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Abstract 

Mistakes in a proof are strictly intolerable, because proofs are meant to assure the 

correctness of a theorem.  Many proofs are still derived by humans today; consequently, 

they are error-prone.  In order to minimize human errors, many rigorous proof styles have 

been developed, and equational logic is one of them.  However, when writing an 

equational proof, it is still possible to make errors.  Thus, it would be helpful to have 

software that checks proofs.  This paper presents a logical model and a Haskell 

implementation for checking equational proofs in propositional logic.  After reading the 

paper, the reader should be able to recognize the main obstacles to be overcome in 

building a proof verification tool in Haskell. 
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1.  Introduction 

There are many ways to write a proof, some of them formal and some informal.  Informal 

proofs involve the use of natural languages, such as English, which are well known for 

their ambiguity.  In addition, natural languages do not have rigorous syntax rules; 

therefore, it is extremely difficult to parse and verify proofs written in natural languages.  

Formal proofs, in contrast, enforce strict grammar rules, which not only reduce the chance 

of mistakes, but more importantly, make the proof verification process more feasible.   

1.1.  Equational Logic 

Equational logic, a type of formal logic, should be fairly familiar to most people, because it 

is very similar to equation manipulation in algebra.  The equational logic presented in this 

paper is the one described by Gries and Schneider [1].  Their equational logic is based on 

equality and Leibniz’s rule (defined next) for substitution of equals for equals.  Leibniz’s 

rule states that if expression X equals expression Y, then the result of replacing variable z 

in an expression E with X would be the same as replacing z with Y. 

One part of our equational logic is a set of axioms, which are Boolean expressions that are 

postulated to be true.  Axioms are usually validated by a truth table (see Example 1).  The 

other part of our equational logic consists of three inference rules: Leibniz, Transitivity, and 

Substitution (presented in Table 1). 



8/15/2003 

 2

 
Example 1 – Validate Axioms 

Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r)) 

p q r ((p ≡ q) ≡ r) (p ≡ (q ≡ r)) 
true true true true true 
true true false false false 
true false true false false 
true false false true true 
false true true false false 
false true false true true 
false false true true true 
false false false false false 

  
Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p 

p q p ≡ q ≡ q 
true true true 
true false true 
false true false 
false false false 

  
 

 
A theorem is either (i) an axiom, (ii) the 

conclusion of an inference rule whose 

premises are theorems, or (iii) a Boolean 

expression that, using the inference rules, is 

proved equal to an axiom or a previously 

proved theorem.  A Leibniz transformation is a transformation from one expression to 

another by Leibniz’s rule.  An equational proof is a sequence of Leibniz transformations, 

which has the format described in Table 2.  Theorems are usually proved to be true by 

equational proofs (see Example 2). 

Table 1 – Fundamental Inference Rules 

Leibniz: X = Y ⇒ E[z := X] = E[z := Y] 
Transitivity: X = Y ∧ Y = Z ⇒ X = 
Z 
Substitution: X ⇒ X[z := Y] 
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Table 2 – Equational Proof Format 

  E0 
= <Explanation of why E0 = E1, using Leibniz’s rule> 
  E1 
= <Explanation of why E1 = E2, using Leibniz’s rule> 
  E2 
= <Explanation of why E2 = E3, using Leibniz’s rule> 
  E3 

The proof establishes that E0 = E3, by Transitivity and the individual steps E0 = E1, E1 = 
E2, and E2 = E3. 

 
Example 2 – Validate Theorems 

Theorem, p ≡ p ≡ q ≡ q 

  p ≡ p ≡ q ≡ q 
= <Symmetry of ≡ - replace p ≡ q ≡ q by p> 
  p ≡ p 
= <Symmetry of ≡ - replace first p by p ≡ q ≡ q> 
  p ≡ q ≡ q ≡ p 
 
The final expression is an axiom, namely Symmetry of ≡, so the theorem is proven. 
 
 
1.2.  Pitfalls 

There are many kinds of mistakes people can make when writing an equational proof (see 

Example 3).  An error can be categorized into one of the following: syntax errors, logic 

errors, and assumption errors.  A syntax error occurs when there exists some expression 

that cannot be parsed using the context-free grammar presented in Table 3.   A logic error 

occurs when there is a mistake in Leibniz transformations.  Finally, an assumption error 

occurs when the applied theorem in a Leibniz transformation is not a true expression or 

not proven yet. 
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Table 3 – Context-Free Grammar in Extended BNF [3] for Equational Logic 

<theorem>    ::= <axiom> [<newline> <proof>] 
 
<axiom>      ::= <name> <newline> 
                 <expression> 
<proof>      ::=    <expression> <newline> 
                  = <name> <newline> 
                    <expression> 
                 {= <name> <newline> 
                    <expression>} 
 

<expression> ::= {<expression> (≡|≢)} <imp> 
 
<imp>        ::= <and_or> | <imp> ⇒ <and_or> | <and_or> ⇐ <imp> 
 

<and_or>     ::= {<and_or> (∧|∨)} <not> 
 
<not>        ::= {¬} <token> 
 
<token>      ::= ’(’ <expression> ’)’ | <constant> | <variable> 
 
<constant>   ::= true | false 
 
<name>       ::= (<variable>|.|_) {<variable>|.|_} 
 
<variable>   ::= <letter> {(<letter>|<digit>)} 
 
<letter>     ::= a..z | A..Z 
 
<digit>      ::= 0..9 
 
Note: White spaces have no significance in this grammar.  They are used to help 
the reader see the visual structure.  Also <newline> is a blank line, which is usually 
represented by ASCII character ‘\n’ in a program. 
 

2.  Logical Model 

From a logical perspective, a proof verification tool takes a proof as input, and its output 

indicates whether the given proof is correct.  Our logical model specializes the input as an 

equational proof and the output as an integer, such that if the output is equal to zero, then 

the proof is correct; otherwise, the output indicates the line number of the error in the 

proof.  Basically, that is how the tool works; now let’s discuss how to implement such 

functionality logically. 
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2.1.  Definition of a Correct Proof 

An equational proof is correct if and only if it contains no syntax errors, logic errors, or 

assumption errors.  An equational proof starts with a conjecture.  The goal of the proof is 

to transform the conjecture to a theorem, and then by Transitivity, we can conclude that 

the conjecture is indeed a theorem.  By the same argument, it is also correct to prove 

backwards, such that the initial expression is a theorem and the final expression is the 

conjecture.  If the conjecture is of the form P ≡ Q, then another alternative is to transform P 

to Q or Q to P. 

2.2.  Error Detection 

Error detection takes three steps, namely, syntax error detection, logical error detection, 

and assumption error detection.  Parsing the proof to a parse tree can uncover all syntactic 

errors.  Only after the proof is syntactically correct, does it make sense to detect other 

errors.  By recursively verifying each step from the initial expression to the final expression; 

we can uncover all logical errors.  An assumption error can be easily detected, by detecting 

references to unproven theorems or invalid axioms. 

2.2.1. Detecting Syntactic Errors 

To detect syntactic errors, we can parse an equational proof to a parse tree.  There are a 

number of ways to parse with context-free grammars in various programming languages, 

but I will only demonstrate one concrete parsing implementation in Haskell (see Section 

3.2).  In short, if a proof can be parsed successfully using the grammar in Table 3, then it is 

syntactically correct; otherwise, there exists some syntax error in the proof. 

2.2.2. Detecting Logical Errors 

Each transformation in an equational proof is an application of Leibniz’s rule, known as a 

Leibniz transformation.  If all Leibniz transformations in the proof are valid and the final 

expression is a theorem, then the proof is correct.  Thus, verifying a Leibniz transformation 

is the most essential part of the logical error detection. 

When verifying a Leibniz transformation, our goal is to identify the place of substitution 

and the value being substituted for each variable (see Example 3).   Let’s call the 
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expression before transformation P, the theorem applied T, and the expression after 

transformation Q.  The verification algorithm is a two-dimensional search.  The outer 

search attempts to find a possible place of substitution z from the permutations of P.  The 

inner search attempts to find a subexpression X of T that can map all its variables to some 

subexpression of z consistently, where T = X ≡ Y and B is the mapping.  Let R be the 

expression after replacing the subexpression corresponding to z in P with Y.  The search 

stops when the result of replacing variables in R with its bindings from B is consistent to Q 

or there is no more possible place for substitution. 

Example 3 – Leibniz Transformation Verification Steps 

Step 1. Identify the Place of Substitution 
Step 2. Identify the Value of Substitution 

Example: 

  p ≡ q ≡ r 
= <p ≡ q ≡ s> 
  s ≡ r 

Leibniz’s rule: X = Y ⇒ E[z := X] = E[z := Y]   

Where is the place of substitution? 

E = z ≡ r 

What is the value of substitution? 

X = p ≡ q 
Y = s 

Note: Identifying the place of substitution is the same as identifying z in E. 

 
Identifying the place of substitution may require testing all possible substitutions.  

However, the range of possibility grows exponentially with the number of equivalence 

operators, because Symmetry and Associativity axioms for ≡ (shown in Example 1) are 
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often used within a transformation implicitly to shorten proofs (see Example 4).  Thus, the 

cost of verifying a proof would rise dramatically as the proof becomes more complex.  

Example 4 – Proof Comparisons 

This example shows two versions of the same proof, one with implicit use of Symmetry 

and Associativity axioms for ≡ and the other without. 

Explicit Implicit 

  (q ≡ true) ≡ q ≡ p ≡ p 
= <Associativity of ≡> 
  q ≡ true ≡ q ≡ p ≡ p 
= <Symmetry of ≡> 
  true ≡ q ≡ q ≡ p ≡ p 
= <true ≡ q ≡ q> 
  q ≡ q ≡ p ≡ p 
= <Symmetry of ≡> 
  q ≡ p ≡ q ≡ p 
= <Symmetry of ≡> 
  p ≡ q ≡ q ≡ p 
 

  (q ≡ true) ≡ q ≡ p ≡ p 
= <true ≡ q ≡ q> 
  p ≡ q ≡ q ≡ p 
 

  
 
Clearly, it is necessary to enforce some restrictions in order to reduce the number of 

possibilities.  My solution allows the user to leave some applications of the Symmetry and 

Associativity axioms implicit, but not all of them.  Specifically, when an expression P is 

transformed to another expression Q using a theorem T, the Symmetry and Associativity 

axioms can be used implicitly on P but can be used only explicitly on Q (see Example 5). 
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Example 5 – Proof Comparisons 

This example shows two versions of the same proof, one with partially implicit use of 

Symmetry and Associativity axioms for ≡ and the other with totally implicit use. 

Partially Implicit Totally Implicit 

  (q ≡ true) ≡ q ≡ p ≡ p 
= <true ≡ q ≡ q> 
  q ≡ q ≡ p ≡ p 
= <Symmetry of ≡> 
  p ≡ q ≡ q ≡ p 
 

  (q ≡ true) ≡ q ≡ p ≡ p 
= <true ≡ q ≡ q> 
  p ≡ q ≡ q ≡ p 
 

  
Let’s analyze the first transformation in both versions of the proof.  The original expression 
P in both versions is “(q ≡ true) ≡ q ≡ p ≡ p”.  The applied theorem T in both 
versions is “true ≡ q ≡ q”.  We want to replace “(q ≡ true)” in P with “q” using T, 
but the parse tree structure of “(q ≡ true)” in P does not match the parse tree structure 
of “true ≡ q” in T.  Thus, we need to convert the structure of P.  Recall that we could 
apply Symmetry and Associativity axioms implicitly on P in both versions.  After doing so, 
P becomes “true ≡ q ≡ q ≡ p ≡ p”.  The result expression Q for Partially Implicit 
version is “q ≡ q ≡ p ≡ p”, but the result expression Q for Totally Implicit version is “p 
≡ q ≡ q ≡ p”.  Recall in the Partially Implicit version, we cannot apply any Symmetry 
and Associativity axioms implicitly on Q, so the extra step in the Partially Implicit version 
cannot be avoided. Here, we see a clear restriction of the Partially Implicit version. 
 
 
However, there is an additional problem.  Even if we know the place of substitution (the 

location of z in E from Leibniz’s rule), it is still unclear which subexpression of P is 

substituted for which variable in X.  Our algorithm tries to generate a sequence of different 

combinations of X ≡ Y, and for each combination the algorithm attempts to bind the 

subexpression of P corresponding to z to variables in X.  Once X successfully binds all of 

its variables, the variables in Y would assume the same bindings as X.  If the free variables 

of Y (variables that are in Y, but not X) are bound consistently with some value to Q after 

the transformation, then the transformation is correct.  The algorithm terminates when there 

is no more possibility or a valid substitution is found.  Example 6 demonstrates the 

algorithm. 
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Example 6 – Finding Values of Substitution 

  a ≡ b ≡ c 
= <Symmetry of ≡ (3.2), p ≡ q ≡ q ≡ p> 
  d ≡ d ≡ a ≡ c ≡ b 

Leibniz’s rule: X = Y ⇒ E[z := X] = E[z := Y]  

Given that E = z ≡ b, where z = a ≡ c. 
Now, let’s break up the theorem applied p ≡ q ≡ q ≡ p into X ≡ Y. 
Let’s consider the case X = p and Y = q ≡ q ≡ p. 
 
  E[z := X] 
= E[z := p] 

= p ≡ b 

Because we want E = a ≡ b ≡ c, we have to bind p to a ≡ c.  q is a free variable, 
since we only bound p, so we can bind it to anything.  In this case, q is bound to d. 
 
  E[z := Y] 

= E[z := q ≡ q ≡ p] 
= q ≡ q ≡ p ≡ b 

Recall the bindings are p to a ≡ c and q to d. 

  X = Y 

⇒ <Leibniz’s rule> 
  E[z := X] = E[z := Y] 

⇒ <Substitution rule> 
  E[z := X][p,q := a ≡ c,d] = E[z := Y][p,q := a ≡ c,d] 
= a ≡ b ≡ c = d ≡ d ≡ a ≡ c ≡ b 

Thus, the transformation is correct. 

3.  Concrete Implementation 

This section presents the architecture of Proof Checker, an implementation of the logical 

model described.  Proof Checker separates implementation from interface [2], so that they 
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can be implemented in different programming languages and either one can be updated 

without affecting the other. 

Before Proof Checker can verify a proof, it must understand (parse) the proof.  Because the 

Haskell ParseLib library [4] simplifies the process of translating context-free grammars to a 

set of concrete parsers, I chose to implement the parser in Haskell.  Consequently, it was 

convenient to implement the proof checking logic in Haskell as well. 

On the other hand, when building Proof Checker’s user interface, the main focus is to 

increase the user’s productivity.  Therefore, the interface should be simple to master, 

without frequent consulting the user manual, so I chose graphical interface over command-

prompt interface.  Furthermore, I chose to implement the graphical interface in Java Swing, 

because it is portable to most platforms and easier to be deployed from a web page in the 

future. 

Finally, we need a way to communicate between the implementation and the user 

interface.  I used TCP/IP sockets to bridge them, so they can run on different platforms.  

The implementation part of Proof Checker takes the role of server and the interface part 

acts as a client.  This design enables upgrades to the server transparent to the user.  

3.1.  Client-Server Overview 

The Proof Checker's user inputs theorems and their proofs to the graphical interface client.  

After the user establishes a connection with the server, the client sends a service request to 

the server, which spawns a thread to process the request and sends the result back to the 

client. 

The client program maintains a database of axioms and theorems, which is updated with 

the results received from the server.  Maintaining the database on the client machine 

instead of the server machine induces heavier network traffic, because all propositions 

used in a proof has to be transferred along with the proof.  Under normal operations, this 

induced overhead should be relatively small, but if performance ever becomes an issue or 

offline processing is desired, the server program can be installed on the same machine as 

the client program. 
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3.2.  The Server 

The server, a plain command-line interactive back-end Haskell application, is responsible 

for accepting and processing the client’s proof checking requests.  First, the server spawns 

a thread to listen for client connections. The spawned thread, which is referred to as the 

accepting thread binds the server to a local port, and then waits to accept client 

connections.  When a request arrives, the accepting thread buffers the received data until 

the full content has arrived.  When the request is complete, the accepting thread spawns 

another thread to process it.  Then, the processing thread passes the buffer, a String list, to 

a function called verify, which performs proof checking on the list.  The input list’s format 

is described in Table 4. 

Table 4 – Verification Input Format 

<input_file> ::= {<newline>} <theorem> <newline> [<file>] 
 
 

The function verify parses the input String list to a set of axioms and theorems, where 

each theorem is accompanied with an equational proof.  The verification algorithms for 

axioms and theorems are very different.  As mentioned in Section 1.1, to verify an axiom, 

the program assigns variables in the axiom with all possible value combinations and 

evaluates the axiom for each combination.  If all combinations of variable assignment to 

the axiom evaluate to true, then the axiom is correct.  On the other hand, to verify a 

theorem, we need to check its equational proof.  If the proof is correct, then we must 

make sure the proof indeed proves the theorem. 

In my implementation, Proof Checker generates the parse tree using Haskell’s ParseLib 

library and the unambiguous context-free grammar presented in Table 3.  Example 7 shows 

some examples for translating a context-free grammar to a Parser (prior knowledge of 

Haskell and the Hutton/Meijer parsing library [4] is  assumed). 
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Example 7 – ParseLib Examples 

-- <expression> ::= {<expression> (≡|≢)} <imp> 
equ_P :: Parser Expression 
equ_P = do term <- imp_P 
           left_assoc term 
           where 
           left_assoc x = do string "=="  -- stands for ≡ 
                             y <- imp_P 
                             left_assoc (Exp2 Equ x y) 
                          +++ 

                          do string "/="  -- stands for ≢ 
                             y <- imp_P 
                             left_assoc (Exp2 Not_Equ x y) 
                          +++ 
                             return x 
 
-- <constant> ::= true | false 
constant_P :: Parser Expression 
constant_P = do string “true” 
                return (Const TRUE) 
             +++ 
             do string “false” 
                return (Const FALSE) 
 
 
3.3.  The Client 

The client is a graphical Java Swing application.  It communicates with the server to verify 

axioms and theorems, and it maintains a database based on the results returned by the 

server.  In addition, to be more user friendly, the proofs in the program look identical to 

the proofs a user would write on a paper.  This feature is accomplished by facilitating the 

input of propositions via special buttons for common equational operators like ≡ that 

cannot be typed in from a keyboard directly.  Note, before a Unicode character like ≡ is 

sent to the server, the client automatically replaces it with its counterparts described in 

Table 5.  This replacement is necessary, because the server uses ASCII character 

representations for those operators.  Finally, the client automatically arranges axioms and 

theorems according to the format described in Table 5. 
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Table 5 – Equational Operator Mappings between Client and Server 

Operator Client Server 

Not ¬ ~ 

And ∧ && 

Or ∨ || 

Forward Implication ⇒ => 

Backward Implication ⇐ <= 

Equivalent ≡ == 

Not Equivalent ≢ /= 
  
 
A typical proof checking session begins when the user creates or opens a workspace.  The 

workspace stores a set of propositions, each having a unique name in the workspace and 

containing an option flag indicating whether the proposition should be saved in the 

database.  (Propositions that are not saved in the database are considered lemmas.)  After 

an active workspace is established, the user inputs a set of propositions to be checked by 

the server.  Then the user sends the workspace to the server, and the server would return 

the result. 

The returned result contains a number and a string.  If the number is zero, then there is no 

error, and the string is disregarded.  Otherwise, the number indicates the line number of 

the error occurrence and the string is the error message.  The client program only makes 

changes to the database when there is no error; otherwise, the line number of the error 

and the error message are reported to the user.   

3.4.  The Verification Implementation 

Recall from Section 2.2 that all logical errors in a proof are uncovered by verifying each 

Leibniz transformation in an equational proof from the initial expression to the final 

expression.  In my implementation, chkTransformation is the function that checks a 
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Leibniz transformation.  To fully explain the function chkTransformation, we first 

introduce functions mapBinding and compatible first. 

 
Table 6 – Source Code of Function “mapBinding” 
 
 1 mapBinding :: Expression -> Expression -> (Bool, [(String, Expression)]) 
 2 mapBinding form expression 
 3   = case (form, expression) of 
 4      ((Exp1 Par x),  x')               -> mapBinding x x' 
 5      (x, (Exp1 Par x'))                -> mapBinding x x' 
 6      ((Exp1 op x), (Exp1 op' x'))  
 7        -> if op == op'  
 8             then combine (mapBinding x x') (True, []) 
 9             else (False, []) 
10      ((Exp2 op x y), (Exp2 op' x' y')) 
11        -> if op == op' 
12             then combine (mapBinding x x') (mapBinding y y') 
13             else (False, []) 
14      ((Var x), x')                     -> (True, [(x, x')]) 
15      ((Const x), (Const y))            -> (x==y, []) 
16      otherwise                         -> (False, []) 
17    where 
18    combine::(Bool, [(String, Expression)]) -> (Bool, [(String, Expression)]) 
19                                            -> (Bool, [(String, Expression)]) 
20    combine x y = if (fst x) && (fst y) 
21                    then case bindings of 
22                           Just b  -> (True, b) 
23                           Nothing -> (False, []) 
24                    else (False, []) 
25                    where bindings = merge (snd x) (snd y) 
26    merge :: [(String, Expression)] -> [(String, Expression)]  
27                                    -> Maybe [(String, Expression)] 
28    merge [] y = Just y 
29    merge x [] = Just x 
30    merge (x:xs) ys = case [p | (p, q) <- ys, (fst x) == p, (snd x) /= q] of 
31                        [] -> merge xs (union [x] ys) 
32                        otherwise -> Nothing 
 

 
The function mapBinding takes two expressions as inputs.  The output of the function is 
a tuple consisting of a Boolean value, indicating whether binding is possible between the 
two input expressions, and a list of tuples each consisting of a string followed by an 
expression.  The list of tuples represents a set of variable bindings, where the string is a 
variable name and the expression is the value bound to that variable.  Lines 4-5 take away 
extra parentheses.  Lines 6-15 ensure that the structures of the two input expressions are 
the same; otherwise, they are not bindable (line 16).  Finally, the functions combine and 
merge are used to integrate individual tuples of binding from line 14 to a single list of such 
tuples. 
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 Table 7 – Source Code of Function “compatible” 
 
 1 compatible :: Expression -> Expression -> [(String, Expression)] -> Bool 
 2 compatible form expression bindings  
 3   = case (form, expression) of 
 4      ((Exp1 Par x), x') -> compatible x x' bindings 
 5      (x, (Exp1 Par x')) -> compatible x x' bindings 
 6      ((Exp1 op x), (Exp1 op' x')) -> if op == op'  
 7                                          then (compatible x x' bindings) 
 8                                          else False 
 9      ((Exp2 op x y), (Exp2 op' x' y')) -> if op == op' 
10                                            then (compatible x x' bindings)   
11                                                && (compatible y y' bindings) 
12                                             else False 
13      ((Var x), x') -> case [q | (p, q) <- bindings, p == x] of 
14                         []  -> True 
15                         [y] -> y == x' 
16      (Const x, Const x') -> x == x' 
17      otherwise -> False 
 
 
The function compatible takes two expressions and a set of variable bindings as inputs.  

The output of the function is a Boolean value indicating whether the two expressions are 

compatible with the given bindings.  Again, notice in lines 4-5, extra parentheses around an 

expression are stripped off, so they will not cause any structural differences between the 

two given expressions.  Lines 6-12 ensure the two expressions have the same structure and 

Lines 13-15 ensure the variable bindings are the same in both expressions; otherwise, they 

are not compatible (line 17). 
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Table 8 – Source Code of Function “chkTransformation” 
 
 1 chkTransformation :: Expression -> Theorem -> Expression -> Bool 
 2 chkTransformation P (Exp2 Equ X Y) Q  
 3  = if bindable && (compatible Y Q bindings) 
 4      then True 
 5      else  
 6        if (checkOp P Q) 
 7          then let opDegree = case P of 
 8                                 (Exp1 _ _)   -> 1 
 9                                 (Exp2 _ _ _) -> 2 
10               in  
11               or [chkTransformation (child P n) theorem (child Q n) 
12                         | n <- [1..opDegree], 
13                           n > 0, 
14                           and [child P m == child Q m 
15                                  | m <- [1..opDegree], m > 0, m /= n]] 
16           else False 
17        where  
18        theorem  = Exp2 Equ X Y 
19        mapping  = mapBinding X P 
20        bindable = fst mapping 
21        bindings = snd mapping                                                 
22        checkOp :: Expression -> Expression -> Bool 
23        checkOp x y = case (x, y) of 
24                        ((Exp1 op _),   (Exp1 op' _))   -> op == op' 
25                        ((Exp2 op _ _), (Exp2 op' _ _)) -> op == op' 
26                        otherwise -> False 
 
 
The function chkTransformation takes an expression P, a theorem T of the form X ≡ Y, 

and another expression Q as inputs.  The output of the function is a Boolean value 

indicating whether the transformation from P to Q using T is correct.  Recall from Section 

2.2.2 that a transformation is correct when some sub-expression (z) of P can be bound to 

the variables in X so that P = E[z:=X], and Q is consistent with E[z:=Y], so that 

(∀v|v∈Y:v∈X⇒v=x ∧ v∉X⇒v=y) where x is the expression bound to v in X and y 

is some constant expression.  This definition of a correct transformation is captured in lines 

3-4.  The function chkTransformation assumes z=P, and it recurses through 

subexpressions of P until there is a correct transformation or no more sub-expressions (line 

11).  
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4.  Conclusion 

The goal of this project was to create a model for automating equational proof verification, 

which could reduce human errors when writing an equational proof.  The main obstacle 

encountered when verifying an equational proof is handling implicit use of Symmetry and 

Associativity axioms for ≡.  The problem is that the number of possible implicit 

substitutions grows exponentially as the number of ≡ in the expressions of the 

transformation being verified increases.  Thus, it is very inefficient to check for each 

possible implicit substitution.  To solve this problem, I proposed a solution that partially 

restricts the user from using such implicit substitutions.  As a result, verifications of many 

more proofs are now practical.  For a concrete implementation of the logical model 

presented in this paper, I have written a program called Proof Checker which is capable of 

verifying equational proofs in propositional logic using only a standard proof method. 

5.  Future Work 

Proof Checker is capable of verifying propositional proofs using only one proof method. 

There are many other proof methods, such as “Proof by Contradiction” and “Proof by Case 

Analysis”, not yet implemented in Proof Checker, and extending Proof Checker to handle 

them is my next goal.  A much more substantial extension would enable Proof Checker to 

verify proofs in predicate logic.  In addition, my future focuses for the client part are 

managing theorems using commercial database systems via JDBC and deploying it from a 

web page. 
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