
Microprocessor Pipeline Energy Analysis:
Speculation and Over-Provisioning

Karthik Natarajan⋆ Heather Hanson⋆ Stephen W. Keckler Charles R. Moore Doug Burger
⋆Department of Electrical and Computer Engineering
Computer Architecture and Technology Laboratory

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Department of Computer Sciences
Tech Report TR-2003-20

The University of Texas at Austin

June, 2003

Abstract

The increase in high-performance microprocessor power consumption is due in part to the large
power overhead of wide-issue, highly speculative cores. Microarchitectural speculation, such as branch
prediction, increases instruction throughput but carriesa power burden due to wasted power for mis-
speculated instructions. Pipeline over-provisioning supplies excess resources which often go unused. In
this paper, we use our detailed performance and power model for an Alpha 21264 to measure both the
useful energy and the wasted effort due to mis-speculation and over-provisioning. Our experiments show
that flushed instructions account for approximately 6% of total energy, while over-provisioning imposes
a tax of 17% on average. These results suggest opportunitiesfor power savings and energy efficiency
throughout microprocessor pipelines.
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Figure 1: Alpha 21264 Pipeline Diagram

1 Introduction

Power consumption in high-performance microprocessors has increased with successive generations. High-
end desktop and server processors such as the IBM Power 4 consume as much as 120 watts under typical
conditions. A root cause of the dramatic power rise is the increase in clock rate to improve performance,
which in turn has affected nearly every facet of superscalarmicroprocessor design. The drive for smaller and
faster transistors has caused optimization in fabricationtechnologies that have increased leakage current.
Dynamic circuits provide faster circuits at the expense of higher power. Deeper pipelines increase clock
loading and overall circuit capacitance. In this paper, we examine two categories of microarchitectural
features used in high-performance microprocessors that contribute to bottom-line performance at the cost of
substantial power use: speculation and over-provisioning.

Superscalar microprocessors rely on speculation to feed their wide issue, out-of-order, and deep pipelines.
Control speculation, data dependence speculation, hardware prefetching, cache way prediction, pipeline
scheduling speculation, and other predictive mechanisms allow the processor core to make forward progress
without waiting for long-latency operations to complete. Speculation offers opportunities for saving energy
by filling the pipeline with useful work to do, thereby increasing throughput and reducing the program exe-
cution time. With fewer idle cycles spent resolving cache line addresses or branch targets, for example, the
processor could finish tasks earlier, using less static power and allowing more opportunity to transition to a
lower-power mode.

However, speculative techniques also cause a power burden from effort wasted on mis-speculated in-
structions. In addition to predictor structure control logic and arrays, speculative features also require
additional resources throughout the chip, effectively providing extra room in the pipeline for extraneous
instructions. Each instruction that is ultimately discarded contributes indirectly to elevated power levels due
to the need for increased structure sizes, which lead to higher levels of transistor leakage current and more
signal capacitance. A useless instruction also directly affects dynamic power through datapath switching
activity until it is ejected from the pipeline. Our results show that approximately 6% of the total program
energy is spent on mis-speculation.
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The second microarchitectural feature examined in this paper isover-provisioningthat results from ex-
cess capacity in the pipeline. Over-provisioned hardware structures have a wide range of effects on micro-
processor power and energy consumption. Under-used array capacities and read/write ports cause the array
to consume more dynamic power than necessary for signal switching in larger decoders and longer word-
lines and bitlines. Furthermore, the excessive number of transistors contribute to greater leakage current.
Secondary effects on neighboring functional units includelonger interconnect to route around the overly
large units and possibly increased temperature levels. This study examines the dynamic power wasted by
hardware components that require full power levels to process partially filled pipeline stages and incur the
maximum power penalty. The results indicate that approximately 17% of the total energy budget pays the
power tax produced by over-provisioning in the map and issuestages.

Section 2 provides an overview of a wide-issue, out-of-order, superscalar microprocessor pipeline and
Section 3 describes our performance and power model for thispipeline. Section 4 presents the experimental
measurements of power losses due to speculation and over-provisioning. Section 5 discusses power man-
agement, including related work and future challenges. Section 6 concludes with final remarks and future
directions for this study.

2 Alpha 21264 Pipeline

This section describes the pipeline of the Alpha 21264, a 4-wide issue, out-of-order, superscalar processor [3,
4, 7]. The 21264’s core pipeline, illustrated in Figure 1 [7], relies on aggressive use of speculation and
hardware resources in order to achieve high instruction throughput.

Fetch: The fetch stage reads four consecutive instructions from the instruction cache and enters them
into the fetch queue. Cache line and cache way predictions, which speculatively select the next bytes to
fetch every cycle, maintain high fetch rates.

Slot: The slot stage assigns four incoming instructions to integer and floating-point execution units each
cycle. If the branch predictor opposes the cache line prediction made in the previous stage, the slot logic
squashes the instructions and clears the fetch queues to correct the mis-speculation.

Map: Register renaming is performed in the map stage by separate integer and floating point mappers,
which are 80-entry content-addressable memory arrays, each capable of handling four incoming instructions
every cycle.

Issue:The issue stage places the instructions in the integer and floating point issue queues. The integer
issue queue contains 20 instructions and the floating point holds 15 instructions. As operands and execution
resources become available, the instructions issue from the queues to the ALUs.

Execute: The ALU units perform operations in the execute stage. Execution units and register files
are separated into three distinct clusters: two integer andone floating-point cluster each contain two ALU
units. Multi-cycle operations are pipelined to support a maximum of four integer and two floating point
instructions entering the execution clusters each cycle.

Writeback:Once the instruction has completed, the results are writtenback to the destination registers.
Commit: The core pipeline terminates with the writeback stage, and then the commit stage follows to

re-order instructions to their original fetched sequence and retire the instructions from the pipeline. In the
commit stage, each instruction checks to see if it has generated traps, which occur due to incorrect execution
or incorrect branch targets. If a trap has occurred, the entire processor pipeline is cleared and instructions
are re-fetched. The trap types tracked in this study are branch mispredictions, load-store traps, load-load
traps, and memory traps.

In the case of branch instructions, the commit stage compares the actual target with the predicted target.
An address mismatch indicates a branch misprediction, which requires a pipeline flush to correct. Load-
store traps occur when a load is speculatively issued beforean older store to the same address is committed,
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Figure 2: Energy Expenditure: (a) Overview (b) SpeculationEnergy by Category

potentially loading an incorrect value. Multiple load instructions with the same address may be speculatively
issued out of order; detecting incorrect completion order and triggering load-load traps enforces consistency
in shared-memory multiprocessor environments. The on-chip memory system is capable of handling multi-
ple cache misses. However, if this capacity is exceeded or ifthere are conflicts between cache requests, the
memory system will generate a trap for the offending instruction.

3 Experimental Methodology

This section describes the simulation infrastructure usedin this study to model a high-performance su-
perscalar processor pipeline. We used a validated microarchitectural simulator, sim-alpha [5] that models
behavior of the Alpha 21264 design, and incorporated the Wattch [1] power model with augmented power
and performance measurements.

3.1 Microarchitectural Simulator

Sim-alpha models many low-level hardware features that support speculation throughout the pipeline. The
cache model includes cache line and associative way prediction, and optimistically issues loads and stores as
if there were no address conflicts and no port contention. Thefetch unit uses the Alpha tournament branch
predictor to speculatively determine the direction and target address of branch instructions [11]. The simu-
lator also models trap detection and recovery, including clearing the pipeline and re-fetching instructions.

We augmented Wattch’s power model with additional components, such as I/O pins and an estimate of
bus and system interface power, and adapted the model for Alpha-specific features with a datapath width of
64 bits and processor frequency of 600 Mhz.

We designed the power model to produce power levels similar to published data [8, 13, 16]. Our base-
line power rating with all units consuming full power is 71 watts. However, in our study, we separate
the pipeline into structures that consume constant power each cycle regardless of the number of incoming
instructions, such as map logic and issue queues, and other components such as ALUs and register files
that vary in power consumption depending upon instruction activity. For the power-variable structures, we
make the simplifying approximation that structures consume a fixed amount of power per instruction and
are effectively clock-gated when idle; for example, an adder consumes the same amount of power for each
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Table 1: Power Model

Component Energy Per Average Power
Cycle (nJ) (W)

Clock 38.33 23.00
System 6.53 3.92

Energy Per Average Power
Access (nJ) (W)

Fetch 3.49 6.74
FP mapper 1.05 2.51
FP issue queue 0.60 1.50
FP ALU 3.58 0.0
FP register file 1.67 0.0
Integer mapper 1.55 3.72
Integer issue queue 2.06 4.95
Integer ALU 2.33 2.34
Int register file 2.51 8.48
Load and
store queues 4.25 0.98
Data cache 10.00 2.210

gzipTotal: 64.48

add operation, regardless of the operand bit values. For thebenchmarks in this study, our model produces
power levels ranging from 54 to 62 watts, reflecting reduced power due to clock-gating and limited use of
the floating-point cluster.

Table 1 lists components of the power and energy model. The second column shows the breakdown of
energy per cycle for global components and energy per instruction for individual structures. To calculate
energy use, we multiply the count of structure accesses by the power cost per access for individual compo-
nents. We multiply the clock and system (including bus interface units and package pins) power costs per
cycle with the program length for the global-structure energy total. The total energy is the sum of individual
and global structures; average power is the total energy divided by program length. The third column in
Table 1 shows results for average power for a representativeprogram,gzip.

Our benchmark suite consists of several programs from the SPEC 2000 suite that represent a range
of application behavior:gzip, vpr, gcc, crafty, parser, eon, gap, bzip2and equake. We simulated each
benchmark for a total of one billion committed instructionsafter fast-forwarding through initialization code
to the maximum amount allowed by the simulator.

3.2 Pipeline Monitoring

To gain insight into pipeline over-provisioning and speculation, we monitor the simulated pipeline by two si-
multaneous methods. We track each instruction’s path through the pipeline and keep a record of its hardware
structure accesses. Meanwhile, we compile histograms of accesses to each major structure in the pipeline.
With these two measurements, we are able to observe pipelineutilization for programs in the benchmark
suite, evaluate speculative mechanisms’ ability to fill the4-wide pipeline with useful work, and determine
the power overhead of speculation and over-provisioning.
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3.2.1 Speculation

We monitor the power overhead of speculation by observing each instruction throughout the pipeline. When
an instruction exits the pipeline, its hardware access record is classified into one of six categories according
to reason for termination. The categories separate work performed by the processor core into useful work
for committed instructions (COM) and distinct causes of wasted effort: branch mispredictions (BR), cache
line predictor (LP) mispredictions, load-load (LL) conflicts, load-store (LS) mis-speculation, and memory
traps (MEM). For example, an ADD instruction ejected from the pipeline when another instruction triggers
a memory trap would contribute its access history to the MEM category even though it did not cause the trap
because effort expended on its behalf was wasted by the memory mis-speculation.

At the conclusion of program simulation, power models applied to structure access counts determine
the total energy, or power accumulated over time. We maintain a separate energy account for supporting
structures such as the global clock network, system interface, and I/O pins that are not attributed to individual
instructions.

3.2.2 Over-provisioning

We monitor structure utilization by collecting the number of accesses to each structure, every cycle. Then,
we apply our per-access power model and sum the structures’ power use over the duration of the program
execution to estimate the total energy consumed.

Some microarchitectural structures, such as the integer and floating-point units and the caches can be
designed to burn a negligible amount of power when they are unneeded. The calculated energy totals include
contributions from these units according to the number of structure accesses, with no penalty calculated for
over-provisioning.

However, other structures are typically accessed every cycle, regardless of how many instructions actu-
ally use them. This class of structures is designed with sufficient capacity and ports to handle peak through-
put, but under typical loads add an excess power burden to thepipeline. For example, the floating-point
mapper and issue queue run continuously even during predominantly integer programs as they search the
incoming instruction stream for useful work to perform. In our model, the power consumed by the integer
and floating-point mappers, integer and floating-point issue queues is separated into power spent on instruc-
tions and power wasted by unused slots in the pipeline. The instruction power is categorized into useful and
non-useful work (as specified in section 3.2.1); the empty-pipe power is accounted separately as a distinct
power overhead.

Note that in the over-provisioning analysis, some portion of a chip’s global clock network and supporting
circuitry is over-provisioned due to the extra capacitive load and area of the over-provisioned structures; this
study does not include the global structures in the utilization accounting.

We include only dynamic power in this study, based on our model of the 21264’s 350nm process technol-
ogy with negligible static power due to leakage current. In more recent fabrication technologies, larger leak-
age currents significantly increase the penalty of unused and under-used structures throughout the pipeline.

4 Experimental Results

Figure 2a shows the measured energy components for each benchmark. The chart shows the clock and
system interface uses about half of the total energy. Energyspent on useful work that results in committed
instructions contributes another 26%. Energy wasted on instructions that are flushed due to mis-speculation
of all types combined constitutes about 6% of the total program energy. Finally, approximately 17% of the
energy is spent on under-used map and issue structures that burn power each cycle.
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Table 2: Mis-speculation Occurrence and the Average Numberof Instructions Evicted Per Flush

BR LL LS MEM
Benchmark Branch # # avg. # avg. # avg. # avg
SPEC Pred. branches traps # inst. traps #inst. traps # inst. traps # inst.
CPU2000 Accuracy (mil.) (mil.) evicted (mil.) evicted (mil.) evicted (mil.) evicted

164.gzip 0.925 104 7.24 34 1.40 53 0.21 37 2.47 34
175.vpr 0.942 108 5.95 53 0.50 53 1.25 46 2.52 34
176.gcc 0.965 152 4.95 28 0.50 29 0.48 28 1.33 29
186.crafty 0.934 123 7.20 28 0.98 26 0.51 29 1.37 31
197.parser 0.960 162 6.22 31 0.90 34 0.49 34 2.37 32
252.eon 0.948 119 6.06 42 0.14 46 4.91 47 2.52 32
254.gap 0.957 781 3.04 34 2.19 26 1.31 34 5.27 24
256.bzip2 0.936 143 8.09 37 2.03 42 0.46 34 3.31 33
183.equake 0.993 174 0.38 32 3 2.0 32 0.20 30 3.02 25

4.1 Speculation

The energy wasted on pipeline flushes is a relatively small percentage of the total energy expended during
program execution. However, it is significant (11% to 40%) when compared to the energy spent in the
pipeline on committed instructions. Figure 2b shows the energy wasted by each trap type. In general, branch
misprediction and incorrect cache line prediction are the main causes of wasted energy, though the energy
spent on mis-speculation is dependent on program characteristics and varies widely among benchmarks. For
example, wasted energy due to mispredicted branches is muchgreater forbzip2than forgap, which spends
a higher percentage of energy on load-store mis-speculation. Also, the effect of branch misprediction is least
in the benchmarkequakeas a result of its high branch prediction accuracy.

Table 2 shows the average number of instructions that are flushed from the pipeline as a result of each
type of mis-speculation and how often the trap was triggeredper benchmark. Even rare occurrences of
mis-speculation can affect energy consumption. For example, vpr andgzipwaste almost the same amount
of energy due to mis-speculation and have an almost equal number of branches. However,vpr wastes more
energy due to branch mispredictions thangzip despite a better branch predictor accuracy rate because it
evicts more instructions in pipeline flushes.Vpr evicts an average of 53 instructions from the pipeline when
a branch misprediction occurs, compared to 34 ingzip. With a fuller pipeline,vpr incurs a higher energy
cost per pipeline flush, for an overall higher energy penalty.

4.2 Over-provisioning

We found that overprovisioned structures consume between 15% and 21% of the total energy. Our study
highlights the inherent overprovisioning of the Alpha 21264 front-end structures. The pipeline has sufficient
capacity to map a total of eight and issue a total of six instructions in the floating-point and integer clusters
each cycle, despite a limited supply of four instructions fetched per cycle. The built-in extra space wastes
effort on futile map and issue switching. With our predominantly integer benchmark suite, we found that
the floating point mapper and issue queue were essentially unused but consumed power continuously.

The benchmarks did use integer structures, though not to their full capacity. Despite aggressive specu-
lation to fill the pipeline with potentially useful instructions, the integer mapper and issue stages produced
less than half of their peak output under typical conditions. Every missed opportunity to map and issue four
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Figure 3: Pipeline Utilization

integer instructions caused an additional power penalty. Thus, the map and issue stages spend most of their
power on over-provisioning in these experiments.

4.3 Pipeline Analysis

The 4-wide pipeline with extra map and issue resources provides flexibility for high-throughput processing
for diverse applications. Typical programs in our suite do not take full advantage of the wide datapaths,
and the performance benchmark of instructions per cycle (IPC) hovers between one and two committed
instructions per cycle.

Figure 3 illustrates the integer portion of the pipeline with a plot of average utilization per stage for
selected benchmarks that use the integer clusters almost exclusively (less than 0.5% of these instructions
use floating-point resources). The drop between fetch and map stages is largely due to frequent cache line
mispredictions in our simulations. The instruction flow is fairly steady between the issue and execute stages,
averaging between 1 to 2 instructions per cycle. A small percentage of “innocent bystander” instructions
will be evicted during pipeline flushes, but most travel through the datapath unscathed. The majority will
retire successfully at a rate between 1 and 2 instructions per cycle, as shown in the graph as the program
IPC.

The useful pipeline width effectively narrows between fetch and commit stages from four down to less
than two instructions wide for our benchmarks. The remaining space in the pipeline translates to under-used
execution units, queue entries, and read/write ports throughout the design. The extent of over-provisioning
pipeline resources is a function of hardware capacity and software behavior. We observed consistent under-
use of resources throughout the pipeline in our predominantly integer suite. The pipeline is designed to
handle a wide variation in workloads, with extra resources provided to support three pipeline clusters. Other
computation-intensive programs could have higher utilization rates throughout the wide pipeline, or due to
data dependences, might spend more time waiting for previous results. Seldom-used resources may provide
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a significant performance benefit for critical applications, and reduce the total energy expended.

5 Power Management

The Alpha 21264 design team addressed that processor’s critical power issues with a hierarchical clock
distribution, conditional clocking in the floating-point cluster, and low-swing busses [8]. Other power man-
agement techniques for this class of superscalar processors approach the problem from a microarchitectural
perspective. Previous work for reducing power wasted by speculation includes a pipeline-gating technique
that limits speculatively issued instructions that are likely to be mispredicted [12]. One study investigated
the power of branch predictors and evaluated pipeline speculation control in [14]. Another scheme is just-
in-time instruction delivery, whereby instructions are fetched as late as possible, which reduces the number
of instructions flushed from front-end queues [10].

We suggest further exploration in front-end structures, such as sentries that monitor the instruction
stream and select alternate lower-power structures or reduced-power modes as warranted.

Several researchers have proposed hardware resizing and reconfiguring techniques to address power
wasted by oversized hardware structures [2, 6, 9, 15]. A power manager could actively use information
gathered from issue queue usage statistics to tailor the datapath width to fit the instruction stream, and direct
unused or underused resources into a low-power mode.

Judicious use of hardware resources will become even more important as the projected increase in leak-
age current adds to the power liability of each transistor ondie. The shifting balance of static and dynamic
power is likely to dictate integrated power management strategies from circuit through architecture for future
generations of microprocessors.

6 Conclusion

Our experimental infrastructure provides a detailed description of pipeline resource use (and misuse) within
a 4-way issue superscalar processor. We identified the poweroverhead associated with two classes of mi-
croarchitectural features that boost performance: speculation and pipeline over-provisioning. We found
that power wasted by mis-speculation accounts for approximately 6% of the total energy, and power spent
on under-used map and issue resources contributes 17% of total energy, considering only dynamic power
and explicit power overheads. We find that the beginning of the core pipeline is most directly affected by
speculation-related effort, subject to clearing and refilling to correct mis-speculation. The tail end of the
pipeline has the advantage of of containing fewer enqueued instructions subject to eviction upon a pipeline
flush, and more information available from upstream stages for detection and power control of idle or under-
used resources.

Our results suggest that a power management policy that provides effective speculation and hardware
resource reconfiguration could be highly effective in reducing the power and energy in a wide-issue super-
scalar processor. Technology trends indicate continuing issues with dynamic power due to high clock rates,
and emerging challenges due to static power from leakage current. In addition to semiconductor manufac-
turing and circuit styles, microarchitectural decisions provide an opportunity to effectively manage pipeline
power and energy.

Future work for this project will include extensions to the microarchitectural simulator to evaluate
the power overhead of other microarchitectural features and develop energy efficient techniques based on
pipeline utilization statistics.
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