
Key Bundles and Parcels:
Secure Communication in Many Groups

Eunjin Jung, Xiang-Yang Alex Liu, Mohamed G. Goudafejung, alex, goudag@cs.utexas.edu

Department of Computer Sciences
The University of Texas at Austin

Abstract. We consider a system where each user
is in one or more elementary groups. In this sys-
tem, arbitrary groups of users can be specified
using the operations of union, intersection, and
complement over the elementary groups in the
system. Each elementary group in the system is
provided with a security key that is known only
to the users in the elementary group and to the
system server. Thus, for any useru to securely
multicast a data itemd to every user in an ar-
bitrary groupG, u first forwardsd to the sys-
tem server which encrypts it using the keys of
the elementary groups that compriseG before
multicasting the encryptedd to every user inG.
Every elementary group is also provided with a
key tree to ensure that the cost of changing the
key of the elementary group, when a user leaves
the group, is small. We describe two methods
for packing the key trees of elementary groups
into key bundles and into key parcels. Packing
into key bundles has the advantage of reducing
the number of encryptions needed to multicast
a data item to the complement of an elementary
group. Packing into key parcels has the advan-
tage of reducing the total number of keys in the
system. We apply these two methods to a class of
synthetic systems: each system has 10000 users
and 500 elementary groups, and each user is in
2 elementary groups on average. Simulations of
these systems show that our proposals to pack
key trees into key bundles and key parcels live
up to their promises.

1 Introduction

We consider a system that consists ofn users denotedui ,
0� i < n. The system users share one security key, called
the system key. Each userui can use the system key to en-
crypt any data item before sending it to any subset of the
system users, and can use it to decrypt any data item af-
ter receiving it from any other system user. (Examples of
such systems are secure multicast systems [3], [7], [14],
[15], secure peer-to-peer systems [12], and secure wire-
less networks [4].)

When a userui leaves the system, the system key needs
to be changed so thatui can no longer decrypt the en-

crypted data item exchanged within the system. This re-
quires to add a serverS to the system and to provide each
system useru j with an individual keyK j that only user
u j and serverS know. When a userui leaves the system,
serverSchanges the system key and sends the new key to
each useru j , other thanui , encrypted using its individual
key K j . The cost of this rekeying scheme, measured by
the number of needed encryptions, isO(n), wheren is the
number of users in the system.

Clearly, this solution does not scale when the number
of users become large. More efficient rekeying schemes
have been proposed in [1], [2], [8], [9], [10], and [13].
A particular efficient rekeying scheme [14] and [15] is
shown to cost merelyO(logn) encryptions. This scheme
is extended in [5], [6], and [16], and is shown to be opti-
mal in [11], and has already been accepted as an Internet
standard [14].

This scheme is based on a distributed data structure
called a key tree. Akey treeis a directed, incoming, rooted,
balanced tree where each node represents a key. The root
of the tree represents the system key and each leaf node
represents the individual key of a system user. The num-
ber of leaf nodes isn, which is the number of users in
the system. Each user knows all the keys on the directed
path from its individual key to the root of the tree, and the
server knows all the keys in the key tree. Thus, in a binary
key tree, each user knowsdlog2ne+1 keys, and the server
knows(2n�1) keys.

An example of a key tree for a system of 8 users is
depicted in Figure 1(a). The root of the key tree represents
the system keyK01234567that is known to all users in the
system. Each user also knows all the keys on the directed
path from its individual key to the root of the key tree. For
example, useru7 knows all the keysK7, K67, K4567, and
K01234567.

Figure 1(a) and 1(b) illustrates the protocol for updat-
ing the system key when useru7 leaves the system. In
this case, the system serverS is required to change the
keysK01234567, K4567, andK67 that useru7 knows. To up-
date these keys,S selects new keysK0123456(7), K456(7),
andK6(7), encrypts them, and sends them to the users that
need to know them. To ensure thatu7 cannot get a copy
of the new keys,S needs to encrypt the new keys using

K 0123

K 0 K 2 K 3 K 4 K 5 K 6K 1

01K 23K 45K

K 0123 K 4567

K 01234567

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

0123456(7)K

456(7)K

6(7)K

7u leaves
system key

individual keys
(a) (b)

Fig. 1. A binary key tree before and afteru7 leaves

keys thatu7 does not know. Therefore,Sencrypts the new
K0123456(7) with the oldK0123, encrypts the newK0123456(7)
and the newK456(7) with the old K45, encrypts the new
K0123456(7), the newK456(7), and the newK6(7) with K6.
Then,S multicasts the encrypted keys to the correspond-
ing holders of these keys. The protocol can be specified as
follows.

S! u0; � � � ;u6 : fu0;u1;u2;u3g; K0123< K0123456(7)jchk>
S! u0; � � � ;u6 : fu4;u5g; K45 < K0123456(7)jK456(7)jchk>
S! u0; � � � ;u6 : fu6g; K6 < K0123456(7)jK456(7)jK6(7)jchk>

This protocol consists of three steps. In each step, server
S broadcasts a message consisting of two fields to every
user in the system. The first field defines the set of the in-
tended ultimate destinations of the message. The second
field is an encryption, using an old key, of the concatena-
tion of the new key(s) and a checksum computed over the
new key(s). Note that although the broadcast message is
sent to every user in the system, only users in the spec-
ified destination set have the key used in encrypting the
message and so only they can decrypt the message.

The above system architecture is based on the assump-
tion that the system users constitute a single group. In this
paper, we extend this architecture to the case where the
system users form many groups.

2 Groups and Group Algebra

Assume that the system hasm, m� 1, elementary groups:
each elementary group is a distinct subset of the system
users and one elementary group has all the system users.
Every elementary group has a unique identifierG j , 0�
j �m�1. The identifier for the elementary group that has

all users isG0. As an example, Figure 2 illustrates a sys-
tem that has eight usersu0 throughu7 and five elementary
groupsG0, G1, G2, G3, andG4.

G1

G0

G3

G4

G2

u 0 u 1

u 2

u 3 u 5

u 4

u 7
u 6

Fig. 2. A sample system

The system needs to be designed such that any user
ui can securely multicast data items to all users in any el-
ementary groupG j . Moreover, any userui can securely
multicast data items to all users in any group, where a
group is defined recursively according to the following
four rules:

i. Any of the elementary groupsG0; � � � ;Gm�1 is a group.
ii. The union of any two groups is a group.
iii. The intersection of any two groups is a group.
iv. The complement of any group is a group.(Note that

the complement of any groupG is the set of all users
in G0 that are not inG)

Thus, the set of groups is closed under the three operations
of union, intersection, and complement.

Each group can be defined by a group formula that
includes the following symbols.

– G0 throughGm�1

– _ for union

– ^ for intersection

– : for complement

Group formulae can be manipulated using the well-
known laws of algebra: associativity, commutativity, dis-
tribution, De-Morgan’s, and so on. For example, the group
formula

G1_:(:G2^G1)
can be manipulated as follows:

G1_:(:G2^G1)= fby De Morgan’sg G1_ (::G2_:G1)= fby associativity of_g G1_::G2_:G1= fby definition of complementg G1_G2_:G1= fby commutativity of_g G1_:G1_G2= fby definition of complementg G0_G2= fby definition of_g G0

From this formula manipulation, it follows that the
group defined by the formulaG1_:(:G2^G1) is the set
of all system users. Thus, for a userui to securely multi-
cast a data itemd to every user in the groupG1_:(:G2^
G1), it is sufficient forui to securely broadcastd to every
user in the system.

In the rest of this paper, we consider solutions for the
following problem. How to design the system so that any
system userui can securely multicast data items to any
groupG in the system. Any reasonable solution for this
problem needs to take into account that the users can leave
any elementary group in the system or leave the system
altogether, and these activities may require to change the
security keys associated with the elementary groups from
which users leave. In particular, the solution should uti-
lize key trees, discussed in Section 1, that can reduce the
cost of changing the security keys fromO(n) to O(logn),
wheren is the total number of users in the system.

The above problem has many applications. As a first
example, consider a peer-to-peer music file sharing sys-
tem that has four elementary groups: Rock, Jazz, Blues,
and Do-Not-Disturb. A userui in this system may wish
to securely distribute a song of Louis Armstrong to all in-
terested users. In this case, userui securely multicasts the
song to all users in the group, Jazz^:Do-Not-Disturb.

As a second example, consider a student registration
system in some university. This system hasm elementary
groupsG0 throughGm�1, where eachGi is a list of the
students registered in one course section. A professor who
is teaching three sectionsG5, G6, G7 of the same course,
may wish to securely multicast any information related to
the course to all the students in the groupG5_G6_G7.

3 Key Bundles

The above problem suggests the following simple solution
(which we show below that it is ineffective). First, assign
to each elementary groupG j a security key to be shared by
all the users ofG j . Second, assign to the complement:G j

of each elementary groupG j a security key to be shared
by every member of this complement. Third, provide a
key tree for each elementary group and another key tree
for its complement. Note that the two key trees provided
for an elementary group and its complement span all the
users in the system. Thus, these two trees can be combined
into onecompletekey tree that spans all system users in
the system. Figure 3 shows the four complete key trees
that are provided for the four elementary groups and their
complements in the system in Figure 2.

From Figure 3(a), the key for the elementary group
G1 is K0123and the key for its complement isK4567. From
Figure 3(b), the key for the elementary groupG2 is K01

and the key for its complement isK234567. From Figure
3(c), the key for the elementary groupG3 is K2345, and
the key fro its complement isK0167. From Figure 3(d), the
key for the elementary groupG4 is K67, and the key for its
complement isK012345.

Note that these complete trees have the same key for
groupG0, and the same individual key for each user. Nev-
ertheless, the total number of distinct keys in these com-
plete trees is 19, which is relatively large for this rather
simple system. In general, this method requiresO(mn)
keys, wherem is the number of elementary groups and
n is the number of users in the system.

To reduce the total number of needed keys, several el-
ementary groups can be added to the same complete key
tree, provided that these elementary groups are “noncon-
flicting”. This idea suggests the following three defini-
tions of nonconflicting elementary groups, bundles, and
bundle covers.

Two elementary groups arenonconflictingif and only
if either their intersection is empty or one of them is a
subset of the other. In the system example in Figure 2, the
three elementary groupsG0, G1 andG2 are nonconflicting
sinceG1 is a subset ofG0, andG2 is a subset ofG1. On
the other hand, the two elementary groupsG1 andG3 are
conflicting, because they share two usersu2 andu3 and
neither group is a subset of the other.

A bundleof a system is a maximal set of nonconflict-
ing elementary groups of the system. In the system exam-
ple in Figure 2, the four elementary groupsG0, G1, G2, G4

constitute one bundleB0, and the four elementary groups
G0, G2, G3, G4 constitute a second bundleB1.

A bundle coverof a system is a setfB0; � � � ;Bm�1g
of system bundles such that the following two conditions
hold:

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

K 0123 K 4567 K 2345

K 0123

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

K 0167

K 234567

K 012345

K 01234567

K 01234567

K 01234567

G0
G0

G0

G1

G3
G4

G4

K 2345
G3

G2

K 01234567
G0

G1

G0 G1 G1(a) Groups , , G0 G2 G2

G0 G3 G3(c) Groups , , G0 G4 G4

G2

(b) Groups , ,

(d) Groups , ,

Fig. 3.The complete key trees for the elementary groups and their complements

i. Completeness: Each elementary group of the system
appears in some bundleBi in the bundle cover.

ii. Compactness: Each bundleBi has at least one elemen-
tary group that does not appear in any other bundleB j

in the bundle cover.

Note that the setfB0;B1g, whereB0= fG0;G1;G2;G4g
andB1 = fG0;G2;G3;G4g, is a bundle cover for the sys-
tem in Figure 2.

The security keys for the elementary groups in a bun-
dle can be arranged in a complete key tree. For example,
Figure 4(a) shows the complete key tree forB0. In this
tree, the key for groupG0 is K01234567, the key for group
G1 is K0123, the key forG2 is K01, and the key forG4

is K67. Note that usersu4 andu5 in G0 do not belong to
any other elementary group in the bundle, and so they are
viewed as forming a complement groupC0 whose key is
K45. We refer to a complete key tree that corresponds to a
bundle as akey bundle.

Figure 4(b) shows the complete key bundle forB1.
Note that in this bundle every user inG0 is also in an-
other elementary group. Thus, the resulting complete key
tree does not have a complement group as in the former
key tree in Figure 4(a).

Comparing the two key bundles in Figures 4(a) and
4(b), one observes that each of the elementary groupsG0,
G2, andG4 appear in both key bundles because none of
them conflict with any elementary group or any group in
the system. One also observes that each of these groups
has the same group key in both key bundles, and that the
individual key of each user is the same in both key bun-
dles. Note that these key bundles have only 15 distinct
keys compared with the 19 distinct keys in the four com-
plete trees in Figure 3. This represents more than 20%
reduction in the total number of keys in the system.

The system serverSknows the two key bundles in Fig-
ure 4, and each userui knows only the keys that exist on
the paths from its individual keyKi to the key of groupG0.
Thus, each userui needs to collaborate with the system
serverS in order to securely multicast data items to any
elementary group or any group that can be defined by in-
tersection, union, and complement of elementary groups.
This point is illustrated by the following four examples.

For the first example, assume that useru0 wants to
securely multicast a data itemd to every user in groupG4.
In this case, useru0 can execute the following protocol.

K 0123

K 01234567G0

G1

G2 C0

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K G4

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67KC1

(a)B0 = fG0;G1;G2;G4g
K 2345

K 0 K 2 K 3 K 4 K 5 K 6 K 7K 1

01K 23K 45K 67K

K 01234567G0

G2

G3

G4

(b) B1 = fG0;G2;G3;G4g
Fig. 4. The complete key trees for the two bundlesB0 andB1

u0 ! S : K0 < djG4jchk>
S! u0; � � � ;u7 : G4; K67 < dju0jchk>

This protocol consists of two steps. In the first step,
useru0 sends a messageK0 < djG4jchk> to serverS. This
message consists of three concatenated fields, namely the
data itemd, its intended destinationG4, and the checksum
chk; the message is encrypted by the individual keyK0 of
useru0. In the second step, serverS multicasts the mes-
sageG4, K67 < dju0jchk> where the second field con-
sists of the data itemd, the message sourceu0, and the
checksum chk and is encrypted with the group key ofG4.

For the second example, assume useru1 wants to se-
curely multicast a data itemd to the users in either group
G1 or G3, namely the users in the union ofG1 andG3. In
this case, useru1 can execute the following protocol.

u1 ! S : K1 < djG1_G3jchk>
S! u0; � � � ;u7 : G1_G3; K0123< dju1jchk>;

K2345< dju1jchk>
In the second step of this protocol, serverS multi-

casts the messageG1_G3, K0123< dju1jchk>, K2345<
dju1jchk> to the two groupsG1 and G3. The users in
groupG1 can getd by using the group keyK0123 to de-
crypt K0123< dju1jchk> and the users in groupG3 can
get d by using the group keyK2345 to decryptK2345<
dju1jchk>. Note that if it isu2 who wants to sendd to
G1_G3, then sinceu2 belongs to bothG1 andG3, u2 al-
ready knows bothK0123andK2345. Therefore,u2 can send
the encryptedd directly to the users inG1 andG3 as fol-

lows:

u2 ! u0; � � � ;u7 : G1_G3; K0123< dju2jchk>;
K2345< dju2jchk>

For the third example, assume that useru4 wants to
send a data itemd to all the users in the intersection of
G1 andG3. In this case, useru4 can execute the following
protocol.

u4 ! S : K4 < djG1^G3jchk>
S! u0; � � � ;u7 : G1^G3; K0123< K2345< dju4jchk>>

In the second step of this protocol, serverSmulticasts
a messageG1^G3, K0123< K2345< dju4jchk>> to the
groupG1^G3. Here the concatenation ofd, u4 and chk
is encrypted by both the group key ofG1, which isK0123,
and the group key ofG3, which isK2345. The encrypted
message can only be decrypted by the users that are in
both G1 andG3 because only these users know the two
group keysK0123 andK2345.

For the fourth example, assume that useru5 wants to
send a data itemd to all the users in the complement of
groupG1. In this case, useru5 executes the following pro-
tocol.

u5 ! S : K5 < dj:G1jchk>
S! u0; � � � ;u7 : C0_G4; K45 < dju5jchk>;

K67 < dju5jchk>
After serverSreceives this message, it translates:G1

to C0 _G4 then multicasts the messageGc _G4;K45 <
dju5jchk>;K67 < dju5jchk>. The users in groupGc can
getd using the group keyK45, and the users in groupG4

can getd using the group keyK67.

4 Construction of Key Bundles

In this section, we describe a procedure that can be used
by the server of a system to construct and maintain key
bundles for that system. This procedure consists of two
algorithms. The first algorithm, presented in Section 5.1,
constructs a bundle cover for the given system. The sec-
ond algorithm, presented in Section 5.2, computes a com-
plete key tree (i.e. a key bundle) for each bundle in the
bundle cover constructed by the first algorithm.

4.1 Algorithm for Bundle Construction

This algorithm takes any given system withm elemen-
tary groupsG0; � � � ;Gm�1 and constructs a bundle coverfB0; � � � ;Br�1g for the given system. Note thatr �m.

In this algorithm, the given system is represented by
a m�m boolean matrixC, where each elementC[i℄[j℄ is
defined as follows:

C[i℄[j℄ =(false if Gi \G j = φ or Gi �G j or G j �Gi

true otherwise

The algorithm starts withmempty bundles,B0; � � � ;Bm�1.
Then the algorithm proceeds to add elementary groups of
the given system to the bundles, one by one, until each
elementary group is added to at least one bundle. Finally,
the algorithm keeps the bundlesB0; � � � ;Br�1 that have el-
ementary groups and discards the remaining empty bun-
dlesBr ; � � � ;Bm�1.

The algorithm uses an array done[0::m�1℄ of mboolean
elements to keep track of the elementary groups that have
already been added to bundles. Initially, every done[j℄ has
the valuefalse, and when the elementary groupG j is added
to some bundle, then done[j℄ is assigned the valuetrue.

The bundle construction algorithm is specified in Fig-
ure 5(a). Note that Lines 7 and 12 is this algorithm call
a boolean function NOCONFLICT(Br , Gy). This function
is specified in Figure 5(b).

As an example, if this algorithm is applied to the sys-
tem in Figure 2, the algorithm constructs the bundle coverfB0;B1g, where

B0 =fG0;G1;G2;G4g
B1 =fG0;G2;G3;G4g

4.2 Algorithm for Key Bundle Construction

Next we describe an algorithm that takes as input any bun-
dle B in the bundle cover, constructed by the above algo-
rithm, and computes a complete key tree forB. The fol-
lowing definition of a child is needed in stating our algo-
rithm.

Let B be a bundle and letG andG00 be two distinct
elementary groups inB. Then,G is achild of G00 iff G�

1: r := 0;
2: for x = 0 to m-1
3: if done[x] then break;
4: Br := Br [fGxg;
5: done[x] :=true;

6: for y = (x+1) to m-1
7: if :done[y]and NOCONFLICT(Br , Gy)
8: thenBr := Br [fGyg
9: done[y] :=true
10: endfor

11: for y = 0 to (m-1)
12: if NOCONFLICT(Br , Gy)
13: thenBr := Br [fGyg
14: endfor
15: r := r+1;
16: endfor
17: discard the empty bundlesBr ; � � � ;Bm�1

(a)

Function NOCONFLICT(Br, Gy):boolean
var flag: boolean

1: flag :=true;
2: for everyGx in Br

3: if C[x℄[y℄ then
4: flag :=false;
5: break
6: endfor
7: return flag

(b)

Fig. 5. Bundle cover construction algorithm

G00 andB has no elementary groupG0 such thatG�G0 �
G00.

The algorithm for constructing a complete key treeT
for a given bundleB consists of the following five steps.

i. For every elementary groupG in B, add toT a node
labeled with a keyKG for groupG.

ii. For every two elementary groupsG andG00 in B, if G
is a child ofG00, then add toT a directed edge from
the node labeledKG to the node labeledKG00 .

iii. For every elementary groupG in B, if G has at least
one child and has one or more users that are not in
any child ofG, then form a complement groupC that
has all users inG that are not in any child ofG. Also,
add toT a node labeled withKC and a directed edge
from nodeKC to nodeKG.

iv. To every nodeKG in T that does not have any incom-
ing edges, add a binary subtree which hasKG as its

root and whose leaves are labeled with the individual
keys of the users in the elementary groupG.

v. To every nodeKC in T, add a binary subtree which has
KC as its root and whose leaves are labeled with the
individual keys of the users in the complement group
C.

As an example, if this algorithm is applied to the sys-
tem in Figure 2, the algorithm constructs key trees shown
in Figure 4.

5 Key Parcels

A bundle is defined as a maximal set of nonconflicting
elementary groups in the system. From this definition the
elementary groupG0 is in every bundle since it does not
conflict with any other elementary group in the system.
Thus, every key bundle is a complete key tree.

This feature of bundle maximality has one advantage
and one disadvantage. The advantage is that the comple-
ment of any elementary group in a bundleB j can be ex-
pressed as the union of some other elementary groups in
B j . Thus, securely multicasting a data item to the com-
plement of any elementary group can be carried out effi-
ciently. The disadvantage is that the number of keys needed
in each key bundle is relatively large, and so the total num-
ber of keys in the system is relatively large.

Clearly, the disadvantage of bundle maximality out-
weighs its advantage in systems where users never need
to securely multicast data items to the complements of
elementary groups. Therefore, in these systems, we use
“parcels”, which are not maximal, instead of bundles, which
are maximal. The definitions of parcels and parcel covers
are given next.

A parcelof a system is a set of nonconflicting elemen-
tary groups of the system.

A parcel coverof a system is a sequence of parcels(P0; � � � ;Ps�1) such that the following two conditions hold:

i. Completeness: Each elementary group of the system
appears in some parcelPi in the parcel cover.

ii. Compactness: Each elementary group in each par-
cel Pi conflicts with at least one elementary group in
each of the preceding parcelsP0; � � � ;Pi�1 in the par-
cel cover.

As an example, a parcel cover for the system in Figure
2 is(P0;P1), whereP0 = fG0;G1;G2;G4g andP1 = fG3g.
Figure 6 is a parcel cover(P0;P1) for the system in Figure
2.

The security keys for the elementary groups in a par-
cel can be arranged in a key tree that is not necessarily a
complete tree. Figure 6(a) shows the key tree for parcelP0

consisting of the elementary groupsG0, G1, G2, andG4.

Figure 6(b) shows the key tree for parcelP1 consisting of
the elementary groupG3. Note that the key tree for par-
cel P1 is not a complete tree. We refer to a key tree that
corresponds to a parcel as akey parcel.

6 Construction of Key Parcels

In this section, we describe a procedure that can be used
by the server of a system to construct and maintain key
parcels for that system. This procedure consists of two
algorithms.

The first algorithm constructs a parcel cover for any
given system. This algorithm takes any given system with
m elementary groupsG0; � � � ;Gm�1 and constructs a par-
cel cover(P0; � � � ;Ps�1) for the given system,s� m. This
parcel cover construction algorithm uses the same data
structures and the same NOCONFLICT function used in
the bundle cover construction algorithm in Figure 5(b).
The parcel cover construction algorithm is shown in Fig-
ure 7.

1: s := 0;
2: for x = 0 to m-1
3: if done[x] then break;
4: Ps := Ps[fGxg;
5: done[x] :=true;

6: for y = (x+1) to k-1
7: if :done[y]and NOCONFLICT(Ps, Gy)
8: thenPs := Ps[fGyg
9: done[y] :=true
10: endfor

11: s := s+1;
12: endfor
13: discard the empty parcelsPs; � � � ;Pm�1

Fig. 7.Parcel cover construction algorithm

The second algorithm computes a key tree (i.e. a key
parcel) for each parcel in the parcel cover constructed by
the first algorithm. This algorithm is exactly the same as
the one presented in Section 5.2.

7 Simulation Results

In this section, we present the results of simulations that
we carried out to demonstrate the feasibility of key bun-
dles and key parcels. In our simulation, we used a class of
synthetic systems with the following properties:

