Molecular Model Checking*

E. Allen Emerson, Kristina D. Hager, and Jay H. Konieczka

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas at Austin,
Austin TX 78712, USA

Abstract. This paper shows how to perform model checking, a tech-
nique for automatic program verification, by a DNA algorithm. Our
method depends on two ideas. First, Kripke structures can be compactly
represented in a DNA substrate, coding each state and each edge by
a strand of DNA. Second, satisfaction of temporal eventualities can be
achieved through a self-propagating molecular chain reaction.

Keywords: biomolecular computation, DNA algorithm, model checking,
formal verification

1 Introduction

Model checking [4] (cf. [5]) is a fully automatic method for verifying correct-
ness of finite state concurrent programs. Model checking is based on an efficient
search of the program’s global state transition graph, to determine whether the
program exhibits correct behavior. Model checking is now widely used by com-
puter hardware vendors to design critical portions of microprocessor circuitry,
and is showing promise in software verification. The chief limitation is the state
explosion problem where the size of the global state graph grows exponentially
with the size of the program itself.

Model checking algorithms ascertain whether or not the program state graph
defines a model, in the sense of mathematical logic, of a correctness specification
formulated in temporal logic [6]. Temporal logic is a formalism for describing
change over time, well-suited to describing the ongoing computations of com-
puter systems. Temporal operators along a single computation sequence include
“sometimes p” (F'p) and “always p” (Gp); we also have the path quantifiers
“along all computation sequences h holds” (Ah) and “along some computation
sequence h holds” (Eh). Two critical properties are reachability of p, EFp, and
(its dual) snvariance of p, AGp, (which is equivalent to ~EF—p). If we let good de-
note a predicate characterizing the set of desirable states that a program should
remain in invariantly, while bad denotes the complement condition —good, then
a program is either correct, AGgood, or has the potential to reach an error state,
EFbad.

* This work was supported in part by NSF grants CCR-020-5483 and CCR-009-8141.

{emerson,khager, jay}Qcs.utexas.edu



In this paper we show how model checking can be implemented in a sub-
strate of DNA. DNA molecules are single and double-stranded strings over the
four symbol alphabet {A,G,C, T}, where each symbol is physically a nucleotide
molecule. A key advantage is that these molecules are sufficiently small that an
immense number of them will fit in a compact volume. This permits very com-
pact representation of extremely large state graphs. For example, a graph of size
108 states can be represented within 1 litre of DNA.

In our approach to DNA-based model checking, each graph node or state
s is represented in terms of a single-stranded piece of DNA. In practice, there
are a multiplicity of identical DNA strands representing each state. Each graph
edge s — t is also represented using a strand of DNA. Roughly speaking, the
left and right portions are single-stranded, while the middle portion is double
stranded. Again, there is typically a multiplicity of such strands representing each
edge. The multiple molecular instances of each state and each edge facilitates
an efficient DN A-based algorithm exploiting the massive parallelism inherent in
DNA.

To model check EFp amounts to calculating the set of states that can reach
the set of states p. The original DNA solution encodes the edges of the graph,
but, initially, only representations of the states in p are assumed to be present
in the DNA. We say each represented state is marked. Thus, the states of p
are marked initially. In general, when edge s — ¢ is present and the state ¢
has already been marked, then the algorithm next marks state s, by a reaction
combining the DNA representation of ¢ with the DNA representation of s — ¢
to yield the DNA reperesentation of s. In the DNA solution, the marking will
proceed in a self-propagating fashion, i.e., as a chain reaction.

The remainder of this paper is organized as follows: Section 2 overviews
DNA and its use in algorithms. Section 3 gives a more detailed description of
the algorithm at the level of multisets of production rules. Section 4 details
the DNA implementation. Section 5 describes our experimental results. The
concluding Section 6 discusses related work and suggests future directions.

2 DNA

DNA (Deoxyribo-Nucleic-Acid) forms the genetic blueprint of all living cells
and many viruses. DNA molecules can be in the form of both single and dou-
ble stranded strings over the alphabet N = {G, A, T,C} of component molecules
individally called nucleotides. The single-stranded strings may be viewed as con-
ventional strings in NT; physically, adjacent nucleotides along the single strands
are “horizontally” bound together by strong covalent bonds. The single strands
also combine to form double strands. Each nucleotide has a Watson-Crick com-
plement: G is complementary to C, while A is complementary to T. A (weak)
hydrogen bond will form between Watson-Crick complements. A single horizon-
tal strand such as AAGTC will thus anneal to its complementary strand TTCAG to
yield the double stranded molecule



AAGTC
TTCAG

due to the complementarity of AA with TT, G with C, T with A, and C with G.
The strength of this “vertical” hydrogen bonding of the two horizontal single
strands into the double strand increases as the length of the double stranded
DNA molecule increases. Because of DNA’s properties described above, a solu-
tion of single stranded DNA molecules will accrete into long double stranded
molecules — provided that the single-stranded molecules sequentially align with
respect to Watson-Crick complementarity. Heat can be used to disassociate this
“vertical” hydrogen bonding, breaking down a double strand to its consituent,
complementary double strands. In general, longer strands require greater tem-
perature to disassociate or “melt”.

It should be noted that each individual strand has a directionality; the 5’-
phosphate group of the first nucleotide begins the strand while the 3’-hydroxyl
group ends the final strand. By convention, such 5’ to 3’ strands are the top
strands. Strands that run in the anti-parallel 3’ to 5’ direction represent the
bottom strands. We could thus depict the above as:

5" — AAGTC — 3’
3’ — TTCAG — 5’

In most cases, it is not necessary to display the directionality, since we can rely
on the notation of top versus bottom strands.

“Sticky ends” refer to an unmatched sequence of bases found at the end of a
double stranded molecule, for example:

GATACA
CTATGTCCCC

Such sticky ends are easily bound any by complementary single strand. or
complementary sticky end. For instance, GGGG would bind to the above sticky
end molecule to yield

GATACAGGGG
CTATGTCCCC

The feasibility of using DNA to implement computation was first demon-
strated in the fundamental work of Adleman [1]. Adleman showed how to use
DNA to encode and solve an NP-complete problem, Hamilton Path, over graphs.
Nodes and edges of the graph were encoded as DNA strands, in such a way that
the natural reaction of the short strands encoding nodes and edges led to the
formation of long strands of DNA encoding paths through the graph. All possibe
(simple) paths through the graph were formed in this way, with very high prob-
ability. Note that due to the proliferation of DNA molecules each (simple) path
is represented in high multiplicity by many identical DNA strands. Recombinant
DNA techniques filter the resulting strands to ensure that (i) each starts with
the designated start node vy and ends with the designated sink node wvy; (ii)



each is of length n nodes, where n is the size of the graph; and (iii) each node v;
appears along each retained path. The set of strands after step (iii) corresponds
to the set of Hamilton paths. In the wet lab, Adleman’s method proceeds in
steps, involving a reactions in a number of test tubes, each filled with the appro-
priate DNA solution. An initial test tube contains DNA solution for the encoded
graph. It spontaneously generates all the paths. Next this test tube is “poured”
into a second tube so that PCR can amplify paths that start and stop properly
(step (i)). Step (iii) involves n test tubes.

Adleman’s algorithm for the Hamilton Path problem was a pioneering demon-
stration of the feasibility of DNA computation. But because Hamilton Path is an
NP-complete problem the algorithm was space inefficient. The algorithm gener-
ates all of the exponentially many candidate solution paths. This generation step
proceeds reasonably rapidly because of the massive parallelism. But as the solu-
tions are all generated “at once” it can require a exponential amount of DNA.
Another complication, is that it was, in some respect, time inefficient. It required
about one week of wet lab work. In large part, this was because it required the
use of multiple test tube steps. A reaction in the i*" step must complete before
the 7+ 15¢ step can begin. These factors conspired to limit the size of the problem
that could be handled. In Adleman’s original experiment, he dealt with a graph
of size seven (7) nodes.

3 Model Checking

Model checking is a fully automatic method for verifying correctness of finite
state concurrent programs, based on an efficient search of the program’s global
state transition graph, to determine whether or not the graph defines a model of
the correctness specification formulated in temporal logic. Temporal logic pro-
vides a formalism for precisely describing change over time. Temporal operators
along a computation sequence include “sometimes p” (F'p) and “always p” (Gp);
we also have the path quantifiers “along all computation sequences h” (Ah) and
“along some computation sequence h” (Eh).

Model checking is now widely used by computer hardware vendors to design
critical portions of microprocessor circuitry, and is showing promise in software
verification. The chief limitation is the state explosion problem where the size of
the global state graph grows exponentially with the size of the program itself.

While there are many correctness properties that can be expressed in tempo-
ral logic, the vast majority of importance are simple safety properties asserting
that nothing bad ever happens. Safety can be captured by a temporal logic for-
mula of the form AGgood which asserts that along all computations at all times
condition good holds. In other words, good holds invariantly. The negation of
AGgood, denoted ~AGgood, is equivalent to E F'bad, where we understand bad
to be the complemented condition —good. We will focus in this paper on com-
puting the set of states where EF'p holds; when p denotes the set bad of error
states, we can thus also calculate from FFbad the complementary set AGgood.
Since most software programs are “buggy”, as are hardware designs, in most



phases of their development, checking EFbad is in fact the critical activity in
most practical applications of model checking.

We are given (labelled) state transition graph M = (S, R, L) where S is a
finite set of states (graph nodes); R C S x S is a binary transition relation on
S whose members (s,t) are called transitions (edges) and denoted s — t; and a
labelling function L which assigns to each state s € S a set L(s) of atomic facts
or propositions true at s (such as p, good, etc.) A path v = sg, S1,...,8, in M is
a sequence of states such that for each index ¢ < n edge s; — s;4+1 is in R. We
say EFp holds true of a state so in M, denoted M, sy = EFp, provided there
exists a path sg,sl,...,s, in M such that p holds at s,,.

Model checking of EFp is can be performed efficiently by a backward reach-
ability analysis. Calculating the set of states of M where the formula EFp is
true can be done in polynomial (in fact, linear) time in the size of M, on a
standard, digital computer. The algorithm starts with p, calculates the prede-
cessors of those states, the predecesssors or the predecessors, and so forth until
stabilization. At that time EF'p is calculated.

There is an essential difference in the computational difficulty for the two
graph problems: model checking F F'p versus Hamilton Path. Hamilton Path, an
NP-complete problem, can be hard for even small graphs; the algorithm of [1]
requires generation of exponentially many potential solutions and an exponen-
tial amount of DNA. The model checking reachability problem can be solved
time efficiently in-place using a simple “marking” algorithm, as described below.
Model checking is nonetheless hard in practice because the state graph is can be
immense.

4 The Algorithm

Our algorithm as well as that of [1] are both based on physically representing
graphs as (multi-)sets of short DNA strings ordered pairs of states. However,
whereas the [1] encoding is designed to promote the formation of long DNA
strands representing paths through the graph, our encoding is designed to pre-
vent the formation of such chains. Instead, our encoding of states and edges in
the DNA is designed so that satisfaction of temporal modalities such as EF'p
propagates via a molecular chain reaction through the DNA solution. Moreover,
for single temporal modalities, our approach is a single test tube reaction.

The algorithm for temporal possibility EFp over a state graph M = (S, R)
is based on back propagation from p:

— Each state s € S is represented by a single-stranded piece of DNA.

— Each edge s — t is represented by a a strand of DNA: the left and right
portions are single-stranded sticky ends while the middle portion is double
stranded.

— The abstract algorithm can be viewed as “marking” a canonical copy of
the graph M. First, mark all states in p. Then mark all states reachable,
by back-traversing one graph edge, from some other already marked state.
This marking will propagate automatically so that ultimately all states that



can reach P are marked. The abstract algorithm terminates when the ever-
increasing set of marked states stabilizes; such stabilization is guaranteed
because the graph is finite.

— The DNA implementation of the algorithm will exploit the enormous par-
allelism afforded by DNA computing. The states in p will be represented in
multiplicity by a proliferation of DNA strands. Each edge in R will also be
represented in multiplicity by a proliferation of DNA strands. The marking
will proceed in a self-propagating fashion, i.e., as a chain reaction. The DNA
algorithm terminates when the chain reaction terminates so that no new
states are marked.

— Each act of marking corresponds to a “production rule” of the form
s — t,tFs. When a (DNA occurrence of a) marked state ¢, encounters
some (DNA occurrence of an) edge s —» t, it combines on the right end.
This enables an enzyme (as discussed in the next section) to perform a ver-
tical cut in (the DNA molecule for) the edge s — ¢ resulting in (the DNA
representation of ) state s being marked with its molecule freed. The molecule
for s can now propagate the reaction.

— Initial state so of M satisfies EF'p exactly when, upon stabilization, (a DNA
occurrence of) sg is marked. We also say that M, sp is a model of EFp.

5 DNA Implementation Issues

In this section we provide details re. the implementation of the above algorithm
in DNA. We find it convenient to describe the DNA implementation of the
algorithm in terms of forward reachability. Given M = (S, R, L) we let M" =
(S, R", L) be the graph obtained from M by simply reversing its arcs: u — v € R"
iff v — u € R. Trivially, a path from s to ¢ in M corresponds to a reverse path
from t to s in M". Thus, computing the set of states where EFp holds over
M by backward reachability from p in M can be described in terms of forward
reachability from p in M". Each back propagation rule t — s, s - t corresponds
to forward propagation rule s — ¢,s | t.

The most important implementation issue is how to appropriately encode the
states s and edges s—t as DNA strands. Each state s is encoded as a (“top”)
single strand of DNA of length n. We choose n so that strands of length n are
sufficient to code the state space of interest, which should be of size at most
4™). For each state s, let s denote the n-symbol string in N that is the code of
s, and we assume that s = s.s, is decomposed into a head portion s, and a
tail portion sy,. Each transition s—t is coded by a DNA molecule with single-
stranded “sticky” left and right ends, and a double-stranded middle portion, of
the form:

SaSpXta
xt.ty

where z denotes a “spacer” string.



The DNA implementation works as follows. The code s for each state s
appears embedded in the codes for all transitions involving s. However, s does
not occur free in the solution. Nor does the Watson-Crick complement s appear
free in the solution, for any s — except for the initial state(s) so which do occur
free in the initial solution, because we assume each initial state sy is marked.
In general, each state s that has been marked is represented by a proliferation
of copies of s, the Watson-Crick complement of the code for s. The production
rule s,s—t I ¢ is fired as follows. First, whenever a copy of s binds to a copy
of the complementary s embedded in an occurrence of the encoded transition,
this enables an appropriately chosen restriction enzyme. The restriction enzyme
re is a protein which recognizes a specific DNA subsequence and cleaves the
sequence in two at an offset from the recognition site. Here, re is engaged because
the newly formed juxtaposition s,x completes the recognition sequence of the
enzyme; thus enabled the enzyme re cuts the covalent bonds of the transition at
an appropriate distance so as to pop loose t. Now ¢ is marked. The propagation
of marking is effected through the resulting DNA chain reaction.

We depict a reaction step as follows:

SaSpXtaty SaSpXta e SaSpXta _
SaSp + Xttty = sSaspxt ty — SaSpX + taty

Our use of a restriction enzyme facilitates the traversal of the graph, without
building all paths, which caused an exponential space blowup for [1]. Our state
and edge encodings must be viable within the same environmental parameters
as the restriction enzyme.

The DNA implementation exploits the fact that if many copies of the marked
state s and many copies of the code for transition s—¢ are present, then many
of them will encounter each other and bind, firing the transition. firing the tran-
sition. This is justified physically by thermodynamic considerations. Different
DNA molecules in solution diffuse “completely” from region regions of high con-
centrations to regions of low concentrations, as documented by everyday obser-
vation with liquids and gasses as well as in countless DNA wet lab experiments.

In the laboratory, to ensure termination of the algorithm, it suffices to let the
reaction run for an amount of time determined by the the amount of DNA solu-
tion, temperature, and so forth. In practice, a fixed bound of a certain number
of hours is sufficient.

6 Experimental Validation

We have validated the basic feasility of our ideas by developing a nucleotide level
simulator, and running a variety of experiments on small graphs. The simulator
is written in Java. A pre-processor compiles a state graph, described as a set
of transitions, into a a corresponding test tube of DNA strings. The simulator
then takes as input the test tube of nucleotide strings encoding the graph to be
model checked. It simulates interactions at the DNA nucleotide level. It caters
for the the existence of multiple strands and their interaction. The action of



the restriction enzyme was implemented by a specific subroutine. Our simulator
did not cater for modelling the probability of specific molecular interactions and
the effects of temperature and salinity. We tested our DNA algorithm in the
simulator on several small example graphs, confirming correct operation of the
algorithm.

7 Discussion

We believe that DNA model checking has the potential to significantly increase
its scope of automated verification. Before its full practical potential is realized,
however, there are a number of engineering issues that must be addressed. We
discuss some of those here, providing them as suggested directions for future
research:

(i) fault tolerance: it known that DNA can exhibit “nonspecific binding”
where two single strands that are almost, but not quite Watson-Crick comple-
ments can combine to produce a “faulty” double-stranded segment. For instance,
GGGGGACCCCC can combine with CCCCCGGGGGG. The first 5 positions and the last
5 positions combine correctly in a complementary fashion. However, A is asso-
ciated with G in the middle position, anchored by the correct left prefix and
right suffix. Most DNA algorithms, including the one we have described, simply
ignore this potential problem. It can be ameliorated by physico-chemical means,
keeping the DNA solution at the proper temperature and salinity. A mathemat-
ical heuristic is to use state encodings that replicate a pattern. For instance,
state s might have an associated nucleotide sequence § and corresponding en-
coding ssss, which is the 4-fold replication. If the probability of a nonspecific
binding along 5 is p, p < 1, then the probability of specific binding along the
encoding is reduced to p*. Future attention needs to be devoted to determining
if “nonspecific” bindings are problematic in practice.

(ii) The restriction enzyme re has a finite length between the recognition site
for enablement and the action site where it cuts. This can limit the usable length
of DNA strands encoding states, and adversely impact the heuristic in item (ii).
However, it is possible that advances in protein engineering will ameliorate this
difficulty.

(iii) Our algorithm, like that of Adleman [1], presupposes that the state graph
has already been represented in the DNA substrate. In practice, the problem of
constructing from the program text its corresponding state graph M in the DNA
solution needs to be addressed. A theorem of [2] suggests a way to solve this in
principle.

8 Conclusion

We have shown that model checking can be implemented in a DNA substrate.
The area of DNA (graph) algorithms was pioneered by Adleman [1]. As noted,
Adleman’s algorithm in general used exponential space as it was oriented to



solving NP-complete problems. The thrust of work in this area is in fact to exploit
the massive parallelism of DNA to solve conventionally intractable problems.

Our work exploits DNA differently. We use its capacity to physically, explic-
itly store astronomically large state graphs. Its massive parallelism in the form
of difusing chain reactions automatically propagate temporal satisfiability (of
reachability and eventuality properties). There is no exponential space blowup.

Perhaps the work closest to ours is that in [2]. Independently, [2] had pro-
posed DNA-based algorithms for dynamic programming and outlined a graph
reachability algorithm. There are several key distinctions between our work and
theirs. First, their work is not intended for program verification applications.
Second, their work involves many iterations of emptying and filling test tubes.
Essentially on the i + 1-st iteration nodes just discovered to be in EF<itlp
are processed. Such multiple test tube operations can be very time consuming
and make questionable the suitability of their approach for use in verification,
where 100’s or 1000’s of iterations might be required to traverse a typical hard-
ware design. In contrast, the self-propagating nature of our algorithm permits
all computation to be done in one basic test tube step. A third technical dis-
tinction is that our work exploits double-stranded DNA while theirs only uses
single-stranded DNA.

Our work has demonstrated the basic scientific feasibility of DNA model
checking. We believe this is an approach to model checking that has the po-
tential to significantly increase its scope of automated verification. Before its
full practical potential is realized, there are a number of engineering issues that
must be addressed. We discuss some of those here providing them as suggested
directions for future research:

In any case, we believe this approach is promising and merits additional
study.

References

1. Adleman, L., ”Molecular Computation of Solutions to Combinatorial Prob-
lems,” Science, Vol. 266, 11 November 1994, pp. 1021-1023.

2. Eric B. Baum and Dan Boneh, “Running dynamic programming algo-
rithms on a DNA computer”, http://www.cs.princeton.edu/ dabo/, 1996.

3. A. Brenneman and A. Condon, “Strand Design for Bio-Molecular
Computation”, (Survey Paper), to appear, http://www.cs.ubc.ca/ con-
don/#Papers

4. E. M. Clarke and E. A. Emerson, “The Design and Synthesis of Synchro-
nization Skeletons Using Temporal Logic”, Proceedings of the Workshop
on Logics of Programs, IBM Watson Research Center, Yorktown Heights,
New York, Springer-Verlag Lecture Notes in Computer Science, #131, pp.
52-71, May 1981.

5. Jean-Pierre Queille, Joseph Sifakis, “ Specification and verification of con-
current systems in CESAR”, Symposium on Programming 1982: 337-351.

6. Amir Pnueli, “The Temporal Logic of Programs”, FOCS, 1977.



