
 1

Analysis of Search Algorithms and Tree Structures for Proximity

Search in Metric Spaces

by

Neha Singh
Undergraduate Honors Thesis (Fall 2002)

Under the supervision of:
Dr. Daniel P Miranker

Department of Computer Sciences
The University of Texas at Austin

Abstract

Proximity search in metric spaces involves searching the elements of a set that are close to a

specified query point when the data elements form a metric space. The triangle inequality is a

fundamental property of metric spaces and can be utilized in various ways to prune the metric search

space. There are various frameworks under which metric spaces have been organized and the algorithms

used to perform proximity queries are dependent on how the metric space tree has been structured. We

present a classification of the search strategies based on triangle inequalities and the metric tree indexing

algorithms. Algorithms are presented for various combinations of these strategies which result in different

trade-offs of the time and space required for the search. Experimental analysis of these algorithms is

performed in the context of the biological database management system called MoBIoS (Molecular

Biological Information System) that we are developing.

 2

1. Introduction
The goal of the MoBIoS project is to develop a new specialized database management system for

biological databases and a database query language that embodies the semantics of genomic and

proteomic data. The storage manager of this database management system is based on metric space

indexing techniques as the biological information to be stored in it can best be modeled by a metric space.

The contents of the database are biological sequences, such as protein, DNA and RNA sequences. They

have to be stored in an efficient and structured manner in the database to facilitate the execution of

various kinds of queries performed on the database by biologists.

Any search performed on the database involves returning all sequences that are close to a given

sequence. The closeness is measured in terms of the global alignment of sequences which is based on

simple edit distance that forms a metric (Levenshtein distance) [9]. A radius is specified and any sequence

whose distance from the query sequence is less than or equal to the radius is part of the result of

performing the query. In effect, the query sequence forms the center of a sphere of the given radius and

any sequence falling within the sphere has to be returned.

In general, the above problem can be abstracted as a proximity search query in a metric space.

The database search tree is therefore comprised of nodes that form a metric space. The distance function d

between each pair of nodes is well-defined, and satisfies the following properties for any three points x, y

and z in the metric space:

a.) d (x,y) >= 0, d (x,y) = 0 iff x = y (Positivity)

b.) d (x,y) = d (y,x) (Symmetry)

c.) d (x,z) <= d (x,y) + d (y,z) (Triangle inequality1)

The three properties above comprise the definition of a metric space [5, 6]. A fourth property can be

derived from the triangle inequality: d (y,z) > | d (x,y) - d (x,z) | (Triangle Inequality 2).

A query consists of a point Q and a search radius R. It returns all the objects X in the database that

lie within a distance R of the query point Q. So the query results satisfy the following inequality:

d (X, Q) <= R

The distance between the query point and each of the nodes is not initially known. The distance

computation, which involves calculating the edit distance between two sequences, is expensive in terms

of time. So, one of the main aims is to answer the proximity query with as few distance calculations as

possible. This is achieved by exploiting the triangle inequalities (properties c. and d. above) to eliminate

or include spheres in the answer set, without actually computing the distances for most of them. The

 3

minimization of distance computations by using the triangle inequalities and their variations impose

requirements of certain properties on the database tree, which engender different structures for the nodes

of the tree. Combinations of a number of different algorithms for search and structures of a database node

have been analyzed and presented in this paper. Each of these combinations presents a different trade-off

on the space and time efficiency of a search. Another important goal of the search algorithms is to

minimize the number of disk input/output operations that are performed for accessing the nodes of the

database tree. Fewer the number of nodes that are visited, fewer will be the IO operations.

There are a number of factors that have a bearing on the performance of the proximity search in

the metric-space based database tree. The structure of the tree and its contents is one of the most

important ones. Efficiency of the search is heavily dependent on the accuracy of the clustering algorithm

that is used to group data from the metric space into clusters of closely positioned points. If the physical

clusters from the metric space are also grouped together in the branches of the tree, the search will be able

to stay in a narrow area and hence perform better. On the other hand, if the physical distances between

points do not correspond closely to the grouping of points in the tree, the search suffers because of having

to traverse multiple branches, each of which return a small portion of the resultant set. The quality of

clusters is therefore one of the biggest determinants of the performance of the search. Also, the structure

of the node of a tree, which includes the information that is stored in the node, affects the search because

different search algorithms need to be applied to different node structures, as they need different type of

information from the tree to execute. A number of classes of searching algorithms are present, such as

hyper-plane search methods and vantage point methods. Within these, the algorithms can be varied to use

different elimination rules to prune the branches of the tree during search. The choice of the algorithm is

interrelated to the structure of the tree and a node in the tree. Different search algorithms have different

time and space requirements. Elimination rules can be used in various combinations to create different

effects. The search is also guided by the branching factor, which is an attribute of the tree. An optimum

average branching factor is dependent on the page size of the database. From all the above factors, the

ones that are being analyzed in this paper are the search algorithms and the elimination rules.

There are a number of indicators of the performance of a proximity search algorithm. The

foremost among these is the time required to complete the search, which is determined in part by the

number of distance calculations that need to be performed to complete the search. The space requirement

of the search is related to the size of the tree nodes that were used in it. Another important statistic that

can be used to gauge the quality of the search is the fraction of the total number of nodes that were

traversed or visited as the search progressed down the tree. A high fraction is equivalent to a high number

of disk input/output operations, as every node that is examined has to be read from the disk, which does

 4

not speak well for the performance of the search.

For the storage manager of MoBIoS, two kinds of tree construction and search mechanisms have

been tried: the Generalized Hyper-Plane method and the Vantage Point method. For the hyper-plane

method, proximity search algorithms have been developed and implemented for three combinations of the

various versions of the triangle inequality. After bulkloading the tree with sequences, extensive testing of

the proximity search was performed with each of the algorithms. Statistics were collected during these

searches that included all the indicators of performance that were described above. These results were

then compared and analyzed.

The paper is organized as follows. In section 2, a method of classification of the search strategies

that was developed in order to provide a flexible framework to try different algorithms, is presented. In

section 3, the implementation of this framework for the MoBIoS storage manager is introduced. This

section details how the various tree nodes from the different classifications have been organized. Also

presented is the implementation of the structure of the search mechanism. Section 4 outlines the actual

search algorithms based on the triangle inequalities that were developed to perform proximity search on

the different types of trees. Section 5 describes the testing framework that was set up for the subsequent

experiments and the data that was collected. It then presents an analysis of the results of the experiment

runs. Finally section 6 presents the conclusion and future work.

2. Classification of Search Strategies
A classification scheme can be applied to the strategies that are used to perform proximity search

on a metric-space based database tree. This classification helps to separate the different parameters of the

search, so that a framework can be developed where each of these parameters can be implemented and

studied independently. The search strategies that can be applied to metric databases can be classified

according to the following criteria:

a.) The version of the triangle inequality that is used for elimination of sub-trees to be searched, in

other words, for pruning the tree.

b.) The indexing algorithm on which the search tree is based, such as generalized hyper plane and

vantage point, and the search method that will be used.

Variations of the Triangle Inequality

The triangle inequalities are based on a fundamental property of metric spaces. They can be used

to prune out a particular child of a node, which causes the sub-tree with that child as the root to be

excluded from the search. The objective of using these inequalities instead of using a straight comparison

 5

of the distances is to reduce the number of distance calculations between the query and the nodes. This

leads to better performance as distance calculations are expensive. The trade-off with the fewer number of

distance computations is that these inequalities require certain extra information to be stored in the node

of the search tree. The values that are needed in the inequalities can be computed at the time of the

construction of the tree and stored in the nodes, so the search time is not affected, but extra disk space is

used up as the size of each node is now larger.

The basic data that is needed in the node is the center of the node, its radius and pointers to its

children. The following are the different versions of the triangle inequality that can be used individually

or in combination with each other as the elimination rules, along with the extra information that a node

will need to have in each case:

[P represents the parent node; Q represents the query center; C, C1, C2 represent the centers of

the children of the parent node; r (X) represents the radius of node X; d (A,B) represents the distance

between the centers of nodes A and B.]

1. If d (C, Q) > r (Q) + r (C), then eliminate C.

This inequality uses the distance from the center of a child to the query center to eliminate the

child. The radius of each child has to be stored in the parent node, to eliminate the cost of accessing the

child node each time to obtain the radius. If there are n children for a node, then this rule involves

performing n distance calculations, between the query center and each child, for every node that is visited.

• Space requirement per node: O (n)

• Search time requirement per node: O (n)

2. If | d (P, Q) - d (P,C) | > r (Q) + r (C), then eliminate C.

This inequality uses the distance between the parent and the query, and the distance between the

parent and the child to eliminate the child. It requires distances between the parent and each child to be

stored in the parent. These distances will have to be computed during the time of the creation of the tree.

Also the radius of each child has to be present in the parent node, otherwise the child will have to be

accessed for getting the radius. This method entails computing the distance between the parent and the

query point during search time, so there is just one distance calculation per every node that is visited.

• Space requirement per node: O (n)

• Search time requirement per node: O (1)

3. If | d (C1, Q) - d (C1, C2) | > r (Q) + r (C2), then eliminate C2.

 6

This inequality uses the distance between two children, and the distance between one of those

children and the query to eliminate the other child. It involves storing a table of distances between all

pairs of children in the parent node, which will be computed at creation time. Also, the radii of the

children have to be stored in the parent. There will be approximately n more distance calculations

between each child and the query point.

• Space requirement per node: O (n2)

• Search time requirement per node: O (n)

Classification based on Tree Indexing Algorithms

The algorithm that is used for creating the indexed tree structure is an intrinsic determinant of the

search strategy that is to be applied because each algorithm results in a structure with certain unique

properties that can be exploited in conducting the proximity search. These properties both place

constraints on the search as well as aid the search in other situations. The triangle inequalities described

above can be used in combination with these structures to get distinct search algorithms with varying

levels of performance in terms of time and space.

The two algorithms under investigation for constructing the metric tree structure are:

• the hyper plane method: GHT

• the vantage point method: VPT

1. GHT (Generalized Hyper plane Tree)

A GHT is based on the hyperplane principle [11, 12]. For its construction, 2 centers c1 and c2 are

selected from the data set. All other elements are divided into the sub-trees of these centers. Each element

goes into the sub-tree of the center that it is closest to. This procedure is then recursively applied to each

sub-tree to get the GHT structure. The radius of each node is required to be stored in it. The performance

of a GHT depends on the choices of nodes that have been selected as centers. It has been found that the

minimization of the covering radius of each subtree is the best criterion for the selection of centers. The

GHT algorithm can also be generalized to include n centers instead of 2.

The algorithm uses the hyperplanes between the centers as the pruning criterion during search

time. The left subtree is entered if d (q, c1) � r < d (q, c2) + r and the right subtree if d (q, c2) � r ≤ d (q,

c1) + r. So in general, there are n distance calculations required between the query point and each child.

Searching a GHT using these triangle inequalities has some characteristics, one of which is that it is

possible to enter multiple sub-trees which is desirable for the purposes of a proximity search because the

result is not unique, but rather a set of data points.

 7

2. VPT (Vantage Point Tree)

The vantage point tree was introduced as a tree data structure designed for continuous data

functions [7, 13]. The basic principle of a VPT is that a node in this tree employs distance from a selected

vantage point to divide the space. For the construction, two vantage points v1 and v2 are selected. The

rest of the elements are subsequently mapped to a 2-dimensional plane whose axes represent the distances

to v1 and v2. Then the medians are computed for both the axes and the points are clustered into rectangles

in the 2-D space with the medians as bounds. This results in a structure with concentric spheres in multi-

dimensional space. Again the structure can be generalized to an m-ary tree by using m – 1 uniform

percentiles instead of just the median [1, 2].

The search queries are also mapped into the 2-D space. All rectangles which the query intersects

are searched to find the required answers. In other words, if d (q, p) � r ≤ M, we enter into the left subtree

and if d (q, p) + r > M, we enter into the right subtree. Both subtrees can be entered.

3. Interface and Data Structure Definitions for Proximity Search
For the purpose of implementing various search algorithms based on combinations of strategies

from the classification presented above, a flexible and extensible framework had to be developed in the

storage manager of MoBIoS. The aim was to separate the following three components: algorithms used

for clustering of the data and construction of the tree; the structure of the nodes of the tree; and the

algorithms used for searching the tree. Developing these modules independently from each other

facilitates the use of any combination of them, to give a wider range of possibilities to experiment with.

Also, it aids in the extension of this framework to support more types of trees or more types of nodes

which may be defined later and will easily fit in with the rest of the structure, with minimum modification

of the existing body of code.

The objective of this paper is to explore the two latter components: the structure of nodes of the

tree and the search algorithms. The method that was used for construction of the tree for the experiment

results presented here is a hierarchical bulkloading algorithm that alternates between top down and

bottom up clustering to initialize the index [10]. The implementation of the MoBIoS storage manager is

done in Java.

Interface for the Structure of Tree Nodes

The nodes that constitute the database tree can be of two types. Internal nodes are present in the

interior of the tree and contain pointers to other nodes of the tree. Their children are other internal nodes

or leaf nodes. The real data is present in the bottom level of the tree. The leaf nodes are the nodes at the

lowest level that contain pointers to the data. Each leaf node can contain references to multiple data

points.

There are two types of tree structures that are being implemented: the generalized hyper-plane

tree and the vantage-point tree. Hence there are two broad types of node structures: the HP nodes and the

VP nodes. Each of these types has internal and leaf nodes. Within the HP class of nodes, three different

types of internal nodes have been implemented that use varying combinations of the triangle inequalities.

The following is a diagram representing the relationships of the interfaces and classes that represent the

data structure nodes:

metho

inherit

nodes

implem

the ce

contai

metho

desire

Mediu

 HPIndexNode

 IndexNode

 VPIndexNode

HPLeafIndexNodeSmallHPLeafIndexNode

 MediumHPLeafIndexNode

LargeHPLeafIndexNode

AbstractVPIndexNode

 VPLeafNode VPInternalNode

 ss s
KEY
8

IndexNode is the base interface for representing both hyper plane and vantage p

ds to get a child node given the index and to return the number of children of a no

s from IndexNode. It is an interface to represent the common functionality of inte

of a GHT, and has methods to get the radius and center of a node. The HPLeafInd

ents HPIndexNode and represents the leaf nodes of a hyper plane tree. Its data m

nter, the radius and an array of references to its children, which are actual data po

ning the centers of the children and an array of distances from the parent to each c

ds to access all the data members. The number of children of each node is determ

d page size and occupancy. The three types of internal nodes are called SmallHPI

mHPInternalIndexNode and LargeHPInternalIndexNode, according to their size

 e
extend
s
implement
 Clas
 Abstract Class
Final Clas
Interfac
oint nodes. It has

de. HPIndexNode

rnal as well as leaf

exNode

embers include

ints, an array

hild. It has

ined by the

nternalIndexNode,

which depends on

 9

the amount of data they store. The following table summarizes the properties of the HP internal nodes :

Type of
Node

Inequalities
used

for Pruning
Elimination Equations Data Members

Small 2 | d (P,Q) - d (P,C) | > r (Q) + r (C)

Center, radius, array of references to
children, array of radii of the children,
array of distances between the parent
and each child

Medium 1,2 d (C,Q) > r (Q) + r (C)
| d (P,Q) - d (P,C) | > r (Q) + r (C)

Inherits all data members of
SmallHPInternalIndexNode, also has
an array that stores the centers of the
children

Large 1,2,3
d (C,Q) > r (Q) + r (C)
| d (P,Q) - d (P,C) | > r (Q) + r (C)
| d (C1,Q) - d (C1,C2) | > r (Q) + r (C2)

Inherits all data members of
MediumHPInternalIndexNode, also
has an array that stores the distances
between each pair of children

The other branch of the index nodes is the one that implements the vantage point structure.

VPIndexNode inherits from IndexNode and is the interface to represent the common properties of internal

and leaf nodes of a VPT. It has methods to get the size of the sub-tree below the current node, to get the

number of vantage points and to get the vantage point given an index. The class AbstractVPIndexNode

implements VPIndexNode. It is an abstract class to implement the common functionality of internal and

leaf nodes of a VPT. Its data members include an array of vantage points (2 in this case) and the tree size.

It also has methods to access the data members. A VPLeafNode inherits from AbstractVPIndexNode and

provides the implementation of the leaf node of a VPT. Its data members consist of an array of distances

from the first vantage point to each child, array of distances from the second vantage point to each child

and an array of references to children, which are actual data objects for a leaf node. Finally, the

VPInternalNode also inherits from AbstractVPIndexNode and provides implementation of the internal

node of a VPT. Its data members are arrays of lower and upper bounds of distances of children clusters to

the first and second vantage points and an array of references to children, which are other internal or leaf

VPIndexNodes.

Interfaces for Implementation of Search

The proximity search mechanism of MoBIoS has been implemented using the Visitor pattern. The

purpose of the Visitor pattern is to encapsulate an operation that has to be performed on the elements of a

 10

data structure. It allows the flexibility of changing the operation being performed on the structure without

the need of changing the classes of the elements that are being operated on [8]. Using this pattern for the

search decouples the classes

for the node structures from

the search algorithms that are

used upon them.

The diagram on the side

depicts the interfaces and

classes being used for the

search. All the classes above

the dashed line are primarily

used for implementing the

visitor mechanism, where as

the classes below the dashed

line are the ones that actually

implement the search algorithms on the index nodes. Visitor provides a minimal interface for classes

implementing the visitor pattern. An implementation needs to provide visit methods, each with a

parameter whose type matches the set of objects to visit. The dispatch technique to select the right visit

method for a given object is implemented by using java reflection in ReflectiveVisitor. In addition to this

dispatch technique, StrategyVisitor provides the interface for a strategy to walk data structures, which is

implemented by a set of methods to access and retrieve the objects to visit. Concrete implementations of

the strategy are provided in DepthFirstVisitor and BreadthFirstVisitor. Using these classes will result in

the elements being visited in an order that they would be returned by a depth-first search and a breadth-

first search respectively.

The ProximityVisitor classes need to be initialized with the search parameters such as the query

center and the search radius. DFSProximityVisitor traverses the tree in depth-first order and

BFSProximityVisitor visits the nodes in a breadth-first order. Both these classes contain visit methods for

each type of index node that has been implemented. So when traversing a tree constructed with a

MediumHPInternalIndexNode, for example, the visit method for this type of node is invoked. The visit

method contains the algorithm for searching the node of the specified type which includes pruning it

using the combination of triangle inequalities that was outlined earlier. The advantage of using the visitor

scheme for encapsulating the search is that when new types of node structures are added to the system,

the only modification that is needed is addition of new visit methods in the ProximityVisitor classes.

 Visitor

 StrategyVisitor ReflectiveVisitor

 AbstractStrategyVisitor

BFSProximityVisitorDFSProximityVisitor

 BreadthFirstVisitor DepthFirstVisitor

 11

4. Algorithms for Proximity Search
GHT Proximity Search Algorithms

Three proximity search algorithms have been implemented for a generalized hyperplane tree for

the small, medium and large HP internal index nodes.

The first algorithm for the small nodes uses just the second version of the triangle inequality. The

node contains its own radius and center and an array of references to its children. Other information that

is available to the node that is used for pruning the search is an array containing the radii of the children

and an array containing the distance from the node to each of its children. The children radii are stored in

the parent so that the child does not have to be accessed for fetching its radius because that would lead to

an extra disk input/output operation. The parent-children distances are pre-computed at creation time and

stored to save time during the search. The space requirement for the nodes is O (n) and complexity of the

pruning algorithm for a node is O (n) if n is the number of children of the node.

Algorithm 1:
 visit_small_HP_internal (N: small_HP_internal_node, q: query center, r: search radius)
{ parent_query_distance = d (N, q)
 if (parent_query_distance > r + N.radius)
 prune the current node N

 for each child i of N
 { if (| parent_query_distance - N.parent_child_distance(i) | ≤ r + N.child_radius(i))
 add child i to list to be searched
 else
 prune child i
 }
}

The second algorithm for medium nodes uses the first and the second inequalities together. The

node contains its center, radius, references to its children, array of children’s radii, array of distances from

the parent to the child, and also an array of centers of the children. The centers of the children are stored

in the parent so that the children do not have to be accessed in order to get their centers, which are

required for this algorithm in the parent. The space requirement for the medium node is O (n) and the time

complexity of the algorithm is O (n).

Algorithm 2:
visit_medium_HP_internal (N: medium_HP_internal_node, q: query center, r: search radius)
{ parent_query_distance = d (N, q)
 for each child i of N
 {
 if (|parent_query_distance - N.parent_child_distance(i) | > r + N.child_radius(i))
 prune child i

 child_query_distance = d (N.child(i), q)

 12

 if (child_query_distance <= r + N.child_radius(i))
 add child i to the list to be searched
 else
 prune child i
 }
}

The third algorithm for is for the large nodes which use all the three versions of the triangle

inequality for pruning. The node contains its center, radius, references to its children, array of children’s

radii, array of parent-child distances, array of children’s centers and also a 2-dimensional array containing

distances between each pair of children. These distances are also pre-computed at the time of creation to

save distance calculations from happening at search time. The space requirement for the large nodes is O

(n2) because of the 2-d array of children distances and the time requirement of the pruning algorithm is O

(n2) in the worst case.
Algorithm 3:

visit_large_HP_internal (N: large_HP_internal_node, q: query center, r: search radius)
{ parent_query_distance = d (N, q)

 list to_be_searched

 for each child i of N
 { if (|parent_query_distance - N.parent_child_distance(i) | > r + N.child_radius(i))
 prune child i
 else
 add child i to the to_be_searched list
 }

for each child i which is present in the list to_be_searched
 { child1_query_distance = d (N.child(i), q)
 if (child1_query_distance > r + N.child_radius(i))
 prune child i

 for each child j which is not equal to i and present in the to_be_searched list
 { if (|child1_query_distance - N.child_child_distance(i,j) | > r + N.child_radius(j))
 prune child j
 }
 }
 for each child i present in to_be_searched
 search child i

}

Besides the above algorithms for pruning the internal nodes, the algorithm to search all the leaf

nodes that have not been eliminated after the entire tree has been traversed, also uses a triangle inequality

to attempt to prune the leaf node. If the leaf node is not discarded, it does a comparison of the distance

from each child to the query against the radius and returns the appropriate data points as the search

results. The leaf node stores its center, radius, references to the children, which are the data points, array

of children’s centers and an array of distances from the parent to each child. The space requirement for

the leaf node is therefore O (n) and the complexity of the search is also O (n).

 13

Algorithm 4:
visit_HP_leaf (N: HP_leaf_node, q: query center, r: search radius)
{ parent_query_distance = d (N, q)

 for each child i of N
 { if (| parent_query_distance - N.parent_child_distance(i) | > r)
 prune the current node N

 child_query_distance = d (N.child (i), q)
 if (child_query_distance ≤ r)
 return child i as a result
 }
}

VPT Proximity Search Algorithms

In VP internal nodes, a range is stored for the distances from the children to the vantage points,

instead of an exact distance value being stored. Therefore each VPInternalNode contains an array of

lower bounds of distances from the children to the first vantage point (min_child_vp1), an array of upper

bounds of distances from the children to the first vantage point (max_child_vp1), an array of lower

bounds of distances from the children to the second vantage point (min_child_vp2) and an array of upper

bounds of distances from the children to the second vantage point (max_child_vp2). Using all this

information, the pruning algorithm for the internal node of a vantage point tree consists of selecting those

children whose bounds intersect with the proximity query after it has been mapped to the 2-dimensional

space of distances from the two vantage points. The space requirement for the VP internal nodes is O (n)

considering only 2 vantage points, but would be O (nm) if there were m vantage points. The complexity of

the search is O (n) if the internal node has n children.

Algorithm 5:
visit_VP_internal (N: VP_internal_node, q: query center, r: search radius)
{ min_bound_query_vp1 = d (N.vantage_point1, q) � r
 max_bound_query_vp1 = d (N.vantage_point1, q) + r
 min_bound_query_vp2 = d (N.vantage_point2, q) � r
 max_bound_query_vp2 = d (N.vantage_point2, q) + r

 for each child i of N
 { if (min_bound_query_vp1 > N.max_child_vp1 (i))
 prune child i
 else if (max_bound_query_vp1 < N.min_child_vp1 (i))
 prune child i
 else if (min_bound_query_vp2 > N.max_child_vp2 (i))
 prune child i
 else if (max_bound_query_vp2 < N.min_child_vp2 (i))
 prune child i
 else add child i in the list of nodes to be searched.
 }
}

For the leaf nodes of a VPT, the triangle inequality is used again to prune out data points that are

 14

not in the result set. The VPLeafNode consists of an array of distances from the children to the first

vantage point (child_vp1_distance) and an array of distances from the children to the second vantage

point (child_vp2_distance). These distances are computed at the time of the creation of the tree. The space

requirement for a VP leaf node is therefore O (n) for the case of two vantage points. The complexity of

the search is also O (n).

Algorithm 6:
visit_VP_leaf (N: VP_leaf_node, q: query center, r: search radius)
{ vp1_query_distance = d (N.vantage_point1, q)
 vp2_query_distance = d (N.vantage_point2, q)

for each child i of N

 { if (| vp1_query_distance - N.vp1_child_distance(i) | > r)
 prune child i
 else if (| vp2_query_distance - N.vp2_child_distance(i) | > r)
 prune child i

 child_query_distance = d (N.child (i), q)
 if (child_query_distance ≤ r)
 return child i as a result
 }
}

5. Experimental Results and Analysis
The experimental results comprise of the generalized hyperplane tree search algorithms tested on trees

constructed separately with each of the three types of internal nodes. The test dataset that is being used is

the Yeast proteome sequence dataset. After bulkloading the trees using the hierarchical top-down bottom-

up algorithm, the proximity search is performed with the yeast sequences as queries and specified radii.

The query sequences are generated from the yeast dataset itself and are picked randomly based on a scale

that is a parameter to the creation of the queries. Each of these proximity queries is then performed on the

database with varying radii and results are returned. The parameters that can be varied in each search are

the search radius, the database size and the number

of queries. Statistics have been collected on the

search and on the results. Result size is measured for

each query as the rest of the statistics are correlated

to the result size. The other indicators of search

performance that are measured include the search

time, number of distance calculations performed, the

fraction of the total number of nodes that were

visited, fraction of the total number of leaves that

0.25

0.275

0.3

0.325

0.35

0.375

0 6000 12000 18000 24000 30000

Database Size

Fr
ac

tio
n

of
 n

od
es

 v
is

ite
d

Fig 1: Fraction of nodes visited vs. Database size for
medium nodes and radius 10

 15

were visited, etc. On each of these statistics, the average, minimum, maximum values and the variance

were recorded.

 The first results in Fig 1 are those of the fraction of the total number of nodes visited as the

database size grows from 3000 to 30000. The search is conducted with a radius of 10 and the node type is

MediumHPInternalNode. Results indicate that for a database of size 3000, 35% of all the nodes are

visited, and for a database of size 30000, about 26% of the medium nodes are accessed. This shows that

the overall fraction of internal nodes visited in the tree is quite low and decreases as the data size grows.

In general, the result size varies from 0 to 5 for databases of size 3000 to 30000 for a search

radius of 10. This exhibits the sparseness of

the results in the data set that is being tested.

This nature of the data hurts the search

performance a lot as the data is very

scattered. The next figure (Fig 2) exhibits

the trend of the time it takes to search a

database tree made up of medium HP

internal nodes as the radius increases from 0

to 10. The search is done on a database of

size 3000. The search time is in general a

linear progression with the radius.

The next set of experimental results includes a comparison of the various types of node structures

and algorithms with respect to their search performance. Figures 3, 4 and 5 show the results of a database

search of 100 queries of each of databases of sizes 3000, 6000 and so on till 30000. The search was

conducted using all three types of algorithms: algorithm 1 which uses the first triangle inequality (small

HP internal node), algorithm 2 which uses a combination of the first and second triangle inequalities

0
0.2
0.4
0.6
0.8
1

1.2

0 2 4 6 8 10

Search radius

Se
ar

ch
 ti

m
e

Fig 2: Time taken to perform a search query vs.
search radius for a medium database of size 3000

0
1
2
3
4
5
6
7
8

0 5000 10000 15000 20000 25000 30000

Database size

Se
ar

ch
 ti

m
e

in
 m

ill
is

ec
on

ds

Small nodes
Medium nodes
Large nodes

0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000 20000 25000 30000

Database size

A
ve

ra
ge

 fr
ac

tio
n

of
 n

od
es

vi

si
te

d

Fig 3: Search time vs. database size for all three
algorithms

Fig 4: Average fraction of internal nodes visited vs.
database size for all three algorithms

 16

(medium HP internal nodes) and algorithm 3 which uses all the three triangle inequalities (large HP

internal nodes). In the first graph, the search time has been plotted against the database size and it can be

observed that the search time is minimum for algorithm 1 and maximum for algorithm 3. The average

fraction of nodes visited from the second graph gives different performance results with respect to another

parameter. Here the best performance is again given by the algorithm 1 as it has the minimum fractions.

The highest fraction of nodes visited is for algorithm 3. The last parameter for analyzing the three

different algorithms is the number of distance calculations, which is presented in Fig 5. Once again, the

best performance is

exhibited by algorithm 1.

The results of the other 2

algorithms are fairly close,

with the numbers for the

large nodes being slightly

better.

The results of this

comparison of all the three

types of algorithms for a generalized hyper

plane search indicate that the best performance

is exhibited by the first algorithm, which uses only triangle inequality 2 as its pruning criterion. The better

performance of the small HP internal nodes can be attributed to the initial pruning criterion applied to the

parent node. The initial condition (parent_query_distance > r + N.radius) is unique in the first

implementation and prunes out a parent node after entering it. The node structures using this algorithm

also store the least number of data items and hence their space requirement is the least.

6. Conclusion and Future Work

The performance of the proximity search algorithms is dependent on a variety of factors such as

the tree structure, the pruning criterion, the dimensionality of the data set, the quality of clustering of the

data and the tree initialization algorithm. Among these, the factors that were being controlled and studied

in this work were the tree node structures and the elimination rules. After developing various algorithms

and measuring their performance, the experimental results demonstrate that the algorithm using the

second triangle inequality, | d (P, Q) - d (P,C) | > r (Q) + r (C), has the best performance both in terms of

time and space. The performance results of proximity search in biological databases are constrained

because of the dimensionality of the data, which is inherent in the nature of the data [3, 4]. Also retuning

0

5000

10000

15000

20000

0 5000 10000 15000 20000 25000 30000

Database size

A
ve

ra
ge

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

Small nodes
Medium nodes
Large nodes

Fig 5: Average number of distance calculations vs.
database size for all three algorithms

 17

multiple data points as the results of a single query has a serious impact on performance because all

possible paths in the tree that could potentially lead to an answer have to be traversed, unlike normal

range search queries where the search can terminate after receiving a single valid answer. For this reason,

the clustering of the data which happens in the tree creation algorithm is critical to the search. The better

the clustering, the more localized the search can be made in order to produce better results.

Further research will progress in the direction of exploring more types of tree indexing algorithms

and hence trying the search with different node structures. Also, other combinations and versions of the

triangle inequalities can be tried. In the future, experiments will be conducted with the vantage point tree

structure and different strategies will be tried with VPT. One possibility is a VPT containing multi-

vantage points, instead of just two as is currently done. Also, other parameters of the tree construction and

search can be varied to see their effects on the search. For example, the number of children in each node,

which is determined by the choice of the page size and occupancy, is an important factor in the search.

Other values could be tried for those parameters to see their effect. New search algorithms will be written

as new methods to cluster the data and construct the tree are developed.

7. References

[1] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces. In Proc.

ACM SIGMOD International Conference on Management of Data, pages 357-368, 1997.

[2] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference on Very Large

Databases (VLDB '95), pages 574-584, 1995.

[3] E. Chavez and G. Navarro. Measuring the dimensionality of metric spaces. Technical Report

TR/DCC-00-1, Department of Computer Science, University of Chile, 2000.

[4] E. Chavez, J. Marroquin and G. Navarro. Overcoming the curse of dimensionality. In European

Workshop on Content-Based Mutimedia Indexing (CBMI ’99), pages 57-64, 1999.

[5] E. Chavez and J. Marroquin. Proximity queries in metric spaces. In R. Baeza-Yates, editor, Proc. 4th

South American Workshop on String Processing (WSP ’97), pages 21-36. Carleton University Press,

1997.

[6] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching in Metric Spaces (Survey).

ACM Computing Surveys, 2001.

[7] T. Chiueh. Content-based image indexing. In Proc. of the 20th Conference on Very Large Databases

(VLDB ’94), pages 582-593, 1994.

 18

[8] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Addison-Wesley

Publishing Company, 1995.

[9] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and computational

biology. Cambridge University Press, 1997.

[10] Rui Mao, Weijia Xu, Neha Singh, Daniel P. Miranker. An Assessment of a Metric Space Database

Index to Support Sequence Homology. 2002.

[11] J. K. Uhlmann. Implementing metric trees to satisfy general proximity/similarity queries. Manuscript,

1991.

[12] J. K. Uhlmann. Satisfying General Proximity / Similarity Queries with Metric Trees. Information

Processing Letter, 40(4):175-179, 1991.

[13] P. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In

Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA ’93), pages 311-321, 1993.

