
A Near-Optimal S
heduler for Swit
h-Memory-Swit
h RoutersAdnan Aziz Amit Prakash Vijaya Rama
handranEle
tri
al and Computer Engineering Computer S
ien
esThe University of Texas at AustinTR-03-32August 6, 2003Abstra
tWe present a simple and near optimal randomized parallel s
heduling algorithm for s
hedul-ing pa
kets in routers based on the Swit
h-Memory-Swit
h (SMS) ar
hite
ture, whi
h emulatesoutput queuing by using a
olle
tion of small memories within the swit
h to bu�er pa
kets, andwhi
h forms the basis of the fastest routers in use today. For a router with N inputs and Noutputs, our algorithm
omputes the s
hedule in O(log�N) rounds, where a round is a
ommu-ni
ation of a few bits between input ports and memory together with simple lo
al
omputationat the inputs and memory. Furthermore, by using an O(log�N) deep pipeline at ea
h input,our algorithm
omputes the s
hedule in a
onstant number of rounds. Our pipelined algorithmis quite simple and a
hieves optimal (i.e.,
onstant) throughput with a tiny O(log�N) delay.We show that the total amount of bu�er memory required by our algorithm is
lose to theminimum required. We also show that the number of bu�er memories is within an �N additiveterm of 2N � 1, for any positive
onstant � > 0 (and is within an additive term of o(N) for thebasi
 s
heduler), where 2N � 1 is the minimum number of memories needed under adversarialpla
ement of pa
kets. Furthermore we show that the number of extra memories that we useover the minimum of N that is required in the o�ine version, is within a
onstant fa
tor of theminimum required by any on-line s
heduler, even if that s
heduler is allowed to fail o

asionally.Our s
heduling algorithm is randomized and works with high probability in N . We alsoprove that it is self-stabilizing, i.e., it resumes its normal behavior if o

asional lapses o

ur dueto the probabilisti
 nature of the algorithm.A preliminary version of these results appeared in the Pro
eedings of the 15th ACM Symposiumon Parallelism in Algorithms and Ar
hite
tures, June 2003. The main new
ontribution in thisTe
hni
al Report is an improved pipelined s
heduler that requires at most one message from ea
hmemory bank to an input in ea
h
ommuni
ation step. A
ompanion manus
ript presents simulationresults that show that the
onstant fa
tors in our algorithms are quite small, indi
ating that ouralgorithms are likely to be quite pra
ti
al.
1

1 Introdu
tionRouters play a
riti
al role in modern
omputing of all forms in
luding wide-area networks, mul-tipro
essor servers, and data storage systems [16, 25, 11, 4, 9, 12, 30℄ (see also [13, Chapters 7.12,8.12℄). Modern routers a
hieve high performan
e by solving
omputationally intensive tasks using
ustom hardware. One of the most
hallenging problems in designing a high-end router is s
hedulingthe transfer of pa
kets from inputs to outputs.A router used to be nothing more than a general purpose
omputer
onne
ted via a standard busto hardware for transmitting and re
eiving pa
kets over links. This was be
ause the link bandwidthwas low enough for a general purpose pro
essor to implement the entire router fun
tionality. Withthe advent of high-speed �ber opti
 te
hnology [27, 28℄, the situation has reversed, and in manynetworks today routers are the bottlene
k in moving data.Given that the
ost of deploying and maintaining links far ex
eeds the
ost of router hard-ware [16, Page 203℄ the trend has been to use quite extensive hardware in the router. Some of thetasks performed by routers
an be a

elerated using brute-for
e solutions, e.g., by demultiplexinghigh-speed links and using repli
ated hardware. However the task of qui
kly transferring pa
ketsfrom inputs to outputs has not been solved satisfa
torily so far, largely be
ause of the
omplex
o-ordination problem that is asso
iated with it.Figure 1(a) shows the blo
k-level ar
hite
ture of a router. Pa
kets are assumed to be of a �xedsize. (IP network pa
kets
an be variable sized; this is dealt with by segmenting them into �xedsize pa
kets at the input port, and reassembling them at the output port [25, Page 203℄.) Input line
ards (or input ports) take pa
kets from in
oming links, and
ompute the output link to whi
h thepa
ket is to be forwarded. (It is assumed that the output link is determined by the �nal destinationof the pa
ket, and is not within the
ontrol of the s
heduler.) The swit
h fabri
 transfers pa
kets tothe output ports, whi
h transmit the pa
kets on outgoing links. Peterson and Davie [25, Chapter3℄ and Keshav and Sharma [17℄ survey router ar
hite
tures.Logi
ally, the router operates in
y
les: in ea
h
y
le, at most one pa
ket may arrive at an inputport. The
y
le time is de�ned to be the amount of time between
y
les; ideally it is equal to thelink bandwidth divided by the pa
ket size, unless the router requires large
y
le time to be able toperform all the tasks that it needs to do on every pa
ket, whi
h is
urrently the
ase.We restri
t our attention to routers that have N input ports and N output ports, with all linkshaving the same bandwidth. At the beginning of every
y
le, the router re
eives at most one pa
ketat ea
h input and transmits at most one pa
ket on ea
h output. The arrival time of a pa
ket p isthe
y
le in whi
h p arrived at the input of the router; the departure time of p is the
y
le in whi
hp is transmitted from the output. The di�eren
e between departure and arrival times of a pa
ketis
alled its laten
y.Two (or more) pa
kets destined for the same output port
an arrive at di�erent input ports inthe same
y
le. Consequently, one of the two pa
kets will have to be bu�ered [25, 16, 14℄. Thisbu�ering
an be performed at the input ports, within the swit
h fabri
, and at the output ports.Be
ause of
ontention for a shared output link, a link may be
ome
ongested; when the number ofpa
kets waiting for the link ex
eeds the bu�er
apa
ity, pa
kets will be dropped [16, Chapter 8.5℄.At any given time, a router may have a large number of pa
kets, enqueued in di�erent queues,waiting to be transmitted through di�erent outputs. In a single
y
le only a subset of these queues
an be advan
ed based on the
onstraints imposed by the ar
hite
ture of the router. Routers needto make s
heduling de
isions about whi
h queues get advan
ed in ea
h
y
le. The average laten
ythat pa
kets observe at the router as well as the number of pa
kets that get dropped by the routerbe
ause of bu�er over
ow greatly depend upon the s
heduling de
isions made by the router. Thusit is essential to have an eÆ
ient s
heduler. In a router with a large number of input and output2

M

M

MI

I

I1

2

N

1

2

M

O

O

O

1

2

N

Input Ports Interconnect Memories Interconnect Output ports

Output Line Card

Output Line Card

Output Line Card

Input Line Card

Input Line Card

Input Line Card

Control
Plane

Switch Fabric

(a.) A generic router (b.) The SMS architectureFigure 1: (a.) Ar
hite
ture of a generi
 router. (b.) The Swit
h-Memory-Swit
h (SMS) ar
hite
-ture.ports, the s
heduling algorithm often takes more time to
ompute the s
hedule than the routertakes to transmit the pa
kets. This paper introdu
es a fast s
heduling algorithm; we are motivatedby the fa
t that the s
hedule must be
omputed within the
y
le time.A router is said to be output-queued if pa
kets are bu�ered solely at the outputs. Outputqueuing is strongly preferred for a number of reasons [24℄. For example, it minimizes the averagequeuing delay fa
ed by pa
kets. It also guarantees that the relative ordering of pa
kets is preserved.However, bu�ering pa
kets solely at the output ports requires very high-speed memories and swit
hfabri
s. Spe
i�
ally, in an N input router, N pa
kets for the same output
an arrive in a
y
le;
onsequently, the memory at the output port should be able to support N writes in a single
y
le.In an input-queued router, pa
kets are bu�ered solely at the inputs. The advantage of an input-queued ar
hite
ture is that the bu�er memory need only to be able to support one read and onewrite in a
y
le. However, it is extremely diÆ
ult to s
hedule pa
kets for departure a
ross theswit
h fabri
 in su
h an ar
hite
ture | naive approa
hes result in high drop rates [14℄, and moresophisti
ated approa
hes are too
omplex to run within the
y
le time [21℄.The swit
h-memory-swit
h (SMS) ar
hite
ture bu�ers pa
kets in small memories pla
ed betweenthe input and output ports. In this ar
hite
ture, the output ports have bu�ers that need to holdjust one pa
ket, and the input ports have bu�ers of small size. Thus the main bu�ers in thisar
hite
ture are the small memories pla
ed between inputs and outputs, whi
h operate together.This is the ar
hite
ture used by the fastest routers available today, the M160 and T640 Internet
orerouters from Juniper Networks [23℄. (The power of this ar
hite
ture
an be seen in the fa
t thatwithin three years of its in
eption Juniper Networks took over from Cis
o as the leading providerof routers for the Internet
ore.)There are three main advantages to using an SMS ar
hite
ture over other ar
hite
tures:(1) The average delay
an be minimized (as in output queuing),(2) The bu�er memories need to support only one read and one write per
y
le (as in inputqueuing),(3) With a good s
heduling algorithm, the pa
kets
an be distributed almost equally among thebu�er memories to make sure that a pa
ket gets dropped only if all the bu�ers are full (thus thesame pa
ket drop rate
an be a
hieved with smaller memories as
ompared to an output-queued orinput-queued swit
h).In this paper we present a near optimal s
heduler for the SMS ar
hite
ture. The s
heduler isdes
ribed in Se
tion 4 and its memory requirements, whi
h are also
lose to optimal, are analyzedin Se
tion 5. In re
ent simulation results [3℄ we show that the
onstant fa
tors in our algorithms3

are small, indi
ating that our algorithms are likely to be quite pra
ti
al.1.1 Prior Work on Router S
hedulingEarly routers used sequential algorithms; however, this is not an option with modern link speeds.Broadly speaking, re
ent parallel algorithms for s
heduling have one or both of the following short-
omings: 1.) they are ad ho
, working well on some
ases and very badly in others [20, 5, 6℄, or2.) they involve pointer-manipulating algorithms that are una

eptably
ompli
ated even in the
ontext of a large budget for dedi
ated hardware [26℄. M
Keown et al. [20℄ des
ribe a heuristi
 par-allel algorithm for s
heduling in input-queued swit
hes. However, its performan
e depends greatlyon the in
oming traÆ
, and there are natural traÆ
 patterns for whi
h it has an una

eptablyhigh drop probability [6℄. Prakash et al. [26℄ proposed an O(log2N) parallel algorithm based onpointer jumping for s
heduling pa
kets in the SMS ar
hite
ture; as in [7℄, this router emulates anoutput-queued router. However, the algorithm is impra
ti
al to implement, sin
e it uses the NCalgorithm in [18℄ to edge-
olor bipartite graphs.Subsequent to the work in [26℄, Iyer et al. [15℄ showed that an SMS router1 with 3N pa
ketmemories running at the line rate
ould emulate an N input, N output output-queued swit
h|thiswas a lemma in [26℄, and the proof method was identi
al, namely applying the pigeonhole prin
iplein a straightforward manner. Iyer et al. did not
onsider the implementation of the s
heduler, andthe s
heduler arising from their proof has time
omplexity
(N).Chuang et al. [7℄ have shown that a router with bu�ering at both the input and output ports
an emulate an output-queued router by performing 2 reads and 2 writes on the input and outputbu�ers, respe
tively, and running the swit
h fabri
 twi
e in a
y
le. Their approa
h hinges on asophisti
ated s
heduling algorithm whi
h solves an instan
e of the stable marriage problem, whi
his again impra
ti
al to implement in hardware.2 The SMS ar
hite
tureSin
e we use the swit
h-memory-swit
h (SMS) ar
hite
ture presented in [26℄, we review the ar-
hite
ture and key results in that paper. We defer a dis
ussion of the details of the model of
omputation to Se
tion 3.Figure 1(b) depi
ts the SMS ar
hite
ture. The set of input ports is
onne
ted via an N �Minter
onne
t to M memories; these M memories are
onne
ted to the set of output ports throughanother inter
onne
t. Ea
h of these memories are of size K; we assume K � N (in pra
ti
e,K � N). In every
y
le one pa
ket
an be read from and s pa
kets
an be written to ea
h memory.Not surprisingly, we will show that as s in
reases the requirement onM goes down. Thus if memorybandwidth is the bottlene
k in the system then it would be desirable to use s = 1 but otherwiseone
an boost s as mu
h as possible to redu
e M . One
an also
onsider the
ase of using memorybanks that supports s reads and s writes every
y
le. But that would be equivalent to using s �Mmemory banks that support one read and one write every
y
le in our s
heme. Sin
e this
ase isalready
aptured in the analysis we do not
onsider it as a separate
ase.2.1 Emulating output queuingSin
e output-queuing is highly desirable (
f. Se
tion 1), our goal is to emulate the behavior of anN �N output-queued swit
h that has bu�er memory spa
e for L pa
kets at ea
h output using an1They refer to their ar
hite
ture as a Parallel Shared Memory Router, but it is isomorphi
 to SMS.4

SMS ar
hite
ture. By emulation, we mean that for any arrival sequen
e (1) a pa
ket is droppedby the SMS router i� it will be dropped by the output-queued router, and (2) if a pa
ket is notdropped then the
y
le in whi
h it departs the SMS router must be same as the
y
le in whi
h itwould have departed the output-queued router.The
y
le in whi
h a pa
ket would have departed an output-queued router is referred to as itstime-stamp. When a pa
ket arrives at an input of an SMS router, its time-stamp is
omputed asdes
ribed in se
tion 2.4. In ea
h
y
le, pa
kets at the inputs are written to a subset of memoriesthrough the �rst inter
onne
t, and pa
kets whose time-stamp is equal to the
urrent time are readfrom the memories and transferred to the outputs through the se
ond inter
onne
t.2.2 Con
i
tsIn the SMS ar
hite
ture ea
h memory
an support one read and s writes per
y
le. Hen
e pa
kets
annot be arbitrarily pla
ed in the memories. A pa
ket fa
es two kinds of
on
i
ts. More thans pa
kets that arrive at the same time
annot be written to the same memory; this is referred toas an arrival
on
i
t. Sin
e there are N input ports, the maximum number of arrival
on
i
ts apa
ket
an have is d(N � 1)=se. Departure
on
i
ts o

ur if multiple pa
kets in the same memoryneed to depart simultaneously through di�erent outputs. Sin
e there are N outputs, a pa
ket
an have departure
on
i
ts with at most N � 1 memories. Hen
e if the number of memoriesM � d(N � 1)=se +N there will always be a
on
i
t-free memory for ea
h pa
ket. A
on
i
t-freememory for an input is said to be
ompatible with that input.2.3 S
heduler tasksIn order to
onstru
t a
on
i
t-free s
hedule for transfer of pa
kets the s
heduler has three tasksto perform in every
y
le.Task 1 Compute the time-stamp of all the newly arrived pa
kets.Task 2 Mat
h the newly arrived pa
kets to memories su
h that there are no departure and arrival
on
i
ts.Task 3 Read pa
kets whose time-stamp is equal to the
urrent time and transfer them to theoutput.Sin
e the time-stamp of a pa
ket is known when it is written to a memory, Task 3 is simple. Webrie
y des
ribe how Tasks 1 and 2 are performed. Task 2 is the most
omplex step and is the fo
usof this paper.2.4 Task 1: Time-stamp
omputationAn array E[1 : : : N ℄ stores the earliest available time-slot for ea
h output.Let P o1 through P o
o be the pa
kets destined for output port o that arrived in the
y
le T and letthem be ordered a

ording to the id of the input port they arrived. Then time-stamp of pa
ket P oiis set to (E[o℄ + i) and E[o℄ is set to max((E[o℄ +
o; T). This time-stamp assignment is
onsistentwith the requirement of emulating an output-queued router, and
an be eÆ
iently
omputed bysimple
ir
uitry.If the di�eren
e of time-stamp of a pa
ket and
urrent time is greater than L then it is dropped.This behavior is
onsistent with the behavior of an output-queued router with bu�er of size L atea
h output. 5

2.5 Task 2: S
heduling using graph mat
hingFor routers that are relatively small and slow, the SMS ar
hite
ture
an emulate output-queuing byusing a straightforward greedy sequential algorithm to
ompute an assignment of in
oming pa
k-ets to
ompatible memories. However for routers with many ports operating at high speeds, thesequential algorithm is not fast enough to
ompute the assignment. The only known parallel algo-rithm for
omputing the assignment is that of Prakash et al. [26℄; however, it has the disadvantagesmentioned in Se
tion 1.1.3 Computational ModelIn Se
tion 4 we des
ribe simple and fast algorithms for Task 2. In this se
tion we des
ribe the mainfeatures of the abstra
t model of the interfa
e between the input ports and the memory banks inthe SMS ar
hite
ture.� There are N input ports, ea
h with a bu�er that
an hold I pa
kets. At ea
h input port, the
urrent pa
ket is the pa
ket at the head of that input bu�er. In our basi
 algorithm I is a
onstant; in the pipelined version I = O(log�N). There are N output ports, whi
h need tobu�er only one pa
ket ea
h.� There are M � N memory banks, and ea
h
an hold up to K pa
kets. Our s
hedulers workforM = (1+(1=s)+�)N , where � is either an arbitrarily small
onstant or is o(1) as des
ribedlater.� There is simple hardware at the input ports as des
ribed in [26℄ (and summarized in Se
tion 2.4of this paper) that
omputes the departure time stamp for ea
h
urrent pa
ket at the startof ea
h
y
le, based on the pa
ket's output port.� Ea
h input port and memory bank has O(logN) depth
ir
uitry of size ~O(N). Note that asrouters be
ome larger, distributing the hardware for
omputing the s
hedule a
ross the inputports and the memory banks is preferable to having a separate
entralized pro
essing unit.� There is a dedi
ated wire
onne
ting every (input port, memory bank) pair. This investmentin hardware is not
onsidered ex
essive if the wire needs to support transfer of only a few bitsper
y
le (see, e.g., [2, page 6℄, [22℄). With this hardware support, ea
h input port
an senda short message to ea
h memory bank (and vi
e versa) in one
ommuni
ation step. At there
eiving end the identity of the transmitting node
an be determined by examining the wirealong whi
h the message arrives. We will refer to su
h a
ommuni
ation step as a transmitstep.Under
urrent te
hnology, the time taken by a transmit step dominates the
ost of O(logN) time
omputation in hardware at a single input port or memory bank. However, it is
onsiderably fasterthan the time taken to transfer a pa
ket through the
rossbar, sin
e a pa
ket is typi
ally hundredsof bits long.4 The S
heduling AlgorithmsIn se
tion 4.1 we des
ribe a basi
 randomized s
heduling strategy for mat
hing input pa
kets to
ompatible memory banks. We measure performan
e in terms of rounds, where a round is a transmit6

step together with O(logN) time
omputation at ea
h input port and ea
h memory bank. Ourbasi
 s
heduler runs in O(log�N) rounds.In se
tion 4.2 we present a pipelined version of our basi
 s
heduler with a laten
y of O(log�N)rounds, but with the improved performan
e of
onstant throughput. Thus in this s
heme the lagbetween su

essive transfers of of pa
kets from input ports to memory banks is a
onstant numberof rounds. Sin
e in many networks, the limiting feature for the
y
le time is the router and notthe link speed, this will have the desirable e�e
t of redu
ing the
y
le time, thus improving thebandwidth.4.1 The Basi
 Mat
hing AlgorithmIn this dis
ussion ea
h input is identi�ed with the pa
ket that just arrived at that input. Re
allthat an input i is
ompatible with a memory m if the pa
ket that just arrived at i
an be stored inmemory m without arrival and departure
on
i
ts (see Se
tion 2.2).Anderson et al. [2℄ proposed an algorithm somewhat similar to ours whi
h they
alled \ParallelIterative Mat
hing (PIM)." PIM was developed for a
ompletely di�erent ar
hite
ture, namelya
rossbar-based input-queued router with \virtual output queues." In their
ase they need to
ompute a maximal mat
hing in an arbitrary bipartite graph, and they prove that the expe
tednumber of rounds for their algorithm is O(logN).At the beginning of a
y
le, the time-stamp of ea
h input port is broad
ast to ea
h memoryand memories
onstru
t a list of inputs that are
ompatible with the memory. The algorithm thenworks in rounds a

ording to the `Basi
 Mat
hing Pro
ess' given below. Initially all the memorybanks are unmat
hed.Basi
 Mat
hing Pro
ess:1. In parallel ea
h unmat
hed memory sends a message to a random
ompatible input port.2. In parallel ea
h input port i pi
ks a memory bank j that sent it a message and assigns its
urrent pa
ket to that memory bank. It then broad
asts a bit to all memory banks to informthem that it is no longer available to be mat
hed (the bit sent to memory bank j is a 1 andthe bit sent to all other pro
essors is 0).3. In parallel ea
h memory bank that re
eives a 1-bit from its mat
hed input de
rements a
ounter initially set to s. If the
ounter goes down to zero, the pro
essor de
lares itselfmat
hed.4.1.1 Analysis of the Basi
 Mat
hing AlgorithmIn this se
tion we establish that if M = (N + dN=se + �N), for any � > 1=2log�N , then w.h.p. inN , the number of rounds needed to mat
h every input to a
ompatible memory bank is O(log�N).The analysis views the
omputation in the `balls-in-bins' framework, and the slight ex
ess in thenumber of available memory banks over the bound of (N + d(N � 1)=se) given in se
tion 2.2 allowsfor the a

eleration in the mat
hing pro
ess in su

essive rounds leading to the O(log�N) bound.Randomized strategies with O(log�N)
omplexity are known in the literature for other s
enarios,e.g., in the
ontext of highly-parallel algorithms for the CRCW PRAM [19℄ and in emulatingshared-memory on distributed memory (see, e.g., [8℄), and our strategy is similar to these in termsof a

elerating progress in su

essive rounds. However, our framework and analysis are di�erent.Our main theorem is proved through a sequen
e of lemmas.7

Lemma 4.1 If there are k unmat
hed inputs at a beginning of a round then there must be (�N +dk=se) unmat
hed
ompatible memory banks for ea
h input.Proof: A memory bank
ould be unavailable for a given input be
ause of two reasons, eitherbe
ause there is already a pa
ket in that memory (either stored in previous
y
les or mat
hed tothat memory for
urrent
y
le) that has the same time-stamp or be
ause s other inputs have beenalready mat
hed to that memory. There
ould be at most N � 1 pa
kets with same time stamp,that
ould eliminate N �1 memories as potential mat
h. Sin
e N �k inputs have been mat
hed tomemories, there
ould be at most b(N � k)=s
 memories that have been mat
hed to s inputs. This
ould further eliminate at most b(N � k)=s
 memories as a potential mat
h. Thus we will have atleast M � (N � 1)� b(N � k)=s
 > �N + dk=se memories that are
ompatible with a given input.De�ne a round that starts with k unmat
hed inputs to be su

essful if it ends with at mostke�(1=s+�N=k) + p2M logM unmat
hed inputs. In the following lemma we prove that w.h.p. around is su

essful.Lemma 4.2 If there are k unmat
hed inputs and M memories at the beginning of a round andea
h input
an be mat
hed to at least �N+dk=se memories, then the expe
ted number of unmat
hedinputs at the end of that round is at most ke�(1=s+�N=k). Furthermore the probability that the numberof unmat
hed inputs ex
eeds its mean by more than p2M logM is at most 1M .Proof: First we bound the expe
tation. Let �(m) be the set of unmat
hed inputs that
an bemat
hed to memory m and let �(i) be the set of unmat
hed memories that
an be mat
hed toinput i. Clearly j�(m)j � k and j�(i)j � �N + k=s.Let Cm be the index of the input to whi
h memory i sends a request. Thus Pr[Cm = j℄ =1=j�(m)j if j 2 �(m) and 0 otherwise. Let C = (C1; C2 : : : ; CM) and de�ne the random variableXi(C) to be 1 if 8j: (Cj 6= i) and 0 otherwise. Informally Xi(C) indi
ates that input i did not geta request from any of the memories. Sin
e an input is mat
hed if and only if it gets a request fromat least one of the memories, Xi(C) = 1 implies input i did not get a mat
h in that round. LetX(C) =PiXi(C) be the total number of unmat
hed inputs at the end of the round. Then,E(X(C)) = k(1 � 1=k)(�N+dk=se)� ke�(1=s+�N=k):We now use Azuma's inequality [1℄ to bound the probability of deviation. Let us de�ne asequen
e of random variables Y0 through YM as followsYm(C) = E(X(C)jC1; C2; : : : ; Cm�1):In parti
ular, Y0(C) is equal to the
onstant E(X(C)) and YM (C) is identi
al to X(C). Sin
eE(YmjYm�1) = Ym�1 the sequen
e of random variables Ym is a martingale. Furthermore if C andC0 di�er in
hoi
e of only one memory then that memory
ould
hoose at most one input that wasnot
hosen by any other memory. Thus the di�eren
e in number of unmat
hed inputs
an be atmost one. Hen
e by Azuma's inequality we have Pr �X(C) > E(X(C)) +p2M logM� < 1M .Sin
e 1=M � 1=N , the �rst O(log�N) rounds are su

essful w.h.p. in N . The followingdis
ussion assumes that they are su

essful.Let kr be the number of unmat
hed inputs at the beginning of round r. We know that k0 = Nand kr de
reases in su

essive rounds. Let R be the last round for whi
h kR � Wp2M logM ,8

where W is a
onstant
hosen to ensure that kr+1 � (kr=�)e� �Nkr for r < R, where 1 < � < e1=s.We will prove that R = O(log�N). (Note that by Lemma 4.1 and a Cherno� bound, w.h.p. in Nall inputs are mat
hed in round R+ 1.)For a > 1 and integer i � 0 we de�ne a "" i = g(a; i), where g(a; 0) = 1 and g(a; i) = ag(a;i�1)for i > 0.Lemma 4.3 For every
onstant
 > 0 there exists a
onstant b = e�=
 su
h that if there are kunmat
hed pa
kets at the beginning of a round r < R and for some positive integer i we havek �
Nb""i then the number of unmat
hed inputs at the end of that round is at most k�(b""(i+1)) , w.h.p.in N .Proof: The number of unmat
hed inputs at the end of round is at most k�e�N=k � k�e�(b""i)=
 =k�b(b""i) .From Lemma 4.3 it trivially follows that kr+1 � kr=�. Let A = dlog� ln 2� e. Hen
e after A initialrounds we have kA � N�= ln 2. Now substituting
 = �= ln 2 in Lemma 4.3 we have b = 2, andhen
e kr � N�(ln 2)(2""i) implies kr+1 � kr�(2""(i+1)) � N(2""(i+1)) .Sin
e kA � N�= ln 2, applying the above inequality repeatedly we obtain kr+A � N�(2""r) . Thusat the end of A+log�N rounds we
annot have more than Wp2M logM unmat
hed inputs. Sin
eWp2M logM inputs
an be mat
hed in a single round w.h.p. in N , we
an mat
h all the inputsin A+log�N +1 = O(log�N) rounds, if � =
(1=2(1=s) log�N). This gives us the following theorem.Theorem 4.4 If the router
an transfer s pa
kets to ea
h memory in a
y
le, then if M = N +dN=se +
(N2(1=s) log� N), repeated appli
ations of the basi
 mat
hing pro
ess will mat
h all inputs tomemories in O(log�N) rounds with high probability in N .4.2 Pipelined Randomized S
hedulerThe s
heduling algorithm des
ribed in the previous se
tion uses O(log�N) rounds of the basi
mat
hing pro
edure. Thus the
y
le time must be suÆ
iently long to be able to
omplete theseO(log�N) rounds, and as N in
reases the
y
le time must in
rease resulting in a drop of throughput.In this se
tion we address this drawba
k by presenting a pipelined s
heduler that exe
utes ea
h
y
le in a
onstant number of rounds.The pipelined s
heduler uses multiple
y
les to
onstru
t a mat
hing for ea
h set of pa
kets thatarrive together. However mat
hings are
onstru
ted for multiple sets of pa
kets simultaneously ina pipelined fashion. Consequently, the amount of
omputation per
y
le redu
es but pa
kets waitfor D
y
les at the inputs before they are transferred to the memories. The value D is the laten
yof the pipelined s
heduler (we will show later that D = O(log�N)). The input bu�er size I equalsD, and pa
kets are stored FIFO.Let P o1 through P o
o be the pa
kets destined for output port o that arrived during
y
le T andlet them be ordered a

ording to the id of the input port they arrived. We maintain an arrayearliest[1 � � �N ℄ to keep tra
k of earliest time-stamp available for any output, after taking laten
yinto a

ount. The time-stamp of pa
ket P oi is then set to earliest[o℄ + i + D and earliest[o℄ isupdated to max(earliest[o℄ +
o; T).In
y
le T the pa
kets that arrived between
y
les T �D and T are in the input bu�ers andat the end of
y
le T the pa
kets that arrived at
y
le T � D that are mat
hed are transferredto the memories. Ea
h input port will have an initial sequen
e of pa
kets in its bu�er that havebeen mat
hed to some memory by the s
heduling algorithm in earlier iterations, and the remainingpa
kets are not yet mat
hed by the s
heduling algorithm. At any point in the s
heduling algorithm,9

the �rst unmat
hed pa
ket in ea
h bu�er is the a
tive pa
ket for the step, and the basi
 mat
hingpro
ess will be applied to the set of a
tive pa
kets.Let the
urrent
y
le be T . A stage of the pipeline exe
utes the three steps in the followingpipelined mat
hing pro
edure ! times, where ! is an integer
onstant to be de�ned later in theanalysis.Pipelined Mat
hing Pro
edure(a) The input ports perform a transmit step in whi
h ea
h input port broad
asts to all thememories the time-stamp of its a
tive pa
ket (as in the �rst s
heduling algorithm) togetherwith its arrival time mod D.(b) In parallel, ea
h memory bank pi
ks an index i between 0 and D, and mat
hes itself toa random
ompatible input with exa
tly i unmat
hed inputs. The index i is
hosen withprobability pi, where pi = 1=2i+1 if i < D and pD = 1=2D .(
) Ea
h mat
hed a
tive pa
ket is repla
ed by the �rst unmat
hed pa
ket in its bu�er.Finally, all mat
hed pa
kets that arrived in
y
le T �D are transferred to the memory banks, andthis
on
ludes the stage. Any unmat
hed pa
ket that arrived in
y
le T �D is dropped.We show below that w.h.p. every pa
ket that arrived in
y
le T �D will be mat
hed at the endof this stage. Note that the pipelined s
heduling algorithm performs a
onstant number of roundsper stage.4.2.1 AnalysisOur analysis assumes that M = (1 + (1=s) + �)N , where � is an arbitrarily small positive
onstant.The
omplete analysis is in the Appendix. Here we present a simpli�ed analysis for the
ase when� and s are both 1.We start by analyzing a variant of the basi
 mat
hing pro
ess in whi
h only a random sample ofthe memory banks attempt to mat
h themselves to the inputs. The rounds start with round i = 0to fa
ilitate relating this pro
ess to the rounds in the pipelined mat
hing pro
ess. In the ith roundof this `sampled mat
hing pro
ess' ea
h memory bank attempts to mat
h itself with probability1=2i+1, for i � 0. We now des
ribe this algorithm and we establish that it
omputes a perfe
tmat
hing in O(log�N) rounds. The base used for the logarithm for the log�N analysis is not 2,but a value b, whi
h is less than 2 but greater than e1=e. (We note that b "" i remains less thane for all i if b < e1=e.) The more detailed analysis in the appendix, whi
h works for any � > 0,establishes the result using the traditional base 2.Sampled Mat
hing Pro
ess:for i = 0; 1; � � � in parallel1. ea
h unmat
hed memory sends a message to a random
ompatible input port with probability1=2i+1 and does nothing with probability 1� 1=2i+1.2. ea
h input port i pi
ks a memory bank j that sent it a message and assigns its
urrent pa
ketto that memory bank. It then broad
asts a bit to all memory banks to inform them that itis no longer available to be mat
hed (the bit sent to memory bank j is a 1 and the bit sentto all other pro
essors is 0). 10

3. In parallel ea
h memory bank that re
eives a 1-bit from its mat
hed input de
rements a
ounter initially set to s. If the
ounter goes down to zero, the pro
essor de
lares itselfmat
hed.Let b = e(1=2�Æ) where 0 < Æ < 1=2 � 1=e, and let zi = N2i+1�b""i .Lemma 4.5 After the ith iteration of the Sampled Mat
hing Pro
ess, the number of unmat
hedinputs is � maxfpN; zig w.h.p. in N , where zi = N2i+1�b""i .Proof: We observe that in iteration i for any given unmat
hed input port p, the expe
ted numberof pro
essors
ompatible with p that send a message to some
ompatible input is � (N+N�)=2i+1 =N=2i. Using a Cherno� bound we
an show that with very high probability, for any
onstant
 > 0,at least (1�
) �N=2i of the pro
essors that are
ompatible with a given unmat
hed input port doa
tually send a message in that round.For i � 0, let xi denote the number of unmat
hed inputs that remain after the ith iterationof the sampled mat
hing pro
ess. For the base
ase of the lemma we note that E[x0℄ � N � (1 �1=N)(N+N�)�(1�Æ)=2 � N=e(1�Æ). Hen
e by applying Azuma's inequality as in the proof of Lemma4.2 we have that x0 � N=b w.h.p. in N .Assume indu
tively that the result holds for xi�1 for some i > 0, and
onsider xi. We haveE[xi℄ � xi�1e (xi�1+N�)�(1�Æ)xi�1�2i+1� N2i � 2 "" (i� 1) � eN�(1�Æ)�2i �b""(i�1)2i+1�N� N2i+1 � e(1=2�Æ=2)�b""(i�1)� N2i+1 � b "" iIf E[xi℄ � pN by Azuma's inequality we have that xi � N2i+1b""i w.h.p. in N .Let us now return to the analysis of the pipelined mat
hing pro
ess, and let D = log�b N .Let Qi(T) be the set of input ports that have i unmat
hed pa
kets at the start of
y
le T , andlet qi(T) = jQi(T)j. Let si(T) = PDk=i qk(T). We de�ne a predi
ate �0(T) to be true i� for alli � D, si(T) � zi.Theorem 4.6 If �0(T � 1) is true then w.h.p. in N , �0(T) is true.Proof: Consider the start of
y
le T . Note that for any input port with i unmat
hed pa
kets, thenumber of pa
kets that
an be mat
hed at that port during
y
le T � 1 is 0, 1, or 2 (sin
e we haveassumed that ! = 2). Let ri(T � 1) be the number of inputs that had i or i� 1 unmat
hed pa
ketsat the start of
y
le T � 1 and have at least i � 1 unmat
hed pa
kets at the end of
y
le T � 1.Sin
e one new pa
ket arrives at ea
h input port at the start of
y
le T , we havesi(T) = DXk=i qk(T) � DXk=i+1 qk(T � 1) + ri(T � 1)� si+1(T � 1) + 3zi+111

The last equation above uses the inequality ri(T � 1) � 3zi+1. We
an establish this as follows:Let n1 be the number of a
tive inputs in Qi(T�1) that are unmat
hed after the �rst iteration ofstage T � 1, let X be the set of inputs that have i� 1 unmat
hed pa
kets after the �rst iteration ofstage T �1, and let n2 be the number of inputs in X that are unmat
hed after the se
ond iterationof stage T � 1. Then ri(T � 1) = n1 + n2.Sin
e qi(T � 1) � si(T � 1) � zi (by the indu
tion assumption), we have n1 � zi+1 by Lemma4.5.For n2 we note that jXj = x1 + x2, where x1 is the number of inputs that had i unmat
hedpa
kets at the start of
y
le T �1, and have i�1 unmat
hed pa
kets after the �rst iteration, and x2is the number of inputs that had i� 1 unmat
hed pa
kets at the start of
y
le T � 1 and
ontinueto have i � 1 unmat
hed pa
kets after the �rst iteration. Clearly, x1 � qi(T � 1), and x2 � zi bythe behavior of the sampled mat
hing pro
ess on inputs that had i� 1 unmat
hed pa
kets at thestart of
y
le T � 1. Hen
e, jXj � qi(T � 1) + zi � zi + zi � 2zi. In the se
ond iteration of stageT � 1 of the pipelined mat
hing pro
edure ea
h
ompatible pro
essor
hooses an a
tive pa
ket inX with probability 1=2i sin
e ea
h input in X has exa
tly (i� 1) unmat
hed pa
kets. Hen
en2 � 2zie (2zi+N)�(1�Æ)2zi�2i � 2 � zi+1Hen
e ri � 3zi+1. So we havesi(T) � si+1(T � 1) + 3zi+1 � 4zi+1 � ziCorollary 4.7 W.h.p. in N , all pa
kets that arrived in
y
le T �D have been mat
hed by end of
y
le T .Proof: From the theorem, qD(T � 1) = sD(T � 1) � max(pD;pN) = pN . During the �rstiteration of
y
le T , the basi
 mat
hing pro
edure is applied to these pN inputs. Hen
e w.h.p. inN all pa
kets that arrived in
y
le T �D are mat
hed after this step, and
ertainly by the end of
y
le T .Sin
e �0(0) is trivially true, by Theorem 4.6 we
an argue indu
tively that �0(T) is true whenT = O(N). However as T grows large, the probability that �0(T) will
ontinue to be true be
omessmall and then we
an no longer guarantee that all the pa
kets that arrived in
y
le T � D willbe mat
hed at the end of
y
le T . However our algorithm has a \self-stabilizing" property, i.e., if�0(T) be
omes false for some T , within O(logN)
y
les the input queues get ba
k to a state wherethe predi
ate �0 is true.De�ne a series of predi
ates �j(T) su
h that �j(T) is true i� for all i, si(T) � (�)jpi for some
onstant � > 1. Note that �j(T) implies �k(T) if k � j.Theorem 4.8 If j > 0 and �j(T � 1) is true then, w.h.p, �j�1(T).Proof: (Sket
h.) Re
all that in the proof of Theorem 4.6 we proved that si(T) � 3zi. Using asimilar argument here we
an prove if that �j(T � 1) is true then si(T) � 3�jzi. Now for
 > 3�we get si(T) �
�j�1zi. If j > 0 then s0 � p0 trivially. Hen
e �j�1(T).Now sin
e �log�N (T) is always true, in log�N steps we get ba
k to a state where �0(T) is true.This establishes the self-stabilizing feature of our pipelined algorithm.12

5 Memory RequirementsThe memories used to bu�er pa
kets
ontribute signi�
antly to the total
ost of a router. Thus itis important to minimize both the number of memories used, and the size of ea
h memory.Routers need a large amount of memory in order to a
hieve low drop rates. Studies of E
kberg etal. [10℄ reveal that pa
ket drop probability signi�
antly de
reases if memories
an be shared a
rossthe queues for di�erent outputs. E
kberg et al. show that for a Poisson pa
ket arrival pro
ess, theamount of bu�er required to a
hieve a
ertain drop probability when the arrival rate of pa
kets ismore than 90% of the total
apa
ity of the router, redu
es by a fa
tor of 4 if a shared memory isused.In this se
tion we establish that our s
hedulers make very e�e
tive use of memory. In se
tion5.1 we show that the total memory used by our s
hedulers is very
lose to the minimum needed.In se
tion 5.2 we show that the number of memory banks used by our s
hedulers is also
lose tothe best possible.5.1 Load Balan
eOne of the features of our algorithms is that they distribute pa
kets evenly a
ross the memorybanks. This enables us to a
hieve the e�e
t of a pure shared memory. This is independent of anyassumptions on the pa
ket arrival pro
ess, as shown in the theorem below.Theorem 5.1 Consider an SMS swit
h with N input and output ports, M memory banks, ea
h ofsize K, and with ea
h shared bu�er supporting s writes per
y
le. Let Q be given as an upper boundon the total number of pa
kets in the memories in any
y
le. If K � Q=M + p2
sZ logM , with
 > 1, then w.h.p. in M both of our SMS s
hedulers
an bu�er pa
kets for up to Z
y
les withoutdropping any pa
kets.Proof: The result follows through the use of Azuma's inequality on the martingale that
onsidersthe number of pa
kets in any given memory bank in ea
h
y
le.Consider an arrival sequen
e of pa
kets that leads to bu�ering of a total of R pa
kets at theend of T � 1
y
les. Let Ui be the map that maps pa
kets that arrived at
y
le T � 1�Z+ i to thememories in whi
h they were stored. Let U = (U1; U2 � � �UZ) and let Vm be the random variabledenoting number of pa
kets stored in memory m at the end of (T � 1)-th
y
le. Note that sin
e allthe pa
kets in memory arrived within last Z
y
les, U has suÆ
ient information to
ompute Vm.Sin
e there is no spe
ial bias for any of the memories, E(Vm j R) = R=M . De�ne a sequen
e ofrandom variables Wi = E(VmjU1; U2 : : : Ui); 0 � i � Zwhere W0 = E(Vm) and WZ = Vm. Sin
e E(Wi j Wi�1) = Wi�1, the sequen
e of random variablesWi is a martingale. Furthermore if U and U0 di�er in only one of the Ui for (T �Z�1+ i)-th
y
le,at most s pa
ket
ould be stored in memory m in that
y
le, and at most one
an leave. ThereforeVm satis�es s�Lips
hitz
ondition, i.e., jVm(U)� Vm(U0)j � s. Thus using Azuma's inequality weobtain Pr hjWZ �W0j > p2
sZ logMi < e�2
s logM=2s = 1M
Thus, [1�m�M Pr hVm � R=M +p2
sZ logMi � 1M
�1 :Sin
e R � Q and
 > 1, we have the desired result w.h.p. in M .13

Corollary 5.2 Consider an SMS swit
h that emulates an output-queued swit
h with N ports andoutput bu�er size L with M memory banks, ea
h of size K, and ea
h supporting s shared writes per
y
le. If K � LN=M +p2
sL logM , where
 > 1 is a
onstant, then with high probability, both ofour s
hedulers will not drop a pa
ket that will not be dropped by that output-queued swit
h.Proof: Use L = Z and Q = LN in the theorem.Note that in general, an output queued swit
h will use a
onservative value for L to allowfor o

asional bursts of traÆ
 for a single output. Thus the value of Q in the above theoremis typi
ally mu
h smaller than LN , and hen
e our s
heduler would typi
ally make mu
h betteruse of the memory than a
orresponding output-queued swit
h. Also, note that sin
e typi
allyQ=M >> M >> logM , the value of K
an be
hosen to be only very slightly larger than Q=M ,the minimum size needed, and the pa
ket drop probability
ould be held very small even if Z ismade very large. Note also that the value of Z in the above theorem is limited in only a weak wayby the upper bound pla
ed on the value on Q even if the value of K is to be held
lose to Q=M .5.2 Number of Memory BanksEven though the
umulative size of memories in an SMS ar
hite
ture
an be
lose to that of anoutput-queued router, having a large number of small memories is slightly more expensive thanhaving a small number of large memories.We have shown that that (1 + d1=se + �)N memories are suÆ
ient for an SMS router withspeedup s to emulate an output-queued router. It is natural to investigate how many memories area
tually ne
essary. First we examine what an o�-line algorithm
an a
hieve.Lemma 5.3 If an algorithm has knowledge of the
omplete arrival sequen
e then N memories aresuÆ
ient to store the pa
kets while satisfying arrival and departure
on
i
ts.Proof: Constru
t a bipartite multi-graph G(V;W;E) in whi
h the set of verti
es V representarrival times of pa
kets, the set of verti
es W represent the departure times of pa
kets and oneedge (v; w) 2 E is present for every pa
ket that arrives at time v and departs at time w. Sin
e atmost N pa
kets arrive at any
y
le and at most N pa
kets depart every
y
le the maximum degreeof any vertex in G is N . Thus by Birkho�'s theorem [29, Page 40℄ it
an be edge-
olored using N
olors and pa
kets belonging to every
olor-
lass
an be stored in one memory.The requirement on N memories is also trivially a lower bound sin
e there are potentially Nnew pa
kets in a
y
le.Of
ourse, in the
ontext of a router, the algorithm has to operate on-line. Now we look at theabsolute minimum number of memory banks that is required if an adversary is allowed to pla
epa
kets in the memories.Lemma 5.4 If an adversary pla
es pa
kets in the memory then it is ne
essary to have N + d(N �1)=se memories in order to satisfy arrival and departure
onstraints.Proof: Consider the
ase where at every
y
le T < N2 � 1, exa
tly 2 pa
kets arrive for output(Tmod(n � 1)) + 1, one pa
ket arrives for every output o su
h that o 6= (Tmod(n � 1)) + 1 ando < N , and no pa
ket arrives for output N . At
y
le N2 � 1, the total number of arrivals at ea
houtput between 1 to N�1 would be N2+N but the total number of pa
kets that departed throughea
h output would be N2 � 1. Thus there would be N + 1 pa
kets in the memory for ea
h outputfrom 1 to N � 1. Hen
e for ea
h of the next N + 1
y
les we will have N � 1 pa
kets s
heduledto depart. An adversary
ould
hoose a set B of N � 1 memories and pla
e all of these pa
kets14

into the memories in B su
h that ea
h memory stores one pa
ket of ea
h time-stamp between N2and N2 + N . Now if N pa
kets arrive all destined for output N , then ea
h pa
ket will have adeparture
on
i
t with ea
h memory in B. Thus all of these new pa
kets must be stored in somememory that is not in B and no 2 pa
kets
an be stored in same memory. Therefore there mustbe additional N memories. Hen
e we need 2N � 1 memories to store the pa
kets.Sin
e our algorithm
ontrols the pla
ement of pa
kets in the memory it is possible that su
han algorithm
an make do with a smaller number of memory banks than the bound in Lemma 5.4.We now show that it is impossible for an SMS router with less than 9N=8 memories to behaveidenti
ally to an output-queued router, regardless of how sophisti
ated its s
heduling algorithm is.In parti
ular this means that we
annot a
hieve the o�-line optimal behavior in the on-line
asewith only N memory banks, or even with N + ÆN memories, if Æ < 1=8.Theorem 5.5 There is no deterministi
 algorithm that
an mat
h any sequen
e of pa
ket arrivalsto memories while satisfying arrival and departure
onstraints if the number of memories is M =N +� and � < N=8. Furthermore, for any randomized algorithm there exists an arrival sequen
efor whi
h it will fail with probability at least 1=2.In order to prove the theorem we will use a set of lemmas that show that if we have a sequen
eof subsets of size
lose to half of the original set su
h that any two
onse
utive sets are disjoint,then any pair sets with even sequen
e number have a signi�
ant interse
tion.Lemma 5.6 If X;Y;Z � [N +�℄ su
h that jXj = jY j = jZj = N=2 and X \ Y = Y \ Z = ; thenjX \ Zj � N=2��.Proof: Sin
e X \ Y = Y \ Z = ;, both X and Z are subsets of Y
. Sin
e all sets are subsets of[N +�℄ and jY j = N=2, we have jY
j = N=2 +�. Hen
e the minimum size of X \ Z is N=2 ��,i.e., jX \ Zj � N=2 ��.Lemma 5.7 For any three sets X,Y ,Z of size N=2 if jX \ Y j � N=2 � � and jY \ Zj � N=2 � �then X \ Z � N=2 � �� �.Proof: The result follows from the observation that jX \ Y \ Zj � N=2 � � � �. [℄Lemma 5.8 For any series of sets S0; S1 � � �S2m 2 [N +�℄ if jSij = N=2 and Si \ Si+1 = ; then,jS0 \ S2mj � N=2�m�.Proof: The base
ase when m = 1 follows from Lemma 5.6. Let the lemma be true for somem = p. Thus jS1 \ S2pj � N=2� p� and jS2p \ S2p+2j � N=2 ��. Therefore from Lemma 5.7 weget jS1 \ S2(p+1)j = N=2 � (p+ 1)�.We
an now prove Theorem 5.5. We will do so by de�ning two pa
ket arrival sequen
es su
hthat based on
hoi
es made by any algorithm, an adversary
an always
hoose one of the arrivalsequen
e for algorithm to fail if � < N=8.Assume the number of outputs is even. Let O1 be a set of N=2 outputs and O2 be remainingset of outputs. De�ne ai (bi) to be the set of pa
kets that depart at time i and are destined for anoutput in O1 (O2). Our arrival pro
ess is su
h that jaij = N=2 or 0 and all the pa
kets for any setai arrive in the same
y
le. Similarly jbij = N=2 or 0 and all the pa
kets in any set bi arrive in thesame
y
le.Now we will present two arrival sequen
es. The two arrival sequen
es are des
ribed in Table 1.Both sequen
es have a
ommon prologue till time 9 as des
ribed in the �rst
olumn of the table. The15

se
ond and third
olumns des
ribe the pa
kets that arrive in sequen
e 1 and sequen
e 2 respe
tivelyafter prologue. A dash in the input
olumn indi
ates that no pa
kets arrived at those N=2 inputs.It is easy to verify that the time-stamp assignments are
onsistent with output queuing. We willuse A�i (B�i) to represent the set of memories that the pa
ket of ai (bi) will be stored in, wherethe supers
ript � is either p, 1 or 2 based on whether the set of pa
kets
orrespond to prologue,sequen
e 1 or, sequen
e 2 respe
tively. Sin
e all the pa
kets departing together must be stored indi�erent memories, if ai 6= ; then jA�i j = jaij = N=2. Similarly if bi 6= ; then jB�i j = N=2.For notational
onvenien
e, we introdu
e the in�x binary relational operator 6$ denoting setdisjointness, i.e., U 6$ V i� U\V = ;. From arrival time
onstraints we get Ap11 6$ Ap12, B112 6$ B113,B212 6$ B213, and A214 6$ B211, and from departure time
onstraints we get Ap11 6$ B211, Ap12 6$ B112,Ap13 6$ B113, Ap13 6$ B213, and A214 6$ B214.Now sin
e there are a total of N +� memories and Ap11 is
onne
ted to B211 through a
hain of8 6$ relations, from Lemma 5.8 we set B211 \ Ap11 � N=2 � 4�. But we know that B211 \ Ap11 = ;.Thus N=2 � 4� � 0 or � � N=8.Therefore we
on
lude that if � < N=8 any deterministi
 algorithm will fail. Furthermore, ifany randomized algorithm,
hooses Ap11 and Ap13 su
h that it works
orre
tly for sequen
e 1 withprobability � then it must fail for sequen
e 2 with probability �. Thus the worst
ase probabilityof failure for any randomized algorithm is at least max(�; 1� �) � 0:5.Prologue Sequen
e 1 Sequen
e 2time input time input time input1 a1 a2 10 b11 � 10 b11 a142 a3 a4 11 b12 b13 11 b12 �3 a5 a6 12 b13 b144 a7 a85 a9 a106 a11 a127 b7 b88 b9 b109 a13 �Table 1: Adversarial arrival sequen
e.A Detailed Analysis for Se
tion 4.2We now give a detailed analysis of the pipelined randomized s
heduler based on the pipelinedmat
hing pro
edure in se
tion 4.2, for the
ase when s is a positive integer, and � > 0 is anarbitrarily small
onstant. Let
 = �=s.It is interesting to note that log�bN is not de�ned for all values of N , if b � e1=e. In fa
t,if b � e1=e then (b "" i) � e for any value of i. Thus we
annot simply repeat the analysis inSe
tion 4.2 with b = e (1�Æ)
2 . Here we present a more involved proof.Re
all that zi = N2i+1(b""i) . We will set b = 2 for this analysis. Let D be the smallest integersu
h that zD � pN . Clearly D = O(log�N). Let Qi(T; t) be the set of input ports that have iunmat
hed pa
kets at the start of t-th iteration of the pipelined mat
hing pro
edure in
y
le T , andlet qi(T; t) = jQi(T; t)j. Let si(T; t) =PDk=i qi(T; t).We de�ne a series of predi
ates �0(T); : : : ;�D(T). Predi
ate �j(T) is de�ned to be true i� forall i � D, si(T; 0) � zi�j , where zi = N if i � 0. Note that this is a re�nement of the predi
ates16

�j de�ned in the extended abstra
t (as are si, qi and Qi).Theorem A.1 There exist a suitable
onstant ! su
h that if ea
h stage exe
utes ! iterations ofpipelined mat
hing pro
edure then �0(T) implies �0(T + 1) w.h.p. in N .In order to prove the above theorem we will �rst need the following lemma.Lemma A.2 If si+1(T; t) � a and si(T; t) � a + b then w.h.p. in N we must have si(T; t + 1) �a+ be�N
=(2ib)=�.Proof: Let qi(T; t) = x and si+1(T; t) = y. If x � pN then at the end of that iteration w.h.p. inN all the inputs in Qi(T; t) will get mat
hed. Otherwise, we will have at most xe�N
=(x2i)=� inputswith i unmat
hed inputs that were also in Qi(T; t) (similar to Lemma 4.2). Let Æ be the number ofinputs that got mat
hed in Qi+1(T; t) thus qi(T; t+1) � xe�N
=(2ix)=�+Æ and si+1(T; t+1) � y�Æ.Therefore, si(T; t+ 1) = si+1(T; t+ 1) + qi(T; t+ 1) � y + xe�N
=(2ix)=�. Thus,si(T; t+ 1) � maxy�a; x+y�a+b(y + xe�N
=(2ix)�):It is straightforward to show that the fun
tion on the R.H.S. a
hieves its maxima at y = a andx = b. Substituting that we get the desired result.Substituting a = zi+1, b = zi�zi+1 and t = 0 in the above lemma we get si(T; 1) � zi+1+ zi�zi+1� .Sin
e zi+1 � zi=2 we get si(T; 1) � �zi, where � = 1=2 + 1=2� < 1. Similarly si+1(T; 1) � �zi+1.Thus applying this argument repeatedly we get si(T; f) � �fzi. Let g be a
onstant su
h that�g � min(1=2;
= ln 2). Thus si(T; g) � zi�g and si+1(T; g) � zi+1�g.Substituting a = zi+1�g and b = zi�g and t = g in Lemma A.2 for the next iteration it is notdiÆ
ult to show that si(T; g + 1) � �g �zi+1 + zie�
N�g2izi � � zi+1:Thus if we set ! � g + 1, We have si�1(T; !) � zi. Sin
e at most one pa
ket arrives in a
y
le,si(T + 1; 0) � si�1(T; !) � zi. Hen
e �0(T + 1) holds with high probability in N .Lemma A.3 If �0(T) is true, w.h.p. in N , all pa
kets that arrived in
y
le T � D have beenmat
hed at the end of
y
le T .Proof: From the de�nition of �0(T) we get qD(T; 0) = sD(T; 0) � pN . Thus w.h.p. in N allthe inputs in QD(T; 0) get mat
hed in the �rst iteration of pipelined mat
hing pro
edure. ThusqD(T; 1) = 0, i.e., no input has D unmat
hed pa
kets. Thus all the pa
kets that arrived T � D
y
les earlier are mat
hed.Sin
e �0(0) is trivially true, by Theorem A.1 we
an argue indu
tively that �0(T) is true forT = O(N). However as T grows large, the probability that �0(T) will
ontinue to be true be
omessmall and then we
an no longer guaranty that all the pa
kets that arrived in
y
le T � D willbe mat
hed at the end of
y
le T . However if we set ! � 2(g + 1) our algorithm be
omes \self-stabilizing" , i.e., if �0(T) be
omes false for some T , then within D
y
les the input queues getba
k to a state where the predi
ate �0 is true.Note that �j(T) implies �k(T) if k � j.Theorem A.4 If j > 0 and �j(T) is true then, w.h.p, �j�1(T + 1) is true.17

Proof: Re
all that in the proof of Theorem A.1 we proved that if si(T; 0) � zi then si(T; g +1) � zi+1. Using a similar argument if si(T; 0) � zi�j then si(T; (g + 1)) � zi�j+1. If we applyanother g + 1 iterations we get si(T; 2(g + 1)) � zi�j+2. Thus setting ! = 2(g + 1), we getsi(T + 1; 0) � si�1(T; 2(g + 1)) � zi�j+1. Hen
e �j�1(T + 1) holds.Sin
e �D(T) is trivially true, in D steps we get ba
k to a state where �0(T) is true. Thisestablishes the self-stabilizing feature of our pipelined algorithm.

18

Referen
es[1℄ Noga Alon and Joel H. Spen
er. The Probabilisti
 Method. Wiley, John & Sons, In
orporated,2000.[2℄ T. Anderson, S. Owi
ki, J. Saxe, and C. Tha
ker. High-speed swit
h s
heduling for lo
al areanetworks. ACM Transa
tions on Computer Systems, November 1993.[3℄ A. Prakash, A. Aziz, and V. Rama
handran. Randomized Parallel S
hedulers for Swit
h-Memory-Swit
h Routers: Analysis and Numeri
al Studies. manus
ript, June 2003.[4℄ R. Barker, P. Massiglia, and L. Krantz. Storage Area Networking Essentials. M
Graw-Hill,2001.[5℄ C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load balan
ed Birkho�-von Neumann swit
hes, partI: one-stage bu�ering. Computer Communi
ations, 2001.[6℄ C.-S. Chang, D.-S. Lee, and C.-M. Lien. Load balan
ed Birkho�-von Neumann swit
hes, partII: multi-stage bu�ering. Computer Communi
ations, 2001.[7℄ S.-T. Chuang, A. Goel, N. M
Keown, and B. Prabhakar. Mat
hing output queueing with a
ombined input output queued swit
h. In IEEE Info
om, 1999.[8℄ A. Czumaj, F. Meyer auf de Heide, and V. Stemann. Contention resolution in hashing basedshared memory simulations. SIAM Jour. Comput., 29(5), 2000.[9℄ J. Duato. Inter
onne
tion Networks. Morgan-Kaufmann, 2002.[10℄ A. E. E
kberg and T. C. Hou. E�e
ts of output bu�er sharing on bu�er requirements in anatdm pa
ket swit
h. In IEEE Info
om, 1988.[11℄ M. Farley. Building storage area networks. M
Graw-Hill, 2001.[12℄ W. Futral. In�niBand Ar
hite
ture: Development and Deployment{A Strategi
 Guide to ServerI/O Solutions. Intel Press, 2001.[13℄ John Hennessy, David Patterson, and David Goldberg. Computer Ar
hite
ture: A QuantitativeApproa
h. Morgan-Kaufmann, third edition, 2002.[14℄ M. Hlu
hyj and M. Karol. Queueing in high-performan
e pa
ket swit
hes. IEEE Journal onSele
ted Areas in Communi
ations, 6(9), De
ember 1988.[15℄ S. Iyer, R. Zhang, and N. M
Keown. High-speed poli
y-based pa
ket forwarding using eÆ
ientmultidimensional range mat
hing. In ACM SIGCOMM, 2002.[16℄ S. Keshav. An Engineering Approa
h to Computer Networking. Addison-Wesley, 1997.
19

[17℄ S. Keshav and R. Sharma. Issues and Trends in Router Design. IEEE Communi
ation Maga-zine, 1998.[18℄ G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing in permutationnetworks. IEEE Transa
tions on Computers, 30(2), February 1981.[19℄ Y. Matias and U. Vishkin. Towards a theory of nearly
onstant time parallel algorithms. InPro
. IEEE FOCS, 1991.[20℄ N. M
Keown. iSLIP: A S
heduling Algorithm for Input-Queued Swit
hes. IEEE Transa
tionson Networking, 7(2), April 1999.[21℄ N. M
Keown, V. Anantharam, and J. Walrand. A
hieving 100% throughput in an input-queued swit
h. In IEEE Info
om, 1996.[22℄ N. M
Keown, M. Izzard, A. Mekkittikul, W. Ellersi
k, and M. Horowitz. The tiny tera: apa
ket swit
h
ore. IEEE Mi
ro, 17(1):27{33, January 1997.[23℄ Juniper Networks. High speed swit
hing devi
e. US Patent 5,905,726, 1999.[24℄ A. Pattavina. Swit
hing Theory. Wiley, John & Sons, In
orporated, 2000.[25℄ L. Peterson and B. Davie. Computer Networks. Morgan-Kaufmann, 2000.[26℄ A. Prakash, S. Sharif, and A. Aziz. An O(lg2 n) algorithm for output queuing. In IEEEInfo
om, 2002.[27℄ R. Ramaswami and K. Sivarajan. Opti
al Networks: A Pra
ti
al Perspe
tive. Morgan-Kaufmann, 2001.[28℄ T. Stern and K. Bala. Multiwavelength opti
al networks: a layered approa
h. Prenti
e-Hall,1999.[29℄ J. van Lint and R. Wilson. A Course in Combinatori
s. Cambridge University Press, 1992.[30℄ A. Wilson, J. S
hade, and R. Thornburg. Introdu
tion to PCI Express. Intel Press, 2002.

20

