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IP multicast is a network service for scalable distribution of data to multiple re-

ceivers. Traditional protocols for multicast congestion control rely on trust: each

party is assumed to follow guidelines for fair bandwidth sharing. However, with the

growth and commercialization of the Internet, the assumption of universal trust is

no longer tenable. In this dissertation, we consider a relaxed model where receivers

are untrustworthy and can misbehave to acquire an unfairly high bandwidth at the

expense of competing traffic. Our experiments with existing multicast protocols

show that each of the evaluated protocols is vulnerable to receiver misbehavior.

To take the first step towards robust multicast designs for distrusted environ-

ments, we focus on the class of feedback-free protocols where receivers provide no

feedback to the sender and control congestion by regulating their subscription lev-

els in the multi-group session. Unfortunately, the mechanism of group subscription

offers a misbehaving receiver an opportunity to inflate its subscription level. Such

inflated subscription attacks pose a major threat to fairness of bandwidth allocation.
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This dissertation is the first to solve the problem of inflated subscription.

The presented designs rely on an insight that the ability of a receiver to access a

multicast group should be tied with the congestion status of the receiver. First,

we address individual attacks where a receiver inflates its subscription with no as-

sistance from other receivers. Our solution guards access to multicast groups with

dynamic keys and consists of two independent components: DELTA (Distribution

of ELigibility To Access) – a novel method for in-band distribution of group keys

to receivers that are eligible to access the groups according to the congestion con-

trol protocol, and SIGMA (Secure Internet Group Management Architecture) – a

generic architecture for key-based group access at edge routers. DELTA and SIGMA

require only minimal generic changes in the edge routers, do not alter the core of the

network, and introduce no auxiliary servers. Then, we extend the design to protect

multicast congestion control against inflated subscription of colluding receivers. To

illustrate that integration with DELTA and SIGMA makes multicast protocols ro-

bust to inflated subscription and preserves other congestion control properties, we

derive and evaluate robust adaptations of RLM and FLID-DL protocols.
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Chapter 1

Introduction

Multicast is a service that distributes data to multiple receivers. A wide range of

emerging applications – such as video streaming, multi-party gaming, dissemination

of news and emergency alerts – can greatly benefit from this service. A scalable im-

plementation of the multicast service cannot rely on direct unicast communication

between the data source and each receiver. To disseminate data to a large popula-

tion of receivers, the sender relies on a distribution hierarchy of intermediaries that

duplicate and forward data to the receivers.

Internet Protocol (IP) multicast [13] refers to multicast implementations that

construct the data distribution hierarchy from network routers. The central con-

cept in IP multicast is a multicast group identified by a single address. Each re-

ceiver subscribes to a multicast group by submitting the group address to the local

edge router via Internet Group Management Protocol (IGMP) [16], and the net-

work uses multicast routing protocols – such as Distance Vector Multicast Routing

Protocol (DVMRP) [51], Core Based Trees (CBT) [4], Protocol Independent Mul-
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ticast (PIM) [12], Multicast extensions to Open Shortest Path First (MOSPF) [32],

Source-Specific Multicast (SSM) [23], and Simple Multicast (SM) [40] – to orga-

nize its routers into a logical tree for distribution of packets from the sender to the

subscribed receivers.

Whereas distribution trees that branch at routers enable the most efficient

dissemination of data both in terms of the network bandwidth utilization and de-

livery time, slow deployment of IP multicast has stirred recently an interest in

end-system implementations of the multicast service where end hosts form the data

distribution hierarchies [1, 5]. In this dissertation, we primarily focus on IP multicast

but discuss the end-system implementations in some detail in Chapter 5.

By itself, IP multicast provides only the basic forwarding functionality –

each router forwards multicast packets to its output links that lead to receivers.

To be useful, any communication service should also employ congestion control

mechanisms ensuring that the generated traffic uses the network resources fairly

and efficiently, e.g., by utilizing the bottleneck bandwidth without causing a heavy

loss of packets. Furthermore, some applications require reliability mechanisms that

overcome packet losses to deliver all the packets to all the receivers.

Traditional unicast communications in the Internet rely predominantly on

Transmission Control Protocol (TCP) that supplies both congestion control and

reliability [2, 24]. Upon delivery of a data packet, the receiver of a TCP session

transmits an acknowledgment packet to the sender. In its turn, the sender monitors

and analyzes the stream of acknowledgment packets from the receiver. If the sender

concludes that a data packet has been lost, the sender retransmits the packet and

reduces the overall transmission rate. As long as the feedback from the receiver does

2



not indicate a packet loss, the sender raises its transmission rate to consume any

unutilized bandwidth.

With respect to congestion control, two important features distinguish mul-

ticast from unicast:

• Receiver Multiplicity. If each receiver of a large multicast session reports its

congestion status directly to the sender, the feedback can overwhelm the sender

and the network. Consequently, scalable feedback-driven protocols for multi-

cast congestion control employ additional mechanisms to avoid the feedback

implosion. Also due to the scalability considerations, the sender does not know

the capabilities, identities, or even the number of the receivers in the session.

• Receiver Heterogeneity. If a multicast session has receivers with heterogeneous

capabilities, transmission at a single rate does not fully accommodate these

diverse capabilities. Thus, a single multicast group is often unable to satisfy all

the receivers. Multicast congestion control protocols address the receiver het-

erogeneity by composing a session from several multicast groups and thereby

allowing a receiver to align its received rate with its capability via subscription

to a suitable subset of the groups. Hence, multicast protocols use the mech-

anism of group subscription not only to form multicast groups in a scalable

manner but also to control congestion.

Below, we review multicast congestion control mechanisms – and their instantiations

in prominent protocols – in more detail.
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1.1 Multicast Congestion Control Mechanisms

To avoid feedback implosion, feedback-driven multicast protocols limit the amount

of information communicated from the receivers to the sender. Aggregation and

suppression are two alternative mechanisms for providing the sender with a brief

summary of the session congestion status.

In feedback aggregation, receivers pass their reports up along the edges of a

logical tree rooted at the sender. Internal nodes of the tree reduce the amount of

the feedback by consolidating the provided information: each internal node gath-

ers reports from its subtree, compiles their summary, and transmits a new report

with the aggregated information towards the root. Various implementations of feed-

back aggregation have been proposed. Some protocols – such as Reliable Multicast

Transport Protocol (RMTP) [39] – build the aggregation tree entirely from receivers.

Schemes like Source-Adaptive Multi-Layered Multicast (SAMM) [50] aggregate feed-

back in routers or other network devices.

In feedback suppression, a receiver reports its status directly to the sender.

Unlike feedback aggregation, this mechanism does not rely on intermediaries to gen-

erate new reports with aggregated information. Instead, feedback suppression filters

out those reports that do not refine the current summary of the session congestion

status. For example, in TCP-Friendly Multicast Congestion Control (TFMCC) [53]

where the congestion summary is the fair rate for the slowest receiver, the sender

multicasts its current summary to the session and thereby cancels reports from the

receivers with higher fair rates. Multicast of the congestion summary is not the

only implementation of feedback suppression. Some protocols – such as Pragmatic

General Multicast Congestion Control (pgmcc) [43] – suppress feedback at routers:
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a router discards reports that do not refine the feedback forwarded by this router

earlier.

To address heterogeneity of receivers, multicast congestion control protocols

compose a session from several multicast groups. By joining and leaving the groups

through IGMP, each receiver controls its level of participation in the session. In

such multi-group protocols, group subscription becomes a congestion control mech-

anism. In fact, Receiver-driven Layered Multicast (RLM) [30], Receiver-driven Lay-

ered Congestion control (RLC) [49], Fair Layered Increase/Decrease with Dynamic

Layering (FLID-DL) [7], Wave and Equation Based Rate Control (WEBRC) [28]

provide no feedback to the sender and control congestion through regulation of group

membership.

Fairness of bandwidth allocation in a multi-group session depends on the

ability of a receiver to converge to its fair subscription level. To facilitate this con-

vergence, some multicast congestion control protocols incorporate a mechanism for

subscription synchronization. Once again, there exist different implementations of

this mechanism. In RLM, receivers coordinate their actions via so-called shared

learning: before subscribing to a group, a receiver announces its intention to the

other receivers. RLC and FLID-DL synchronize subscriptions through explicit sig-

nals from the sender: a receiver can add a group only upon an increase signal;

increase signals are sent less frequently to receivers with higher subscription levels.

Receivers in WEBRC coordinate their subscriptions by converging to rates derived

from an equation for TCP-friendly throughput [37].

While group membership regulation and feedback-driven transmission ad-

justment constitute two different paradigms for multicast congestion control, they
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Table 1.1: Classification of multicast protocols according to their congestion control
mechanisms
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are not mutually exclusive. Combining these paradigms in one design improves

fairness and efficiency of bandwidth allocation in heterogeneous multicast environ-

ments [14, 22]. Destination Set Grouping (DSG) [10, 11], congestion control with

Selective participation, Intra-group transmission adjustment, and Menu adaptation

(SIM) [21], and Multicast Loss-Delay based Adaption (MLDA) [47] are multi-group

feedback-driven protocols that adjust both membership and transmission rates of

the groups.

Table 1.1 classifies the mentioned prominent multicast protocols with respect

to their congestion control mechanisms.

1.2 Diversity of Multicast Protocols

As the previous section demonstrates, different multicast protocols employ different

mechanisms to control congestion. Congestion control mechanisms are not the only

source of diversity in multicast protocols. Below, we classify multicast protocols

along four other dimensions: (1) reliability, (2) congestion notification, (3) session

structure, and (4) congested state.

Reliability. TCP uses the same mechanism to provide both congestion

control and reliability: when a data packet is lost, the sender retransmits the packet

and reduces the overall transmission rate. Such a combined design approach does

not lend itself straightforwardly to multicast. Whereas total reliability requires

recovery from each packet loss, reduction of the transmission rate in response to

each packet loss is not always a right strategy for multicast congestion control.

Since the forwarding tree of a multicast group can contain a number of branches that

lose packets independently, reacting to each loss can lead to a situation where the

7



transmission rate of the group is much lower than the fair value [6]. Consequently,

fair and efficient multicast protocols adjust the transmission rate of a multicast group

in response to the feedback from a representative receiver, e.g., the receiver with

the highest loss rate. To support reliable delivery, such protocols need to employ an

additional mechanism.

The heterogeneity of multicast applications is another reason for decoupling

congestion control and reliability in multicast. Whereas some applications – such

as software distribution – require delivery of all the data to all the receivers, the

total reliability is not a must in other domains. For example, a multicast session

that disseminates layered video strives to provide each receiver only with the packets

from a subset of the data layers – more specifically, from the layers that fit within the

fair bandwidth share of the receiver. Furthermore, some multimedia applications

can tolerate occasional packet losses and do not need explicit support for reliability

as long as congestion control mechanisms keep the loss rate low.

The above considerations explain the diversity of multicast congestion control

protocols with respect to their support for reliability. Many protocols – including

TFMCC, SAMM, RLM, RLC, FLID-DL, WEBRC, SIM, and MLDA – provide no

such support and thus are called unreliable [7, 21, 26, 28, 30, 47, 49, 50, 53]. Among

those protocols that are reliable, techniques for supporting the reliability vary. Some

reliable protocols – including RMTP and pgmcc – retransmit lost packets [17, 27, 34,

35, 38, 39, 43]. Others rely on a proactive mechanism of forward error correction:

the sender transmits not only packets with the original data but also redundant

packets that carry error correction codes; as long as a receiver obtains a substantially

large subset of the transmitted packets, the receiver can reconstruct all the original

8



data [9, 49].

Congestion notification. Whereas the purpose of reliability mechanisms

is to overcome packet losses, traditional congestion control introduces losses delib-

erately and uses them as an indication that the transmission has saturated all the

available bandwidth. The loss-driven congestion control suffers from a number of

disadvantages. For example, when an output link of a drop-tail router becomes fully

utilized, the router discards packets only after they fill up the link buffer, and this

buffering reduces the responsiveness of congestion control and delays the delivery of

data.

An appealing alternative to the loss-driven control is Explicit Congestion

Notification (ECN): when the link is saturated, the router sets a bit in the headers of

forwarded packets to notify receivers about the congestion explicitly; the notification

enables network sessions to avoid losses by decreasing the transmission earlier, before

the link buffer is full [42]. Since the recovery from packet losses in a multicast

session is more challenging than in unicast, ECN is particularly useful for multicast

protocols.

Session structure. Different multi-group protocols impose a different struc-

ture on a multicast session and prescribe a different set of rules for group subscrip-

tion. For instance, in replicated multicast protocols [10, 11], each group of a session

delivers the same content at a different rate, and a receiver reacts to congestion

by switching from its only subscribed group to a slower one. On the other hand,

in layered multicast protocols [7, 21, 26, 28, 30, 45, 47, 49], groups of a session

carry cumulative layers of hierarchically encoded data, and a receiver controls con-

gestion by subscribing to an appropriate stack of lower groups. Byers, Luby, and

9



Mitzenmacher [8] also propose non-cumulative layered multicast protocols where any

combination of the groups in a session constitutes a legitimate useful subscription,

i.e., a session with N groups offers 2N − 1 subscription levels.

Congested state. Some multicast protocols – such as FLID-DL and RLC –

define congestion as a single packet loss. Other protocols often ignore occasional loss

of packets and consider a receiver to be congested only when its loss rate exceeds a

threshold. For instance, the default threshold for each subscription level in RLM is

25% of the packets transmitted to this level. MLDA and WEBRC are examples of

protocols that use the TCP-friendly throughput equation to define a lower threshold

for each higher subscription level in the session.

1.3 Trust Modeling

The above review of multicast congestion control protocols showed their great di-

versity with respect to the definition of the congested state, session structure, and

mechanisms for congestion notification and reliability. Despite the differences, the

multicast protocols share a common feature – their congestion control assumes that

each party always adheres to guidelines for fair sharing of the network bandwidth.

Congestion control protocols have rested on this implicit assumption of uni-

versal trust since the early days of the Internet. As long as the network served solely

as an experimental test bed shared by a close-knit community of scientists and en-

gineers, ignoring the trust issues in bandwidth allocation was perhaps defensible.

However, the Internet has grown into a global commercial system where thousands

of independent Internet Service Providers (ISPs) compete and cooperate via dozens

of protocols to provide a variety of distributed applications to millions of users. Con-
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sequently, networking became impersonal – it is common that a user knows neither

all the ISPs that provide communication services to the user nor other customers

that fulfill their communication needs over the same bottleneck links. Although this

very separation promoted the Internet expansion (by freeing the users from the need

to be aware of what is happening inside the network), it also weakened incentives for

following the etiquette of fair bandwidth sharing. Since the network bandwidth is a

valuable asset, some parties involved in Internet communications can be interested

in eliciting unfair bandwidth allocations by manipulating Internet protocols. Fur-

thermore, widespread deployment of open-source operating systems provides users

with ample opportunities for such misbehavior.

Defining a representative model for trust relationships in the Internet is a

hard problem. Below, we discuss three aspects of the trust modeling: (1) trusted

base, (2) dynamics of trust relationships, and (3) degree of distrust.

1.3.1 Trusted Base

Universal trust is an extreme point in the trust space. Another extreme is uni-

versal distrust, a situation where no entity – an end host, router, server, or link –

is trusted. Designing robust Internet protocols under this pessimistic assumption

would require from a protocol participant to verify all the information received from

the other entities. Even if possible to be realized, the taxing verification would

consume computational and communicational resources of the network and conse-

quently undermine the efficiency of communications.

Fortunately, the assumption of universal distrust is not very realistic either.

The likelihood of misbehavior varies substantially among Internet constituents. For
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example, a party that uses the Internet only to email text messages is unlikely

to circumvent congestion control protocols because transmitting the messages at

unfairly high rates would not usually provide the party with practical benefits from

the shorter delivery times; on the other hand, since bandwidth cheating is often the

only way for a receiver to obtain a high-resolution live video stream over the modern

Internet infrastructure, such a receiver has stronger incentives to misbehave.

Thus, a realistic trust model needs to partition the Internet into a trusted

base and distrusted elements. For example, [44] presents a model where the trusted

base includes all the network infrastructure and information providers; only informa-

tion consumers are considered untrustworthy. To be robust under such trust models,

Internet protocols can employ traditional techniques for supporting the communica-

tions within the trusted base and verify only the information provided by distrusted

elements. Such protocols can be substantially lighter than the designs derived under

the assumption of universal distrust.

1.3.2 Dynamics of Trust Relationships

Some trust models link trustworthiness to functionality, e.g., routers can be viewed

as always trusted. Trust relationships in such function-based models are static, and

robust protocols can use the identity of a network component to decide whether

the component is a part of the trusted base. However, one might argue that func-

tionality is not a reliable indicator of trustworthiness, e.g., it seems reasonable to

trust routers of a reputable ISP but be distrustful of routers belonging to a newly

emerged provider. Moreover, network components can change ownership or be vic-

timized by an intruder. Thus, more elaborate models represent trust as dynamic
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relationships. Under such a model, robust protocols cannot include an entity into

the trusted base simply by authenticating the entity. To verify the trustworthiness,

they need additional mechanisms that track the behavior of the entity in earlier

communications.

1.3.3 Degree of Distrust

Trust modeling involves not only identifying the elements that are untrustworthy

but also specifying the degree of the distrust. One alternative is to assume arbitrary

deviations from the prescribed behavior. Such a model operates in terms of binary

trust relationships: an entity either enjoys the absolute trust or has no credibility

whatsoever. Once again, the most pessimistic assumption is not a realistic way to

characterize misbehavior. Rather than engaging in random actions, a misbehaving

entity is more likely to set up coordinated attacks in order to achieve some specific

goals. Hence, more realistic models define the degree of distrust for an entity by

describing the attacks that the entity can launch. Below, we slice the continuum of

possible attacks using the two criteria of collusion and intent.

First of all, an entity can stage an individual attack without any assistance

from other distrusted elements. A protocol can acquire robustness against the indi-

vidual attack by verifying the information provided by the distrusted element and

monitoring its actions. This protection can be insufficient when distrusted elements

conspire to join their forces and launch a collusion attack. For example, if the veri-

fication mechanism relies on a majority voting, the colluding elements can dupe the

mechanism by submitting multiple copies of an incorrect report. If the protection

employs keys, the colluding elements can share the keys to overcome the protec-
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tion. Also, whereas individual actions of each colluding entity might seem benign,

their cumulative impact can be devastating. Thus, it is more difficult to achieve

robustness in models that add collusion to the list of possible attacks.

The intent is a criterion enabling us to separate misbehavior of distrusted

entities into denial-of-service attacks and self-beneficial attacks. In denial-of-service

attacks, disruption of network services is a sole goal of the misbehavior. Conse-

quently, the attacker strives for highly visible disruptions, and the magnitude of the

damage is a measure of its success. The intentional visibility of denial-of-service

attacks facilitates their detection – an unusually low level of service is an indicator

that the network is potentially under attack. On the other hand, a self-beneficial

attack is driven by a desire to gain selfish benefits from the elicited unfair band-

width allocation. The damage to communications of other parties is collateral and

rather undesirable. To avoid detection and thereby preserve the unfairly acquired

bandwidth, self-beneficial attacks are interested in keeping a low profile. For exam-

ple, instead of shutting down the competing traffic, the attacker has incentives to

subdue this traffic to a level that the abused parties can falsely interpret as fair.

Thus, self-beneficial attacks can be sneakier and more difficult to discern.

Another distinction of denial-of-service attacks is their richer arsenal. To

waste bandwidth, an attacker can transmit spurious data or subscribe to multiple

sessions even if the attacker has no interest in their content. Such attacks are

purely malicious; the attacker itself does not benefit from the wasted bandwidth.

Opportunities for self-beneficial attacks are less ample. For example, to acquire

an unfairly high bandwidth for obtaining the data within a session, a receiver has

to manipulate its congestion control protocol. Since the manipulation opportunities
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are limited, protection against self-beneficial attacks can be more effective. Whereas

defense against denial-of-service is reactive and relies on detection and punishment,

it is often possible to prevent self-beneficial attacks.

In comparison to widely publicized denial-of-service incidents, insidious self-

beneficial attacks have stirred much less attention among researchers. On the other

hand, sneaky self-beneficial misbehavior is far from harmless. In the Internet, the

population of bandwidth-greedy users exceeds greatly the number of hackers in-

terested only in disrupting the communications of others. Even inside large intra-

enterprise network environments, selfish misbehavior cannot be discounted. Due to

the tangible incentives offered by self-beneficial attacks, the frequency and cumula-

tive impact of such attacks can be much higher. Recent studies of TCP congestion

control showed that a misbehaving receiver can substantially increase its through-

put at the expense of cross traffic [15, 44]. Thus, even if a small percentage of TCP

receivers launches self-beneficial attacks, this misbehavior can severely disrupt net-

work services. In multicast congestion control [18, 19, 20], self-beneficial attacks are

even more diverse and dangerous.

1.4 Dissertation Outline

In this dissertation, we examine the impact of relaxing the assumption of universal

trust on the design of multicast congestion control protocols. In Chapter 2, we define

our trust model and identify potential threats to multicast congestion control. Our

evaluation of existing multicast protocols shows that each of the evaluated protocols

is vulnerable to at least one of the identified threats. Based on the dominance of

feedback-free multicast protocols, we argue that inflated subscription of misbehaving
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receivers represents the major threat to fairness of network bandwidth allocation.

Chapter 3 proposes solutions for the problem of inflated subscription. Our main

contribution is an insight that the ability of a receiver to access a multicast group

should be tied with the congestion status of the receiver. First, we exploit this

insight to provide multicast protocols with robustness against individual attacks

where a multicast receiver inflates its subscription with no assistance from other

parties. The proposed design guards access to multicast groups with dynamic keys

and consists of two independent components: DELTA (Distribution of ELigibility

To Access) – a novel method for in-band distribution of group keys to receivers that

are eligible to access the groups according to the congestion control protocol, and

SIGMA (Secure Internet Group Management Architecture) – a generic architecture

for key-based group access at edge routers. Then, we extend the design of DELTA

and SIGMA to protect multicast congestion control against inflated subscription of

colluding receivers. Chapter 4 applies the designed mechanisms to derive robust

versions of RLM and FLID-DL multicast protocols. Finally, Chapter 5 summarizes

the contributions of the dissertation.
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Chapter 2

Threats to Multicast

Congestion Control

This chapter explores the impact of trust assumptions on multicast congestion con-

trol. In our trust model, information sources and network providers (and hence

network links, routers, and servers) are trustworthy and always adhere to their pro-

tocols. The trust relationships are static and exclude only receivers from the trusted

base. One justification for this model comes from the observation that a receiver is

primarily interested in maximizing its own throughput whereas information sources

and network providers are a part of the managed infrastructure and have an interest

in treating their customers fairly. Furthermore, the trust in routers is essential for

ensuring the fairness of bandwidth allocation because a router has a decisive word

in allocating the bandwidth of its output links. Figure 2.1 depicts our trust model

by placing the network infrastructure within a sphere of trust. Local interfaces of

edge routers are the only points of access for network users. For instance, a receiver
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Figure 2.1: Multicast congestion control with distrusted receivers

can subscribe to a multicast group only by communicating with a local router. To

characterize the degree of distrust, the model assumes that receivers misbehave only

to acquire unfairly high bandwidth at the expense of competing traffic. Thus, a mis-

behaving receiver launches self-beneficial bandwidth attacks but does not act from

pure malice to stage denial-of-service attacks. However, the types of the potential

self-beneficial misbehavior include both individual attacks and collusion attacks.

A similar trust model has been studied earlier for TCP congestion control. In

that model, the network infrastructure and senders of TCP sessions are trustworthy

but the receivers are distrusted and can misbehave to acquire data at an unfairly high

rate (see Figure 2.2). [15, 44] demonstrate that by abusing either acknowledgment

packets or ECN feedback to the sender, a TCP receiver can inflate the transmission

and increase substantially the rate of reliable delivery. In proposed solutions, the

sender protects against the misbehavior by verifying the correctness of the congestion
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Figure 2.2: Unicast congestion control with distrusted receivers

reports supplied by the receiver.

Is it possible to use the same protection techniques to derive robust pro-

tocols for multicast congestion control? As we discussed in Section 1.1, multicast

protocols need additional congestion control mechanisms, e.g., a feedback suppres-

sion mechanism for avoiding feedback implosion or a group subscription mechanism

for addressing receiver heterogeneity. The additional mechanisms give multicast

receivers extra opportunities for manipulating congestion control. For example, a

misbehaving receiver of a multi-group session can acquire an unfairly high bandwidth

by maintaining an unfairly high subscription level; also, a misbehaving receiver can

deceive a feedback-driven multicast protocol into an unfairly high transmission by

failing to report or by suppressing legitimate reports from other receivers. Note that

verification of feedback correctness at the sender does not protect against inflated
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subscription or incomplete feedback. Thus, unicast-style methods of protection do

not make multicast congestion control protocols robust to receiver misbehavior.

In what follows, we analyze multicast congestion control mechanisms and

identify their potential susceptibilities to receiver misbehavior. Subsequent experi-

ments with prominent multicast protocols confirm that each of the evaluated proto-

cols is vulnerable to at least one of these threats. Finally, we discuss approaches for

eliminating the vulnerabilities and single out inflated subscription of misbehaving

multicast receivers as a major threat to fair bandwidth allocation.

2.1 Threat Model

To explore the spectrum of potential vulnerabilities in multicast congestion control,

we define a threat as a general pattern of multicast receiver misbehavior that can

reward the misbehaver with an unfair bandwidth advantage over other receivers in

the network. We compile the list of threats by reexamining the multicast congestion

control mechanisms discussed in Section 1.1.

The paradigm of feedback-driven transmission adjustment engages multicast

receivers in providing the sender with a summary of the session congestion status.

The sender uses this information to adjust its transmission. By distorting the con-

gestion summary, a misbehaving receiver can trick the sender into unfairly high

transmission. After the inflated transmission forces well-behaving cross traffic to

recede, the misbehaving receiver unfairly acquires the released bandwidth. This

general attack of inflated transmission comes in various instantiations that exploit

different vulnerabilities in the control mechanisms of the feedback-driven paradigm.

Feedback generation intrinsically resides in receivers: each receiver prepares
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and transmits reports about its congestion status. To distort the congestion sum-

mary, a misbehaving receiver can issue incorrect reports. This threat is analogous to

receiver misbehavior in unicast congestion control. However, incorrect reports are

not the only threat to feedback generation in multicast. Failure to report can also

boost transmission by distorting the congestion summary.

In feedback aggregation, each internal node of the aggregation tree replaces

incoming feedback with a smaller number of aggregated reports. If the aggregation

tree consists of receivers, a misbehaving receiver inside the tree can issue forged

aggregated reports that ignore or falsify information provided to the misbehaver by

other receivers.

Feedback suppression uses a report from a receiver to filter out subsequent

feedback that does not refine this earlier report. Manipulation with feedback sup-

pression through a spurious report can also distort the congestion summary.

In the paradigm of group membership regulation, group subscription allows

a receiver to select its subscription level in a multi-group session. Since IGMP does

not restrict multicast group membership, a misbehaving receiver can join those

groups where transmission exceeds the fair rate for the misbehaver. The unfairly

high subscription rewards the misbehaver with an unfairly high throughput after the

competing well-behaving traffic recedes. Thus, inflated subscription poses a threat

to fairness of multicast congestion control.

The mechanism of subscription synchronization coordinates actions of re-

ceivers to facilitate convergence to fair subscription levels. If a receiver’s decision

to join or to leave a group depends on information supplied by another receiver,

a misbehaving receiver can manipulate the subscription levels of the others. By
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preventing other receivers from subscription, a misbehaving receiver keeps their sub-

scription levels unfairly low and thus acquires an unfair bandwidth advantage over

them.

To sum up the above discussion, we list the six threats of multicast receiver

misbehavior that represent potential attacks in our trust model:

1. Incorrect reports,

2. Failure to report,

3. Forged aggregated reports,

4. Manipulation with feedback suppression,

5. Inflated subscription, and

6. Prevention of other receivers from legitimate subscription.

2.2 Evaluation of Vulnerabilities

In this section, we evaluate whether existing multicast protocols are susceptible to

the identified threats. For each threat in our model, we evaluate one protocol from

Table 1.1. Since our model defines threats with respect to control mechanisms, we

select a representative protocol for a threat from the table row for the corresponding

mechanism.

We use NS-2 [36] and conduct all our experiments in the same network.

Figure 2.3 marks bottleneck links with their capacities. The capacity of each un-

marked link is 100 Mbps. All the links have a delay of 10 msec and a buffer for two

bandwidth-delay products. Multicast sessions M and N control congestion using
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Figure 2.3: Experimental network topology

the evaluated multicast protocol. Session M serves four receivers M1, M2, M3 and

M4 that can misbehave. Well-behaving receivers N1 and N2 compose session N .

Unicast sessions A, B, C, and D adhere to TCP Reno. Each sender transmits as

much data as its protocol allows. The packet size in each session is 1000 bytes.

We run each simulation for 200 seconds. Unless we state explicitly otherwise,

a misbehaving receiver starts its attack 100 seconds into the experiment. We mea-

sure throughput and loss rates for the misbehaver and other receivers. For reliable

protocols, we consider only sequentially delivered data to compute the throughput.

In unreliable protocols, the reported throughput reflects all delivered data.
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2.2.1 Incorrect reports in TFMCC

TFMCC [53] is a single-group protocol where each receiver uses an equation for TCP-

friendly throughput to calculate its fair rate. The sender adjusts its transmission to

the lowest of the fair rates reported by the receivers.

The slowest receiver can attack TFMCC by reporting an exaggerated rate

and boosting the transmission. However, the misbehaver does not benefit if the

inflated transmission swamps its bottleneck link and causes persistent heavy losses.

Also, the misbehavior does not raise the transmission beyond the smallest rate

reported by a well-behaving receiver. To profit the most from the attack, the mis-

behaving receiver can adjust the reported exaggerated rate and maintain the fastest

transmission that does not result in congestion.

In our experiment, M1 is the only misbehaving receiver. The fair rate for M1

is 250 Kbps. The slowest well-behaving receiver M2 has a fair rate of 1 Mbps. After

100 seconds, M1 misbehaves by reporting a rate of 900 Kbps. Figure 2.4 shows that

the attack rewards M1 with a substantial throughput advantage over well-behaving

receivers C, D, and N1. Figure 2.4 also presents the corresponding loss rates.

2.2.2 Failure to report in TFMCC

To attack TFMCC, the slowest receiver can also choose to be silent and boost the

transmission to the smallest rate reported by a well-behaving receiver. If the inflated

transmission overloads its bottleneck link, the misbehaver detects the persistent

losses and discontinues the attack as disadvantageous. In comparison to incorrect

reports, failure to report gives the misbehaver less control over the transmission.

However, if the sender in TFMCC would verify the correctness of reported rates,
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Figure 2.4: Incorrect reports in TFMCC
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this verification would ward off attacks based on incorrect reports but could not

protect against missing reports. Thus, failure to report can spring more potent

attacks.

As in the experiment above, M1 is the only misbehaver. After 100 seconds,

M1 does not report to the sender. Guided by reports from M2, session M increases

transmission to 1 Mbps and subdues the well-behaving cross traffic. Figure 2.5

presents throughput and losses for receivers C, D, N1, and M1.

2.2.3 Forged aggregated reports in RMTP

RMTP [39] is a reliable protocol that marks data packets with sequence numbers.

Each receiver specifies lost packets in its feedback. RMTP designates some receivers

to aggregate feedback from other receivers. Every designated receiver also retrans-

mits lost packets to its children in the aggregation tree. To control congestion, the

sender monitors the highest reported loss rate. If this loss rate exceeds a threshold,

the sender cuts its transmission to a minimum. While the losses stay below the

threshold, the transmission rate grows linearly.

A designated receiver can attack RMTP by failing to relay loss reports from

its aggregation subtree. If the ignored reports belong to the slowest receivers, the

sender boosts its transmission. In comparison to own distorted feedback, forged

aggregated reports reward the misbehaver more and punish the others harsher. In

the above attacks on TFMCC, the misbehaver can raise the transmission up to the

fair rate for the slowest well-behaving receiver. This increase can be small. In the

attack on RMTP, the fastest receiver can govern the transmission by quenching

the reports from the slower receivers. Furthermore, the inflated transmission can
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Figure 2.5: Failure to report in TFMCC
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penalize the well-behaving receivers with heavy losses. To solidify the damage,

the misbehaver can halt reliable delivery for the congested receivers by failing to

retransmit the lost data.

We implemented RMTP following the description in [39]. In our experiment,

designated receiver M3 consolidates its feedback with reports from M1 and M2. The

sender of M receives the aggregated feedback from M3 and direct reports from M4.

In session N , both receivers report directly to the sender. After 100 seconds, M3

ignores loss reports from M1 and M2. Figure 2.6 shows that this attack raises the

transmission rate of M far above 1 Mbps and subdues well-behaving N1 and C.

Whereas M fills the 1 Mbps links with its data, M1 and M2 get skyrocketing losses

and no throughput because M3 does not retransmit lost packets to these receivers.

Shortly after 150 seconds, the transmission rate of M saturates the 10 Mbps link,

falls to a minimum upon a report from M4, and then inflates again.

2.2.4 Manipulation with suppression in pgmcc

pgmcc [43] is a single-group protocol that employs two types of feedback: NAK

and ACK. Based on NAK feedback, the sender picks a receiver to represent the

session. This receiver is called an acker and ideally should have the smallest fair

rate. Based on ACK feedback from the acker, the sender adjusts its transmission.

To support reliable multicast, the sender retransmits lost packets and controls the

retransmission rate by a separate mechanism. Upon detecting a packet loss, a

receiver transmits a NAK report that includes the sequence number of the lost

packet, loss rate, and so-called lead parameter used by the sender to calculate the fair

rate for the receiver. To avoid implosion of NAK feedback, pgmcc relies on feedback
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Figure 2.6: Forged aggregated reports in RMTP
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suppression at PGM routers [48]. For each sequence number, a PGM router forwards

the first NAK report containing this number and discards subsequent reports with

the same number. Feedback suppression does not interfere with the acker selection

because slower receivers experience higher losses and transmit NAK reports more

frequently. Thus, reports with the smallest fair rate have a good chance to reach the

sender without being suppressed. Also, feedback suppression is likely to filter out

NAK feedback from more capable receivers and thereby exclude them from being

considered for the acker position.

A misbehaving receiver can attack pgmcc by issuing a spurious NAK report.

To avoid suppression, the spurious report carries an exaggerated sequence number.

The report also distorts the loss rate and lead parameter to trick the sender into

calculating a tiny fair rate and selecting the misbehaver as the acker. Since the

sender identifies the acker in each data packet, the misbehaver knows whether the

attack is successful. After the misbehaver becomes the acker, its ACK feedback

boosts the transmission to a level that can greatly exceed the smallest fair rate.

Unlike in the above attacks where a receiver must be the slowest or designated to

benefit from misbehavior, any receiver in pgmcc can fraudulently become the acker

and inflate the transmission. Hence, this attack offers the highest probability of

success.

In our experiment, all routers suppress NAK feedback. Upon receiving a data

packet after 100 seconds, M3 misbehaves by transmitting a spurious NAK report

with 99.99% loss rate, lead parameter of 1, and sequence number s + 1000 where s

is the sequence number of the received packet. Since the sender is yet to transmit

the packet requested in this NAK report, the report triggers no retransmission.
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Figure 2.7: Manipulation with feedback suppression in pgmcc
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However, the spurious NAK reports establish M3 as the acker, and its correct ACK

feedback inflates the sending rate of M beyond 8 Mbps. Figure 2.7 shows that the

inflated transmission stomps throughput of well-behaving N1 and C to zero and

causes huge losses for M1 and M2. Although M1 and M2 recover from the losses

through retransmissions and maintain throughput of 1 Mbps, these receivers fall far

behind M3 in reliable acquisition of data.

2.2.5 Inflated subscription in FLID-DL

FLID-DL [7] is a multi-group feedback-free protocol where the sender encodes data

into cumulative layers and uses a separate multicast group for each layer. Every

receiver controls congestion by joining and leaving the groups of the session. Since

the sender does not know the fair rates of the receivers, the default setting in FLID-

DL uses a large number of multicast groups that cover – with a relatively fine

granularity – the possible range of the fair rates.

To attack FLID-DL, a misbehaving receiver can join the layers with the

cumulative transmission rate just below its bottleneck link capacity. The inflated

subscription rewards the misbehaver with unfairly high throughput after the well-

behaving cross traffic recedes. To detect the most beneficial subscription, the misbe-

haver can probe by adding a layer and keeping it only if the enhanced subscription

does not cause persistent congestion.

Each FLID-DL session in our experiment has the same parameter settings:

the base layer is transmitted at 24 Kbps; data are encoded into 24 layers; the

cumulative transmission rate grows multiplicatively with the factor of 1.3 per layer.

After 100 seconds, M1 joins 14 lowest layers of session M , maintains this inflated
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Figure 2.8: Inflated subscription in FLID-DL

33



subscription, and raises its throughput to 800 Kbps. Figure 2.8 shows throughput

and loss rates for receivers C, D, N1, and M1.

2.2.6 Prevention of other receivers from legitimate subscription in

RLM

RLM [30] is also a multi-group feedback-free protocol where each group carries one

layer of hierarchically encoded data. Every receiver maintains a join timer. When

the join timer expires, the receiver adds the group that is immediately above its

currently subscribed groups. To synchronize subscriptions, receivers rely on shared

learning that sets the following rules:

• Before subscribing to a group, a receiver announces its intention to the other

receivers.

• If a receiver observes losses shortly after subscribing to a group, the receiver

drops the added group.

• When a receiver that is waiting to join a group receives a join announcement

for a lower group, this receiver reschedules its join timer (to avoid derailing

the announced join by the losses caused by its own join).

To attack RLM, a misbehaving receiver can periodically act as a newcomer.

Its spurious announcements of joining the base layer prevent the other receivers

from raising their subscriptions. Unlike the above attacks, this misbehavior gives

the receiver an unfair edge over other receivers in the same session but not over

receivers in a different session. Also, this attack succeeds only if it starts before

the well-behaving receivers reach their fair subscriptions. However, the misbehaver
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Figure 2.9: Prevention of other receivers from subscription in RLM

35



can deflate these subscriptions by inflating its own. After the auxiliary misbehavior

causes congestion and subdues the other receivers, the misbehaver can keep their

subscriptions low. Thus, the receiver can combine these two attacks to maximize

its benefits.

In our experiment, each RLM session encodes data into 7 layers, transmits

the base layer at 100 Kbps, and doubles the cumulative transmission rate with each

layer. Every second until the midpoint of the experiment, M3 issues a spurious

announcement of joining the base layer and thereby limits the subscriptions of M1,

M2, and M4 to this layer. After 100 seconds, M3 stops its attack and allows the

other receivers of M to raise their subscriptions. Figure 2.9 presents throughput

and loss rates for receivers M1, M2, M3, and M4.

2.3 Discussion

Section 2.2 shows that each threat in our model victimizes at least one existing

multicast protocol. Moreover, we observed that all the protocols from Table 1.1

are vulnerable to receiver misbehavior. Following the threat ordering in our model,

Table 2.1 classifies the vulnerabilities of these protocols. Below, we discuss our

findings in more detail.

First, let us examine the congestion control paradigm of feedback-driven

transmission adjustment. Among the protocols in Table 1.1, SAMM [50] is the only

feedback-driven design where a misbehaving receiver does not benefit from its failure

to report. In SAMM, the sender transmits all layers of hierarchically encoded data

to a single group. Every receiver reports its rate of raw data reception and a count

of 1. Feedback is aggregated at routers or auxiliary network devices. An aggregation
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Table 2.1: Vulnerabilities of multicast congestion control protocols
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node reduces the number of reported rates to one per layer and enhances their counts

with the counts of the ignored rates. The sender aligns its layer transmission rates

with the reported rates.

The immunity of SAMM to failure to report comes from network support.

All routers allocate the bandwidth of their links fairly among competing sessions

and assign a larger forwarding priority to a lower layer within a SAMM session. At

a bottleneck link, the SAMM session trims its rate to the fair share after the router

discards the excessive higher layers. Whereas a misbehaving receiver cannot exceed

its fair rate of raw data reception, feedback affects only the layer boundaries within

this rate. Failure to report does not improve the alignment of the layer rates with

the fair rate of the misbehaver. Hence, the network can give receivers an incentive

to supply feedback.

Note however that SAMM is vulnerable to incorrect reports. By reporting

inflated counts, a misbehaving receiver can elicit layer rates that match its ca-

pability exactly but are greatly unfair to other receivers in its session. Thus, fair

link scheduling is insufficient for comprehensive protection against multicast receiver

misbehavior.

Among the three protocols that use feedback aggregation, forged aggregated

reports endanger only RMTP because SIM and SAMM aggregate feedback in the

network. To protect receiver-based aggregation, a multicast protocol can employ

feedback verification: if an aggregation node can detect that reports from its aggre-

gation subtree are incorrect or incomplete, the protocol can curb the transmission

to give receivers incentives to aggregate feedback properly.

Four protocols in Table 1.1 rely on feedback suppression but only pgmcc
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allows a misbehaving receiver to benefit from manipulating this mechanism. Both

pgmcc and TFMCC employ feedback suppression to provide the sender with the

smallest fair rate. A misbehaver can deceive both protocols by reporting an even

smaller rate. In TFMCC where the sender adjusts its transmission to the smallest

reported rate, the misbehaver does not benefit from the deception. On the other

hand, pgmcc uses the smallest reported rate to select the acker, and the same

deception rewards the misbehaver with the acker position and an opportunity to

inflate the transmission through correct ACK feedback. Thus, if protection against

receiver misbehavior relies on feedback verification, even the feedback that affects

transmission indirectly should be verified.

Two challenges complicate feedback verification in multicast. First, feedback

can be presented in a compressed form such as a rate or an average. Second, not

only the sender but also other receivers and network devices can react to feedback.

Let us now consider the paradigm of group membership regulation. Among

the multi-group protocols in Table 1.1, only RLM allows a misbehaving receiver to

subdue the subscriptions of other receivers. The rest of the protocols is immune to

the threat because in these protocols a receiver joins a group without consulting with

other receivers. Since RLC, FLID-DL, and other advanced designs enable receivers

to synchronize subscriptions without any exchange of messages between the receivers

and without any support from the network, subscription synchronization in future

protocols has no reasons to rely on information supplied by receivers.

All the multi-group protocols are vulnerable to the threat of inflated sub-

scription because a misbehaving receiver is able to join any group. Thus, protection

against inflated subscription can rely on regulation of access to multicast groups.
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Above, we discussed vulnerabilities in different types of multicast congestion

control protocols and offered some general suggestions for protecting the proto-

cols against receiver misbehavior. From now on, we will concentrate on the class

of feedback-free multicast protocols and derive more detailed designs for robust

feedback-free congestion control.

Our interest in feedback-free protocols stems from their current predomi-

nance as the most promising approach to multicast congestion control. RLM, RLC,

FLID-DL, and WEBRC have formed a successful line of designs leading to a prac-

tical solution ready for deployment. The main advantage of this design line is the

simplicity of congestion control: since such a protocol provides no feedback from the

receivers to the sender, the protocol does not need to incorporate a mechanism that

aggregates or suppresses the feedback; instead, the protocol controls congestion via

the group subscription mechanism, which IP multicast already supports to enable

scalable formation of multicast groups.

Among the two threats that we identified for feedback-free multicast conges-

tion control, prevention of other receivers from legitimate subscription is a vulnera-

bility that has been addressed in advanced feedback-free designs (e.g., by the sender-

driven synchronization of subscriptions in RLC and FLID-DL). Thus, the threat of

inflated subscription remains the only obstacle for designing robust protocols for

feedback-free congestion control. In the next chapter, we propose mechanisms that

protect multicast protocols against inflated subscription.
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Chapter 3

Robustness to Inflated

Subscription

Chapter 2 identified inflated subscription of misbehaving multicast receivers as a

major threat to fair bandwidth allocation. Below, we derive mechanisms that make

multicast protocols robust to inflated subscription. We focus on preventive solutions

and argue that prevention of inflated subscription attacks requires restricted group

access. In Section 3.1, we show that existing architectures for group access control –

such as Secure IGMP [3] and Gothic [25] – do not protect against inflated subscrip-

tion because they define the eligibility to access a group based on the identity, rather

than the congestion status of a receiver. With the current Internet infrastructure,

inflated subscription belongs to the class of individual attacks because a receiver

can join any multicast group at the local router without assistance from other par-

ties. In Section 3.2, we examine these individual attacks and present DELTA and

SIGMA, the first solution for the problem of inflated subscription. Our design uses
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dynamic keys to enforce congestion-dependent group access. DELTA and SIGMA

require only minimal generic changes in the edge routers, do not alter the core of

the network, and introduce no auxiliary servers. We then discuss properties of our

scheme and demonstrate its vulnerability to collusion attacks where misbehaving

receivers share group keys. Finally, Section 3.3 extends the design to make it robust

to collusion attacks.

3.1 Design Requirements

Inflated subscription can be addressed by either discouraging the misbehavior or

preventing it altogether. The former approach punishes misbehaving receivers a

posteriori, e.g., by discriminatory dropping of their future packets [29]. In this

dissertation, however, we focus only on mechanisms that prevent receivers from

inflating their subscription.

Since IGMP does not restrict the ability of receivers to subscribe to multicast

groups, a misbehaving receiver can join any multicast group as long as it knows the

address of this group. Hence, a natural solution for preventing inflated subscription

may appear to be the one that hides information about the groups (i.e., multicast

group addresses) from ineligible receivers. Unfortunately, such information hiding is

difficult to realize in modern networks: since multicast group addresses are employed

for routing, receivers can abuse network monitoring and debugging tools – such as

MSTAT [33] – to query routers and obtain the addresses of active multicast groups.

Based on these arguments, we conclude that to restrict group subscription

only to eligible receivers, a multicast congestion control must regulate access to

groups. Existing architectures for group access control – such as Secure IGMP [3]
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and Gothic [25] – rely on receiver authentication. Unfortunately, the identity of a

receiver does not reveal any information about its congestion status. Hence, conven-

tional group access control mechanisms are inadequate for preventing inflated sub-

scription. Instead, multicast congestion control protocols need a mechanism where

the congestion status of a receiver – rather than its identity – forms a foundation

for group access control. This leads us to our first design requirement.

Requirement 1 To protect against inflated subscription, multicast congestion con-

trol protocols must rely on congestion-dependent access control mechanisms.

Since any form of group access control requires support from the network

infrastructure (e.g., routers), deployment considerations lead us to the following

requirement.

Requirement 2 Implementation of access control mechanisms should require min-

imal modifications of the network infrastructure.

The minimal infrastructure support requirement suggests that access control

mechanisms should be implemented at edge routers without any changes in the

network core. In addition to limiting the amount of infrastructure changes, it is

essential for the access control functionality to be generic. The infrastructure should

support a diverse collection of existing protocols as well as future protocols.

Requirement 3 The access control functionality supported by the network infras-

tructure should be independent from details of specific congestion control protocols.
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Achieving the required generality of network support is challenging. As we

showed in Section 1.2, different multi-group protocols specify different rules for

group subscription. For instance, whereas a receiver in a replicated multicast session

reacts to congestion by switching from its only subscribed group to a slower one,

cumulative layered multicast protocols instruct a congested receiver to drop the top

group among its currently subscribed groups. Furthermore, unlike some protocols

that reduce subscription in response to a single packet loss, threshold-based protocols

base subscription decisions on the observed loss rate. Also, while some protocols rely

on packet loss as a congestion signal, others exploit ECN. The above considerations

demonstrate that the right to access a group should be a protocol-specific function

of congestion.

Finally, although our primary goal is to develop mechanisms that protect

multicast congestion control protocols against inflated subscription, a secondary

goal is to ensure that these mechanisms have minimal, if any, impact on the overall

effectiveness of congestion control. This leads us to our final requirement.

Requirement 4 Mechanisms for protecting against inflated subscription should

preserve the scalability, fairness, efficiency, responsiveness, and other properties of

multicast congestion control protocols.

3.2 Protection against Individual Attacks

Our objective is to design group access control based on the congestion status of the

receiver. Direct monitoring of congestion at routers is one option for congestion-

dependent access control. For example, edge routers can observe the congestion

status of a multicast session and enforce fair subscriptions of local receivers. How-
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Figure 3.1: Timeline for distribution and usage of keys

ever, such schemes violate our Requirement 3 because they make routers aware of

the session, its groups, and its congestion control protocol. Hence, we select an

alternative design where keys guard access to groups. To subscribe for a group, a

receiver needs to provide a valid key to its local edge router. The edge router verifies

the key prior to granting access to the group. The design requires edge routers to

obtain, store, and validate group keys. This functionality, however, is independent

of a specific congestion control protocol.

Since the network conditions change, keys for congestion-dependent group

access should also be dynamic. We define a time slot as an atomic duration of group

access control. The sender updates group keys once per time slot and distributes

the updated keys to edge routers as well as to receivers that are eligible to access

the groups during a subsequent time slot. Figure 3.1 depicts the timeline for key

distribution and usage: the keys distributed during time slot s control access during

time slot s + 2. Time slot s + 1 gives each receiver enough time to reconstruct the

keys and submit them to the local edge router for validation before multicast packets

from time slot s + 2 start reaching the router.

Since the eligibility to access a group depends on the congestion control pro-

tocol, distribution of keys to receivers is protocol-specific. Thus, we separate our

design into two independent components: protocol-specific DELTA (Distribution of

ELigibility To Access) – a method for in-band distribution of group keys to receivers
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that are eligible to access the groups according to the congestion control protocol,

and generic SIGMA (Secure Internet Group Management Architecture) – an archi-

tecture for key-based group access at edge routers. Below, we present designs of

these two components.

3.2.1 Design of DELTA

Despite differences in details, multi-group protocols share some general features.

One common notion is a subscription level – a subset of the groups that constitutes

a legitimate subscription in the session. Each protocol offers a finite number of

subscription levels that can be ordered from a minimal level to a maximal level

according to their bandwidth consumption. Although different protocols define

the congested state of a receiver differently, they specify three generic rules for fair

subscription: (1) an uncongested receiver can maintain its current subscription level,

(2) a congested receiver must decrease its subscription level, and (3) when authorized,

an uncongested receiver can increase its subscription level.

To enforce these subscription rules, DELTA distributes group keys among

multicast packets so that:

1. Only an uncongested receiver can reconstruct updated keys for its current

subscription level.

2. A congested receiver can obtain updated keys for a lower subscription level.

3. When authorized, an uncongested receiver can obtain updated keys for a

higher subscription level.

Different protocols implement DELTA differently depending on their definitions for
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a subscription level and congested state. Below, we first present a DELTA instanti-

ation for layered multicast protocols that define congestion as a single packet loss.

Then, we discuss DELTA instantiations for other types of protocols.

Example of a DELTA Instantiation

FLID-DL [7] and RLC [49] are prominent representatives of unreliable protocols for

cumulative layered multicast where congestion is defined as a single packet loss. In

such a protocol, a session consists of multiple groups that carry layers of hierarchi-

cally encoded data. We label the groups in the order of their data layers: group 1

carries the base layer, group 2 carries the first enhancement layer, . . . , and group N

carries the last enhancement layer. Thus, group 1 constitutes the minimal sub-

scription level in the session while the maximal subscription level consists of all N

groups. We refer to groups 1 and N , respectively, as the minimal and the maximal

groups of the session. The protocol specifies the following subscription rules: (1) an

uncongested receiver can keep its current groups, (2) a congested receiver of g groups

must drop group g, and (3) when authorized, an uncongested receiver of g groups

can add group g + 1.

A straightforward transformation of these rules into conditions for in-band

distribution of keys would introduce: (∇) a congested receiver of g + 1 groups

should not obtain an updated key for group g + 1, and (∆) when authorized, an

uncongested receiver of g groups should obtain an updated key for group g+1. These

requirements however contradict when group g + 1 is the only group that loses a

packet, and group g gets an upgrade authorization: according to (∇), a subscriber

to g + 1 groups should not obtain an updated key for group g+1; on the other hand,
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since groups 1 through g deliver all their packets, the subscriber should obtain this

key according to (∆). To resolve the contradiction, we allow such a receiver to get

the updated key and maintain the subscription to group g + 1. One can view this

resolution as desirable because it helps receivers behind the same bottleneck link

to synchronize their subscription levels. Thus, the conditions for key distribution

become as follows:

1. An uncongested receiver should obtain updated keys for its current groups.

2. A congested receiver of g groups should obtain updated keys for its lower

g − 1 groups. It can obtain an updated key for group g only if the protocol

authorizes an upgrade to group g, and groups 1 through g − 1 do not lose

packets.

3. When authorized, an uncongested receiver of g groups should obtain an up-

dated key for group g + 1.

Let us now derive a DELTA instantiation that satisfies these conditions. We

start with an approach where a single key kg guards access to group g.

In the absence of an upgrade authorization for group g, only an uncongested

receiver of g groups should obtain kg. To enforce this, the sender can attach a

component cj,p to each packet p of every group j such that 1 ≤ j ≤ g and define kg

by applying a function F to the list of these components:

kg = F (c1,1, . . . , c1,n1 , . . . . . . , cg,1, . . . , cg,ng) (3.1)

where nj is the number of packets transmitted to group j during the time slot.

If the sender defines keys k1 through kN independently without reusing a

component of one key as a component for another key, the communication overhead
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of the key distribution becomes high: each packet of group j needs to carry N−j+1

components (one component for each key kg such that j ≤ g ≤ N). Thus, to

minimize the per-packet overhead, each packet p from group j should carry only

one component cj,p shared by keys kj through kN .

The sharing of components, however, complicates the fulfillment of the dis-

tribution conditions. For example, whereas all the components of key kg−1 are also

components of key kg, our second condition stipulates that a congested receiver of

g groups should obtain kg−1 but not kg. Then, such a receiver should not be able

to obtain the shared components by applying the inverse of F to kg−1 because this

ability would allow the congested receiver to reconstruct kg via Equation 3.1 when

group g does not lose a packet. Therefore, F should be a one-way function.

When the protocol authorizes an upgrade to group g, only an uncongested

receiver of g − 1 groups should obtain key kg. Thus, a receiver should be able to

compute kg by applying a function H to a list of components ij,p distributed among

all packets p of every group j such that 1 ≤ j ≤ g − 1:

kg = H(i1,1, . . . , i1,n1 , . . . . . . , ig−1,1, . . . , ig−1,ng−1). (3.2)

Since the protocol can authorize an upgrade for each group 2 through N , minimiz-

ing the per-packet communication overhead requires that each packet p of group j

contains only one component ij,p shared by all keys kj+1 through kN . Then, each

component ij,p of key kg−1 is also a component of key kg. Once again, a congested

receiver of g groups should not be able to obtain these shared components ij,p by

applying the inverse of H to kg−1 because this ability would allow the receiver to

reconstruct kg via Equation 3.2 when only groups 1 through g − 2 lose packets.

Hence, H should also be a one-way function.
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Keys

with upgrade authorization without upgrade authorization

Maximal group τ σ τ

Each intermediate group τ δ σ τ δ

Minimal group τ δ τ δ

top key: τ decrease key: δ increase key: σ

Table 3.1: Group keys in the presented DELTA instantiations

To reconcile Equations 3.1 and 3.2, a scheme that generates keys and their

components must resolve functions F and H into the same value kg. Since both F

and H are one-way functions, no practical algorithm can achieve this goal.

This conclusion leads us to an idea of guarding a group with multiple keys

such that any of these keys opens access to the group. Having more than one key per

group enables simple instantiations of DELTA by relaxing the dependencies between

the distribution conditions.

We instantiate DELTA by using up to three keys per group: (1) top key,

(2) decrease key, and (3) increase key (see Table 3.1). The sender communicates

these keys to receivers by adding component fields and decrease fields to multicast

packets. We define top key τg for each group g as:

τg =
g⊕

j=1
⊕

p∈Sj

cj,p (3.3)

where ⊕ is an XOR operation, Sj is a set of packets sent to group j, and cj,p is a

nonce placed by the sender into the component field of packet p from group j. Only

an uncongested receiver of g groups can extract all nonces cg,p and use Equation 3.3

to compute key τg.

For each group j such that 1 ≤ j ≤ N −1, the sender generates the following
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decrease key δj :

δj = dj+1 (3.4)

where dj+1 is a nonce put into decrease field of each packet transmitted to group j+1.

A receiver of g groups can compute keys δ1 through δg−1 via Equation 3.4 as long

as the receiver gets at least one packet from each group 2 through g. If one of these

groups loses all its packets, the receiver is forced to reduce its subscription by more

than one group. In fact, if group g loses all its packets, and any group 1 through

g − 2 loses a packet, no in-band mechanism can provide a receiver of g groups with

an updated key for group g − 1 without violating the other distribution conditions.

When the protocol authorizes an upgrade to group m where 2 ≤ m ≤ N , the

sender generates increase key σm for group m as:

σm =
m−1⊕
j=1

⊕
p∈Sj

cj,p (3.5)

and thereby enables an uncongested receiver of g groups to reconstruct key σg+1

after receiving all components cj,p from groups 1 through g.

Figures 3.2 and 3.3 present our algorithm for the in-band distribution of

keys to receivers. The algorithm has a nice property that the sender precomputes

the keys without knowing the number of transmitted packets and then generates

components of the keys in real time. Thus, adopting the DELTA instantiation does

not change the packet transmission pattern. Besides, the precomputation of the

keys allows SIGMA to distribute them to edge routers beforehand.

Instantiations for Other Types of Protocols

The derived DELTA instantiation protects FLID-DL, RLC, and similar unreliable

protocols for cumulative layered multicast where congestion is defined as a single
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Input N number of groups in the session
Sg set of packets for group g where 1 ≤ g ≤ N

lg last packet for group g where 1 ≤ g ≤ N

Algorithm // precomputation of keys and decrease fields
for g = 1, . . . , N

Cg ← nonce;
τ1 ← C1;
for g = 2, . . . , N

τg ← τg−1 ⊕ Cg; δg−1 ← nonce; dg ← δg−1;
if the protocol authorizes an upgrade to group g

then σg ← τg−1;
// real-time generation of component fields
if p ∈ Sg and p 6= lg then cg,p ← nonce; Cg ← Cg ⊕ cg,p;
if p = lg then cg,p ← Cg.

Output cg,p component field for packet p in Sg where 1 ≤ g ≤ N

dg decrease field for group g where 2 ≤ g ≤ N

τg top key for group g where 1 ≤ g ≤ N

δg decrease key for group g where 1 ≤ g ≤ N − 1
σg increase key for group g where 2 ≤ g ≤ N

Figure 3.2: The sender algorithm in our DELTA instantiation for layered multicast
protocols that define congestion as a single packet loss

packet loss. To protect protocols of other types, we extend the presented approach

along the four dimensions discussed in Section 1.2: (1) reliability, (2) congestion

notification, (3) session structure, and (4) congested state.

Reliability. Reliable multicast protocols overcome losses by transmitting

additional packets, e.g., packets with retransmitted data or error correction codes.

If a reliable protocol includes these extra packets in its definition for a congested

state, DELTA protects the protocol by distributing the keys among both the original

and added packets.

Congestion notification. Instantiations of DELTA for loss-driven conges-

tion control can be easily adapted for networks where routers support ECN and
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Input g current top group
Rj set of packets received from group j where 1 ≤ j ≤ g

Algorithm for j = 2, . . . , g

uj−1 ← decrease field from Rj ;
if the receiver is congested

then if g = 1
then n ← null;
else n ← g − 1;

else ug ←
g⊕

j=1
⊕

r∈Rj

component field from r;

if the protocol authorizes an upgrade to group g + 1
then n ← g + 1; ug+1 ← ug;
else n ← g.

Output n next top group
uj updated key for group j where 1 ≤ j ≤ n

Figure 3.3: The receiver algorithm in our DELTA instantiation for layered multicast
protocols that define congestion as a single packet loss

mark forwarded packets to indicate congestion explicitly. To extend the protection

to ECN-driven multicast protocols, edge routers simply alter the content of the com-

ponent field in each marked packet. This prevents receivers ineligible for a group

from reconstructing the group key.

Session structure. Unlike in layered multicast, each subscription level in a

replicated multicast session consists of a single group and provides the same content

but at a different rate: minimal group 1 is the slowest, group 2 is the second slowest,

. . . , and maximal group N is the fastest. Let us now consider a replicated multicast

protocol that differs from the discussed protocol for layered multicast only with

respect to the subscription rules: (1) only an uncongested receiver can stay in its

current group, (2) a congested receiver of group g can switch to group g − 1, and

(3) when authorized, an uncongested receiver of group g can switch to group g + 1.

Note that the rules allow an uncongested receiver to stay in its current
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group g even if the protocol authorizes an upgrade to group g + 1. Then, the

receiver can subscribe to both groups. However, the receiver does not benefit from

such misbehavior because group g delivers the same content but at a lower quality

than group g + 1. Since our objectives are limited to achieving robustness against

self-beneficial attacks, we formulate conditions for the key distribution as follows:

1. Only an uncongested receiver should obtain an updated key for its current

group.

2. A congested receiver of group g should obtain an updated key for group g− 1.

3. When authorized, an uncongested receiver of group g should obtain an updated

key for group g + 1.

We fulfill the conditions with a DELTA instantiation presented in Figures 3.4

and 3.5. The algorithm is basically the same as for layered multicast: the sender

computes up to three keys per group and communicates the keys to receivers via

component and decrease fields. However, since each subscription level in replicated

multicast contains only one group, we redefine top and increase keys for group g as:

τg = ⊕
p∈Sg

cg,p and σg = ⊕
p∈Sg−1

cg−1,p, (3.6)

i.e., in terms of components from a single group.

Congested state. Multicast protocols often ignore occasional loss of packets

and consider a receiver to be congested only when its loss rate exceeds a threshold.

For extending the protection to threshold-based protocols, DELTA can use Shamir’s

(k, n) threshold scheme [46] to distribute components of key τg for subscription

level g among all n packets transmitted to this level – the sender uses modular
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Input N number of groups in the session
Sg set of packets for group g where 1 ≤ g ≤ N

lg last packet for group g where 1 ≤ g ≤ N

Algorithm // precomputation of keys and decrease fields
for g = 1, . . . , N

Cg ← nonce; τg ← Cg;
for g = 2, . . . , N

δg−1 ← nonce; dg ← δg−1;
if the protocol authorizes an upgrade to group g

then σg ← τg−1;
// real-time generation of component fields
if p ∈ Sg and p 6= lg then cg,p ← nonce; Cg ← Cg ⊕ cg,p;
if p = lg then cg,p ← Cg.

Output cg,p component field for packet p in Sg where 1 ≤ g ≤ N

dg decrease field for group g where 2 ≤ g ≤ N

τg top key for group g where 1 ≤ g ≤ N

δg decrease key for group g where 1 ≤ g ≤ N − 1
σg increase key for group g where 2 ≤ g ≤ N

Figure 3.4: The sender algorithm in our DELTA instantiation for replicated multi-
cast protocols

arithmetic, picks a polynomial q(x) of degree k − 1:

q(x) = τg + a1x + . . . + ak−1x
k−1, (3.7)

where a1, . . . , ak−1 are random coefficients, and puts one component cp into each

packet p:

cp = (p, q(p)) (3.8)

where p = 1, . . . , n. Only a receiver that obtains at least k out of the n packets can

find the coefficients of q(x) by interpolation and then reconstruct the key as:

τg = q(0). (3.9)
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Input g current group
Rg set of packets received from group g

Algorithm if the receiver is congested
then if g = 1

then n ← null;
else n ← g − 1;

ug−1 ← decrease field from Rg;
else ug ← ⊕

r∈Rg

component field from r;

if the protocol authorizes an upgrade to group g + 1
then n ← g + 1; ug+1 ← ug;
else n ← g.

Output n next group
uj updated key for group n

Figure 3.5: The receiver algorithm in our DELTA instantiation for replicated mul-
ticast protocols

In layered multicast, subscription levels share groups. Unfortunately, Shamir’s

scheme does not enable a reuse of the components from lower subscription levels.

The reliance on independent components is a potential source of a prohibitively

high communication overhead. Design of more efficient threshold schemes that reuse

components remains an open research problem.

3.2.2 Design of SIGMA

Whereas instantiating DELTA enables multicast protocols to distribute group keys

to eligible receivers, group access control also needs a mechanism for distributing

the keys to edge routers. As per Requirement 3 from Section 3.1, the functionality

of edge routers should not depend on details of congestion control protocols. In

particular, edge routers should run protocol-independent code to obtain and store

keys as well as to enforce appropriate group access. In this section, we present
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SIGMA (Secure Internet Group Management Architecture) – a generic architec-

ture for key-based group access control at edge routers. Below, we discuss the two

tasks of SIGMA: (1) distribution of keys to edge routers, and (2) multicast group

management.

Generic Distribution of Keys to Edge Routers

Our threat model assumes that the network infrastructure is trustworthy and always

adheres to protocols. SIGMA exploits this assumption for distributing keys to edge

routers via special multicast packets where tuples bind the address of each group

with the keys for accessing the group during a time slot. For example, when the

layered multicast protocol described in Section 3.2.1 does not authorize an upgrade

to an intermediate group g, SIGMA communicates a tuple that links the address of

group g with top key τg and decrease key δg; if the protocol authorizes the upgrade,

the tuple for group g also contains increase key σg. The network-layer headers of the

special packets carry a bit instructing edge routers to intercept the packets without

forwarding to local interfaces. Edge routers run the same protocol-independent code

for intercepting the special packets and storing the address-key tuples. To ensure

reliable delivery of the addresses and keys to edge routers, SIGMA uses forward

error correction.

Multicast Group Management

Multicast group management in SIGMA is challenging because keys change every

time slot. When a receiver proves its right to join a new group, some time may pass

before the network starts forwarding packets from the added group to the local edge
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router. Besides, after the packets start reaching the receiver, their first complete

time slot s can enable the receiver to obtain the group key for time slot s+2 but not

for time slot s + 1 (see Figure 3.1). To allow an uncongested receiver to maintain

its uninterrupted subscription to the new group, the edge router marks the local

interface as expecting the group. After packets from the added group start reaching

the edge router, the router forwards them to the interface unconditionally for two

complete time slots.

Admission of a new receiver into a session is a challenge because

DELTA provides updated keys only to current receivers. SIGMA admits new re-

ceivers by allowing a receiver to join the minimal group without a key: the receiver

simply sends the local edge router a session-join message that contains the address of

the minimal group (see Figure 3.6(a)). However, if the new receiver fails to submit

a valid key within two complete time slots of unrestricted access to the minimal

group, the edge router stops forwarding the group packets for at least one time slot.

This prevents a receiver ineligible even for the minimal group from maintaining an

uninterrupted subscription to the session.

With respect to the other group management functions, SIGMA resembles

existing schemes for key-based group access control. In what follows, we describe

how SIGMA implements these functions.

Subscribing to a group. A receiver subscribes to a group for a time slot

by sending the local edge router a subscription message that specifies the time slot

and address-key pair for the group. Before granting access to the requested group,

the edge router verifies validity of the submitted key. Figure 3.6(b) shows the

general format of subscription messages. To ensure reliable subscription, the edge
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addresskey keyaddresstime slot

requested groups

address of the minimal group

abandoned groups

address address

(a) Session−join message

(b) Subscription message

(c) Unsubscription message

Figure 3.6: SIGMA messages sent by receivers

router acknowledges each subscription message. If a receiver does not receive an

acknowledgment for its subscription message, the receiver retransmits the message.

To reduce traffic on the local interface, a receiver does not transmit its subscription

message if the edge router has acknowledged an earlier message from another receiver

that reported the same address-key pairs.

Unsubscribing from a group. Dynamic keys ensure that failure to provide

a valid key for a group results in leaving the group. For example, a congested receiver

is forced to drop a group within two time slots after congestion. To allow a receiver –

e.g., an uncongested receiver parting with its session altogether – to leave groups

even quicker, SIGMA also offers an explicit unsubscription message that contains

the addresses of the abandoned groups (see Figure 3.6(c)). When a receiver leaves

a group, its unsubscription message should not harm other receivers subscribed to

the group legitimately on the same interface. The remaining receivers preserve the
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group subscription by submitting a subscription message that supplies a valid key

for the group.

Incremental Deployment of SIGMA

Each edge router that replaces IGMP with SIGMA notifies local receivers about its

support of SIGMA. If an edge router does not support SIGMA, local receivers of a

multicast session protected with DELTA and SIGMA interact with the router via

IGMP and ignore DELTA packet fields and SIGMA special packets. Such receivers

still can inflate their subscription and acquire unfairly high bandwidth. However,

even a partial deployment of SIGMA edge routers is beneficial – these routers prevent

their local receivers from inflated subscription.

3.2.3 Properties of DELTA and SIGMA

Revisiting the Design Requirements

We start an assessment of our design by revisiting the requirements from Section 3.1

and arguing that DELTA and SIGMA meet these requirements.

Congestion-dependent group access control. While SIGMA guards

access to groups with dynamic keys, DELTA distributes the keys only to receivers

that are eligible to access the groups according to the congestion control protocol.

DELTA instantiations protect protocols of different types: unreliable and reliable,

loss-driven and ECN-driven, layered and replicated, reacting to a single loss and

based on a threshold for the loss rate.

Minimal changes in the network. Any architecture for key-based group

access control must enable edge routers to obtain and store keys as well as to enforce
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appropriate group access. SIGMA adds only this minimal required functionality into

edge routers. Furthermore, DELTA and SIGMA need no support from core routers

and introduce no servers into the network infrastructure.

Generality of network support. To support DELTA and SIGMA, edge

routers run code that is independent from details of protected congestion control

protocols.

Preservation of congestion control properties. The presented algo-

rithms impose no limitations on packet transmission. The sender precomputes group

keys and then generates their components in real time. Consequently, adopting

DELTA does not require from a protocol to change its transmission pattern. In

Chapter 4, we experimentally verify that DELTA and SIGMA also preserve other

congestion control properties of protected protocols.

Security Properties

In this section, we discuss security properties of the protection offered by DELTA

and SIGMA.

Maintaining the trusted base. Our design assumes that the network

infrastructure is trustworthy. DELTA and SIGMA implementations can realize this

assumption by using conventional techniques for: (a) authentication to prevent a

misbehaving receiver from posing either as a sender or as a router [41, 52], and

(b) hop-by-hop or edge-to-edge encryption to protect against snooping on network

links [31].

Protection against attacks on SIGMA. As long as a local interface

provides an edge router with a valid key for a group, the router forwards packets

61



of the group to the interface. A misbehaving receiver ineligible to access the group

can send the edge router numerous random keys in a hope that one of these keys is

correct. If a valid key consists of b bits, the probability to gain the group access by

guessing the key is y/2b where y is the number of address-key pairs that the receiver

is capable of communicating to the edge router for the time slot. To address this

attack, the edge router can count different keys submitted for the group and interpret

a large tally as a possible indicator of the attack.

Protection against attacks on DELTA. To acquire a forbidden key, a

receiver can seek vulnerabilities in the DELTA implementation. For example, the

receiver can attempt to guess a missing component of the key. In the DELTA

instantiations presented in Section 3.2.1, keys and components have the same size,

and the component guessing gives no advantage over guessing the key directly.

So far in this chapter, we treated inflated subscription as belonging to the

category of individual attacks because a multicast receiver in the current Internet in-

frastructure can inflate subscription by abusing IGMP without any assistance from

other receivers. DELTA and SIGMA protect multicast protocols against these indi-

vidual attacks: SIGMA guards access to groups with keys, and DELTA distributes

the keys only to receivers that are eligible to access the groups according to the

congestion control protocol. However, our design is vulnerable to collusion attacks

where receivers of a multicast session conspire to pass keys from a more capable

receiver to a less capable receiver that is unable to reconstruct these keys on its

own. Below, we extend DELTA and SIGMA to make the design robust to inflated

subscription of colluding receivers.
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3.3 Robustness to Collusion Attacks

The above design of DELTA and SIGMA assumes that a receiver can obtain a

group key only from DELTA fields of multicast packets delivered to the receiver.

This assumption does not hold in the presence of colluding receivers because a

receiver can also acquire keys or their components from more capable receivers.

Thus, achieving robustness against such collusion attacks requires from each local

interface to guard a group with a different set of keys.

Extending the design to support interface-specific keys while continuing to

fulfill the requirements from Section 3.1 is a serious challenge. To be as scalable as

our original design, its extension should not put the sender in charge of generating all

the interface-specific keys. Then, the network infrastructure (i.e., routers) should

absorb the burden of creating the interface-specific keys. However, generation of

group keys at routers makes the router functionality protocol-specific and thereby

violates the condition of minimal generic support from the network. Therefore,

extension of the protection against inflated subscription to the class of collusion

attacks is a subject to a trade-off between degrading the design scalability and

diluting the genericness of required network support. In what follows, we explore this

trade-off by outlining two design extensions: whereas the first approach maintains

the scalability at the expense of the genericness, the second solution preserves the

genericness by limiting the scalability.

Let us start with the extension that preserves the scalability of the original

design. In DELTA and SIGMA, the sender runs a randomized algorithm R to

generate a group key and its components. To communicate the key to eligible

receivers, the sender puts the components of the key into DELTA fields of multicast
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packets. For example, Section 3.2.1 presented the DELTA instantiation for layered

multicast protocols where a top key is picked randomly and split – using an XOR

operation – into random component fields attached to all the packets of the current

subscription level; also, each packet of an upper group carries the same random

decrease field that contains a decrease key for the group below.

To make group keys interface-specific, the sender can relegate the computa-

tion of the keys and their components to the edge routers. Instead of using SIGMA

to provide the edge routers with the same key k for group g, the sender communi-

cates via SIGMA a description of algorithm R and its parameters, e.g., the addresses

of groups that are supposed to carry the components of key k as well as the number

of packets the sender has transmitted to each of these groups during the time slot.

Then, for every local interface i, the edge router runs the randomized algorithm R

to create key ki for group g, generate components of ki, and insert them as DELTA

fields into forwarded multicast packets. The edge router does not have to generate

components in advance for each packet transmitted by the sender. Instead, the gen-

eration of the components can be done in real time, when and if the packet reaches

the edge router.

The functionality of receivers does not change – if the DELTA fields of de-

livered multicast packets provide enough components, the receiver reconstructs the

key and submits it to the local edge router for validation. If a missing component

prevents a congested receiver from reconstructing the key on its own, the receiver

cannot obtain the key or its missing component from more capable receivers because

those receivers are subscribed to the session through different interfaces that guard

access to the group with independently selected keys. Thus, the generation of per-
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sonalized keys at the edge routers protects multicast congestion control protocols

against inflated subscription of colluding receivers.

The protection, however, comes at a price of additional network support.

In comparison to the original design where the edge routers run the same simple

code to extract group keys from SIGMA packets, the edge routers in the extended

design perform more diverse actions (including creation of keys, generation of their

components, and insertion of the components into forwarded multicast packets) us-

ing different algorithms for multicast congestion control protocols of different types.

Thus, the edge routers run a more complex parameterized code where the param-

eters of the randomized algorithm are supplied by the sender via SIGMA. These

parameters can be classified into two categories:

1. Parameters characterizing the type of the multicast congestion control proto-

col along such dimensions as the session structure (layered, replicated, . . . ),

congestion notification (loss-driven, ECN-driven, . . . ), and congested state def-

inition (single packet loss, loss rate threshold, . . . ). Parameters from this first

category instruct the edge router about the algorithm to be used for generating

keys and their components.

2. Parameters that characterize the specific multicast session of the protocol,

e.g., the addresses of groups comprising the session, the number of packets

transmitted to each of these groups during a particular time slot, and the

threshold for the tolerable loss rate.

Together with the size, the generality of the parameterized code is a concern. Even

if the code supports all the existing types of multicast protocols, there remains a

possibility that a new protocol type will emerge in the future and require a different

65



algorithm for generating group keys and their components. Then, supporting this

new algorithm will require changes in edge routers. Hence, the outlined design

extension provides robustness against collusion attacks by weakening the genericness

of needed network support.

Let us now derive an alternative extension that preserves the minimal generic

router functionality of DELTA and SIGMA. The original design limits the required

network support to the following tasks at edge routers:

1. Generic change of DELTA fields in forwarded packets (used for protection of

ECN-driven protocols).

2. Generic reception (via SIGMA), storage, and application of group keys.

To protect against collusion attacks without requiring any support beyond these two

functions, edge routers can apply interface-specific mask mi to the DELTA fields of

all packets forwarded to local interface i:

fi = G(f, mi) (3.10)

where f is a value put into a DELTA field by the sender, fi is the content of

the same DELTA field after the edge router modifies the field, and G is a one-

way function that prevents receivers of the modified packet from determining f or

mi. Due to the masking, received packets contain interface-specific values in their

DELTA fields. Consequently, applying the key reconstruction algorithm to these

values produces interface-specific keys. If a receiver cannot reconstruct its interface-

specific key for a group because of congestion, the receiver cannot access the group

even if uncongested receivers from other interfaces reveal their keys for the same

group (because the revealed keys are valid only for the corresponding interfaces).
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Hence, the masking provides robustness against inflated subscription of colluding

receivers.

Similarly to the original design, the involvement of edge routers into group

access enforcement should be limited to generic reception, storage, and application of

keys. Then, generation of all the interface-specific keys should be done at the sender.

To compute these keys, the sender also needs to know the masks associated with

each edge router. Thus, the sender in the extended design generates all the interface-

specific masks and keys and communicates them to the edge routers. Whereas the

masks can be updated relatively infrequently without jeopardizing the security of

the offered protection, the sender should provide the edge routers with new sets of

keys once per time slot. This limits the scalability of the masking-based extension

to DELTA and SIGMA.

In this section, we demonstrated that extending DELTA and SIGMA to

be robust against collusion attacks is subject to a fundamental trade-off between

degrading the scalability and diluting the genericness of required router support.

Achieving an optimal balance between the scalability and the amount of network

support is a topic for future research.
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Chapter 4

Derivation of Robust Multicast

Protocols

In Chapter 3, we designed mechanisms for achieving robustness against inflated sub-

scription. By incorporating these mechanisms, feedback-free protocols for multicast

congestion control acquire immunity to receiver misbehavior. Below, we derive and

evaluate robust versions of two prominent feedback-free protocols: FLID-DL and

RLM. Whereas RLM is an example of threshold-based congestion control schemes,

FLID-DL represents protocols that define congestion as a single packet loss.

4.1 Robust Adaption of FLID-DL

4.1.1 Protocol Description

Fair Layered Increase/Decrease with Dynamic Layering (FLID-DL) [7] is the third

protocol in the series of feedback-free designs for multicast congestion control. Sim-
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ilarly to its predecessors RLM and RLC, the protocol is unreliable and uses multiple

multicast groups to distribute cumulative layers of hierarchically encoded data. Each

receiver controls congestion by joining and leaving the data layers. FLID-DL offers

the receivers a relatively fine granularity of bandwidth allocation by employing, in

the default setting, a large number of layers such that each of the enhancement

layers consumes a small amount of the network bandwidth. The protocol defines

congestion as a single packet loss and instructs a congested receiver to reduce its

subscription level by dropping the top subscribed layer. An uncongested receiver is

allowed to increase its subscription level (by adding the layer that is immediately

above the top subscribed layer) only upon an explicit signal from the sender. Higher

layers carry increase signals less frequently. By selecting the frequencies of the in-

crease signals appropriately, FLID-DL enables each receiver to converge to its fair

subscription level without assistance from other receivers.

The main novelty in the design of FLID-DL is a clever mechanism for over-

coming the large latency associated with leaving a multicast group via IGMP. After

a receiver sends an IGMP message asking for unsubscription from a group, up to

9 seconds can elapse before the local router stops forwarding the group packets to

the receiver [7]. The large leave latency hampers the responsiveness of congestion

control in RLM and RLC where a congested receiver relies on IGMP to abandon the

top subscribed layer. FLID-DL solves the problem of the large leave latency with-

out changing IGMP (and thus without modifying the network infrastructure). The

solution exploits an insight that the assignment of data layers to multicast groups

does not have to be static. In RLM, RLC, and other schemes with the static as-

signment, leaving a layer is synonymous to leaving the group assigned to this layer.
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On the other hand, FLID-DL assigns layers to groups dynamically so that multiple

groups take turns delivering the layers. Each of the groups carries a layer for a time

slot of duration T where L > T ≥ J , L is the maximum leave latency, and J is the

maximum join latency. As soon as the delivery of a layer switches from group A to

group B, a receiver of group A leaves the layer even though the receiver cannot –

due to the IGMP leave latency – leave group A promptly. Consequently, this tech-

nique of dynamic layering enables FLID-DL to reduce the temporal granularity of

congestion control from L to T .

Overcoming the large leave latency requires additional groups. Let s be the

smallest integer such that s · T ≥ L. A naive implementation of dynamic layering

would allocate a separate block of s + 1 groups to every layer: each of these groups

would operate with a period of s + 1 time slots; the group would carry the layer for

1 time slot followed by s slots of idleness (which would give receivers enough time

to leave the group before its next turn to deliver the layer). Then, delivery of N

layers would require (s + 1)N multicast groups.

To reduce the overhead of dynamic layering from s · N groups to s groups,

FLID-DL exploits an observation that a receiver subscribed to layer l during a time

slot is supposed to receive layer l−1 during the subsequent time slot, i.e., the group

that delivers layer l during time slot t can be reused to deliver layer l − j during

time slot t + j where 1 ≤ j ≤ l − 1. Hence, FLID-DL implements dynamic layering

as follows:

• during time slot t, layer l is carried by group 1 + ((l + t − 1) mod (N + s))

where 1 ≤ l ≤ N , and

• the remaining s groups idle during the time slot.
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Figure 4.1: Example of dynamic layering in FLID-DL
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In this implementation, each of the N+s groups operates with a period of N+s time

slots; an s-slot interval of idleness follows an N -slot interval of transmission; during

the transmission interval, the group carries one layer per slot in the decreasing order

from layer N to layer 1. Figure 4.1 presents dynamic layering for a FLID-DL session

with four data layers (i.e., N = 4), time slot duration T of 500 milliseconds, maxi-

mum join latency J of 10 milliseconds, and maximum leave latency L of 1 second

(i.e., s = 2).

With dynamic layering, the group subscription rules for receivers in FLID-DL

become as follows:

1. Each receiver must unsubscribe from the group that carries the base layer.

2. An uncongested receiver can keep its current layers by subscribing to group

1 + (g mod (N + s)) where g is the group that carries the current top layer of

the receiver.

3. A congested receiver of l layers must drop layer l by not subscribing to any

new group.

4. When authorized, an uncongested receiver of l layers can add layer l + 1 by

subscribing to group 1+((g+1) mod (N +s)) where g is the group that carries

its current top layer.

4.1.2 Adaptation

As we showed in Chapter 2, a misbehaving FLID-DL receiver can ignore the above

rules and inflate its subscription to acquire data at an unfairly high rate. To pro-

tect against the misbehavior with DELTA and SIGMA, we derive a robust protocol
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Figure 4.2: Integration of DELTA with FLID-DL

FLID-DS (Fair Layered Increase/Decrease with DELTA and SIGMA) by integrating

FLID-DL with a DELTA instantiation for layered multicast. Preserving the respon-

siveness of FLID-DL congestion control and handling the dynamic assignment of

data layers to multicast groups are two main challenges in adapting FLID-DL to

FLID-DS.

First of all, both FLID-DL and DELTA use time slots, although for different

purposes. In FLID-DL, a time slot determines the temporal granularity of congestion

control. In DELTA, a time slot specifies for how long a group key remains valid.

Because SIGMA enforces group access with responsiveness of two DELTA time

slots, we set the time slot duration for DELTA in FLID-DS to a half of the time slot

duration for FLID-DL and superimpose two DELTA time slots on each FLID-DL

time slot (see Figure 4.2). This enables FLID-DS to inherit the temporal granularity

of FLID-DL congestion control.

To address dynamic layering, FLID-DS defines and communicates group keys

as follows. During each DELTA time slot t, the sender distributes component fields

and decrease fields among the layers of multicast packets. Receivers use these fields

to reconstruct group keys for the DELTA time slot t + 2. For each layer l, top key

τg for group g that will carry layer l is defined as:

τg =
l⊕

j=1
⊕

p∈Sj

cj,p (4.1)

where ⊕ is an XOR operation, Sj is a set of packets sent to layer j, and cj,p is a
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nonce placed by the sender into the component field of packet p from layer j. For

each layer j such that 1 ≤ j ≤ N − 1, decrease key δg for group g that will carry

layer j is defined as:

δg = dj+1 (4.2)

where dj+1 is a nonce put into decrease field of each packet transmitted to layer j+1.

When the protocol authorizes an upgrade to layer m where 2 ≤ m ≤ N , increase

key σg for group g that will carry layer m is defined as:

σg =
m−1⊕
j=1

⊕
p∈Sj

cj,p. (4.3)

4.1.3 Evaluation

Now, after having derived FLID-DS, let us evaluate its properties. We conduct ex-

periments in a single-bottleneck topology in NS-2 [36]. Unless stated otherwise, the

experimental settings are as follows. Multicast (FLID-DL, FLID-DS) and unicast

(TCP Reno, on-off CBR) sessions compete for the bandwidth of the only bottleneck

link which is the middle link on a three-link path of each session. The fair bandwidth

share for each session is 250 Kbps. The bottleneck link has a propagation delay of

20 ms. Each of the other links has a propagation delay of 10 ms and a capacity of

10 Mbps. The buffer space for each link is equal to two bandwidth-delay products.

Every multicast session consists of 10 groups. The minimal group transmits at a rate

of 100 Kbps. The cumulative transmission rate of the session grows multiplicatively

with a factor of 1.5 per group. The time slot duration for FLID-DL is set to its

default value of 500 ms [7]. Hence, the time slot duration for DELTA in FLID-DS

is 250 ms. All data traffic uses 576-byte packets.
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(a) Vulnerability of FLID-DL to inflated subscription
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(b) Immunity of FLID-DS to inflated subscription

Figure 4.3: Protection of FLID-DL with DELTA and SIGMA
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Preventing Inflated Subscription

First, consider a setting where receivers F1 and F2 from different FLID-DL sessions

share the 1 Mbps bottleneck link with two TCP Reno [2] receivers T1 and T2. Af-

ter 100 seconds into the simulation, receiver F1 starts to misbehave and inflates its

subscription in violation of the protocol. As Figure 4.3(a) illustrates, such a mis-

behavior boosts the throughput of F1 to 690 Kbps at the expense of well-behaving

receivers F2, T1, and T2. We repeat this experiment when the multicast sessions

use FLID-DS instead of FLID-DL. Although F1 tries to inflate its subscription af-

ter 100 seconds, DELTA and SIGMA preserve – as Figure 4.3(b) shows – the fair

bandwidth allocation.

Preserving Congestion Control Properties

Now, let us investigate whether FLID-DS preserves other congestion control prop-

erties of FLID-DL.

Impact on throughput. In this series of experiments, we compare FLID-

DL and FLID-DS with respect to the average throughput of a multicast receiver.

Each experiment lasts 200 seconds. We vary the number of multicast (FLID-DL or

FLID-DS) sessions from 1 to 18. For the only receiver of each multicast session, we

measure its throughput over the experiment duration.

First, we examine the multicast sessions in the absence of cross traffic. Fig-

ures 4.4(a) and 4.4(b) report individual throughput and average throughput (aver-

aged over the number of sessions) for FLID-DL and FLID-DS receivers respectively.

Figure 4.5(a) shows that the receivers achieve similar average throughput in FLID-

DL and FLID-DS.
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(a) Throughput with FLID-DL
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(b) Throughput with FLID-DS

Figure 4.4: Impact of DELTA and SIGMA on FLID-DL throughput
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(a) Average throughput without cross traffic

0

100

200

300

400

500

1 2 4 6 8 10 12 14 16 18

T
hr

ou
gh

pu
t (

K
bp

s)

Number of multicast sessions 

 FLID-DL average rate 
 FLID-DS average rate 

(b) Average throughput with cross traffic

Figure 4.5: Preservation of FLID-DL average throughput
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Then, we experiment in a setting where the number of TCP sessions is the

same as the number of multicast sessions. In addition, the bottleneck link also

serves an on-off CBR session. During an on-period, the CBR session transmits

at a rate equal to 10% of the bottleneck link capacity. Each on-period or off-

period lasts 5 seconds. Figure 4.5(b) shows that whereas the bandwidth allocation

for multicast traffic depends on the number of sessions, receivers of FLID-DL and

FLID-DS sessions have similar average throughput.

Responsiveness. To study the impact of DELTA and SIGMA on the re-

sponsiveness of multicast congestion control, we consider a setting where the bottle-

neck link is shared only by a multicast (FLID-DL or FLID-DS) session and an on-off

CBR session. The CBR session transmits its data at a rate of 800 Kbps during the

time interval between 45 seconds and 75 seconds. Figure 4.6 shows that FLID-DS

preserves the responsiveness of the original FLID-DL protocol.

Heterogeneous round-trip times. In FLID-DL, average throughput of

a receiver is relatively independent from the round-trip time of the receiver. In

this experiment, we verify that DELTA and SIGMA preserve this property. In

the considered setting, the only multicast (FLID-DL or FLID-DS) session has 20

receivers. The bottleneck link has a propagation delay of 5 ms. The propagation

delays of the other links are chosen so that the round-trip times of the receivers

spread uniformly between 30 ms and 220 ms. Figure 4.7 plots average throughput of

the receivers as a function of their round-trip times. The average throughput of the

FLID-DS receivers is almost constant and remains close to the average throughput

of the FLID-DL receivers.

Subscription convergence. When multiple receivers of the same FLID-DL
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Figure 4.6: Preservation of FLID-DL responsiveness
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Figure 4.7: Impact of heterogeneous round-trip times
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session share a bottleneck link, the receivers converge to the same subscription level

even if they join the session at different times. In our experiment, the only multicast

(FLID-DL or FLID-DS) session has 4 receivers. The receivers join the session at

times 0, 10 seconds, 20 seconds, and 30 seconds respectively. As Figures 4.8(a)

and 4.8(b) indicate, the receivers converge to the same fair subscription both in

FLID-DL and FLID-DS.

Overhead

In the context of FLID-DS, we now analyze the overhead of communicating the group

keys to receivers and edge routers via DELTA – as described in Section 3.2.1 – and

SIGMA.

Let the base layer of a FLID-DS session transmit data at rate r. If the

cumulative transmission rate grows multiplicatively with the factor of m per layer,

the session transmits data at cumulative rate R:

R = r ·mN−1 (4.4)

where N is the number of layers in the session.

If each packet carries s bits of data, then the session transmits in average

P =
R · t

s
=

r · t ·mN−1

s
(4.5)

packets during a DELTA time slot of duration t, and

p =
r · t
s

(4.6)

of these packets belong to the base layer 1.
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(a) Subscription convergence with FLID-DL
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(b) Subscription convergence with FLID-DS

Figure 4.8: Preservation of FLID-DL subscription convergence
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DELTA communicates the keys to receivers by adding a b-bit component field

to each packet and b-bit decrease field to every packet of layer g such that 2 ≤ g ≤ N .

Therefore, communication overhead O∆ imposed by DELTA equals:

O∆

= { ratio of the DELTA bits to the data bits }
(2P − p)b

R · t
= { Equations 4.4, 4.5, and 4.6 }

(2r·t·mN−1

s − r·t
s )b

r · t ·mN−1

= { simplification }
(
2− 1

mN−1

) b

s
.

SIGMA communicates the keys to edge routers via special packets. For each

DELTA time slot, these packets deliver an l-bit slot number and one address-key

tuple per layer. Every tuple contains a 32-bit multicast group address and b-bit top

key. Each of the tuples for layers 1 through N − 1 also includes a b-bit decrease key.

Besides, when the protocol authorizes – with an average frequency of fg per time

slot – an upgrade to the group that will carry layer g, the tuple for this layer carries

a b-bit increase key. To ensure reliable delivery of this information, the sender uses

forward error correction that increases the bit requirements by the factor of z. The

headers of the special packets consume a total of h bits. Hence, communication

overhead OΣ imposed by SIGMA is equal to:

OΣ

= { ratio of the SIGMA bits to the data bits }
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(
l + (32 + b)N + b(N − 1) + b

N∑
g=2

fg

)
z + h

R · t
= { Equation 4.4 and simplification }

(
l + 32N + b(2N − 1 +

N∑
g=2

fg)
)
z + h

r · t ·mN−1
.

To quantify the derived expressions, we experiment with a FLID-DS session

that transmits its 500-byte data packets (i.e., s = 4000) at cumulative rate R of

4 Mbps. Transmission rate r of the base layer is 100 Kbps. Keys and their compo-

nents are 16 bits long. A slot number consists of 8 bits. Error correction overcomes

50% packet loss. After setting R, r, and N , we determine m from Equation 4.4.

During the experiments, we record the observed values of fg, z, and h.

First, we explore the dependence of the overhead on the number of layers.

Figure 4.9(a) shows O∆ and OΣ for N varying from 2 to 20 when t = 250 ms.

Then, we examine the impact of the time slot duration. Figure 4.9(b) plots O∆

and OΣ for t varying from 200 ms to 1 second when N = 10. In both cases, the

communication overhead remains about 0.8% for DELTA and stays under 0.6% for

SIGMA. Thus, DELTA and SIGMA protect against inflated subscription without

imposing a significant overhead.

4.2 Robust Adaption of RLM

In Section 4.1, we designed and evaluated FLID-DS, an adaptation of FLID-DL

that is robust to inflated subscription of misbehaving receivers. Whereas FLID-DL

treats a single packet loss as congestion, other existing protocols define a congested

state differently. Let us now focus on Receiver-driven Layered Multicast (RLM) [30]
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(a) Dependence on the number of layers in the session
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Figure 4.9: Communication overhead of DELTA and SIGMA in FLID-DS

85



as a representative of threshold-based congestion control protocols.

4.2.1 Protocol Description

RLM is an unreliable multicast protocol that started it all for feedback-free conges-

tion control. The sender assigns data layers to multicast groups statically. In the

default setting, a receiver is considered congested if it receives less than 75% of pack-

ets transmitted to its current subscription level. The design of RLM demonstrated

that receivers can control congestion solely via the mechanism of group subscrip-

tion at local routers, without communicating any information to the sender. On

the other hand, RLM suffers from a number of drawbacks eliminated in its succes-

sors. In particular, subscription synchronization in RLM relies on the receiver-driven

mechanism of shared learning.

4.2.2 Adaptation

As we showed in Section 2.2.6, a misbehaving receiver can abuse the mechanism

of shared learning to prevent other receivers from reaching their fair subscription

levels. Hence, designing a robust version of RLM involves incorporating techniques

that protect not only against inflating own subscription but also against subduing

legitimate subscriptions of other receivers.

First, we protect RLM receivers from being manipulated by other receivers

in the session. To do so, we substitute shared learning with a sender-driven mecha-

nism for subscription synchronization, as implemented in FLID-DL. We refer to the

adjusted design as RLM-F (Receiver-driven Layered Multicast with FLID-like sub-

scription synchronization). Instead of relying on personal join timers, uncongested
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RLM-F receivers increase their subscription levels in a layered session in response to

explicit increase signals from the sender. Similarly to FLID-DL, RLM-F operates in

terms of time slots: each increase signal is associated with a time slot and authorizes

uncongested receivers to add a layer at the end of the corresponding time slot. On

the other hand, RLM-F inherits from RLM the static assignment to data layers to

multicast groups (and thus is affected by large IGMP leave latencies).

With the sender-driven synchronization of subscriptions, RLM-F is immune

to prevention of other receivers from legitimate subscriptions. However, RLM-F re-

mains vulnerable to inflated subscription attacks. To complete our transformation

of RLM into a multicast congestion control protocol that is robust to receiver mis-

behavior, we integrate RLM-F with a DELTA instantiation for threshold-based pro-

tocols, as described in Section 3.2.1. We refer to the resulting protocol as RLM-DS

(Receiver-driven Layered Multicast with DELTA and SIGMA). To provide RLM-DS

with the same temporal granularity of congestion control as in RLM-F, we set the

time slot duration for DELTA in RLM-DS to a half of the time slot duration for

RLM-F and superimpose two DELTA time slots on each RLM-F time slot. For

each DELTA time slot, the sender uses Shamir’s scheme to generate and distribute

components of group keys among the packets transmitted during the time slot. The

components of the top key for the top group of a subscription level are distributed

among all the packets transmitted to this level. Only if the loss rate does not ex-

ceed the threshold prescribed by the original RLM protocol (in the default setting,

the threshold equals 25% of the transmitted packets), the receiver collects enough

components for reconstructing the key. Keys for different groups do not share com-

ponents. Consequently, each packet of group j carries N − j + 1 components, one
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component for each group j through N where N is the number of groups in the

session.

4.2.3 Evaluation

Above, we have enhanced RLM-F with DELTA to derive RLM-DS, a protocol ro-

bust to inflated subscription in networks with SIGMA group access control. Below,

we verify experimentally that DELTA and SIGMA protect RLM-DS against the

receiver misbehavior. Then, we examine the impact of DELTA and SIGMA on

throughput and responsiveness of RLM-F. Finally, we explore the communication

overhead introduced by DELTA and SIGMA. In our evaluation of RLM-DS, we em-

ploy the same network topology as in the above experiments with FLID-DL. Each

multicast session (RLM-F or RLM-DS) consists of 6 groups with each group carry-

ing a statically assigned data layer. The sender transmits the base layer at a rate of

100 Kbps. Each enhancement layer doubles the cumulative transmission rate of the

session. The time slot duration for RLM-F is set to 10 seconds. Hence, the time slot

duration for DELTA in RLM-DS is 5 seconds. The base layer carries an increase

signal every time slot. Each enhancement layer halves the frequency of increase

signals. The loss threshold for each subscription level is set to 25% of the packets

transmitted to this level during the time slot. All data traffic uses 576-byte packets.

Addressing the Threat of Inflated Subscription

We first consider a setting where four receivers R1, R2, R3, and R4 from different

RLM-F sessions share the 1.1 Mbps bottleneck link. Up to 100 seconds into the

experiment, all the receivers adhere to the protocol and converge towards fair and
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(a) Vulnerability of RLM-F to inflated subscription
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(b) Immunity of RLM-DS to inflated subscription

Figure 4.10: Protection of RLM-F with DELTA and SIGMA
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efficient sharing of the bottleneck bandwidth. After 100 seconds, receiver R1 misbe-

haves by inflating its subscription to 4 layers. As Figure 4.10(a) illustrates, such the

misbehavior rewards R1 with an unfairly high throughput at the expense of well-

behaving receivers R2, R3, and R4. We repeat this experiment when the multicast

sessions use RLM-DS instead of RLM-F. Although R1 tries to inflate its subscrip-

tion after 100 seconds, DELTA and SIGMA protect – as Figure 4.10(b) shows – the

fairness of the bandwidth allocation.

Impact on Other Congestion Control Properties

Throughput. We compare RLM-F and RLM-DS with respect to the average

throughput achieved by a multicast receiver. Each experiment lasts 200 seconds.

We vary the number of multicast (RLM-F or RLM-DS) sessions from 1 to 18. There

is no cross traffic in these experiments. For the only receiver in each multicast ses-

sion, we measure its throughput over the experiment duration. The fair bandwidth

share is equal to 250 Kbps per receiver. Figures 4.11(a) and 4.11(b) report indi-

vidual throughput and average throughput (averaged over the number of sessions)

for RLM-F and RLM-DS receivers respectively. Figure 4.12 compares the aver-

age throughput in RLM-F and RLM-DS. The graphs show that while supporting a

somewhat smaller average throughput, DELTA and SIGMA reduce the deviation for

individual throughputs in RLM-F and thereby improve the intra-protocol fairness.

Responsiveness. To assess the impact of DELTA and SIGMA on the re-

sponsiveness of RLM-F congestion control, we consider a setting where the bottle-

neck link with a capacity of 500 Kbps is shared only by a multicast (RLM-F or

RLM-DS) session and an on-off CBR session. The CBR session transmits its data
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(a) Throughput with RLM-F
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(b) Throughput with RLM-DS

Figure 4.11: Impact of DELTA and SIGMA on RLM-F throughput
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Figure 4.12: Average throughput in RLM-F and RLM-DS

at a rate of 460 Kbps during the time interval between 60 seconds and 110 seconds.

Figure 4.13 shows that RLM-DS preserves the responsiveness of RLM-F congestion

control.

Overhead

In Section 4.1.3, we derived an analytical expression for the communication overhead

imposed by SIGMA in the context of FLID-DS. This expression holds valid for

RLM-DS because both protocols follow the same pattern to distribute group keys

from the sender to edge routers: for each time slot, the sender communicates a

top key for each group, a decrease key for each lower group of the session, and

an increase key for each upper group authorized to be added. Consequently, since

SIGMA imposes no significant communication overhead in FLID-DS, the same is
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Figure 4.13: Preservation of RLM-F responsiveness

true in RLM-DS.

The instantiation of DELTA for RLM-DS, however, is different in two re-

spects. First of all, a component of a top key in Shamir’s scheme is not a single

value but a tuple (z, q(z)) where z is an integer, and q is a polynomial. Second,

since different keys require different polynomials, Shamir’s scheme does not enable

the keys for upper groups to reuse qj(z) from the component of the key for a lower

group j. Thus, each packet of group j carries one b-bit value z and N − j + 1

b-bit values qg(z) where N is the number of groups in the session, and j ≤ g ≤ N .

In addition to communicating the components of top keys, DELTA inserts a b-bit

decrease key into every packet of group j such that 2 ≤ j ≤ N .

Let us now derive communication overhead OR introduced by DELTA for

transforming RLM-F to RLM-DS. If each packet of a RLM-DS session carries s bits
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of data, and group 1 transmits at rate r, then group 1 transmits in average

p1 =
r · t
s

(4.7)

packets during a DELTA time slot of duration t. If the cumulative transmission rate

grows multiplicatively with the factor of m per group, group j (where 2 ≤ j ≤ N)

transmits in average

pj = (mj−1 −mj−2)
r · t
s

= mj−2(m− 1)
r · t
s

(4.8)

packets during the time slot. Then, communication overhead for DELTA equals:

OR

= { ratio of the DELTA bits to the data bits }
(
p1(N + 1) +

N∑
j=2

(pj(N − j + 3))
)
b

( N∑
j=1

pj

)
s

= { Equations 4.7 and 4.8 }
(

r·t
s (N + 1) +

N∑
j=2

(mj−2(m− 1) r·t
s (N − j + 3))

)
b

(
r·t
s +

N∑
j=2

(mj−2(m− 1) r·t
s )

)
s

= { simplification }
(
N + 1 +

N∑
j=2

(mj−2(m− 1)(N − j + 3))
)

mN−1
· b
s

= { simplification }
2mN−1 +

N∑
j=2

mj−1

mN−1
· b
s

= { simplification }
3mN−1 − 2mN−2 − 1

mN−2(m− 1)
· b
s
.
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Figure 4.14: Communication overhead of DELTA in RLM-DS

Note that the derived expression is bounded from above by a value that is

independent from the number of groups in the session:

OR <
(
3 +

1
m− 1

) b

s
. (4.9)

For example, if m = 2 (i.e., each enhancement layer doubles the cumulative trans-

mission rate), then DELTA inserts in average less than 4 b-bit fields per multicast

packet.

To quantify the communication overhead even further, let us consider a

RLM-DS session that consists of 6 groups (i.e., N = 6), doubles its cumulative

transmission rate with each enhancement layer (i.e., m = 2), transmits 500-byte

data packets (i.e., s = 4000), and uses 16-bit keys (i.e., b = 16). In this setting,

DELTA adds in average 3.94 fields (16 bits long each) per multicast packet and thus

introduces 1.6% communication overhead. Figure 4.14 plots the overhead for keys of
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size 8 bits, 16 bits, and 32 bits. Even though Shamir’s scheme does not enable reuse

of components, the communication overhead grows very slowly after the number

of groups in the session exceeds 5. This result (as well as the upper bound from

Inequality 4.9) is due to the multiplicative growth of the group transmission rates:

most of the packets belong to upper groups where each packet carries only few com-

ponents. Thus, DELTA and SIGMA protect RLM-DS against inflated subscription

without imposing a significant overhead.
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Chapter 5

Conclusion

5.1 Dissertation Summary

In this dissertation, we investigated the impact of trust assumptions on fairness of

congestion control protocols for IP multicast. Traditional multicast congestion con-

trol relies on cooperation: each party is assumed to follow guidelines for fair sharing

of the network bandwidth. We argued that with the growth and commercialization

of the Internet, the assumption of universal trust is no longer tenable. The disser-

tation studied a relaxed model where receivers are distrusted and can misbehave to

acquire an unfairly high bandwidth at the expense of competing traffic. We identi-

fied potential vulnerabilities of multicast congestion control mechanisms to receiver

misbehavior. Our experiments with existing multicast protocols showed that each

of the evaluated protocols is susceptible to at least one of the identified threats.

To take the first step towards robust multicast designs for distrusted envi-

ronments, we then focused on the class of feedback-free protocols where receivers

provide no feedback to the sender and control congestion by regulating their sub-
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scription levels in the multi-group session. Unfortunately, the mechanism of group

subscription offers a misbehaving receiver an opportunity to inflate its subscription

level. We demonstrated that inflated subscription attacks pose a major threat to

fairness of bandwidth allocation.

This dissertation is the first to solve the problem of inflated subscription.

The presented designs exploited an insight that the ability of a receiver to access

a multicast group should be tied with the congestion status of the receiver. First,

we addressed individual attacks where a receiver inflates its subscription with no

assistance from other receivers. Our solution guards access to multicast groups with

dynamic keys and consists of two independent components: DELTA (Distribution

of ELigibility To Access) – a novel method for in-band distribution of group keys

to receivers that are eligible to access the groups according to the congestion con-

trol protocol, and SIGMA (Secure Internet Group Management Architecture) – a

generic architecture for key-based group access at edge routers. DELTA and SIGMA

require only minimal generic changes in the edge routers, do not alter the core of the

network, and introduce no auxiliary servers. Then, we extended the design to pro-

tect multicast congestion control against inflated subscription of colluding receivers.

To illustrate that integration with DELTA and SIGMA makes multicast protocols

robust to inflated subscription and preserves other congestion control properties, we

derived and evaluated robust adaptations of RLM and FLID-DL protocols.

5.2 Future Work

Whereas this dissertation proposed robust mechanisms for IP multicast congestion

control, slow deployment of IP multicast has stirred an interest in end-system mul-
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ticast. Emerged designs for end-system multicast can be classified into server-based

and peer-to-peer architectures.

In server-based multicast, trusted managed servers – e.g., edge servers from

Akamai [1] – form multicast routing hierarchies. Server-based architectures can

adopt DELTA and SIGMA straightforwardly to acquire robustness against inflated

subscription: edge servers can enforce (in the same fashion as edge routers do it for

IP multicast) appropriate congestion-dependent access of local receivers to multicast

groups.

In peer-to-peer architectures, receivers themselves form multicast routing

hierarchies [5]. Thus, receivers participate not only in congestion control but also

in routing. The greater degree of involvement creates new opportunities for receiver

misbehavior:

1. A misbehaving receiver can seek a self-beneficial routing hierarchy at the ex-

pense of others. For example, the slowest receiver can attempt to obtain a

direct connection to the sender by displacing faster receivers to lower levels of

the multicast routing hierarchy.

2. If the path from the sender to a receiver passes through another receiver, the

intermediary receiver can misbehave by forwarding data at a lower than fair

rate. Denial-of-service is not the only rationale for such an attack. The slow

forwarding can enable the misbehaving intermediary to improve its own recep-

tion by acquiring the released bandwidth (e.g., when the bandwidth bottleneck

is the wireless connection of the intermediary to the network).

Since DELTA and SIGMA assume that routing is performed by trusted par-

ties, our design is insufficient for ensuring fairness of bandwidth allocation in peer-to-
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peer architectures. Protection against the new threats of routing misbehavior might

require principally different solutions. In particular, it seems difficult to address the

attack of slow forwarding with traditional methods based on verification: due to

heterogeneous network conditions, an abused receiver has no easy ways to verify the

fairness of the allocated rate. For instance, the receiver cannot rely on comparing

the rates from disjoint paths because the fair bandwidth shares for such paths can

be different. Furthermore, we are not aware of any prior studies that define a fair

bandwidth allocation for networks where receivers participate in routing. We plan

to address the above issues in our future work on robust peer-to-peer multicast.
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