparisons.We des
ribe an algorithm that makes n lg(I=n)+O(n lg lg(I=n)+n) 
om-parisons and is time-optimal. Our algorithm is based on Binomial Sort [El02℄,but we 
hanged the invariants, modi�ed some of the pro
edures and removedthe problemati
 glue step. We have also added new 
omponents to improvethe upper bound on 
omparisons. Therefore, we des
ribe our algorithm froms
rat
h.Very re
ently Elmasry and Fredman have developed an optimal (time and
omparisons) inversions-sensitive sorting algorithm [EF03℄. The number of
omparisons performed by their algorithm is n lg(I=n) + O(n). It is basedon an insertion sort approa
h. From a theoreti
al stand point, both ouralgorithm and the Elmasry-Fredman algorithm a
hieve the 
oeÆ
ient 1 inthe leading term for 
omparisons. Their algorithm has a better lower orderterm. However, we note that [EF03℄ state that they have insetion-sort andmerge-sort based approa
hes. They however do not refer to any heap-basedalgorithm. Our algorithm is heap-based. Also, [EF03℄ refer to the TrinomialSort algorithm in [El02℄ as a pra
ti
al algorithm, and they ask for a pra
ti
alalgorithm that is 
ompetitive in the worst-
ase with the best non-optimalalgorithms. Sin
e our algorithm is arguably simpler than Trinomial Sort, it
ould serve as a 
andidate for a pra
ti
al, optimal adaptive sorting algorithm.Also our algorithm is based on very simple data stru
tures, and our resultsare entirely self-
ontained. In 
ontrast, the algorithm in [EF03℄ uses the moreinvolved data stru
ture in [AL90℄. (We do not know whether our algorithmis 
ompetitive in the strong sense asked by Elmasry and Fredman. This willrequire experimentation).3 The Main Algorithm3.1 An Overview of the AlgorithmA high-level des
ription of the algorithm is given in pseudo-
ode 1. Termsand details are des
ribed later. The 
on
ept of an Inv-Adaptive transform[El02℄ is explained in se
tion 3.2.2. The `Ora
le' mentioned in lines 2 and3 is treated as a bla
kbox in this se
tion, and is des
ribed and analyzed in3



se
tion 4 and 5.3.1.1 Pseudo-
ode 1: A High level des
ription1. Perform an Inv-Adaptive Binomial Build-Heap to obtain a binomialheap P , with at most lgn roots, pla
ed in the \root-list".2. Initialize an Ora
le that return the root-node with the minimum key.3. Loop for n times. (Main Loop)(a) w := find-min(Ora
le), print key(w)(b) Delete w from root-list and perform fix-up step(
) Update Ora
le3.2 Terms3.2.1 Binomial QueueA rank k binomial tree Bk [Vu78℄ is de�ned re
ursively. The rank of abinomial tree is equal to its height and the rank of a node in a binomial treeis equal to the height of the subtree rooted at that node. B0 is a single nodetree. Tree Bk 
onsists of 2 
opies of Bk�1 linked together making the root ofone of the trees, the rightmost 
hild of the other. We will use binomial treeswith the following properties for Bk, a rank k binomial tree:1. There are 2k nodes.2. The height of the tree is k3. The root has k 
hildren and if the 
hildren of the root are numberedfrom left to right by 0; 1; � � � ; k � 1, 
hild i is the root of subtree Bi.4. There are max(1, 2k�i�1) nodes of rank i in a binomial tree Bk where0 � i � kA binomial queue [Vu78℄ has the stru
ture of a binomial tree. Asso
iatedwith ea
h node is a key, and heap property is maintained. We assume a4



good implementation of a binomial queue, where 
onstant time a

ess to theleftmost 
hild, rightmost 
hild and the right sibling of a node is possible.Properties 1-3 are well known and 
an be found in Algorithms books su
has [CLRS01℄. We show the proof for the 4th property of Binomial Trees.Proof by Indu
tion (of the 4th property of binomial trees): B0 hasone node of rank 0. Tree B1 has one node of rank 1 and 1 node of rank 0.By indu
tive hypothesis let the above property be true for all trees Bk wherek � p�1. Now 
onsider Bp. It is 
omposed of two Bp�1 trees linked together.The root of Bp is the only node whose rank is in
reased (from Bp�1). Therank of the root of Bp is one greater than the rank of the root of Bp � 1.Now 
onsider any i, 0 � i � p� 2. By indu
tive hypothesis, the number ofnodes of rank i on ea
h of the two Bp�1 trees is 2p�1�i�1. Hen
e, the numberof nodes of rank i on Bp�1 is 2p�i�1. There is only one node of rank p � 1and only one node of rank p. This 
ompletes the proof by indu
tion.3.2.2 Inv-Adaptive Transformation:Given a forest F of rooted ordered trees with a key at ea
h node, Pre(F ) isde�ned as the pre-order traversal of F . The trees and the 
hildren of a nodeare traversed in left to right order. A transformation on F that results in F 0is 
alled Inv-Adaptive if the number of inversions in Pre(F 0) is no more thanthe number of inversions in Pre(F ) [El02℄.3.3 Basi
 Steps3.3.1 Heapify:This operation is performed at a root when the heap property holds at allnodes of the queue ex
ept the root. Heapify amounts to sinking the keyat the root to the 
orre
t position. We now des
ribe the version of heapifygiven in [El02℄. In order to perform heapify, we maintain at ea
h node apre�x minimum pointer (pm), pointing to the node with the minimum keyamong its left siblings. Heapify starts by �nding the path from the root tothe leaf, where every node has the smallest key among its siblings. This isdone by following the pm pointers of the rightmost 
hild at ea
h level. The5



key value of the root is 
ompared to nodes of the minimum path in a bottom-up manner. The key of the root is inserted in the appropriate position andall the keys above this position are shifted up. The pm pointers are updated.The number of 
omparisons required for this pro
edure is lg k + 1, where kis the size of the tree [El02℄. Sin
e for nodes in the minimum path, eitherthe pm pointer is updated or a 
omparison with the root is made, but notboth. The length of the minimum path and the number of right siblings tothe nodes in the minimum path adds up to lgn.We use the above method with one 
hange. We pla
e the 
hildren of ea
hroot on a heap instead of maintaining pm pointers. This heap is updatedduring heapify. With this addition the number of 
omparisons made duringheapify is in
reased to lgn+1+O(lg lgn), but the bene�t is that we 
an alsoperform a 
onstant number of insertions and deletions on this heap within thesame bound. The reason for performing heapify in this manner will be
ome
lear later.3.3.2 Build-Heap:This operation is performed in step 1 to 
onvert the input sequen
e of nitems into a binomial queue. To build a binomial queue Bk, we �rst link twoBk�1 roots without a 
omparison by making the right root, the rightmost
hild of the left root. If the key of the root of the right queue is smallerthan the key of the root of the left queue, then the two values are swappedand a heapify is performed on the root of the right queue. This swap istherefore Inv-Adaptive. The number of 
omparisons needed to build a heapis de�ned by the re
urren
e: B(n) = 2B(n=2) + lgn + 2 and B(2) = 1,hen
e B(n) = �(n):3.4 Pseudo-rank, Invariants and LightnessAsso
iated with ea
h node is a non-negative integer pseudo-rank. The pseudo-rank rx of a node x is an approximation to its binomial rank. This is similarto, though not the same as, the `pseudo-rank' in [El02℄.The following invariants will hold at the start of ea
h iteration of theMain Loop (step 3 of pseudo-
ode 1).Invariant 1: For all roots x, rx is stri
tly greater than the pseudo-ranks ofall the roots in the root-list to the left of x.6



Invariant 2: A root of pseudo-rank r has 
hildren with 
onse
utively in-
reasing pseudo-ranks from 0 to r � 2, r � 1 or rInvariant 3: If a 
hild of the root has pseudo-rank r, then its stru
ture isidenti
al to either Br or Br�1.Invariant 4: For any node x that is neither the root nor the 
hild of theroot, the sub-tree rooted at x is a binomial tree and its pseudo-rank equalsits binomial-rank.A root node of pseudo-rank r is a light node if its rightmost 
hild has pseudo-rank r � 2. A 
hild of a root is a light node if its pseudo-rank is one greaterthan its binomial rank. (A leaf is never light.) All other nodes are normalnodes. Initially, when we have a 
olle
tion of binomial trees, the pseudo-rank equals the binomial rank for every node, hen
e all nodes are normal,and invariants 1-4 hold.Lemma 1: If x is the root of any tree T , then 2rx�2 < size(T ) � 2rx+1.Proof: The quantity size(T ) is maximized when x has 
hildren of pseudo-ranks 0 through rx and all the 
hildren are normal nodes. Therefore, size(T ) =1+20+21+ :::+2rx = 2rx+1. The quantity size(T ) is minimized when x has
hildren of pseudo-ranks 0 through rx�2 and all the 
hildren are light(ex
eptthe node of pseudo-rank 0). Hen
e, size(T ) = 1 + 1+ 20 + 21 + :::+ 2rx�3 =1 + 2rx�2.[℄3.5 Fix-upA root node, say w, has been removed. The goal of �x-up is to pro
ess the
hildren of w, so that we 
an merge new roots into the root-list while main-taining invariants 1-4. The �x-up step performs two operations: Combine(to enfor
e invariant 2) and Fusion (to enfor
e invariant 1). Pseudo-
ode 2des
ribes the �x-up step. The Combine and Fusion pseudo-
odes are 
alledduring the �x-up routine.3.5.1 Pseudo-
ode 2: Pre-pro
essing for �x-upRe
all that P is the Inv-adaptive heap whi
h was built in step 1 of pseudo-
ode 1; w is the node deleted in the Main Loop; For node x, let kx denoteits key. 7



1. x := root to the immediate left of w in the root-list of P before w'sdeletion2. If x does not exist then merge the remaining 
hildren of w as roots intothe root-list of P and return3. else do(a) y := leftmost 
hild of w(b) De�ne Working Forest WF :=sub-list of siblings of y up to eitheri. node with pseudo-rank rx + 1 if present, elseii. node with pseudo-rank rx if present, elseiii. the node with pseudo-rank rx � 1(
) If WF 
ontains only one node (whi
h is y) then doi. If x 
ontains 
hildren then perform fusion step (pseudo-
ode4)ii. else do (this is a spe
ial 
ase of fusion)A. Make x the parent of y and update CxB. If kx > ky then swap the two keys(not nodes). �.C. rx := 1 and merge x and the remaining 
hildren of w asroots into the root-list of P(d) else perform 
ombine step (pseudo-
ode 3)3.5.2 Pseudo-
ode 3: Combine1. ry := rx + 1 and make y the parent of all the other nodes of WF2. Convert Cw to Cy.3. Traverse through the nodes in WF to �nd the �rst normal node h4. If h is found then do(a) De
rease the pseudo-ranks of all left siblings of h by 1(b) s := the rightmost 
hild of h8



(
) Spli
e out the sub-tree rooted at s and make it the immediateright sibling of h(d) rs := rh; rh := rh � 1 and update Cy5. else(a) De
rease the pseudo-ranks of all 
hildren of y by 1(b) Case 1: Rightmost 
hild of y has pseudo-rank rxor Case 2: Rightmost 
hild of y has pseudo-rank rx � 1ry := rx + 1(
) Case 3: Rightmost 
hild of y has pseudo-rank rx � 2Perform heapify and fusion on y and return.6. Perform heapify on y7. Merge the new roots 
reated during the 
ombine/fusion steps and theother 
hildren of w as roots into the root-list of P3.5.3 Pseudo-
ode 4: Fusion1. z := the rightmost 
hild of x2. Case 1: rz = rx � 2(a) If kx > ky then doSwap the keys (not nodes) of x and y and perform heapify ony(b) ry := rx � 1 and make y the rightmost 
hild of x and update Cx3. Case 2: rz = rx � 1(a) If kx > ky then doSwap the keys (not nodes) of x and y and perform heapify ony(b) ry := rx and make y the rightmost 
hild of x and update Cx4. Case 3: rz = rx 9



(a) Spli
e out the sub-tree rooted at z, make z a new root and initializeCz.(b) If kz > ky then doSwap the keys (not nodes) of z and y and perform heapify ony(
) Case a: z has stru
ture Brxry := rx, y := the rightmost 
hild of z, rz := rx + 1; updateCz(d) Case b: z has stru
ture Brx�1ry := rx�1, y := the rightmost 
hild of z, rz := rx+1; updateCz3.6 Corre
tnessInvariants 1 through 4 hold at the start of the �rst iteration of the Main Loop,when the root-list of P is a 
olle
tion of binomial trees. In pseudo-
ode 2,sin
e rw � rx + 1, by Invariant 2, w has a 
hild of pseudo-rank rx � 1, andhen
e WF 
ontains nodes of pseudo-ranks 0; � � � ; r, where rx�1 � r � rx+1.We now argue that the invariants are restored after Combine and Fusion, andhen
e after Fix-up. Step 3(
)(ii)C in Pseudo
ode 2 is analyzed at the end ofthis se
tion.3.6.1 Combine:A new root y is 
reated at the end of 
ombine. We show that ry does notviolate invariant 1 and that 
hildren of y preserve invariants 2 and 3.Case when h is found (line 4): After y was made the root, its 
hildren formedan in
reasing sequen
e of pseudo-ranks 1, 2, � � �, rh�1, rh, rh+1, � � �. Whenthe pseudo-ranks of all the nodes to the left of h is de
reased by 1, thesequen
e of pseudo-ranks be
omes 0, 1, 2, � � �, rh � 2, rh, rh + 1, � � � Toresolve the di�eren
e of 2 in pseudo-rank between h and its left sibling, wesplit h in su
h a way that we 
ould assign rh�1 to one part and rh to another.Sin
e h was a normal node, its stru
ture is identi
al to Brh. The sub-treerooted at s has the stru
ture of Brh�1. This allows us to assign the sub-treerooted at s pseudo-rank rh and make it a light node. The remaining sub-tree10



rooted at h has stru
ture of Brh�1 and 
an be given a pseudo-rank rh � 1.Hen
e the split obeys invariant 3. This restores the in
reasing sequen
e ofpseudo-ranks. Hen
e invariant 2 is also maintained. Even if the last 
hild ofy has pseudo-rank ry�2 and gets split, it would be
ome a light node of rankry � 2. This preserves invariants 1-4.Case when h is not found (line 5): If the rightmost 
hild of y has pseudo-rank rx or rx � 1, we 
an assign y pseudo-rank rx + 1 without violatinginvariant 2. If the rightmost 
hild of y has pseudo-rank rx � 2 then we
annot assign y pseudo-rank rx + 1. In this 
ase we perform a fusion step.3.6.2 Fusion:Lemma 2: If a new root of tree T with pseudo-rank r is 
reated, size(T ) �2r�1. (In other words, the new root is either a normal node, or a light rootof a binomial tree Br�1)Proof: Below along with the rest of the 
orre
tness, we dis
uss the 
aseswhen new roots 
an be 
reated and show that this property is true. This isin 
ase 3 in fusion and in the se
tion on merging new roots.[℄Lemma 3: If a fusion step is required then the tree rooted at node y is abinomial tree of pseudo-rank rx � 1.Proof: A fusion step is required only if all the 
hildren of y were found tobe light. Therefore using invariant 3, we 
an say that the sub-trees rooted atthe 
hildren of y (after 
ombine & before fusion) have stru
tures B0; � � � ; Br,where r = rx�2 or rx�1 or rx. Now, all the 
hildren of y are normal nodes.Moreover, if the fusion step is required then the 
hildren of y need to forma sequen
e of B0; � � � ; Brx�2 . Therefore, y would have stru
ture Brx�1, abinomial tree with pseudo-rank = binomial-rank = rx � 1.[℄We now prove the 
orre
tness of the di�erent 
ases of fusion step. Weshow that nodes rx and rz do not violate invariant 1. The 
hildren of x andz 
ould 
hange during fusion. We show that invariants 2 and 3 hold for all
hildren of x and z. We also show that z does not violate Lemma 2.Case 1: rz = rx� 2. If kx > ky then swapping the two keys is Inv-adaptive.This is be
ause ky is smaller than the keys of all des
endants of x and y.Hen
e shifting the key of y to the �rst pla
e among trees rooted at x and y
an only redu
e inversions. Heapify is inv-adaptive. Making y the rightmost
hild of x does not 
hange the pre-order traversal, and so is inv-adaptive.Sin
e y has the stru
ture Brx�1, assigning it pseudo-rank rx � 1 preserves11



invariants 2 and 3.Case 2: rz = rx� 1. This 
ase is similar to 
ase 1, the only di�eren
e beingthat y is assigned pseudo-rank rx. This makes y a light node. Invariants 2and 3 are preserved.Case 3: rz = rx. Spli
ing out z and making it a new root does not 
hangethe pre-order traversal and therefore is inv-adaptive. Sin
e z was a 
hild ofthe root, by invariant 3, the sub-tree rooted at z is binomial.Case 3a: z has stru
ture Brx. Sin
e we in
rement rz to rx + 1, it is allowedto have 
hildren with pseudo-rank up to rx + 1. We assign y pseudo-rank rxand make it the rightmost 
hild of z. This preserves invariant 2. Invariant3 is preserved sin
e y is a binomial tree Brx�1. Before being fused with y, zwas the root of a binomial tree Brz . Hen
e the size of the tree rooted at z is� 2rz . This preserves Lemma 2.Case 3b: z has stru
ture Brx�1. We assign y pseudo-rank rx � 1 whi
h is 2lower than rx + 1. Hen
e invariant 2 holds. Invariant 3 holds sin
e y is rootof a binomial tree Brx�1. The size of the tree rooted at z before being fusedwith y is 2rx�1 and size of the tree rooted at y is 2rx�1. Therefore, size ofthe new root z after fusion is 2rx (This tree is a binomial tree Brx). Hen
eLemma 2 holds.3.6.3 Merging new rootsIn step 3(
)(ii)C of pseudo-
ode 2 and at the end of the 
ombine, we mergethe new roots into the root-list. Ea
h 
hild 
 of w that lies outside WF hasthe property that rx+1 < r
 < rw+1. This is be
ause if r
 � rx+1 it wouldbe a part of WF . Also r
 � rw by invariant 2. The root 
reated during the
ombine and fusion is a root of pseudo-rank rx + 1. The �rst root to theright of w (before its deletion) has pseudo-rank > rw. Hen
e the new root
reated in 
ombine/fusion and the other 
hildren of w 
an be merged intothe root-list without violating Invariant 1.Also 
onsider any 
hild 
 of w that lies outside WF and be
omes a newroot. Let it have pseudo-rank r. By invariant 3, 
 has the stru
ture of Bror Br�1. Hen
e the size of the sub-tree rooted at 
 is � 2r�1. This preservesLemma 2.
12



3.7 Time Complexity Analysis3.7.1 Analysis of Combine:Consider the jth iteration of the Main Loop. We perform one heapify op-eration on a tree of pseudo-rank rx + 1. By Lemma 1, this takes less thanrx + 3 + O(lg rx) 
omparisons. Now kw < kx < kz where z is any des
en-dant of x. Hen
e by Lemma 1, there are at least 2rx�2 = Ij (say) inversionsasso
iated with w. Hen
e, rx + 3 +O(lg rx) = lg(Ij) + 5 +O(lg lg Ij)Hen
e, total number of 
omparisons over the entire algorithm for the
ombine operation is bounded by Pj=nj=1 (lg(Ij)+O(lg lg(Ij))+5): For a 
onvexfun
tion f(x) and for any fun
tion p(x) with for all x, 0 � p(x) � 1 andP p(x) = 1, a

ording to Jensen's inequality,Xx p(x)f(x) � f(Xx p(x)x):Using the 
onvexity of � lg(x) we get,x=nXx=1 (1=n)(� lg(Ix)) � � lg(x=nXx=1 (Ix)=n)x=nXx=1 (1=n)(lg(Ix)) � lg(x=nXx=1 (Ix)=n)x=nXx=1 (lg(Ix)) � n lg(x=nXx=1 (Ix)=n)� n lg(I=n)sin
e I1 + I2 + ::: + In � I.Similarly Using the 
onvexity of � lg lg(x) we get,x=nXx=1 (1=n)(� lg lg(Ix)) � � lg lg(x=nXx=1 (Ix)=n)x=nXx=1 (1=n)(lg lg(Ix)) � lg lg(x=nXx=1 (Ix)=n)x=nXx=1 (lg lg(Ix)) � n lg lg(x=nXx=1 (Ix)=n)� n lg lg(I=n)sin
e I1 + I2 + ::: + In � I.Therefore the entire time is bounded by n lg(I=n) +O(n lg lg(I=n)) + 5n13



3.7.2 Analysis of Fusion:In the Fusion step we perform at most one heapify operation, one initializa-tion of C and one update of C on a tree with pseudo-rank rx. This requiresless than 2rx + 4 + O(lg rx) 
omparisons. The O(lg rx) terms 
omes fromupdating the C heap. The fusion step o

urs only in the 
ase when y hadlight 
hildren of pseudo-ranks from 1 to rx � 1. Using Lemma 2, we 
an saythat there should have been a root of pseudo-rank rx+1 in the root-list of Pfor 2rx�2rx�1 = 2rx�1 deletions and no fusion 
ould have taken pla
e on thistree. Borrowing a 
onstant from ea
h of these deletions would be suÆ
ientto pay o� for the 
omparisons performed during the fusion step. Hen
e, allfusion steps during the algorithm would require only O(n) 
omparisons.3.7.3 Initialization of the C heaps:For any root x, Cx is a separate heap 
ontaining its 
hildren. It takes O(lg k)time to initialize Cx if the size of the subtree rooted at x is k. Durin Fix-upwe need to update Cw so that it 
orresponds to Cy. This 
an be done byperforming multiple deletes for ea
h of the 
hildren of w that are not 
hildrenof y from highest to lowest pseudo-ranks. The analysis for the total numberof 
omparisons required for the initialization of all C's is deferred until 
ase1.2 of se
tion 5.4, where we prove that this is linear.Elmasry [El03℄ has pointed out to us a di�erent approa
h that does notuse the C heaps, but instead slightly modi�es the way a node is promotedas a root during the 
ombine step, as follows. After the root is removed,in the above des
ription a node of pseudo-rank 0 (node y) be
omes the newroot (line 1 of pseudo-
ode 3). Instead of this, we 
ompare the keys of yand the right sibling of y and promote the node with the larger key. Thisway, the pre�x-minima pointers of the other right siblings of y need not beupdated. Though this operation is no longer Inv-Adaptive it 
an 
reate atmost n inversions during the 
ourse of the algorithm and therefore would nota�e
t the time-
omplexity.4 A Simple Ora
leIn se
tion 3 we treated the ora
le as a bla
k-box and des
ribed the algorithm.We now provide two di�erent te
hniques to realize the ora
le. In this se
tion14



we des
ribe a simple method that is optimal when the number of inversionsin the input is !(1)n lg lgn. This sets up the basi
 idea whi
h is used in themain ora
le, des
ribed in se
tion 5, to a
hieve optimal bounds in general.The main idea in the simple ora
le to arrange the nodes of the root-listin a se
ondary binary heap S. The reason for performing the right to leftin
remental pairing pass in the Binomial Sort algorithm [El02℄ was to �ndthe node with the minimum key. By arranging the nodes in S, the stru
tureof P be
omes more rigorous.4.1 Des
ription of the Sorting Algorithm Using a Sim-ple Ora
leWe now go ba
k to pseudo-
ode 1. Lines 1 and 2 are self-explanatory.Wenow walk through one iteration of the loop in lines 3-7. In line 4, the rootw in the root-list of P is found by querying the Ora
le. Line 5 performs the�x-up step. Sin
e the �x-up 
ould 
reate new roots, the Ora
le is updatedin line 6.Time taken by the algorithm is the sum of the time taken for all the �x-up steps and the time taken for updating the Ora
le. It is assumed that theora
le 
an answer ea
h query in 
onstant time. The number of 
omparisonssimilarly is the sum of the number of 
omparisons spent over all the �x-upsteps and the number of 
omparisons for updating the Ora
le.4.2 Des
ription and Analysis4.2.1 Initialization:We just insert all the roots into S one by one. Time for ea
h insertion intoS is bounded by O(lg lgn). There 
an be at most lgn nodes in the root-list.Therefore the total time for initializing the Ora
le is O(lgn lg lgn).4.2.2 Updates:If w has no 
hildren, then it 
an be removed from P by 
hanging its key valueto 1 performing a heapify operation. This would take time O(lg lgn). If whas 
hildren then we handle three 
ases.15



Case 1: The root-list of P 
ontains x, a new root w' with rw0 = rx+1 andnew roots to the right of w0.Case 2: The root-list of P 
ontains x, whi
h was fused together with a
hild of w. No new roots are to the right of x.Case 3: The root-list of P 
ontains x, a new root z that was formerly a
hild of x and w' was fused into z. No new roots are present to the right of zCase 1: The minimum heap node of S, w is now repla
ed with w0. A heapifystep on S is performed so that w0 sinks to its 
orre
t lo
ation in S. The newroots to the right of w0 in P are inserted into S.Case 2: During the fusion step the key of x in P 
ould have 
hanged. Thevalue kx 
ould have only de
reased. Hen
e we perform a de
rease-key oper-ation in S on the node x. The �rst new root is inserted into S by 
hangingthe node w and performing a heapify on S. Other new roots are inserted innormal manner into S.Case 3: The minimum heap node of S, w is now repla
ed with z. A heapifystep on S is performed so that z sinks to its 
orre
t lo
ation in S. The newroots to the right of w0 in P are inserted into S.The analysis is quite straight-forward. A node is inserted into S at moston
e. This implies that the time spent and the number of 
omparisons onall the heapify operations is O(n lg lgn). Also, at most one de
rease-key orone delete (implemented by 
hanging key to 1 and performing a heapify)operation might be performed during ea
h iteration of the loop. The totaltime and number of 
omparisons for all the de
rease-key/delete operationsis bounded by O(n lg lgn). Hen
e the bound on the time/
omparisons forthe entire Ora
le is O(n lg lgn). Using this Ora
le the new algorithm wouldrequire at most n lg(I=n) +O(n lg lgn) 
omparisons.4.2.3 Optimality:If the number of inversions I > n lg!(1) n, thenI=n > lg!(1) nlg(I=n) > !(1) lg lgnn lg(I=n) > !(1)n lg lgn16



In this 
ase, the above algorithm runs in optimal time. Moreover thenumber of 
omparisons is n lg(I=n)+o(n lg(I=n)) whi
h a
hieves the 
onstant
oeÆ
ient 1 in the leading term, mat
hing that of the information theoreti
lower bound.5 The Main Ora
leThe Ora
le is used in steps 2 and 3 of pseudo-
ode 1 to extra
t the minimumkey in ea
h iteration of the Main Loop. In this se
tion we des
ribe andanalyze the Ora
le.Re
all that the primary heap P is the main heap that is used in pseudo-
ode 1. In the Ora
le we use se
ondary binary heaps S[1 � � � lg lgn + 1℄,
ontaining the keys at the roots of the trees in P . We also use tertiarybinary heaps T [1 � � � lg lg lgn + 1℄, 
ontaining the keys at the roots of heapsin S.5.1 Des
ription and InitializationThe roots of the binomial queues in P are divided into lg lgn + 1 groups.Group i 
ontains roots of P that have pseudo-ranks in the interval [2i�1; 2i).This is maintained as an invariant throughout the algorithm. The (lg lgn +1)th group 
ontains roots of pseudo-rank up to 2lg lg n = lgn. Sin
e themaximum pseudo-rank of a root is lgn, lg lgn + 1 groups are suÆ
ient toin
lude all the roots. We pla
e the roots in group i in a binary heap S[i℄. Wenow 
reate a new list `higher-list' of nodes 
orresponding to the minimum keyof ea
h group. We de�ne a 
olle
tion i to be the set of all nodes in higher-listof pseudo-ranks in [22i�1 ; 22i). The Tertiary binary heap T [i℄ 
ontains nodesin 
olle
tion i and also the minimum node of 
olle
tion i + 1 (if it exists).Hen
e the minimum node of T [i℄ is the suÆx minimum of roots in P withpseudo-ranks in [22i�1 ; lgn℄.5.2 InitializationWe begin with a build-heap step on the nodes of group (lg lgn+1) to 
reateS[lg lgn+1℄. Build-heap is then performed on group lg lgn to 
reate S[lg lgn℄.This 
ontinues up to S[1℄. Now we perform a build-heap on the nodes of17




olle
tion (lg lg lgn + 1) to 
reate T [lg lg lgn + 1℄. After this, we perform abuild-heap on the nodes of 
olle
tion (lg lg lgn) along with the minimum ofT [lg lg lgn + 1℄ to form T [lg lg lgn℄. This pro
edure to 
reate T [i℄ 
ontinuesuntil a Build-Heap 
reates T [1℄. Now the heap minimum of T [1℄, is theminimum of all the roots of P .5.2.1 Analysis:The number of nodes in the root-list of P is lgn. Sin
e build-heap takeslinear time, the time to 
reate S is O(lgn). Similarly, the time to 
reate T isbounded by O(lg lgn) sin
e there are O(lg lgn) groups. Initialization of theOra
le is therefore sub-linear.5.3 UpdatesAfter the �x-up of the root-list of P , we need to update the Ora
le. Herewe may en
ounter one of the following two 
ases (and sub-
ases). We usethe same notation as �x-up. Let y be the new root formed at the end of the
ombine step.Case 1: No fusion o

urs.Case 1.1: ry = rx + 1 = rw. No new root other than y remains in P .Case 1.2: Several new roots that were formerly the 
hildren of w are presentto the right of y with pseudo� rank > ry.Case 2: Fusion o

urs.Case 2.1: x is fused with y. No new root remains in the root-list of P .Case 2.2: During the fusion step, z be
omes a new root. Node y is fused withz. No other new root remains in P .We now des
ribe the updates for the above 
ases.Case 1.1: First we will deal with the 
ase when all 
hildren of w are 
ombinedtogether to form a single tree rooted at y. Sin
e w was the smallest elementof the root-list, it should be the smallest element in its se
ondary heap, sayS[j℄, and also in its tertiary heap say T [l℄ and all tertiary heaps to the leftof T [l℄. In S[j℄, the key of w is 
hanged to that of y. Now this new keyrepresenting y is sunk into the 
orre
t position in heap S[j℄, by a heapifyoperation. Similarly w in T [l℄ is 
hanged to the new minimum of S[j℄ and a18



binary heapify is performed in T [l℄. Heap T [l℄ now 
ontains a new minimumnode say u. We pro
eed to 
hange the �eld of w to that of u in T [l� 1℄ andperform a heapify on T [l�1℄ to obtain a new minimum node. This pro
edure(
alled `propagate' for future referen
e) of 
hanging the node 
orrespondingto w with the node 
orresponding to the minimum of the tertiary heap tothe right goes all the way up to T [1℄.Case 1.2: We insert all new roots to the right of x into their respe
tive heapsin S and T . We start from the rightmost new root z0 (say) and insert it intoS and T as with y in 
ase 1.1 (if z0 is in the same group as w, it repla
esw). The other new roots to its left are then inserted one by one into S andif needed into T . We extra
t w out of heaps S and T (if present). We nowperform propagate starting from T [l℄.Case 2.1: Key(x) 
ould have de
reased during the fusion step. First weperform a de
rease-key operation on node x in S[j 0℄ where j 0 is the group inwhi
h x is present. If x was previously present in 
olle
tion l0, we performa de
rease-key on node x in T [l0℄. If x be
ause of the de
rease-key in S[j 0℄be
ame the minimum of S[j 0℄, then it repla
es the previous minimum of S[j 0℄in T [l0℄ and a de
rease-key is performed. We delete w from S[j℄ and T [l℄where j and l is the group and 
olle
tion in whi
h w was present and thenperform propagate.Case 2.2: Pro
essing of z in this 
ase is identi
al to that of y in 
ase 1.1.5.4 Analysis:In this se
tion we analyze the number of 
omparisons performed in ea
hof the 
ases mentioned above. We note here that every node 
ontains two�elds: key and pseudo-rank. Throughout the algorithm, keys of the nodesare swapped and not the nodes themselves. Hen
e unless expli
itly 
hanged,a node's pseudo-rank remains the same.Case 1.1: Let rw = ry = p. Sin
e size of S[j℄ � p, time to update S[j℄is O(lg p). Sin
e size of T [l℄ � lg p time to update T [l℄ is O(lg lg p). Node wbelongs to 
olle
tion dlg(dlg pe+ 1)e+ 1. Therefore the total time bound onall the heapify 
alls in T is O(lg lg p).As 
omputed in se
tion 5.4, number of inversions with respe
t to w is� 2p�2 = Ij. Therefore the time taken and the number of 
omparisons madeduring one update of the Ora
le exe
uting 
ase 1.1 is O(lg lg Ij).19



Case 1.2: We de�ne an interior node as any node in P that is not the root. Anold root is de�ned as a root that was not 
reated during the 
urrent iterationof the Main Loop. A new root is any root 
reated during the 
urrent iterationof the Main Loop.Inserting y and other new roots: Analysis for inserting y into S and intoT follows from 
ase 1.1 and takes O(lg lg Ij) time. We now analyze the 
ostto insert the other new roots. During the 
ourse of the algorithm a node'spseudo-rank is in
reased only when it is made a new root during 
ombine,or when it be
omes a new root during fusion. Also note that on
e a nodebe
omes a root, it never be
omes an interior node.Now 
onsider any new root � that was 
reated with pseudo-rank r� and
urrently has pseudo-rank r0�. We 
onsider the 
ases: r0� � r� and r0� > r�.Brie
y, in the �rst 
ase we use the binomial tree property 4 to show that thenumber of 
omparisons over all insertions in S and T is O(n). In the se
ond
ase we amortize the 
ost of insertions in S and T against other 
osts.Case 1.2.A: r0� � r�. Sin
e at the �rst iteration of the Main Loop, P is a
olle
tion of binomial trees, the number of times nodes of initial pseudo-rankr are inserted into S and T during the 
ourse of the algorithm is no morethan 2lg n�(r+1), using property 4 of binomial trees. Inserting � in S and Ttakes time O(lg r0�) = O(lg r�). Hen
e, the 
ost of insertions into S and T ofall nodes � whose pseudo-rank r0� at insertion is � the initial pseudo-rank r�is bounded byO(2lg n�3 lg 2 + 2lg n�4 lg 3 + � � �+ 2lg n�lg n lg(lgn� 1))= O(n=23 lg 2 + n=24 lg 3 + � � �+ n=2lg n lg(lgn� 1))= O(n(lg 2=23 + lg 3=24 + � � �+ lg(lgn� 1)=2lg n�1))We now bound the de
reasing series P1i=2 lg i=2i a2 � 0:5Ratio between su

essive terms � (lg 4=16)=(lg 3=8) = 1= lg 3 � 0:6 There-fore, P1i=2 lg i=2i � 0:5(1=(1� 0:6)) = 1:25 Hen
e, the total number of 
om-parisons during all 
ase 1.2.A exe
utions of Ora
le is O(n).Case 1.2.B: r0� > r�. Node � was a 
hild of w in the previous iteration - aninternal node. The only way in whi
h an interior node 
ould have greater20



pseudo-rank than it initially had, would be if it was promoted during 
ombineand immediately was fused. As explained in se
tion 5.4, fusion o

urs rarely.Moreover the analysis of fusion a

ounted for 2rx+O(lg rx) 
omparisons perfusion involving x. All instan
es of 
ase 1.2.B 
an be 
harged on the O(lg rx)fa
tor.Updating Cy: We perform a number of deletes from Cw to 
reate Cy. Wenote that ea
h node of pseudo-rank r that is deleted from Cw is also insertedinto S with the same pseudo-rank. Hen
e ea
h su
h deletion 
an be 
hargedagainst the O(lg r) 
omparisons spent for its insertion into S. Hen
e thenumber of 
omparisons made to 
onvert Cw to Cy throughout the algorithmis linear.Case 2.1: The analysis is the similar to 
ase 1.1Case 2.2: The analysis is identi
al to 
ase 1.1The total time spent by the Ora
le over all 
alls is bounded by O(Pj=nj=1 lg lg Ij)+O(n). We now use Lagrange's multipliers to maximize f(I1; I2; :::; In) =Pi=ni=1 lg lg(Ii) subje
t to the 
onstraint g(I1; I2; :::; In) = Pi=ni=1 Ii � I, whereI is the total number of inversions in the input sequen
e. We want to �nd as
alar � su
h that 5f = �5 g.�f�Ii = � ln ln Iiln2�Ii= 1Ii ln 2 ln Ii� �g�Ii = �Therefore,(1=�) = I1 ln 2 ln I1 = I2 ln 2 ln I2 = � � � = In ln 2 ln Inand so, I1 = I2 = � � � = InTherefore, f is maximized at Ii = I=n for all i and the maximum is n lg lg(I=n).21



Hen
e the total time spent by the Ora
le is O(n lg lg(I=n) + n).This gives us the main theorem.Theorem: The heap-based algorithm sorts a sequen
e of n items with I in-versions in timeO(n lg(I=n)+n) and makes at most n lg(I=n)+O(n lg lg(I=n)+n) 
omparisons.Proof: The proof follows from the invariants, lemmas 1-3 and the analysisof the Ora
le.6 Dis
ussion6.0.1 Lower order terms:An open question is whether we 
an redu
e the O(n lg lg(I=n)) term to O(n)thus mat
hing the lower bound to within a 
onstant fa
tor of the lower orderterm. However we 
onsider this a minor theoreti
al question sin
e this hasalready been a
hieved with insertion and merge sort based te
hniques [EF03℄.The main issue here is whether this 
an be done by a method that uses simpledata stru
tures. Note that the n lg lg(I=n) term in our algorithm is mainly
ontributed by n delete-min operations on heaps of size about log(I=n). Sin
elog logn is less than 6 for input sizes that we may expe
t to deal with in theforeseeable future, for pra
ti
al purposes that term in our bound 
an beviewed as a linear term with a modest 
onstant fa
tor.It is not possible to improve the O(n lg lg(I=n)) to O(n) in this exa
tframework by improving the Ora
le. This is be
ause if ea
h update of theOra
le 
an be performed in o(lg lg k) time where lg k is the number of roots,then we 
an sort a sequen
e of lg k items in o(lg k lg lg k) time. This is notpossible be
ause of the sorting lower-bound.6.0.2 Single 
opy of keys:We need to maintain just one 
opy of the keys. The Se
ondary and Tertiaryheaps maintain pointers to the primary heap items.
22



6.0.3 Choi
e & implementation of S and T :Several versions of S and T would work in
luding other types of heaps. Weexplain one method below. We always have no more than lgn nodes in Sfor the simple Ora
le and a �xed number of nodes for ea
h S[i℄ and T [i℄in the main Ora
le. The nodes that are in S or T but not in the root-listhave key value 1. Insertions into S and T , 
an be implemented as standardde
rease-key operations redu
ing keys from1 to �nite values. The array forthe binary heap 
an be initialized at the beginning with 1 values. Sin
e theroot-list would never 
ontain more than lgn nodes for the simple Ora
le andthe �xed limit for the main Ora
le, S and T would never run out of spa
e.7 A
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