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Abstract

A wide variety of distortion functions are used for clustering, e.g., squared Euclidean distance,
Mahalanobis distance and relative entropy. In this paper we consider the general case where the
distortion is a Bregman divergence. We pose the hard clustering problem in terms of minimizing
the loss in Bregman information, a quantity motivated by rate-distortion theory, and present an
algorithm to minimize this loss. The proposed algorithm unifies several well-known partitional
methods, such as classical kmeans and information-theoretic clustering, which arise by special
choices of the Bregman divergence. Further, we show an explicit bijection between Bregman
divergences and exponential families. The bijection enables the development of an efficient
viewpoint, of EM for learning models involving mixtures of exponential distributions. This leads
to a simple soft clustering algorithm involving Bregman divergences.

1 Introduction

Data clustering is a fundamental “unsupervised” learning procedure that has been extensively stud-
ied across varied disciplines over several years [JD88]. Parametric clustering of data involves finding
a partitioning of the data into a pre-specified number of partitions with a cluster representative
corresponding to every cluster such that a well-defined cost function involving the data and the
representatives is minimized. The cost function is normally the expected value of a well-motivated
distortion measure between the data-points and their cluster representatives. Usually, the distribu-
tion over the data is assumed to be uniform and hence it is sufficient to work with the sum of the
distortions, since this is equal to the expectation, in this case, with a multiplicative constant. The
kmeans [Mac67] problem is perhaps the most well-studied and widely used member of this class of
problems.

Typically, parametric clustering problems come in two flavors: hard and soft. In hard clustering,
one obtains a disjoint partitioning of the data such that each data-point belongs to exactly one of
the partitions. Moreover, the cluster representative of every partition depends only on the data-
points in that partition. In soft clustering, each data-point has a certain probability of belonging
to each of the partitions. The cluster representatives are computed using all the data-points with
contributions appropriately weighted according to their probability of being in that cluster. In some
sense, one can think of hard clustering as a special case of soft clustering where the probabilities
of a data-point belonging to a cluster can either be 1 or 0.

Algorithms for solving particular versions of parametric clustering problems have been devel-
oped over the years. As far as hard clustering algorithms are concerned, the most well-known
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algorithm is the iterative relocation scheme for the kmeans problem [JD88, DHS00]. The recently
proposed information theoretic clustering algorithm [DMKO03] for clustering probability distribu-
tions has a similar flavor. On the other hand, the domain of soft clustering algorithms is more
well developed. Since most of the practical soft clustering problems can be posed as a problem of
finding the parameters of a mixture density under the assumption that the observed data has been
sampled from the mixture distribution, the clustering problem boils down to a problem of maxi-
mum likelihood parameter estimation. However, for a given data-point, since one does not know
the exact component following which it was sampled, the problem is one of maximum-likelihood
estimation with incomplete information. The well-known EM algorithm [DLR77] is used to solve
the estimation and hence, the soft clustering problem.

Although the kmeans and the information theoretic clustering algorithms seem to have a similar
flavor in that both of them employ an iterative relocation scheme using a certain distortion function
— square of the Fuclidean distance in the kmeans case, and the KL-divergence in the case of
information theoretic clustering — it is not clear for exactly what type of distortion functions such
simple schemes will give a clustering of the data. In this article, we answer this question. We
introduce a concept called Bregman information of a set and pose an optimal quantization problem
such that the loss in Bregman information due to quantization is minimized for a quantization of
a given size. We show that the optimal quantization problem is exactly equivalent to a Bregman
clustering problem, where the distortion function used for clustering is a Bregman divergence.
Then, we show that if the distortion function is a Bregman divergence, there is always an iterative
relocation scheme that clusters the data minimizing the given distortion function. In other words,
like many other problems in machine learning, the clustering algorithm comes along with the choice
of the loss function.

The practical generative models used for soft clustering typically use a mixture density involving
an appropriate member of the exponential family. Except for an excellent analysis by Kearns et
al [KMN97] involving hard and soft assignments, there does not appear to be much literature on
the connection between hard and soft clustering algorithms involving exponential families. In this
article, we prove that the density of any exponential distribution can be written as the product of
an exponential function of the negative of a uniquely determined Bregman divergence and a func-
tion independent of the parameters, thereby exhibiting a bijection between Bregman divergences
and exponential families. Using this result, and the Bregman clustering results developed for the
hard clustering case, we revisit the EM algorithm for mixture density learning. We demonstrate
that the M-step of EM, where most of the computation is involved, simplifies to finding a simple
expectation if one is working with an appropriate representation of the sufficient statistic. This
also demonstrates the exact connection between the hard and soft Bregman clustering algorithms.

The remainder of this article is organized as follows. We first define Bregman divergences
and provide a few illustrative examples in section 2. Then, we introduce the concept of Bregman
information to motivate the Bregman hard clustering problem and propose an algorithm to solve
this clustering problem in section 3. In section 4, we establish a connection between exponential
families and Bregman divergences and use it develop a soft Bregman clustering algorithm in section
5. In section 6, we present some experimental results that illustrate the usefulness of the Bregman
clustering algorithm. In section 7, we briefly discuss related work.

A word about the notation: bold faced variables, e.g., x, u, etc., represent vectors, sets are
represented by calligraphic upper-case alphabets, e.g., X, ), etc. and enumerated as {x;}?_, where
x; are the elements of the set and vectors x = (z1,--- ,z4) are represented as [zpj];l:l. ¢ denotes the
null set and R,R,; and R? denote the set of reals, the set of positive reals and the d-dimensional
real vector space respectively. For x,y € R%, (x,y) is the natural inner product in R? and ||z||



is the Ly norm. Probability density functions are denoted by lower case alphabets, e.g., p,q, etc.
Probability measure on a set is denoted by v. If a random variable x is distributed as p, we denote
this by x ~ p. Expectation of functions of a random variable x ~ p are denoted by Ex.,[-], or,
simply F,[-] when it is clear which random variable is being specified. The inverse of a function f
is denoted by f~!.

2 Preliminaries

First, we revisit some basic concepts in analysis [KF75] that we need in order to define Bregman
divergences. Then, we define Bregman divergence for a well-behaved class of convex functions and
look at a few examples.

Definition 1 The interior of a set S C R? is defined as
int(S) = {x € R|3e > 0, B(x) C S},

where Be(x) = {y € R¥|p(y,x) < €} denotes the open metric e-ball centered at x for a metric p
defined on R?.

Definition 2 Let ¢ : S +— R be a strictly convex function defined on a convex set S C R% such that
¢ is differentiable on int(S) # ¢. The Bregman divergence Dy : S x int(S) — [0,00) is defined
as

Dy(x,y) = ¢(x) — ¢(y) — (x =y, Vo(y)).

Example 1: The well-known squared Euclidean distance is perhaps the simplest and most widely
used Bregman divergence. In this case, ¢(x) = (x,x) is a strictly convex, differentiable function
on R? and

Dy(x,y) = (xx)—(y,y) - (x-y,Vé(y))
= (xx)—(y,y) - (x—y,2y)
= (X_YaX—}’>:||X_Y||2a
which is exactly the squared Euclidean distance. ]

Example 2: Another widely used Bregman divergence is the KL-divergence. If p is a discrete
probability distribution so that E;l:l p;j = 1, then ¢(p) = E;-l:l pjlogpj, which is the negative
entropy is a convex function in this domain (the d-simplex). Then, the corresponding Bregman
divergence

d d
Dy(p,a) = Y pjlogpj =Y gjlogg; — (p - a, Vé(a))
7=1 7j=1
d

d d
= > pjlogp; — > a;logg; — > _(p;j — ¢j)(logg; + loge)
=1 =1 =1

d d
.
= > pjlog (—9> —loge > (pj — qj)
=1 % i=1

= KL(pla),



Table 1: Bregman divergences corresponding to some convex functions. Note that logarithm is to
the natural base and A is positive definite.

Domain o(x) Dy(x,y) Divergence

R z? (x —y)? Square loss

Ryt zlogx zlog() — (z —y)

(0,1) zlogz + (1 — z)log(l — ) zlog() + (1 —2) log(ﬁ) Logistic loss !

Rt —logx % — log(% -1 Itakura-Saito distance

R e® e’ —e¥ — (x —y)eY

R\ {0} |z] max{0, —2sign(y)z} Hinge loss

R? IIx||? lIx - y[I? Squared Euclidean distance

R? xT Ax x—-y)TAx—y) Mahalanobis distance >

d-Simplex 2?21 z;logx; Z?:l T; log(z—;) KL-divergence

R4 Z;l:l zjlogz; 2?21 T log(z—;) - Z;.l:l (xzj —yj) | Generalized I-divergence
the KL-divergence between the two distributions as 2?21 q; = 2?21 pj = 1. [

Table 1 contains a list of some common convex functions and their corresponding Bregman diver-
gences. Some basic properties of Bregman divergences are listed in the Appendix.

3 Bregman Hard Clustering

In this section, we first introduce a new concept called the Bregman information of a set based
on ideas from Shannon’s rate-distortion theory. Then, we motivate the Bregman hard clustering
problem as a quantization problem that involves minimizing the loss in Bregman information and
show that it is equivalent to a more direct formulation, i.e., the problem of finding a partitioning
and a representative for each of the partitions such that the expected Bregman divergence of the
points from their representatives is minimized. We also propose a clustering algorithm that is a
generalization of the kmeans algorithm and is guaranteed to converge to a local minimum of the
Bregman hard clustering problem.

3.1 Bregman Information

Before we go on to define Bregman Information, we briefly relate the relevant concepts in Shannon’s
rate distortion theory to the Bregman clustering problem. In the general rate-distortion setting
[CT91], a random variable is coded using a scheme that consists of an encoding and a decoding
function. The rate of the coding scheme is the number of bits used for encoding and can be
considered a measure of the size of codebook (2F where R is rate). The performance of the coding
scheme is determined in terms of the expected distortion between the source random variable
and the decoded random variable, for an appropriate application dependent distortion function.
The rate distortion problem [GVO03], can be stated as the problem of finding a coding scheme
with a given rate, R, such that the expected distortion between the source random variable and
the decoded random variable, is minimized. The achieved distortion is called the distortion-

1gr:log(g) +(1—x) log(tz) = log(1 +exp(—f(x)g(y))), i-e. logistic loss where f(z) =2z — 1 and g(y) = log(%;)
?(x —y)TA(x — y) is the Mahalanobis distance when A is the inverse of the covariance matrix



rate function, i.e., infimum distortion achievable for a given rate, or, in other words, for a given
codebook size.

For the current analysis, let us consider a simple coding scheme for a random variable X that
takes values in a finite set X = {x;}"_, C S C R? following a probability measure v. The encoding
scheme involves a quantization of the random variable and decoding is just the identity map. The
size of the codebook, i.e., the set of quantized values, determines the rate of the coding scheme
or rate of quantization. Assuming the distortion function to be a Bregman divergence Dy, the
rate-distortion problem for this coding scheme can be stated as

min{E, [Dy(X, X))}, (1)

where F is the quantization mapping with a fixed rate, R and X = F (X) is the encoded version of
X. First consider the case where the rate of quantization, R = 0 i.e., the codebook is a singleton
set. From a stochastic viewpoint, the encoded version X of the random variable X is a constant,
say s € S and the joint distribution of (X, X) is equivalent to the marginal distribution of X. The
distortion-rate function for rate R = 0 and distortion function, Dy is given by

in E,[Dg(X = mi i Dg(x;,8). 2
Islgg l/[ (1)( 75)] Isnelg’l ZVZ gb(xus) ( )

We call this distortion-rate function the Bregman information of the set X for the Bregman
divergence, Dy and denote it by I,(X). The optimal value of s that achieves the minimal distor-
tion will be called the Bregman representative or, simply the representative of the set X'. In the
subsequent analysis, we shall show that this representative always exists, is uniquely determined
and, surprisingly, does not depend on the choice of the Bregman divergence. Note that a lower
value of Bregman information indicates that the elements of the set are, in a Bregman divergence
sense, closer to the representative. On the other hand, a higher value of Bregman information
indicates that the single representative cannot capture the diversity in the set, and it may be a
good idea to partition the set into more homogeneous subsets and have a representative for each
subset. This directly leads to the Bregman clustering problem.

Before proceeding further, we show the existence and uniqueness of the Bregman representative.

Theorem 1 Given a set X = {x;}"_, C S C R?, a probability measure v over X and a Bregman
divergence Dy : S x int(S) — [0,00), the problem

in F,|D
rsrgg I/[ ¢(X,S)]

has a unique minimizer given by s* = p = E,[x].

Proof: The function we are trying to minimize is
n
Ts(s) = By[Dy(x,8)] = > viDy(xi,s).
i=1

We prove the required result by showing that for Vs € S, J4(s) > Jy(pn) where p = E,[x] and



equality holds only when s = u. To this end, we note that

Jy(s) — Jp(p) = Z viDg(x;,8) — Z viDg(x;, )

= Y vild(xi) = d(s) = (xi =8, V(s)) = h(x:) + d(k) + (xi — 1, V(1))

=1
= (p) — o(s) - ((Z vix;) — 8, V(s Z vix;) — P, V()
=1

= $(w) — () — (4 — 5, V()
= D¢(/.L,S) 207

with equality only when s = p. Hence, p is the unique minimizer of the function, Jy.
Finally, we argue that g € S. To this end, since X C S and S is a convex set, co(X) C S, where
co(X) is the convex hull of X. But p = E,[z] € co(X). Hence p € S. That completes the proof. =

The above result shows that the representative, i.e., the minimizer of the expected Bregman
divergence, is always the expectation of the set even when the Bregman divergence is not convex
in the second argument!.

Using the above theorem, we can now give a more direct definition of the Bregman information
as follows:

Definition 3 Let X = {x;}}'; C S be a finite subset of S and v be a probability measure on X
and let p = E,[x] = > vix;. Let Dy : S x int(S) — [0,00) be a Bregman divergence. Then,
Bregman Information of X' in terms of Dy is defined as

I4(X) = E,[Dy(x, )] ZUD¢ Xy b))

To start appreciating the potential of such a treatment, we note that the elements of the set
X can be quite general. For instance, the elements can be probability distributions, functionals,
operators or just plain vectors. In the following examples, we look at sets of vectors and probability
distributions on a fixed discrete output space.

Example 3: One simple example of Bregman information is the variance. Let X = {x;}, be
a set in R?. The Bregman information of the set X with the squared Euclidean distance as the
Bregman divergence is given by

Iy(Xx) = Z viDy(xi, )

n
1
= — E Ix; — w||* ( Assuming uniform measure, v; = —),
n
i=1

'For example, consider ¢(x) = Zj’_l 2} defined on R, so that Dy(x,y) = Zle(m? —y} = 3(x; —y;)y;) is
not convex in y. Now for the set X = {(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5)}, the expected Bregman divergence
with respect to a point y is given by (135 + 2 Z?:I yf — 92?:1 y7), which is minimized when y = (3,3,3), i.e., the
expectation of the original set X.



which is just the sample variance of the set X. |

Example 4: Another example involves a set of probability distributions, which can also be inter-
preted as conditional distributions given a random variable. In particular, we show that if random
variables (U, V') are jointly distributed according to {{p(u;, v;)}}";}]2;, then the mutual informa-
tion I(U; V) is the Bregman information of the set of conditional distributions {p(V'|u;)}i; with
KL-divergence as the Bregman divergence. By definition,

nu;v) = ZZp (u;,v5) <log((u;7’;(’];)>

i=1 j=1
= Y u; Y vilu;) [ lo p(vjlui)
= rtw) Lptwlu (1022152

_ Zp w)KL( p(V]w) || p(V)).

Consider the set of probability distributions Z, = {p(V|u;)}_; and the probability measure
{vi}?~y = {p(w;)}I"; over this set. For this set, the mean distribution is given by

p=E,[p(V[u)] = Zp w;)p(Vw;) = Zp(uiav) =p(V).
=1

Hence,

I(u;v) = Zpuz JKL(p(Vw) [ p(V))

= ZwD(z)(p(Vlui),u)
i=1
= Iy(2u),

i.e., mutual information is a special case of Bregman information. Further, for the set of proba-
bility distributions Zy = {p(U|v;)}JL; and the probability measure v; = p(v;) over this set, one
can similarly show that I(U; V) = I4(Z,). The Bregman information of the two sets of probability
distributions, Z, and Z, can also be interpreted as the Jensen-Shannon divergence [DMKO03] of
those sets. [

3.2 Problem Formulation

As mentioned earlier, if X is a set with high Bregman information, it may not be justifiable to have
a single Bregman representative for the entire set from a quantization error point of view. In such
a situation, partitioning the set into relatively homogeneous groups and having a representative
for each group seems like a natural idea. Note that this implies a higher rate of quantization, i.e.,
a codebook of larger size. Now, in addition to achieving minimal expected Bregman divergence
within their corresponding partitions, the set of representatives should also preserve the Bregman
information content of the original set as much as possible. If the codebook size is greater than
or equal to the cardinality of X', a trivial solution is to use |X| representatives, being one-to-one
with the actual elements in the set. A more interesting case arises when the allowed codebook size



is strictly less than |X|. If M denotes the set of Bregman representatives with |[M| = k < |X|,
the problem is to choose M, or, equivalently, the k-partitioning of X such that M preserves as
much Bregman information as possible compared to the original set. This is precisely the Bregman
clustering problem.

On more concrete terms, the set of representatives, M, will have its own Bregman informa-
tion. If I5(M) denotes the Bregman information of M, the loss in Bregman information due to
quantization is given by

Lg(M) = 1,(X) — Is(M). (3)

The Bregman hard clustering problem is to find a partitioning of X, or, equivalently, the set
of representatives M, such that the loss in Bregman information, Ly(M), is minimized. Note that
the classical vector quantization problem is a special case of this formulation.

In the rest of this section, we show that this loss function can be written in a different form
that suggests a natural solution to this problem. This result will be used to develop an algorithm
for solving arbitrary Bregman clustering problems efficiently.

Theorem 2 Let X = {x;}?; C S CR? and let v be a probability measure on X. Let {Xy}F_, be
a partitioning of X and let mp, = ineXh vi. If M = {u‘h}hzl denotes the set of representatives,
then

Ly(M) = I15(X) = I3(M) = Ex[I5(X})], (4)

where

E;[I4(X))] Zﬂ'hId) xp) = Zﬂ'h Z — D¢>(Xzal~¢h) (5)

X1€Xh

Proof: By definition,

n k
Ij(X) = > viDy(xi,p) =Y Y viDy(xi, p)
i—1

h=1 XiEXh

k
= 3 vl - $l) — (xi — V()

h=1x;EX},

k
= Y > vi{elxi) — dpn) — (ki — pa), Vo)) + ((xi — ), Vo (k)

h=1x;EX},

+o(pr) — () — (xi — pp, + g, — 1, V()

k
= Z Z vi{ Dg(xi, mp,) + Dg(pp, ) + ((xi — pp,), (Vo(py) — V() }

hZIXiEXh
k
= S m Y —D¢(xuuh +Z > viDg(py, )
h=1 X; EX), h=1x,€X},
k
”
+Y m Y #(Xi_uha(v¢(ﬂh)_v¢(ﬂ))>
h=1  aieXy



k k
= Y mls(Xn) + Y Dy, e +th y W—hxz 1), V() = V(1))

h=1 h=1 xi€Xn

since Exi e, ;—;xi = pj, by definition. By rearranging terms, we get the desired result. ]

Hence, the Bregman clustering problem of minimizing the loss in Bregman information can be
written as

k
min Ly(M) = min Y m, Y % Dy (i, ), (6)
h=1 x; EXp,

where M 1is the set of representatives. The loss in Bregman information is minimized if the set of
representatives M is such that the expected Bregman divergence of points in the original set X
to their corresponding representatives is minimized. Since, the original set is partitioned such that
every x € X belongs to exactly one of the final partitions, we call this version of the problem the
Bregman hard clustering problem. A soft version, where the points can have non-zero probabilities
of belonging to multiple partitions, will be developed and discussed in section 5.

3.3 Clustering Algorithm

Given a set X = {x;}7_, and a probability measure v over X, the Bregman hard clustering problem
is to find, for a given k, a k-partitioning {X},}¥_, of X and a set of representatives, M = {p, }F_ |
such that the loss function

k k )
M) =3 mlo(X) = Do D - Dylxis ) (7)

XiEXh

is minimized. The above formulation suggests a natural iterative relocation algorithm to solve
the Bregman hard clustering problem. Details of the proposed method are given in Algorithm 1.
We call this the Bregman hard clustering algorithm. It is easy to see that classical kmeans and
information theoretic clustering are special cases of the Bregman hard clustering algorithm for
squared Euclidean distance and KL-divergence respectively. For both these cases, the induced
partitions are known to have linear separators. We now see that this is true for all Bregman
divergences since the locus of points that are equidistant to two fixed points in terms of a Bregman
divergence is always a hyperplane. The following theorems prove the convergence of the Bregman
hard clustering algorithm.

Proposition 1 The Bregman hard clustering algorithm (Algorithm 1) monotonically decreases
the loss function in (7).

Proof: Let {X }h | be the partitioning of X after the ¢t/ iteration and let M) = {uh _, be
the corresponding set of cluster representatives. Then,

k k
LMY = S N wiDy(xinl)) > Y0 DT uiDg(xio )
h=1y,ex® h=1y,ex(®
k
> 3 Y wDsbxip ) = LM,
h=1 XiEX,Et“)



Algorithm 1 Bregman Hard-Clustering

Input: Set X = {x;}?_;, C S C R?, probability measure v* over X, Bregman divergence Dy :
S x int(S) — R, number of clusters k.
Output: M*, alocal minimizer of Ei:l > xiex, ViDo(Xi, py) where M = {py}¥_,, corresponding
partitioning { X }F_, of X.
Method:
Initialize {p), }¥_, with some p;, € S
repeat
{The Assignment Step}
Set X, +— ¢, h=1,---k
for i =1ton do
Xy, — X U{x;} where h = h*(x;) = argmin Dy(x;, py)
"

end for
{The Re-estimation Step}

for h=1to k do
Th < ExiGXh Vi
Kp Zx-EXh ;_;Xi
end for
until convergence

return M* = {p }ji_,

where the first inequality follows trivially from the criteria used for the assignment of each of the
points in the assignment step, and the second inequality follows from the re-estimation procedure
using Theorem 1. Note that if equality holds, i.e., if the loss function value is equal at consecutive
iterations, then the algorithm terminates. ]

Proposition 2 The Bregman hard clustering algorithm (Algorithm 1) terminates in a finite num-
ber of steps at a partition that is locally optimal, i.e., the total loss cannot be decreased by either (a)
reassignment of points to different clusters or by (b) changing the means of any existing clusters.

Proof: The result follows since the algorithm monotonically decreases the objective function value,
and the number of distinct clusterings is finite. |

4 Bijection with Exponential Families

In this section, we establish a bijection between Bregman divergences and exponential families. We
also provide examples of Bregman divergences obtained from some popular exponential families.
The bijection will be used to develop Bregman soft clustering algorithm in section 5. Sections
4.1 and 4.2, which provide the background concepts needed to state and prove the bijection result,
may be skipped in a first reading by those who are not familiar with this subject. It has been
observed in the literature [Ama95] that exponential families and Bregman divergences have certain
relationships that can be exploited for several learning problems. In particular, [FW00] observes

We could, in general, have any non-negative weights and normalize them so as to sum to 1.

10



that Bregman divergences are a generalization of the negative log-likelihood of any member of the
exponential family. We state this connection more precisely by providing a constructive proof of
an explicit bijection between Bregman divergences and exponential families. This result is useful
as it enables us to obtain the appropriate divergence for any given exponential family.

4.1 Exponential families

Consider a family F of probability densities' on a measurable space (2, B) where B is a o-algebra
on the set Q [FG97]. Suppose every probability density, pg € F, is parameterized by d real-valued
variables 6 = {6; };l:l so that

F={po = f(w;0)lwe B,6 T CR}.

Then, F is called a d-dimensional parametric model on (2, B). Let H : B — G be a (B-G measur-
able) function that transforms any random variable U : B — R to a random variable V : G — R
with V' = H(U). Then, given the probability density pg of U, this function uniquely determines
the probability density gg governing the random variable V.

Definition 4 If Yw € B, pg(w)/qe(w) exists and does not depend on 6, then H is called a sufficient
statistic for the model F.

The identity map H(U) = U is a trivial example of a sufficient statistic.

If a d-dimensional model F = {pg|@ € I'} can be expressed in terms of (d + 1) real-valued
linearly independent functions {C, Hy,--- , Hy} on B and a function ¢ on I as

d
f(w;0) =expq Y 0;Hj(w) —1(8) + C(w) ¢,

j=1

then F is called an exponential family, and @ is called its natural parameter. It can be easily
seen that if x € R? is such that z; = H;(w), then the density function g(x; @) given by

d

g(x;0) = exp{ Y 0z — () = A(x) ¢,

j=1

for a uniquely determined function A\(x), is such that f(w;@)/g(x;8) does not depend on 6. Thus,
x is a sufficient statistic for the family. For our analysis, it is convenient to work with the sufficient
statistic x and hence, we redefine exponential families in terms of the probability density of the
sufficient statistic variable in R?, noting that the original o-algebra B can actually be quite general.

Definition 5 A multivariate parametric family Fy of distributions {p, )0 € T C R} is called
an exponential family if the probability density is of the form

P(y,0)(X) = exp((x, 8) — (8) — A(x)).

The function v(0) is known as the log partition function or the cumulant function and it
uniquely determines the exponential family F,. Further, given an exponential family 7, the
log-partition function, v is uniquely determined up to a constant additive term. It can be shown
[Ama95] that T is a convex set in R? and 4 is a strictly convex and differentiable function on int(T").

1t is possible to have probability distributions without a corresponding well-defined density function, i.e., Radon
Nikodym derivative with respect to the Lebesgue measure, but all exponential distributions have well-defined densities.
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4.2 Expectation parameters and Legendre duality

Consider a d-dimensional real random variable X following an exponential density’ P(y.0)- specified
by the natural parameter 8 € I'. The expectation of X with respect to p(y gy, also called as the
expectation parameter is given by

b= () = By [X) = [ 5000 (). ()

It can be shown [Ama95] that the expectation and natural parameters have a one-one correspon-
dence with each other and span spaces that exhibit a dual relationship. To specify the duality
more precisely, we first define Legendre conjugates. The Legendre conjugate 1¢ of the function
is given by

Pe(s) = Sl;p{(sa 6) —(0)}.

As 9 is a strictly convex and differentiable function over its domain I', we can obtain the 6 corre-
sponding to the supremum by setting the gradient of the corresponding function to zero, i.e.,

V((s,0) —1(0)) lo=0« =0 =s = V)(0")

From the above equation, we can see that the conjugate function is well defined on the gradient
space of the function v, say I'°. Further, the strict convexity of ¢ implies that Vi is monotonic
and hence, is a bijection from I' to I'>. Hence, for every s € I'°, there exists a @ = 6(s) € I" and for
every @ € T, there exists a s = s(0) € I'“ such that s = V(). Tt is, therefore, possible to define
the inverse function (Vi) ! : T¢ = I' and write the conjugate function ¢¢ in a closed form as

¥°(s) = ((V9) "1 (s),8) — (V) ' (s))-

It can be shown [Roc70] that the function ¢ is also a strictly convex and differentiable function
on its domain and that the pairs (4,T') and (4%, T') are Legendre conjugates of each other. This is
stated more formally below.

Definition 6 [Roc70] Let 1) : T' — R be a strictly convez, differentiable function, then the Legendre
conjugate of (¢, T') is given by (1, ['°) where T'° is the image of T under the gradient mapping Vi)
and Y° : T — R is a strictly convex, differentiable function given by

P(s) = (V)71 (8),8) — %((V¢) ' (s)).
Further, (1,T) is the Legendre conjugate of (¢°,T'¢). The gradient functions Vi : T' — T'° and

V¢ : ¢ — T are both continuous, one-one functions and also form inverses of each other.

Let us now look at the relationship between @ and the expectation parameter p defined in (8).
Differentiating the identity [ p(, g)(x)dx = 1 with respect to 8 gives us u = u(8) = Vi(0), i.e.,
the expectation parameter p is the image of the natural parameter @ under the gradient mapping
V4. Let S be the expectation parameter space, @(u) = (V) !(u) be the natural parameter
corresponding to g and the function ¢ : § — R be defined as

P(p) = (O(p), p) — P(0(w)). (9)

Then, the pairs (¢,T") and (¢, S) form Legendre conjugates of each other, i.e., $ = 9¢ and S =I'°
and the mappings between the dual spaces are given by the Legendre transformation,

p(8) = Vip(0) and 0(n) = Vo(p). (10)

!Exponential densities, in the present context, refer to the probability densities corresponding to members of an
exponential family and are not to be confused with density functions of the form p(z) = Ae™**
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4.3 Bijection Theorem

We are now ready to state the connection between exponential families of distributions and Bregman
divergences.

Theorem 3 Let (¢,S) and (¢,I') be Legendre conjugates of each other. Let Dy : S x int(S) — R
be the Bregman divergence derived from ¢. For @ € T', let p(y gy be the exponential probability
density derived using (0) as the log-partition function with 6 as the natural parameter. Let p be
the corresponding expectation parameter. Then,

P(y,0) (%) = exp(=Dy(x, p)) f5(x), (11)

where fg : S+ R is a uniquely determined function. Hence, there is a bijection between exponential
densities p(y gy and Bregman divergences Dy(-, p).

Proof: We prove the bijection between the exponential densities p(y g) and the Bregman diver-
gences Dy(-, u) by first showing that each exponential density P(y,0) corresponds to a unique Breg-
man divergence Dy(-, u) (one-one) and then arguing that there exists an exponential density cor-
responding to every Bregman divergence (onto). By definition,

Ppo)(x) = exp((x,0) —9(8) — A(x))

= exp((x, Ve(u)) + (¢(p) = (1, Vd(p))) — A(x)) (using (9) and (10))
(—{¢(x) — o(p
(=

{d(x) — d(p) = ((x — ), Vo(p))} + {o(x) = A(x)})
Dy(x, 1)) fo(x).

We observe that p(, ¢) uniquely determines the log-partition function + to a constant additive
term so that the gradient space of all the possible functions v is the same and the corresponding
conjugate functions, ¢ differ only by a constant additive term. Hence the Bregman divergence
Dy(x, p) derived from any of these conjugate functions will be identical, i.e., the mapping is one-
one. This also implies that fy is a uniquely determined function on S.

$2(0) = ¢1(0) +¢ = Vip(0) = Vi) (0) = p
= ¢2(p) = (1, 0) — 2(0) = {(1,0) = 91(0)} — ¢ = $1(p) -

= Dy, (x,p) = Dy, (x, ) (as linear terms do not change Bregman divergences)

= exp

= exp

Now, consider any Bregman divergence Dy(-, u) on S. There exists at least one strictly convex,
differentiable function ¢ on S that generates this divergence. The Legendre conjugates of (¢, S), i.e.
(,T) are well-defined. Hence, there exists an exponential density p(y gy that is related to Dy(x.p)
by (11), i.e., the mapping is onto. That completes the proof. [

4.4 Examples

We now look at two common exponential families and obtain the corresponding Bregman diver-
gences using the bijection theorem stated above.

Example 5: The most well-known exponential family is that of Gaussian distributions, in partic-
ular uniform variance, spherical Gaussian distributions with densities of the form
1

1 2
p(x;a) = W eXP(—FHX —al).
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where x,a € R and o € R is a constant. It is easy to see that the density can be expressed in
the canonical form for exponential families with natural parameter, @ = % and cumulant function,

$(0) = %19

1 1 9
p(x;a) = WBXP(—FHX—aH )
B a 1 9 1 9 1
= exp((x 5) =~ galal” - gl s
1

02 1
= exp((x,0) - =[10I") exp(—T‘QIIXHQ)\/TT)d

= exp((x,0) = 1(8))e ),

where e=*®) ig independent of @. The expectation parameter for this distribution is given by

0_2
p=Vip(0) = V(= [16]*) = 0?6 (using (10))

and the Legendre conjugate function, ¢ is obtained as

0,2 2
5() = (1.0) — 0(0) = (. 14) — 101> = P (using (9))

a constant multiple of the squared Euclidean norm. From Example 1, we know that the corre-
sponding Bregman divergence, Dy will be given by a similar multiple of the squared Euclidean
distance.

Dy(x,p) = ¢(x) — p(p) — (x — p, V()

B 3 e 171 C k- By

202 202 "2
e pl?
202

The function fy(x), mentioned in the bijection theorem, turns out to be constant and is given by

fo(x) = exp(p(x) — A(x))

_ Il )1 1
_ 1
(2m02)d

Example 6: Another exponential family that has been widely used to model text data is the
family of multinomial distributions with densities of the form,

d

N! ,

p(x;q) = —5—— IT47
Hj:l Tj* j=1
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j=1%; = N and probabilities of events, ¢; > 0, Z?Zl qj = 1.

This can be expressed as the density of an exponential distribution in x = {xj}?;% with natural

parameter, § = {log(%) ;l;} and cumulant function, 1(0) = —N log ¢z = N log(1 + E;j %60 ).

where frequencies of events, z; € Z, Zd

p(x;q) = H

H] 1%91

d—1
N!
= exp(z zjlog qj)di' = exp(z zjlog q; + zqlog qq4)9(x)
j=1 IT5— ;! j=1
d—1 d—1
= exp(Zazj logg; + (N — Zazj log qq)9(x) = exp Zazj log +Nloqu)19( )
j:l j 1

= exp((x,0) + Nlogan)d(x) = exp((x, 0) — Nlog(3" L)

= exp({x,0) — Nlog(L+ e )d(x) = exp({x,8) — 1(8))d(x),

where N is a constant and 9(x) = e @)

given by

is independent of #. The expectation parameter p is

Neg' -t

and the Legendre conjugate function, ¢ is obtained as

d—1
i= V() = V(Nlog(1+ 3 %)) = — (Vg
7=1

j=1

¢p(p) = (u,0) Zqulog ) + Nlog g

(1 1
- Zqulogq] NZ =7 log(]\;)
j=1

where ug = Ngq so that 2?21 pj = N. This is a constant multiple of negative entropy for the dis-
crete probability distribution given by {”WJ ;l:l. From Example 2, we know that the corresponding
Bregman divergence will be a similar multiple of KL-divergence.

Dy(x,p) = ¢(x) = ¢(p) — (x — p, Vo(p))
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Table 2: Various functions of interest for some popular exponential distributions

Distribution p(x;0) ] [ )(0)

: - 2.
1-D Gaussian® \/(21702) exp(— (z%az) ) e 02
1-D Poisson V;f,_x logA e?
1-D Bernoulli (1 —gq)t-® log(y%,) log(1 + €?)
1-D Binomial! W’_Z)!qi(l —g)N—= log(v%;) Nlog(l+e)
1-D Geometric Aexp(—Az) - —log(—0)

. —al|? 2

d-D Sph. Gaussian! \/_Q)d exp(— x=3l1) 2 2 |19||
d-D Multinomiall 07, Gy (Z 5 H?Zl(qj)l’f [log(g—j)}? T Niog(1 + Z;l Tefi)

Table 3: Various functions of interest for some popular exponential distributions (cont.)

Distribution p(x;0) n o(w) Dy (x, )

. 1 (z=a)? 1 1 2
1-D Gaussian D) exp(—-= ) a Sz b 5oz (T — 1)

R ATe— A x
1-D Poisson = A plogpu — zlog (;) (z — p)
1-D Bernoulli q T(1—q)l=" q plogpu+ (1 — p)log(1 — ) zlog(£) 4 (1 — z) log( tz)
1-D Binomial mq (1 —q)N—= Ngq plog(4) + (N — u)log(N—];/i) xlog(%) + (N — ) log(]]\\;_z)
1-D Geometric Aexp(—Az) A —u? +log i log(%) - Z+41- (x —p)?
_ 2

d-D Sph. Gaussian \/(27102)d exp(— sz;;\l ) a ZU%HN‘P 202 ||x —pl)?

p p NT d T d 75
d-D Multinomial 7 o1 = q [Ng;1524 Z] 1 log(WJ) 2 i=1 T log(u—;)

The function fy(x) for this case is given by

fo(x)

exp(¢(x) — A(x))

N!

H]:1 zj!

d
exp Z zj log
H;l:1 xgz'j N!
NN

y )
szl zj!

Tables 2 and 3 shows the various functions of interest for some popular exponential distribution
families. For all the cases shown in the table, x is itself the sufficient statistic.

5 Bregman Soft Clustering

Using the bijection between exponential families and Bregman divergences, we first pose the Breg-
man soft clustering problem as a parameter estimation problem for mixture models based on

exponential distributions .

Then, we revisit the Expectation-Maximization (EM) framework for

estimating mixture densities and develop the Bregman soft clustering algorithm (Algorithm 3).
We also present the Bregman soft clustering algorithm for a set with a probability measure and

!The variance o and the number of trials N are assumed to be constant for the distributions.

16




show how the hard clustering algorithm can be interpreted as a special case of the soft clustering
algorithm.

5.1 Soft Clustering as Mixture Density Estimation

Given a set X = {x;}/_, drawn independently from a stochastic source, consider the problem
of modeling the source using a single parametric exponential distribution. This is the problem
of maximum likelihood estimation, or, equivalently, minimum negative log-likelihood estimation
of the parameter(s) of the parametric density belonging to a given exponential family. Now, from
Theorem 3, minimizing the negative log-likelihood is the same as minimizing the expected Bregman
divergence. Using Theorem 1, we conclude that the optimal distribution is the one with p = E[x]
as the expectation parameter where the expectation is over the empirical distribution. Further,
note that the minimum negative log-likelihood is the Bregman information of the set, I(X), up to
additive constants.

Now, consider the problem of modeling the stochastic source with a mixture of £ densities
of the same exponential family. This also yields a soft clustering where clusters correspond to
the components of the mixture model, and the soft membership of a data point in each cluster
is proportional to the probability of the data point being generated by the corresponding density
function. Thus the Bregman soft clustering problem can be stated to be that of learning the
maximum likelihood parameters © = {p,, 7, }%_, of a mixture model of the form

p(x|0) = Zﬂ'hpth}z Zﬂ'hfgb x) exp(—Dy(x, py))- (12)

The above problem is a special case of the general maximum likelihood parameter estimation
problem for mixture models. So we first revisit the general problem and its solution using the EM
framework. Later, we use this to develop the Bregman soft clustering algorithm for the special
case in which we are interested. Note that, by the bijection between Bregman divergences and
exponential families, (12) encompasses the soft clustering problem for all exponential families.

5.2 EM for Mixture Models based on Bregman Divergences

The maximum likelihood parameter estimation problem for a mixture model can be stated formally
as follows. Let X = {x;}I; and p(x|©) be a mixture density given by

X|® Zﬂ'hph X|0h

where pp,(x]6},) are the individual component densities, 7, their priors and © = {6}, Wh}’,jzl. Then,
the likelihood of observing X given the mixture model is obtained as

n k
Ly©)=]] (Z ﬂhph(xi|9h)> :
i1

h=1

Estimating the mixture densities for the dataset is equivalent to solving the optimization problem,

max Lyx(©),
where © = {0}, m,}i_,. The Expectation-Maximization (EM) framework provides a nice solution
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Algorithm 2 EM for Mixture Density Estimation
Input: Set X = {x;}?_, C S C R? number of clusters .
Output: ©*, local maximizer of Ly(0) = H?:l(ZZZI Thpn(%i|0r)) where © = {0, 7, }5_,, soft
partitioning {{p(h|x;)}¥_, }7,.
Method:
Initialize {0h,7rh}Z:1 with some 0, € S, 7, > 0, ZIZZI m, =1
repeat
{The Expectation Step}
fori=1ton do
for h =1 to k do

hlx:) TP (Xi|Oh)
p( | Z) ZZ’=17rh’ph’(xi‘0h’)

end for
end for
{The Maximization Step}
for h =1 to k do
Th 4= 5 2oimy P(B]%;)
On argmax > iy log(pn(xi0))p(h|x;)
end for
until convergence
return ©* = {0, 7, }5_,

to the parameter estimation problem stated above. The resulting algorithm is an iterative procedure
for obtaining the maximum likelihood estimator of the parameters using the conditional expectation
for the missing data, which in this case is the posterior probabilities of the clusters for each data
point. The algorithm is known to have the following convergence property.

Proposition 3 The EM algorithm (Algorithm 2) has the property that the likelihood of the data,
Lx(0) is non-decreasing at each iteration. Further, if there exists at least one local mazimum. for
the likelihood function, then the algorithm will converge to a local maximum of the likelihood.

For a detailed proof and other related results, please see [Col97] and [Bil97].
As stated earlier, the Bregman soft clustering problem is to estimate the maximum likelihood
parameters for a mixture model of the form,

k
p(x|0) =Y m fy(x) exp(—Dy(x, py)).
h=1

Applying the EM algorithm to this problem gives us locally optimal parameters ©* for this mixture
model. The resulting mixture model also provides a soft clustering of the dataset based on the
Bregman divergence Dy. Hence, we call this application of the EM algorithm, the Bregman soft
clustering algorithm. The Bregman divergence viewpoint also helps in significantly simplifying the
algorithm, especially the computationally intensive M-step. The resulting update equations are
very similar to those for learning mixture models of uniform variance, spherical Gaussians. The
following propositions prove the correctness of the Bregman soft clustering algorithm.
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Proposition 4 For a mizture model with density given by

.CL'|@ Zﬂ-hfqb eXp D¢>(X7 u’h))7

the maximization step for the density parameters in the EM algorithm (Algorithm 2) reduces to a
simple expectation step:

> iy p(h]xi)x;
Vh,1 <h <k, ==l T 13
M= S i) (13)

Proof: The maximization step for the density parameters in the EM algorithm is given by

Vh,1 <h <k, )= argmaxz log(pn (x:10))p(h[x;).
o iz

For the given mixture density, the component densities are given by

Vhal < h < ka ph(X|0h) = fd)(X) exp(—D¢(x, l'l‘h))

Substituting the above into the maximization step, we obtain the update equations for the expec-
tation parameters p;: Vh,1 < h <k,

py = argglaleog(qu(m)exp(—D¢(Xi,u)))p(hIXi)
i—=1

= argglax Z(log(qu(xi)) — Dy (xi, u))p(h|x;)
i—1

= argminZD(b(xi, w)p(h|x;) (as fy(x) is independent of ;)
b=t

p(hlx;)
= argmin Y Dy( x,u)—
: Z o B S )

so that the weights on the divergences form a valid probability measure (i.e. sum to 1). From
Theorem 1, we know that the expected Bregman divergence is minimized by the expectation of x,

argmin n x %) = iz P(h|xi) xi
gn ;D¢( )plhl) = SEEETOCCS.

Therefore, the update equation for the parameters is a weighted averaging step,

i1 P(hlxi)x
Y plhlxi)

Vh1 <h<k, p,=

Proposition 5 For a mizture model with density given by

$|@ Zﬂ-hf(ﬁ exp D¢(X7 u‘h))a

the EM algorithm (Algorithm 2) reduces to the Bregman soft clustering algorithm (Algorithm 3).
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Algorithm 3 Bregman Soft Clustering

Input: Set X = {x;}., C S C R%, Bregman divergence Dy : S x int(S) — R, number of clusters
k.
Output: ©* local maximizer of H?:1(2§:1 Thfs(%i) exp(—Dy(x;, uy))) where © = {p,, T }r_ |,
soft partitioning {{p(h|x;)}5_, 1",
Method:
Initialize {py,, 7, }F_, with some p;, € S, 7, > 0, and Ei: =1
repeat
{The Expectation Step}
for i =1ton do

for h =1 to k do (Dy( )
h ; Th eXpl— Dy (Xi,lp,
p( |X ) A ZZ'=1 e exp(—Dg (Xi 1))

end for
end for
{The Maximization Step}
for h =1 to k do
Th = %;?:1P(h|xi)
b S
end for
until convergence
return ©* = {pp,, 7 }r_,

Proof: For the given mixture model, the component densities are given by
Vha 1 < h < ka ph(x|0h) = f¢(X) eXp(_D¢(X7 l'l'h))
The update equations for the posterior probabilities in the EM algorithm are given by

Thph(X|01) _ 7 exp(—Dg(x, uy,))
S Ko o (%18h) Sy T exp(—Dg(x, pyr))

Vx € X, Vh,1 <h <k, p(hjx) =

as the fy(x) factor cancels out. Further from Proposition 4, the parameter estimation step in the
EM algorithm reduces to a simple expectation step,

2?21 p(h|xi)x;
iz p(hlxi)

The prior update equations are independent of the parametric form of the densities and remain
unaltered:

Vh,1<h <k, p,=

1n
h,1<h<k = — h|x;).
va > > R, Th ’I’sz( |X)

=1

5.3 Bregman Soft Clustering for a Set with Probability measure

In section 5.2, we addressed the Bregman soft clustering problem for a set A with a uniform
measure, i.e., all elements of X’ have the same weight. Now we look at the soft clustering problem
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for a set with non-uniform probability measure. As in the case of the hard clustering problem, the
objective is to assign the elements of the set X to different clusters, the only difference being that
now a single element can have a non-zero probability of belonging to multiple clusters. To take
the non-uniform measure into account, we consider a new set Xy of large size N such that every
element x; € X occurs v;N times in the set Xy and pose the Bregman soft clustering problem for
the set X with a non-uniform measure v as that for the set Xy with uniform measure. From the
previous subsection, this is equivalent to the maximum likelihood estimation problem,

m@ax Ly, (09),

where Ly, (©) is the likelihood of observing the set Xy given a mixture density p(x|©) based on
exponential distributions with parameters ©, and can be easily solved using the EM framework.
Note that the set X has multiple instances of elements of X and could have an extremely low
probability of being generated from a mixture model based on exponential distributions, but we are
only interested in learning the parameters of the mixture model that has the highest probability of
generating A'. The resulting algorithm is similar to the EM algorithm applied directly to X with
the M-step modified to include the probability measure v. The new M-step update equations are
given by

n
Vh,1 <h <k, m = > vip(hlx), (14)
i=1
and Vh,1<h<k, 6, = argmax ) log(p(x;|0))vip(hlx;). (15)
)
(16)

When the mixture models are based on exponential distributions, as in the case of the Bregman
soft clustering problem, (16) remains identical while (16) reduces to

D it Vip(hlxz')xz'_
> iy vip(hlx;)

Hence, the Bregman soft clustering algorithm for a set X with probability measure v is given by
Algorithm 3 with the maximization steps replaced by the above update equations. The expectation
step remains unchanged.

Finally, we note that the Bregman hard clustering algorithm is a limiting case of the above
soft clustering algorithm. For every convex function ¢ and positive constant 3, 8¢ is also a convex
function with the corresponding Bregman divergence Dgy, = Dy (see Property 3 in the Appendix).
In the limit, when 8 — oo, both the E and M steps of the soft clustering algorithm reduce to the
assignment and re-estimation step of the hard clustering algorithm. Further, this view suggests
the possibility of designing annealing schemes for Bregman soft clustering interpreting 1/ as the
temperature parameter.

Vh,1<h<k, p,=

6 Experiments

In this section, we present the results of applying Bregman clustering to datasets based on different
exponential distributions and show that the clustering quality depends on the choice of the Bregman
divergence. For our first experiment, we created three 1-dimensional datasets of 100 samples each,
based on mixture models of Gaussian, Poisson and Binomial distributions respectively. All the
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