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esArindam Banerjee� Srujana Meruguy Inderjit Dhillonz Joydeep GhoshxUT CS Te
hni
al Report #TR-03-19Abstra
tA wide variety of distortion fun
tions are used for 
lustering, e.g., squared Eu
lidean distan
e,Mahalanobis distan
e and relative entropy. In this paper we 
onsider the general 
ase where thedistortion is a Bregman divergen
e. We pose the hard 
lustering problem in terms of minimizingthe loss in Bregman information, a quantity motivated by rate-distortion theory, and present analgorithm to minimize this loss. The proposed algorithm uni�es several well-known partitionalmethods, su
h as 
lassi
al kmeans and information-theoreti
 
lustering, whi
h arise by spe
ial
hoi
es of the Bregman divergen
e. Further, we show an expli
it bije
tion between Bregmandivergen
es and exponential families. The bije
tion enables the development of an eÆ
ientviewpoint of EM for learning models involving mixtures of exponential distributions. This leadsto a simple soft 
lustering algorithm involving Bregman divergen
es.1 Introdu
tionData 
lustering is a fundamental \unsupervised" learning pro
edure that has been extensively stud-ied a
ross varied dis
iplines over several years [JD88℄. Parametri
 
lustering of data involves �ndinga partitioning of the data into a pre-spe
i�ed number of partitions with a 
luster representative
orresponding to every 
luster su
h that a well-de�ned 
ost fun
tion involving the data and therepresentatives is minimized. The 
ost fun
tion is normally the expe
ted value of a well-motivateddistortion measure between the data-points and their 
luster representatives. Usually, the distribu-tion over the data is assumed to be uniform and hen
e it is suÆ
ient to work with the sum of thedistortions, sin
e this is equal to the expe
tation, in this 
ase, with a multipli
ative 
onstant. Thekmeans [Ma
67℄ problem is perhaps the most well-studied and widely used member of this 
lass ofproblems.Typi
ally, parametri
 
lustering problems 
ome in two 
avors: hard and soft. In hard 
lustering,one obtains a disjoint partitioning of the data su
h that ea
h data-point belongs to exa
tly one ofthe partitions. Moreover, the 
luster representative of every partition depends only on the data-points in that partition. In soft 
lustering, ea
h data-point has a 
ertain probability of belongingto ea
h of the partitions. The 
luster representatives are 
omputed using all the data-points with
ontributions appropriately weighted a

ording to their probability of being in that 
luster. In somesense, one 
an think of hard 
lustering as a spe
ial 
ase of soft 
lustering where the probabilitiesof a data-point belonging to a 
luster 
an either be 1 or 0.Algorithms for solving parti
ular versions of parametri
 
lustering problems have been devel-oped over the years. As far as hard 
lustering algorithms are 
on
erned, the most well-known�Department of ECE, University of Texas at AustinyDepartment of ECE, University of Texas at AustinzDepartment of CS, University of Texas at AustinxDepartment of ECE, University of Texas at Austin 1



algorithm is the iterative relo
ation s
heme for the kmeans problem [JD88, DHS00℄. The re
entlyproposed information theoreti
 
lustering algorithm [DMK03℄ for 
lustering probability distribu-tions has a similar 
avor. On the other hand, the domain of soft 
lustering algorithms is morewell developed. Sin
e most of the pra
ti
al soft 
lustering problems 
an be posed as a problem of�nding the parameters of a mixture density under the assumption that the observed data has beensampled from the mixture distribution, the 
lustering problem boils down to a problem of maxi-mum likelihood parameter estimation. However, for a given data-point, sin
e one does not knowthe exa
t 
omponent following whi
h it was sampled, the problem is one of maximum-likelihoodestimation with in
omplete information. The well-known EM algorithm [DLR77℄ is used to solvethe estimation and hen
e, the soft 
lustering problem.Although the kmeans and the information theoreti
 
lustering algorithms seem to have a similar
avor in that both of them employ an iterative relo
ation s
heme using a 
ertain distortion fun
tion| square of the Eu
lidean distan
e in the kmeans 
ase, and the KL-divergen
e in the 
ase ofinformation theoreti
 
lustering | it is not 
lear for exa
tly what type of distortion fun
tions su
hsimple s
hemes will give a 
lustering of the data. In this arti
le, we answer this question. Weintrodu
e a 
on
ept 
alled Bregman information of a set and pose an optimal quantization problemsu
h that the loss in Bregman information due to quantization is minimized for a quantization ofa given size. We show that the optimal quantization problem is exa
tly equivalent to a Bregman
lustering problem, where the distortion fun
tion used for 
lustering is a Bregman divergen
e.Then, we show that if the distortion fun
tion is a Bregman divergen
e, there is always an iterativerelo
ation s
heme that 
lusters the data minimizing the given distortion fun
tion. In other words,like many other problems in ma
hine learning, the 
lustering algorithm 
omes along with the 
hoi
eof the loss fun
tion.The pra
ti
al generative models used for soft 
lustering typi
ally use a mixture density involvingan appropriate member of the exponential family. Ex
ept for an ex
ellent analysis by Kearns etal [KMN97℄ involving hard and soft assignments, there does not appear to be mu
h literature onthe 
onne
tion between hard and soft 
lustering algorithms involving exponential families. In thisarti
le, we prove that the density of any exponential distribution 
an be written as the produ
t ofan exponential fun
tion of the negative of a uniquely determined Bregman divergen
e and a fun
-tion independent of the parameters, thereby exhibiting a bije
tion between Bregman divergen
esand exponential families. Using this result, and the Bregman 
lustering results developed for thehard 
lustering 
ase, we revisit the EM algorithm for mixture density learning. We demonstratethat the M-step of EM, where most of the 
omputation is involved, simpli�es to �nding a simpleexpe
tation if one is working with an appropriate representation of the suÆ
ient statisti
. Thisalso demonstrates the exa
t 
onne
tion between the hard and soft Bregman 
lustering algorithms.The remainder of this arti
le is organized as follows. We �rst de�ne Bregman divergen
esand provide a few illustrative examples in se
tion 2. Then, we introdu
e the 
on
ept of Bregmaninformation to motivate the Bregman hard 
lustering problem and propose an algorithm to solvethis 
lustering problem in se
tion 3. In se
tion 4, we establish a 
onne
tion between exponentialfamilies and Bregman divergen
es and use it develop a soft Bregman 
lustering algorithm in se
tion5. In se
tion 6, we present some experimental results that illustrate the usefulness of the Bregman
lustering algorithm. In se
tion 7, we brie
y dis
uss related work.A word about the notation: bold fa
ed variables, e.g., x;�, et
., represent ve
tors, sets arerepresented by 
alligraphi
 upper-
ase alphabets, e.g., X ;Y, et
. and enumerated as fxigni=1 wherexi are the elements of the set and ve
tors x = (x1; � � � ; xd) are represented as [xj ℄dj=1. ' denotes thenull set and R;R++ and Rd denote the set of reals, the set of positive reals and the d-dimensionalreal ve
tor spa
e respe
tively. For x;y 2 Rd , hx;yi is the natural inner produ
t in Rd and kxk2



is the L2 norm. Probability density fun
tions are denoted by lower 
ase alphabets, e.g., p; q, et
.Probability measure on a set is denoted by �. If a random variable x is distributed as p, we denotethis by x � p. Expe
tation of fun
tions of a random variable x � p are denoted by Ex�p[�℄, or,simply Ep[�℄ when it is 
lear whi
h random variable is being spe
i�ed. The inverse of a fun
tion fis denoted by f�1.2 PreliminariesFirst, we revisit some basi
 
on
epts in analysis [KF75℄ that we need in order to de�ne Bregmandivergen
es. Then, we de�ne Bregman divergen
e for a well-behaved 
lass of 
onvex fun
tions andlook at a few examples.De�nition 1 The interior of a set S � Rd is de�ned asint(S) = fx 2 Rd j9� > 0; B�(x) � Sg;where B�(x) = fy 2 Rd j�(y;x) < �g denotes the open metri
 �-ball 
entered at x for a metri
 �de�ned on Rd .De�nition 2 Let � : S 7! R be a stri
tly 
onvex fun
tion de�ned on a 
onvex set S � Rd su
h that� is di�erentiable on int(S) 6= '. The Bregman divergen
e D� : S � int(S) 7! [0;1) is de�nedas D�(x;y) = �(x)� �(y)� hx� y;r�(y)i:Example 1: The well-known squared Eu
lidean distan
e is perhaps the simplest and most widelyused Bregman divergen
e. In this 
ase, �(x) = hx;xi is a stri
tly 
onvex, di�erentiable fun
tionon Rd and D�(x;y) = hx;xi � hy;yi � hx� y;r�(y)i= hx;xi � hy;yi � hx� y; 2yi= hx� y;x � yi = kx� yk2;whi
h is exa
tly the squared Eu
lidean distan
e.Example 2: Another widely used Bregman divergen
e is the KL-divergen
e. If p is a dis
reteprobability distribution so that Pdj=1 pj = 1, then �(p) = Pdj=1 pj log pj , whi
h is the negativeentropy is a 
onvex fun
tion in this domain (the d-simplex). Then, the 
orresponding Bregmandivergen
e D�(p;q) = dXj=1 pj log pj � dXj=1 qj log qj � hp� q;r�(q)i= dXj=1 pj log pj � dXj=1 qj log qj � dXj=1(pj � qj)(log qj + log e)= dXj=1 pj log�pjqj�� log e dXj=1(pj � qj)= KL(pkq); 3



Table 1: Bregman divergen
es 
orresponding to some 
onvex fun
tions. Note that logarithm is tothe natural base and A is positive de�nite.Domain �(x) D�(x;y) Divergen
eR x2 (x� y)2 Square lossR++ x logx x log(xy )� (x� y)(0; 1) x logx+ (1� x) log(1� x) x log(xy ) + (1� x) log( 1�x1�y ) Logisti
 loss 1R++ � logx xy � log(xy )� 1 Itakura-Saito distan
eR ex ex � ey � (x � y)eyR n f0g jxj maxf0;�2 sign(y)xg Hinge lossRd kxk2 kx� yk2 Squared Eu
lidean distan
eRd xTAx (x� y)TA(x � y) Mahalanobis distan
e 2d-Simplex Pdj=1 xj logxj Pdj=1 xj log(xjyj ) KL-divergen
eRd+ Pdj=1 xj logxj Pdj=1 xj log(xjyj )�Pdj=1(xj � yj) Generalized I-divergen
ethe KL-divergen
e between the two distributions as Pdj=1 qj =Pdj=1 pj = 1.Table 1 
ontains a list of some 
ommon 
onvex fun
tions and their 
orresponding Bregman diver-gen
es. Some basi
 properties of Bregman divergen
es are listed in the Appendix.3 Bregman Hard ClusteringIn this se
tion, we �rst introdu
e a new 
on
ept 
alled the Bregman information of a set basedon ideas from Shannon's rate-distortion theory. Then, we motivate the Bregman hard 
lusteringproblem as a quantization problem that involves minimizing the loss in Bregman information andshow that it is equivalent to a more dire
t formulation, i.e., the problem of �nding a partitioningand a representative for ea
h of the partitions su
h that the expe
ted Bregman divergen
e of thepoints from their representatives is minimized. We also propose a 
lustering algorithm that is ageneralization of the kmeans algorithm and is guaranteed to 
onverge to a lo
al minimum of theBregman hard 
lustering problem.3.1 Bregman InformationBefore we go on to de�ne Bregman Information, we brie
y relate the relevant 
on
epts in Shannon'srate distortion theory to the Bregman 
lustering problem. In the general rate-distortion setting[CT91℄, a random variable is 
oded using a s
heme that 
onsists of an en
oding and a de
odingfun
tion. The rate of the 
oding s
heme is the number of bits used for en
oding and 
an be
onsidered a measure of the size of 
odebook (2R where R is rate). The performan
e of the 
odings
heme is determined in terms of the expe
ted distortion between the sour
e random variableand the de
oded random variable, for an appropriate appli
ation dependent distortion fun
tion.The rate distortion problem [GV03℄, 
an be stated as the problem of �nding a 
oding s
hemewith a given rate, R, su
h that the expe
ted distortion between the sour
e random variable andthe de
oded random variable, is minimized. The a
hieved distortion is 
alled the distortion-1x log(xy )+ (1�x) log( 1�x1�y ) = log(1+ exp(�f(x)g(y))), i.e. logisti
 loss where f(x) = 2x� 1 and g(y) = log( y1�y )2(x� y)TA(x� y) is the Mahalanobis distan
e when A is the inverse of the 
ovarian
e matrix4



rate fun
tion, i.e., in�mum distortion a
hievable for a given rate, or, in other words, for a given
odebook size.For the 
urrent analysis, let us 
onsider a simple 
oding s
heme for a random variable X thattakes values in a �nite set X = fxigni=1 � S � Rd following a probability measure �. The en
odings
heme involves a quantization of the random variable and de
oding is just the identity map. Thesize of the 
odebook, i.e., the set of quantized values, determines the rate of the 
oding s
hemeor rate of quantization. Assuming the distortion fun
tion to be a Bregman divergen
e D�, therate-distortion problem for this 
oding s
heme 
an be stated asminF fE� [D�(X; X̂)℄g; (1)where F is the quantization mapping with a �xed rate, R and X̂ = F (X) is the en
oded version ofX. First 
onsider the 
ase where the rate of quantization, R = 0 i.e., the 
odebook is a singletonset. From a sto
hasti
 viewpoint, the en
oded version X̂ of the random variable X is a 
onstant,say s 2 S and the joint distribution of (X; X̂) is equivalent to the marginal distribution of X. Thedistortion-rate fun
tion for rate R = 0 and distortion fun
tion, D� is given bymins2S E� [D�(X; s)℄ = mins2S nXi=1 �i D�(xi; s): (2)We 
all this distortion-rate fun
tion the Bregman information of the set X for the Bregmandivergen
e, D� and denote it by I�(X ). The optimal value of s that a
hieves the minimal distor-tion will be 
alled the Bregman representative or, simply the representative of the set X . In thesubsequent analysis, we shall show that this representative always exists, is uniquely determinedand, surprisingly, does not depend on the 
hoi
e of the Bregman divergen
e. Note that a lowervalue of Bregman information indi
ates that the elements of the set are, in a Bregman divergen
esense, 
loser to the representative. On the other hand, a higher value of Bregman informationindi
ates that the single representative 
annot 
apture the diversity in the set, and it may be agood idea to partition the set into more homogeneous subsets and have a representative for ea
hsubset. This dire
tly leads to the Bregman 
lustering problem.Before pro
eeding further, we show the existen
e and uniqueness of the Bregman representative.Theorem 1 Given a set X = fxigni=1 � S � Rd , a probability measure � over X and a Bregmandivergen
e D� : S � int(S) 7! [0;1), the problemmins2S E� [D�(x; s)℄has a unique minimizer given by s� = � = E�[x℄.Proof: The fun
tion we are trying to minimize isJ�(s) = E� [D�(x; s)℄ = nXi=1 �iD�(xi; s):We prove the required result by showing that for 8s 2 S; J�(s) � J�(�) where � = E� [x℄ and
5



equality holds only when s = �. To this end, we note thatJ�(s)� J�(�) = nXi=1 �iD�(xi; s)� nXi=1 �iD�(xi;�)= nXi=1 �i(�(xi)� �(s)� hxi � s;r�(s)i � �(xi) + �(�) + hxi � �;r�(�)i)= �(�)� �(s)� h( nXi=1 �ixi)� s;r�(s)i + h( nXi=1 �ixi)� �;r�(�)i= �(�)� �(s)� h�� s;r�(s)i= D�(�; s) � 0;with equality only when s = �. Hen
e, � is the unique minimizer of the fun
tion, J�.Finally, we argue that � 2 S. To this end, sin
e X � S and S is a 
onvex set, 
o(X ) � S, where
o(X ) is the 
onvex hull of X . But � = E� [x℄ 2 
o(X ). Hen
e � 2 S. That 
ompletes the proof.The above result shows that the representative, i.e., the minimizer of the expe
ted Bregmandivergen
e, is always the expe
tation of the set even when the Bregman divergen
e is not 
onvexin the se
ond argument1.Using the above theorem, we 
an now give a more dire
t de�nition of the Bregman informationas follows:De�nition 3 Let X = fxigni=1 � S be a �nite subset of S and � be a probability measure on Xand let � = E� [x℄ = Pni=1 �ixi. Let D� : S � int(S) 7! [0;1) be a Bregman divergen
e. Then,Bregman Information of X in terms of D� is de�ned asI�(X ) = E� [D�(x;�)℄ = nXi=1 �iD�(xi;�):To start appre
iating the potential of su
h a treatment, we note that the elements of the setX 
an be quite general. For instan
e, the elements 
an be probability distributions, fun
tionals,operators or just plain ve
tors. In the following examples, we look at sets of ve
tors and probabilitydistributions on a �xed dis
rete output spa
e.Example 3: One simple example of Bregman information is the varian
e. Let X = fxigni=1 bea set in Rd . The Bregman information of the set X with the squared Eu
lidean distan
e as theBregman divergen
e is given byI�(X ) = nXi=1 �iD�(xi;�)= 1n nXi=1 kxi � �k2 ( Assuming uniform measure, �i = 1n);1For example, 
onsider �(x) = P3j=1 x3j de�ned on R3++ so that D�(x;y) = P3j=1(x3j � y3j � 3(xj � yj)y2j ) isnot 
onvex in y. Now for the set X = f(1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5)g, the expe
ted Bregman divergen
ewith respe
t to a point y is given by (135 + 2P3j=1 y3j � 9P3j=1 y2j ), whi
h is minimized when y = (3; 3; 3), i.e., theexpe
tation of the original set X . 6



whi
h is just the sample varian
e of the set X .Example 4: Another example involves a set of probability distributions, whi
h 
an also be inter-preted as 
onditional distributions given a random variable. In parti
ular, we show that if randomvariables (U; V ) are jointly distributed a

ording to ffp(ui;vj)gni=1gmj=1, then the mutual informa-tion I(U ;V ) is the Bregman information of the set of 
onditional distributions fp(V jui)gni=1 withKL-divergen
e as the Bregman divergen
e. By de�nition,I(U ;V ) = nXi=1 mXj=1 p(ui;vj)�log p(ui;vj)p(ui)p(vj)�= nXi=1 p(ui) mXj=1 p(vjjui)�log p(vj jui)p(vj) �= nXi=1 p(ui)KL( p(V jui) k p(V ) ):Consider the set of probability distributions Zu = fp(V jui)gni=1 and the probability measuref�igni=1 = fp(ui)gni=1 over this set. For this set, the mean distribution is given by� = E� [p(V ju)℄ = nXi=1 p(ui)p(V jui) = nXi=1 p(ui; V ) = p(V ):Hen
e, I(U ;V ) = nXi=1 p(ui)KL( p(V jui) k p(V ) )= nXi=1 �iD�(p(V jui);�)= I�(Zu);i.e., mutual information is a spe
ial 
ase of Bregman information. Further, for the set of proba-bility distributions Zv = fp(U jvj)gmj=1 and the probability measure �j = p(vj) over this set, one
an similarly show that I(U ;V ) = I�(Zv). The Bregman information of the two sets of probabilitydistributions, Zv and Zu 
an also be interpreted as the Jensen-Shannon divergen
e [DMK03℄ ofthose sets.3.2 Problem FormulationAs mentioned earlier, if X is a set with high Bregman information, it may not be justi�able to havea single Bregman representative for the entire set from a quantization error point of view. In su
ha situation, partitioning the set into relatively homogeneous groups and having a representativefor ea
h group seems like a natural idea. Note that this implies a higher rate of quantization, i.e.,a 
odebook of larger size. Now, in addition to a
hieving minimal expe
ted Bregman divergen
ewithin their 
orresponding partitions, the set of representatives should also preserve the Bregmaninformation 
ontent of the original set as mu
h as possible. If the 
odebook size is greater thanor equal to the 
ardinality of X , a trivial solution is to use jX j representatives, being one-to-onewith the a
tual elements in the set. A more interesting 
ase arises when the allowed 
odebook size7



is stri
tly less than jX j. If M denotes the set of Bregman representatives with jMj = k < jX j,the problem is to 
hoose M, or, equivalently, the k-partitioning of X su
h that M preserves asmu
h Bregman information as possible 
ompared to the original set. This is pre
isely the Bregman
lustering problem.On more 
on
rete terms, the set of representatives, M, will have its own Bregman informa-tion. If I�(M) denotes the Bregman information of M, the loss in Bregman information due toquantization is given by L�(M) = I�(X )� I�(M): (3)The Bregman hard 
lustering problem is to �nd a partitioning of X , or, equivalently, the setof representativesM, su
h that the loss in Bregman information, L�(M), is minimized. Note thatthe 
lassi
al ve
tor quantization problem is a spe
ial 
ase of this formulation.In the rest of this se
tion, we show that this loss fun
tion 
an be written in a di�erent formthat suggests a natural solution to this problem. This result will be used to develop an algorithmfor solving arbitrary Bregman 
lustering problems eÆ
iently.Theorem 2 Let X = fxigni=1 � S � Rd and let � be a probability measure on X . Let fXhgkh=1 bea partitioning of X and let �h = Pxi2Xh �i. If M = f�hgkh=1 denotes the set of representatives,then L�(M) = I�(X )� I�(M) = E�[I�(Xh)℄; (4)where E�[I�(Xh)℄ = kXh=1�hI�(Xh) = kXh=1�h Xxi2Xh �i�h D�(xi;�h): (5)Proof: By de�nition,I�(X ) = nXi=1 �iD�(xi;�) = kXh=1 Xxi2Xh �iD�(xi;�)= kXh=1 Xxi2Xh �i f�(xi)� �(�)� hxi � �;r�(�)ig= kXh=1 Xxi2Xh �i f�(xi)� �(�h)� h(xi � �h);r�(�h)i+ h(xi � �h);r�(�h)i+�(�h)� �(�)� hxi � �h + �h � �;r�(�)ig= kXh=1 Xxi2Xh �i f D�(xi;�h) +D�(�h;�) + h(xi � �h); (r�(�h)�r�(�)) g= kXh=1 �h Xxi2Xh �i�hD�(xi;�h) + kXh=1 Xxi2Xh �iD�(�h;�)+ kXh=1�h Xxi2Xh �i�h hxi � �h; (r�(�h)�r�(�))i8



= kXh=1�hI�(Xh) + kXh=1�hD�(�h;�) + kXh=1�hh( Xxi2Xh �i�hxi � �h);r�(�h)�r�(�)i= E�[I�(Xh)℄ + I�(M);sin
e Pxi2Xh �i�hxi = �h by de�nition. By rearranging terms, we get the desired result.Hen
e, the Bregman 
lustering problem of minimizing the loss in Bregman information 
an bewritten as minM L�(M) = minM kXh=1 �h Xxi2Xh �i�h D�(xi;�h); (6)whereM is the set of representatives. The loss in Bregman information is minimized if the set ofrepresentatives M is su
h that the expe
ted Bregman divergen
e of points in the original set Xto their 
orresponding representatives is minimized. Sin
e, the original set is partitioned su
h thatevery x 2 X belongs to exa
tly one of the �nal partitions, we 
all this version of the problem theBregman hard 
lustering problem. A soft version, where the points 
an have non-zero probabilitiesof belonging to multiple partitions, will be developed and dis
ussed in se
tion 5.3.3 Clustering AlgorithmGiven a set X = fxigni=1 and a probability measure � over X , the Bregman hard 
lustering problemis to �nd, for a given k, a k-partitioning fXhgkh=1 of X and a set of representatives,M = f�hgkh=1,su
h that the loss fun
tionL�(M) = kXh=1 �hI�(Xh) = kXh=1�h Xxi2Xh �i�hD�(xi;�h) (7)is minimized. The above formulation suggests a natural iterative relo
ation algorithm to solvethe Bregman hard 
lustering problem. Details of the proposed method are given in Algorithm 1.We 
all this the Bregman hard 
lustering algorithm. It is easy to see that 
lassi
al kmeans andinformation theoreti
 
lustering are spe
ial 
ases of the Bregman hard 
lustering algorithm forsquared Eu
lidean distan
e and KL-divergen
e respe
tively. For both these 
ases, the indu
edpartitions are known to have linear separators. We now see that this is true for all Bregmandivergen
es sin
e the lo
us of points that are equidistant to two �xed points in terms of a Bregmandivergen
e is always a hyperplane. The following theorems prove the 
onvergen
e of the Bregmanhard 
lustering algorithm.Proposition 1 The Bregman hard 
lustering algorithm (Algorithm 1) monotoni
ally de
reasesthe loss fun
tion in (7).Proof: Let fX (t)h gkh=1 be the partitioning of X after the tth iteration and letM(t) = f�(t)h gkh=1 bethe 
orresponding set of 
luster representatives. Then,L�(M(t)) = kXh=1 Xxi2X (t)h �iD�(xi;�(t)h ) � kXh=1 Xxi2X (t)h �iD�(xi;�(t)h�(xi))� kXh=1 Xxi2X (t+1)h �iD�(xi;�(t+1)h ) = L�(M(t+1));9



Algorithm 1 Bregman Hard-ClusteringInput: Set X = fxigni=1 � S � Rd , probability measure �1 over X , Bregman divergen
e D� :S � int(S) 7! R, number of 
lusters k.Output: M�, a lo
al minimizer ofPkh=1Pxi2Xh �iD�(xi;�h) whereM = f�hgkh=1, 
orrespondingpartitioning fXhgkh=1 of X .Method:Initialize f�hgkh=1 with some �h 2 SrepeatfThe Assignment StepgSet Xh  '; h = 1; � � � ; kfor i = 1 to n doXh  Xh [ fxig where h = h�(xi) = argminh0 D�(xi;�h0)end forfThe Re-estimation Stepgfor h = 1 to k do�h  Pxi2Xh �i�h  Pxi2Xh �i�hxiend foruntil 
onvergen
ereturnM� = f�hgkh=1where the �rst inequality follows trivially from the 
riteria used for the assignment of ea
h of thepoints in the assignment step, and the se
ond inequality follows from the re-estimation pro
edureusing Theorem 1. Note that if equality holds, i.e., if the loss fun
tion value is equal at 
onse
utiveiterations, then the algorithm terminates.Proposition 2 The Bregman hard 
lustering algorithm (Algorithm 1) terminates in a �nite num-ber of steps at a partition that is lo
ally optimal, i.e., the total loss 
annot be de
reased by either (a)reassignment of points to di�erent 
lusters or by (b) 
hanging the means of any existing 
lusters.Proof: The result follows sin
e the algorithm monotoni
ally de
reases the obje
tive fun
tion value,and the number of distin
t 
lusterings is �nite.4 Bije
tion with Exponential FamiliesIn this se
tion, we establish a bije
tion between Bregman divergen
es and exponential families. Wealso provide examples of Bregman divergen
es obtained from some popular exponential families.The bije
tion will be used to develop Bregman soft 
lustering algorithm in se
tion 5. Se
tions4.1 and 4.2, whi
h provide the ba
kground 
on
epts needed to state and prove the bije
tion result,may be skipped in a �rst reading by those who are not familiar with this subje
t. It has beenobserved in the literature [Ama95℄ that exponential families and Bregman divergen
es have 
ertainrelationships that 
an be exploited for several learning problems. In parti
ular, [FW00℄ observes1We 
ould, in general, have any non-negative weights and normalize them so as to sum to 1.10



that Bregman divergen
es are a generalization of the negative log-likelihood of any member of theexponential family. We state this 
onne
tion more pre
isely by providing a 
onstru
tive proof ofan expli
it bije
tion between Bregman divergen
es and exponential families. This result is usefulas it enables us to obtain the appropriate divergen
e for any given exponential family.4.1 Exponential familiesConsider a family F of probability densities1 on a measurable spa
e (
;B) where B is a �-algebraon the set 
 [FG97℄. Suppose every probability density, p� 2 F , is parameterized by d real-valuedvariables � = f�jgdj=1 so thatF = fp� = f(!;�)j! 2 B;� 2 � � Rdg:Then, F is 
alled a d-dimensional parametri
 model on (
;B). Let H : B 7! G be a (B-G measur-able) fun
tion that transforms any random variable U : B 7! R to a random variable V : G 7! Rwith V = H(U). Then, given the probability density p� of U , this fun
tion uniquely determinesthe probability density q� governing the random variable V .De�nition 4 If 8! 2 B, p�(!)=q�(!) exists and does not depend on �, then H is 
alled a suÆ
ientstatisti
 for the model F .The identity map H(U) = U is a trivial example of a suÆ
ient statisti
.If a d-dimensional model F = fp�j� 2 �g 
an be expressed in terms of (d + 1) real-valuedlinearly independent fun
tions fC;H1; � � � ;Hdg on B and a fun
tion  on � asf(!;�) = exp8<: dXj=1 �jHj(!)�  (�) + C(!)9=; ;then F is 
alled an exponential family, and � is 
alled its natural parameter. It 
an be easilyseen that if x 2 Rd is su
h that xj = Hj(!), then the density fun
tion g(x;�) given byg(x;�) = exp8<: dXj=1 �jxj �  (�)� �(x)9=; ;for a uniquely determined fun
tion �(x), is su
h that f(w;�)=g(x;�) does not depend on �. Thus,x is a suÆ
ient statisti
 for the family. For our analysis, it is 
onvenient to work with the suÆ
ientstatisti
 x and hen
e, we rede�ne exponential families in terms of the probability density of thesuÆ
ient statisti
 variable in Rd , noting that the original �-algebra B 
an a
tually be quite general.De�nition 5 A multivariate parametri
 family F of distributions fp( ;�)j� 2 � � Rdg is 
alledan exponential family if the probability density is of the formp( ;�)(x) = exp(hx;�i �  (�)� �(x)):The fun
tion  (�) is known as the log partition fun
tion or the 
umulant fun
tion and ituniquely determines the exponential family F . Further, given an exponential family F , thelog-partition fun
tion,  is uniquely determined up to a 
onstant additive term. It 
an be shown[Ama95℄ that � is a 
onvex set in Rd and  is a stri
tly 
onvex and di�erentiable fun
tion on int(�).1It is possible to have probability distributions without a 
orresponding well-de�ned density fun
tion, i.e., RadonNikodym derivative with respe
t to the Lebesgue measure, but all exponential distributions have well-de�ned densities.11



4.2 Expe
tation parameters and Legendre dualityConsider a d-dimensional real random variable X following an exponential density1 p( ;�): spe
i�edby the natural parameter � 2 �. The expe
tation of X with respe
t to p( ;�), also 
alled as theexpe
tation parameter is given by� = �(�) = Ep( ;�) [X℄ = ZRd xp( ;�)(x)dx: (8)It 
an be shown [Ama95℄ that the expe
tation and natural parameters have a one-one 
orrespon-den
e with ea
h other and span spa
es that exhibit a dual relationship. To spe
ify the dualitymore pre
isely, we �rst de�ne Legendre 
onjugates. The Legendre 
onjugate  
 of the fun
tion  is given by  
(s) = sup� fhs;�i �  (�)g:As  is a stri
tly 
onvex and di�erentiable fun
tion over its domain �, we 
an obtain the � 
orre-sponding to the supremum by setting the gradient of the 
orresponding fun
tion to zero, i.e.,r(hs;�i �  (�)) j�=�� = 0) s = r (��)From the above equation, we 
an see that the 
onjugate fun
tion is well de�ned on the gradientspa
e of the fun
tion  , say �
. Further, the stri
t 
onvexity of  implies that r is monotoni
and hen
e, is a bije
tion from � to �
. Hen
e, for every s 2 �
, there exists a � = �(s) 2 � and forevery � 2 �, there exists a s = s(�) 2 �
 su
h that s = r (�). It is, therefore, possible to de�nethe inverse fun
tion (r )�1 : �
 7! � and write the 
onjugate fun
tion  
 in a 
losed form as 
(s) = h(r )�1(s); si �  ((r )�1(s)):It 
an be shown [Ro
70℄ that the fun
tion  
 is also a stri
tly 
onvex and di�erentiable fun
tionon its domain and that the pairs ( ;�) and ( 
;�
) are Legendre 
onjugates of ea
h other. This isstated more formally below.De�nition 6 [Ro
70℄ Let  : � 7! R be a stri
tly 
onvex, di�erentiable fun
tion, then the Legendre
onjugate of ( ;�) is given by ( 
;�
) where �
 is the image of � under the gradient mapping r and  
 : �
 7! R is a stri
tly 
onvex, di�erentiable fun
tion given by 
(s) = h(r )�1(s); si �  ((r )�1(s)):Further, ( ;�) is the Legendre 
onjugate of ( 
;�
). The gradient fun
tions r : � 7! �
 andr 
 : �
 7! � are both 
ontinuous, one-one fun
tions and also form inverses of ea
h other.Let us now look at the relationship between � and the expe
tation parameter � de�ned in (8).Di�erentiating the identity R p( ;�)(x)dx = 1 with respe
t to � gives us � = �(�) = r (�), i.e.,the expe
tation parameter � is the image of the natural parameter � under the gradient mappingr . Let S be the expe
tation parameter spa
e, �(�) = (r )�1(�) be the natural parameter
orresponding to � and the fun
tion � : S 7! R be de�ned as�(�) = h�(�);�i �  (�(�)): (9)Then, the pairs ( ;�) and (�; S) form Legendre 
onjugates of ea
h other, i.e., � =  
 and S = �
and the mappings between the dual spa
es are given by the Legendre transformation,�(�) = r (�) and �(�) = r�(�): (10)1Exponential densities, in the present 
ontext, refer to the probability densities 
orresponding to members of anexponential family and are not to be 
onfused with density fun
tions of the form p(x) = �e��x12



4.3 Bije
tion TheoremWe are now ready to state the 
onne
tion between exponential families of distributions and Bregmandivergen
es.Theorem 3 Let (�; S) and ( ;�) be Legendre 
onjugates of ea
h other. Let D� : S � int(S) 7! Rbe the Bregman divergen
e derived from �. For � 2 �, let p( ;�) be the exponential probabilitydensity derived using  (�) as the log-partition fun
tion with � as the natural parameter. Let � bethe 
orresponding expe
tation parameter. Then,p( ;�)(x) = exp(�D�(x;�))f�(x); (11)where f� : S 7! R is a uniquely determined fun
tion. Hen
e, there is a bije
tion between exponentialdensities p( ;�) and Bregman divergen
es D�(�;�).Proof: We prove the bije
tion between the exponential densities p( ;�) and the Bregman diver-gen
es D�(�;�) by �rst showing that ea
h exponential density p( ;�) 
orresponds to a unique Breg-man divergen
e D�(�;�) (one-one) and then arguing that there exists an exponential density 
or-responding to every Bregman divergen
e (onto). By de�nition,p( ;�)(x) = exp(hx;�i �  (�)� �(x))= exp(hx;r�(�)i+ (�(�)� h�;r�(�)i)� �(x)) (using (9) and (10))= exp(�f�(x)� �(�)� h(x� �);r�(�)ig + f�(x)� �(x)g)= exp(�D�(x;�)) f�(x):We observe that p( ;�) uniquely determines the log-partition fun
tion  to a 
onstant additiveterm so that the gradient spa
e of all the possible fun
tions  is the same and the 
orresponding
onjugate fun
tions, � di�er only by a 
onstant additive term. Hen
e the Bregman divergen
eD�(x;�) derived from any of these 
onjugate fun
tions will be identi
al, i.e., the mapping is one-one. This also implies that f� is a uniquely determined fun
tion on S. 2(�) =  1(�) + 
 ) r 2(�) = r 1(�) = �) �2(�) = h�;�i �  2(�) = fh�;�i �  1(�)g � 
 = �1(�)� 
) D�2(x;�) = D�1(x;�) (as linear terms do not 
hange Bregman divergen
es)Now, 
onsider any Bregman divergen
e D�(�;�) on S. There exists at least one stri
tly 
onvex,di�erentiable fun
tion � on S that generates this divergen
e. The Legendre 
onjugates of (�; S), i.e.( ;�) are well-de�ned. Hen
e, there exists an exponential density p( ;�) that is related to D�(x:�)by (11), i.e., the mapping is onto. That 
ompletes the proof.4.4 ExamplesWe now look at two 
ommon exponential families and obtain the 
orresponding Bregman diver-gen
es using the bije
tion theorem stated above.Example 5: The most well-known exponential family is that of Gaussian distributions, in parti
-ular uniform varian
e, spheri
al Gaussian distributions with densities of the formp(x;a) = 1p(2��2)d exp(� 12�2 kx� ak2):13



where x;a 2 Rd and � 2 R is a 
onstant. It is easy to see that the density 
an be expressed inthe 
anoni
al form for exponential families with natural parameter, � = a�2 and 
umulant fun
tion, (�) = �22 k�k2 p(x;a) = 1p(2��2)d exp(� 12�2 kx� ak2)= exp(hx; a�2 i � 12�2 kak2 � 12�2 kxk2) 1p(2��2)d= exp(hx;�i � �22 k�k2) exp(� 12�2 kxk2) 1p(2��2)d= exp(hx;�i �  (�))e��(x);where e��(x) is independent of �. The expe
tation parameter for this distribution is given by� = r (�) = r(�22 k�k2) = �2� (using (10))and the Legendre 
onjugate fun
tion, � is obtained as�(�) = h�;�i �  (�) = h�; ��2 i � �22 k�k2 = k�k22�2 ; (using (9))a 
onstant multiple of the squared Eu
lidean norm. From Example 1, we know that the 
orre-sponding Bregman divergen
e, D� will be given by a similar multiple of the squared Eu
lideandistan
e. D�(x;�) = �(x) � �(�)� hx� �;r�(�)i= kxk22�2 � k�k22�2 � hx� �; ��2 i= kx� �k22�2 :The fun
tion f�(x), mentioned in the bije
tion theorem, turns out to be 
onstant and is given byf�(x) = exp(�(x) � �(x))= exp(kxk22�2 � kxk22�2 ) 1p(2��2)d= 1p(2��2)d :Example 6: Another exponential family that has been widely used to model text data is thefamily of multinomial distributions with densities of the form,p(x;q) = N !Qdj=1 xj! dYj=1 qxjj ;14



where frequen
ies of events, xj 2 Z+; Pdj=1 xj = N and probabilities of events, qj � 0;Pdj=1 qj = 1.This 
an be expressed as the density of an exponential distribution in x = fxjgd�1j=1 with naturalparameter, � = flog( qjqd )gd�1j=1 and 
umulant fun
tion,  (�) = �N log qd = N log(1 +Pd�1j=1 e�j ).p(x;q) = N !Qdj=1 xj ! dYj=1 qxjj= exp( dXj=1 xj log qj) N !Qdj=1 xj ! = exp(d�1Xj=1 xj log qj + xd log qd)#(x)= exp(d�1Xj=1 xj log qj + (N � d�1Xj=1 xj) log qd)#(x) = exp(d�1Xj=1 xj log(qjqd ) +N log qd)#(x)= exp(hx;�i+N log qd)#(x) = exp(hx;�i �N log( dXj=1 qjqd )#(x)= exp(hx;�i �N log(1 + d�1Xj=1 e�j )#(x) = exp(hx;�i �  (�))#(x);where N is a 
onstant and #(x) = e��(x) is independent of �. The expe
tation parameter � isgiven by � = r (�) = r(N log(1 + d�1Xj=1 e�j )) = " Ne�j(1 +Pd�1j=1 e�j )#d�1j=1 = [Nqj℄d�1j=1and the Legendre 
onjugate fun
tion, � is obtained as�(�) = h�;�i �  (�) = d�1Xj=1Nqj log(qjqd ) +N log qd= dXj=1Nqj log qj = N dXj=1(�jN ) log(�jN );where �d = Nqd so that Pdi=1 �j = N . This is a 
onstant multiple of negative entropy for the dis-
rete probability distribution given by f�jN gdj=1. From Example 2, we know that the 
orrespondingBregman divergen
e will be a similar multiple of KL-divergen
e.D�(x;�) = �(x)� �(�)� hx� �;r�(�)i= N dXj=1 xjN log(xjN )�N dXj=1 �jN log(�jN )� dXj=1(xj � �j)(1 + log(�jN ))= N dXj=1 xjN log(xj=N�j=N ):
15



Table 2: Various fun
tions of interest for some popular exponential distributionsDistribution p(x; �) �  (�)1-D Gaussian1 1p(2��2) exp(� (x�a)22�2 ) a�2 �22 �21-D Poisson �xe��x! log� e�1-D Bernoulli qx(1� q)1�x log( q1�q ) log(1 + e�)1-D Binomial1 N!(x)!(N�x)!qx(1 � q)N�x log( q1�q ) N log(1 + e�)1-D Geometri
 � exp(��x) �� � log(��)d-D Sph. Gaussian1 1p(2��2)d exp(� kx�ak22�2 ) a�2 �22 k�k2d-D Multinomial1 N!Qdj=1(xj)! Qdj=1(qj)xj [log( qjqd )℄d�1j=1 N log(1 +Pd�1j=1 e�j )Table 3: Various fun
tions of interest for some popular exponential distributions (
ont.)Distribution p(x; �) � �(�) D�(x;�)1-D Gaussian 1p(2��2) exp(� (x�a)22�2 ) a 12�2 �2 12�2 (x� �)21-D Poisson �xe��x! � � log �� � x log( x� )� (x� �)1-D Bernoulli qx(1� q)1�x q � log �+ (1 � �)log(1 � �) x log( x� ) + (1� x) log( 1�x1�� )1-D Binomial N!(x)!(N�x)!qx(1 � q)N�x Nq � log( �N ) + (N � �)log(N��N ) x log( x� ) + (N � x) log(N�xN�� )1-D Geometri
 � exp(��x) � ��2 + log � log( x� )� x� + 1� (x� �)2d-D Sph. Gaussian 1p(2��2)d exp(� kx�ak22�2 ) a 12�2 k�k2 12�2 kx��k2d-D Multinomial N!Qdj=1 xj ! Qdj=1 qxjj [Nqj℄d�1j=1 Pdj=1 �j log(�jN ) Pdj=1 xj log( xj�j )The fun
tion f�(x) for this 
ase is given byf�(x) = exp(�(x)� �(x))= exp( dXj=1 xj log(xjN )) N !Qdj=1 xj!= Qdj=1 xxjjNN N !Qdj=1 xj ! :Tables 2 and 3 shows the various fun
tions of interest for some popular exponential distributionfamilies. For all the 
ases shown in the table, x is itself the suÆ
ient statisti
.5 Bregman Soft ClusteringUsing the bije
tion between exponential families and Bregman divergen
es, we �rst pose the Breg-man soft 
lustering problem as a parameter estimation problem for mixture models based onexponential distributions . Then, we revisit the Expe
tation-Maximization (EM) framework forestimating mixture densities and develop the Bregman soft 
lustering algorithm (Algorithm 3).We also present the Bregman soft 
lustering algorithm for a set with a probability measure and1The varian
e � and the number of trials N are assumed to be 
onstant for the distributions.16



show how the hard 
lustering algorithm 
an be interpreted as a spe
ial 
ase of the soft 
lusteringalgorithm.5.1 Soft Clustering as Mixture Density EstimationGiven a set X = fxigni=1 drawn independently from a sto
hasti
 sour
e, 
onsider the problemof modeling the sour
e using a single parametri
 exponential distribution. This is the problemof maximum likelihood estimation, or, equivalently, minimum negative log-likelihood estimationof the parameter(s) of the parametri
 density belonging to a given exponential family. Now, fromTheorem 3, minimizing the negative log-likelihood is the same as minimizing the expe
ted Bregmandivergen
e. Using Theorem 1, we 
on
lude that the optimal distribution is the one with � = E[x℄as the expe
tation parameter where the expe
tation is over the empiri
al distribution. Further,note that the minimum negative log-likelihood is the Bregman information of the set, I�(X ), up toadditive 
onstants.Now, 
onsider the problem of modeling the sto
hasti
 sour
e with a mixture of k densitiesof the same exponential family. This also yields a soft 
lustering where 
lusters 
orrespond tothe 
omponents of the mixture model, and the soft membership of a data point in ea
h 
lusteris proportional to the probability of the data point being generated by the 
orresponding densityfun
tion. Thus the Bregman soft 
lustering problem 
an be stated to be that of learning themaximum likelihood parameters � = f�h; �hgkh=1 of a mixture model of the formp(xj�) = kXh=1�hph(xj�h) = kXh=1 �hf�(x) exp(�D�(x;�h)): (12)The above problem is a spe
ial 
ase of the general maximum likelihood parameter estimationproblem for mixture models. So we �rst revisit the general problem and its solution using the EMframework. Later, we use this to develop the Bregman soft 
lustering algorithm for the spe
ial
ase in whi
h we are interested. Note that, by the bije
tion between Bregman divergen
es andexponential families, (12) en
ompasses the soft 
lustering problem for all exponential families.5.2 EM for Mixture Models based on Bregman Divergen
esThe maximum likelihood parameter estimation problem for a mixture model 
an be stated formallyas follows. Let X = fxigni=1 and p(xj�) be a mixture density given byp(xj�) = kXh=1�hph(xj�h);where ph(xj�h) are the individual 
omponent densities, �h their priors and � = f�h; �hgkh=1. Then,the likelihood of observing X given the mixture model is obtained asLX (�) = nYi=1 kXh=1�hph(xij�h)! :Estimating the mixture densities for the dataset is equivalent to solving the optimization problem,max� LX (�);where � = f�h; �hgkh=1. The Expe
tation-Maximization (EM) framework provides a ni
e solution17



Algorithm 2 EM for Mixture Density EstimationInput: Set X = fxigni=1 � S � Rd ,number of 
lusters k.Output: ��, lo
al maximizer of LX (�) = Qni=1(Pkh=1 �hph(xij�h)) where � = f�h; �hgkh=1, softpartitioning ffp(hjxi)gkh=1gni=1.Method:Initialize f�h; �hgkh=1 with some �h 2 S; �h � 0; Pkh=1 �h = 1repeatfThe Expe
tation Stepgfor i = 1 to n dofor h = 1 to k dop(hjxi) �hph(xij�h)Pkh0=1 �h0ph0(xij�h0)end forend forfThe Maximization Stepgfor h = 1 to k do�h  1nPni=1 p(hjxi)�h  argmax� Pni=1 log(ph(xij�))p(hjxi)end foruntil 
onvergen
ereturn �� = f�h; �hgkh=1to the parameter estimation problem stated above. The resulting algorithm is an iterative pro
edurefor obtaining the maximum likelihood estimator of the parameters using the 
onditional expe
tationfor the missing data, whi
h in this 
ase is the posterior probabilities of the 
lusters for ea
h datapoint. The algorithm is known to have the following 
onvergen
e property.Proposition 3 The EM algorithm (Algorithm 2) has the property that the likelihood of the data,LX (�) is non-de
reasing at ea
h iteration. Further, if there exists at least one lo
al maximum forthe likelihood fun
tion, then the algorithm will 
onverge to a lo
al maximum of the likelihood.For a detailed proof and other related results, please see [Col97℄ and [Bil97℄.As stated earlier, the Bregman soft 
lustering problem is to estimate the maximum likelihoodparameters for a mixture model of the form,p(xj�) = kXh=1�hf�(x) exp(�D�(x;�h)):Applying the EM algorithm to this problem gives us lo
ally optimal parameters �� for this mixturemodel. The resulting mixture model also provides a soft 
lustering of the dataset based on theBregman divergen
e D�. Hen
e, we 
all this appli
ation of the EM algorithm, the Bregman soft
lustering algorithm. The Bregman divergen
e viewpoint also helps in signi�
antly simplifying thealgorithm, espe
ially the 
omputationally intensive M-step. The resulting update equations arevery similar to those for learning mixture models of uniform varian
e, spheri
al Gaussians. Thefollowing propositions prove the 
orre
tness of the Bregman soft 
lustering algorithm.
18



Proposition 4 For a mixture model with density given byp(xj�) = kXh=1 �hf�(x) exp(�D�(x;�h));the maximization step for the density parameters in the EM algorithm (Algorithm 2) redu
es to asimple expe
tation step: 8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) : (13)Proof: The maximization step for the density parameters in the EM algorithm is given by8h; 1 � h � k; �h = argmax� nXi=1 log(ph(xij�))p(hjxi):For the given mixture density, the 
omponent densities are given by8h; 1 � h � k; ph(xj�h) = f�(x) exp(�D�(x;�h)):Substituting the above into the maximization step, we obtain the update equations for the expe
-tation parameters �h: 8h; 1 � h � k,�h = argmax� nXi=1 log(f�(xi) exp(�D�(xi;�)))p(hjxi)= argmax� nXi=1(log(f�(xi))�D�(xi;�))p(hjxi)= argmin� nXi=1 D�(xi;�)p(hjxi) (as f�(x) is independent of �h)= argmin� nXi=1 D�(xi;�) p(hjxi)Pni0=1 p(hjxi0) ;so that the weights on the divergen
es form a valid probability measure (i.e. sum to 1). FromTheorem 1, we know that the expe
ted Bregman divergen
e is minimized by the expe
tation of x,argmin� nXi=1 D�(x;�))p(hjxi) = Pni=1 p(hjxi) xiPni=1 p(hjxi) :Therefore, the update equation for the parameters is a weighted averaging step,8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) :
Proposition 5 For a mixture model with density given byp(xj�) = kXh=1 �hf�(x) exp(�D�(x;�h));the EM algorithm (Algorithm 2) redu
es to the Bregman soft 
lustering algorithm (Algorithm 3).19



Algorithm 3 Bregman Soft ClusteringInput: Set X = fxigni=1 � S � Rd , Bregman divergen
e D� : S � int(S) 7! R, number of 
lustersk.Output: ��, lo
al maximizer of Qni=1(Pkh=1 �hf�(xi) exp(�D�(xi;�h))) where � = f�h; �hgkh=1,soft partitioning ffp(hjxi)gkh=1gni=1Method:Initialize f�h; �hgkh=1 with some �h 2 S; �h � 0, and Pkh= �h = 1repeatfThe Expe
tation Stepgfor i = 1 to n dofor h = 1 to k dop(hjxi) �h exp(�D�(xi;�h))Pkh0=1 �h0 exp(�D�(xi;�h0))end forend forfThe Maximization Stepgfor h = 1 to k do�h  1nPni=1 p(hjxi)�h  Pni=1 p(hjxi)xiPni=1 p(hjxi)end foruntil 
onvergen
ereturn �� = f�h; �hgkh=1Proof: For the given mixture model, the 
omponent densities are given by8h; 1 � h � k; ph(xj�h) = f�(x) exp(�D�(x;�h)):The update equations for the posterior probabilities in the EM algorithm are given by8x 2 X ; 8h; 1 � h � k; p(hjx) = �hph(xj�h)Pkh0=1 �h0ph0(xj�h0) = �h exp(�D�(x;�h))Pkh0=1 �h0 exp(�D�(x;�h0))as the f�(x) fa
tor 
an
els out. Further from Proposition 4, the parameter estimation step in theEM algorithm redu
es to a simple expe
tation step,8h; 1 � h � k; �h = Pni=1 p(hjxi)xiPni=1 p(hjxi) :The prior update equations are independent of the parametri
 form of the densities and remainunaltered: 8h; 1 � h � k; �h = 1n nXi=1 p(hjxi):
5.3 Bregman Soft Clustering for a Set with Probability measureIn se
tion 5.2, we addressed the Bregman soft 
lustering problem for a set X with a uniformmeasure, i.e., all elements of X have the same weight. Now we look at the soft 
lustering problem20



for a set with non-uniform probability measure. As in the 
ase of the hard 
lustering problem, theobje
tive is to assign the elements of the set X to di�erent 
lusters, the only di�eren
e being thatnow a single element 
an have a non-zero probability of belonging to multiple 
lusters. To takethe non-uniform measure into a

ount, we 
onsider a new set XN of large size N su
h that everyelement xi 2 X o

urs �iN times in the set XN and pose the Bregman soft 
lustering problem forthe set X with a non-uniform measure � as that for the set XN with uniform measure. From theprevious subse
tion, this is equivalent to the maximum likelihood estimation problem,max� LXN (�);where LXN (�) is the likelihood of observing the set XN given a mixture density p(xj�) based onexponential distributions with parameters �, and 
an be easily solved using the EM framework.Note that the set XN has multiple instan
es of elements of X and 
ould have an extremely lowprobability of being generated from a mixture model based on exponential distributions, but we areonly interested in learning the parameters of the mixture model that has the highest probability ofgenerating XN . The resulting algorithm is similar to the EM algorithm applied dire
tly to X withthe M-step modi�ed to in
lude the probability measure �. The new M-step update equations aregiven by 8h; 1 � h � k; �h = nXi=1 �ip(hjxi); (14)and 8h; 1 � h � k; �h = argmax� nXi=1 log(ph(xij�))�ip(hjxi): (15)(16)When the mixture models are based on exponential distributions, as in the 
ase of the Bregmansoft 
lustering problem, (16) remains identi
al while (16) redu
es to8h; 1 � h � k; �h = Pni=1 �ip(hjxi)xiPni=1 �ip(hjxi) :Hen
e, the Bregman soft 
lustering algorithm for a set X with probability measure � is given byAlgorithm 3 with the maximization steps repla
ed by the above update equations. The expe
tationstep remains un
hanged.Finally, we note that the Bregman hard 
lustering algorithm is a limiting 
ase of the abovesoft 
lustering algorithm. For every 
onvex fun
tion � and positive 
onstant �, �� is also a 
onvexfun
tion with the 
orresponding Bregman divergen
e D�� = �D� (see Property 3 in the Appendix).In the limit, when � ! 1, both the E and M steps of the soft 
lustering algorithm redu
e to theassignment and re-estimation step of the hard 
lustering algorithm. Further, this view suggeststhe possibility of designing annealing s
hemes for Bregman soft 
lustering interpreting 1=� as thetemperature parameter.6 ExperimentsIn this se
tion, we present the results of applying Bregman 
lustering to datasets based on di�erentexponential distributions and show that the 
lustering quality depends on the 
hoi
e of the Bregmandivergen
e. For our �rst experiment, we 
reated three 1-dimensional datasets of 100 samples ea
h,based on mixture models of Gaussian, Poisson and Binomial distributions respe
tively. All the21


