Generic Directed Acyclic Graphs
(Generic DAGs)

Tze Meng Low
Supervisor: Prof. Gordon Novak Jr.
University of Texas at Austin

May 16, 2003

1 Abstract

Generic algorithms are algorithms using abstract data types. Multiple generic
algorithms can be linked together in a directed acyclic graph (generic DAG)
so that more complex generic algorithms can be formed. Views describe re-
lationships between different data types. By compilation, specialized generic
algorithms can be created from the generic DAGs. Views allow the specialized
algorithm to manipulate actual data types used by the current applications in-
stead of the abstract data types. This specialization process allows the generic
DAG algorithms to work on different object descriptions of the same abstract
data type, thus achieving greater software reuse.

Graphical user interfaces (GUIs) allow views to be specified quickly and
easily. GUIs also enable independent generic algorithms to be linked together
in a directed acyclic graph (DAG) to form more complex generic algorithms.
Views can be created to represent an abstract data type as another abstract
data type. This allows generic algorithms using different abstract data types to
be connected together.

2 Introduction

Every piece of software is a huge investment in human cost, since programmers
produce only a few lines of code per day. Even with the possibility of software
reuse, such reuse is inhibited due to the different ways in which equivalent data
could be represented and the time needed to adapt existing software components
so as to fit the needs of the current application.

Generic algorithms and views can reduce the human cost by increasing the
possibility of software reuse. Generic algorithms work on an abstract data type;
views describe the way in which the actual application data types correspond to

the abstract data types. Using both generic algorithms and views, specialized
code can be produced regardless of the actual application data types.

Apart from the human cost associated with reusing existing software com-
ponents, another part of the human cost incurred by software engineering is
the time spent in organizing different components in order to create the desired
application behavior. Difficulties in visualizing the relationship between com-
ponents and having to convert from one type to another between components
are some of the causes for the time spent in organizing components.

This paper describes a method by which complex generic algorithms can be
built, via a graphical interface, from existing generic components through the
use of directed acyclic graphs(DAGs). DAGs can be represented visually and
allow programmers to visualize the relationship between components easily. In
addition, specialization of the generic components allows the complex generic
algorithms to efficiently manipulate the actual application data.

The relationship between the abstract data type of one generic component
and the abstract data type of another generic component can be captured in a
view, similar to the views between abstract and actual data types. The view
between abstract data types can then be used to generate functions for con-
verting between two abstract data types. Therefore, the human cost involving
converting between types is reduced.

Section 3 describes generic algorithms and the advantages of using generic
algorithms. Section 4 describes views, how views can be created and how views
allow generic algorithms to be specialized into efficient code. Section 5 describes
how complex generic algorithms can be built from simple generic components
via a graphical user interface and describes the algorithm used to generate a
program from a directed acyclic graph. Section 6 presents related works, and
Section 7 presents possible areas for further research. The final section summa-
rizes this paper.

3 Generic Algorithms

Generic algorithms are algorithms that have been written based on abstract
data representations instead of actual data representation. [4] On compilation,
these generic algorithms are specialized based on object descriptions provided
as inputs to create specialized codes based on actual data types.

An advantage of using generic algorithms is that a single generic algorithm
can be specialized for use by different object representations. This allows greater
code reuse. For example, two common representations of graphs (shown in Fig-
ure 1) are a matrix of weights and a list of edge-weight pairs. These two rep-
resentations are conceptually similar (both represent graphs) but have different
actual data types (one is a 2-dimensional array while the other is a linked-list).

A second advantage of using generic algorithms is that the specialized codes
execute faster at runtime. Current object-centered programming system are
driven by interpreting messages to function calls at runtime. These runtime
interpretations add a significant amount of time to the execution time. In

list representation conceptual representation matriz representation

((a (B 2) (C3)) ((0 2 3)
(B (A 2) (C 4)) (2 0 4)
(C (A 3) (B 4) (3 4 0))

Figure 1: A graph and its 2 common representations.

addition, as interpretation of the messages occurs at runtime, error checking,
if done, must also occur at runtime. This increases the execution time of a
method call. However, specializing from generic algorithms allows the compiler
to partially evaluate messages to known objects at compile time. This reduces
the amount of overhead incurred from message interpretation and error checking
at runtime.

4 Specialization through Views

Views [5][7] describe how actual data types correspond to the abstract data
types of an object. A view encapsulates an actual data type and presents an
interface that consists of the basic variables in the abstract data type.

Using the relationships between the actual data types and the abstract data
types described by views, the GLISP compiler generates specialized code that
uses the actual data types instead of the abstract data types. At compile time,
the relationships in a view are compiled into the specialized code, allowing the
specialized algorithm to manipulate the actual data types directly. Further-
more, optimization through partial evaluation at compile time improves the
performance of the specialized code. Therefore, the use of views in the pro-
cess of creating specialized code has little impact on the execution time of the
specialized code itself.

A graphical user interface allows views to be generated easily. The program,
mkv, written by Dr. Gordon Novak, takes a target type and a source type as
inputs and allows users to create a view associating the source type with the
basic variables of the target type.

5 Directed Acyclic Graphs

As given in Rosen [8], a popular undergraduate text on discrete mathematics,
a directed graph, G, is a set of vertices V' and a set of edges E that are ordered
pairs of elements of V. A graph is said to be acyclic when there is no sequence
of connected edges such that a vertex is visited twice. Two properties of an
acyclic graph are that there exists at least one vertex (root vertex) such that it
has no edges leading to it and there exists at least one vertex (leaf vertex) that
does not have an edge leading out of it. Using mathematical notations a DAG

