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Abstract

We present algorithms for fully automatic volume filtering, boundary segmentation and skele-
tonization, and demonstrate their applications in cell and molecular tomographic imaging. We
also introduce an interactive volumetric exploration tool (Volume Rover), which encapsulates
implementations of the above filtering, and curve/surface feature extraction algorithms, and ad-
ditionally uses multi-resolution interactive geometry and volume rendering, for the visualization.

1 Introduction

For most of its existence, structural biology has successfully focused on individual proteins and
how 3D structures can explain function in a living cell. Only recently it has been recognized that
most if not all proteins in a cell are organized into cellular machines [1]. Such machines are built
from up to several dozens of individual proteins that are arranged in a way that optimizes the
interaction of the components in order to carry out their physiological functions most efficiently.
Increasingly, structural biologists now attempt to solve the structure of such large assemblies
and to study their architecture [12]. While certain cellular machines, such as the ribosome, are
always built in only one and well defined way, other cellular machines are expected to vary in
their exact 3D structure, while following a similar architectural principle. Cellular machines are

∗bajaj@cs.utexas.edu
†zeyun@cs.utexas.edu
‡auerm@mail.rockefeller.edu

1



dynamic with transient addition or loss of certain proteins. Hence, two such machines can be
expected to be similar in composition and architecture, but not necessarily identical. If one aims
to study cellular multi-protein complexes in their native surrounding of a cell, one needs to use
an imaging technique that does not rely on averaging, for the simple fact that the volume of the
cell that is imaged is unique. However all spectroscopic, diffraction or single-particle analysis
cryo-electron microscopic techniques rely implicitly or explicitly on averaging of a large number
of identical particles[27, 3, 67].

Some of the most interesting cellular machines, however, are too rare or too fragile to be
isolated and purified by biochemical means, and they only function in their cellular context,
requiring for example the integrity of the cytoskeleton, the plasma membrane as well as ex-
tracellular matrix components. For such delicate yet biologically very important multi-protein
complexes, electron tomographic imaging provides the only foreseeable way to obtain 3D struc-
tural information.

Electron tomography is by no means a new technique [34, 36] but only recently it has re-
ceived more attention [26, 23, 12, 51, 53] due to progress on the automation of data acquisition
[41, 16], minimization of the electron dose for data collection [50], as well as hardware improve-
ments from electron microscope manufacturers. Although still an expert technique, electron
tomographic data collection is no longer the bottleneck, and user-friendly commercial packages
for data collection are being offered. While recording devices (CCDs) are becoming larger, and
data collection becomes faster, the bottleneck in this emerging field lies more and more on the
visualization and interpretation of the tomograms.

So why are tomograms so much harder to study and interpret? The answer may lie in the
following co-mingled reasons: First, most tomograms exhibit a low signal-to-noise ratio, and
straightforward averaging techniques cannot be employed to enhance the signal. Second, the
cellular machine does not reside in isolation but are embedded in their cellular context, and
densely surrounded by other proteins that may or may not directly interact with the cellular
machine, a concept also known as macromolecular crowding [22]. Third, we don’t know the
exact composition and conformation of cellular machines at the time of investigation. The poor
signal-to-noise ratio usually observed in tomograms can interfere with automated segmentation
approaches, and will become non-productive when attempting to render the segmented 3D
volume. Hence, noise reduction is always in demand as a pre-processing step to improve the
signal-to-noise ratio.

Segmentation is often necessary to obtain an unobstructed view into the machinery’s archi-
tectural organization. The segmented volume is then either volume- or surface-rendered, and
the rendered scene is then inspected for biological interpretation. Feature extraction and in-
terpretation is helped by a clear expectation of what the machinery will look like, or when the
features of interest are well separated from their surrounding, as it is sometimes the case for
extracellular fibers or for partially extracted tissues. The more difficult situation arises when the
cellular machine is in close contact to its cellular surrounding. In such cases, manual segmenta-
tion becomes less feasible. Re-slicing of the 3D data set along non-orthogonal angles can provide
a more favorable view and therefore help to extract the structural information of interest from
such 3D volumes using sophisticated graphics tools [35, 42, 45, 52, 32]. However, automated
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procedures will be needed in order to keep up with the amount of data that can be generated
by modern-day electron microscope data collection schemes.

Model building at low and high resolution has been the key in interpreting protein biological
structures, and has led to a level of insight that was not available from the obtained electron
density alone. Depending on the resolution obtained, the most common approach is to fit
either atoms, secondary structure elements or protein structures into the density maps. This
fit can be performed manually using interactive 3D graphics programs (e.g., [39]) or semi-
automatically [70, 74, 73]. Other approaches such as template matching [13] have been proposed
for data exploration and analysis. With suitable sample preparation, molecular details can be
visualized in tomograms allowing for the identification of proteins, their 3D visualization as
well as model-fitting/docking of candidate structures, solved to high-resolution. This approach
has been successfully applied to systems, where the molecular composition was known and
where the architecture showed a certain symmetry or regularity (e.g., [65]). Such systems,
although complex in nature, can be reduced to a comparatively simple scenery, which allows 3D
visualization without the need for novel visualization and analysis tools. Skeletonization may
be a way to simplify 3D data sets. Simplifying the object while retaining its characteristics
is also important in comparing two complexes that are similar but not identical. Skeletons
will be helpful in comparing two such cellular machines and describing their similarities and
discrepancies

Electron tomography may have its biggest impact in cell biological research when attempting
to visualize cellular compartments without a prior expectation of what the organization will look
like. Hence when exploring uncharted territory, we need a tool for interactive exploration of a
3D density data set. Section-by-section inspection of the raw volume, followed by segmentation
and rendering is a very time consuming process, and doesn’t allow a real-time data exploration
and mining. Moreover one may fail to recognize the architecture of the complex if one has to
segment the volume one slice at the time. However, since rendering is a computation-intensive
process, rendering the whole tomogram is usually beyond the graphical capabilities of computer
desktop machines, due to the size of typical tomograms of 512x512x100 voxels or 1024x1024x100
voxels. It is therefore desirable to have a visualization tool in hand that allows simultaneous
real time high-quality rendering of the whole tomogram at a lower resolution for navigation as
well as sub-volumes at full resolution for close inspection and analysis.

The rest of this paper is as follows. Section 2 presents additional and related prior work.
In section 3 of this paper we present algorithms for fully automatic volume filtering, boundary
segmentation and skeletonization and apply it to cell and molecular tomographic imaging data.
We also present in section 4 an interactive volumetric exploration tool (Volume Rover) that we
have developed which encapsulates implementations of the above filtering, and curve/surface
feature extraction algorithms, and additionally uses multi-resolution interactive geometry and
volume rendering, for the visualization. In section 5 we exhibit results of our application of the
volumetric processing and visualization to transmission electron tomographic three dimensional
cell organelle data.
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2 More Prior and Related Work

2.1 Contrast Enhancement

Image contrast enhancement is a process used to improve the image quality for better visual
appearance or for other specific applications (e.g., segmentation, feature recognition, 3D visu-
alization, etc.). There have already been many techniques for enhancing image contrast. The
most commonly seen methods include various contrast manipulations and histogram equalization
[28, 57]. Conventional contrast manipulation and histogram equalization are globally-defined
techniques in the sense that the enhancement is based on the global information of the entire
image. However, it is well recognized that using only global information is quite often not enough
to achieve good contrast enhancement (for example, global approaches often cause an effect of
intensity saturation). To remedy this problem, some authors proposed localized (or adaptive)
histogram equalization [28, 57, 14, 63], which considers a local window for each individual pixel
and computes the new intensity value based on the local histogram defined on the local window.
A more recently developed technique is called the retinex model [38], in which the contribu-
tion of each pixel within the local window is weighted by computing the local average based
on a Gaussian function. A later version, called the multiscale retinex model [37], gives better
results but it is computationally more intensive. Another technique for contrast enhancement is
based on wavelet decomposition and reconstruction and has been largely used for medical image
enhancement especially for mammography image enhancement [46, 43].

2.2 Noise Reduction

Noise is commonly seen in the reconstructed tomograms due to the limited dose as well as
the noise introduced by back projection 3D reconstruction. It is necessary to conduct noise
reduction for better feature analysis and visualization. Traditional image filters include Gaussian
filtering, median filtering, and frequency domain filtering [28]. Most of recent research has been
devoted to anisotropic filters that smooth out the noise without blurring the geometrical details
such as edges and corners. Several categories of anisotropic filters have been proposed in the
area of image processing. Bilateral Filtering [66, 11, 18, 21] is a straightforward extension of
Gaussian filtering by simply multiplying an additional term in the weighting function. A partial
differential equation (PDE) based technique, known as anisotropic geometric diffusion, has also
been studied [55, 71, 7] and differ in the complexity of the anisotropic diffusion term. Another
popular technique for anisotropic filtering is by wavelet transformation [17]. The basic idea is
to identify and zero out wavelet coefficients of a signal that likely correspond to image noise.
By carefully designing the filter, we can smooth image noise while maintaining the sharpness of
the edges in an image [76]. Finally, the development of nonlinear median-based filters in recent
years has also resulted in promising results. One of those filters is called mean-median (MEM)
filter [31, 30]. This filter, different from the traditional median filter, can preserve fine details of
an image while smoothing the noise. Among the above-mentioned techniques, two methods for
noise reduction have been suggested for tomographic data sets, namely wavelet filtering [64] as
well as non-linear anisotropic diffusion [24].
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2.3 Vector Diffusion

As we will see in next section, it is sometimes more convenient to work on vector fields than
gray-scale intensities. Widely used vector field is gradient vector field, which has been employed
for image segmentation [75, 79, 80] and will be used in the present paper for skeleton extraction.
The gradient vector field calculated from the original (and even filtered) tomograms is often
subject to various types of noise. Hence, it is necessary to smooth the gradient vector field. The
above-mentioned techniques for noise reduction are based on the gray-scale intensities and can be
applied to each component of the vectors independently. In [75], the authors described a PDE-
based diffusion technique to smooth gradient vector fields. The gradient vectors are represented
by Cartesian coordinates and similar partial differential equations (PDEs) are separately applied
to each component of the vectors. However, the smoothing on each component may cause some
unwanted effects [79]. A method based on polar-coordinate representation is proposed in [79],
where all vectors are represented by their polar coordinates (namely, magnitude and orientation)
and the diffusion equations are applied on the magnitudes and orientations separately. This
method proves to perform better for image segmentation around long-thin boundary concavities
[79]. Moreover, the vector diffusion based on polar-coordinate representation is expected to be
more desirable for skeleton extraction where the gradient vectors on one side of the skeletons are
much “stronger” than the vectors on the other side. In this case, the conventional method [75]
may “shift” the skeletons towards the side of the weaker vectors due to the unfair competition
between vectors on both sides of the skeletons. However, the polar-coordinate method [79, 78]
can keep the magnitudes less significant and yield more accurate skeletons. A disadvantage of
this method is that it requires more computational time especially for 3D volumes.

2.4 Boundary Segmentation

Segmentation is a way to electronically dissect the cellular machine from its cellular surrounding,
which often obscures a clear view into the machinery’s architectural organization[22]. Segmen-
tation is usually carried out either manually [35, 42, 45, 52, 32] or semi-automatically on a
sub-volume of the tomogram [69, 25]. Manual segmentation can be tedious and often subjective
even with the help of sophisticated graphical user interface [45, 49]. Automated segmentation
is still recognized as one of the hardest tasks in the field of image processing although various
techniques have been proposed for automated or semi-automated segmentation. Commonly used
methods include segmentation based on edge detection, region growing and/or region merging,
active curve/surface motion and model based segmentation. In particular, two techniques were
discussed in details in the electron tomography community. One is called water-shed immersion
method [69] and the other is based on normalized graph cut and eigenvector analysis [25].

2.5 Skeletal Feature Extraction

Skeleton (or medial axis) is recognized as one of the most important feature descriptors in image
processing and pattern recognition. Traditionally the medial axis is defined as the ”skeleton” of
a closed compact surface (namely, the reconstructed boundaries of scanned objects). Commonly
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used computational methods for skeleton extraction include topological thinning, combinatorial
methods based on polygon approximation of boundaries, approaches based on distance maps,
hierarchical methods based on Voronoi diagrams (or dually, Delaunay triangulation) and some
physically based techniques [54, 29, 47, 40, 2, 44]. All of these techniques compute the medial
axis from the object’s boundaries. To apply these medial axis extraction methods to structure
interpretation, it is necessary to first extract an appropriate level set of the density map under
study. Unfortunately, the topology of the level set often changes significantly even in small
ranges of density values, making the process extremely numerically sensitive.

In addition to the above approach, the ideas from critical Morse complexes [19, 33] provide an
alternative approach to extract medial axis directly from gray-scale volumes without extracting
the iso-surfaces. Computation of the critical Morse complex includes two steps: detecting critical
points and tracing integral linking curves [5]. Using the Morse complex approach, we begin from
critical points and trace integral linking curves by traversing the gradient vector field in their
principal (”eigen”) directions. Methods such as topological persistence and simplification of
the critical Morse graph [20] may additionally help in reducing the critical points, making the
complex more faithful to the principal features under investigation. It is also worth noting that
this approach can also handle the computation of the medial axis of significant iso-surfaces of
the 3-D map by simply constructing the signed distance map of the iso-surfaces.

2.6 Surface and Volume Visualization

Typically, informative visualizations are based on the combined use of multiple techniques,
including volume rendering, isocontouring, dynamic mesh reduction, global and local scalar,
vector topology computation, feature extraction, etc. Informative visualization is thus a way to
guide data-intensive computations to a spatial and temporal locales of interest and significance.
Informative visualization consists of two primary components: Computation (rapid computation
of isosurfaces, reduced meshes, volume rendering, etc., or more generally, of some “view” of the
multivariate data) and Display (efficient rendering of the visualization with graphics primitives,
including use of color, brightness, transparency, texture, volume, etc.).

We approach both of the key components through computer accelerated methods for contour
extraction[9], dynamic mesh reduction for improved interactive display[10], real-time rendering
working with compressed data streams [6, 4, 62], and using topological and volumetric quantita-
tive signatures for feature extraction[68, 8]. We have encapsulated this combined functionality,
along with the filtering and feature extraction techniques detailed below, into our volumetric
exploratory visualization tool we call the Volume Rover.

3 Volumetric Filtering and Feature Extraction Algorithms

3.1 Contrast Enhancement

We propose a fast method for image contrast enhancement. Our method is a localized version
of the classical contrast manipulations [28, 57]. The basic idea of our localized method in both
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two and three dimensions is to design an adaptive transfer function for each individual pixel (for
2D) or voxel (for 3D), based on the intensities in a suitable local neighborhood. There are three
major steps. First, we compute the local statistics for each pixel/voxel using a fast propagation
scheme [15, 77]. The local statistics include the local average, the local minimum and the local
maximum. Since the calculation utilizes a propagation scheme, there is no single definite upper
bound of the local neighborhood. The second step is to design a transfer function based upon the
calculated local statistics. Similar to global contrast manipulations, various linear or nonlinear
functions can be used here but all such functions should “extend” the narrow range of the local
histogram to a much broader range such that the contrast is enhanced. In our approach, the
transfer function consists of two pieces: a convex curve in the “dark” range followed by a concave
curve in the “bright” range. The overall function is C1 continuous. Finally, we map the intensity
of each pixel/voxel to its new one using the calculated transfer function.

Our method inherits the advantages of three prior techniques, including global contrast ma-
nipulation, adaptive histogram equalization and the retinex model [38]. However, unlike the
global contrast manipulation, our method is adaptive in the sense that the transfer functions
are generally different from pixel to pixel. Unlike adaptive histogram equalization, our method
considers the weighted contribution of each pixel within the local but unbounded window. Fur-
thermore, we do not need to specify a fixed size of the local window due to the propagation
scheme used in our approach, which is also a significant difference between our method and the
retinex model. Finally, our method demonstrates the multiscale property by choosing different
conductivity factors used in the propagation scheme.

3.2 Noise Reduction

Our approach to two and three dimensional nonlinear noise reduction filters, such as bilateral
pre-filtering coupled with an evolution driven anisotropic geometric diffusion PDE (partial differ-
ential equation), have shown significant results in enhancing the visualization of macromolecular
tomographic imaging. The PDE model is :

∂tφ − ‖∇φ‖div

(

Dσ ∇φ

‖∇φ‖

)

= 0 (1)

The efficacy of our method is based on a careful selection of the anisotropic diffusion tensor
Dσ based on estimates of the normal and two principal curvatures and curvature directions of
a feature isosurface (level-set) in three dimensions [7]. The diffusivities along the three inde-
pendent directions of the feature isosurface are determined by the local second order variation
of the intensity function, at each voxel. This model (1) can improve the signal to noise ratio
simultaneously for 2D features(surfaces) and 1D features(curves) present in the tomographic
imaging data. In order to estimate continuous first and second order partial derivatives, a tri-
cubic B-spline basis is used to locally approximate the original intensity. A fast digital filtering
technique based on repeated finite differencing, is employed to generate the necessary tri-cubic
B-spline coefficients. The anisotropic diffusion PDE is discretized to its linear system by a finite
element approach, and iteratively solved by the conjugate gradient method.
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Even if the noise in the image intensity is reduced by using any of the afore-mentioned filters
mentioned, the gradient vectors may not be “smoothly” varying over the image domain due to
the errors of calculating derivatives on discrete and small neighborhoods. Furthermore, as we
observe in the following, the gradient vectors shall vanish in “flat” regions, which may make
it difficult to locate critical points from the gradient vector field. Therefore, it is important
to additionally “smooth” the gradient vector field before we perform other procedures (such as
segmentation or skeleton extraction as described below). A simple implementation of gradient
vector diffusion was proposed by Xu and Prince [75] using the following diffusion equations:
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where (u, v, w) is initialized with ∇f(x, y, z) and f(x, y, z) is an edge map of the original image;
that is, f(x, y, z) = |∇I(x, y, z)|2. These diffusion equations are originally used for image seg-
mentation [75]. For calculations of critical points (described in the following), however, these
equations should be applied directly on the original image (that is, f(x, y, z) = I(x, y, z)).

As we said before, the above equations can be modified based on the polar coordinate
representations of the gradient vectors to yield significantly better segmentation and feature
extraction results [79]. However, the modified method is more time-consuming especially for
three-dimensional (3D) volumes [78]. In fact, we find that the simple scheme in Eq.(2) gives
satisfying results for most 3D volumes that we have been working on.

3.3 Boundary Segmentation

We have developed a method for image segmentation based on the fast marching method [59,
48, 60]. Fast marching method is a simplified variant of the level set method [60] but it is much
faster than the latter one. The basic idea of this method is that a contour is initialized from a
pre-chosen seed point, and the contour is allowed to grow until a certain stopping condition is
reached. Every voxel is assigned with a value called time, which is initially zero for seed points
and infinite for all other voxels. Repeatedly, the voxel on the marching contour with minimal
time value is deleted from the contour and the time values of its neighbors are updated according
to the following equation:

||∇T || · F = 1 (3)

where F is called the speed function that is determined by the image information (intensity,
gradient, etc.) and/or contour information (e.g., local curvature). The updated neighbors, if
they are updated for the first time, are then inserted into the contour.

8



To implement the fast marching method, we needed to solve three key problems: (i) for-
mulation of the speed function, (ii) initialization of the seed points and (iii) determination of
the stopping criterion. We formulate the speed function based on the gradient magnitude.
The speed function is defined as an exponential function of the gradient magnitude; that is,
F = exp(γ||∇I||), where γ is a negative constant and I is the original image. Although the
curvature of the contours can also be combined into the speed function, we found that this
usually did not enhance the results of all our experiments on the tomographic data we used.

Initialization of the seed points are essential for correct segmentation of the components of
interest. There are several ways to choose the initial seed points: mechanically by a user, using
“balloons”, or by the locus of the zero-crossing of the Laplacian of the smoothed images (see [61]
for a summary). Our previous work on gradient vector diffusion [79, 80] provides an efficient
way to automatically locate relevant contour seed points. The gradient vector field derived from
the original images (or volumes) is diffused and the critical points are used as our seeds. All
seed points are grouped into two classes: feature seeds and background seeds. For example, if the
features to be segmented have higher intensities than the background, then the feature seeds are
the maximum critical points where all the neighboring gradient vectors point toward those voxels
while the background seeds are the minimum critical points where all the neighboring gradient
vectors point away from those voxels. Additional sub-groups may be chosen for applications
requiring multi-material segmentation.

The stopping criterion of the marching contours is another important issue in the fast march-
ing method. The fast marching algorithm described in [48] does not give an explicit stopping
criterion such that the more expensive level set method had to be used to finalize the segmen-
tation. In addition, like the fast marching method, even the level set method may have to deal
with the “leaking” problem around the boundary gaps. In our current implementation for to-
mographic imaging data, we address this problem using dual contours: one starting from the
feature seeds and the other starting from the background seeds. In the beginning, a contour is
initialized at each seed point. Since all the seeds are classified into two (or more) groups, all
the initial contours are accordingly classified into these groups. Each of the contours march
(grow) simultaneously according to Eq.(3). Whenever two contours from the same group meet,
they merge into a single contour. On the other hand, if two contours from different groups
meet, both contours stop marching on the common boundaries. Both situations are illustrated
in Fig.1, where we can see that the dual contours stop automatically.

With an appropriate parameter γ in the speed function F , we can guarantee that dual
contours from different groups stop correctly on their common boundaries where the magnitude
of the image gradient is locally maximal. An interesting observation is that the seed points
obtained in our method are quite similar to the seeds used in the watershed immersion method
[69], and the marching process in our method is analogous to the immersion process. However,
our method considers the image gradient, an important feature of image boundaries, which is
not taken into account in the watershed immersion method. In addition, our method allow
merging between similar group contours, starting from different seeds, which avoids the over-
segmentation problem as commonly seen in the watershed immersion method.
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(a) Initial contours (b) Marching contours (c) Merged contours

Figure 1: Fast marching method using dual-contours. (a) We only consider four seed points in
this image. The two blue contours correspond to the maximum critical points while the other
two contours (red) correspond to the minimum critical points. (b) Wheneve dual contours with
different colors meet, they prevent each other from moving.(c) When dual contours with the
same color meet, they merge into a single contour, and keep growing.

3.4 Skeleton Extraction

Extracting iso-surfaces is very sensitive to the selection of iso-values. In addition, tracing iso-
surfaces followed by boundary-based skeleton extraction is computationally intensive. In this sec-
tion we compute the skeletons directly from gray-scale volumes without extracting iso-surfaces.
To construct the critical Morse complex, we begin from critical points and trace integral linking
curves by traversing the gradient vector field in their principal (”eigen”) directions. The con-
structed Morse complex, however, is not exactly what we want in many applications. The Morse
complex is a “skeleton” of the entire volume but we are more interested in the “skeleton” of the
features that we want to extract. Therefore, we need to prune the Morse complex, retaining
only those critical points and their associated integral curves that correspond to the features of
interest. For example, if the intensities of features are brighter than those of the background, we
should ignore the minimum critical points and only consider the maximum and saddle critical
points and the integral linking curves between them.

Given a 3D gray-scale volume, how can we correctly locate the appropriate critical points? If
the volume is ideally smooth, the critical points can be easily computed from the first and second
derivatives of the volume. However, noisy data may cause too many critical points detected and
thus result in a superfluous and incorrect Morse complex. Anisotropic filtering is excellent for
noise reduction while preserving sharp edges. However, this method may not be the best way
to compute the critical points because an anisotropic filter may result in “flat” regions near the
centers of the features such that the gradient vectors in that region vanish. Therefore, the “flat”
regions make it difficult to exactly locate the critical points. An interesting thing is that in
this particular case, Gaussian or other isotropic filters perform better than anisotropic filtering.
But as we mentioned above, Gaussian filtering tends to smooth small features that are close to
“stronger” features. In order to improve the robustness of small feature during noise reduction,
we instead use the gradient vector diffusion approach [75, 79, 80], which differs from classical
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Figure 2: Computing critical points using gradient vector diffusion. A gray-scale 2D image is
shown on the right, where a sub-region is considered for computing the gradient vector field.
The vector diffusion algorithm discussed in [79] is applied and shown on the left. Five critical
points are located including two maximal critical points (green), two minimal critical points
(purple) and one saddle critical point (yellow). The diffused gradient vector field is also used to
tracing the integral linking curves in order to construct the Morse graph.

filters in that it smoothes the gradient vectors, not the gray-scale intensities. An advantage of
this method is that we can control the smoothing based on the directions of the vectors. The
smoothed (or diffused) gradient vector field is used to locate the critical points. Critical points
corresponding to local maxima are those points where all the surrounding vectors point to these
points. Similarly, critical points corresponding to local minima are those points where all the
surrounding vectors point away from these points. Critical points corresponding to saddles are
detected at those points where some surrounding vectors point to these points from both sides
along some directions while the other surrounding vectors point away from these points from
both sides along the other directions. Fig.2 demonstrates a two-dimensional example, where all
these three types of critical points are detected using gradient vector diffusion.

4 Interactive Volume Exploration Tool

The volume-rendering client can act as a 3D roving microscope, allowing users to visualize data
that is too large to fit on a single machine. The graphical user interface allows for interactive
visual selection of transfer function and isocontour, aka the contour spectrum [8, 56]. The user
interface also allows the user to move and resize the sub-volume window. The data within the
sub-window is then transmitted by the server to the client computer, and displayed interactively
using fast texture based volume rendering that can be combined with rendered geometry [72, 58].
The rover connects to a data server that contains large datasets. The server can extract and
resample sub-volumes of different sizes, which are then transmitted to the client for visualization.
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Figure 3: Overview of Volume Rover and selection of sub-region of interest via Volume Rover.
The full resolution dataset (with a size of 1024×1024×100 voxels) shown on the right comprises
two adjacent bullfrog hair bundle stereocilia connected by a tip link. The selected sub-volume
shown on the left has a much smaller size (about 120 × 240 × 50 voxels), which makes feature
interpretation as well as visualization much faster and easier.
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The client downloads data differentially, by only downloading the data that the client does not
already have cached.

The Rover contains two views. One view contains a volume render of a sub-sampled version
of the entire volume. The user specifies the sub-volume by interacting with a cuboid located in
the sub-sampled volume. At the center of the cuboid are 3 axes, one for each dimension. The
user can translate the sub-volume by clicking on one of these axes and then dragging along the
axis. At the end of each axis is a resizing knob. The user can resize the sub-volume window by
clicking on one of the resizing knobs and dragging along its corresponding axis. The user can
also rotate the sub-window around each of its axes. After the user manipulates the sub-volume
window, the client requests a sub-volume of the correct size and resolution from the data server.
The data is downloaded from the server and rendered using fast texture-based volume rendering.

The data for the rover can either come from a remote data server , or can come from the
local hard disk. In either case, if the data requested is too large to fit into graphics memory, it
is filtered using Gaussian filtering and sub-sampled. The sub-sampled data is then loaded into
the video card and rendered using texture based volume rendering. The Rover can visualize
volumes up to 512x256x256 imaging without resampling.

When data come from the hard disk, the rover automatically caches a pyramid hierarchy of
sub-sampled volumes. For each volume, the Rover filters and resamples the volume, creating a
volume with half the resolution of the original volume. This process is repeated until the lowest
resolution volume is 1x1x1. This speeds up the interactive exploration of the data since the data
does not have to be resampled for every extraction.

In addition to the volume rendering, the user can request to see an isosurface rendering
of the data. The rover performs isosurface extraction on the sub-volume portion of the data
as well as the thumbnail data. The surface is rendered together with the volume. If the user
moves the sub-volume, the rover obtains the new data and performs the isosurface extraction
again. The new surface and new sub-volume are then rendered together. This allows the user
to interactively explore the volume render as well as the isosurface render of the large data.

During the volume exploration or feature extraction process, it is also necessary on ocassion
to zoom in to crop out volumetric regions of interest. The selected sub-region is then used
for faster noise reduction and selected feature segmentation. The direct manipulation GUI
(graphical user interface) of the Volume Rover allows us to visually identify an select specific
volumetric sub-regions of interest (as shown in Fig.3).

Furthermore, the user can request a bilateral filtering, an anisotropic geometric diffusion
evolution, a gradient vector diffusion, and skeleton feature extraction on the data set. The
rover will then perform the filtering and feature extraction on the extracted sub-volume. If an
isosurface is being rendered, it will be re-extracted from the newly filtered data. The new data
is then displayed together with the new isosurface.
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Figure 4: Bilateral pre-filtering coupled with an anisotropic diffusion filter. Shown on the left is
a sub-volume of the original dataset comprising extracellular links between a stereocilium and
the kinociliar bulb in a bullfrog macular sensory epithelia hair bundle. The picture on the right
shows the filtered result within the same region as the one on the left.

5 Applications and Results

All the techniques discussed in previous section were tested on real electron tomograms. We
first demonstrate the performance of our anisotropic diffusion filter coupled with bilateral pre-
filtering. Fig.4 shows the difference between the original volume and the filtered one. The
anisotropic diffusion filter clearly reduces the noise level while enhancing the features.

In Fig.5 and Fig.6, we show two examples of our segmentation method on filtered and
contrast-enhanced volumes. The one in Fig.5 segments the kinociliar links of a hair bundle.
For better result, the segmentation is restricted to the extracellular region. This can be easily
done by classifying all the critical points outside that region into one group such that all the
contours starting from those critical points will be merged. Fig.6 shows the segmented tip link
between bullfrog hair cell stereocilia. It is worth noting that the criterion for classifying critical
points may differ from data to data. All the maximum (or minimum) critical points may not
necessarily classified into one group. Quite often we need to classify the maximum critical points
with intensities below a threshold into the group of minimum critical points. Similarly some
minimum critical points with intensities above a threshold (could be different from previous
one) may be classified into the group of maximum critical points. As we said before, sometimes
more than two groups may be necessary. In Fig.5 and Fig.6, we consider only two groups,
corresponding to feature and background respectively.

Fig.7 gives an example of skeleton extraction. The skeletons are extracted by simplifying
the Morse graph of the density map. We first filter the original data and then the contrast
enhancement is applied. The gradient vector field is then computed and diffused using the vector
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Figure 5: Boundary segmentation on sub-volume of bullfrog hair bundle kinociliar links. The
original volume is first filtered and then the contrast is enhanced before we apply boundary
segmentation. The left picture shows a slice with the segmented boundaries indicated by red
curves. The picture in the middle gives a 3D volume-rendered view of the segmented boundaries.
Shown on the right is a closer look at the segmented boundaries.

Figure 6: Boundary segmentation on a sub-volume of the bullfrog hair bundle tip link. The
original volume is first filtered and then contrast enhanced before boundary segmentation. The
left picture shows a slice with the segmented boundaries indicated by red curves. The middle
and right pictures give 3D volume-rendered views from two different directions.

15



Figure 7: Simplified Morse graph on a sub-volume of the bullfrog hair cell actin bundle. The
original volume is first filtered and then contrast enhanced before we extract and simplify the
Morse graph. Left: volume-rendering of the filtered and contrast-enhanced density map. Middle:
simplified Morse graph extracted from the same region, where the actin bundles and the links
between them are clearly shown. Right: simplified Morse graph embedded in the density map.

diffusion technique (Eq.(2)). The critical points are then located from the gradient vector field
(see Fig.2). However, only those critical points corresponding to features are recognized and
all other critical points are considered invalid. The Morse graph is constructed by tracing the
integral linking curves along the diffused gradient vector field. Since we only consider a subset
of the critical points, the obtained Morse graph is just a simplified version of the original Morse
graph but it is more faithful to the true skeletons of the features under investigation.

6 Conclusion

We have presented algorithms for fully automatic volume filtering, boundary segmentation and
skeletonization, and have successfully applied it to cell and molecular tomographic imaging
data. We have also developed an interactive volumetric exploration tool (Volume Rover) which
encapsulates implementations of the above filtering, and curve/surface feature extraction al-
gorithms, and additionally uses multi-resolution interactive geometry and volume rendering,
for the visualization. This interactive visualization tool runs under both Linux and Win2K
desktop platforms, and is available for free download under the GNU public license, from
http://www.ices.utexas.edu/CCV/software.html.

Acknowledgments

This research is supported in part by NIH grant DC00241, NSF grants ACI-9982297, CCR-
9988357, and from grant UCSD 1018140 as part of NSF-NPACI, Interactive Environments

16



Thrust. Thanks are also due to Anthony Thane for development of the Volume Rover Tool,
to Qiu Wu for his implementation of the bilateral and anisotropic diffusion filtering, and to Dr.
Ulrike Ziese and Bram Koster at University of Utrecht for recording the tomographic tilt series.
Manfred Auer would also like to thank Dr. Da Neng Wang (Skirball Institute, NYU), his men-
tor Dr. Jim Hudspeth as well as the Human Frontier Science Program Organization, and the
Jane Coffin Childs Memorial Fund for Medical Research / Agouron Institute for postdoctoral
fellowships.

References

[1] B. Alberts. The cell as a collection overview of protein machines: Preparing the next
generation of molecular biologists. CELL, 92:291–294, 1998.

[2] C. Arcelli and G.S. Baja. Euclidean skeleton via centre-of-maximal-disc extraction. Image
and Vision Computing, 11(3):163–173, 1993.

[3] M. Auer. Electron cryo-microscopy as a powerful tool in molecular medicine. J. Molecular
Medicine, 78:191–202, 2000.

[4] C. Bajaj, I. Ihm, and S. Park. Visualization-specific compression of large volume data. In
Proc. of Pacific Graphics, pages 212–222, Tokyo, Japan, 2001.

[5] C. Bajaj, V. Pascucci, and D. Schikore. Visualization of scalar topology for structural
enhancement. In IEEE Visualization, pages 51–58, 1998.

[6] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image compression for inter-
active applications. ACM Transactions on Graphics, 20(1):10–38, 2001.

[7] Chandrajit Bajaj and Brian Mirtich. Level-set based volumetric anisotropic diffusion for
3d image denoising. In ICES Technical Report, University of Texas at Austin, 2002.

[8] Chandrajit Bajaj, Valerio Pascucci, and Dan Schikore. The Contour Spectrum. Proceedings
of IEEE Visualization ’97, pages 167–175, November 1997.

[9] Chandrajit Bajaj, Valerio Pascucci, and Daniel R. Schikore. Fast isocontouring for improved
interactivity. In Proceedings of the 1996 Symposium for Volume Visualization, pages 39–46,
1996.

[10] Chandrajit Bajaj and Daniel R. Schikore. Error-bounded reduction of triangle meshes with
multivariate data. In Proceedings of Visual Data Exporation and Analysis III, SPIE vol
2656, pages 34–45, 1996.

[11] D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing and
the nonlinear diffusion equation. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 24(6):844–847, 2002.

17



[12] W. Baumeister and A. C. Stevens. Macromolecular electron microscopy in the era of
structural genomics. TIBS, 25:624–631, 2000.

[13] J. Bohm, Frangakis, R. Hegerl, S. Nickell, D. Typke, and W. Baumeister. Toward detecting
and identifying macromolecules in a cellular context: template matching applied to electron
tomograms. Proc Natl Acad Sci., 97:14245–14250, 2000.

[14] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapiro. Shape preserving local histogram
modification. IEEE Trans. Image Processing, 8(2):220–230, 1998.

[15] R. Deriche. Fast algorithm for low-level vision. IEEE Trans. on Pattern Recognition and
Machine Intelligence, 12(1):78–87, 1990.

[16] K. Dierksen, D. Typke, R. Hegerl, A.J. Koster, and W. Baumeister. Towards automatic
electron tomography. Ultramicroscopy, 40:71–87, 1992.

[17] D.L. Donoho and I.M. Johnson. Ideal spatial adaptation via wavelet shrinkage. Biometrika,
81:425–455, 1994.

[18] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range
images. In ACM Conference on Computer Graphics (SIGGRAPH), pages 257–266, 2002.

[19] H. Edelsbrunner, J.Harer, and A.Zomorodian. Hierarchical morse complexes for piecewise
linear 2-manifolds. In ACM Symposium on Computational Geometry, pages 70–79, 2001.

[20] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifica-
tion. Discrete and Computational Geometry, 28(4):511–533, 2002.

[21] M. Elad. On the bilateral filter and ways to improve it. IEEE Transactions On Image
Processing, 11(10):1141–1151, 2002.

[22] R. J. Ellis. Macromolecular crowding: obvious but underappreciated. Trends Biochem.
Sci., 26(10):597–604, 2001.

[23] W.Baumeister et. al. Electron tomography of molecules and cells. Trends Cell Biol., 9:81–
85, 1999.

[24] A. Frangakis and R. Hegerl. Noise reduction in electron tomographic reconstructions using
nonlinear anisotropic diffusion. J. Struct. Biol., 135, pages =, 2001.

[25] Achilleas S. Frangakis and Reiner Hegerl. Segmentation of two- and three-dimensional
data from electron microscopy using eigenvector analysis. Journal of Structural Biology,
138(1-2):105–113, 2002.

[26] J. Frank. Electron Tomography. Plenum Press, 1992.

[27] R. Glaeser. Electron crystallography: present excitement, a nod to the past, anticipating
the future. J. Struct. Biol., 128:3–14, 1999.

18



[28] R.C. Gonzalez and R.E. Woods. Digital image processing. Addison-Wesley, 1992.

[29] T. Grogorishin, G. Abdel-Hamid, and Y.H. Yang. Skeletonization: An electrostatic field-
based approach. Pattern Analysis and Application, 1(3):163–177, 1996.

[30] A. Ben Hamza and Hamid Krim. Image denoising: A nonlinear robust statistical approach.
IEEE Transactions on Signal Processing, 49(12):3045–3054, 2001.

[31] A. Ben Hamza, P. Luque, J. Martinez, and R. Roman. Removing noise and preserving
details with relaxed median filters. Journal of Mathematical Imaging and Vision, 11(2):161–
177, 1999.

[32] M.L. Harlow, D. Ress, A. Stoschek, R.M. Marshall, and U.J. McMahan. The architecture
of active zone material at the frog’s neuromuscular junction. Nature, 409:479 – 484, 2001.

[33] J.C. Hart. Morse Theory for Implicit Surface Modeling.

[34] R. Hart. Electron microscopy of unstained biological material: The polytropic montage.
Science, 159:1464–1467, 1968.

[35] David Hessler, Stephen J. Young, and Mark H. Ellisman. A flexible environment for
the visualization of three-dimensional biological structures. Journal of Structural Biology,
116(1):113–119, 1996.

[36] W. Hoppe, J. Gassmann, N. Hunsmann, H.J. Schramm, and M. Sturm. Three-dimensional
reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from
tilt series in the electron microscope. Hoppe-Seyler’s Z. Physiol. Chem., 355:1483–1487,
1974.

[37] D.J. Jobson, Z. Rahman, and G.A. Woodell. A multiscale retinex for bridging the gap
between color images and the human observation of scenes. IEEE Trans. Image Processing,
6(7):965–976, 1997.

[38] D.J. Jobson, Z. Rahman, and G.A. Woodell. Properties and performance of a cen-
ter/surround retinex. IEEE Trans. Image Processing, 6(3):451–462, 1997.

[39] T.A. Jones, J-Y. Zou, S.W. Cowan, and M. Kjeldgaard. Improved methods for building
protein models in electron density maps and the location of errors in these models. Acta
Crystallogr., 409:110–119, 1991.

[40] R. Kimmel, D. Shaked, N. Kiryati, and A.M. Bruckstein. Skeletonization via distance maps
and level sets. Computer Vision and Image Understanding, 62(3):382–391, 1995.

[41] A.J. Koster, H. Chen, J.W. Sedat, and D.A. Agard. Automated microscopy for electron
tomography. Ultramicroscopy, 46:207–227, 1992.

19



[42] J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh. Computer visualization of three-
dimensional image data using imod. J Struct Biol, 116:71–76, 1996.

[43] A.F. Laine, S. Schuler, J. Fan, and W. Huda. Mammographic feature enhancement by
multiscale analysis. IEEE Trans. Medical Imaging, 13(4):725–738, 1994.

[44] L. Lam, S.W. Lee, and C.Y. Suen. Thinning methodologies - a compresensive survey. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 14(9):869–885, 1992.

[45] Yanhong Li, Ardean Leith, and Joachim Frank. Tinkerbell-a tool for interactive segmenta-
tion of 3d data. Journal of Structural Bioloby, 120(3):266–275, 1997.

[46] J. Lu, D.M. Healy, and J.B. Weaver. Contrast enhancement of medical images using mul-
tiscale edge representation. Optical Engineering, 33(7):2151–2161, 1994.

[47] G. Malandain and S.F. Vidal. Euclidean skeletons. Image and Vision Computing, 16(5):317–
327, 1998.

[48] R. Malladi and J.A. Sethian. A real-time algorithm for medical shape recovery. In IEEE
International Conference on Computer Vision, pages 304–310, 1998.

[49] M. Marko and A. Leith. Sterecon - three-dimensional reconstructions from stereoscopic
contouring. Journal of Structural Biology, 116(1):93–98, 1996.

[50] B.F. McEwen, K.H. Downing, and R.M. Glaeser. The relevance of dose-fractionation in
tomography of radiation-sensitive specimens. Ultramicroscopy, 60:357–373, 1995.

[51] B.F. McEwen and J. Frank. Electron tomographic and other approaches for imaging molec-
ular machines. Curr. Op. Neurobiol., 11:594–600, 2001.

[52] B.F. McEwen and M. Marko. Three-dimensional electron micros-copy and its application
to mitosis research. Methods Cell Biol, 61:81–111, 1999.

[53] B.F. McEwen and M. Marko. The emergence of electron tomography as an important tool
for investigating cellular ultrastructure. J. Histochem Cytochem, 49:553–563, 2001.

[54] R.L. Ogniewicz and O. Kubler. Hierarchic voronoi skeletons. Pattern Recognition,
28(3):343–359, 1995.

[55] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990.

[56] Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann, Will Schroeder,
Lisa Sobierajski Avila, Ken Martin, Raghu Machiraju, and Jinho Lee. The transfer function
bake-off. IEEE Transactions on Computer Graphics and Applications, 21(3):16–22, 2001.

[57] W.K. Pratt. Digital Image Processing (2nd Ed.). A Wiley-Interscience Publication, 1991.

20
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