
Mole
ular Model Che
king?E. Allen Emerson, Kristina D. Hager, and Jay H. Konie
zkaDepartment of Computer S
ien
es and Computer Engineering Resear
h CenterThe University of Texas at Austin,Austin TX 78712, USAAbstra
t. This paper shows how to perform model 
he
king, a te
h-nique for automati
 program veri�
ation, by a DNA algorithm. Ourmethod depends on two ideas. First, Kripke stru
tures 
an be 
ompa
tlyrepresented in a DNA substrate, 
oding ea
h state and ea
h edge bya strand of DNA. Se
ond, satisfa
tion of temporal eventualities 
an bea
hieved through a self-propagating mole
ular 
hain rea
tion.Keywords: biomole
ular 
omputation, DNA algorithm, model 
he
king,formal veri�
ation1 Introdu
tionModel 
he
king [4℄ (
f. [5℄) is a fully automati
 method for verifying 
orre
t-ness of �nite state 
on
urrent programs. Model 
he
king is based on an eÆ
ientsear
h of the program's global state transition graph, to determine whether theprogram exhibits 
orre
t behavior. Model 
he
king is now widely used by 
om-puter hardware vendors to design 
riti
al portions of mi
ropro
essor 
ir
uitry,and is showing promise in software veri�
ation. The 
hief limitation is the stateexplosion problem where the size of the global state graph grows exponentiallywith the size of the program itself.Model 
he
king algorithms as
ertain whether or not the program state graphde�nes a model, in the sense of mathemati
al logi
, of a 
orre
tness spe
i�
ationformulated in temporal logi
 [6℄. Temporal logi
 is a formalism for des
ribing
hange over time, well-suited to des
ribing the ongoing 
omputations of 
om-puter systems. Temporal operators along a single 
omputation sequen
e in
lude\sometimes p" (Fp) and \always p" (Gp); we also have the path quanti�ers\along all 
omputation sequen
es h holds" (Ah) and \along some 
omputationsequen
e h holds" (Eh). Two 
riti
al properties are rea
hability of p, EFp, and(its dual) invarian
e of p,AGp, (whi
h is equivalent to :EF:p). If we let good de-note a predi
ate 
hara
terizing the set of desirable states that a program shouldremain in invariantly, while bad denotes the 
omplement 
ondition :good, thena program is either 
orre
t, AGgood, or has the potential to rea
h an error state,EFbad.? This work was supported in part by NSF grants CCR-020-5483 and CCR-009-8141.femerson,khager,jayg�
s.utexas.edu



In this paper we show how model 
he
king 
an be implemented in a sub-strate of DNA. DNA mole
ules are single and double-stranded strings over thefour symbol alphabet fA; G; C; Tg, where ea
h symbol is physi
ally a nu
leotidemole
ule. A key advantage is that these mole
ules are suÆ
iently small that animmense number of them will �t in a 
ompa
t volume. This permits very 
om-pa
t representation of extremely large state graphs. For example, a graph of size1018 states 
an be represented within 1 litre of DNA.In our approa
h to DNA-based model 
he
king, ea
h graph node or states is represented in terms of a single-stranded pie
e of DNA. In pra
ti
e, thereare a multipli
ity of identi
al DNA strands representing ea
h state. Ea
h graphedge s �! t is also represented using a strand of DNA. Roughly speaking, theleft and right portions are single-stranded, while the middle portion is doublestranded. Again, there is typi
ally a multipli
ity of su
h strands representing ea
hedge. The multiple mole
ular instan
es of ea
h state and ea
h edge fa
ilitatesan eÆ
ient DNA-based algorithm exploiting the massive parallelism inherent inDNA.To model 
he
k EFp amounts to 
al
ulating the set of states that 
an rea
hthe set of states p. The original DNA solution en
odes the edges of the graph,but, initially, only representations of the states in p are assumed to be presentin the DNA. We say ea
h represented state is marked. Thus, the states of pare marked initially. In general, when edge s ! t is present and the state thas already been marked, then the algorithm next marks state s, by a rea
tion
ombining the DNA representation of t with the DNA representation of s ! tto yield the DNA reperesentation of s. In the DNA solution, the marking willpro
eed in a self-propagating fashion, i.e., as a 
hain rea
tion.The remainder of this paper is organized as follows: Se
tion 2 overviewsDNA and its use in algorithms. Se
tion 3 gives a more detailed des
ription ofthe algorithm at the level of multisets of produ
tion rules. Se
tion 4 detailsthe DNA implementation. Se
tion 5 des
ribes our experimental results. The
on
luding Se
tion 6 dis
usses related work and suggests future dire
tions.2 DNADNA (Deoxyribo-Nu
lei
-A
id) forms the geneti
 blueprint of all living 
ellsand many viruses. DNA mole
ules 
an be in the form of both single and dou-ble stranded strings over the alphabet N = fG; A; T; Cg of 
omponent mole
ulesindividally 
alled nu
leotides. The single-stranded strings may be viewed as 
on-ventional strings inN+; physi
ally, adja
ent nu
leotides along the single strandsare \horizontally" bound together by strong 
ovalent bonds. The single strandsalso 
ombine to form double strands. Ea
h nu
leotide has a Watson-Cri
k 
om-plement: G is 
omplementary to C, while A is 
omplementary to T. A (weak)hydrogen bond will form between Watson-Cri
k 
omplements. A single horizon-tal strand su
h as AAGTC will thus anneal to its 
omplementary strand TTCAG toyield the double stranded mole
ule 2



AAGTCTTCAGdue to the 
omplementarity of AA with TT, G with C, T with A, and C with G.The strength of this \verti
al" hydrogen bonding of the two horizontal singlestrands into the double strand in
reases as the length of the double strandedDNA mole
ule in
reases. Be
ause of DNA's properties des
ribed above, a solu-tion of single stranded DNA mole
ules will a

rete into long double strandedmole
ules | provided that the single-stranded mole
ules sequentially align withrespe
t to Watson-Cri
k 
omplementarity. Heat 
an be used to disasso
iate this\verti
al" hydrogen bonding, breaking down a double strand to its 
onsituent,
omplementary double strands. In general, longer strands require greater tem-perature to disasso
iate or \melt".It should be noted that ea
h individual strand has a dire
tionality; the 5'-phosphate group of the �rst nu
leotide begins the strand while the 3'-hydroxylgroup ends the �nal strand. By 
onvention, su
h 5' to 3' strands are the topstrands. Strands that run in the anti-parallel 3' to 5' dire
tion represent thebottom strands. We 
ould thus depi
t the above as:50 � AAGTC� 3030 � TTCAG� 50In most 
ases, it is not ne
essary to display the dire
tionality, sin
e we 
an relyon the notation of top versus bottom strands.\Sti
ky ends" refer to an unmat
hed sequen
e of bases found at the end of adouble stranded mole
ule, for example:GATACACTATGTCCCCSu
h sti
ky ends are easily bound any by 
omplementary single strand. or
omplementary sti
ky end. For instan
e, GGGG would bind to the above sti
kyend mole
ule to yield GATACAGGGGCTATGTCCCCThe feasibility of using DNA to implement 
omputation was �rst demon-strated in the fundamental work of Adleman [1℄. Adleman showed how to useDNA to en
ode and solve an NP-
omplete problem, Hamilton Path, over graphs.Nodes and edges of the graph were en
oded as DNA strands, in su
h a way thatthe natural rea
tion of the short strands en
oding nodes and edges led to theformation of long strands of DNA en
oding paths through the graph. All possibe(simple) paths through the graph were formed in this way, with very high prob-ability. Note that due to the proliferation of DNA mole
ules ea
h (simple) pathis represented in high multipli
ity by many identi
al DNA strands. Re
ombinantDNA te
hniques �lter the resulting strands to ensure that (i) ea
h starts withthe designated start node v0 and ends with the designated sink node vn; (ii)3



ea
h is of length n nodes, where n is the size of the graph; and (iii) ea
h node viappears along ea
h retained path. The set of strands after step (iii) 
orrespondsto the set of Hamilton paths. In the wet lab, Adleman's method pro
eeds insteps, involving a rea
tions in a number of test tubes, ea
h �lled with the appro-priate DNA solution. An initial test tube 
ontains DNA solution for the en
odedgraph. It spontaneously generates all the paths. Next this test tube is \poured"into a se
ond tube so that PCR 
an amplify paths that start and stop properly(step (i)). Step (iii) involves n test tubes.Adleman's algorithm for the Hamilton Path problemwas a pioneering demon-stration of the feasibility of DNA 
omputation. But be
ause Hamilton Path is anNP-
omplete problem the algorithm was spa
e ineÆ
ient. The algorithm gener-ates all of the exponentially many 
andidate solution paths. This generation steppro
eeds reasonably rapidly be
ause of the massive parallelism. But as the solu-tions are all generated \at on
e" it 
an require a exponential amount of DNA.Another 
ompli
ation, is that it was, in some respe
t, time ineÆ
ient. It requiredabout one week of wet lab work. In large part, this was be
ause it required theuse of multiple test tube steps. A rea
tion in the ith step must 
omplete beforethe i+1st step 
an begin. These fa
tors 
onspired to limit the size of the problemthat 
ould be handled. In Adleman's original experiment, he dealt with a graphof size seven (7) nodes.3 Model Che
kingModel 
he
king is a fully automati
 method for verifying 
orre
tness of �nitestate 
on
urrent programs, based on an eÆ
ient sear
h of the program's globalstate transition graph, to determine whether or not the graph de�nes a model ofthe 
orre
tness spe
i�
ation formulated in temporal logi
. Temporal logi
 pro-vides a formalism for pre
isely des
ribing 
hange over time. Temporal operatorsalong a 
omputation sequen
e in
lude \sometimes p" (Fp) and \always p" (Gp);we also have the path quanti�ers \along all 
omputation sequen
es h" (Ah) and\along some 
omputation sequen
e h" (Eh).Model 
he
king is now widely used by 
omputer hardware vendors to design
riti
al portions of mi
ropro
essor 
ir
uitry, and is showing promise in softwareveri�
ation. The 
hief limitation is the state explosion problem where the size ofthe global state graph grows exponentially with the size of the program itself.While there are many 
orre
tness properties that 
an be expressed in tempo-ral logi
, the vast majority of importan
e are simple safety properties assertingthat nothing bad ever happens. Safety 
an be 
aptured by a temporal logi
 for-mula of the form AGgood whi
h asserts that along all 
omputations at all times
ondition good holds. In other words, good holds invariantly. The negation ofAGgood, denoted :AGgood, is equivalent to EFbad, where we understand badto be the 
omplemented 
ondition :good. We will fo
us in this paper on 
om-puting the set of states where EFp holds; when p denotes the set bad of errorstates, we 
an thus also 
al
ulate from EFbad the 
omplementary set AGgood.Sin
e most software programs are \buggy", as are hardware designs, in most4



phases of their development, 
he
king EFbad is in fa
t the 
riti
al a
tivity inmost pra
ti
al appli
ations of model 
he
king.We are given (labelled) state transition graph M = (S;R;L) where S is a�nite set of states (graph nodes); R � S � S is a binary transition relation onS whose members (s; t) are 
alled transitions (edges) and denoted s! t; and alabelling fun
tion L whi
h assigns to ea
h state s 2 S a set L(s) of atomi
 fa
tsor propositions true at s (su
h as p, good, et
.) A path x = s0; s1; : : : ; sn in M isa sequen
e of states su
h that for ea
h index i < n edge si ! si+1 is in R. Wesay EFp holds true of a state s0 in M , denoted M; s0 j= EFp, provided thereexists a path s0; s1; : : : ; sn in M su
h that p holds at sn.Model 
he
king of EFp is 
an be performed eÆ
iently by a ba
kward rea
h-ability analysis. Cal
ulating the set of states of M where the formula EFp istrue 
an be done in polynomial (in fa
t, linear) time in the size of M , on astandard, digital 
omputer. The algorithm starts with p, 
al
ulates the prede-
essors of those states, the prede
esssors or the prede
essors, and so forth untilstabilization. At that time EFp is 
al
ulated.There is an essential di�eren
e in the 
omputational diÆ
ulty for the twograph problems: model 
he
king EFp versus Hamilton Path. Hamilton Path, anNP-
omplete problem, 
an be hard for even small graphs; the algorithm of [1℄requires generation of exponentially many potential solutions and an exponen-tial amount of DNA. The model 
he
king rea
hability problem 
an be solvedtime eÆ
iently in-pla
e using a simple \marking" algorithm, as des
ribed below.Model 
he
king is nonetheless hard in pra
ti
e be
ause the state graph is 
an beimmense.4 The AlgorithmOur algorithm as well as that of [1℄ are both based on physi
ally representinggraphs as (multi-)sets of short DNA strings ordered pairs of states. However,whereas the [1℄ en
oding is designed to promote the formation of long DNAstrands representing paths through the graph, our en
oding is designed to pre-vent the formation of su
h 
hains. Instead, our en
oding of states and edges inthe DNA is designed so that satisfa
tion of temporal modalities su
h as EFppropagates via a mole
ular 
hain rea
tion through the DNA solution. Moreover,for single temporal modalities, our approa
h is a single test tube rea
tion.The algorithm for temporal possibility EFp over a state graph M = (S;R)is based on ba
k propagation from p:{ Ea
h state s 2 S is represented by a single-stranded pie
e of DNA.{ Ea
h edge s �! t is represented by a a strand of DNA: the left and rightportions are single-stranded sti
ky ends while the middle portion is doublestranded.{ The abstra
t algorithm 
an be viewed as \marking" a 
anoni
al 
opy ofthe graph M . First, mark all states in p. Then mark all states rea
hable,by ba
k-traversing one graph edge, from some other already marked state.This marking will propagate automati
ally so that ultimately all states that5




an rea
h P are marked. The abstra
t algorithm terminates when the ever-in
reasing set of marked states stabilizes; su
h stabilization is guaranteedbe
ause the graph is �nite.{ The DNA implementation of the algorithm will exploit the enormous par-allelism a�orded by DNA 
omputing. The states in p will be represented inmultipli
ity by a proliferation of DNA strands. Ea
h edge in R will also berepresented in multipli
ity by a proliferation of DNA strands. The markingwill pro
eed in a self-propagating fashion, i.e., as a 
hain rea
tion. The DNAalgorithm terminates when the 
hain rea
tion terminates so that no newstates are marked.{ Ea
h a
t of marking 
orresponds to a \produ
tion rule" of the forms �! t; t ` s. When a (DNA o

urren
e of a) marked state t, en
ounterssome (DNA o

urren
e of an) edge s �! t, it 
ombines on the right end.This enables an enzyme (as dis
ussed in the next se
tion) to perform a ver-ti
al 
ut in (the DNA mole
ule for) the edge s �! t resulting in (the DNArepresentation of) state s being marked with its mole
ule freed. The mole
ulefor s 
an now propagate the rea
tion.{ Initial state s0 ofM satis�es EFp exa
tly when, upon stabilization, (a DNAo

urren
e of) s0 is marked. We also say that M; s0 is a model of EFp.5 DNA Implementation IssuesIn this se
tion we provide details re. the implementation of the above algorithmin DNA. We �nd it 
onvenient to des
ribe the DNA implementation of thealgorithm in terms of forward rea
hability. Given M = (S;R;L) we let Mr =(S;Rr; L) be the graph obtained fromM by simply reversing its ar
s: u! v 2 Rri� v ! u 2 R. Trivially, a path from s to t in M 
orresponds to a reverse pathfrom t to s in Mr. Thus, 
omputing the set of states where EFp holds overM by ba
kward rea
hability from p in M 
an be des
ribed in terms of forwardrea
hability from p inMr. Ea
h ba
k propagation rule t �! s; s ` t 
orrespondsto forward propagation rule s �! t; s ` t.The most important implementation issue is how to appropriately en
ode thestates s and edges s�!t as DNA strands. Ea
h state s is en
oded as a (\top")single strand of DNA of length n. We 
hoose n so that strands of length n aresuÆ
ient to 
ode the state spa
e of interest, whi
h should be of size at most4n). For ea
h state s, let s denote the n-symbol string in N that is the 
ode ofs, and we assume that s = sasb is de
omposed into a head portion sa and atail portion sb. Ea
h transition s!t is 
oded by a DNA mole
ule with single-stranded \sti
ky" left and right ends, and a double-stranded middle portion, ofthe form: sasbxtaxtatbwhere x denotes a \spa
er" string. 6



The DNA implementation works as follows. The 
ode s for ea
h state sappears embedded in the 
odes for all transitions involving s. However, s doesnot o

ur free in the solution. Nor does the Watson-Cri
k 
omplement s appearfree in the solution, for any s | ex
ept for the initial state(s) s0 whi
h do o

urfree in the initial solution, be
ause we assume ea
h initial state s0 is marked.In general, ea
h state s that has been marked is represented by a proliferationof 
opies of s, the Watson-Cri
k 
omplement of the 
ode for s. The produ
tionrule s; s�!t ` t is �red as follows. First, whenever a 
opy of s binds to a 
opyof the 
omplementary s embedded in an o

urren
e of the en
oded transition,this enables an appropriately 
hosen restri
tion enzyme. The restri
tion enzymere is a protein whi
h re
ognizes a spe
i�
 DNA subsequen
e and 
leaves thesequen
e in two at an o�set from the re
ognition site. Here, re is engaged be
ausethe newly formed juxtaposition sbx 
ompletes the re
ognition sequen
e of theenzyme; thus enabled the enzyme re 
uts the 
ovalent bonds of the transition atan appropriate distan
e so as to pop loose t. Now t is marked. The propagationof marking is e�e
ted through the resulting DNA 
hain rea
tion.We depi
t a rea
tion step as follows:sasb + sasbxtatbxtatb =) sasbxtasasbxtatb re=) sasbxtasasbx + tatbOur use of a restri
tion enzyme fa
ilitates the traversal of the graph, withoutbuilding all paths, whi
h 
aused an exponential spa
e blowup for [1℄. Our stateand edge en
odings must be viable within the same environmental parametersas the restri
tion enzyme.The DNA implementation exploits the fa
t that if many 
opies of the markedstate s and many 
opies of the 
ode for transition s�!t are present, then manyof them will en
ounter ea
h other and bind, �ring the transition. �ring the tran-sition. This is justi�ed physi
ally by thermodynami
 
onsiderations. Di�erentDNA mole
ules in solution di�use \
ompletely" from region regions of high 
on-
entrations to regions of low 
on
entrations, as do
umented by everyday obser-vation with liquids and gasses as well as in 
ountless DNA wet lab experiments.In the laboratory, to ensure termination of the algorithm, it suÆ
es to let therea
tion run for an amount of time determined by the the amount of DNA solu-tion, temperature, and so forth. In pra
ti
e, a �xed bound of a 
ertain numberof hours is suÆ
ient.6 Experimental ValidationWe have validated the basi
 feasility of our ideas by developing a nu
leotide levelsimulator, and running a variety of experiments on small graphs. The simulatoris written in Java. A pre-pro
essor 
ompiles a state graph, des
ribed as a setof transitions, into a a 
orresponding test tube of DNA strings. The simulatorthen takes as input the test tube of nu
leotide strings en
oding the graph to bemodel 
he
ked. It simulates intera
tions at the DNA nu
leotide level. It 
atersfor the the existen
e of multiple strands and their intera
tion. The a
tion of7



the restri
tion enzyme was implemented by a spe
i�
 subroutine. Our simulatordid not 
ater for modelling the probability of spe
i�
 mole
ular intera
tions andthe e�e
ts of temperature and salinity. We tested our DNA algorithm in thesimulator on several small example graphs, 
on�rming 
orre
t operation of thealgorithm.7 Dis
ussionWe believe that DNA model 
he
king has the potential to signi�
antly in
reaseits s
ope of automated veri�
ation. Before its full pra
ti
al potential is realized,however, there are a number of engineering issues that must be addressed. Wedis
uss some of those here, providing them as suggested dire
tions for futureresear
h:(i) fault toleran
e: it known that DNA 
an exhibit \nonspe
i�
 binding"where two single strands that are almost, but not quite Watson-Cri
k 
omple-ments 
an 
ombine to produ
e a \faulty" double-stranded segment. For instan
e,GGGGGACCCCC 
an 
ombine with CCCCCGGGGGG. The �rst 5 positions and the last5 positions 
ombine 
orre
tly in a 
omplementary fashion. However, A is asso-
iated with G in the middle position, an
hored by the 
orre
t left pre�x andright suÆx. Most DNA algorithms, in
luding the one we have des
ribed, simplyignore this potential problem. It 
an be ameliorated by physi
o-
hemi
al means,keeping the DNA solution at the proper temperature and salinity. A mathemat-i
al heuristi
 is to use state en
odings that repli
ate a pattern. For instan
e,state s might have an asso
iated nu
leotide sequen
e s and 
orresponding en-
oding ssss, whi
h is the 4-fold repli
ation. If the probability of a nonspe
i�
binding along s is p, p < 1, then the probability of spe
i�
 binding along theen
oding is redu
ed to p4. Future attention needs to be devoted to determiningif \nonspe
i�
" bindings are problemati
 in pra
ti
e.(ii) The restri
tion enzyme re has a �nite length between the re
ognition sitefor enablement and the a
tion site where it 
uts. This 
an limit the usable lengthof DNA strands en
oding states, and adversely impa
t the heuristi
 in item (ii).However, it is possible that advan
es in protein engineering will ameliorate thisdiÆ
ulty.(iii) Our algorithm, like that of Adleman [1℄, presupposes that the state graphhas already been represented in the DNA substrate. In pra
ti
e, the problem of
onstru
ting from the program text its 
orresponding state graphM in the DNAsolution needs to be addressed. A theorem of [2℄ suggests a way to solve this inprin
iple.8 Con
lusionWe have shown that model 
he
king 
an be implemented in a DNA substrate.The area of DNA (graph) algorithms was pioneered by Adleman [1℄. As noted,Adleman's algorithm in general used exponential spa
e as it was oriented to8



solving NP-
omplete problems. The thrust of work in this area is in fa
t to exploitthe massive parallelism of DNA to solve 
onventionally intra
table problems.Our work exploits DNA di�erently. We use its 
apa
ity to physi
ally, expli
-itly store astronomi
ally large state graphs. Its massive parallelism in the formof difusing 
hain rea
tions automati
ally propagate temporal satis�ability (ofrea
hability and eventuality properties). There is no exponential spa
e blowup.Perhaps the work 
losest to ours is that in [2℄. Independently, [2℄ had pro-posed DNA-based algorithms for dynami
 programming and outlined a graphrea
hability algorithm. There are several key distin
tions between our work andtheirs. First, their work is not intended for program veri�
ation appli
ations.Se
ond, their work involves many iterations of emptying and �lling test tubes.Essentially on the i + 1-st iteration nodes just dis
overed to be in EF�i+1pare pro
essed. Su
h multiple test tube operations 
an be very time 
onsumingand make questionable the suitability of their approa
h for use in veri�
ation,where 100's or 1000's of iterations might be required to traverse a typi
al hard-ware design. In 
ontrast, the self-propagating nature of our algorithm permitsall 
omputation to be done in one basi
 test tube step. A third te
hni
al dis-tin
tion is that our work exploits double-stranded DNA while theirs only usessingle-stranded DNA.Our work has demonstrated the basi
 s
ienti�
 feasibility of DNA model
he
king. We believe this is an approa
h to model 
he
king that has the po-tential to signi�
antly in
rease its s
ope of automated veri�
ation. Before itsfull pra
ti
al potential is realized, there are a number of engineering issues thatmust be addressed. We dis
uss some of those here providing them as suggesteddire
tions for future resear
h:In any 
ase, we believe this approa
h is promising and merits additionalstudy.Referen
es1. Adleman, L., "Mole
ular Computation of Solutions to Combinatorial Prob-lems," S
ien
e, Vol. 266, 11 November 1994, pp. 1021-1023.2. Eri
 B. Baum and Dan Boneh, \Running dynami
 programming algo-rithms on a DNA 
omputer", http://www.
s.prin
eton.edu/ dabo/, 1996.3. A. Brenneman and A. Condon, \Strand Design for Bio-Mole
ularComputation", (Survey Paper), to appear, http://www.
s.ub
.
a/ 
on-don/#Papers4. E. M. Clarke and E. A. Emerson, \The Design and Synthesis of Syn
hro-nization Skeletons Using Temporal Logi
", Pro
eedings of the Workshopon Logi
s of Programs, IBM Watson Resear
h Center, Yorktown Heights,New York, Springer-Verlag Le
ture Notes in Computer S
ien
e, #131, pp.52{71, May 1981.5. Jean-Pierre Queille, Joseph Sifakis, \ Spe
i�
ation and veri�
ation of 
on-
urrent systems in CESAR", Symposium on Programming 1982: 337-351.6. Amir Pnueli, \The Temporal Logi
 of Programs", FOCS, 1977.9


