
The Metric Nearness Problem with Applications

Inderjit S. Dhillon∗ Suvrit Sra† Joel A. Tropp‡

8 June 2003

UTCS Technical Report # TR-03-23

Abstract

Many practical applications in machine learning require pairwise distances among a set of

objects. It is often desirable that these distance measurements satisfy the properties of a metric,

especially the triangle inequality. Applications that could benefit from the metric property

include data clustering and metric-based indexing of databases. In this paper, we present the

metric nearness problem: Given a dissimilarity matrix, find the “nearest” matrix of distances

that satisfy the triangle inequalities. A weight matrix in the formulation captures the confidence

in individual dissimilarity measures, including the case of altogether missing distances. For an

important class of nearness measures, the problem can be attacked with convex optimization

techniques. A pleasing aspect of this formulation is that we can compute globally optimal

solutions. Experiments on some sample dissimilarity matrices are presented, including some

from biology.

1 Introduction

Imagine that a lazy graduate student has been asked to measure the pairwise distances among a
group of objects in a metric space. He doesn’t complete the experiment, and he must figure out the
remaining numbers before his adviser returns from her conference. Obviously, all the distances need
to be consistent, but the student does not know very much about the space in which the objects
are embedded. One way to solve his problem is to find the “nearest” complete set of distances that
satisfy the triangle inequalities. This procedure respects the measurements that have already been
taken while forcing the missing numbers to behave like distances.

More charitably, suppose that the student has finished the experiment, but (measurements being
what they are) the numbers do not satisfy the triangle inequality. The student knows that they must
represent distances, so he would like to massage the data so that it corresponds with his a priori
knowledge. Once again, the solution seems to require the “nearest” set of distances that satisfy the
triangle inequalities.

Matrix nearness problems [Hig89] offer a natural framework for developing this idea. If there
are n points, we may collect the measurements into an n × n symmetric matrix whose (j, k) entry
represents the dissimilarity between the j-th and k-th objects. Then, we seek to approximate this
matrix by another whose entries satisfy the triangle inequalities. That is, mik ≤ mij +mjk for every
triple (i, j, k). Any such matrix will represent the distances among n points in some metric space.

∗Department of Computer Sciences, University of Texas at Austin. inderjit@cs.utexas.edu
†Department of Computer Sciences, University of Texas at Austin. suvrit@cs.utexas.edu
‡Inst. for Comp. Engr. and Science, University of Texas at Austin. jtropp@ices.utexas.edu

1

We measure the approximation error with a matrix norm that depends on how the corrected matrix
should relate to the input matrix. For example, one might prefer to change a few entries significantly
or to change all the entries a little.

We call the problem of approximating general data by metric data the metric nearness problem.
This problem seems to be unstudied, although the literature contains a few related problems (see
Section 1.1). In Section 2, we present a rigorous statement of the metric nearness problem and
we argue that it is free of local minima. Then we show how standard methods of mathematical
programming can be used to produce a global optimizer when the approximation error is measured
using an ℓp vector norm. In Section 3, we present an application to clustering. Clustering, like
many computational problems, can be solved much more efficiently when the data are drawn from
a metric space. By approximating non-metric data with metric data, we can take advantage of fast
clustering algorithms, while retaining guarantees on the quality of the results. Clustering algorithms
might also benefit from using our method to learn a consistent metric for the data, but we have not
completed detailed experiments to test this hypothesis. In Section 4 we provide some examples to
illustrate the numerical behavior of solutions to the metric nearness problem. We show that it can
actually be used to learn a complete metric, and we discuss an application in biological databases
that originally motivated us to consider the problem. We conclude with a discussion of future work
in Section 5.

1.1 Related Work

To the best of our knowledge, the metric nearness problem has not been studied earlier. There are,
however, several provinces that border on this territory.

The most relevant work is probably a recent paper by Roth, Laub, Buhmann and Müller [RLBM03].
They remark on the importance of having metric data for machine learning applications, and pro-
pose a technique for metrizing dissimilarity data. Their method, constant-shift embedding, increases
all the dissimilarities by an equal amount to produce a set of Euclidean distances1. The size of the
translation depends on the data, so the relative and absolute changes to the dissimilarity values
can be huge. Our approach to metrizing data is completely different. We seek a consistent set of
distances that deviates as little as possible from the original measurements. Using our approach
the resulting set of distances can arise from an arbitrary metric space. There is no restriction on
obtaining Euclidean distances; we emphasize this point in Example 4.3. In consequence, we expect
metric nearness to provide superior denoising. Moreover, our techniques can also learn distances
that are missing entirely.

There is at least one other method for learning a metric. A 2003 article of Xing, Ng, Jordan
and Russell [XNJR03] proposes a technique for learning a Mahalanobis (i.e. inner-product) distance
for data in R

s. That is, a metric d(x, y) =
√

(x − y)T G(x − y), where G is an s × s positive
semi-definite matrix. The user specifies that various pairs of points are similar or dissimilar. Then
the matrix G is computed by minimizing the total squared distances between similar points while
forcing the total distances between dissimilar points to exceed one. The article provides explicit
algorithms for the case where G is diagonal and when G is positive semi-definite. In comparison,
the metric nearness problem is not restricted to Mahalanobis distances; it can learn a general discrete
metric. It also allows us to use specific distance measurements and to indicate our confidence in
those measurements, rather than forcing a binary choice of “similar” or “dissimilar.”

Our work is also distinct from metric Multi-Dimensional Scaling (MDS). The fundamental prob-
lem of MDS is to find an ensemble of points in a fixed metric space, such as a Euclidean space,
whose distances most closely approximate a collection of measured distances [KW78, KVMB79].

1That is, a set of numbers that can be realized as the pairwise distances among an ensemble of points in a Euclidean
space.

2

A simpler variant of the MDS problem is to approximate the measured distances with distances
that could arise from points in the specified metric space without computing an embedding [MM94].
Like the simple variant, the metric nearness problem does not produce an embedding. In contrast,
our approach does not frame any hypotheses about the space underlying the data, except that it
is a metric space. Some illuminating distinctions between our problem and MDS are tendered by
Example 4.3.

2 Problem Formulation

We define a dissimilarity matrix to be a symmetric2 matrix with non-negative entries and a zero
diagonal. We shall denote the set of n × n dissimilarity matrices by Dn. We define a distance
matrix to be a dissimilarity matrix whose entries satisfy the triangle inequality. If M is a distance
matrix, then mik ≤ mij + mjk for every triple of distinct indices (i, j, k). These matrices arise from
measuring the distances between pairs of points in a pseudo-metric space3. We shall write Mn for
the set of n × n distance matrices. Observe that the triangle inequalities are linear constraints, so
Mn is a closed, convex cone.

The nearest metric problem requests a distance matrix M that is closest to a given dissimilarity
matrix D with respect to some norm. Specifically,

M ∈ argmin
X∈Mn

‖W · (X − D)‖, (1)

where W ∈ Dn is a weight matrix and ‘·’ denotes the element-wise (Hadamard) product of two
matrices.

Proposition 2.1. The functional in (1) always attains its minimum on Mn. Moreover, every local
minimum is a global minimum. If, in addition, the norm is strictly convex and the weight matrix
has no zeros or infinities off its diagonal, then there is a unique global minimum.

Proof. All references in this proof are to Rockafellar’s opus [Roc70].
Norms are convex (p. 131), and W · (X −D) is an affine function of X. Therefore, the objective

function in (1) is convex by Theorem 5.7. The set Mn is generated by a finite system of linear
inequalities, so it is a polyhedral convex set (p. 170). Every local minimum of a convex function on
a convex domain is also a global minimum over that domain. Moreover, the set of minima is convex
(p. 264).

Suppose that the norm is strictly convex (p. 253). If all the off-diagonal entries of W are non-zero
and finite, then elementwise multiplication by W is a bijection on the set of symmetric matrices with
zero diagonals. Let X, Y ∈ Mn be distinct minimizers of the objective function in (1). We show
that 1

2
(X + Y) ∈ Mn yields a strictly smaller value of the objective function. Since elementwise

multiplication by W is injective, W · (X − D) and W · (Y − D) are distinct points. By the strict
convexity of the norm,

‖W · (1

2
(X + Y) − D)‖ < 1

2
‖W · (X − D)‖ + 1

2
‖W · (Y − D)‖.

This inequality contradicts the hypothesis that X and Y are distinct minimizers of the objective
function. Therefore, at most one minimizer exists.

It remains to show that the objective function attains a minimum on the feasible set. For
convenience, we pass to the function f(Z) = ‖W · Z‖. Notice that if f attains a minimum on

2There is an obvious extension of this work to non-symmetric dissimilarities and to quasi-metrics, which are
non-symmetric, but we find the present approach more natural.

3A pseudo-metric is non-negative, symmetric and satisfies the triangle inequality. As usual, d(x, x) = 0, but it is
also possible that d(x, y) = 0 even when x 6= y.

3

Mn − D, then the objective function in (1) will attain a minimum on Mn. Norms and linear
functions are both continuous, so f is a closed convex function (p. 52). Moreover, f is homogeneous
of degree one, so we can compute its recession function as (p. 66)

(f0+)(Y) = lim
h→0

(f(h Y) − f(0))/h = lim
h→0

f(h Y)/h = f(Y).

But f is non-negative, so its only directions of recession are directions in which f is constant (p. 69).
Since Mn − D is a closed, polyhedral cone, we may apply Theorem 27.3 to conclude that f attains
a minimum on this cone.

The weight matrix plays an important role in the problem statement. Its values should reflect
our relative confidence in the entries of the input matrix D. For example, if we are equally sure (or
unsure) of all the input dissimilarities, then the off-diagonal entries of W should be constant. When
each djk represents a measurement with variance σ2

jk, then we might choose wjk = 1/σ2
jk. In the

extreme case that we have no information about the dissimilarity between j and k, we can learn it
by setting wjk = 0. A caveat is that when some weights are zero, it is possible for the corresponding
entries of a solution matrix to be arbitrarily large. Nevertheless, every solution M of (1) is a
distance matrix that globally minimizes the approximation error. If blowup is a concern, it might
be preferable to set wjk = ε, where ε is very small. On the other hand, when an entry is sacrosanct,
set wjk = 1/ε. The weight matrix can also be used to minimize the relative approximation error
(instead of the absolute error) by setting wjk = 1/djk.

In the rest of the article, we shall only consider approximation with respect to the ℓp vector
norms, which we denote ‖ · ‖p. The associated minimizations are

min
X∈Mn

[

∑

j 6=k

∣

∣wjk (xjk − djk)
∣

∣

p
]1/p

for 1 ≤ p < ∞, and (2)

min
X∈Mn

max
j 6=k

∣

∣wjk (xjk − djk)
∣

∣ for p = ∞. (3)

Note that the ℓp norms are strictly convex for 1 < p < ∞, and therefore the solution to (2) is unique.
There is a basic intuition for choosing p. The ℓ1 norm equals the absolute sum of all the changes, and
the ℓ∞ only reflects the maximum absolute change, while the other ℓp norms interpolate between
these extremes. Therefore, a small value of p typically results in a solution that makes a few large
changes to the original data, while a large value of p typically yields a solution with many small
changes.

Now, we show how to use standard mathematical programming software to find a global mini-
mizer for any of the problems, 1 ≤ p ≤ ∞. The cases p = 1, 2, ∞ receive special attention, since
they only require linear and quadratic programs.

2.1 Problem Simplifications

Since all the matrices are symmetric and have zero diagonals, we consider only the strict upper
triangle in our formulation. This decision reduces the problem size significantly at the cost of some
additional notation. Let N = n(n − 1)/2, the number of entries in the (strict) upper triangle of
D ∈ Dn. Define d = trivec(D) ∈ R

N as the vector formed by stacking the columns of the upper
triangle of D, beginning at the left. For non-negative vectors x ∈ R

N , we may also define the inverse
operation, trimtx(x), that returns the matrix in Dn whose upper triangle is formed by unstacking
the vector and whose lower triangle reflects the upper triangle.

To reduce computation further, we shall always minimize the functional with respect to the
auxiliary variable y = trivec(X − D). If y∗ is a minimizer of the modified problem, we may
compute a solution to the original problem using M = trimtx(y∗) + D.

4

The problem formulations also require two matrices. The matrix A encodes the 3
(

n
3

)

constraints
given by the triangle inequalities so that Ax ≤ 0 if and only if trimtx(x) is a distance matrix. As
a consequence of the triangle inequalities, the constraints Ax ≤ 0, imply x ≥ 0. Section 2.5 lists
some properties of A. We also convert the weight matrix into an N × N diagonal matrix with the
operation H = diag(trivec(W)).4

2.2 Solution for p = 2

First, we consider minimization of (2) for p = 2, the simplest case. By squaring the objective
function and rewriting it in terms of the variables described in the last subsection, we see that the
minimization is equivalent to the semi-definite quadratic program

min yT H2y subject to Ay ≤ −Ad. (4)

If y∗ is a minimizer of (4), then M = trimtx(y∗) + D solves the original problem (2) for p = 2.

2.3 Solution for p = 1

Next, we consider the minimization (2) for p = 1. The absolute value makes the problem appear
nonlinear. Nevertheless, it can be solved with a linear program by introducing an auxiliary variable
z ∈ R

N that can be interpreted as the absolute value of Hy.

min1T z subject to
Ay ≤ −Ad,
Hy − z ≤ 0,
Hy + z ≥ 0.

(5)

2.3.1 Solution for 1 < p < ∞
For an arbitrary ℓp norm, where p < ∞, the formulation is identical with the ℓ1 problem, except
that the objective function becomes

∑

k zp
k. This is a convex programming problem with a smooth

objective function and linear constraints.

2.4 Solution for p = ∞
Finally, we consider (3). This problem can also be solved with a linear program by introducing an
auxiliary variable r that can be interpreted as ‖Hy‖∞.

min r subject to
Ay ≤ −Ad,
Hy − r 1 ≤ 0,
Hy + r 1 ≥ 0.

(6)

2.5 The Constraint Matrix

In common to all the formulations is the matrix A that encodes the linear constraints arising from the
triangle inequalities. In this section, we observe some interesting characteristics of A. For example,
the constraint matrix An = A depends only on n, the number of points, and it is independent of a
specific dissimilarity matrix D (clearly n > 2). Some structural properties of A that can be easily
verified are listed below.

4The diag(x) operation forms a diagonal matrix whose diagonal entries are given by the components of the vector
x taken in order.

5

1. Matrix A has 3
(

n
3

)

rows and
(

n
2

)

columns (rows correspond to constraints while columns
correspond to the variables).

2. Each row of A has just three non-zeros: +1,−1,−1. Thus A is highly sparse.

3. Each column of A has just 3(n − 2) non-zero entries.

4. Matrix A has full column rank.

5. Experiments indicate that A has three distinct singular values, viz.
√

3n− 4,
√

2n− 2 and√
n − 2 with respective multiplicities n(n − 3)/2, (n − 1) and 1.

6. A dissimilarity matrix D is a distance matrix if and only if Ad ≤ 0, where d = trivec(D).
This fact can be easily proved using property 2 listed above.

Each row of A represents a triangle inequality on the entries of the strict upper triangle of a
dissimilarity matrix. Clearly the strict upper triangle contains

(

n
2

)

entries. There are three triangle

inequalities on each collection of three distinct indices (i, j, k), so A has a total of 3
(

n
3

)

rows. This
verifies Claim 1. Claim 2 follows from the structure of each triangle inequality, dik − dij − djk ≤ 0.

We now prove Claims 3, 4 and part of Claim 5. To prove Claim 3, observe that each dissimilarity
dik participates in three inequalities with each of (n−2) other dissimilarities, dij and djk for j 6= i, k.
We can prove Claim 4 and part of Claim 5 by considering the matrix G = AT A. It is most convenient
to index the entries of G as gαβ, where α = (i, j) and β = (k, ℓ). The elements of the ordered pairs
represent the entries of the strict upper triangle of a dissimilarity matrix. Therefore, 1 ≤ i < j ≤ n,
and 1 ≤ k < ℓ ≤ n.

First, we consider the diagonal entries. On account of Claims 2 and 3, it is clear that gαα =
3(n − 2). Now, an off-diagonal entry gαβ = 0 unless k = i, j or ℓ = i, j. There are a total of
2(n − 2) such β for a fixed α. For each instance, the corresponding columns of A have entries in
three common locations. Two of them have opposite signs, while the third has two minus signs. So
gαβ = −1. We conclude that each row of G has exactly 2(n − 2) non-zero entries off the diagonal,
each of which equals −1.

Now, we may apply Geršgorin’s Theorem [HJ85] to G to discover that its eigenvalues must lie
between (n−2) and 5(n−2). In particular, G is non-singular, which implies that A has full column
rank. It also follows that the smallest non-zero singular value of A must be atleast

√
n − 2. To see

that
√

n − 2 is always a singular value of A, observe that AT A1 = G1 = (3(n − 2) − 2(n − 2))1 =
(n − 2)1.5

2.6 Some Generalizations and Specializations

Our framework for solving the Metric Nearness problem, lends itself to the incorporation of arbitrary
linear constraints, in addition to those imposed by the triangle inequality. Some useful constraints
on the solution vector could be:

Box-constraints. These constraints take the form l ≤ y + d ≤ u, where l and u describe lower
and upper bounds on the solution vector. As a special case, observe that a constraint of the
form y + d ≥ e with e > 0, can ensure a metric instead of a pseudo-metric solution. Recall
that the triangle inequality constraints imply y + d ≥ 0.

Rank constraints. Suppose we order the elements of D so that dr1s1
≤ · · · ≤ drN sN

, where (ri, si)
denote all pairs such that ri 6= si. We could describe constraints to enforce this ordering so
that mr1s1

≤ · · · ≤ mrN sN
. Such rank constraints are usually employed in the non-metric

MDS problem (see for e.g. [KW78, KVMB79]).

5Alternatively we can observe that A1 = −1 ⇒ AT A1 = −AT
1 = (n − 2)1.

6

An interesting generalization is afforded by relaxing the triangle inequality to a “λ-approximate”
triangle inequality, where λ ≥ 1 [FS98, MP03]. In this case, for any triple (i, j, k), and scalar λ ≥ 1,
we have mij ≤ λ(mik + mkj). Consequently the constraint matrix A is replaced by Λ · A, where
Λ = λ1M×N , M = 3

(

n
3

)

, N =
(

n
2

)

and λ ≥ 1.6

3 An Application to Clustering

The metric nearness problem can be used to develop efficient algorithms for clustering that provide
guarantees on the quality of the output in comparison with the optimal clustering. The Max-Cut

problem offers an especially attractive example. A cut of a graph is a partition of the vertices into
two disjoint sets, and the value of a cut is the total weight of all edges that cross the partition.
Max-Cut simply asks for the cut of a graph with maximum value. If the size of each edge weight
is proportional to the dissimilarity between the two vertices, solving Max-Cut can be interpreted
as finding the best clustering of the vertices into two sets.

For a general set of weights, Max-Cut is hard enough [PY91] that the solution cannot be well-
approximated in polynomial time (unless P = NP) [ALM+98]. On the other hand, for weights that
do satisfy the triangle inequality, de la Vega and Kenyon have exhibited a randomized algorithm
that can approximate the solution arbitrarily well in polynomial time [dlVK01]. That is, for a given
ε > 0, their method can (with high probability) compute in polynomial time, a cut whose value is
no smaller than (1 − ε) times the value of the optimal cut. Of course, the time complexity grows
quickly as ε shrinks.

Metric nearness plays a surprising role here. First, we approximate the original graph by a metric
graph. Then, we use the fast algorithm to produce a nearly optimal cut of the metric graph. The
same cut of the original graph also has a nearly optimal value, which can be bounded in terms of
the approximation error from the metric nearness problem.

Theorem 3.1. Suppose that D is a dissimilarity matrix and that M is a distance matrix. If S is
a cut of M whose value exceeds (1 − ε)maxcut(M), then we have the bounds

cutS (D) ≥ (1 − ε)maxcut(D) − (1 − ε/2) ‖M − D‖1 and (7)

cutS (D) ≥ 1 − ε

‖M/D‖∞ ‖D/M‖∞
maxcut(D), (8)

where ‘/’ represents element-wise division and ‖ · ‖∞ denotes the ℓ∞ norm that ignores the matrix
diagonal. If mjk = djk = 0, then the infinity norm also ignores the (j, k) entry of its argument.

To find the optimal M for bound (7), we simply solve the metric nearness problem with p = 1
and wjk ≡ 1. The optimal M for (8) cannot be obtained without solving a non-convex optimization
problem.

Proof. For a set of vertices S , the value of the corresponding cut is computed by the linear function

cutS (D) =
∑

j∈S

∑

k/∈S

djk.

The maximum cut just optimizes this functional over all subsets S of the vertex set {1, 2, . . . , n}:

maxcut(D) = max
S

∑

j∈S

∑

k/∈S

djk.

6Note that we can further relax the triangle inequalities by allowing concession for differing λ’s such as those given
by mij ≤ λikmik + λkjmkj with λik, λkj ≥ 1.

7

Obviously, cutS (D) ≤ maxcut(D). It can be shown that maxcut(|·|) is a matrix norm. In particular,
it satisfies the triangle inequality for norms. It is also clear that

maxcut(|T |) ≤ 1

2

∑

j 6=k

|tjk| = 1

2
‖T ‖1

for any symmetric matrix T with a zero diagonal.
Let us begin with bound (7). Suppose that S is a (1 − ε)-optimal cut of M . Then

cutS (D) = cutS (M) + cutS (D − M)

≥ (1 − ε) maxcut(M) − cutS (|D − M |)
≥ (1 − ε) maxcut(D + (M − D)) − 1

2
‖D − M‖1

≥ (1 − ε) (maxcut(D) − maxcut(|M − D|)) − 1

2
‖M − D‖1

≥ (1 − ε) maxcut(D) − (1 − ε/2) ‖M − D‖1.

The proof for the bound (8) follows a similar outline. First, we implicitly define a relative error
matrix E with the relation M = D ·E. We assume that mjk = 0 if and only if djk = 0 to ensure E

can be defined. If not, the resulting error bound would be trivial anyway. Let r = min{ejk : djk 6= 0}
and R = max{ejk : djk 6= 0}. For any zero entry of D, take the corresponding entry of E in the
range [r, R]. In the sequel, we use ‘/’ for elementwise division.

Next, observe that

cutS (M) = cutS (D · E) =
∑

j∈S

∑

k/∈S

djk ejk

≤ max
j 6=k

ejk

∑

j∈S

∑

k/∈S

djk

≤ ‖E‖∞ cutS (D).

Similarly,
maxcut(D) = maxcut(M/E) ≤ ‖1/E‖∞ maxcut(M).

Then, we compute

cutS (D) ≥ cutS (M)

‖E‖∞
≥ 1 − ε

‖E‖∞
maxcut(M)

≥ 1 − ε

‖E‖∞ ‖1/E‖∞
maxcut(D).

This technique can be extended to other types of problems that are computationally easier for
metric graphs [Ind99b]. Mettu and Plaxton have also considered fast algorithms for clustering
“nearly metric” data, but their approach relies instead on weak versions of the triangle inequal-
ity [MP03]. Fast approximation algorithms for various other metric problems such as k-median,
MAX-TSP, etc., are discussed in [Ind99a]; our method allows extending these approximation algo-
rithms to non-metric data.

8

