
A Near-Optimal Sheduler for Swith-Memory-Swith RoutersAdnan Aziz Amit Prakash Vijaya RamahandranEletrial and Computer Engineering Computer SienesThe University of Texas at AustinTR-03-32August 6, 2003AbstratWe present a simple and near optimal randomized parallel sheduling algorithm for shedul-ing pakets in routers based on the Swith-Memory-Swith (SMS) arhiteture, whih emulatesoutput queuing by using a olletion of small memories within the swith to bu�er pakets, andwhih forms the basis of the fastest routers in use today. For a router with N inputs and Noutputs, our algorithm omputes the shedule in O(log�N) rounds, where a round is a ommu-niation of a few bits between input ports and memory together with simple loal omputationat the inputs and memory. Furthermore, by using an O(log�N) deep pipeline at eah input,our algorithm omputes the shedule in a onstant number of rounds. Our pipelined algorithmis quite simple and ahieves optimal (i.e., onstant) throughput with a tiny O(log�N) delay.We show that the total amount of bu�er memory required by our algorithm is lose to theminimum required. We also show that the number of bu�er memories is within an �N additiveterm of 2N � 1, for any positive onstant � > 0 (and is within an additive term of o(N) for thebasi sheduler), where 2N � 1 is the minimum number of memories needed under adversarialplaement of pakets. Furthermore we show that the number of extra memories that we useover the minimum of N that is required in the o�ine version, is within a onstant fator of theminimum required by any on-line sheduler, even if that sheduler is allowed to fail oasionally.Our sheduling algorithm is randomized and works with high probability in N . We alsoprove that it is self-stabilizing, i.e., it resumes its normal behavior if oasional lapses our dueto the probabilisti nature of the algorithm.A preliminary version of these results appeared in the Proeedings of the 15th ACM Symposiumon Parallelism in Algorithms and Arhitetures, June 2003. The main new ontribution in thisTehnial Report is an improved pipelined sheduler that requires at most one message from eahmemory bank to an input in eah ommuniation step. A ompanion manusript presents simulationresults that show that the onstant fators in our algorithms are quite small, indiating that ouralgorithms are likely to be quite pratial.
1

1 IntrodutionRouters play a ritial role in modern omputing of all forms inluding wide-area networks, mul-tiproessor servers, and data storage systems [16, 25, 11, 4, 9, 12, 30℄ (see also [13, Chapters 7.12,8.12℄). Modern routers ahieve high performane by solving omputationally intensive tasks usingustom hardware. One of the most hallenging problems in designing a high-end router is shedulingthe transfer of pakets from inputs to outputs.A router used to be nothing more than a general purpose omputer onneted via a standard busto hardware for transmitting and reeiving pakets over links. This was beause the link bandwidthwas low enough for a general purpose proessor to implement the entire router funtionality. Withthe advent of high-speed �ber opti tehnology [27, 28℄, the situation has reversed, and in manynetworks today routers are the bottlenek in moving data.Given that the ost of deploying and maintaining links far exeeds the ost of router hard-ware [16, Page 203℄ the trend has been to use quite extensive hardware in the router. Some of thetasks performed by routers an be aelerated using brute-fore solutions, e.g., by demultiplexinghigh-speed links and using repliated hardware. However the task of quikly transferring paketsfrom inputs to outputs has not been solved satisfatorily so far, largely beause of the omplexo-ordination problem that is assoiated with it.Figure 1(a) shows the blok-level arhiteture of a router. Pakets are assumed to be of a �xedsize. (IP network pakets an be variable sized; this is dealt with by segmenting them into �xedsize pakets at the input port, and reassembling them at the output port [25, Page 203℄.) Input lineards (or input ports) take pakets from inoming links, and ompute the output link to whih thepaket is to be forwarded. (It is assumed that the output link is determined by the �nal destinationof the paket, and is not within the ontrol of the sheduler.) The swith fabri transfers pakets tothe output ports, whih transmit the pakets on outgoing links. Peterson and Davie [25, Chapter3℄ and Keshav and Sharma [17℄ survey router arhitetures.Logially, the router operates in yles: in eah yle, at most one paket may arrive at an inputport. The yle time is de�ned to be the amount of time between yles; ideally it is equal to thelink bandwidth divided by the paket size, unless the router requires large yle time to be able toperform all the tasks that it needs to do on every paket, whih is urrently the ase.We restrit our attention to routers that have N input ports and N output ports, with all linkshaving the same bandwidth. At the beginning of every yle, the router reeives at most one paketat eah input and transmits at most one paket on eah output. The arrival time of a paket p isthe yle in whih p arrived at the input of the router; the departure time of p is the yle in whihp is transmitted from the output. The di�erene between departure and arrival times of a paketis alled its lateny.Two (or more) pakets destined for the same output port an arrive at di�erent input ports inthe same yle. Consequently, one of the two pakets will have to be bu�ered [25, 16, 14℄. Thisbu�ering an be performed at the input ports, within the swith fabri, and at the output ports.Beause of ontention for a shared output link, a link may beome ongested; when the number ofpakets waiting for the link exeeds the bu�er apaity, pakets will be dropped [16, Chapter 8.5℄.At any given time, a router may have a large number of pakets, enqueued in di�erent queues,waiting to be transmitted through di�erent outputs. In a single yle only a subset of these queuesan be advaned based on the onstraints imposed by the arhiteture of the router. Routers needto make sheduling deisions about whih queues get advaned in eah yle. The average latenythat pakets observe at the router as well as the number of pakets that get dropped by the routerbeause of bu�er overow greatly depend upon the sheduling deisions made by the router. Thusit is essential to have an eÆient sheduler. In a router with a large number of input and output2

M

M

MI

I

I1

2

N

1

2

M

O

O

O

1

2

N

Input Ports Interconnect Memories Interconnect Output ports

Output Line Card

Output Line Card

Output Line Card

Input Line Card

Input Line Card

Input Line Card

Control
Plane

Switch Fabric

(a.) A generic router (b.) The SMS architectureFigure 1: (a.) Arhiteture of a generi router. (b.) The Swith-Memory-Swith (SMS) arhite-ture.ports, the sheduling algorithm often takes more time to ompute the shedule than the routertakes to transmit the pakets. This paper introdues a fast sheduling algorithm; we are motivatedby the fat that the shedule must be omputed within the yle time.A router is said to be output-queued if pakets are bu�ered solely at the outputs. Outputqueuing is strongly preferred for a number of reasons [24℄. For example, it minimizes the averagequeuing delay faed by pakets. It also guarantees that the relative ordering of pakets is preserved.However, bu�ering pakets solely at the output ports requires very high-speed memories and swithfabris. Spei�ally, in an N input router, N pakets for the same output an arrive in a yle;onsequently, the memory at the output port should be able to support N writes in a single yle.In an input-queued router, pakets are bu�ered solely at the inputs. The advantage of an input-queued arhiteture is that the bu�er memory need only to be able to support one read and onewrite in a yle. However, it is extremely diÆult to shedule pakets for departure aross theswith fabri in suh an arhiteture | naive approahes result in high drop rates [14℄, and moresophistiated approahes are too omplex to run within the yle time [21℄.The swith-memory-swith (SMS) arhiteture bu�ers pakets in small memories plaed betweenthe input and output ports. In this arhiteture, the output ports have bu�ers that need to holdjust one paket, and the input ports have bu�ers of small size. Thus the main bu�ers in thisarhiteture are the small memories plaed between inputs and outputs, whih operate together.This is the arhiteture used by the fastest routers available today, the M160 and T640 Internet orerouters from Juniper Networks [23℄. (The power of this arhiteture an be seen in the fat thatwithin three years of its ineption Juniper Networks took over from Ciso as the leading providerof routers for the Internet ore.)There are three main advantages to using an SMS arhiteture over other arhitetures:(1) The average delay an be minimized (as in output queuing),(2) The bu�er memories need to support only one read and one write per yle (as in inputqueuing),(3) With a good sheduling algorithm, the pakets an be distributed almost equally among thebu�er memories to make sure that a paket gets dropped only if all the bu�ers are full (thus thesame paket drop rate an be ahieved with smaller memories as ompared to an output-queued orinput-queued swith).In this paper we present a near optimal sheduler for the SMS arhiteture. The sheduler isdesribed in Setion 4 and its memory requirements, whih are also lose to optimal, are analyzedin Setion 5. In reent simulation results [3℄ we show that the onstant fators in our algorithms3

are small, indiating that our algorithms are likely to be quite pratial.1.1 Prior Work on Router ShedulingEarly routers used sequential algorithms; however, this is not an option with modern link speeds.Broadly speaking, reent parallel algorithms for sheduling have one or both of the following short-omings: 1.) they are ad ho, working well on some ases and very badly in others [20, 5, 6℄, or2.) they involve pointer-manipulating algorithms that are unaeptably ompliated even in theontext of a large budget for dediated hardware [26℄. MKeown et al. [20℄ desribe a heuristi par-allel algorithm for sheduling in input-queued swithes. However, its performane depends greatlyon the inoming traÆ, and there are natural traÆ patterns for whih it has an unaeptablyhigh drop probability [6℄. Prakash et al. [26℄ proposed an O(log2N) parallel algorithm based onpointer jumping for sheduling pakets in the SMS arhiteture; as in [7℄, this router emulates anoutput-queued router. However, the algorithm is impratial to implement, sine it uses the NCalgorithm in [18℄ to edge-olor bipartite graphs.Subsequent to the work in [26℄, Iyer et al. [15℄ showed that an SMS router1 with 3N paketmemories running at the line rate ould emulate an N input, N output output-queued swith|thiswas a lemma in [26℄, and the proof method was idential, namely applying the pigeonhole priniplein a straightforward manner. Iyer et al. did not onsider the implementation of the sheduler, andthe sheduler arising from their proof has time omplexity
(N).Chuang et al. [7℄ have shown that a router with bu�ering at both the input and output portsan emulate an output-queued router by performing 2 reads and 2 writes on the input and outputbu�ers, respetively, and running the swith fabri twie in a yle. Their approah hinges on asophistiated sheduling algorithm whih solves an instane of the stable marriage problem, whihis again impratial to implement in hardware.2 The SMS arhitetureSine we use the swith-memory-swith (SMS) arhiteture presented in [26℄, we review the ar-hiteture and key results in that paper. We defer a disussion of the details of the model ofomputation to Setion 3.Figure 1(b) depits the SMS arhiteture. The set of input ports is onneted via an N �Minteronnet to M memories; these M memories are onneted to the set of output ports throughanother interonnet. Eah of these memories are of size K; we assume K � N (in pratie,K � N). In every yle one paket an be read from and s pakets an be written to eah memory.Not surprisingly, we will show that as s inreases the requirement onM goes down. Thus if memorybandwidth is the bottlenek in the system then it would be desirable to use s = 1 but otherwiseone an boost s as muh as possible to redue M . One an also onsider the ase of using memorybanks that supports s reads and s writes every yle. But that would be equivalent to using s �Mmemory banks that support one read and one write every yle in our sheme. Sine this ase isalready aptured in the analysis we do not onsider it as a separate ase.2.1 Emulating output queuingSine output-queuing is highly desirable (f. Setion 1), our goal is to emulate the behavior of anN �N output-queued swith that has bu�er memory spae for L pakets at eah output using an1They refer to their arhiteture as a Parallel Shared Memory Router, but it is isomorphi to SMS.4

SMS arhiteture. By emulation, we mean that for any arrival sequene (1) a paket is droppedby the SMS router i� it will be dropped by the output-queued router, and (2) if a paket is notdropped then the yle in whih it departs the SMS router must be same as the yle in whih itwould have departed the output-queued router.The yle in whih a paket would have departed an output-queued router is referred to as itstime-stamp. When a paket arrives at an input of an SMS router, its time-stamp is omputed asdesribed in setion 2.4. In eah yle, pakets at the inputs are written to a subset of memoriesthrough the �rst interonnet, and pakets whose time-stamp is equal to the urrent time are readfrom the memories and transferred to the outputs through the seond interonnet.2.2 ConitsIn the SMS arhiteture eah memory an support one read and s writes per yle. Hene paketsannot be arbitrarily plaed in the memories. A paket faes two kinds of onits. More thans pakets that arrive at the same time annot be written to the same memory; this is referred toas an arrival onit. Sine there are N input ports, the maximum number of arrival onits apaket an have is d(N � 1)=se. Departure onits our if multiple pakets in the same memoryneed to depart simultaneously through di�erent outputs. Sine there are N outputs, a paketan have departure onits with at most N � 1 memories. Hene if the number of memoriesM � d(N � 1)=se +N there will always be a onit-free memory for eah paket. A onit-freememory for an input is said to be ompatible with that input.2.3 Sheduler tasksIn order to onstrut a onit-free shedule for transfer of pakets the sheduler has three tasksto perform in every yle.Task 1 Compute the time-stamp of all the newly arrived pakets.Task 2 Math the newly arrived pakets to memories suh that there are no departure and arrivalonits.Task 3 Read pakets whose time-stamp is equal to the urrent time and transfer them to theoutput.Sine the time-stamp of a paket is known when it is written to a memory, Task 3 is simple. Webriey desribe how Tasks 1 and 2 are performed. Task 2 is the most omplex step and is the fousof this paper.2.4 Task 1: Time-stamp omputationAn array E[1 : : : N ℄ stores the earliest available time-slot for eah output.Let P o1 through P oo be the pakets destined for output port o that arrived in the yle T and letthem be ordered aording to the id of the input port they arrived. Then time-stamp of paket P oiis set to (E[o℄ + i) and E[o℄ is set to max((E[o℄ + o; T). This time-stamp assignment is onsistentwith the requirement of emulating an output-queued router, and an be eÆiently omputed bysimple iruitry.If the di�erene of time-stamp of a paket and urrent time is greater than L then it is dropped.This behavior is onsistent with the behavior of an output-queued router with bu�er of size L ateah output. 5

2.5 Task 2: Sheduling using graph mathingFor routers that are relatively small and slow, the SMS arhiteture an emulate output-queuing byusing a straightforward greedy sequential algorithm to ompute an assignment of inoming pak-ets to ompatible memories. However for routers with many ports operating at high speeds, thesequential algorithm is not fast enough to ompute the assignment. The only known parallel algo-rithm for omputing the assignment is that of Prakash et al. [26℄; however, it has the disadvantagesmentioned in Setion 1.1.3 Computational ModelIn Setion 4 we desribe simple and fast algorithms for Task 2. In this setion we desribe the mainfeatures of the abstrat model of the interfae between the input ports and the memory banks inthe SMS arhiteture.� There are N input ports, eah with a bu�er that an hold I pakets. At eah input port, theurrent paket is the paket at the head of that input bu�er. In our basi algorithm I is aonstant; in the pipelined version I = O(log�N). There are N output ports, whih need tobu�er only one paket eah.� There are M � N memory banks, and eah an hold up to K pakets. Our shedulers workforM = (1+(1=s)+�)N , where � is either an arbitrarily small onstant or is o(1) as desribedlater.� There is simple hardware at the input ports as desribed in [26℄ (and summarized in Setion 2.4of this paper) that omputes the departure time stamp for eah urrent paket at the startof eah yle, based on the paket's output port.� Eah input port and memory bank has O(logN) depth iruitry of size ~O(N). Note that asrouters beome larger, distributing the hardware for omputing the shedule aross the inputports and the memory banks is preferable to having a separate entralized proessing unit.� There is a dediated wire onneting every (input port, memory bank) pair. This investmentin hardware is not onsidered exessive if the wire needs to support transfer of only a few bitsper yle (see, e.g., [2, page 6℄, [22℄). With this hardware support, eah input port an senda short message to eah memory bank (and vie versa) in one ommuniation step. At thereeiving end the identity of the transmitting node an be determined by examining the wirealong whih the message arrives. We will refer to suh a ommuniation step as a transmitstep.Under urrent tehnology, the time taken by a transmit step dominates the ost of O(logN) timeomputation in hardware at a single input port or memory bank. However, it is onsiderably fasterthan the time taken to transfer a paket through the rossbar, sine a paket is typially hundredsof bits long.4 The Sheduling AlgorithmsIn setion 4.1 we desribe a basi randomized sheduling strategy for mathing input pakets toompatible memory banks. We measure performane in terms of rounds, where a round is a transmit6

step together with O(logN) time omputation at eah input port and eah memory bank. Ourbasi sheduler runs in O(log�N) rounds.In setion 4.2 we present a pipelined version of our basi sheduler with a lateny of O(log�N)rounds, but with the improved performane of onstant throughput. Thus in this sheme the lagbetween suessive transfers of of pakets from input ports to memory banks is a onstant numberof rounds. Sine in many networks, the limiting feature for the yle time is the router and notthe link speed, this will have the desirable e�et of reduing the yle time, thus improving thebandwidth.4.1 The Basi Mathing AlgorithmIn this disussion eah input is identi�ed with the paket that just arrived at that input. Reallthat an input i is ompatible with a memory m if the paket that just arrived at i an be stored inmemory m without arrival and departure onits (see Setion 2.2).Anderson et al. [2℄ proposed an algorithm somewhat similar to ours whih they alled \ParallelIterative Mathing (PIM)." PIM was developed for a ompletely di�erent arhiteture, namelya rossbar-based input-queued router with \virtual output queues." In their ase they need toompute a maximal mathing in an arbitrary bipartite graph, and they prove that the expetednumber of rounds for their algorithm is O(logN).At the beginning of a yle, the time-stamp of eah input port is broadast to eah memoryand memories onstrut a list of inputs that are ompatible with the memory. The algorithm thenworks in rounds aording to the `Basi Mathing Proess' given below. Initially all the memorybanks are unmathed.Basi Mathing Proess:1. In parallel eah unmathed memory sends a message to a random ompatible input port.2. In parallel eah input port i piks a memory bank j that sent it a message and assigns itsurrent paket to that memory bank. It then broadasts a bit to all memory banks to informthem that it is no longer available to be mathed (the bit sent to memory bank j is a 1 andthe bit sent to all other proessors is 0).3. In parallel eah memory bank that reeives a 1-bit from its mathed input derements aounter initially set to s. If the ounter goes down to zero, the proessor delares itselfmathed.4.1.1 Analysis of the Basi Mathing AlgorithmIn this setion we establish that if M = (N + dN=se + �N), for any � > 1=2log�N , then w.h.p. inN , the number of rounds needed to math every input to a ompatible memory bank is O(log�N).The analysis views the omputation in the `balls-in-bins' framework, and the slight exess in thenumber of available memory banks over the bound of (N + d(N � 1)=se) given in setion 2.2 allowsfor the aeleration in the mathing proess in suessive rounds leading to the O(log�N) bound.Randomized strategies with O(log�N) omplexity are known in the literature for other senarios,e.g., in the ontext of highly-parallel algorithms for the CRCW PRAM [19℄ and in emulatingshared-memory on distributed memory (see, e.g., [8℄), and our strategy is similar to these in termsof aelerating progress in suessive rounds. However, our framework and analysis are di�erent.Our main theorem is proved through a sequene of lemmas.7

Lemma 4.1 If there are k unmathed inputs at a beginning of a round then there must be (�N +dk=se) unmathed ompatible memory banks for eah input.Proof: A memory bank ould be unavailable for a given input beause of two reasons, eitherbeause there is already a paket in that memory (either stored in previous yles or mathed tothat memory for urrent yle) that has the same time-stamp or beause s other inputs have beenalready mathed to that memory. There ould be at most N � 1 pakets with same time stamp,that ould eliminate N �1 memories as potential math. Sine N �k inputs have been mathed tomemories, there ould be at most b(N � k)=s memories that have been mathed to s inputs. Thisould further eliminate at most b(N � k)=s memories as a potential math. Thus we will have atleast M � (N � 1)� b(N � k)=s > �N + dk=se memories that are ompatible with a given input.De�ne a round that starts with k unmathed inputs to be suessful if it ends with at mostke�(1=s+�N=k) + p2M logM unmathed inputs. In the following lemma we prove that w.h.p. around is suessful.Lemma 4.2 If there are k unmathed inputs and M memories at the beginning of a round andeah input an be mathed to at least �N+dk=se memories, then the expeted number of unmathedinputs at the end of that round is at most ke�(1=s+�N=k). Furthermore the probability that the numberof unmathed inputs exeeds its mean by more than p2M logM is at most 1M .Proof: First we bound the expetation. Let �(m) be the set of unmathed inputs that an bemathed to memory m and let �(i) be the set of unmathed memories that an be mathed toinput i. Clearly j�(m)j � k and j�(i)j � �N + k=s.Let Cm be the index of the input to whih memory i sends a request. Thus Pr[Cm = j℄ =1=j�(m)j if j 2 �(m) and 0 otherwise. Let C = (C1; C2 : : : ; CM) and de�ne the random variableXi(C) to be 1 if 8j: (Cj 6= i) and 0 otherwise. Informally Xi(C) indiates that input i did not geta request from any of the memories. Sine an input is mathed if and only if it gets a request fromat least one of the memories, Xi(C) = 1 implies input i did not get a math in that round. LetX(C) =PiXi(C) be the total number of unmathed inputs at the end of the round. Then,E(X(C)) = k(1 � 1=k)(�N+dk=se)� ke�(1=s+�N=k):We now use Azuma's inequality [1℄ to bound the probability of deviation. Let us de�ne asequene of random variables Y0 through YM as followsYm(C) = E(X(C)jC1; C2; : : : ; Cm�1):In partiular, Y0(C) is equal to the onstant E(X(C)) and YM (C) is idential to X(C). SineE(YmjYm�1) = Ym�1 the sequene of random variables Ym is a martingale. Furthermore if C andC0 di�er in hoie of only one memory then that memory ould hoose at most one input that wasnot hosen by any other memory. Thus the di�erene in number of unmathed inputs an be atmost one. Hene by Azuma's inequality we have Pr �X(C) > E(X(C)) +p2M logM� < 1M .Sine 1=M � 1=N , the �rst O(log�N) rounds are suessful w.h.p. in N . The followingdisussion assumes that they are suessful.Let kr be the number of unmathed inputs at the beginning of round r. We know that k0 = Nand kr dereases in suessive rounds. Let R be the last round for whih kR � Wp2M logM ,8

where W is a onstant hosen to ensure that kr+1 � (kr=�)e� �Nkr for r < R, where 1 < � < e1=s.We will prove that R = O(log�N). (Note that by Lemma 4.1 and a Cherno� bound, w.h.p. in Nall inputs are mathed in round R+ 1.)For a > 1 and integer i � 0 we de�ne a "" i = g(a; i), where g(a; 0) = 1 and g(a; i) = ag(a;i�1)for i > 0.Lemma 4.3 For every onstant > 0 there exists a onstant b = e�= suh that if there are kunmathed pakets at the beginning of a round r < R and for some positive integer i we havek � Nb""i then the number of unmathed inputs at the end of that round is at most k�(b""(i+1)) , w.h.p.in N .Proof: The number of unmathed inputs at the end of round is at most k�e�N=k � k�e�(b""i)= =k�b(b""i) .From Lemma 4.3 it trivially follows that kr+1 � kr=�. Let A = dlog� ln 2� e. Hene after A initialrounds we have kA � N�= ln 2. Now substituting = �= ln 2 in Lemma 4.3 we have b = 2, andhene kr � N�(ln 2)(2""i) implies kr+1 � kr�(2""(i+1)) � N(2""(i+1)) .Sine kA � N�= ln 2, applying the above inequality repeatedly we obtain kr+A � N�(2""r) . Thusat the end of A+log�N rounds we annot have more than Wp2M logM unmathed inputs. SineWp2M logM inputs an be mathed in a single round w.h.p. in N , we an math all the inputsin A+log�N +1 = O(log�N) rounds, if � =
(1=2(1=s) log�N). This gives us the following theorem.Theorem 4.4 If the router an transfer s pakets to eah memory in a yle, then if M = N +dN=se +
(N2(1=s) log� N), repeated appliations of the basi mathing proess will math all inputs tomemories in O(log�N) rounds with high probability in N .4.2 Pipelined Randomized ShedulerThe sheduling algorithm desribed in the previous setion uses O(log�N) rounds of the basimathing proedure. Thus the yle time must be suÆiently long to be able to omplete theseO(log�N) rounds, and as N inreases the yle time must inrease resulting in a drop of throughput.In this setion we address this drawbak by presenting a pipelined sheduler that exeutes eahyle in a onstant number of rounds.The pipelined sheduler uses multiple yles to onstrut a mathing for eah set of pakets thatarrive together. However mathings are onstruted for multiple sets of pakets simultaneously ina pipelined fashion. Consequently, the amount of omputation per yle redues but pakets waitfor D yles at the inputs before they are transferred to the memories. The value D is the latenyof the pipelined sheduler (we will show later that D = O(log�N)). The input bu�er size I equalsD, and pakets are stored FIFO.Let P o1 through P oo be the pakets destined for output port o that arrived during yle T andlet them be ordered aording to the id of the input port they arrived. We maintain an arrayearliest[1 � � �N ℄ to keep trak of earliest time-stamp available for any output, after taking latenyinto aount. The time-stamp of paket P oi is then set to earliest[o℄ + i + D and earliest[o℄ isupdated to max(earliest[o℄ + o; T).In yle T the pakets that arrived between yles T �D and T are in the input bu�ers andat the end of yle T the pakets that arrived at yle T � D that are mathed are transferredto the memories. Eah input port will have an initial sequene of pakets in its bu�er that havebeen mathed to some memory by the sheduling algorithm in earlier iterations, and the remainingpakets are not yet mathed by the sheduling algorithm. At any point in the sheduling algorithm,9

the �rst unmathed paket in eah bu�er is the ative paket for the step, and the basi mathingproess will be applied to the set of ative pakets.Let the urrent yle be T . A stage of the pipeline exeutes the three steps in the followingpipelined mathing proedure ! times, where ! is an integer onstant to be de�ned later in theanalysis.Pipelined Mathing Proedure(a) The input ports perform a transmit step in whih eah input port broadasts to all thememories the time-stamp of its ative paket (as in the �rst sheduling algorithm) togetherwith its arrival time mod D.(b) In parallel, eah memory bank piks an index i between 0 and D, and mathes itself toa random ompatible input with exatly i unmathed inputs. The index i is hosen withprobability pi, where pi = 1=2i+1 if i < D and pD = 1=2D .() Eah mathed ative paket is replaed by the �rst unmathed paket in its bu�er.Finally, all mathed pakets that arrived in yle T �D are transferred to the memory banks, andthis onludes the stage. Any unmathed paket that arrived in yle T �D is dropped.We show below that w.h.p. every paket that arrived in yle T �D will be mathed at the endof this stage. Note that the pipelined sheduling algorithm performs a onstant number of roundsper stage.4.2.1 AnalysisOur analysis assumes that M = (1 + (1=s) + �)N , where � is an arbitrarily small positive onstant.The omplete analysis is in the Appendix. Here we present a simpli�ed analysis for the ase when� and s are both 1.We start by analyzing a variant of the basi mathing proess in whih only a random sample ofthe memory banks attempt to math themselves to the inputs. The rounds start with round i = 0to failitate relating this proess to the rounds in the pipelined mathing proess. In the ith roundof this `sampled mathing proess' eah memory bank attempts to math itself with probability1=2i+1, for i � 0. We now desribe this algorithm and we establish that it omputes a perfetmathing in O(log�N) rounds. The base used for the logarithm for the log�N analysis is not 2,but a value b, whih is less than 2 but greater than e1=e. (We note that b "" i remains less thane for all i if b < e1=e.) The more detailed analysis in the appendix, whih works for any � > 0,establishes the result using the traditional base 2.Sampled Mathing Proess:for i = 0; 1; � � � in parallel1. eah unmathed memory sends a message to a random ompatible input port with probability1=2i+1 and does nothing with probability 1� 1=2i+1.2. eah input port i piks a memory bank j that sent it a message and assigns its urrent paketto that memory bank. It then broadasts a bit to all memory banks to inform them that itis no longer available to be mathed (the bit sent to memory bank j is a 1 and the bit sentto all other proessors is 0). 10

3. In parallel eah memory bank that reeives a 1-bit from its mathed input derements aounter initially set to s. If the ounter goes down to zero, the proessor delares itselfmathed.Let b = e(1=2�Æ) where 0 < Æ < 1=2 � 1=e, and let zi = N2i+1�b""i .Lemma 4.5 After the ith iteration of the Sampled Mathing Proess, the number of unmathedinputs is � maxfpN; zig w.h.p. in N , where zi = N2i+1�b""i .Proof: We observe that in iteration i for any given unmathed input port p, the expeted numberof proessors ompatible with p that send a message to some ompatible input is � (N+N�)=2i+1 =N=2i. Using a Cherno� bound we an show that with very high probability, for any onstant > 0,at least (1�) �N=2i of the proessors that are ompatible with a given unmathed input port doatually send a message in that round.For i � 0, let xi denote the number of unmathed inputs that remain after the ith iterationof the sampled mathing proess. For the base ase of the lemma we note that E[x0℄ � N � (1 �1=N)(N+N�)�(1�Æ)=2 � N=e(1�Æ). Hene by applying Azuma's inequality as in the proof of Lemma4.2 we have that x0 � N=b w.h.p. in N .Assume indutively that the result holds for xi�1 for some i > 0, and onsider xi. We haveE[xi℄ � xi�1e (xi�1+N�)�(1�Æ)xi�1�2i+1� N2i � 2 "" (i� 1) � eN�(1�Æ)�2i �b""(i�1)2i+1�N� N2i+1 � e(1=2�Æ=2)�b""(i�1)� N2i+1 � b "" iIf E[xi℄ � pN by Azuma's inequality we have that xi � N2i+1b""i w.h.p. in N .Let us now return to the analysis of the pipelined mathing proess, and let D = log�b N .Let Qi(T) be the set of input ports that have i unmathed pakets at the start of yle T , andlet qi(T) = jQi(T)j. Let si(T) = PDk=i qk(T). We de�ne a prediate �0(T) to be true i� for alli � D, si(T) � zi.Theorem 4.6 If �0(T � 1) is true then w.h.p. in N , �0(T) is true.Proof: Consider the start of yle T . Note that for any input port with i unmathed pakets, thenumber of pakets that an be mathed at that port during yle T � 1 is 0, 1, or 2 (sine we haveassumed that ! = 2). Let ri(T � 1) be the number of inputs that had i or i� 1 unmathed paketsat the start of yle T � 1 and have at least i � 1 unmathed pakets at the end of yle T � 1.Sine one new paket arrives at eah input port at the start of yle T , we havesi(T) = DXk=i qk(T) � DXk=i+1 qk(T � 1) + ri(T � 1)� si+1(T � 1) + 3zi+111

The last equation above uses the inequality ri(T � 1) � 3zi+1. We an establish this as follows:Let n1 be the number of ative inputs in Qi(T�1) that are unmathed after the �rst iteration ofstage T � 1, let X be the set of inputs that have i� 1 unmathed pakets after the �rst iteration ofstage T �1, and let n2 be the number of inputs in X that are unmathed after the seond iterationof stage T � 1. Then ri(T � 1) = n1 + n2.Sine qi(T � 1) � si(T � 1) � zi (by the indution assumption), we have n1 � zi+1 by Lemma4.5.For n2 we note that jXj = x1 + x2, where x1 is the number of inputs that had i unmathedpakets at the start of yle T �1, and have i�1 unmathed pakets after the �rst iteration, and x2is the number of inputs that had i� 1 unmathed pakets at the start of yle T � 1 and ontinueto have i � 1 unmathed pakets after the �rst iteration. Clearly, x1 � qi(T � 1), and x2 � zi bythe behavior of the sampled mathing proess on inputs that had i� 1 unmathed pakets at thestart of yle T � 1. Hene, jXj � qi(T � 1) + zi � zi + zi � 2zi. In the seond iteration of stageT � 1 of the pipelined mathing proedure eah ompatible proessor hooses an ative paket inX with probability 1=2i sine eah input in X has exatly (i� 1) unmathed pakets. Henen2 � 2zie (2zi+N)�(1�Æ)2zi�2i � 2 � zi+1Hene ri � 3zi+1. So we havesi(T) � si+1(T � 1) + 3zi+1 � 4zi+1 � ziCorollary 4.7 W.h.p. in N , all pakets that arrived in yle T �D have been mathed by end ofyle T .Proof: From the theorem, qD(T � 1) = sD(T � 1) � max(pD;pN) = pN . During the �rstiteration of yle T , the basi mathing proedure is applied to these pN inputs. Hene w.h.p. inN all pakets that arrived in yle T �D are mathed after this step, and ertainly by the end ofyle T .Sine �0(0) is trivially true, by Theorem 4.6 we an argue indutively that �0(T) is true whenT = O(N). However as T grows large, the probability that �0(T) will ontinue to be true beomessmall and then we an no longer guarantee that all the pakets that arrived in yle T � D willbe mathed at the end of yle T . However our algorithm has a \self-stabilizing" property, i.e., if�0(T) beomes false for some T , within O(logN) yles the input queues get bak to a state wherethe prediate �0 is true.De�ne a series of prediates �j(T) suh that �j(T) is true i� for all i, si(T) � (�)jpi for someonstant � > 1. Note that �j(T) implies �k(T) if k � j.Theorem 4.8 If j > 0 and �j(T � 1) is true then, w.h.p, �j�1(T).Proof: (Sketh.) Reall that in the proof of Theorem 4.6 we proved that si(T) � 3zi. Using asimilar argument here we an prove if that �j(T � 1) is true then si(T) � 3�jzi. Now for > 3�we get si(T) � �j�1zi. If j > 0 then s0 � p0 trivially. Hene �j�1(T).Now sine �log�N (T) is always true, in log�N steps we get bak to a state where �0(T) is true.This establishes the self-stabilizing feature of our pipelined algorithm.12

5 Memory RequirementsThe memories used to bu�er pakets ontribute signi�antly to the total ost of a router. Thus itis important to minimize both the number of memories used, and the size of eah memory.Routers need a large amount of memory in order to ahieve low drop rates. Studies of Ekberg etal. [10℄ reveal that paket drop probability signi�antly dereases if memories an be shared arossthe queues for di�erent outputs. Ekberg et al. show that for a Poisson paket arrival proess, theamount of bu�er required to ahieve a ertain drop probability when the arrival rate of pakets ismore than 90% of the total apaity of the router, redues by a fator of 4 if a shared memory isused.In this setion we establish that our shedulers make very e�etive use of memory. In setion5.1 we show that the total memory used by our shedulers is very lose to the minimum needed.In setion 5.2 we show that the number of memory banks used by our shedulers is also lose tothe best possible.5.1 Load BalaneOne of the features of our algorithms is that they distribute pakets evenly aross the memorybanks. This enables us to ahieve the e�et of a pure shared memory. This is independent of anyassumptions on the paket arrival proess, as shown in the theorem below.Theorem 5.1 Consider an SMS swith with N input and output ports, M memory banks, eah ofsize K, and with eah shared bu�er supporting s writes per yle. Let Q be given as an upper boundon the total number of pakets in the memories in any yle. If K � Q=M + p2sZ logM , with > 1, then w.h.p. in M both of our SMS shedulers an bu�er pakets for up to Z yles withoutdropping any pakets.Proof: The result follows through the use of Azuma's inequality on the martingale that onsidersthe number of pakets in any given memory bank in eah yle.Consider an arrival sequene of pakets that leads to bu�ering of a total of R pakets at theend of T � 1 yles. Let Ui be the map that maps pakets that arrived at yle T � 1�Z+ i to thememories in whih they were stored. Let U = (U1; U2 � � �UZ) and let Vm be the random variabledenoting number of pakets stored in memory m at the end of (T � 1)-th yle. Note that sine allthe pakets in memory arrived within last Z yles, U has suÆient information to ompute Vm.Sine there is no speial bias for any of the memories, E(Vm j R) = R=M . De�ne a sequene ofrandom variables Wi = E(VmjU1; U2 : : : Ui); 0 � i � Zwhere W0 = E(Vm) and WZ = Vm. Sine E(Wi j Wi�1) = Wi�1, the sequene of random variablesWi is a martingale. Furthermore if U and U0 di�er in only one of the Ui for (T �Z�1+ i)-th yle,at most s paket ould be stored in memory m in that yle, and at most one an leave. ThereforeVm satis�es s�Lipshitz ondition, i.e., jVm(U)� Vm(U0)j � s. Thus using Azuma's inequality weobtain Pr hjWZ �W0j > p2sZ logMi < e�2s logM=2s = 1M Thus, [1�m�M Pr hVm � R=M +p2sZ logMi � 1M �1 :Sine R � Q and > 1, we have the desired result w.h.p. in M .13

Corollary 5.2 Consider an SMS swith that emulates an output-queued swith with N ports andoutput bu�er size L with M memory banks, eah of size K, and eah supporting s shared writes peryle. If K � LN=M +p2sL logM , where > 1 is a onstant, then with high probability, both ofour shedulers will not drop a paket that will not be dropped by that output-queued swith.Proof: Use L = Z and Q = LN in the theorem.Note that in general, an output queued swith will use a onservative value for L to allowfor oasional bursts of traÆ for a single output. Thus the value of Q in the above theoremis typially muh smaller than LN , and hene our sheduler would typially make muh betteruse of the memory than a orresponding output-queued swith. Also, note that sine typiallyQ=M >> M >> logM , the value of K an be hosen to be only very slightly larger than Q=M ,the minimum size needed, and the paket drop probability ould be held very small even if Z ismade very large. Note also that the value of Z in the above theorem is limited in only a weak wayby the upper bound plaed on the value on Q even if the value of K is to be held lose to Q=M .5.2 Number of Memory BanksEven though the umulative size of memories in an SMS arhiteture an be lose to that of anoutput-queued router, having a large number of small memories is slightly more expensive thanhaving a small number of large memories.We have shown that that (1 + d1=se + �)N memories are suÆient for an SMS router withspeedup s to emulate an output-queued router. It is natural to investigate how many memories areatually neessary. First we examine what an o�-line algorithm an ahieve.Lemma 5.3 If an algorithm has knowledge of the omplete arrival sequene then N memories aresuÆient to store the pakets while satisfying arrival and departure onits.Proof: Construt a bipartite multi-graph G(V;W;E) in whih the set of verties V representarrival times of pakets, the set of verties W represent the departure times of pakets and oneedge (v; w) 2 E is present for every paket that arrives at time v and departs at time w. Sine atmost N pakets arrive at any yle and at most N pakets depart every yle the maximum degreeof any vertex in G is N . Thus by Birkho�'s theorem [29, Page 40℄ it an be edge-olored using Nolors and pakets belonging to every olor-lass an be stored in one memory.The requirement on N memories is also trivially a lower bound sine there are potentially Nnew pakets in a yle.Of ourse, in the ontext of a router, the algorithm has to operate on-line. Now we look at theabsolute minimum number of memory banks that is required if an adversary is allowed to plaepakets in the memories.Lemma 5.4 If an adversary plaes pakets in the memory then it is neessary to have N + d(N �1)=se memories in order to satisfy arrival and departure onstraints.Proof: Consider the ase where at every yle T < N2 � 1, exatly 2 pakets arrive for output(Tmod(n � 1)) + 1, one paket arrives for every output o suh that o 6= (Tmod(n � 1)) + 1 ando < N , and no paket arrives for output N . At yle N2 � 1, the total number of arrivals at eahoutput between 1 to N�1 would be N2+N but the total number of pakets that departed througheah output would be N2 � 1. Thus there would be N + 1 pakets in the memory for eah outputfrom 1 to N � 1. Hene for eah of the next N + 1 yles we will have N � 1 pakets sheduledto depart. An adversary ould hoose a set B of N � 1 memories and plae all of these pakets14

into the memories in B suh that eah memory stores one paket of eah time-stamp between N2and N2 + N . Now if N pakets arrive all destined for output N , then eah paket will have adeparture onit with eah memory in B. Thus all of these new pakets must be stored in somememory that is not in B and no 2 pakets an be stored in same memory. Therefore there mustbe additional N memories. Hene we need 2N � 1 memories to store the pakets.Sine our algorithm ontrols the plaement of pakets in the memory it is possible that suhan algorithm an make do with a smaller number of memory banks than the bound in Lemma 5.4.We now show that it is impossible for an SMS router with less than 9N=8 memories to behaveidentially to an output-queued router, regardless of how sophistiated its sheduling algorithm is.In partiular this means that we annot ahieve the o�-line optimal behavior in the on-line asewith only N memory banks, or even with N + ÆN memories, if Æ < 1=8.Theorem 5.5 There is no deterministi algorithm that an math any sequene of paket arrivalsto memories while satisfying arrival and departure onstraints if the number of memories is M =N +� and � < N=8. Furthermore, for any randomized algorithm there exists an arrival sequenefor whih it will fail with probability at least 1=2.In order to prove the theorem we will use a set of lemmas that show that if we have a sequeneof subsets of size lose to half of the original set suh that any two onseutive sets are disjoint,then any pair sets with even sequene number have a signi�ant intersetion.Lemma 5.6 If X;Y;Z � [N +�℄ suh that jXj = jY j = jZj = N=2 and X \ Y = Y \ Z = ; thenjX \ Zj � N=2��.Proof: Sine X \ Y = Y \ Z = ;, both X and Z are subsets of Y . Sine all sets are subsets of[N +�℄ and jY j = N=2, we have jY j = N=2 +�. Hene the minimum size of X \ Z is N=2 ��,i.e., jX \ Zj � N=2 ��.Lemma 5.7 For any three sets X,Y ,Z of size N=2 if jX \ Y j � N=2 � � and jY \ Zj � N=2 � �then X \ Z � N=2 � �� �.Proof: The result follows from the observation that jX \ Y \ Zj � N=2 � � � �. [℄Lemma 5.8 For any series of sets S0; S1 � � �S2m 2 [N +�℄ if jSij = N=2 and Si \ Si+1 = ; then,jS0 \ S2mj � N=2�m�.Proof: The base ase when m = 1 follows from Lemma 5.6. Let the lemma be true for somem = p. Thus jS1 \ S2pj � N=2� p� and jS2p \ S2p+2j � N=2 ��. Therefore from Lemma 5.7 weget jS1 \ S2(p+1)j = N=2 � (p+ 1)�.We an now prove Theorem 5.5. We will do so by de�ning two paket arrival sequenes suhthat based on hoies made by any algorithm, an adversary an always hoose one of the arrivalsequene for algorithm to fail if � < N=8.Assume the number of outputs is even. Let O1 be a set of N=2 outputs and O2 be remainingset of outputs. De�ne ai (bi) to be the set of pakets that depart at time i and are destined for anoutput in O1 (O2). Our arrival proess is suh that jaij = N=2 or 0 and all the pakets for any setai arrive in the same yle. Similarly jbij = N=2 or 0 and all the pakets in any set bi arrive in thesame yle.Now we will present two arrival sequenes. The two arrival sequenes are desribed in Table 1.Both sequenes have a ommon prologue till time 9 as desribed in the �rst olumn of the table. The15

seond and third olumns desribe the pakets that arrive in sequene 1 and sequene 2 respetivelyafter prologue. A dash in the input olumn indiates that no pakets arrived at those N=2 inputs.It is easy to verify that the time-stamp assignments are onsistent with output queuing. We willuse A�i (B�i) to represent the set of memories that the paket of ai (bi) will be stored in, wherethe supersript � is either p, 1 or 2 based on whether the set of pakets orrespond to prologue,sequene 1 or, sequene 2 respetively. Sine all the pakets departing together must be stored indi�erent memories, if ai 6= ; then jA�i j = jaij = N=2. Similarly if bi 6= ; then jB�i j = N=2.For notational onveniene, we introdue the in�x binary relational operator 6$ denoting setdisjointness, i.e., U 6$ V i� U\V = ;. From arrival time onstraints we get Ap11 6$ Ap12, B112 6$ B113,B212 6$ B213, and A214 6$ B211, and from departure time onstraints we get Ap11 6$ B211, Ap12 6$ B112,Ap13 6$ B113, Ap13 6$ B213, and A214 6$ B214.Now sine there are a total of N +� memories and Ap11 is onneted to B211 through a hain of8 6$ relations, from Lemma 5.8 we set B211 \ Ap11 � N=2 � 4�. But we know that B211 \ Ap11 = ;.Thus N=2 � 4� � 0 or � � N=8.Therefore we onlude that if � < N=8 any deterministi algorithm will fail. Furthermore, ifany randomized algorithm, hooses Ap11 and Ap13 suh that it works orretly for sequene 1 withprobability � then it must fail for sequene 2 with probability �. Thus the worst ase probabilityof failure for any randomized algorithm is at least max(�; 1� �) � 0:5.Prologue Sequene 1 Sequene 2time input time input time input1 a1 a2 10 b11 � 10 b11 a142 a3 a4 11 b12 b13 11 b12 �3 a5 a6 12 b13 b144 a7 a85 a9 a106 a11 a127 b7 b88 b9 b109 a13 �Table 1: Adversarial arrival sequene.A Detailed Analysis for Setion 4.2We now give a detailed analysis of the pipelined randomized sheduler based on the pipelinedmathing proedure in setion 4.2, for the ase when s is a positive integer, and � > 0 is anarbitrarily small onstant. Let = �=s.It is interesting to note that log�bN is not de�ned for all values of N , if b � e1=e. In fat,if b � e1=e then (b "" i) � e for any value of i. Thus we annot simply repeat the analysis inSetion 4.2 with b = e (1�Æ)2 . Here we present a more involved proof.Reall that zi = N2i+1(b""i) . We will set b = 2 for this analysis. Let D be the smallest integersuh that zD � pN . Clearly D = O(log�N). Let Qi(T; t) be the set of input ports that have iunmathed pakets at the start of t-th iteration of the pipelined mathing proedure in yle T , andlet qi(T; t) = jQi(T; t)j. Let si(T; t) =PDk=i qi(T; t).We de�ne a series of prediates �0(T); : : : ;�D(T). Prediate �j(T) is de�ned to be true i� forall i � D, si(T; 0) � zi�j , where zi = N if i � 0. Note that this is a re�nement of the prediates16

�j de�ned in the extended abstrat (as are si, qi and Qi).Theorem A.1 There exist a suitable onstant ! suh that if eah stage exeutes ! iterations ofpipelined mathing proedure then �0(T) implies �0(T + 1) w.h.p. in N .In order to prove the above theorem we will �rst need the following lemma.Lemma A.2 If si+1(T; t) � a and si(T; t) � a + b then w.h.p. in N we must have si(T; t + 1) �a+ be�N=(2ib)=�.Proof: Let qi(T; t) = x and si+1(T; t) = y. If x � pN then at the end of that iteration w.h.p. inN all the inputs in Qi(T; t) will get mathed. Otherwise, we will have at most xe�N=(x2i)=� inputswith i unmathed inputs that were also in Qi(T; t) (similar to Lemma 4.2). Let Æ be the number ofinputs that got mathed in Qi+1(T; t) thus qi(T; t+1) � xe�N=(2ix)=�+Æ and si+1(T; t+1) � y�Æ.Therefore, si(T; t+ 1) = si+1(T; t+ 1) + qi(T; t+ 1) � y + xe�N=(2ix)=�. Thus,si(T; t+ 1) � maxy�a; x+y�a+b(y + xe�N=(2ix)�):It is straightforward to show that the funtion on the R.H.S. ahieves its maxima at y = a andx = b. Substituting that we get the desired result.Substituting a = zi+1, b = zi�zi+1 and t = 0 in the above lemma we get si(T; 1) � zi+1+ zi�zi+1� .Sine zi+1 � zi=2 we get si(T; 1) � �zi, where � = 1=2 + 1=2� < 1. Similarly si+1(T; 1) � �zi+1.Thus applying this argument repeatedly we get si(T; f) � �fzi. Let g be a onstant suh that�g � min(1=2; = ln 2). Thus si(T; g) � zi�g and si+1(T; g) � zi+1�g.Substituting a = zi+1�g and b = zi�g and t = g in Lemma A.2 for the next iteration it is notdiÆult to show that si(T; g + 1) � �g �zi+1 + zie� N�g2izi � � zi+1:Thus if we set ! � g + 1, We have si�1(T; !) � zi. Sine at most one paket arrives in a yle,si(T + 1; 0) � si�1(T; !) � zi. Hene �0(T + 1) holds with high probability in N .Lemma A.3 If �0(T) is true, w.h.p. in N , all pakets that arrived in yle T � D have beenmathed at the end of yle T .Proof: From the de�nition of �0(T) we get qD(T; 0) = sD(T; 0) � pN . Thus w.h.p. in N allthe inputs in QD(T; 0) get mathed in the �rst iteration of pipelined mathing proedure. ThusqD(T; 1) = 0, i.e., no input has D unmathed pakets. Thus all the pakets that arrived T � Dyles earlier are mathed.Sine �0(0) is trivially true, by Theorem A.1 we an argue indutively that �0(T) is true forT = O(N). However as T grows large, the probability that �0(T) will ontinue to be true beomessmall and then we an no longer guaranty that all the pakets that arrived in yle T � D willbe mathed at the end of yle T . However if we set ! � 2(g + 1) our algorithm beomes \self-stabilizing" , i.e., if �0(T) beomes false for some T , then within D yles the input queues getbak to a state where the prediate �0 is true.Note that �j(T) implies �k(T) if k � j.Theorem A.4 If j > 0 and �j(T) is true then, w.h.p, �j�1(T + 1) is true.17

Proof: Reall that in the proof of Theorem A.1 we proved that if si(T; 0) � zi then si(T; g +1) � zi+1. Using a similar argument if si(T; 0) � zi�j then si(T; (g + 1)) � zi�j+1. If we applyanother g + 1 iterations we get si(T; 2(g + 1)) � zi�j+2. Thus setting ! = 2(g + 1), we getsi(T + 1; 0) � si�1(T; 2(g + 1)) � zi�j+1. Hene �j�1(T + 1) holds.Sine �D(T) is trivially true, in D steps we get bak to a state where �0(T) is true. Thisestablishes the self-stabilizing feature of our pipelined algorithm.

18

Referenes[1℄ Noga Alon and Joel H. Spener. The Probabilisti Method. Wiley, John & Sons, Inorporated,2000.[2℄ T. Anderson, S. Owiki, J. Saxe, and C. Thaker. High-speed swith sheduling for loal areanetworks. ACM Transations on Computer Systems, November 1993.[3℄ A. Prakash, A. Aziz, and V. Ramahandran. Randomized Parallel Shedulers for Swith-Memory-Swith Routers: Analysis and Numerial Studies. manusript, June 2003.[4℄ R. Barker, P. Massiglia, and L. Krantz. Storage Area Networking Essentials. MGraw-Hill,2001.[5℄ C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load balaned Birkho�-von Neumann swithes, partI: one-stage bu�ering. Computer Communiations, 2001.[6℄ C.-S. Chang, D.-S. Lee, and C.-M. Lien. Load balaned Birkho�-von Neumann swithes, partII: multi-stage bu�ering. Computer Communiations, 2001.[7℄ S.-T. Chuang, A. Goel, N. MKeown, and B. Prabhakar. Mathing output queueing with aombined input output queued swith. In IEEE Infoom, 1999.[8℄ A. Czumaj, F. Meyer auf de Heide, and V. Stemann. Contention resolution in hashing basedshared memory simulations. SIAM Jour. Comput., 29(5), 2000.[9℄ J. Duato. Interonnetion Networks. Morgan-Kaufmann, 2002.[10℄ A. E. Ekberg and T. C. Hou. E�ets of output bu�er sharing on bu�er requirements in anatdm paket swith. In IEEE Infoom, 1988.[11℄ M. Farley. Building storage area networks. MGraw-Hill, 2001.[12℄ W. Futral. In�niBand Arhiteture: Development and Deployment{A Strategi Guide to ServerI/O Solutions. Intel Press, 2001.[13℄ John Hennessy, David Patterson, and David Goldberg. Computer Arhiteture: A QuantitativeApproah. Morgan-Kaufmann, third edition, 2002.[14℄ M. Hluhyj and M. Karol. Queueing in high-performane paket swithes. IEEE Journal onSeleted Areas in Communiations, 6(9), Deember 1988.[15℄ S. Iyer, R. Zhang, and N. MKeown. High-speed poliy-based paket forwarding using eÆientmultidimensional range mathing. In ACM SIGCOMM, 2002.[16℄ S. Keshav. An Engineering Approah to Computer Networking. Addison-Wesley, 1997.
19

[17℄ S. Keshav and R. Sharma. Issues and Trends in Router Design. IEEE Communiation Maga-zine, 1998.[18℄ G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing in permutationnetworks. IEEE Transations on Computers, 30(2), February 1981.[19℄ Y. Matias and U. Vishkin. Towards a theory of nearly onstant time parallel algorithms. InPro. IEEE FOCS, 1991.[20℄ N. MKeown. iSLIP: A Sheduling Algorithm for Input-Queued Swithes. IEEE Transationson Networking, 7(2), April 1999.[21℄ N. MKeown, V. Anantharam, and J. Walrand. Ahieving 100% throughput in an input-queued swith. In IEEE Infoom, 1996.[22℄ N. MKeown, M. Izzard, A. Mekkittikul, W. Ellersik, and M. Horowitz. The tiny tera: apaket swith ore. IEEE Miro, 17(1):27{33, January 1997.[23℄ Juniper Networks. High speed swithing devie. US Patent 5,905,726, 1999.[24℄ A. Pattavina. Swithing Theory. Wiley, John & Sons, Inorporated, 2000.[25℄ L. Peterson and B. Davie. Computer Networks. Morgan-Kaufmann, 2000.[26℄ A. Prakash, S. Sharif, and A. Aziz. An O(lg2 n) algorithm for output queuing. In IEEEInfoom, 2002.[27℄ R. Ramaswami and K. Sivarajan. Optial Networks: A Pratial Perspetive. Morgan-Kaufmann, 2001.[28℄ T. Stern and K. Bala. Multiwavelength optial networks: a layered approah. Prentie-Hall,1999.[29℄ J. van Lint and R. Wilson. A Course in Combinatoris. Cambridge University Press, 1992.[30℄ A. Wilson, J. Shade, and R. Thornburg. Introdution to PCI Express. Intel Press, 2002.

20

