
Clustering with Bregman DivergenesArindam Banerjee� Srujana Meruguy Inderjit Dhillonz Joydeep GhoshxUT CS Tehnial Report #TR-03-19AbstratA wide variety of distortion funtions are used for lustering, e.g., squared Eulidean distane,Mahalanobis distane and relative entropy. In this paper we onsider the general ase where thedistortion is a Bregman divergene. We pose the hard lustering problem in terms of minimizingthe loss in Bregman information, a quantity motivated by rate-distortion theory, and present analgorithm to minimize this loss. The proposed algorithm uni�es several well-known partitionalmethods, suh as lassial kmeans and information-theoreti lustering, whih arise by speialhoies of the Bregman divergene. Further, we show an expliit bijetion between Bregmandivergenes and exponential families. The bijetion enables the development of an eÆientviewpoint of EM for learning models involving mixtures of exponential distributions. This leadsto a simple soft lustering algorithm involving Bregman divergenes.1 IntrodutionData lustering is a fundamental \unsupervised" learning proedure that has been extensively stud-ied aross varied disiplines over several years [JD88℄. Parametri lustering of data involves �ndinga partitioning of the data into a pre-spei�ed number of partitions with a luster representativeorresponding to every luster suh that a well-de�ned ost funtion involving the data and therepresentatives is minimized. The ost funtion is normally the expeted value of a well-motivateddistortion measure between the data-points and their luster representatives. Usually, the distribu-tion over the data is assumed to be uniform and hene it is suÆient to work with the sum of thedistortions, sine this is equal to the expetation, in this ase, with a multipliative onstant. Thekmeans [Ma67℄ problem is perhaps the most well-studied and widely used member of this lass ofproblems.Typially, parametri lustering problems ome in two avors: hard and soft. In hard lustering,one obtains a disjoint partitioning of the data suh that eah data-point belongs to exatly one ofthe partitions. Moreover, the luster representative of every partition depends only on the data-points in that partition. In soft lustering, eah data-point has a ertain probability of belongingto eah of the partitions. The luster representatives are omputed using all the data-points withontributions appropriately weighted aording to their probability of being in that luster. In somesense, one an think of hard lustering as a speial ase of soft lustering where the probabilitiesof a data-point belonging to a luster an either be 1 or 0.Algorithms for solving partiular versions of parametri lustering problems have been devel-oped over the years. As far as hard lustering algorithms are onerned, the most well-known�Department of ECE, University of Texas at AustinyDepartment of ECE, University of Texas at AustinzDepartment of CS, University of Texas at AustinxDepartment of ECE, University of Texas at Austin 1



algorithm is the iterative reloation sheme for the kmeans problem [JD88, DHS00℄. The reentlyproposed information theoreti lustering algorithm [DMK03℄ for lustering probability distribu-tions has a similar avor. On the other hand, the domain of soft lustering algorithms is morewell developed. Sine most of the pratial soft lustering problems an be posed as a problem of�nding the parameters of a mixture density under the assumption that the observed data has beensampled from the mixture distribution, the lustering problem boils down to a problem of maxi-mum likelihood parameter estimation. However, for a given data-point, sine one does not knowthe exat omponent following whih it was sampled, the problem is one of maximum-likelihoodestimation with inomplete information. The well-known EM algorithm [DLR77℄ is used to solvethe estimation and hene, the soft lustering problem.Although the kmeans and the information theoreti lustering algorithms seem to have a similaravor in that both of them employ an iterative reloation sheme using a ertain distortion funtion| square of the Eulidean distane in the kmeans ase, and the KL-divergene in the ase ofinformation theoreti lustering | it is not lear for exatly what type of distortion funtions suhsimple shemes will give a lustering of the data. In this artile, we answer this question. Weintrodue a onept alled Bregman information of a set and pose an optimal quantization problemsuh that the loss in Bregman information due to quantization is minimized for a quantization ofa given size. We show that the optimal quantization problem is exatly equivalent to a Bregmanlustering problem, where the distortion funtion used for lustering is a Bregman divergene.Then, we show that if the distortion funtion is a Bregman divergene, there is always an iterativereloation sheme that lusters the data minimizing the given distortion funtion. In other words,like many other problems in mahine learning, the lustering algorithm omes along with the hoieof the loss funtion.The pratial generative models used for soft lustering typially use a mixture density involvingan appropriate member of the exponential family. Exept for an exellent analysis by Kearns etal [KMN97℄ involving hard and soft assignments, there does not appear to be muh literature onthe onnetion between hard and soft lustering algorithms involving exponential families. In thisartile, we prove that the density of any exponential distribution an be written as the produt ofan exponential funtion of the negative of a uniquely determined Bregman divergene and a fun-tion independent of the parameters, thereby exhibiting a bijetion between Bregman divergenesand exponential families. Using this result, and the Bregman lustering results developed for thehard lustering ase, we revisit the EM algorithm for mixture density learning. We demonstratethat the M-step of EM, where most of the omputation is involved, simpli�es to �nding a simpleexpetation if one is working with an appropriate representation of the suÆient statisti. Thisalso demonstrates the exat onnetion between the hard and soft Bregman lustering algorithms.The remainder of this artile is organized as follows. We �rst de�ne Bregman divergenesand provide a few illustrative examples in setion 2. Then, we introdue the onept of Bregmaninformation to motivate the Bregman hard lustering problem and propose an algorithm to solvethis lustering problem in setion 3. In setion 4, we establish a onnetion between exponentialfamilies and Bregman divergenes and use it develop a soft Bregman lustering algorithm in setion5. In setion 6, we present some experimental results that illustrate the usefulness of the Bregmanlustering algorithm. In setion 7, we briey disuss related work.A word about the notation: bold faed variables, e.g., x;�, et., represent vetors, sets arerepresented by alligraphi upper-ase alphabets, e.g., X ;Y, et. and enumerated as fxigni=1 wherexi are the elements of the set and vetors x = (x1; � � � ; xd) are represented as [xj ℄dj=1. ' denotes thenull set and R;R++ and Rd denote the set of reals, the set of positive reals and the d-dimensionalreal vetor spae respetively. For x;y 2 Rd , hx;yi is the natural inner produt in Rd and kxk2



is the L2 norm. Probability density funtions are denoted by lower ase alphabets, e.g., p; q, et.Probability measure on a set is denoted by �. If a random variable x is distributed as p, we denotethis by x � p. Expetation of funtions of a random variable x � p are denoted by Ex�p[�℄, or,simply Ep[�℄ when it is lear whih random variable is being spei�ed. The inverse of a funtion fis denoted by f�1.2 PreliminariesFirst, we revisit some basi onepts in analysis [KF75℄ that we need in order to de�ne Bregmandivergenes. Then, we de�ne Bregman divergene for a well-behaved lass of onvex funtions andlook at a few examples.De�nition 1 The interior of a set S � Rd is de�ned asint(S) = fx 2 Rd j9� > 0; B�(x) � Sg;where B�(x) = fy 2 Rd j�(y;x) < �g denotes the open metri �-ball entered at x for a metri �de�ned on Rd .De�nition 2 Let � : S 7! R be a stritly onvex funtion de�ned on a onvex set S � Rd suh that� is di�erentiable on int(S) 6= '. The Bregman divergene D� : S � int(S) 7! [0;1) is de�nedas D�(x;y) = �(x)� �(y)� hx� y;r�(y)i:Example 1: The well-known squared Eulidean distane is perhaps the simplest and most widelyused Bregman divergene. In this ase, �(x) = hx;xi is a stritly onvex, di�erentiable funtionon Rd and D�(x;y) = hx;xi � hy;yi � hx� y;r�(y)i= hx;xi � hy;yi � hx� y; 2yi= hx� y;x � yi = kx� yk2;whih is exatly the squared Eulidean distane.Example 2: Another widely used Bregman divergene is the KL-divergene. If p is a disreteprobability distribution so that Pdj=1 pj = 1, then �(p) = Pdj=1 pj log pj , whih is the negativeentropy is a onvex funtion in this domain (the d-simplex). Then, the orresponding Bregmandivergene D�(p;q) = dXj=1 pj log pj � dXj=1 qj log qj � hp� q;r�(q)i= dXj=1 pj log pj � dXj=1 qj log qj � dXj=1(pj � qj)(log qj + log e)= dXj=1 pj log�pjqj�� log e dXj=1(pj � qj)= KL(pkq); 3



Table 1: Bregman divergenes orresponding to some onvex funtions. Note that logarithm is tothe natural base and A is positive de�nite.Domain �(x) D�(x;y) DivergeneR x2 (x� y)2 Square lossR++ x logx x log(xy )� (x� y)(0; 1) x logx+ (1� x) log(1� x) x log(xy ) + (1� x) log( 1�x1�y ) Logisti loss 1R++ � logx xy � log(xy )� 1 Itakura-Saito distaneR ex ex � ey � (x � y)eyR n f0g jxj maxf0;�2 sign(y)xg Hinge lossRd kxk2 kx� yk2 Squared Eulidean distaneRd xTAx (x� y)TA(x � y) Mahalanobis distane 2d-Simplex Pdj=1 xj logxj Pdj=1 xj log(xjyj ) KL-divergeneRd+ Pdj=1 xj logxj Pdj=1 xj log(xjyj )�Pdj=1(xj � yj) Generalized I-divergenethe KL-divergene between the two distributions as Pdj=1 qj =Pdj=1 pj = 1.Table 1 ontains a list of some ommon onvex funtions and their orresponding Bregman diver-genes. Some basi properties of Bregman divergenes are listed in the Appendix.3 Bregman Hard ClusteringIn this setion, we �rst introdue a new onept alled the Bregman information of a set basedon ideas from Shannon's rate-distortion theory. Then, we motivate the Bregman hard lusteringproblem as a quantization problem that involves minimizing the loss in Bregman information andshow that it is equivalent to a more diret formulation, i.e., the problem of �nding a partitioningand a representative for eah of the partitions suh that the expeted Bregman divergene of thepoints from their representatives is minimized. We also propose a lustering algorithm that is ageneralization of the kmeans algorithm and is guaranteed to onverge to a loal minimum of theBregman hard lustering problem.3.1 Bregman InformationBefore we go on to de�ne Bregman Information, we briey relate the relevant onepts in Shannon'srate distortion theory to the Bregman lustering problem. In the general rate-distortion setting[CT91℄, a random variable is oded using a sheme that onsists of an enoding and a deodingfuntion. The rate of the oding sheme is the number of bits used for enoding and an beonsidered a measure of the size of odebook (2R where R is rate). The performane of the odingsheme is determined in terms of the expeted distortion between the soure random variableand the deoded random variable, for an appropriate appliation dependent distortion funtion.The rate distortion problem [GV03℄, an be stated as the problem of �nding a oding shemewith a given rate, R, suh that the expeted distortion between the soure random variable andthe deoded random variable, is minimized. The ahieved distortion is alled the distortion-1x log(xy )+ (1�x) log( 1�x1�y ) = log(1+ exp(�f(x)g(y))), i.e. logisti loss where f(x) = 2x� 1 and g(y) = log( y1�y )2(x� y)TA(x� y) is the Mahalanobis distane when A is the inverse of the ovariane matrix4



rate funtion, i.e., in�mum distortion ahievable for a given rate, or, in other words, for a givenodebook size.For the urrent analysis, let us onsider a simple oding sheme for a random variable X thattakes values in a �nite set X = fxigni=1 � S � Rd following a probability measure �. The enodingsheme involves a quantization of the random variable and deoding is just the identity map. Thesize of the odebook, i.e., the set of quantized values, determines the rate of the oding shemeor rate of quantization. Assuming the distortion funtion to be a Bregman divergene D�, therate-distortion problem for this oding sheme an be stated asminF fE� [D�(X; X̂)℄g; (1)where F is the quantization mapping with a �xed rate, R and X̂ = F (X) is the enoded version ofX. First onsider the ase where the rate of quantization, R = 0 i.e., the odebook is a singletonset. From a stohasti viewpoint, the enoded version X̂ of the random variable X is a onstant,say s 2 S and the joint distribution of (X; X̂) is equivalent to the marginal distribution of X. Thedistortion-rate funtion for rate R = 0 and distortion funtion, D� is given bymins2S E� [D�(X; s)℄ = mins2S nXi=1 �i D�(xi; s): (2)We all this distortion-rate funtion the Bregman information of the set X for the Bregmandivergene, D� and denote it by I�(X ). The optimal value of s that ahieves the minimal distor-tion will be alled the Bregman representative or, simply the representative of the set X . In thesubsequent analysis, we shall show that this representative always exists, is uniquely determinedand, surprisingly, does not depend on the hoie of the Bregman divergene. Note that a lowervalue of Bregman information indiates that the elements of the set are, in a Bregman divergenesense, loser to the representative. On the other hand, a higher value of Bregman informationindiates that the single representative annot apture the diversity in the set, and it may be agood idea to partition the set into more homogeneous subsets and have a representative for eahsubset. This diretly leads to the Bregman lustering problem.Before proeeding further, we show the existene and uniqueness of the Bregman representative.Theorem 1 Given a set X = fxigni=1 � S � Rd , a probability measure � over X and a Bregmandivergene D� : S � int(S) 7! [0;1), the problemmins2S E� [D�(x; s)℄has a unique minimizer given by s� = � = E�[x℄.Proof: The funtion we are trying to minimize isJ�(s) = E� [D�(x; s)℄ = nXi=1 �iD�(xi; s):We prove the required result by showing that for 8s 2 S; J�(s) � J�(�) where � = E� [x℄ and
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equality holds only when s = �. To this end, we note thatJ�(s)� J�(�) = nXi=1 �iD�(xi; s)� nXi=1 �iD�(xi;�)= nXi=1 �i(�(xi)� �(s)� hxi � s;r�(s)i � �(xi) + �(�) + hxi � �;r�(�)i)= �(�)� �(s)� h( nXi=1 �ixi)� s;r�(s)i + h( nXi=1 �ixi)� �;r�(�)i= �(�)� �(s)� h�� s;r�(s)i= D�(�; s) � 0;with equality only when s = �. Hene, � is the unique minimizer of the funtion, J�.Finally, we argue that � 2 S. To this end, sine X � S and S is a onvex set, o(X ) � S, whereo(X ) is the onvex hull of X . But � = E� [x℄ 2 o(X ). Hene � 2 S. That ompletes the proof.The above result shows that the representative, i.e., the minimizer of the expeted Bregmandivergene, is always the expetation of the set even when the Bregman divergene is not onvexin the seond argument1.Using the above theorem, we an now give a more diret de�nition of the Bregman informationas follows:De�nition 3 Let X = fxigni=1 � S be a �nite subset of S and � be a probability measure on Xand let � = E� [x℄ = Pni=1 �ixi. Let D� : S � int(S) 7! [0;1) be a Bregman divergene. Then,Bregman Information of X in terms of D� is de�ned asI�(X ) = E� [D�(x;�)℄ = nXi=1 �iD�(xi;�):To start appreiating the potential of suh a treatment, we note that the elements of the setX an be quite general. For instane, the elements an be probability distributions, funtionals,operators or just plain vetors. In the following examples, we look at sets of vetors and probabilitydistributions on a �xed disrete output spae.Example 3: One simple example of Bregman information is the variane. Let X = fxigni=1 bea set in Rd . The Bregman information of the set X with the squared Eulidean distane as theBregman divergene is given byI�(X ) = nXi=1 �iD�(xi;�)= 1n nXi=1 kxi � �k2 ( Assuming uniform measure, �i = 1n);1For example, onsider �(x) = P3j=1 x3j de�ned on R3++ so that D�(x;y) = P3j=1(x3j � y3j � 3(xj � yj)y2j ) isnot onvex in y. Now for the set X = f(1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5)g, the expeted Bregman divergenewith respet to a point y is given by (135 + 2P3j=1 y3j � 9P3j=1 y2j ), whih is minimized when y = (3; 3; 3), i.e., theexpetation of the original set X . 6



whih is just the sample variane of the set X .Example 4: Another example involves a set of probability distributions, whih an also be inter-preted as onditional distributions given a random variable. In partiular, we show that if randomvariables (U; V ) are jointly distributed aording to ffp(ui;vj)gni=1gmj=1, then the mutual informa-tion I(U ;V ) is the Bregman information of the set of onditional distributions fp(V jui)gni=1 withKL-divergene as the Bregman divergene. By de�nition,I(U ;V ) = nXi=1 mXj=1 p(ui;vj)�log p(ui;vj)p(ui)p(vj)�= nXi=1 p(ui) mXj=1 p(vjjui)�log p(vj jui)p(vj) �= nXi=1 p(ui)KL( p(V jui) k p(V ) ):Consider the set of probability distributions Zu = fp(V jui)gni=1 and the probability measuref�igni=1 = fp(ui)gni=1 over this set. For this set, the mean distribution is given by� = E� [p(V ju)℄ = nXi=1 p(ui)p(V jui) = nXi=1 p(ui; V ) = p(V ):Hene, I(U ;V ) = nXi=1 p(ui)KL( p(V jui) k p(V ) )= nXi=1 �iD�(p(V jui);�)= I�(Zu);i.e., mutual information is a speial ase of Bregman information. Further, for the set of proba-bility distributions Zv = fp(U jvj)gmj=1 and the probability measure �j = p(vj) over this set, onean similarly show that I(U ;V ) = I�(Zv). The Bregman information of the two sets of probabilitydistributions, Zv and Zu an also be interpreted as the Jensen-Shannon divergene [DMK03℄ ofthose sets.3.2 Problem FormulationAs mentioned earlier, if X is a set with high Bregman information, it may not be justi�able to havea single Bregman representative for the entire set from a quantization error point of view. In suha situation, partitioning the set into relatively homogeneous groups and having a representativefor eah group seems like a natural idea. Note that this implies a higher rate of quantization, i.e.,a odebook of larger size. Now, in addition to ahieving minimal expeted Bregman divergenewithin their orresponding partitions, the set of representatives should also preserve the Bregmaninformation ontent of the original set as muh as possible. If the odebook size is greater thanor equal to the ardinality of X , a trivial solution is to use jX j representatives, being one-to-onewith the atual elements in the set. A more interesting ase arises when the allowed odebook size7



is stritly less than jX j. If M denotes the set of Bregman representatives with jMj = k < jX j,the problem is to hoose M, or, equivalently, the k-partitioning of X suh that M preserves asmuh Bregman information as possible ompared to the original set. This is preisely the Bregmanlustering problem.On more onrete terms, the set of representatives, M, will have its own Bregman informa-tion. If I�(M) denotes the Bregman information of M, the loss in Bregman information due toquantization is given by L�(M) = I�(X )� I�(M): (3)The Bregman hard lustering problem is to �nd a partitioning of X , or, equivalently, the setof representativesM, suh that the loss in Bregman information, L�(M), is minimized. Note thatthe lassial vetor quantization problem is a speial ase of this formulation.In the rest of this setion, we show that this loss funtion an be written in a di�erent formthat suggests a natural solution to this problem. This result will be used to develop an algorithmfor solving arbitrary Bregman lustering problems eÆiently.Theorem 2 Let X = fxigni=1 � S � Rd and let � be a probability measure on X . Let fXhgkh=1 bea partitioning of X and let �h = Pxi2Xh �i. If M = f�hgkh=1 denotes the set of representatives,then L�(M) = I�(X )� I�(M) = E�[I�(Xh)℄; (4)where E�[I�(Xh)℄ = kXh=1�hI�(Xh) = kXh=1�h Xxi2Xh �i�h D�(xi;�h): (5)Proof: By de�nition,I�(X ) = nXi=1 �iD�(xi;�) = kXh=1 Xxi2Xh �iD�(xi;�)= kXh=1 Xxi2Xh �i f�(xi)� �(�)� hxi � �;r�(�)ig= kXh=1 Xxi2Xh �i f�(xi)� �(�h)� h(xi � �h);r�(�h)i+ h(xi � �h);r�(�h)i+�(�h)� �(�)� hxi � �h + �h � �;r�(�)ig= kXh=1 Xxi2Xh �i f D�(xi;�h) +D�(�h;�) + h(xi � �h); (r�(�h)�r�(�)) g= kXh=1 �h Xxi2Xh �i�hD�(xi;�h) + kXh=1 Xxi2Xh �iD�(�h;�)+ kXh=1�h Xxi2Xh �i�h hxi � �h; (r�(�h)�r�(�))i8



= kXh=1�hI�(Xh) + kXh=1�hD�(�h;�) + kXh=1�hh( Xxi2Xh �i�hxi � �h);r�(�h)�r�(�)i= E�[I�(Xh)℄ + I�(M);sine Pxi2Xh �i�hxi = �h by de�nition. By rearranging terms, we get the desired result.Hene, the Bregman lustering problem of minimizing the loss in Bregman information an bewritten as minM L�(M) = minM kXh=1 �h Xxi2Xh �i�h D�(xi;�h); (6)whereM is the set of representatives. The loss in Bregman information is minimized if the set ofrepresentatives M is suh that the expeted Bregman divergene of points in the original set Xto their orresponding representatives is minimized. Sine, the original set is partitioned suh thatevery x 2 X belongs to exatly one of the �nal partitions, we all this version of the problem theBregman hard lustering problem. A soft version, where the points an have non-zero probabilitiesof belonging to multiple partitions, will be developed and disussed in setion 5.3.3 Clustering AlgorithmGiven a set X = fxigni=1 and a probability measure � over X , the Bregman hard lustering problemis to �nd, for a given k, a k-partitioning fXhgkh=1 of X and a set of representatives,M = f�hgkh=1,suh that the loss funtionL�(M) = kXh=1 �hI�(Xh) = kXh=1�h Xxi2Xh �i�hD�(xi;�h) (7)is minimized. The above formulation suggests a natural iterative reloation algorithm to solvethe Bregman hard lustering problem. Details of the proposed method are given in Algorithm 1.We all this the Bregman hard lustering algorithm. It is easy to see that lassial kmeans andinformation theoreti lustering are speial ases of the Bregman hard lustering algorithm forsquared Eulidean distane and KL-divergene respetively. For both these ases, the induedpartitions are known to have linear separators. We now see that this is true for all Bregmandivergenes sine the lous of points that are equidistant to two �xed points in terms of a Bregmandivergene is always a hyperplane. The following theorems prove the onvergene of the Bregmanhard lustering algorithm.Proposition 1 The Bregman hard lustering algorithm (Algorithm 1) monotonially dereasesthe loss funtion in (7).Proof: Let fX (t)h gkh=1 be the partitioning of X after the tth iteration and letM(t) = f�(t)h gkh=1 bethe orresponding set of luster representatives. Then,L�(M(t)) = kXh=1 Xxi2X (t)h �iD�(xi;�(t)h ) � kXh=1 Xxi2X (t)h �iD�(xi;�(t)h�(xi))� kXh=1 Xxi2X (t+1)h �iD�(xi;�(t+1)h ) = L�(M(t+1));9



Algorithm 1 Bregman Hard-ClusteringInput: Set X = fxigni=1 � S � Rd , probability measure �1 over X , Bregman divergene D� :S � int(S) 7! R, number of lusters k.Output: M�, a loal minimizer ofPkh=1Pxi2Xh �iD�(xi;�h) whereM = f�hgkh=1, orrespondingpartitioning fXhgkh=1 of X .Method:Initialize f�hgkh=1 with some �h 2 SrepeatfThe Assignment StepgSet Xh  '; h = 1; � � � ; kfor i = 1 to n doXh  Xh [ fxig where h = h�(xi) = argminh0 D�(xi;�h0)end forfThe Re-estimation Stepgfor h = 1 to k do�h  Pxi2Xh �i�h  Pxi2Xh �i�hxiend foruntil onvergenereturnM� = f�hgkh=1where the �rst inequality follows trivially from the riteria used for the assignment of eah of thepoints in the assignment step, and the seond inequality follows from the re-estimation proedureusing Theorem 1. Note that if equality holds, i.e., if the loss funtion value is equal at onseutiveiterations, then the algorithm terminates.Proposition 2 The Bregman hard lustering algorithm (Algorithm 1) terminates in a �nite num-ber of steps at a partition that is loally optimal, i.e., the total loss annot be dereased by either (a)reassignment of points to di�erent lusters or by (b) hanging the means of any existing lusters.Proof: The result follows sine the algorithm monotonially dereases the objetive funtion value,and the number of distint lusterings is �nite.4 Bijetion with Exponential FamiliesIn this setion, we establish a bijetion between Bregman divergenes and exponential families. Wealso provide examples of Bregman divergenes obtained from some popular exponential families.The bijetion will be used to develop Bregman soft lustering algorithm in setion 5. Setions4.1 and 4.2, whih provide the bakground onepts needed to state and prove the bijetion result,may be skipped in a �rst reading by those who are not familiar with this subjet. It has beenobserved in the literature [Ama95℄ that exponential families and Bregman divergenes have ertainrelationships that an be exploited for several learning problems. In partiular, [FW00℄ observes1We ould, in general, have any non-negative weights and normalize them so as to sum to 1.10



that Bregman divergenes are a generalization of the negative log-likelihood of any member of theexponential family. We state this onnetion more preisely by providing a onstrutive proof ofan expliit bijetion between Bregman divergenes and exponential families. This result is usefulas it enables us to obtain the appropriate divergene for any given exponential family.4.1 Exponential familiesConsider a family F of probability densities1 on a measurable spae (
;B) where B is a �-algebraon the set 
 [FG97℄. Suppose every probability density, p� 2 F , is parameterized by d real-valuedvariables � = f�jgdj=1 so thatF = fp� = f(!;�)j! 2 B;� 2 � � Rdg:Then, F is alled a d-dimensional parametri model on (
;B). Let H : B 7! G be a (B-G measur-able) funtion that transforms any random variable U : B 7! R to a random variable V : G 7! Rwith V = H(U). Then, given the probability density p� of U , this funtion uniquely determinesthe probability density q� governing the random variable V .De�nition 4 If 8! 2 B, p�(!)=q�(!) exists and does not depend on �, then H is alled a suÆientstatisti for the model F .The identity map H(U) = U is a trivial example of a suÆient statisti.If a d-dimensional model F = fp�j� 2 �g an be expressed in terms of (d + 1) real-valuedlinearly independent funtions fC;H1; � � � ;Hdg on B and a funtion  on � asf(!;�) = exp8<: dXj=1 �jHj(!)�  (�) + C(!)9=; ;then F is alled an exponential family, and � is alled its natural parameter. It an be easilyseen that if x 2 Rd is suh that xj = Hj(!), then the density funtion g(x;�) given byg(x;�) = exp8<: dXj=1 �jxj �  (�)� �(x)9=; ;for a uniquely determined funtion �(x), is suh that f(w;�)=g(x;�) does not depend on �. Thus,x is a suÆient statisti for the family. For our analysis, it is onvenient to work with the suÆientstatisti x and hene, we rede�ne exponential families in terms of the probability density of thesuÆient statisti variable in Rd , noting that the original �-algebra B an atually be quite general.De�nition 5 A multivariate parametri family F of distributions fp( ;�)j� 2 � � Rdg is alledan exponential family if the probability density is of the formp( ;�)(x) = exp(hx;�i �  (�)� �(x)):The funtion  (�) is known as the log partition funtion or the umulant funtion and ituniquely determines the exponential family F . Further, given an exponential family F , thelog-partition funtion,  is uniquely determined up to a onstant additive term. It an be shown[Ama95℄ that � is a onvex set in Rd and  is a stritly onvex and di�erentiable funtion on int(�).1It is possible to have probability distributions without a orresponding well-de�ned density funtion, i.e., RadonNikodym derivative with respet to the Lebesgue measure, but all exponential distributions have well-de�ned densities.11



4.2 Expetation parameters and Legendre dualityConsider a d-dimensional real random variable X following an exponential density1 p( ;�): spei�edby the natural parameter � 2 �. The expetation of X with respet to p( ;�), also alled as theexpetation parameter is given by� = �(�) = Ep( ;�) [X℄ = ZRd xp( ;�)(x)dx: (8)It an be shown [Ama95℄ that the expetation and natural parameters have a one-one orrespon-dene with eah other and span spaes that exhibit a dual relationship. To speify the dualitymore preisely, we �rst de�ne Legendre onjugates. The Legendre onjugate   of the funtion  is given by  (s) = sup� fhs;�i �  (�)g:As  is a stritly onvex and di�erentiable funtion over its domain �, we an obtain the � orre-sponding to the supremum by setting the gradient of the orresponding funtion to zero, i.e.,r(hs;�i �  (�)) j�=�� = 0) s = r (��)From the above equation, we an see that the onjugate funtion is well de�ned on the gradientspae of the funtion  , say �. Further, the strit onvexity of  implies that r is monotoniand hene, is a bijetion from � to �. Hene, for every s 2 �, there exists a � = �(s) 2 � and forevery � 2 �, there exists a s = s(�) 2 � suh that s = r (�). It is, therefore, possible to de�nethe inverse funtion (r )�1 : � 7! � and write the onjugate funtion   in a losed form as (s) = h(r )�1(s); si �  ((r )�1(s)):It an be shown [Ro70℄ that the funtion   is also a stritly onvex and di�erentiable funtionon its domain and that the pairs ( ;�) and ( ;�) are Legendre onjugates of eah other. This isstated more formally below.De�nition 6 [Ro70℄ Let  : � 7! R be a stritly onvex, di�erentiable funtion, then the Legendreonjugate of ( ;�) is given by ( ;�) where � is the image of � under the gradient mapping r and   : � 7! R is a stritly onvex, di�erentiable funtion given by (s) = h(r )�1(s); si �  ((r )�1(s)):Further, ( ;�) is the Legendre onjugate of ( ;�). The gradient funtions r : � 7! � andr  : � 7! � are both ontinuous, one-one funtions and also form inverses of eah other.Let us now look at the relationship between � and the expetation parameter � de�ned in (8).Di�erentiating the identity R p( ;�)(x)dx = 1 with respet to � gives us � = �(�) = r (�), i.e.,the expetation parameter � is the image of the natural parameter � under the gradient mappingr . Let S be the expetation parameter spae, �(�) = (r )�1(�) be the natural parameterorresponding to � and the funtion � : S 7! R be de�ned as�(�) = h�(�);�i �  (�(�)): (9)Then, the pairs ( ;�) and (�; S) form Legendre onjugates of eah other, i.e., � =   and S = �and the mappings between the dual spaes are given by the Legendre transformation,�(�) = r (�) and �(�) = r�(�): (10)1Exponential densities, in the present ontext, refer to the probability densities orresponding to members of anexponential family and are not to be onfused with density funtions of the form p(x) = �e��x12



4.3 Bijetion TheoremWe are now ready to state the onnetion between exponential families of distributions and Bregmandivergenes.Theorem 3 Let (�; S) and ( ;�) be Legendre onjugates of eah other. Let D� : S � int(S) 7! Rbe the Bregman divergene derived from �. For � 2 �, let p( ;�) be the exponential probabilitydensity derived using  (�) as the log-partition funtion with � as the natural parameter. Let � bethe orresponding expetation parameter. Then,p( ;�)(x) = exp(�D�(x;�))f�(x); (11)where f� : S 7! R is a uniquely determined funtion. Hene, there is a bijetion between exponentialdensities p( ;�) and Bregman divergenes D�(�;�).Proof: We prove the bijetion between the exponential densities p( ;�) and the Bregman diver-genes D�(�;�) by �rst showing that eah exponential density p( ;�) orresponds to a unique Breg-man divergene D�(�;�) (one-one) and then arguing that there exists an exponential density or-responding to every Bregman divergene (onto). By de�nition,p( ;�)(x) = exp(hx;�i �  (�)� �(x))= exp(hx;r�(�)i+ (�(�)� h�;r�(�)i)� �(x)) (using (9) and (10))= exp(�f�(x)� �(�)� h(x� �);r�(�)ig + f�(x)� �(x)g)= exp(�D�(x;�)) f�(x):We observe that p( ;�) uniquely determines the log-partition funtion  to a onstant additiveterm so that the gradient spae of all the possible funtions  is the same and the orrespondingonjugate funtions, � di�er only by a onstant additive term. Hene the Bregman divergeneD�(x;�) derived from any of these onjugate funtions will be idential, i.e., the mapping is one-one. This also implies that f� is a uniquely determined funtion on S. 2(�) =  1(�) +  ) r 2(�) = r 1(�) = �) �2(�) = h�;�i �  2(�) = fh�;�i �  1(�)g �  = �1(�)� ) D�2(x;�) = D�1(x;�) (as linear terms do not hange Bregman divergenes)Now, onsider any Bregman divergene D�(�;�) on S. There exists at least one stritly onvex,di�erentiable funtion � on S that generates this divergene. The Legendre onjugates of (�; S), i.e.( ;�) are well-de�ned. Hene, there exists an exponential density p( ;�) that is related to D�(x:�)by (11), i.e., the mapping is onto. That ompletes the proof.4.4 ExamplesWe now look at two ommon exponential families and obtain the orresponding Bregman diver-genes using the bijetion theorem stated above.Example 5: The most well-known exponential family is that of Gaussian distributions, in parti-ular uniform variane, spherial Gaussian distributions with densities of the formp(x;a) = 1p(2��2)d exp(� 12�2 kx� ak2):13



where x;a 2 Rd and � 2 R is a onstant. It is easy to see that the density an be expressed inthe anonial form for exponential families with natural parameter, � = a�2 and umulant funtion, (�) = �22 k�k2 p(x;a) = 1p(2��2)d exp(� 12�2 kx� ak2)= exp(hx; a�2 i � 12�2 kak2 � 12�2 kxk2) 1p(2��2)d= exp(hx;�i � �22 k�k2) exp(� 12�2 kxk2) 1p(2��2)d= exp(hx;�i �  (�))e��(x);where e��(x) is independent of �. The expetation parameter for this distribution is given by� = r (�) = r(�22 k�k2) = �2� (using (10))and the Legendre onjugate funtion, � is obtained as�(�) = h�;�i �  (�) = h�; ��2 i � �22 k�k2 = k�k22�2 ; (using (9))a onstant multiple of the squared Eulidean norm. From Example 1, we know that the orre-sponding Bregman divergene, D� will be given by a similar multiple of the squared Eulideandistane. D�(x;�) = �(x) � �(�)� hx� �;r�(�)i= kxk22�2 � k�k22�2 � hx� �; ��2 i= kx� �k22�2 :The funtion f�(x), mentioned in the bijetion theorem, turns out to be onstant and is given byf�(x) = exp(�(x) � �(x))= exp(kxk22�2 � kxk22�2 ) 1p(2��2)d= 1p(2��2)d :Example 6: Another exponential family that has been widely used to model text data is thefamily of multinomial distributions with densities of the form,p(x;q) = N !Qdj=1 xj! dYj=1 qxjj ;14



where frequenies of events, xj 2 Z+; Pdj=1 xj = N and probabilities of events, qj � 0;Pdj=1 qj = 1.This an be expressed as the density of an exponential distribution in x = fxjgd�1j=1 with naturalparameter, � = flog( qjqd )gd�1j=1 and umulant funtion,  (�) = �N log qd = N log(1 +Pd�1j=1 e�j ).p(x;q) = N !Qdj=1 xj ! dYj=1 qxjj= exp( dXj=1 xj log qj) N !Qdj=1 xj ! = exp(d�1Xj=1 xj log qj + xd log qd)#(x)= exp(d�1Xj=1 xj log qj + (N � d�1Xj=1 xj) log qd)#(x) = exp(d�1Xj=1 xj log(qjqd ) +N log qd)#(x)= exp(hx;�i+N log qd)#(x) = exp(hx;�i �N log( dXj=1 qjqd )#(x)= exp(hx;�i �N log(1 + d�1Xj=1 e�j )#(x) = exp(hx;�i �  (�))#(x);where N is a onstant and #(x) = e��(x) is independent of �. The expetation parameter � isgiven by � = r (�) = r(N log(1 + d�1Xj=1 e�j )) = " Ne�j(1 +Pd�1j=1 e�j )#d�1j=1 = [Nqj℄d�1j=1and the Legendre onjugate funtion, � is obtained as�(�) = h�;�i �  (�) = d�1Xj=1Nqj log(qjqd ) +N log qd= dXj=1Nqj log qj = N dXj=1(�jN ) log(�jN );where �d = Nqd so that Pdi=1 �j = N . This is a onstant multiple of negative entropy for the dis-rete probability distribution given by f�jN gdj=1. From Example 2, we know that the orrespondingBregman divergene will be a similar multiple of KL-divergene.D�(x;�) = �(x)� �(�)� hx� �;r�(�)i= N dXj=1 xjN log(xjN )�N dXj=1 �jN log(�jN )� dXj=1(xj � �j)(1 + log(�jN ))= N dXj=1 xjN log(xj=N�j=N ):
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Table 2: Various funtions of interest for some popular exponential distributionsDistribution p(x; �) �  (�)1-D Gaussian1 1p(2��2) exp(� (x�a)22�2 ) a�2 �22 �21-D Poisson �xe��x! log� e�1-D Bernoulli qx(1� q)1�x log( q1�q ) log(1 + e�)1-D Binomial1 N!(x)!(N�x)!qx(1 � q)N�x log( q1�q ) N log(1 + e�)1-D Geometri � exp(��x) �� � log(��)d-D Sph. Gaussian1 1p(2��2)d exp(� kx�ak22�2 ) a�2 �22 k�k2d-D Multinomial1 N!Qdj=1(xj)! Qdj=1(qj)xj [log( qjqd )℄d�1j=1 N log(1 +Pd�1j=1 e�j )Table 3: Various funtions of interest for some popular exponential distributions (ont.)Distribution p(x; �) � �(�) D�(x;�)1-D Gaussian 1p(2��2) exp(� (x�a)22�2 ) a 12�2 �2 12�2 (x� �)21-D Poisson �xe��x! � � log �� � x log( x� )� (x� �)1-D Bernoulli qx(1� q)1�x q � log �+ (1 � �)log(1 � �) x log( x� ) + (1� x) log( 1�x1�� )1-D Binomial N!(x)!(N�x)!qx(1 � q)N�x Nq � log( �N ) + (N � �)log(N��N ) x log( x� ) + (N � x) log(N�xN�� )1-D Geometri � exp(��x) � ��2 + log � log( x� )� x� + 1� (x� �)2d-D Sph. Gaussian 1p(2��2)d exp(� kx�ak22�2 ) a 12�2 k�k2 12�2 kx��k2d-D Multinomial N!Qdj=1 xj ! Qdj=1 qxjj [Nqj℄d�1j=1 Pdj=1 �j log(�jN ) Pdj=1 xj log( xj�j )The funtion f�(x) for this ase is given byf�(x) = exp(�(x)� �(x))= exp( dXj=1 xj log(xjN )) N !Qdj=1 xj!= Qdj=1 xxjjNN N !Qdj=1 xj ! :Tables 2 and 3 shows the various funtions of interest for some popular exponential distributionfamilies. For all the ases shown in the table, x is itself the suÆient statisti.5 Bregman Soft ClusteringUsing the bijetion between exponential families and Bregman divergenes, we �rst pose the Breg-man soft lustering problem as a parameter estimation problem for mixture models based onexponential distributions . Then, we revisit the Expetation-Maximization (EM) framework forestimating mixture densities and develop the Bregman soft lustering algorithm (Algorithm 3).We also present the Bregman soft lustering algorithm for a set with a probability measure and1The variane � and the number of trials N are assumed to be onstant for the distributions.16



show how the hard lustering algorithm an be interpreted as a speial ase of the soft lusteringalgorithm.5.1 Soft Clustering as Mixture Density EstimationGiven a set X = fxigni=1 drawn independently from a stohasti soure, onsider the problemof modeling the soure using a single parametri exponential distribution. This is the problemof maximum likelihood estimation, or, equivalently, minimum negative log-likelihood estimationof the parameter(s) of the parametri density belonging to a given exponential family. Now, fromTheorem 3, minimizing the negative log-likelihood is the same as minimizing the expeted Bregmandivergene. Using Theorem 1, we onlude that the optimal distribution is the one with � = E[x℄as the expetation parameter where the expetation is over the empirial distribution. Further,note that the minimum negative log-likelihood is the Bregman information of the set, I�(X ), up toadditive onstants.Now, onsider the problem of modeling the stohasti soure with a mixture of k densitiesof the same exponential family. This also yields a soft lustering where lusters orrespond tothe omponents of the mixture model, and the soft membership of a data point in eah lusteris proportional to the probability of the data point being generated by the orresponding densityfuntion. Thus the Bregman soft lustering problem an be stated to be that of learning themaximum likelihood parameters � = f�h; �hgkh=1 of a mixture model of the formp(xj�) = kXh=1�hph(xj�h) = kXh=1 �hf�(x) exp(�D�(x;�h)): (12)The above problem is a speial ase of the general maximum likelihood parameter estimationproblem for mixture models. So we �rst revisit the general problem and its solution using the EMframework. Later, we use this to develop the Bregman soft lustering algorithm for the speialase in whih we are interested. Note that, by the bijetion between Bregman divergenes andexponential families, (12) enompasses the soft lustering problem for all exponential families.5.2 EM for Mixture Models based on Bregman DivergenesThe maximum likelihood parameter estimation problem for a mixture model an be stated formallyas follows. Let X = fxigni=1 and p(xj�) be a mixture density given byp(xj�) = kXh=1�hph(xj�h);where ph(xj�h) are the individual omponent densities, �h their priors and � = f�h; �hgkh=1. Then,the likelihood of observing X given the mixture model is obtained asLX (�) = nYi=1 kXh=1�hph(xij�h)! :Estimating the mixture densities for the dataset is equivalent to solving the optimization problem,max� LX (�);where � = f�h; �hgkh=1. The Expetation-Maximization (EM) framework provides a nie solution17



Algorithm 2 EM for Mixture Density EstimationInput: Set X = fxigni=1 � S � Rd ,number of lusters k.Output: ��, loal maximizer of LX (�) = Qni=1(Pkh=1 �hph(xij�h)) where � = f�h; �hgkh=1, softpartitioning ffp(hjxi)gkh=1gni=1.Method:Initialize f�h; �hgkh=1 with some �h 2 S; �h � 0; Pkh=1 �h = 1repeatfThe Expetation Stepgfor i = 1 to n dofor h = 1 to k dop(hjxi) �hph(xij�h)Pkh0=1 �h0ph0(xij�h0)end forend forfThe Maximization Stepgfor h = 1 to k do�h  1nPni=1 p(hjxi)�h  argmax� Pni=1 log(ph(xij�))p(hjxi)end foruntil onvergenereturn �� = f�h; �hgkh=1to the parameter estimation problem stated above. The resulting algorithm is an iterative proedurefor obtaining the maximum likelihood estimator of the parameters using the onditional expetationfor the missing data, whih in this ase is the posterior probabilities of the lusters for eah datapoint. The algorithm is known to have the following onvergene property.Proposition 3 The EM algorithm (Algorithm 2) has the property that the likelihood of the data,LX (�) is non-dereasing at eah iteration. Further, if there exists at least one loal maximum forthe likelihood funtion, then the algorithm will onverge to a loal maximum of the likelihood.For a detailed proof and other related results, please see [Col97℄ and [Bil97℄.As stated earlier, the Bregman soft lustering problem is to estimate the maximum likelihoodparameters for a mixture model of the form,p(xj�) = kXh=1�hf�(x) exp(�D�(x;�h)):Applying the EM algorithm to this problem gives us loally optimal parameters �� for this mixturemodel. The resulting mixture model also provides a soft lustering of the dataset based on theBregman divergene D�. Hene, we all this appliation of the EM algorithm, the Bregman softlustering algorithm. The Bregman divergene viewpoint also helps in signi�antly simplifying thealgorithm, espeially the omputationally intensive M-step. The resulting update equations arevery similar to those for learning mixture models of uniform variane, spherial Gaussians. Thefollowing propositions prove the orretness of the Bregman soft lustering algorithm.
18



Proposition 4 For a mixture model with density given byp(xj�) = kXh=1 �hf�(x) exp(�D�(x;�h));the maximization step for the density parameters in the EM algorithm (Algorithm 2) redues to asimple expetation step: 8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) : (13)Proof: The maximization step for the density parameters in the EM algorithm is given by8h; 1 � h � k; �h = argmax� nXi=1 log(ph(xij�))p(hjxi):For the given mixture density, the omponent densities are given by8h; 1 � h � k; ph(xj�h) = f�(x) exp(�D�(x;�h)):Substituting the above into the maximization step, we obtain the update equations for the expe-tation parameters �h: 8h; 1 � h � k,�h = argmax� nXi=1 log(f�(xi) exp(�D�(xi;�)))p(hjxi)= argmax� nXi=1(log(f�(xi))�D�(xi;�))p(hjxi)= argmin� nXi=1 D�(xi;�)p(hjxi) (as f�(x) is independent of �h)= argmin� nXi=1 D�(xi;�) p(hjxi)Pni0=1 p(hjxi0) ;so that the weights on the divergenes form a valid probability measure (i.e. sum to 1). FromTheorem 1, we know that the expeted Bregman divergene is minimized by the expetation of x,argmin� nXi=1 D�(x;�))p(hjxi) = Pni=1 p(hjxi) xiPni=1 p(hjxi) :Therefore, the update equation for the parameters is a weighted averaging step,8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) :
Proposition 5 For a mixture model with density given byp(xj�) = kXh=1 �hf�(x) exp(�D�(x;�h));the EM algorithm (Algorithm 2) redues to the Bregman soft lustering algorithm (Algorithm 3).19



Algorithm 3 Bregman Soft ClusteringInput: Set X = fxigni=1 � S � Rd , Bregman divergene D� : S � int(S) 7! R, number of lustersk.Output: ��, loal maximizer of Qni=1(Pkh=1 �hf�(xi) exp(�D�(xi;�h))) where � = f�h; �hgkh=1,soft partitioning ffp(hjxi)gkh=1gni=1Method:Initialize f�h; �hgkh=1 with some �h 2 S; �h � 0, and Pkh= �h = 1repeatfThe Expetation Stepgfor i = 1 to n dofor h = 1 to k dop(hjxi) �h exp(�D�(xi;�h))Pkh0=1 �h0 exp(�D�(xi;�h0))end forend forfThe Maximization Stepgfor h = 1 to k do�h  1nPni=1 p(hjxi)�h  Pni=1 p(hjxi)xiPni=1 p(hjxi)end foruntil onvergenereturn �� = f�h; �hgkh=1Proof: For the given mixture model, the omponent densities are given by8h; 1 � h � k; ph(xj�h) = f�(x) exp(�D�(x;�h)):The update equations for the posterior probabilities in the EM algorithm are given by8x 2 X ; 8h; 1 � h � k; p(hjx) = �hph(xj�h)Pkh0=1 �h0ph0(xj�h0) = �h exp(�D�(x;�h))Pkh0=1 �h0 exp(�D�(x;�h0))as the f�(x) fator anels out. Further from Proposition 4, the parameter estimation step in theEM algorithm redues to a simple expetation step,8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) :The prior update equations are independent of the parametri form of the densities and remainunaltered: 8h; 1 � h � k; �h = 1n nXi=1 p(hjxi):
5.3 Bregman Soft Clustering for a Set with Probability measureIn setion 5.2, we addressed the Bregman soft lustering problem for a set X with a uniformmeasure, i.e., all elements of X have the same weight. Now we look at the soft lustering problem20



for a set with non-uniform probability measure. As in the ase of the hard lustering problem, theobjetive is to assign the elements of the set X to di�erent lusters, the only di�erene being thatnow a single element an have a non-zero probability of belonging to multiple lusters. To takethe non-uniform measure into aount, we onsider a new set XN of large size N suh that everyelement xi 2 X ours �iN times in the set XN and pose the Bregman soft lustering problem forthe set X with a non-uniform measure � as that for the set XN with uniform measure. From theprevious subsetion, this is equivalent to the maximum likelihood estimation problem,max� LXN (�);where LXN (�) is the likelihood of observing the set XN given a mixture density p(xj�) based onexponential distributions with parameters �, and an be easily solved using the EM framework.Note that the set XN has multiple instanes of elements of X and ould have an extremely lowprobability of being generated from a mixture model based on exponential distributions, but we areonly interested in learning the parameters of the mixture model that has the highest probability ofgenerating XN . The resulting algorithm is similar to the EM algorithm applied diretly to X withthe M-step modi�ed to inlude the probability measure �. The new M-step update equations aregiven by 8h; 1 � h � k; �h = nXi=1 �ip(hjxi); (14)and 8h; 1 � h � k; �h = argmax� nXi=1 log(ph(xij�))�ip(hjxi): (15)(16)When the mixture models are based on exponential distributions, as in the ase of the Bregmansoft lustering problem, (16) remains idential while (16) redues to8h; 1 � h � k; �h = Pni=1 �ip(hjxi)xiPni=1 �ip(hjxi) :Hene, the Bregman soft lustering algorithm for a set X with probability measure � is given byAlgorithm 3 with the maximization steps replaed by the above update equations. The expetationstep remains unhanged.Finally, we note that the Bregman hard lustering algorithm is a limiting ase of the abovesoft lustering algorithm. For every onvex funtion � and positive onstant �, �� is also a onvexfuntion with the orresponding Bregman divergene D�� = �D� (see Property 3 in the Appendix).In the limit, when � ! 1, both the E and M steps of the soft lustering algorithm redue to theassignment and re-estimation step of the hard lustering algorithm. Further, this view suggeststhe possibility of designing annealing shemes for Bregman soft lustering interpreting 1=� as thetemperature parameter.6 ExperimentsIn this setion, we present the results of applying Bregman lustering to datasets based on di�erentexponential distributions and show that the lustering quality depends on the hoie of the Bregmandivergene. For our �rst experiment, we reated three 1-dimensional datasets of 100 samples eah,based on mixture models of Gaussian, Poisson and Binomial distributions respetively. All the21


