A Heap-Based Optimal Inversions-Sensitive
Sorting Algorithm *

Undergraduate Senior Honors Thesis - Srinath Sridhar
Supervising Professor: Vijaya Ramachandran

April 18, 2003

We introduce a heap-based sorting algorithm that makes nlg(l/n) +
O(nlglg(I/n) + n) comparisons and runs in time O(nlg(I/n) + n), where
I is the number of inversions in the input sequence and n the number of
items to be sorted. The coefficient 1 in the leading term for the number of
comparisons matches the information-theoretic lower bound. The algorithm
is simple and uses elementary data structures.

1 Introduction

We consider the problem of designing a sorting algorithm that is adaptive to
the pre-sortedness in the input sequence as measured by the number of in-
versions. Adaptive algorithms are particularly useful when handling applica-
tions where input sequences are partially sorted. Mannila [Ma85] formalized
the concept of presortedness, and identified the number of inversions as an
important measure.

We assume the input sequence X =< x1, s, -, 2, > has distinct keys.
An inversion is an ordered pair (,7), where ; > «; and ¢ < j. Hence the
total number of inversions in X is

I=Inv(X)=|{(i,j)1 <i<j<n and z; > z;}|

*Supported in part by Undergraduate Research Opportunities Program (UROP) at
UT-Austin for which funding was provided by Cisco Systems and Proctor & Gamble.
Srinath Sridhar is also a recipient of the Nortel Networks scholarship.

The information-theoretic lower bound on the number of comparisons
required to sort X was shown to be nlg(I/n)+O(n)! in [GMPR77]. Hence an
algorithm is time-optimal if it runs in O(nlg(I/n)+mn). It is well-known that
trying to measure the actual constants involved in an algorithm is not useful.
However the number of comparisons performed by an algorithm remains
invariant across different machines and platforms. For operations such as
sorting big records or files, comparisons consume significant amount of time.
This makes measuring the number of comparisons performed by an algorithm
important.

In this paper, we describe a new time-optimal algorithm that makes
nlg(I/n) + O(nlglg(I/n) + n) comparisons. This is an optimal algorithm
for inversions-sensitive sorting in the sense that it is time-optimal and the
number of comparisons it performs matches the information-theoretic lower
bound up to lower order terms. (To be precise, the number of comparisons
performed by our algorithm is optimal with respect to its leading term and
near optimal with respect to the second term. This is explained in the fol-
lowing section.)

2 Earlier Results

Adaptive sorting using the finger trees data structure introduced in [GMPR77],
was the first inversions-sensitive time-optimal sorting algorithm. Mehlhorn
[Me79] introduced an algorithm with the same time bounds as finger trees.
Both of these algorithms are considered impractical. As summarized by El-
masry [El02], other algorithms that are time-optimal and inversions-sensitive
are Blocksort [LP96] which runs in place and tree-based Mergesort [MEP96]
which is time-optimal with respect to several other measures of pre-sortedness.
Splitsort [LP91] and adaptive Heapsort [LP93] require 2.5n lg n comparisons.
Splaysort by repeated insertions [ST85] is another time-optimal algorithm
shown in [MPWO98]| to be practically efficient. A survey of adaptive sorting
algorithms is given in [Ca92].

Elmasry [El02] introduced Binomial and Trinomial Sort algorithms. Bi-
nomial Sort algorithm requires 2n1g(/n)+ O(n) comparisons and Trinomial
Sort algorithm requires 1.89nlg(I/n) + O(n) comparisons. The algorithms

lFor the rest of the paper we use lg to denote log,

use structures similar to binomial and trinomial heaps. However there ap-
pears to be a major problem with the ‘glue’ step in Binomial Sort. In this
write-up, we correct this error and also reduce the number of comparisons.

We describe an algorithm that makes nlg(l/n)+0O(nlglg(I/n)+n) com-
parisons and is time-optimal. Our algorithm is based on Binomial Sort [E102],
but we changed the invariants, modified some of the procedures and removed
the problematic glue step. We have also added new components to improve
the upper bound on comparisons. Therefore, we describe our algorithm from
scratch.

Very recently Elmasry and Fredman have developed an optimal (time and
comparisons) inversions-sensitive sorting algorithm [EF03]. The number of
comparisons performed by their algorithm is nlg(I/n) + O(n). It is based
on an insertion sort approach. From a theoretical stand point, both our
algorithm and the Elmasry-Fredman algorithm achieve the coefficient 1 in
the leading term for comparisons. Their algorithm has a better lower order
term. However, we note that [EF03] state that they have insetion-sort and
merge-sort based approaches. They however do not refer to any heap-based
algorithm. Our algorithm is heap-based. Also, [EF03] refer to the Trinomial
Sort algorithm in [El02] as a practical algorithm, and they ask for a practical
algorithm that is competitive in the worst-case with the best non-optimal
algorithms. Since our algorithm is arguably simpler than Trinomial Sort, it
could serve as a candidate for a practical, optimal adaptive sorting algorithm.
Also our algorithm is based on very simple data structures, and our results
are entirely self-contained. In contrast, the algorithm in [EF03] uses the more
involved data structure in [AL90]. (We do not know whether our algorithm
is competitive in the strong sense asked by Elmasry and Fredman. This will
require experimentation).

3 The Main Algorithm

3.1 An Overview of the Algorithm

A high-level description of the algorithm is given in pseudo-code 1. Terms
and details are described later. The concept of an Inv-Adaptive transform
[E102] is explained in section 3.2.2. The ‘Oracle’ mentioned in lines 2 and
3 is treated as a blackbox in this section, and is described and analyzed in

section 4 and 5.

3.1.1 Pseudo-code 1: A High level description

1. Perform an Inv-Adaptive Binomial Build-Heap to obtain a binomial
heap P, with at most lgn roots, placed in the “root-list”.

2. Initialize an Oracle that return the root-node with the minimum key.

3. Loop for n times. (Main Loop)

(a) w := find-min(Oracle), print key(w)
(b) Delete w from root-list and perform fiz-up step
(c) Update Oracle

3.2 Terms
3.2.1 Binomial Queue

A rank k binomial tree By [Vu78] is defined recursively. The rank of a
binomial tree is equal to its height and the rank of a node in a binomial tree
is equal to the height of the subtree rooted at that node. By is a single node
tree. Tree By, consists of 2 copies of By ; linked together making the root of
one of the trees, the rightmost child of the other. We will use binomial trees
with the following properties for By, a rank £ binomial tree:

1. There are 2F nodes.
2. The height of the tree is k

3. The root has k children and if the children of the root are numbered
from left to right by 0,1,---, k — 1, child 7 is the root of subtree B;.

4. There are max(1, 25=*~1) nodes of rank ¢ in a binomial tree Bj, where
0<i<k

A binomial queue [Vu78] has the structure of a binomial tree. Associated
with each node is a key, and heap property is maintained. We assume a

good implementation of a binomial queue, where constant time access to the
leftmost child, rightmost child and the right sibling of a node is possible.

Properties 1-3 are well known and can be found in Algorithms books such
as [CLRS01]. We show the proof for the 4" property of Binomial Trees.
Proof by Induction (of the 4" property of binomial trees): By has
one node of rank 0. Tree B; has one node of rank 1 and 1 node of rank 0.
By inductive hypothesis let the above property be true for all trees By, where
k < p—1. Now consider B,,. It is composed of two B,,_; trees linked together.
The root of B, is the only node whose rank is increased (from B, ;). The
rank of the root of B, is one greater than the rank of the root of B, — 1.
Now consider any 7, 0 < ¢ < p — 2. By inductive hypothesis, the number of
nodes of rank ¢ on each of the two B,_; trees is 22~17"1. Hence, the number
of nodes of rank i on B, ; is 2°~“"!. There is only one node of rank p — 1
and only one node of rank p. This completes the proof by induction.

3.2.2 Inv-Adaptive Transformation:

Given a forest F' of rooted ordered trees with a key at each node, Pre(F) is
defined as the pre-order traversal of F'. The trees and the children of a node
are traversed in left to right order. A transformation on F' that results in F’
is called Inv-Adaptive if the number of inversions in Pre(F’) is no more than
the number of inversions in Pre(F') [E102].

3.3 Basic Steps
3.3.1 Heapify:

This operation is performed at a root when the heap property holds at all
nodes of the queue except the root. Heapify amounts to sinking the key
at the root to the correct position. We now describe the version of heapify
given in [El02]. In order to perform heapify, we maintain at each node a
prefix minimum pointer (pm), pointing to the node with the minimum key
among its left siblings. Heapify starts by finding the path from the root to
the leaf, where every node has the smallest key among its siblings. This is
done by following the pm pointers of the rightmost child at each level. The

key value of the root is compared to nodes of the minimum path in a bottom-
up manner. The key of the root is inserted in the appropriate position and
all the keys above this position are shifted up. The pm pointers are updated.
The number of comparisons required for this procedure is Igk + 1, where k
is the size of the tree [E102]. Since for nodes in the minimum path, either
the pm pointer is updated or a comparison with the root is made, but not
both. The length of the minimum path and the number of right siblings to
the nodes in the minimum path adds up to Ign.

We use the above method with one change. We place the children of each
root on a heap instead of maintaining pm pointers. This heap is updated
during heapify. With this addition the number of comparisons made during
heapify is increased to lgn+1+ O(lglgn), but the benefit is that we can also
perform a constant number of insertions and deletions on this heap within the
same bound. The reason for performing heapify in this manner will become
clear later.

3.3.2 Build-Heap:

This operation is performed in step 1 to convert the input sequence of n
items into a binomial queue. To build a binomial queue By, we first link two
By, 1 roots without a comparison by making the right root, the rightmost
child of the left root. If the key of the root of the right queue is smaller
than the key of the root of the left queue, then the two values are swapped
and a heapify is performed on the root of the right queue. This swap is
therefore Inv-Adaptive. The number of comparisons needed to build a heap
is defined by the recurrence: B(n) = 2B(n/2) +1gn+2 and B(2) = 1,
hence B(n) = 0(n).

3.4 Pseudo-rank, Invariants and Lightness

Associated with each node is a non-negative integer pseudo-rank. The pseudo-
rank r, of a node x is an approximation to its binomial rank. This is similar
to, though not the same as, the ‘pseudo-rank’ in [E102].

The following invariants will hold at the start of each iteration of the
Main Loop (step 3 of pseudo-code 1).
Invariant 1: For all roots z, r, is strictly greater than the pseudo-ranks of
all the roots in the root-list to the left of x.

Invariant 2: A root of pseudo-rank r has children with consecutively in-
creasing pseudo-ranks from 0 tor — 2, r — 1l or r

Invariant 3: If a child of the root has pseudo-rank r, then its structure is
identical to either B, or B,_;.

Invariant 4: For any node z that is neither the root nor the child of the
root, the sub-tree rooted at x is a binomial tree and its pseudo-rank equals
its binomial-rank.

A root node of pseudo-rank r is a light node if its rightmost child has pseudo-
rank » — 2. A child of a root is a light node if its pseudo-rank is one greater
than its binomial rank. (A leaf is never light.) All other nodes are normal
nodes. Initially, when we have a collection of binomial trees, the pseudo-
rank equals the binomial rank for every node, hence all nodes are normal,
and invariants 1-4 hold.

Lemma 1: If z is the root of any tree T', then 272 < size(T) < 2" t1,
Proof: The quantity size(T') is maximized when x has children of pseudo-
ranks 0 through r, and all the children are normal nodes. Therefore, size(T') =
1+2°4+ 2+ . 427 = 2"+l The quantity size(T) is minimized when z has
children of pseudo-ranks 0 through 7, —2 and all the children are light(except
the node of pseudo-rank 0). Hence, size(T) =1+ 142042 4 ... 273 =
1+2r=72]]

3.5 Fix-up

A root node, say w, has been removed. The goal of fix-up is to process the
children of w, so that we can merge new roots into the root-list while main-
taining invariants 1-4. The fix-up step performs two operations: Combine
(to enforce invariant 2) and Fusion (to enforce invariant 1). Pseudo-code 2
describes the fix-up step. The Combine and Fusion pseudo-codes are called
during the fix-up routine.

3.5.1 Pseudo-code 2: Pre-processing for fix-up

Recall that P is the Inv-adaptive heap which was built in step 1 of pseudo-
code 1; w is the node deleted in the Main Loop; For node z, let k, denote
its key.

1. z := root to the immediate left of w in the root-list of P before w’s
deletion

2. If z does not exist then merge the remaining children of w as roots into
the root-list of P and return

3. else do

(a) y := leftmost child of w
(b) Define Working Forest W F' :=sub-list of siblings of y up to either

i. node with pseudo-rank r, + 1 if present, else
ii. node with pseudo-rank r, if present, else
iii. the node with pseudo-rank r, — 1

(c) If WF contains only one node (which is y) then do

i. If x contains children then perform fusion step (pseudo-code
4)

ii. else do (this is a special case of fusion)
A. Make z the parent of y and update C,
B. If k, > k, then swap the two keys(not nodes). fi.

C. r, := 1 and merge z and the remaining children of w as
roots into the root-list of P

(d) else perform combine step (pseudo-code 3)
3.5.2 Pseudo-code 3: Combine
1. ry :== 17, + 1 and make y the parent of all the other nodes of W F
2. Convert Cy, to C,,.
3. Traverse through the nodes in W F' to find the first normal node A
4. If h is found then do

(a) Decrease the pseudo-ranks of all left siblings of h by 1
(b) s := the rightmost child of h

(c) Splice out the sub-tree rooted at s and make it the immediate
right sibling of A

(d) rs :=rmp; 7 :=1, — 1 and update C,
5. else

(a) Decrease the pseudo-ranks of all children of y by 1

(b) Case 1: Rightmost child of y has pseudo-rank r,
or Case 2: Rightmost child of y has pseudo-rank r, — 1

Ty =T, +1
(c) Case 3: Rightmost child of y has pseudo-rank r, — 2
Perform heapify and fusion on y and return.

6. Perform heapify on y

7. Merge the new roots created during the combine/fusion steps and the
other children of w as roots into the root-list of P
3.5.3 Pseudo-code 4: Fusion
1. z := the rightmost child of z

2. Case l: r, =71, — 2

(a) If k; > k, then do

Swap the keys (not nodes) of and y and perform heapify on
)
(b) 7y :=r, — 1 and make y the rightmost child of z and update C,

3. Case 2: r, =1, — 1

(a) If k; > k, then do

Swap the keys (not nodes) of z and y and perform heapify on
Yy
(b) 7y :=r, and make y the rightmost child of = and update C,

4. Case 3: r, =,

(a) Splice out the sub-tree rooted at z, make z a new root and initialize
C..

(b) If k, > k, then do

Swap the keys (not nodes) of z and y and perform heapify on
Yy

(c) Case a: z has structure B,,

Ty = Ty, y := the rightmost child of z, r, := r, + 1; update
C,

(d) Case b: z has structure B,, i

Ty = 1o — 1, y := the rightmost child of z, r, := r,+1; update
C,

3.6 Correctness

Invariants 1 through 4 hold at the start of the first iteration of the Main Loop,
when the root-list of P is a collection of binomial trees. In pseudo-code 2,
since r, > 7, + 1, by Invariant 2, w has a child of pseudo-rank r, — 1, and
hence W F' contains nodes of pseudo-ranks 0, - -+, r, where r, —1 < r < r,+1.
We now argue that the invariants are restored after Combine and Fusion, and
hence after Fix-up. Step 3(c)(ii)C in Pseudocode 2 is analyzed at the end of
this section.

3.6.1 Combine:

A new root y is created at the end of combine. We show that r, does not
violate invariant 1 and that children of y preserve invariants 2 and 3.
Case when h is found (line 4): After y was made the root, its children formed

an increasing sequence of pseudo-ranks 1, 2, -+ -, rp, — 1, 7y, rp+1, - - . When
the pseudo-ranks of all the nodes to the left of h is decreased by 1, the
sequence of pseudo-ranks becomes 0, 1, 2, -+, rp — 2, rp, v, + 1, --- To

resolve the difference of 2 in pseudo-rank between h and its left sibling, we
split h in such a way that we could assign r, —1 to one part and r; to another.
Since h was a normal node, its structure is identical to B,,. The sub-tree
rooted at s has the structure of B,, ;. This allows us to assign the sub-tree
rooted at s pseudo-rank r, and make it a light node. The remaining sub-tree

10

rooted at h has structure of B,, _; and can be given a pseudo-rank r, — 1.
Hence the split obeys invariant 3. This restores the increasing sequence of
pseudo-ranks. Hence invariant 2 is also maintained. Even if the last child of
y has pseudo-rank r, — 2 and gets split, it would become a light node of rank
ry — 2. This preserves invariants 1-4.

Case when h is not found (line 5): If the rightmost child of y has pseudo-
rank r, or r, — 1, we can assign y pseudo-rank r, + 1 without violating
invariant 2. If the rightmost child of y has pseudo-rank r, — 2 then we
cannot assign y pseudo-rank r, + 1. In this case we perform a fusion step.

3.6.2 Fusion:

Lemma 2: If a new root of tree 7' with pseudo-rank r is created, size(T) >
271, (In other words, the new root is either a normal node, or a light root
of a binomial tree B,_;)

Proof: Below along with the rest of the correctness, we discuss the cases
when new roots can be created and show that this property is true. This is
in case 3 in fusion and in the section on merging new roots.|]

Lemma 3: If a fusion step is required then the tree rooted at node y is a
binomial tree of pseudo-rank r, — 1.

Proof: A fusion step is required only if all the children of y were found to
be light. Therefore using invariant 3, we can say that the sub-trees rooted at
the children of y (after combine & before fusion) have structures By, - - -, B,
where 7 = r,_s or r,_; or r,. Now, all the children of y are normal nodes.
Moreover, if the fusion step is required then the children of y need to form
a sequence of By,---,B, _,. Therefore, y would have structure B, _;, a
binomial tree with pseudo-rank = binomial-rank = r, — 1.[]

We now prove the correctness of the different cases of fusion step. We
show that nodes r, and r, do not violate invariant 1. The children of x and
z could change during fusion. We show that invariants 2 and 3 hold for all
children of z and z. We also show that z does not violate Lemma 2.

Case 1: 7, = r, — 2. If k, > k, then swapping the two keys is Inv-adaptive.
This is because k, is smaller than the keys of all descendants of z and y.
Hence shifting the key of y to the first place among trees rooted at x and y
can only reduce inversions. Heapify is inv-adaptive. Making y the rightmost
child of x does not change the pre-order traversal, and so is inv-adaptive.
Since y has the structure B, i, assigning it pseudo-rank r, — 1 preserves

11

invariants 2 and 3.

Case 2: r, =, — 1. This case is similar to case 1, the only difference being
that y is assigned pseudo-rank 7,. This makes y a light node. Invariants 2
and 3 are preserved.

Case 3: r, = r,. Splicing out z and making it a new root does not change
the pre-order traversal and therefore is inv-adaptive. Since z was a child of
the root, by invariant 3, the sub-tree rooted at z is binomial.

Case 3a: z has structure B, . Since we increment r, to r, + 1, it is allowed
to have children with pseudo-rank up to r, + 1. We assign y pseudo-rank r,
and make it the rightmost child of z. This preserves invariant 2. Invariant
3 is preserved since y is a binomial tree B, _;. Before being fused with y, 2z
was the root of a binomial tree B, . Hence the size of the tree rooted at z is
> 2", This preserves Lemma 2.

Case 3b: z has structure B,, ;. We assign y pseudo-rank r, — 1 which is 2
lower than 7, + 1. Hence invariant 2 holds. Invariant 3 holds since y is root
of a binomial tree B, _;. The size of the tree rooted at z before being fused
with y is 2=~ ! and size of the tree rooted at y is 2"= . Therefore, size of
the new root z after fusion is 2" (This tree is a binomial tree B,). Hence
Lemma 2 holds.

3.6.3 Merging new roots

In step 3(c)(ii)C of pseudo-code 2 and at the end of the combine, we merge
the new roots into the root-list. Each child ¢ of w that lies outside W F' has
the property that r,+1 < r. < r, 4+ 1. This is because if r. < r, 41 it would
be a part of WF. Also r. < r, by invariant 2. The root created during the
combine and fusion is a root of pseudo-rank r, + 1. The first root to the
right of w (before its deletion) has pseudo-rank > r,. Hence the new root
created in combine/fusion and the other children of w can be merged into
the root-list without violating Invariant 1.

Also consider any child ¢ of w that lies outside W F' and becomes a new
root. Let it have pseudo-rank r. By invariant 3, ¢ has the structure of B,
or B, ;. Hence the size of the sub-tree rooted at c is > 2"~!. This preserves
Lemma 2.

12

3.7 Time Complexity Analysis
3.7.1 Analysis of Combine:

Consider the j* iteration of the Main Loop. We perform one heapify op-
eration on a tree of pseudo-rank r, + 1. By Lemma 1, this takes less than
ry +3 4+ O(lgr,) comparisons. Now k, < k, < k, where z is any descen-
dant of . Hence by Lemma 1, there are at least 2" 2 = I; (say) inversions
associated with w. Hence, r, +3 + O(lgr,) = 1g(I;) + 5 + O(lg lg I;)

Hence, total number of comparisons over the entire algorithm for the
combine operation is bounded by Y2 =7 (1g(1;) +O(lglg(;))+5). For a convex
function f(z) and for any functlon p() with for all z, 0 < p(z) < 1 and
> p(z) = 1, according to Jensen’s inequality,

> p(@)f(z) = FQ_p(2)z)

Using the convexity of —lg(z) we get,

r=n

> (1/n)(-1s(L) = ~1(% (1)

=1
T=n =

. (1/)(s(1) < Ia(S (1))

> (s(2) < nlg&: T
< nlg(l/n)

since 1 + L+ ..+ 1, <1
Similarly Using the convexity of —lglg(z) we get,

w_zf:u/n)(—lglgux)) > 1g1g(§f: (L)/m)
i (1/n)(1glg(I,)) < lglg(i

> (1g15(L,) < nlglg(Y. (L)/n)
=1 =1
< nlglg(l/n)
since 1 + L+ ..+1,<]I.

Therefore the entire time is bounded by nlg(l/n) + O(nlglg(I/n)) + 5n

13

3.7.2 Analysis of Fusion:

In the Fusion step we perform at most one heapify operation, one initializa-
tion of C' and one update of C' on a tree with pseudo-rank r,. This requires
less than 2r, + 4 4+ O(lgr,) comparisons. The O(lgr,) terms comes from
updating the C' heap. The fusion step occurs only in the case when y had
light children of pseudo-ranks from 1 to r, — 1. Using Lemma 2, we can say
that there should have been a root of pseudo-rank r, + 1 in the root-list of P
for 27 —2r==1 = 2r==1 deletions and no fusion could have taken place on this
tree. Borrowing a constant from each of these deletions would be sufficient
to pay off for the comparisons performed during the fusion step. Hence, all
fusion steps during the algorithm would require only O(n) comparisons.

3.7.3 Initialization of the C heaps:

For any root x, C, is a separate heap containing its children. It takes O(lgk)
time to initialize C,, if the size of the subtree rooted at x is k. Durin Fix-up
we need to update C, so that it corresponds to C). This can be done by
performing multiple deletes for each of the children of w that are not children
of y from highest to lowest pseudo-ranks. The analysis for the total number
of comparisons required for the initialization of all C’s is deferred until case
1.2 of section 5.4, where we prove that this is linear.

Elmasry [El03] has pointed out to us a different approach that does not
use the C' heaps, but instead slightly modifies the way a node is promoted
as a root during the combine step, as follows. After the root is removed,
in the above description a node of pseudo-rank 0 (node y) becomes the new
root (line 1 of pseudo-code 3). Instead of this, we compare the keys of y
and the right sibling of y and promote the node with the larger key. This
way, the prefix-minima pointers of the other right siblings of y need not be
updated. Though this operation is no longer Inv-Adaptive it can create at
most n inversions during the course of the algorithm and therefore would not
affect the time-complexity.

4 A Simple Oracle

In section 3 we treated the oracle as a black-box and described the algorithm.
We now provide two different techniques to realize the oracle. In this section

14

we describe a simple method that is optimal when the number of inversions
in the input is w(1)nlglgn. This sets up the basic idea which is used in the
main oracle, described in section 5, to achieve optimal bounds in general.

The main idea in the simple oracle to arrange the nodes of the root-list
in a secondary binary heap S. The reason for performing the right to left
incremental pairing pass in the Binomial Sort algorithm [El02] was to find
the node with the minimum key. By arranging the nodes in S, the structure
of P becomes more rigorous.

4.1 Description of the Sorting Algorithm Using a Sim-
ple Oracle

We now go back to pseudo-code 1. Lines 1 and 2 are self-explanatory.We
now walk through one iteration of the loop in lines 3-7. In line 4, the root
w in the root-list of P is found by querying the Oracle. Line 5 performs the
fix-up step. Since the fix-up could create new roots, the Oracle is updated
in line 6.

Time taken by the algorithm is the sum of the time taken for all the fix-
up steps and the time taken for updating the Oracle. It is assumed that the
oracle can answer each query in constant time. The number of comparisons
similarly is the sum of the number of comparisons spent over all the fix-up
steps and the number of comparisons for updating the Oracle.

4.2 Description and Analysis
4.2.1 Initialization:

We just insert all the roots into S one by one. Time for each insertion into
S is bounded by O(lglgn). There can be at most lgn nodes in the root-list.
Therefore the total time for initializing the Oracle is O(lgnlglgn).

4.2.2 Updates:

If w has no children, then it can be removed from P by changing its key value
to oo performing a heapify operation. This would take time O(lglgn). If w
has children then we handle three cases.

15

Case 1: The root-list of P contains x, a new root w’ with ry = r, +1 and
new roots to the right of w'.

Case 2: The root-list of P contains x, which was fused together with a
child of w. No new roots are to the right of x.

Case 3: The root-list of P contains z, a new root z that was formerly a
child of © and w’ was fused into z. No mnew roots are present to the right of z

Case 1: The minimum heap node of S, w is now replaced with w’. A heapify
step on S is performed so that w' sinks to its correct location in S. The new
roots to the right of w' in P are inserted into S.

Case 2: During the fusion step the key of x in P could have changed. The
value k, could have only decreased. Hence we perform a decrease-key oper-
ation in S on the node x. The first new root is inserted into S by changing
the node w and performing a heapify on S. Other new roots are inserted in
normal manner into S.

Case 3: The minimum heap node of S, w is now replaced with z. A heapify
step on S is performed so that z sinks to its correct location in S. The new
roots to the right of w' in P are inserted into S.

The analysis is quite straight-forward. A node is inserted into S at most
once. This implies that the time spent and the number of comparisons on
all the heapify operations is O(nlglgn). Also, at most one decrease-key or
one delete (implemented by changing key to co and performing a heapify)
operation might be performed during each iteration of the loop. The total
time and number of comparisons for all the decrease-key/delete operations
is bounded by O(nlglgn). Hence the bound on the time/comparisons for
the entire Oracle is O(nlglgn). Using this Oracle the new algorithm would
require at most nlg(//n) + O(nlglgn) comparisons.

4.2.3 Optimality:
If the number of inversions I > nlg*® n, then
I/n>1g"®n
Ig(I/n) > w(l)Iglgn
nlg(I/n) > w(l)nlglgn

16

In this case, the above algorithm runs in optimal time. Moreover the
number of comparisons is n1g(I/n)+o(nlg(l/n)) which achieves the constant
coefficient 1 in the leading term, matching that of the information theoretic
lower bound.

5 The Main Oracle

The Oracle is used in steps 2 and 3 of pseudo-code 1 to extract the minimum
key in each iteration of the Main Loop. In this section we describe and
analyze the Oracle.

Recall that the primary heap P is the main heap that is used in pseudo-
code 1. In the Oracle we use secondary binary heaps S[1---lglgn + 1],
containing the keys at the roots of the trees in P. We also use tertiary
binary heaps T'[1---lglglgn + 1], containing the keys at the roots of heaps
in S.

5.1 Description and Initialization

The roots of the binomial queues in P are divided into lglgn + 1 groups.
Group ¢ contains roots of P that have pseudo-ranks in the interval [2¢71, 2%).
This is maintained as an invariant throughout the algorithm. The (Ilglgn +
1) group contains roots of pseudo-rank up to 2'¢%8" = lgn. Since the
maximum pseudo-rank of a root is Ign, lglgn + 1 groups are sufficient to
include all the roots. We place the roots in group ¢ in a binary heap S[i]. We
now create a new list ‘higher-list’ of nodes corresponding to the minimum key
of each group. We define a collection ¢ to be the set of all nodes in higher-list
of pseudo-ranks in [22"7",2%"). The Tertiary binary heap T'[i] contains nodes
in collection i and also the minimum node of collection ¢ + 1 (if it exists).
Hence the minimum node of T'[i] is the suffix minimum of roots in P with
pseudo-ranks in [2% ", Ign).

5.2 Initialization

We begin with a build-heap step on the nodes of group (lglgn+1) to create
S(lglg n+1]. Build-heap is then performed on group lglgn to create S[lglgn|.
This continues up to S[1]. Now we perform a build-heap on the nodes of

17

collection (Iglglgn + 1) to create T[lglglgn + 1]. After this, we perform a
build-heap on the nodes of collection (Iglglgn) along with the minimum of
Tlglglgn + 1] to form T[lglglgn|. This procedure to create T'[i] continues
until a Build-Heap creates T[1]. Now the heap minimum of T'[1], is the
minimum of all the roots of P.

5.2.1 Analysis:

The number of nodes in the root-list of P is lgn. Since build-heap takes
linear time, the time to create S is O(lgn). Similarly, the time to create T is
bounded by O(lglgn) since there are O(lglgn) groups. Initialization of the
Oracle is therefore sub-linear.

5.3 Updates

After the fix-up of the root-list of P, we need to update the Oracle. Here
we may encounter one of the following two cases (and sub-cases). We use
the same notation as fix-up. Let y be the new root formed at the end of the
combine step.

Case 1: No fusion occurs.

Case 1.1: ry = r, + 1 =r,. No new root other than y remains in P.

Case 1.2: Several new roots that were formerly the children of w are present
to the right of y with pseudo — rank > r,.

Case 2: Fusion occurs.
Case 2.1: x is fused with y. No new root remains in the root-list of P.
Case 2.2: During the fusion step, z becomes a new root. Node y is fused with
z. No other new root remains in P.

We now describe the updates for the above cases.
Case 1.1: First we will deal with the case when all children of w are combined
together to form a single tree rooted at y. Since w was the smallest element
of the root-list, it should be the smallest element in its secondary heap, say
S[j], and also in its tertiary heap say T'[l] and all tertiary heaps to the left
of T[l]. In S[j], the key of w is changed to that of y. Now this new key
representing y is sunk into the correct position in heap S[j], by a heapify
operation. Similarly w in T'[{] is changed to the new minimum of S[j] and a

18

binary heapify is performed in T[l]. Heap T[l] now contains a new minimum
node say u. We proceed to change the field of w to that of w in T'[l — 1] and
perform a heapify on 7|l —1] to obtain a new minimum node. This procedure
(called ‘propagate’ for future reference) of changing the node corresponding
to w with the node corresponding to the minimum of the tertiary heap to
the right goes all the way up to T[1].

Case 1.2: We insert all new roots to the right of x into their respective heaps
in S and T. We start from the rightmost new root 2’ (say) and insert it into
S and T as with y in case 1.1 (if 2/ is in the same group as w, it replaces
w). The other new roots to its left are then inserted one by one into S and
if needed into 7'. We extract w out of heaps S and T (if present). We now
perform propagate starting from 7'[l].

Case 2.1: Key(z) could have decreased during the fusion step. First we
perform a decrease-key operation on node z in S[j'] where j' is the group in
which z is present. If z was previously present in collection ', we perform
a decrease-key on node z in T'[I']. If = because of the decrease-key in S[j’|
became the minimum of S[;j'], then it replaces the previous minimum of S[j’|
in T[l'] and a decrease-key is performed. We delete w from S[j] and T[]
where j and [is the group and collection in which w was present and then
perform propagate.

Case 2.2: Processing of z in this case is identical to that of y in case 1.1.

5.4 Analysis:

In this section we analyze the number of comparisons performed in each
of the cases mentioned above. We note here that every node contains two
fields: key and pseudo-rank. Throughout the algorithm, keys of the nodes
are swapped and not the nodes themselves. Hence unless explicitly changed,
a node’s pseudo-rank remains the same.

Case 1.1: Let r, = 7, = p. Since size of S[j|] < p, time to update S[j]
is O(lgp). Since size of T'[l] < lgp time to update T'[{] is O(lglgp). Node w
belongs to collection [lg([lgp] +1)] + 1. Therefore the total time bound on
all the heapify calls in T is O(lglgp).

As computed in section 5.4, number of inversions with respect to w is
> 2P=2 = J;. Therefore the time taken and the number of comparisons made
during one update of the Oracle executing case 1.1 is O(Iglg [;).

19

Case 1.2: We define an interior node as any node in P that is not the root. An
old root is defined as a root that was not created during the current iteration
of the Main Loop. A new root is any root created during the current iteration
of the Main Loop.

Inserting y and other new roots: Analysis for inserting y into .S and into
T follows from case 1.1 and takes O(lglg [;) time. We now analyze the cost
to insert the other new roots. During the course of the algorithm a node’s
pseudo-rank is increased only when it is made a new root during combine,
or when it becomes a new root during fusion. Also note that once a node
becomes a root, it never becomes an interior node.

Now consider any new root p that was created with pseudo-rank r, and

currently has pseudo-rank r,. We consider the cases: 7, < r, and r, > 7,.
Briefly, in the first case we use the binomial tree property 4 to show that the
number of comparisons over all insertions in S and T is O(n). In the second
case we amortize the cost of insertions in S and 7' against other costs.
Case 1.2.A: r;, < r,. Since at the first iteration of the Main Loop, P is a
collection of binomial trees, the number of times nodes of initial pseudo-rank
r are inserted into S and 7' during the course of the algorithm is no more
than 287 (r+1) using property 4 of binomial trees. Inserting p in S and T
takes time O(lgr)) = O(lgr,). Hence, the cost of insertions into S and 7' of
all nodes p whose pseudo-rank r;, at insertion is < the initial pseudo-rank r,
is bounded by

O(2n—31g 2 + 28n—41g3 + ... 4 2en-l8ng(lgpn — 1))
=0(n/2%1g2+n/2*1g3+-- -+ n/2'8"1g(lgn — 1))

=0(n(lg2/2° +1g3/2' + - +1g(lgn — 1)/2'8" 1))

We now bound the decreasing series 3.3°,1g4/2" a; < 0.5

Ratio between successive terms < (1g4/16)/(1g3/8) = 1/1g3 < 0.6 There-
fore, >2°,1gi/2" < 0.5(1/(1 — 0.6)) = 1.25 Hence, the total number of com-
parisons during all case 1.2.A executions of Oracle is O(n).

Case 1.2.B: 7, > r,. Node p was a child of w in the previous iteration - an

internal node. The only way in which an interior node could have greater

20

pseudo-rank than it initially had, would be if it was promoted during combine
and immediately was fused. As explained in section 5.4, fusion occurs rarely.
Moreover the analysis of fusion accounted for 2r, + O(lgr,) comparisons per
fusion involving x. All instances of case 1.2.B can be charged on the O(lgr,)
factor.

Updating C,: We perform a number of deletes from C,, to create C,. We
note that each node of pseudo-rank r that is deleted from C, is also inserted
into S with the same pseudo-rank. Hence each such deletion can be charged
against the O(lgr) comparisons spent for its insertion into S. Hence the
number of comparisons made to convert C,, to Cy throughout the algorithm
is linear.

Case 2.1: The analysis is the similar to case 1.1

Case 2.2: The analysis is identical to case 1.1

The total time spent by the Oracle over all calls is bounded by O(Zgj lglg I;)+
O(n) We now use Lagrange’s multipliers to maximize f(Iy,Is,...,I,) =
S i=1glg(I;) subject to the constraint g(Iy, I, ..., I,,) = 42" I; < I, where
Iis the total number of inversions in the input sequence. We want to find a
scalar A such that 7f =A<y g.

8f 6lnln1

~ In2

oI, oI,

Therefore,
(1/A\)=L1In2Inl; = LIn2lnl,=---=1,In2InJ,

and so,
L=L=---=1I,

Therefore, f is maximized at I; = I /n for all ¢ and the maximum is n lglg(I/n).

21

Hence the total time spent by the Oracle is O(nlglg(I/n) + n).

This gives us the main theorem.
Theorem: The heap-based algorithm sorts a sequence of n items with I in-
versions in time O(n1g(I/n)+n) and makes at most nlg(I/n)+O0(nlglg(I/n)+
n) comparisons.
Proof: The proof follows from the invariants, lemmas 1-3 and the analysis
of the Oracle.

6 Discussion

6.0.1 Lower order terms:

An open question is whether we can reduce the O(nlglg(l/n)) term to O(n)
thus matching the lower bound to within a constant factor of the lower order
term. However we consider this a minor theoretical question since this has
already been achieved with insertion and merge sort based techniques [EF03].
The main issue here is whether this can be done by a method that uses simple
data structures. Note that the nlglg(//n) term in our algorithm is mainly
contributed by n delete-min operations on heaps of size about log(I/n). Since
loglogn is less than 6 for input sizes that we may expect to deal with in the
foreseeable future, for practical purposes that term in our bound can be
viewed as a linear term with a modest constant factor.

It is not possible to improve the O(nlglg(I/n)) to O(n) in this exact
framework by improving the Oracle. This is because if each update of the
Oracle can be performed in o(lglg k) time where lg k is the number of roots,
then we can sort a sequence of Igk items in o(lgklglgk) time. This is not
possible because of the sorting lower-bound.

6.0.2 Single copy of keys:

We need to maintain just one copy of the keys. The Secondary and Tertiary
heaps maintain pointers to the primary heap items.

22

6.0.3 Choice & implementation of S and T

Several versions of S and 7" would work including other types of heaps. We
explain one method below. We always have no more than lgn nodes in S
for the simple Oracle and a fixed number of nodes for each S[i] and T'[i
in the main Oracle. The nodes that are in S or 7" but not in the root-list
have key value co. Insertions into .S and 7', can be implemented as standard
decrease-key operations reducing keys from oo to finite values. The array for
the binary heap can be initialized at the beginning with oo values. Since the
root-list would never contain more than lgn nodes for the simple Oracle and
the fixed limit for the main Oracle, S and 17" would never run out of space.

7 Acknowledgements:

I greatly thank Prof. Vijaya Ramachandran for her guidance and encourage-
ment. I also thank Prof. Mike Fredman for his comments on the write-up.

References

[AL90] A. Anderson and T. W. Lai. Fast updating of well-balanced trees. Pro-
ceedings of Scandinavian Workshop on Algorithm Theory (1990), 111-121

[Br78] M.Brown. Implementation and analysis of binomial queue algorithms.
SIAM J. Comput. 7 (1978), 298-319.

[BT80] M.Brown and R.Tarjan. Design and analysis of data structures for repre-
senting sorted lists. STAM J.Comput. 9 (1980), 594-614.

[Co00] R.Cole. On the dynamic finger conjecture for splay trees. Part II:The
proof. SIAM J.Comput. 30 (2000), 44-85.

[Ca92] V.Estivill-Castro. A survey of adaptive sorting algorithms ACM Comput.
Surv. vol 24(4)(1992), 441-476.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algo-
rithms. MIT Press, 2001

[E102] A. Elmasry. Priority Queues, Pairing and Adaptive Sorting. ICALP 2002
Proceedings LNCS 2380: p 183

23

[E103] A. Elmasry. Private communication, February 2003.

[EF03] A. Elmasry and M. Fredman. Adaptive Sorting and the Information The-
oretic Lower Bound STACS 2003 Proceedings

[GMPRT77] L.Guibas, E.McCreight, M.Plass and J.Roberts. A new representation
of linear lists. ACM Symp. Theory of Computing. 9 (1977), 49-60.

[Kn98] D.Knuth. The Art of Computer Programming.Vol III:Sorting and Search-
ing. Addison- Wesley, second edition. (1998).

[LP91] C.Levcopoulos and O.Petersson. Splitsort -An adaptive sorting algorithm.
Information Processing Letters. 39 (1991), 205-211.

[LP93] C.Levcopoulos and O.Petersson. Adaptive Heapsort. Journal of Alg. 14
(1993), 395-413.

[LP96] C.Levcopoulos and O.Petersson. Exploiting few inversions when sorting:
Sequential and parallel algorithms. Theoretical Computer Science. 163
(1996), 211-238.

[Ma85] H.Mannila. Measures of presortedness and optimal sorting algorithms.
IEEE Trans. Comput. C-34 (1985), 318-325.

[Me79] K.Mehlhorn. Sorting presorted files. Proc. 4th GI Conference on Theory
of Computer Science. , LNCS 67 (1979), 199-212.

[Me84] K.Mehlhorn Data Structures and Algorithms. Vol.1. Sorting and Search-
ing. Springer-Verlag, Berlin/Heidelberg. (1984).

[MEP96] A.Moffat, G.Eddy and O. Petersson Splaysort: fast, versatile, practical.
Softw. Pract. and Ezxper. Vol. 126(7)(1996), 781-797.

[MPW98] A.Moffat, O.Petersson and N.Wormald A tree-based Mergesort. Acta
Informatica, Springer-Verlag. (1998), 775-793.

[ST85] D.Sleator and R.Tarjan. Self-adjusting binary search trees. J ACM
32(3)(1985), 652-686.

[Vu78] J.Vuillemin. A data structure for manipulating priority queues. CACM
21(4) (1978),309-314.

24

