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In this paper we show how model heking an be implemented in a sub-strate of DNA. DNA moleules are single and double-stranded strings over thefour symbol alphabet fA; G; C; Tg, where eah symbol is physially a nuleotidemoleule. A key advantage is that these moleules are suÆiently small that animmense number of them will �t in a ompat volume. This permits very om-pat representation of extremely large state graphs. For example, a graph of size1018 states an be represented within 1 litre of DNA.In our approah to DNA-based model heking, eah graph node or states is represented in terms of a single-stranded piee of DNA. In pratie, thereare a multipliity of idential DNA strands representing eah state. Eah graphedge s �! t is also represented using a strand of DNA. Roughly speaking, theleft and right portions are single-stranded, while the middle portion is doublestranded. Again, there is typially a multipliity of suh strands representing eahedge. The multiple moleular instanes of eah state and eah edge failitatesan eÆient DNA-based algorithm exploiting the massive parallelism inherent inDNA.To model hek EFp amounts to alulating the set of states that an reahthe set of states p. The original DNA solution enodes the edges of the graph,but, initially, only representations of the states in p are assumed to be presentin the DNA. We say eah represented state is marked. Thus, the states of pare marked initially. In general, when edge s ! t is present and the state thas already been marked, then the algorithm next marks state s, by a reationombining the DNA representation of t with the DNA representation of s ! tto yield the DNA reperesentation of s. In the DNA solution, the marking willproeed in a self-propagating fashion, i.e., as a hain reation.The remainder of this paper is organized as follows: Setion 2 overviewsDNA and its use in algorithms. Setion 3 gives a more detailed desription ofthe algorithm at the level of multisets of prodution rules. Setion 4 detailsthe DNA implementation. Setion 5 desribes our experimental results. Theonluding Setion 6 disusses related work and suggests future diretions.2 DNADNA (Deoxyribo-Nulei-Aid) forms the geneti blueprint of all living ellsand many viruses. DNA moleules an be in the form of both single and dou-ble stranded strings over the alphabet N = fG; A; T; Cg of omponent moleulesindividally alled nuleotides. The single-stranded strings may be viewed as on-ventional strings inN+; physially, adjaent nuleotides along the single strandsare \horizontally" bound together by strong ovalent bonds. The single strandsalso ombine to form double strands. Eah nuleotide has a Watson-Crik om-plement: G is omplementary to C, while A is omplementary to T. A (weak)hydrogen bond will form between Watson-Crik omplements. A single horizon-tal strand suh as AAGTC will thus anneal to its omplementary strand TTCAG toyield the double stranded moleule 2



AAGTCTTCAGdue to the omplementarity of AA with TT, G with C, T with A, and C with G.The strength of this \vertial" hydrogen bonding of the two horizontal singlestrands into the double strand inreases as the length of the double strandedDNA moleule inreases. Beause of DNA's properties desribed above, a solu-tion of single stranded DNA moleules will arete into long double strandedmoleules | provided that the single-stranded moleules sequentially align withrespet to Watson-Crik omplementarity. Heat an be used to disassoiate this\vertial" hydrogen bonding, breaking down a double strand to its onsituent,omplementary double strands. In general, longer strands require greater tem-perature to disassoiate or \melt".It should be noted that eah individual strand has a diretionality; the 5'-phosphate group of the �rst nuleotide begins the strand while the 3'-hydroxylgroup ends the �nal strand. By onvention, suh 5' to 3' strands are the topstrands. Strands that run in the anti-parallel 3' to 5' diretion represent thebottom strands. We ould thus depit the above as:50 � AAGTC� 3030 � TTCAG� 50In most ases, it is not neessary to display the diretionality, sine we an relyon the notation of top versus bottom strands.\Stiky ends" refer to an unmathed sequene of bases found at the end of adouble stranded moleule, for example:GATACACTATGTCCCCSuh stiky ends are easily bound any by omplementary single strand. oromplementary stiky end. For instane, GGGG would bind to the above stikyend moleule to yield GATACAGGGGCTATGTCCCCThe feasibility of using DNA to implement omputation was �rst demon-strated in the fundamental work of Adleman [1℄. Adleman showed how to useDNA to enode and solve an NP-omplete problem, Hamilton Path, over graphs.Nodes and edges of the graph were enoded as DNA strands, in suh a way thatthe natural reation of the short strands enoding nodes and edges led to theformation of long strands of DNA enoding paths through the graph. All possibe(simple) paths through the graph were formed in this way, with very high prob-ability. Note that due to the proliferation of DNA moleules eah (simple) pathis represented in high multipliity by many idential DNA strands. ReombinantDNA tehniques �lter the resulting strands to ensure that (i) eah starts withthe designated start node v0 and ends with the designated sink node vn; (ii)3



eah is of length n nodes, where n is the size of the graph; and (iii) eah node viappears along eah retained path. The set of strands after step (iii) orrespondsto the set of Hamilton paths. In the wet lab, Adleman's method proeeds insteps, involving a reations in a number of test tubes, eah �lled with the appro-priate DNA solution. An initial test tube ontains DNA solution for the enodedgraph. It spontaneously generates all the paths. Next this test tube is \poured"into a seond tube so that PCR an amplify paths that start and stop properly(step (i)). Step (iii) involves n test tubes.Adleman's algorithm for the Hamilton Path problemwas a pioneering demon-stration of the feasibility of DNA omputation. But beause Hamilton Path is anNP-omplete problem the algorithm was spae ineÆient. The algorithm gener-ates all of the exponentially many andidate solution paths. This generation stepproeeds reasonably rapidly beause of the massive parallelism. But as the solu-tions are all generated \at one" it an require a exponential amount of DNA.Another ompliation, is that it was, in some respet, time ineÆient. It requiredabout one week of wet lab work. In large part, this was beause it required theuse of multiple test tube steps. A reation in the ith step must omplete beforethe i+1st step an begin. These fators onspired to limit the size of the problemthat ould be handled. In Adleman's original experiment, he dealt with a graphof size seven (7) nodes.3 Model ChekingModel heking is a fully automati method for verifying orretness of �nitestate onurrent programs, based on an eÆient searh of the program's globalstate transition graph, to determine whether or not the graph de�nes a model ofthe orretness spei�ation formulated in temporal logi. Temporal logi pro-vides a formalism for preisely desribing hange over time. Temporal operatorsalong a omputation sequene inlude \sometimes p" (Fp) and \always p" (Gp);we also have the path quanti�ers \along all omputation sequenes h" (Ah) and\along some omputation sequene h" (Eh).Model heking is now widely used by omputer hardware vendors to designritial portions of miroproessor iruitry, and is showing promise in softwareveri�ation. The hief limitation is the state explosion problem where the size ofthe global state graph grows exponentially with the size of the program itself.While there are many orretness properties that an be expressed in tempo-ral logi, the vast majority of importane are simple safety properties assertingthat nothing bad ever happens. Safety an be aptured by a temporal logi for-mula of the form AGgood whih asserts that along all omputations at all timesondition good holds. In other words, good holds invariantly. The negation ofAGgood, denoted :AGgood, is equivalent to EFbad, where we understand badto be the omplemented ondition :good. We will fous in this paper on om-puting the set of states where EFp holds; when p denotes the set bad of errorstates, we an thus also alulate from EFbad the omplementary set AGgood.Sine most software programs are \buggy", as are hardware designs, in most4



phases of their development, heking EFbad is in fat the ritial ativity inmost pratial appliations of model heking.We are given (labelled) state transition graph M = (S;R;L) where S is a�nite set of states (graph nodes); R � S � S is a binary transition relation onS whose members (s; t) are alled transitions (edges) and denoted s! t; and alabelling funtion L whih assigns to eah state s 2 S a set L(s) of atomi fatsor propositions true at s (suh as p, good, et.) A path x = s0; s1; : : : ; sn in M isa sequene of states suh that for eah index i < n edge si ! si+1 is in R. Wesay EFp holds true of a state s0 in M , denoted M; s0 j= EFp, provided thereexists a path s0; s1; : : : ; sn in M suh that p holds at sn.Model heking of EFp is an be performed eÆiently by a bakward reah-ability analysis. Calulating the set of states of M where the formula EFp istrue an be done in polynomial (in fat, linear) time in the size of M , on astandard, digital omputer. The algorithm starts with p, alulates the prede-essors of those states, the predeesssors or the predeessors, and so forth untilstabilization. At that time EFp is alulated.There is an essential di�erene in the omputational diÆulty for the twograph problems: model heking EFp versus Hamilton Path. Hamilton Path, anNP-omplete problem, an be hard for even small graphs; the algorithm of [1℄requires generation of exponentially many potential solutions and an exponen-tial amount of DNA. The model heking reahability problem an be solvedtime eÆiently in-plae using a simple \marking" algorithm, as desribed below.Model heking is nonetheless hard in pratie beause the state graph is an beimmense.4 The AlgorithmOur algorithm as well as that of [1℄ are both based on physially representinggraphs as (multi-)sets of short DNA strings ordered pairs of states. However,whereas the [1℄ enoding is designed to promote the formation of long DNAstrands representing paths through the graph, our enoding is designed to pre-vent the formation of suh hains. Instead, our enoding of states and edges inthe DNA is designed so that satisfation of temporal modalities suh as EFppropagates via a moleular hain reation through the DNA solution. Moreover,for single temporal modalities, our approah is a single test tube reation.The algorithm for temporal possibility EFp over a state graph M = (S;R)is based on bak propagation from p:{ Eah state s 2 S is represented by a single-stranded piee of DNA.{ Eah edge s �! t is represented by a a strand of DNA: the left and rightportions are single-stranded stiky ends while the middle portion is doublestranded.{ The abstrat algorithm an be viewed as \marking" a anonial opy ofthe graph M . First, mark all states in p. Then mark all states reahable,by bak-traversing one graph edge, from some other already marked state.This marking will propagate automatially so that ultimately all states that5



an reah P are marked. The abstrat algorithm terminates when the ever-inreasing set of marked states stabilizes; suh stabilization is guaranteedbeause the graph is �nite.{ The DNA implementation of the algorithm will exploit the enormous par-allelism a�orded by DNA omputing. The states in p will be represented inmultipliity by a proliferation of DNA strands. Eah edge in R will also berepresented in multipliity by a proliferation of DNA strands. The markingwill proeed in a self-propagating fashion, i.e., as a hain reation. The DNAalgorithm terminates when the hain reation terminates so that no newstates are marked.{ Eah at of marking orresponds to a \prodution rule" of the forms �! t; t ` s. When a (DNA ourrene of a) marked state t, enounterssome (DNA ourrene of an) edge s �! t, it ombines on the right end.This enables an enzyme (as disussed in the next setion) to perform a ver-tial ut in (the DNA moleule for) the edge s �! t resulting in (the DNArepresentation of) state s being marked with its moleule freed. The moleulefor s an now propagate the reation.{ Initial state s0 ofM satis�es EFp exatly when, upon stabilization, (a DNAourrene of) s0 is marked. We also say that M; s0 is a model of EFp.5 DNA Implementation IssuesIn this setion we provide details re. the implementation of the above algorithmin DNA. We �nd it onvenient to desribe the DNA implementation of thealgorithm in terms of forward reahability. Given M = (S;R;L) we let Mr =(S;Rr; L) be the graph obtained fromM by simply reversing its ars: u! v 2 Rri� v ! u 2 R. Trivially, a path from s to t in M orresponds to a reverse pathfrom t to s in Mr. Thus, omputing the set of states where EFp holds overM by bakward reahability from p in M an be desribed in terms of forwardreahability from p inMr. Eah bak propagation rule t �! s; s ` t orrespondsto forward propagation rule s �! t; s ` t.The most important implementation issue is how to appropriately enode thestates s and edges s�!t as DNA strands. Eah state s is enoded as a (\top")single strand of DNA of length n. We hoose n so that strands of length n aresuÆient to ode the state spae of interest, whih should be of size at most4n). For eah state s, let s denote the n-symbol string in N that is the ode ofs, and we assume that s = sasb is deomposed into a head portion sa and atail portion sb. Eah transition s!t is oded by a DNA moleule with single-stranded \stiky" left and right ends, and a double-stranded middle portion, ofthe form: sasbxtaxtatbwhere x denotes a \spaer" string. 6



The DNA implementation works as follows. The ode s for eah state sappears embedded in the odes for all transitions involving s. However, s doesnot our free in the solution. Nor does the Watson-Crik omplement s appearfree in the solution, for any s | exept for the initial state(s) s0 whih do ourfree in the initial solution, beause we assume eah initial state s0 is marked.In general, eah state s that has been marked is represented by a proliferationof opies of s, the Watson-Crik omplement of the ode for s. The produtionrule s; s�!t ` t is �red as follows. First, whenever a opy of s binds to a opyof the omplementary s embedded in an ourrene of the enoded transition,this enables an appropriately hosen restrition enzyme. The restrition enzymere is a protein whih reognizes a spei� DNA subsequene and leaves thesequene in two at an o�set from the reognition site. Here, re is engaged beausethe newly formed juxtaposition sbx ompletes the reognition sequene of theenzyme; thus enabled the enzyme re uts the ovalent bonds of the transition atan appropriate distane so as to pop loose t. Now t is marked. The propagationof marking is e�eted through the resulting DNA hain reation.We depit a reation step as follows:sasb + sasbxtatbxtatb =) sasbxtasasbxtatb re=) sasbxtasasbx + tatbOur use of a restrition enzyme failitates the traversal of the graph, withoutbuilding all paths, whih aused an exponential spae blowup for [1℄. Our stateand edge enodings must be viable within the same environmental parametersas the restrition enzyme.The DNA implementation exploits the fat that if many opies of the markedstate s and many opies of the ode for transition s�!t are present, then manyof them will enounter eah other and bind, �ring the transition. �ring the tran-sition. This is justi�ed physially by thermodynami onsiderations. Di�erentDNA moleules in solution di�use \ompletely" from region regions of high on-entrations to regions of low onentrations, as doumented by everyday obser-vation with liquids and gasses as well as in ountless DNA wet lab experiments.In the laboratory, to ensure termination of the algorithm, it suÆes to let thereation run for an amount of time determined by the the amount of DNA solu-tion, temperature, and so forth. In pratie, a �xed bound of a ertain numberof hours is suÆient.6 Experimental ValidationWe have validated the basi feasility of our ideas by developing a nuleotide levelsimulator, and running a variety of experiments on small graphs. The simulatoris written in Java. A pre-proessor ompiles a state graph, desribed as a setof transitions, into a a orresponding test tube of DNA strings. The simulatorthen takes as input the test tube of nuleotide strings enoding the graph to bemodel heked. It simulates interations at the DNA nuleotide level. It atersfor the the existene of multiple strands and their interation. The ation of7



the restrition enzyme was implemented by a spei� subroutine. Our simulatordid not ater for modelling the probability of spei� moleular interations andthe e�ets of temperature and salinity. We tested our DNA algorithm in thesimulator on several small example graphs, on�rming orret operation of thealgorithm.7 DisussionWe believe that DNA model heking has the potential to signi�antly inreaseits sope of automated veri�ation. Before its full pratial potential is realized,however, there are a number of engineering issues that must be addressed. Wedisuss some of those here, providing them as suggested diretions for futureresearh:(i) fault tolerane: it known that DNA an exhibit \nonspei� binding"where two single strands that are almost, but not quite Watson-Crik omple-ments an ombine to produe a \faulty" double-stranded segment. For instane,GGGGGACCCCC an ombine with CCCCCGGGGGG. The �rst 5 positions and the last5 positions ombine orretly in a omplementary fashion. However, A is asso-iated with G in the middle position, anhored by the orret left pre�x andright suÆx. Most DNA algorithms, inluding the one we have desribed, simplyignore this potential problem. It an be ameliorated by physio-hemial means,keeping the DNA solution at the proper temperature and salinity. A mathemat-ial heuristi is to use state enodings that repliate a pattern. For instane,state s might have an assoiated nuleotide sequene s and orresponding en-oding ssss, whih is the 4-fold repliation. If the probability of a nonspei�binding along s is p, p < 1, then the probability of spei� binding along theenoding is redued to p4. Future attention needs to be devoted to determiningif \nonspei�" bindings are problemati in pratie.(ii) The restrition enzyme re has a �nite length between the reognition sitefor enablement and the ation site where it uts. This an limit the usable lengthof DNA strands enoding states, and adversely impat the heuristi in item (ii).However, it is possible that advanes in protein engineering will ameliorate thisdiÆulty.(iii) Our algorithm, like that of Adleman [1℄, presupposes that the state graphhas already been represented in the DNA substrate. In pratie, the problem ofonstruting from the program text its orresponding state graphM in the DNAsolution needs to be addressed. A theorem of [2℄ suggests a way to solve this inpriniple.8 ConlusionWe have shown that model heking an be implemented in a DNA substrate.The area of DNA (graph) algorithms was pioneered by Adleman [1℄. As noted,Adleman's algorithm in general used exponential spae as it was oriented to8



solving NP-omplete problems. The thrust of work in this area is in fat to exploitthe massive parallelism of DNA to solve onventionally intratable problems.Our work exploits DNA di�erently. We use its apaity to physially, expli-itly store astronomially large state graphs. Its massive parallelism in the formof difusing hain reations automatially propagate temporal satis�ability (ofreahability and eventuality properties). There is no exponential spae blowup.Perhaps the work losest to ours is that in [2℄. Independently, [2℄ had pro-posed DNA-based algorithms for dynami programming and outlined a graphreahability algorithm. There are several key distintions between our work andtheirs. First, their work is not intended for program veri�ation appliations.Seond, their work involves many iterations of emptying and �lling test tubes.Essentially on the i + 1-st iteration nodes just disovered to be in EF�i+1pare proessed. Suh multiple test tube operations an be very time onsumingand make questionable the suitability of their approah for use in veri�ation,where 100's or 1000's of iterations might be required to traverse a typial hard-ware design. In ontrast, the self-propagating nature of our algorithm permitsall omputation to be done in one basi test tube step. A third tehnial dis-tintion is that our work exploits double-stranded DNA while theirs only usessingle-stranded DNA.Our work has demonstrated the basi sienti� feasibility of DNA modelheking. We believe this is an approah to model heking that has the po-tential to signi�antly inrease its sope of automated veri�ation. Before itsfull pratial potential is realized, there are a number of engineering issues thatmust be addressed. We disuss some of those here providing them as suggesteddiretions for future researh:In any ase, we believe this approah is promising and merits additionalstudy.Referenes1. Adleman, L., "Moleular Computation of Solutions to Combinatorial Prob-lems," Siene, Vol. 266, 11 November 1994, pp. 1021-1023.2. Eri B. Baum and Dan Boneh, \Running dynami programming algo-rithms on a DNA omputer", http://www.s.prineton.edu/ dabo/, 1996.3. A. Brenneman and A. Condon, \Strand Design for Bio-MoleularComputation", (Survey Paper), to appear, http://www.s.ub.a/ on-don/#Papers4. E. M. Clarke and E. A. Emerson, \The Design and Synthesis of Synhro-nization Skeletons Using Temporal Logi", Proeedings of the Workshopon Logis of Programs, IBM Watson Researh Center, Yorktown Heights,New York, Springer-Verlag Leture Notes in Computer Siene, #131, pp.52{71, May 1981.5. Jean-Pierre Queille, Joseph Sifakis, \ Spei�ation and veri�ation of on-urrent systems in CESAR", Symposium on Programming 1982: 337-351.6. Amir Pnueli, \The Temporal Logi of Programs", FOCS, 1977.9


