
CopyrightbySeth Pettie2003

The Dissertation Committee for Seth Pettie
erti�es that this is the approved version of the following dissertation:
On the Shortest Path andMinimum Spanning Tree Problems

Committee:Vijaya Rama
handran, SupervisorHarold GabowAnna G�alTandy WarnowDavid Zu
kerman

On the Shortest Path andMinimum Spanning Tree ProblemsbySeth Pettie, B.A.
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinAugust 2003

for my mother and my muse

A
knowledgmentsThis thesis would not have been possible without the support and guidan
e of myadvisor, Vijaya Rama
handran. She en
ouraged all of my resear
h endeavors and hasbeen my staun
hest advo
ate.I must also thank my
ommittee members, Hal Gabow, Anna G�al, Tandy Warnow,and David Zu
kerman, as well as the theory group at UT{Austin. Their
ommentsgreatly helped to improve the presentation of this thesis. I would also like to thank JayMisra. We have had too few
onversations, but for those I am grateful. (One
annot bein the presen
e of Jay without learning | as if by osmosis | that
lear presentationand
lear thinking are inseparable | and that both are in short supply.)Grad s
hool
ould not have been as enjoyable without my fellow grad students. Iwould like to thank, in parti
ular, Lisa Ka
zmar
zyk for taking the
o�ee break to thenext level, and my oÆ
e-mate Eunjin Jung, a good friend and
onversationalist and agreat
hef.I have failed, on many o

asions, to properly explain to my family what algo-rithms are and why they're worth studying. Nonetheless, they supported my pursuitssimply be
ause they were mine. I would espe
ially like to thank my mother and father,Andy, grandma Betty, and un
le Tim, who treated me like a grad student sin
e I was 5years old. I
annot thank my mother enough. This thesis, my grad s
hool
areer, andeverything else would not have been possible without her a
tive support.Lastly, I must thank my muse, Elizabeth Harr. Her joie de vivre has made thelast 212 years the best of my life. Without her life would be nothing but an empty void.
Seth PettieThe University of Texas at AustinAugust 2003 v

On the Shortest Path andMinimum Spanning Tree ProblemsPubli
ation No.Seth Pettie, Ph.D.The University of Texas at Austin, 2003Supervisor: Vijaya Rama
handranThe shortest path and minimum spanning tree problems are two of the
lassi
textbook problems in
ombinatorial optimization. They are simple to des
ribe andadmit simple polynomial-time algorithms. However, despite years of
on
erted resear
he�ort, the asymptoti

omplexity of these problems remains unresolved.The main
ontributions of this dissertation are a number of asymptoti
ally fasteralgorithms for the minimum spanning tree and shortest path problems. Of equal interest,we provide some
lues as to why these problems are so diÆ
ult. In parti
ular, weshow why
ertain modern approa
hes to the problems are doomed to have super-linear
omplexity.A sampling of our results are listed below. We emphasize that all of our algo-rithms work with general graphs, and make no restri
tive assumptions on the numeri
alrepresentation of edge-lengths.� A provably optimal deterministi
 minimum spanning tree algorithm. (We give a
onstru
tive proof that the algorithmi

omplexity of the minimum spanning treeproblem is equivalent to its de
ision-tree
omplexity.)� An all-pairs shortest path algorithm for general graphs running in time O(mn+n2 log log n), where m and n are the number of edges and verti
es. This providesthe �rst improvement over approa
hes based on Dijkstra's algorithm.� An all-pairs shortest path algorithm for undire
ted graphs running in O(mn log�)time, where � = �(m;n) is the inverse-A
kermann fun
tion.vi

� A single-sour
e shortest path algorithm running inO(m�+minfn log log r; n logng)time, where r bounds the ratio of any two edge lengths. For r polynomial in nthis is O(m+ n log log n), an improvement over Dijkstra's algorithm.� An inverse-A
kermann style lower bound for the online minimum spanning treeveri�
ation problem. This is the �rst inverse-A
kermann type lower bound for a
omparison-based problem.� An
(m+ n logn) lower bound on any hierar
hy-type single-sour
e shortest pathalgorithm, implying that this type of algorithm
annot improve upon Dijkstra'salgorithm. (All of our shortest path algorithms are of the hierar
hy type.)� The �rst parallel minimum spanning tree algorithm that is optimal w.r.t. to bothtime and work. Our algorithm is for the EREW PRAM model.� A parallel, expe
ted linear-work minimum spanning tree algorithm using only apolylogarithmi
 number of random bits.� An O(mn log�) bound on the
omparison-addition
omplexity of all-pairs shortestpaths. This is within a tiny log� fa
tor of optimal when m = O(n).

vii

Contents
A
knowledgments vAbstra
t viChapter 1 Introdu
tion 11.1 Overview of the Results . 21.1.1 Shortest Paths . 21.1.2 Minimum Spanning Trees . 31.2 Preliminaries . 41.2.1 Asymptoti
 Notation . 41.2.2 Chapter Dependen
ies . 4I Shortest Paths 6Chapter 2 Introdu
tion to Shortest Paths 72.1 History . 72.1.1 Single-Sour
e Shortest Paths . 72.1.2 All-Pairs Shortest Paths . 82.1.3 Variations . 92.1.4 Organization . 102.2 Our Contributions . 102.3 Problem De�nition . 112.4 The Comparison-Addition Model . 122.4.1 Non-Uniform Complexity . 132.4.2 Basi
 Te
hniques . 132.4.3 Lower Bounds . 142.5 Dijkstra's Algorithm . 142.6 The Hierar
hy Approa
h . 16viii

Chapter 3 Hierar
hies & Shortest Paths 183.1 Independent Subproblems . 183.2 A Strati�ed Hierar
hy . 203.3 A Generalized Hierar
hy-Type Algorithm 253.4 Corre
tness . 273.5 Implementation Details . 313.6 Lower Bounds . 343.6.1 Chara
terization of Hierar
hy-Type Algorithms 353.6.2 Lower Bound: Dire
ted Graphs 383.6.3 Lower Bound: Undire
ted Graphs 39Chapter 4 Shortest Paths on Dire
ted Graphs 414.1 A Faster APSP Algorithm . 424.1.1 Relative Distan
es and Their Approximations 424.1.2 Generalized-Visit and Relative Distan
es 434.1.3 Computing Relative Distan
es 454.2 A Non-Uniform APSP Algorithm . 494.2.1 Preliminaries . 494.2.2 Lengths, Distan
es, et
. 504.2.3 Bu
kets, Heaps, et
. 53Chapter 5 Shortest Paths on Undire
ted Graphs 585.1 An Undire
ted Shortest Path Algorithm 595.1.1 Re�ned Hierar
hies . 595.1.2 The Undire
ted-Visit Algorithm 595.1.3 A Lazy Bu
keting Stru
ture . 615.1.4 Analysis of Undire
ted-Visit 635.2 An Algorithm for a Re�ned Hierar
hy 645.2.1 Phase 1: Computing the MST and SH 645.2.2 De�nitions and Properties . 655.2.3 Phase 2: Computing Short
ut Trees 695.2.4 Phase 3: Computing a Re�ned Hierar
hy 715.3 Variations on the Algorithm . 755.3.1 Simpler and Slower . 755.3.2 Sort-of-Undire
ted Graphs . 765.4 Dis
ussion . 77Chapter 6 Experimental Evaluation of a Shortest Path Algorithm 796.1 Introdu
tion . 796.1.1 Previous Work . 80ix

6.1.2 S
ope of the Experiment . 806.2 Design Choi
es . 816.2.1 Dijkstra's Algorithm . 816.2.2 Pettie-Rama
handran Algorithm 826.2.3 Breadth First Sear
h . 836.3 Experimental Set-up . 836.3.1 Graph Classes . 836.4 Results . 846.5 Dis
ussion . 94II Minimum Spanning Trees 95Chapter 7 Introdu
tion to Minimum Spanning Trees 967.1 History . 967.2 Preliminaries . 1007.2.1 The Model . 1007.2.2 Cut and Cy
le Properties . 1007.2.3 Basi
 Algorithms . 103Chapter 8 An Optimal Minimum Spanning Tree Algorithm 1048.1 Introdu
tion . 1048.1.1 Uniform vs. Non-Uniform Complexity 1058.1.2 Spe
ulation about mst� . 1068.2 The Soft Heap . 1078.3 Corruption and Contra
tibility . 1088.3.1 A Robust Contra
tion Lemma 1088.3.2 The Partition Pro
edure . 1098.4 The Algorithm . 1118.4.1 Overview . 1118.4.2 MST De
ision Trees . 1118.4.3 The Dense Case Algorithm . 1128.4.4 An Optimal Algorithm . 1128.4.5 Analysis . 1148.5 Avoiding Pointer Arithmeti
 . 1158.6 Introdu
ing A Little Randomness . 1168.7 Performan
e on Random Graphs . 1178.7.1 The Edge-Addition Martingale 1188.7.2 Analysis . 1198.8 Dis
ussion . 121x

Chapter 9 A Lower Bound on MST Veri�
ation 1259.1 Introdu
tion . 1259.1.1 Related Work . 1269.1.2 Organization . 1289.2 Preliminaries . 1299.2.1 A Variation on A
kermann's Fun
tion 1299.2.2 The Input Distribution . 1309.2.3 A Measure of Information . 1319.3 The Lower Bound . 1349.3.1 Proof of Main Theorem . 1389.4 Upper Bounds . 141Chapter 10 A Time-Work Optimal Parallel MST Algorithm 14410.1 The PRAM Model . 14410.2 History . 14510.3 Te
hniques . 14610.4 The High-Level Algorithm . 14810.5 Phase 1 . 14910.5.1 The k-Min Forest . 15010.5.2 Bor�uvka-A Steps . 15110.5.3 Filtering Edges via The Filter Forest 15510.5.4 Finding a k-Min Forest . 15810.5.5 Performan
e of Find-k-min . 15910.6 Phase 2 . 16010.6.1 The Find-MST Pro
edure . 16010.7 Proof of the Main Theorem . 16210.8 Pro
essor Allo
ation . 16310.9 Adaptations to Pra
ti
al Parallel Models 16610.10Dis
ussion . 166Chapter 11 A Redu
ed Randomness MST Algorithm 16811.1 Limited Independen
e Sampling . 16911.1.1 Pairwise Independent Sampling on the EREW PRAM 17211.2 A Low-Randomness MST Algorithm . 17411.2.1 Te
hniques . 17411.2.2 The Algorithm . 17811.3 Dis
ussion . 181
xi

Appendix A Split-Findmin and Its Appli
ations 182A.1 Ba
kground . 182A.2 An Optimal Split-Findmin Stru
ture . 183A.3 MST and SSSP Sensitivity Analysis . 185Appendix B Publi
ations 187Bibliography 189Vita 204

xii

Chapter 1Introdu
tionAs optimization problems go, the minimum spanning tree and shortest path problemsare as old as the hills. They are so �rmly established in the
anon of
omputer s
ien
eedu
ation that today no student
an avoid learning the algorithms of Dijkstra, Prim,Bellman-Ford, Floyd-Warshall, Kruskal, and Bor�uvka. Given the ri
h history of bothproblems (the minimum spanning tree problem dates ba
k 75 years) and the vigor ofre
ent resear
h e�orts, it is thoroughly surprising that neither problem is solved. Inparti
ular, the question of their inherent algorithmi

omplexity has yet to be fullyanswered.The primary fo
us of this dissertation is obtaining asymptoti
ally faster algorithmsfor three
lassi
al graph optimization problems: single-sour
e shortest paths, all-pairsshortest paths, and minimum spanning trees. For ea
h problem we o�er algorithms thata
hieve optimality, or make substantial strides toward optimality. Highlights of ourresults in
lude a provably optimal minimum spanning tree algorithm (with unknownrunning time) and an all-pairs shortest paths algorithm that improves on Dijkstra'stextbook algorithm from 1959. We survey our results in more detail in Se
tion 1.1.1(shortest paths) and Se
tion 1.1.2 (minimum spanning trees). Before delving into details,we would like to highlight our assumptions
on
erning the model of
omputation.Any dis
ussion of an algorithmi
 result must begin with the answers to two fun-damental questions: What does the input to the algorithm look like? and what
an our(imaginary)
omputer do (and at what
ost)? The answers to these questions de�ne the
omputational model, or simply model. Most resear
hers
hoose a model by
onsider-ing aestheti
 simpli
ity, histori
al pre
edent, realism,
onvenien
e, or some
ombinationthereof. In this dissertation we study the shortest path and minimum spanning treeproblems under the traditional textbook model. The input is assumed to be given asa real-weighted general graph, either dire
ted or undire
ted, and the de�ning
hara
-teristi
 of the ma
hine model is that real numbers are only subje
t to a spe
i�
 set ofunit-time operations, e.g., addition, subtra
tion, and
omparison. (See Se
tions 2.4 and1

7.2.1 for the spe
i�
s.)The strength of the traditional model is its weakness. It is weak in that it makesminimal assumptions about the form of the input, and minimal assumptions about howthe abstra
t
omputer
an manipulate the input. As a
onsequen
e, algorithms designedfor the traditional model map easily onto a
tual physi
al
omputers, usually withoutmodi�
ation. The traditional model also for
es us, as theoreti
ians, to
on
entrate onthe problem at hand. A number of algorithms these days | even for shortest paths andminimum spanning trees | apply very model-spe
i�
 te
hniques and, as su
h, revealless about the problem than they do about the power of the underlying ma
hine.1.1 Overview of the Results1.1.1 Shortest PathsIn 1997 Thorup invented what we dub the hierar
hy-based approa
h to shortest paths.Thorup's original algorithm was designed for integer-weighted undire
ted graphs, andthe powerful RAM model, or random a

ess ma
hine. Be
ause the hierar
hy approa
hseemed to depend on all kinds of model-spe
i�
 te
hniques, it was un
lear whether themore general problem | shortest paths on real-weighted graphs | would admit aneÆ
ient hierar
hy-based algorithm. In Chapters 2{6 we develop a number of fastershortest path algorithms, all hierar
hy-based, and explore the inherent limitations ofthe approa
h.In Chapter 3 we de�ne a large
lass of hierar
hy-type algorithms, and prove that,in general, no hierar
hy-type algorithm
an improve on Dijkstra's
lassi
al single-sour
eshortest path (SSSP) algorithm. Basi
ally, we show that there is an inherent \sortingbottlene
k" in the approa
h, just as there is in Dijkstra's algorithm. However our lowerbound does not s
ale up well. For instan
e it does not say that
omputing SSSP 5 timesfrom di�erent sour
es is 5 times as hard as SSSP. This is be
ause shortest paths on thesame graph are, by their nature, highly dependent. Knowing some shortest paths mightgive you a great deal of information about others.The main theoreti
al
ontributions of our shortest path algorithms are some newte
hniques for identifying and exploiting the dependen
ies among shortest paths in thesame graph. In Chapter 4 we give a new all-pairs shortest path (APSP) algorithmthat runs in time O(mn + n2 log logn), where m and n are the number of edges andverti
es respe
tively. This is the �rst theoreti
al improvement over Dijkstra's 1959algorithm, whi
h runs in O(mn+ n2 log n) time if implemented with a Fibona

i heap.In Chapter 4 we also address the non-uniform
omplexity of APSP. In parti
ular wegive an APSP algorithm making O(mn log�(m;n)) numeri
al operations, where � isthe inverse-A
kermann fun
tion. Due to the trivial lower bound of
(n2), our algorithm2

is within a tiny log�(n; n) fa
tor of optimal when m = O(n).In Chapter 5 we give a faster shortest path algorithm for undire
ted graphs. Asan undire
ted APSP algorithm, it runs in O(mn log�(m;n)) time | again, nearlyoptimal for m = O(n). As an undire
ted SSSP algorithm it runs in O(m�(m;n) +n log log r) time, where r bounds the ratio of any two edge lengths. Thus for r = poly(n),our undire
ted SSSP algorithm runs in O(m + n log log n) time, an improvement overDijkstra's. In Chapter 6 we present the results of some experiments with a simpli�edversion of our undire
ted shortest path algorithm. It
onsistently outperforms Dijkstra'son a variety of sparse graph types, and
omes surprisingly
lose to the speed of breadth�rst sear
h, whi
h we use as a ben
hmark linear-time algorithm.1.1.2 Minimum Spanning TreesThe minimum spanning tree problem (MST) has been studied for over 75 years, thoughit was only in re
ent years that sophisti
ated te
hniques were applied to the problem.In 1994 Karger, Klein, and Tarjan [127℄ developed a randomized expe
ted linear timealgorithm based on two key te
hniques: random sampling and minimum spanning treeveri�
ation. In 1997 Chazelle [28℄ addressed the deterministi

omplexity of the MSTproblem. The running time of his algorithm was slightly super-linear (of the inverse-A
kermann variety) and was based on a new approximate priority queue
alled the SoftHeap [29℄.In Chapter 8 we solve part of the MST problem. We give, in parti
ular, a provablyoptimal MST algorithm, and show that the de
ision-tree (
omparison)
omplexity of theproblem is equivalent to its algorithmi

omplexity. Thus, we have separated the issuesof �nding an optimal algorithm with analyzing its
omplexity. Our algorithm, likeChazelle's [28℄, is based on the Soft Heap.In [28℄ Chazelle wondered what sort of data stru
ture might be the key to anexpli
it linear-time MST algorithm. Clearly inspired by the su

ess of MST veri�
ationin the randomized algorithm of Karger et al. [127℄, he proposed a \dynami
 equivalent"to MST veri�
ation. In Chapter 9 we give an inverse-A
kermann type lower bound forthe online MST veri�
ation problem, whi
h may be
onsidered the simplest dynami
equivalent. Our lower bound seems to rule out a faster expli
it MST algorithm based ononline MST veri�
ation. Parentheti
ally, this is the �rst inverse-A
kermann type lowerbound for any
omparison-based problem.In Chapter 10 we give the �rst randomized time-work optimal parallel MST algo-rithm. Our algorithm improves on a long line of results, some time-optimal and somework-optimal.One disadvantage of the randomized MST algorithms is that they use a number ofrandom bits that is linear in the size of the problem. In reality however random bits areusually
onsidered a s
ar
e resour
e. In Chapter 11 we develop a new randomized MST3

algorithm that runs in expe
ted linear-time, even if only a polylogarithmi
 number ofrandom bits are available. It is parallelizable, and also gives an eÆ
ient parallel
on-ne
tivity algorithm using polylogarithmi
 random bits. (A simple tweak of our optimalMST algorithm yields one that runs in expe
ted linear time using o(log�n) random bits.However this algorithm is not parallelizable.)1.2 PreliminariesWe assume no spe
ialized ba
kground knowledge. However the reader should be familiarwith asymptoti
 notation (O;
;�; !; o), graph terminology (tree, path, vertex, edge,
y
le, et
.), and a little probability for the latter
hapters. Refer to any standardalgorithms textbook [47℄ for the ne
essary de�nitions.We have summarized the standard asymptoti
 notation in Se
tion 1.2.1. In Se
tion1.2.2 we summarize the
hapter dependen
ies.1.2.1 Asymptoti
 NotationWe use the standard asymptoti
 notations. Below, f and g are fun
tions from naturalsto naturals. f(n) = O(g(n)) � 9
1;
2 8n > 0 : f(n) �
1 � g(n) +
2f(n) =
(g(n)) � g(n) = O(f(n))f(n) = �(g(n)) � f(n) = O(g(n)) and f(n) =
(g(n))f(n) = !(g(n)) � limn!1 g(n)=f(n) = 0f(n) = o(g(n)) � g(n) = !(f(n))Remark. Some sour
es in the literature use the asymmetri
 de�nition: f(n) =
(g(n))if there exists a
onstant
 su
h that
 � f(n) � g(n) for in�nitely many integers n.1.2.2 Chapter Dependen
iesParts I and II, on shortest paths and minimum spanning trees, respe
tively, are entirelyindependent.Chapters 4 (dire
ted shortest paths) and 5 (undire
ted shortest paths) are bothbuilt on the foundation of Chapters 2 and 3. Chapter 6 (experimental shortest paths)may be read separately, though it does frequently refer to the algorithm from Chapter5. 4

Chapters 8{11 (results on minimum spanning trees) are independent of one an-other, though ea
h should be read following the introdu
tion to minimum spanningtrees, in Chapter 7.

5

Part IShortest Paths

6

Chapter 2Introdu
tion to Shortest Paths2.1 HistoryIn Se
tions 2.1.1 and 2.1.2 we survey the history of the single-sour
e and all-pairs shortestpath problems, whi
h are the \textbook" shortest path problems and the subje
t ofsubsequent
hapters. In Se
tion 2.1.3 we attempt to survey a slew of results extendingthe shortest path problem in various dire
tions.2.1.1 Single-Sour
e Shortest PathsThe single-sour
e shortest path problem, or SSSP, is a de
eptively diÆ
ult problem. Asearly as 1960 there were two algorithmi
 solutions: Bellman and Ford's [17, 65, 47℄,whi
h worked on arbitrarily weighted graphs, and Dijkstra's [52℄, whi
h was a bit fasterbut assumed non-negatively weighted graphs. To date neither of these algorithms havebeen improved in the
ontext of general real-weighted graphs. However there have beena number of quali�ed su

esses, as we shall see.The Bellman-Ford algorithm runs in O(mn) time, where m and n are the numberof edges and verti
es respe
tively. However this
ost is generally very pessimisti
; a�ner analysis shows it runs in O(hm) time, where h is the maximum number of edges inany shortest path. Goldberg [87℄, improving very slightly on Gabow and Tarjan's work[77, 80℄, gave an SSSP algorithm for integer-weighted graphs running in O(pnm logN)time, where N bounds the magnitude of the negative edge-lengths.Dijkstra's 1959 SSSP algorithm [52℄ runs in O(n2) time if implemented in astraightforward fashion; this is optimal for dense graphs. It was qui
kly observed thatspeeding up Dijkstra's algorithm is tantamount to implementing a fast priority queue.Using Johnson's d-ary heap [118, 119℄, a generalization of Williams' binary heap [205℄,Dijkstra's algorithm runs in O(m log2+m=n n) time, whi
h is optimal for moderatelydense graphs, say when m=n = n
(1). The fastest implementation of Dijkstra's algo-7

rithm to date runs in O(m + n logn) time, making it optimal for m=n =
(log n). Ituses Fredman and Tarjan's Fibona

i heap [73℄. In a
omparison-based model of
ompu-tation, one
an easily show that Fibona

i heaps are asymptoti
ally optimal, and thatin the worst
ase Dijkstra's algorithm requires
(m+ n log n) time to solve. Thus anyresear
h on the SSSP problem must depart from the general
omparison-based model,or keep the
omparison model and depart from Dijkstra's algorithm. We take the latterapproa
h. E�orts on the former have fo
used on implementations of Dijkstra's algorithmfor integer-weighted graphs in the unit-
ost RAM (random a

ess ma
hine) model of
omputation.1Fredman and Willard [74, 75℄ showed that in the RAM model it is possible to sortn integers in o(n log n) time, and to implement priority queue operations in o(log n) time.(In other words the information-theoreti
 bottlene
ks inherent in a
omparison-basedmodel do not apply here.) To date the best implementations of Dijkstra's algorithm oninteger-weighted graphs run in time O(mplog logn) [102℄ (expe
ted) and time O(m +n log log n) [199℄.In 1997, Thorup [196℄ invented the hierar
hy-based approa
h to shortest paths |a
lean break from Dijkstra's algorithm | and gave a linear-time SSSP algorithm forthe restri
ted
ase of non-negative integer-weighted undire
ted graphs. The question ofwhether the hierar
hy-based approa
h
ould be adapted to dire
ted graphs and/or a
omparison-based model of
omputation was left unanswered. Hagerup [98℄, in 2000,showed that indeed the hierar
hy approa
h
an be applied to dire
ted integer-weightedgraphs. His SSSP algorithm ran in O(m log logN) time, where N is the largest edgelength. Hagerup's algorithm provided no speedup over existing RAM-based SSSP algo-rithms, though it was deterministi
 and used only linear spa
e.2.1.2 All-Pairs Shortest PathsThe APSP problem | �nd the shortest path from every vertex to every other |
aneasily be solved with n SSSP
omputations. Thus, Bellman-Ford solves APSP inO(mn2)time and Dijkstra solves APSP (on non-negative edge lengths) in O(mn + n2 log n) =O(n3) time. However a more dire
t approa
h to APSP
an give better bounds.Dense GraphsThe Floyd-Warshall algorithm [47℄
omputes APSP in O(n3) time, and has the pra
-ti
al advantages of being simple and streamlined. It is well known that a (min;+)matrix multiplier
an be used to solve the all-pairs distan
e problem (APD), whi
h doesnot ask for shortest paths per se. This gives an obvious O(n3 log n)-time APD/APSP1The phrase unit-
ost here emphasizes that all operations take unit time, even non-AC0 ones likemultipli
ation, and that all memory a

esses take unit time, i.e., there is no
a
he in the model.8

algorithm. What is less obvious is that the
omplexity of APD is asymptoti
ally equiv-alent to (min;+) matrix multipli
ation | see Aho et al. [4℄. Fredman [69℄ gave amin-plus multiplier that performs O(n2:5) numeri
al operations; however there is noknown polynomial-time implementation of Fredman's algorithm. The fastest min-plusalgorithm to date is due to Takaoka [188℄, who uses Fredman's approa
h on small sub-problems. Takaoka's algorithm runs in time O(n3q log log nlog n), whi
h is a sub-logarithmi
improvement over standard matrix multipli
ation.One
annot dire
tly apply the \fast" matrix multipliers, su
h as those of Strassen[186℄ or Coppersmith and Winograd [45℄, be
ause (min;+) is not a ring: min has noinverse. However, ring-based matrix multipli
ation
an be used in less obvious ways to
ompute APSP. The algorithms of [180, 82, 182, 9, 189, 209℄ take this approa
h, andyield improved, o(n3) APSP algorithms on integer-weighted graphs, provided that themagnitude of the integers is suÆ
iently small | always sublinear in n.Sparse GraphsJohnson [119℄ gave an interesting solution to the problem of negative edge-lengths. As-suming that no negative-length
y
les exist, he showed that the shortest path problemis redu
ible in O(mn) time to one of the same size, but having only non-negative edgelengths. Combined with Dijkstra's algorithm this immediately yields an APSP algo-rithm for arbitrarily weighted graphs running in O(mn + n2 logn) time. SurprisinglyDijkstra's algorithm (with or without Johnson's redu
tion) remained the fastest generalAPSP algorithm for many years. (Refer to Chapters 4 and 5 for our improved APSPalgorithms.)In the
ontext of integer-weighted graphs and the RAM model, the existing im-plementations of Dijkstra's SSSP algorithm [102, 199℄ imply some bounds on APSP:O(minfmnplog logn; mn + n2 log logng). The hierar
hy-type algorithms of Thorup[196℄ and Hagerup [98℄ also give bounds on APSP. Hagerup's algorithm solves APSPin O(mn+ n2 log logn) time,2 and Thorup's algorithm [196℄ solves undire
ted APSP inO(mn) time.2.1.3 VariationsDue to the pra
ti
al signi�
an
e of shortest paths, a number of variations on the problemhave been proposed, ea
h restri
ting or generalizing some aspe
t of the SSSP or APSPproblems.2Although their running times are identi
al, Hagerup's APSP algorithm is theoreti
ally
leaner thanthe one derived from an implementation of Dijkstra's algorithm with Thorup's re
ent integer priorityqueue [199℄. Thorup uses multipli
ation whereas Hagerup only uses standard AC0 operations.9

The
ase of planar graphs has been studied extensively [151, 152, 66, 67, 105, 61℄.Interestingly the SSSP problem on planar graphs is only slightly more diÆ
ult underarbitrary edge-lengths [61℄ as opposed to positive edge lengths [105℄. A number of al-gorithms have been analyzed under the assumption of a
omplete graph with randomly
hosen edge lengths [184, 165, 128, 140, 187, 44℄, and two SSSP algorithms were pre-sented re
ently [160, 89℄ that run in expe
ted linear time when the edge-lengths aresele
ted uniformly from some interval. There are shortest path algorithms guaranteeingapproximate solutions (see Zwi
k's survey [208℄), dynami
 shortest path algorithms (seeDemetres
u and Italiano [50℄ for more referen
es), prepro
essing s
hemes for answering(approximate) shortest path queries [200, 197, 136, 96, 144, 51℄, parallel shortest pathalgorithms [201, 137, 101, 161℄,
a
he-eÆ
ient shortest path algorithms [155, 156, 162℄,geometri
 shortest path algorithms [164℄, and a zillion others. (We have only sampledthe available literature and make no
laim to
ompleteness.)2.1.4 OrganizationIn Se
tion 2.2 we summarize our
ontributions to the shortest path problem, whi
h arerevealed in mer
iless detail in Chapters 3{6. In Se
tion 2.3 we give a formal de�nitionof the problem and introdu
e some notational
onventions. In Se
tion 2.4 we de�ne the
omparison-addition model, and dis
uss various aspe
ts of the model. In Se
tion 2.5 wedes
ribe Dijkstra's algorithm and dis
uss a
lass of Dijkstra-like algorithms. In Se
tion2.6 we give a gentle introdu
tion to the hierar
hy-based approa
h to shortest paths.2.2 Our ContributionsThorup's hierar
hy approa
h [196℄ to shortest paths is designed for integer-weightedgraphs, and at �rst glan
e, seems to depend essentially on the RAM model and theassumption of integral edge-lengths. Indeed, any straightforward \port" of Thorup'sSSSP algorithm to the
omparison-addition model (see Se
tion 2.4) will in
ur a sortingbottlene
k, that is, a running time of
(n logn). In Se
tion 3.6 we give a fairly stronglower bound showing that any hierar
hy-type SSSP algorithm must, in the worst
ase,perform
(m + n logn) numeri
al operations, even if the graph is undire
ted. Theimpli
ations for hierar
hy-type APSP algorithms are less severe. Our lower bound showsthat solving APSP with n independent exe
utions of a hierar
hy-type SSSP algorithmis sure to lead to running times of at least
(mn + n2 log n) | no improvement overDijkstra | sin
e ea
h SSSP
omputation is subje
t to the lower bound.The way out of this bind is to exploit the strong dependen
ies that exist amongshortest paths in the same graph. Our undire
ted shortest path algorithm [Chapter5℄, for instan
e,
onstru
ts a linear-spa
e hierar
hy stru
ture that en
odes useful in-10

formation about every shortest path in the graph. On
e the hierar
hy stru
ture isbuilt we
an
ompute SSSP from any sour
e in O(m log�(m;n)) time | essentiallylinear | with a relatively simple and streamlined algorithm. This leads dire
tly to anO(mn log�(m;n)) APSP algorithm for undire
ted graphs. In the
ontext of
omputingAPSP, or even SSSP multiple times, the
ost of
omputing the hierar
hy stru
ture isinsigni�
ant. However it may be the dominant
ost when
omputing SSSP exa
tly on
e.Our best bound on SSSP is O(m�(m;n)+minfn log log r; n log ng), where r bounds theratio of any two edge lengths. For r = poly(n) | a fairly reasonable assumption | thebound be
omes O(m+ n log logn), whi
h is an improvement over Dijkstra's algorithm.Dire
ted graphs are a di�erent beast. At a high level our dire
ted shortest pathalgorithms [Chapter 4℄ are applying the same general te
hnique: trimming
osts byexploiting
ertain dependen
ies among shortest paths. However the te
hniques wedevelop for dire
ted graphs are signi�
antly more sophisti
ated than those for undi-re
ted graphs. In Se
tion 4.1 we present a dire
ted APSP algorithm that runs in timeO(mn + n2 log log n); this is the �rst improvement over Dijkstra's APSP algorithm onreal-weighted graphs. We
annot �nd a faster dire
ted APSP algorithm, but in Se
tion4.2 we give a non-uniform APSP algorithm performing O(mn log�(m;n)) numeri
aloperations. Noti
e that for m = O(n), this bound is only a minis
ule log�(n; n) fa
torfrom optimal
omplexity. (This is very en
ouraging. It suggests that some part of theAPSP problem is a
tually soluble with existing te
hniques.)In Chapter 6 we present the results of some experiments with a simpli�ed versionof our undire
ted shortest path algorithm [Chapter 5℄. The results are fairly impressive.After the hierar
hy stru
ture is built, our algorithm
onsistently outperforms Dijkstra'salgorithm on a variety of graph
lasses and sizes. It also performs between 1.81 and2.77 times the speed of breadth �rst sear
h, whi
h
an be
onsidered a reasonable lowerbound on the pra
ti
al limits of any shortest path algorithm.2.3 Problem De�nitionThe input is a weighted dire
ted graph G = (V;E; `) where jV j = n; jEj = m, and` : E ! R assigns a real length to every edge. It was mentioned in Se
tion 2.1.2 that theshortest path problem is redu
ible in O(mn) time to one of the same size but havingonly non-negative edge lengths, assuming that no negative length
y
les exist. We willassume hen
eforth that ` : E ! R+ assigns only non-negative lengths.The length of a path is de�ned to be the sum of its
onstituent edge lengths, anda shortest path, from one spe
i�ed vertex to another, is one having minimum length.The distan
e from u to v, denoted d(u; v) is the length of a shortest path from u tov, or 1 if none exists. The APSP problem is to
ompute the values d(u; v), for all(u; v) 2 V �V , and the SSSP problem is to
ompute the values d(s; u) for a �xed sour
e11

s 2 V and all u 2 V . The SSSP problem is sometimes de�ned to be that of �ndingshortest paths, not distan
es. However, one
an easily show that given one | shortestpaths or distan
es | the other is
omputable in linear time. For the sake of simpli
itywe fo
us on distan
es.We frequently extend the distan
e notation to in
lude obje
ts other than verti
es.For instan
e, if H is a subgraph, a set of verti
es, or any obje
t identi�ed with a set ofverti
es, we let d(u;H) denote the minimum distan
e from u to any vertex in H.2.4 The Comparison-Addition ModelMany
omputational models, su
h as the Turing ma
hine and the word RAM, have theproperty that data is �nite, dis
rete, and inspe
tible. That is, the representation of anelemental pie
e of data (a symbol on the tape of a Turing ma
hine or the bits of a wordin a word RAM)
an be fully known. For problems whose input
onsists of real-weightedelements, su
h as the shortest path problem, it is impossible to work within a modelwhose data is both �nite and inspe
tible. In the
omparison-addition model we sa
ri�
einspe
tibility in order to retain the full generality of real-weighted data. Real numbersare represented in spe
ial variables of type real. The only operations allowed on realsare additions and
omparisons, of the form:a := b+
and if a < b then . . . else . . .The
omparison-addition model is not really
omplete be
ause we have yet to de�newhat happens on non-real data. All of our algorithms work under the RAM model(random a

ess ma
hine). Spe
i�
ally, we assume the existen
e of a type integer, whi
h,like reals, is subje
t to
omparisons and additions. We also assume that integers
an beused to index arrays. That is, if A is an array and i an integer, the element A[i℄
an beretrieved in unit-time. We assume no primitive operations that
onvert reals to integersor vi
e versa.A realist may argue that sin
e real-life ma
hines have �nite, dis
rete, and in-spe
tible data, one should study optimization problems (e.g., shortest paths) whoseweighted elements are assumed to be integers. In the abstra
t this has
ertainly beena very su

essful endeavor. For several important optimization problems, su
h as max-imum
ow [91℄, maximum weight mat
hing [80, 81℄, and single-sour
e shortest paths[87, 80℄, the fastest algorithms for integer-weighted inputs
an be faster than their
oun-terparts for real-weighted inputs by up to a polynomial fa
tor, so long as the magnitudeof the integers does not get too large. These theoreti
al improvements are signi�
ant,12

though they do not always result in
orresponding real-world improvements. In pra
ti
eit is not unusual for an algorithm to have wildly di�ering worst-
ase and typi
al-
aserunning times (Bellman-Ford and nearly all maximum
ow algorithms
ome to mind).Depending on the problem, there may be no pra
ti
al bene�t to assuming integer-weighted graphs.An often overlooked aspe
t of the
omparison-addition model is that its restri
tive,algebrai
 framework is a
tually useful in pra
ti
e. By not meddling with the internalrepresentation of numbers, algorithms in the
omparison-addition model naturally workwith a variety of numeri
al types.3 Moreover, it is possible to prove the
orre
tness ofsu
h algorithms with
lean mathemati
al arguments.2.4.1 Non-Uniform ComplexityWe will use the term
omparison-addition
omplexity to refer to the number of real-number operations performed by an algorithm. This is a non-uniform
omplexity mea-sure, in the sense that an algorithm with a
ertain
omparison-addition
omplexity willnot, in general, have the same running time asymptoti
ally. The di�eren
e betweenuniform and non-uniform
omputation is usually understood as the di�eren
e betweenTuring ma
hine
omplexity and
ir
uit
omplexity. Our situation is basi
ally analo-gous to this one, where our souped-up RAM takes the pla
e of the Turing ma
hine andalgebrai
 de
ision trees repla
e
ir
uits.42.4.2 Basi
 Te
hniquesWe frequently make use of real number operations not in
luded in the
omparison-addition model, su
h as subtra
tion, multipli
ation by an integer, division and the
ooroperation. We show below how these operations
an be simulated in the
omparison-addition model, sometimes without asymptoti
 penalty.To simulate subtra
tion we represent ea
h abstra
t real number a by two a
tualreal numbers a1 and a2 su
h that a = a1 � a2. Both abstra
t addition and abstra
tsubtra
tion are a

omplished with two a
tual additions, sin
e a+b = (a1+b1)�(a2+b2)and a � b = (a1 + b2) � (a2 + b1). An abstra
t
omparison between a and b translatesinto an a
tual
omparison between (a1 + b2) and (a2 + b1).Multipli
ation by an integer is also not diÆ
ult. Suppose a is a real and N aninteger. We
an
al
ulate Na in O(logN) time as follows. Produ
e the set of realsB = fa; 2a; 4a; 8a; : : : ; 2blogN
ag, using logN additions, then produ
e Nx by summing3LEDA [157℄, for instan
e, has a number of numeri
al data types beyond the usual int and float,as do the Java & C# programming languages.4This analogy is not entirely tight. A family of
ir
uits solving a problem would have one
ir
uit perproblem size, whereas in the shortest path problem we would have one algebrai
 de
ision tree for ea
hdistin
t input graph. 13

up the appropriate subset of B. Division by an integer is a

omplished in a similarfashion. Suppose we set a := b=N . If we want to
ompare a with another number,say
, we
an substitute the equivalent
omparison between b and N
. Here b=N is not
al
ulated but represented symboli
ally. (In general division
an be very ineÆ
ient; it
an
ause a large blow-up in the time to simulate future
omparisons.)An operation that
omes in very handy is taking the
oor (or
eiling) of theratio of two reals, i.e.,
omputing the integer �ab �. This operation is di�erent from theones dis
ussed above be
ause the result is an integer rather than a real number. We
ompute the
oor of a ratio using a method similar to our simulation of multipli
ation.To
ompute �ab � we �rst produ
e the set B = fb; 2b; 4b; 8b; : : : ; 2dlog ab ebg, then usethe elements of B to implement a binary sear
h to �nd the integer �ab �. This takesO(1 + log ab) time2.4.3 Lower BoundsThere are several known lower bounds on various shortest path problems in the
omparison-addition model. However, they are all very weak. Spira and Pan [185℄ showed that,regardless of additions,
(n2)
omparisons are ne
essary to solve SSSP on the
ompletegraph. Karger et al. [128℄ proved that all-pairs shortest paths requires
(mn)
om-parisons if all summations
orrespond to paths in the graph. However, this assumptionis restri
tive: the Fredman and Takaoka algorithms [69, 188℄ are not path-based, andneither are ours. Kerr [132℄ showed that any straight-line (oblivious) APSP algorithmperforms
(n3) operations, and Kolliopoulos and Stein [140℄ proved that any �xed se-quen
e of edge relaxations solving SSSP must have length
(mn). By \�xed sequen
e"they mean one whi
h depends on m and n but not the graph topology. Graham et al.[95℄ did not give a lower bound but showed that the standard information-theoreti
 ar-gument
annot yield a non-trivial, !(n2) lower bound in the APSP problem. Similarly,no information-theoreti
 argument
an provide an interesting lower bound on SSSP.2.5 Dijkstra's AlgorithmIt is sometimes useful to think about the SSSP problem as that of simulating a physi
alpro
ess. Suppose that the graph represents a network of water pipes, and that at timezero we begin inje
ting water into the network at a spe
i�
 pla
e: the sour
e. TheSSSP problem is to
ompute when the water rea
hes ea
h pla
e in the network. Othernetwork optimization problems
orrespond to
ertain physi
al pro
esses (network
owand minimum spanning trees
ome to mind). Dijkstra's algorithm is one of the fewthat a
tually simulates the physi
al pro
ess dire
tly. That is, the states of Dijkstra'salgorithm
orrespond to states in the physi
al system.14

Re
all that the sour
e vertex is represented by s. Dijkstra's algorithm maintainsa set of visited verti
es S, whi
h, from the point of view of the simulation,
orrespondsexa
tly to the pla
es in the pipe network already rea
hes by the water. Therefore, atany point in Dijkstra's algorithm we are impli
itly at time maxv2S d(s; v). Dijkstra'salgorithm maintains a tentative distan
e D(v) for ea
h v 2 V , satisfying the followinginvariant.Invariant 1 (Dijkstra's Invariant) For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) isthe distan
e from s to v in the subgraph indu
ed by S [fvg.In the simulation D(v) represents the estimated time when water will rea
h v,based on when water rea
hed verti
es in S. D(v) is an upper bound on d(s; v) and isnot equal to d(s; v) pre
isely when the shortest path to v passes through some vertexin V � S. Dijkstra's algorithm adds verti
es to the set S one by one, whi
h implies,sin
e it is a physi
al simulation, that the next vertex added is always the v 2 (V � S)minimizing d(s; v). This is the same v 2 (V � S) minimizing D(v) sin
e edge lengthsare assumed to be non-negative. On
e we set S := S [fvg, the D-values may notsatisfy Dijkstra's Invariant. To restore Invariant 1 we relax ea
h outgoing edge (v; w)of v, setting D(w) := minfD(w);D(v) + `(v; w)g. Eventually S = V , implying thatD(v) = d(s; v) for all v 2 V .The only
ompli
ated part of Dijkstra's algorithm is de
iding whi
h vertex to visitnext. Dijkstra [52℄, more
on
erned with spa
e than time, proposed examining D(v)for all v 2 (V � S). This gives an SSSP algorithm with overall running time O(n2).Using Fibona

i heaps [73℄, Dijkstra's algorithm
an be made to run mu
h faster | inO(m+ n logn) time | with only a small
onstant fa
tor in
rease in spa
e usage.It is important to noti
e that Dijkstra's algorithm represents only one method formaintaining Invariant 1 and that, in prin
iple, there are many \Dijkstra-like" algorithmsthat grow the set S while preserving Invariant 1. When su
h an algorithm adds a vertexto S, say v, it must have a
erti�
ate that D(v) = d(s; v), in parti
ular that for allu 62 S, D(u) + d(u; v) � D(v). Dijkstra's
erti�
ate is simply that D(u) � D(v) by
hoi
e of v, and that d(u; v) � 0 by the assumption that edge-lengths are non-negative.To depart from Dijkstra's algorithm one must be able to �nd a better lower bound ond(u; v) than the trivial d(u; v) � 0.Our shortest path algorithms are all Dijkstra-like, a

ording to the de�nitionabove. Therefore, the meaning of D, S, and s will be preserved in later
hapters, as willthe meaning of the terms \visit" and \relax." We may refer to Invariant 1 as simplyDijkstra's Invariant.
15

2.6 The Hierar
hy Approa
hThe main limitation of Dijkstra's algorithm is that it visits verti
es in order of in
reasingdistan
e from the sour
e. If we view the set S as the state, Dijkstra's algorithm passesthrough n distin
t states
orresponding to n physi
al states. Dini
 [56℄ observed thatin general, not every state of the SSSP algorithm must
orrespond to a physi
al state.Let t > 0 be the minimum edge length in the graph. In Dini
's variation on Dijkstra'salgorithm, rather than visiting v 2 (V � S) minimizing D(v), we visit any v 2 (V � S)minimizing bD(v)=t
, or indeed, every su
h v minimizing bD(v)=t
 simultaneously. Inother words, we are setting up
he
kpoints at \time" 0; t; 2t; 3t; : : : where the physi
aland algorithmi
 states are in alignment. Between these
he
kpoints the algorithm passesthrough states that have no physi
al equivalent.Generally speaking Dini
's algorithm provides no improvement over Dijkstra'salgorithm. However, it is the kernel of the hierar
hy-based approa
h, whi
h was inventedby Thorup [196℄ for the spe
ial
ase of integer-weighted undire
ted graphs. Thorup'sinsight was that Dini
's algorithm
an be generalized to arbitrary (and even multiple)values of t; it need not �x t at the minimum edge length. Consider a simpli�ed, butillustrative example.Suppose that t > 0 is arbitrary and the vertex set V is partitioned into disjointsets V1; V2; : : : ; Vk where any edge from Vi to Vj , i 6= j, has length at least t. LetG
 be derived from the input graph G by
ontra
ting V1; : : : ; Vk to single verti
es,denoted v1; : : : ; vk. On su
h a graph one
an think of a hierar
hy-type SSSP algorithmas being
omposed of (at least) k + 1 pro
esses, one that operates on G
, and k thatoperate on the graphs indu
ed by V1; : : : ; Vk. The pro
ess operating on G
 basi
allyruns Dini
's SSSP algorithm. It needs a slight modi�
ation be
ause a vertex vi 2 V (G
)is really a subgraph on Vi, not an a
tual vertex. Therefore, rather than vi being eithervisited or not, it
an be partially visited if Vi is only partially
ontained in S. Thepro
ess operating on G
 pro
eeds as follows. It visits, by delegating responsibility tothe other pro
esses, all verti
es whose distan
es lie in the interval [0; t), followed bythose that lie in [t; 2t), [2t; 3t), et
. Suppose that the pro
ess governing Vi is told tovisit all verti
es in Vi whose distan
es lie in [jt; (j + 1)t). This pro
ess is given whatin later se
tions is
alled an independent subproblem, meaning that it
an be solvedby looking only at Vi and the
urrent tentative distan
es, i.e. D-values. (Provingindependen
e is not diÆ
ult; the argument is essentially the same as that found in theproof of
orre
tness of Dini
's algorithm.) The pro
ess governing Vi
ould solve itssubproblems using Dijkstra's algorithm, where the heap would
ontain the D-values ofjust those verti
es in Vi. However, there is no reason why we
annot apply the sames
heme re
ursively. We would simply
hoose a new threshold ti and partition Vi intoVi;1; Vi;2; : : : ; Vi;ki su
h that all edges
rossing the partition have length at least ti. We16

refer to this re
ursive partitioning of the verti
es as a hierar
hy.It is
ertainly not obvious how to implement this algorithm eÆ
iently. Thereis the question of whether a good hierar
hy
an be
omputed eÆ
iently, and | thisis a separate issue | whether the algorithm admits a fast implementation, given asuÆ
iently good hierar
hy. One of our primary
on
erns is whether there is an inherentsorting bottlene
k in the approa
h. If there is su
h a bottlene
k, then all hierar
hy-basedalgorithms are doomed to have running times of
(m+n logn), the same as Dijkstra's.Of
ourse, the absen
e of any kind of information-theoreti
 bottlene
k does not implya faster hierar
hy-based shortest path algorithm, but it would suggest the existen
e ofone. In subsequent
hapters we give a nearly-
omplete answer to the sorting bottlene
kquestion, though it is more
ompli
ated than simply yes or no. Several fa
tors in
uen
ethe
omplexity of the hierar
hy-type shortest path algorithms, in
luding:� Whether the graph is dire
ted or undire
ted.� Whether the ratio of the maximum-to-minimum edge length is large, as a fun
tionof the number of verti
es.� Whether a good hierar
hy is given or needs to be
omputed from s
rat
h. (Com-puting it from s
rat
h
an involve a sorting bottlene
k.)� Whether SSSP is to be
omputed on
e, or repeatedly on the same graph.� Whether the topology and edge-length distribution of the input graph is typi
al.Typi
al graphs are very di�erent than our worst-
ase examples.

17

Chapter 3Hierar
hies & Shortest PathsThe
entral idea in hierar
hy-type algorithms is that of dividing the SSSP problem intoa series of independent subproblems. In this
hapter we de�ne pre
isely this notion of in-dependen
e, and show how independent subproblems
an be
reated and manipulated.13.1 Independent SubproblemsRe
all that s denotes the sour
e of the SSSP problem. Let X � V denote a set ofverti
es. We de�ne dX(s; v) to be the distan
e from s to v in the subgraph indu
ed byX (or 1 if X does not
ontain both s and v.) If I is a real interval, we de�ne XI tobe the set fv 2 X : d(s; v) 2 Ig, that is, those verti
es in X whose distan
es from thesour
e lie in I.De�nition 1 Let X and S be sets of verti
es and I be a real interval. We will
all X(S; I)-independent if for all v 2 XI , d(s; v) = dS[XI (s; v)To paraphrase De�nition 1, if X is (S; I)-independent then one
an determinethe set XI by examining only the subgraph indu
ed by S [XI . Suppose that wedis
over that X is (S; I)-independent in the
ontext of a Dijkstra-like algorithm, i.e.one satisfying Invariant 1. Now we
an say something stronger: be
ause the D-valuesfor verti
es in XI � S en
ode all the relevant information about the subgraph indu
edon S, one
an determine XI by examining only the subgraph indu
ed by XI � S andthe D-values of those verti
es.1This
hapter's notation and exposition are taken largely from two papers: (1) S. Pettie, A fasterall-pairs shortest path algorithm for real-weighted sparse graphs, Pro
. 29th Int'l Colloq. on Automata,Languages, and Programming (ICALP), pp. 85{97, 2002, full version to appear in Theoreti
al ComputerS
ien
e, and (2) S. Pettie and V. Rama
handran, Computing shortest paths with
omparisons andadditions, Pro
. 13th ACM-SIAM Symp. on Dis
rete Algorithms (SODA), pp. 267{276, 2002. Theresults of Se
tion 3.6.3 will appear in the journal version of (2).18

A t-partition, de�ned below, is a key tool for
reating new, smaller independentsubproblems given a larger one.De�nition 2 Let X be a set of verti
es. The sequen
e (X1;X2; : : : ;Xk) is a t-partitionof X if fXigi is a partition of X and for every edge (u; v) where u 2 Xi; v 2 Xj, andj < i, we have `(u; v) � t.Note the asymmetry in De�nition 2. In a t-partition only \ba
kward" edges
rossing the partition have length at least t; \forward" edges
an have any length.Lemma 1 shows the relationship between t-partitions and independent subproblems. Itgeneralizes some of the Lemmas given by Thorup [196℄.Lemma 1 Suppose that X is (S; [a; b))-independent. Let (X1; : : : ;Xk) be a t-partitionof X, let I be the interval [a;minfa+ t; bg), and let Si = S [XI1 [XI2 [� � � [XIi . Then1. Xi+1 is (Si; I)-independent2. X is (Sk; [a+ t; b))-independentProof: First
onsider Part (2). The assumption is that X is (S; [a; b))-independent,meaning that for v 2 X [a;b), dS[X[a;b)(s; v) = d(s; v). Sin
e Sk = S [XI , we haveS[X [a;b) = Sk[X [a+t;b), whi
h immediately implies that X is (Sk; [a+t; b))-independentas well. Note that the interval [a+ t; b) may be empty if b � a+ t.Now
onsider Part (1). The set Xi+1 is (Si; I) independent if for any v 2 XIi+1,d(s; v) = dSi[XIi+1(s; v). Suppose that this is not the
ase, that is, that every shortest s{to{v path is not
ontained in Si[XIi+1 = Si+1. Let w be the last vertex on su
h a shortestpath whi
h is not in Si+1. The independen
e of X w.r.t. (S; [a; b)) implies w 2 X, andthe inequalities d(s; w) � d(s; v) < minfa+ t; bg further imply w 2 (Sk � Si+1). By thede�nition of a t-partition we have that d(w; v) � t. Together with the inequality d(s; v) =d(s; w) + d(w; v) < minfa+ t; bg we also have that d(s; w) < a. We now have enough toobtain a
ontradi
tion. For any shortest s{to{v path we proved the existen
e of a w onthis path that is neither in S nor in X [a;b), implying that d(s; v) < dS[X[a;b)(s; v). Thisdire
tly
ontradi
ts our initial assumption that X is (S; [a; b))-independent.2Lemma 1 is essentially des
ribing a divide and
onquer s
heme for SSSP. The ideais to �nd an independent subproblem on the vertex setX, divide it into a series of smallerindependent subproblems, with the aid of a t-partition, then solve the smaller problemsre
ursively. There are several major obsta
les to implementing this general algorithmeÆ
iently, whi
h we will address in subsequent
hapters. The �rst order of business is
omputing and representing t-partitions. All of our shortest path algorithms have theproperty that the
hoi
e of t-partitions does not depend on the sour
e vertex. Therefore,for any input graph we shall
ompute, on
e and for all, a single set of t-partitions, whi
hwe represent using a rooted tree, or hierar
hy.19

3.2 A Strati�ed Hierar
hyA hierar
hy is a rooted tree where there is a one-to-one
orresponden
e between its leavesand the graph's verti
es. There is a natural
orresponden
e between hierar
hy nodesand graph obje
ts. We will frequently use the same notation to refer to leaf-nodes andgraph verti
es, and will treat internal nodes as representing either sets of verti
es or theindu
ed subgraphs of those verti
es. If x is an internal node we let V (x) be the verti
esrepresented by x, i.e. the set of leaf-nodes des
ending from x. We denote the parent ofx in the hierar
hy by p(x), and let
hild(x) = (x1; x2; : : : ; xdeg(x)) denote the
hildrenof x, from left to right, where deg(x) = j
hild(x)j. The jV (x)j and deg(x) statisti
sprovide two ways to measure how \big" a node x is. Two others will
ome in handy.We let diam(x) represent an upper bound on the diameter of V (x), where diameter isde�ned as maxu;v2V (x) fd(u; v)g. We asso
iate with x a real number norm(x), and referto the ratio diam(x)=norm(x) as the normalized diameter of x. We assign norm-valuesto hierar
hy nodes with several obje
tives in mind, namely the
orre
tness, speed, andsimpli
ity of our shortest path algorithms. Sin
e the main
on
erns of this
hapter areonly
orre
tness and simpli
ity, we
an say that norm-values are assigned to satisfy two
onditions.1. Either norm(p(x)) is an integer multiple of norm(x) or norm(p(x)) > diam(x).2. Let
hild(x) = (x1; : : : ; xdeg(x)). Then (V (x1); : : : V (xdeg(x))) is a norm(x)-partition of V (x).Item (1) allows us to avoid great
ompli
ations in our shortest path algorithms,but is otherwise of no interest. Item (2), in
onjun
tion with Lemma 1, will
learly beuseful in the
reation of independent shortest path subproblems.Our system for assigning norm-values is best explained by demonstrating why thesimple s
hemes used by Thorup and Hagerup [196, 98℄ do not work in the
omparison-addition model. Thorup and Hagerup always
hoose their norm-values from the setf2igi�0; a node with norm-value 2i then
orresponds to a
onne
ted
omponent [196℄(or strongly
onne
ted
omponent [98℄) in the graph restri
ted to edges with lengthless than 2i+1. In the
omparison-addition model, however, the set f2igi�0
annot begenerated be
ause there is no sequen
e of operations (that is, additions) that generatesthe
onstant 1. This, of
ourse, is no great obsta
le. We
an simply
hoose our norm-values from the set f`1 � 2igi�0, where `1 denotes the minimum non-zero edge lengthin the graph. In other words, we are just using the old system, under the irrefutableassumption that `1 = 1. Although this system should work well in pra
ti
e, there is atheoreti
al obje
tion to it that must be addressed. In the
omparison-addition model thetime required to generate `1 �2i is exa
tly i, so if the ratio of the maximum-to-minimumedge length is r, generating the largest norm-value
ould take log r time, whi
h is20

unbounded2 in terms of m and n. Our solution is to build a strati�ed hierar
hy SH,where ea
h stratum
orresponds to a di�erent normalizing edge length. For example,the s
heme with norm-values from f`1 � 2igi�0 would have one stratum, with `1 as itsnormalizing edge length. We ensure that the ratio of two norm-values within a stratumis bounded as a fun
tion of n, and that the strata are well-separated in a
ertain sense.We now de�ne the stru
ture of our strati�ed hierar
hy SH. First, let `1; : : : ; `mbe the non-zero edge lengths of the graph in sorted order. We
hoose, as our set ofnormalizing lengths, f`1g [f`j : `j > 2n � `j�1g [f1gThat is, every normalizing length is mu
h larger than any shorter edge lengths. Let `rkbe the kth smallest normalizing length. The nodes of SH are indexed by their stratumand level within the stratum. For stratum k the levels run from 0 to the maximum isu
h that `rk �2i < `rk+1 . The stratum k, level i nodes of SH
orrespond to the strongly
onne
ted
omponents 3 (SCCs) in the graph restri
ted to edges with length less than`rk � 2i. If x is su
h an SH-node then norm(x) is de�ned as:norm(x) def= `rk � 2i�1; where x is at stratum k, level i (3.1)A node x is an an
estor of y if V (x) � V (y) and x is higher in SH than y (higherstratum of same stratum and higher level). If V (x) = V (y), where y is a des
endant of x,then we will
all x irrelevant. In the tree representation of SH we shall ignore irrelevantnodes, that is, nodes with one
hild. Hen
eforth, \x 2 SH" means x is a relevant nodein SH. The notation p(x) and
hild(x) should be interpreted with respe
t to the treeof relevant SH nodes. That is, p(x) is the nearest relevant an
estor, and
hild(x) is asequen
e of nodes (xi)i for whi
h p(xi) = x. Figure 3.1 gives an example input graphand its asso
iated SH.If fxig1�i�deg(x) is the set of x's
hildren, we set
hild(x) = (x1; x2; : : : ; xdeg(x))so that (V (x1); V (x2); : : : ; V (xdeg(x))) is a norm(x)-partition of V (x). Lemma 2 guar-antees that su
h a left-to-right ordering of x's
hildren always exists.Lemma 2 Let x 2 SH and fxigi be the
hildren of x. Then for at least one permutation�, (V (x�(1)); V (x�(2)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x). Moreover,if the graph is undire
ted then then all su
h permutations give norm(x)-partitions ofV (x).2In the algorithms of Thorup and Hagerup [196, 98℄ log r is also unbounded in terms of m and n,but, by assumption, not in terms of the ma
hine's word size. Therefore the [196, 98℄ algorithms getaround this issue by assuming that the power of the ma
hine s
ales with the largest edge-length, notwith m or n.3A strongly
onne
ted
omponent is a maximal subgraph su
h that any vertex in the subgraph isrea
hable from any other. 21

2

stratum 1, level 0, NORM = .75

graph vertices

stratum 2, level 2, NORM = 200

stratum 2, level 1, NORM = 100

stratum 1, level 2, NORM = 3

stratum 1, level 1, NORM = 1.5

1.5 100

101

1.9
1.7

120

250

2

2.5

2

1.7 3.1

3.2

3.5

Figure 3.1: Above: the input graph. Cir
led edge lengths represent \normalizing"lengths. Below: the asso
iated SH. It has two strata, based on the normalizing lengths`r1 = 1:5 and `r2 = 100. A stratum k, level i node x has norm(x) = `rk � 2i�1, andrepresents a strongly
onne
ted
omponent of the graph, when restri
ted to edges withlength less than 2 � norm(x). Irrelevant SH-nodes (those having one
hild) are notshown in the �gure.Proof: Let G(x) be the subgraph of G indu
ed by V (x). By de�nition G(x) is strongly
onne
ted, even when restri
ted to edges with length less than 2 � norm(x). Let G
(x)be the graph derived from G(x) by
ontra
ting G(x1); G(x2); : : : ; G(xdeg(x)) and re-taining only edges with length less than norm(x). There is a natural
orresponden
ebetween verti
es in G
(x) and the
hildren of x. We
laim that (a) G
(x) is a
y
li
and (b) If we let �(i) be the index of the ith vertex in a topologi
al sort of G
(x), then(V (x�(1)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x).Consider
laim (a). By de�nition V (xi) is a maximal strongly
onne
ted set, inthe graph restri
ted to edges with length less than norm(x). If xi were
ontained in a
y
le in G
(x), then the maximality of V (xi) would be violated, sin
e all edges in G
(x)have length less than norm(x).We turn to
laim (b). Assume w.l.o.g. that �(i) = i. If the
laim were not truethen by the de�nition of t-partition (De�nition 2) there must be an edge e = (xj ; xi)where i < j and `(e) < norm(x). However, `(e) < norm(x) implies e was in
luded in22

G
(x), whi
h implies that j < i { a
ontradi
tion { sin
e xj must pre
ede xi in everytopologi
al sort.Now suppose that G were undire
ted, or rather, G is a dire
ted graph where theexisten
e of an edge (u; v) implies an edge (v; u) with equal length. Claim (a) abovestates that G
(x) is a
y
li
. This implies that G
(x) has no edges, sin
e the existen
eof one edge immediately implies the existen
e of a
y
le of length 2. Therefore, anypermutation �
orresponds to a topologi
al sort of G
(x).2Re
all that diam(x) represented an upper bound on the diameter of V (x). Forany leaf-node z, setting diam(z) = 0 is
learly satisfa
tory. We
ompute diam(x) forall internal SH-nodes with the following re
ursive de�nition.diam(x) = 2norm(x) � (deg(x)� 1) + Xy 2
hild(x)diam(y) (3.2)Lemma 3, given below, summarizes all the relevant properties of SH used in ouralgorithm's analysis and proof of
orre
tness. Parts 2 and 4 are impli
it in [196, 98℄;weaker versions of Part 6 were also used in [196, 98℄.Lemma 3 SH has the following properties:1. SH has a single root, denoted root(SH).2. Let
hild(x) = (x1; x2; : : : ; xdeg(x)). Then (V (x1); : : : ; V (xdeg(x))) is a norm(x)-partition of V (x).3. Either norm(p(x)) is an integer multiple of norm(x) or diam(x) < norm(p(x)).4. Xx2SHdeg(x) < 2n� 15. For any x 2 SH, diam(x)norm(x) < 2n6. Xx2SH diam(x)norm(x) < 4n7. �����x 2 SH : diam(x)norm(x) � k����� < 4nk23

8. SH is
onstru
tible in O(m log n) time.Proof:(1) The input graph may or may not be strongly
onne
ted. However, we will interpretthe graph as being
omplete: any edges not appearing in the input impli
itly have length1. Sin
e we in
luded 1 as one of the normalizing lengths, there is some (possiblyirrelevant) node x su
h that norm(x) =1 and V (x) = V .(2) See Lemma 2.(3) If p(x) and x are in the same stratum, then
learly norm(p(x)) is a multiple ofnorm(x). If norm(p(x)) = `rk � 2i, where i � �1, and x is not in stratum k, thendiam(x) < (jV (x)j � 1) � 2norm(x) < n � `rk=2n � norm(p(x)).(4) Every relevant SH-node has at least two
hildren. The sum
ounts every relevantSH-node (ex
ept the root) exa
tly on
e.(5) V (x) is a strongly
onne
ted set, even when restri
ted to edges with length less than2norm(x). Therefore, diam(x) < jV (x)� 1j � 2norm(x) < 2n � norm(x).(6) Let zj denote the jth an
estor of z 2 SH. Sin
e the norm-value of a node is no morethan half that of its parent (see Equation 3.1), we have norm(z)=norm(zj) � 2�j. Wewrite z des
. x to mean z is a (not ne
essarily proper) des
endant of x in SH. Usingthe de�nition of diam from Equation 3.2 we
an bound the sum as follows.Xx2SH diam(x)norm(x) = Xx2SH 2norm(x) � (deg(x)� 1) +Py2
hild(x) diam(y)norm(x)= Xx2SH Xz des
. x 2norm(z) � (deg(z)� 1)norm(x)= Xz2SH Xj�0 2norm(z) � (deg(z)� 1)norm(zj)< Xz2SH 1Xj=0 deg(z) � 12j�1= Xz2SH 4 � (deg(z)� 1) < 4n(7) Follows from Part 6.(8) We
onstru
t SH using essentially the same algorithm found in [98℄. The idea isto determine those nodes in the \middle" level of SH, then �nd those nodes above themiddle and below the middle re
ursively. As in [98℄ we use Tarjan's linear-time algorithmfor �nding SCCs. We �rst sort the edge-lengths and determine the O(m log n) possiblenorm-values in O(m log n) time. Let norm1 < norm2 < � � � < normk be the possiblenorm-values and G0 be the input graph G restri
ted to edges with length less than24

2normbk=2
. We �nd the SCCs of G0 in O(m + n) time; let fCigi be the set of SCCsand G
 be derived from G by
ontra
ting the fCigi into single verti
es. The fCigi
orrespond to SH-nodes with norm-values equal to normbk=2
. We pro
eed re
ursivelyon the fCigi (�nding SH-nodes with norm-values in the range norm1::normbk=2
�1)and on the graph G
 (for norm-values in the range normbk=2
+1::normk). There arelog(m log n) = O(logn) levels of re
ursion and for ea
h level the number of edges andverti
es for subgraphs at that level is no more than m and 2n, respe
tively. Therefore,the total time required is O(m log n).23.3 A Generalized Hierar
hy-Type AlgorithmThe hierar
hy-type algorithms are Dijkstra-like in the sense that they �x the distan
e of,or visit, verti
es one by one, while maintaining Invariant 1. We generalize, somewhat,the notions of visit and tentative distan
e used in Dijkstra's algorithm. Re
all that theD-value of a vertex is its tentative distan
e from the sour
e. We de�ne the D-value ofan SH-node as the minimum over its
onstituent verti
es:D(x) def= minv2V (x)fD(v)g; where x 2 SHNote that the D-value of a leaf node is the same as its
orresponding vertex.We
ompute SSSP with a re
ursive algorithm
alled Generalized-Visit, givenin Figure 3.2. Applied to a leaf-node of SH, Generalized-Visit works just like theusual visit routine: it visits the leaf's asso
iated vertex, and updates tentative distan
esto a

ord with Dijkstra's Invariant 1. However, Generalized-Visit
an be used tosolve any independent subproblem of SSSP. It takes two arguments: an SH-node x andan interval I with the guarantee that V (x) is (S; I)-independent, where S is the
urrentset of visited verti
es. Its only task is to visit the verti
es in V (x)I and update thetentative distan
es, restoring Invariant 1. Using the Generalized-Visit pro
edure, we
an
ompute SSSP from sour
e s as follows. We set S := ;, D(s) := 0, and D(v) :=1for all v 6= s, then
all Generalized-Visit(root; [0;1)), where root = root(SH).Invariant 1 is
learly satis�ed w.r.t. S = ;, and V (root) = V is
learly (;; [0;1))-independent, so the input guarantees for the initial
all to Generalized-Visit aremet. After the
all to Generalized-Visit(root; [0;1)), Invariant 1 will hold w.r.t.S � V (root)[0;1) = V , implying D(v) = d(s; v) for all v 2 S = V .In ea
h
all to Visit there are two
ases, depending on whether x is a leaf nodeor an internal node of SH. Suppose x is a leaf and V (x) = fvg. Be
ause we maintainInvariant 1, de
iding whether v 2 V (x)I is equivalent to de
iding if D(v) 2 I, whi
h issimple to do. In the general
ase x is an internal node. We determine V (x)I by makinga series of re
ursive
alls to
hildren of x, using subintervals of I of width norm(x).25

Generalized-Visit(x; [a; b))Spe
i�
ations: It is assumed that V (x) is (S; [a; b))-independent, where Sis the set of visited verti
es at the time of the
all, and that Dijkstra'sInvariant 1 is satis�ed. Upon
ompletion all verti
es in V (x)[a;b) will havebeen visited.1. If x is a leaf and D(x) 2 [a; b), then set S := S [fxg and relax all of x'soutgoing edges.2. If Visit(x; �) is being
alled for the �rst time, assign intervals to x's bu
k-ets. Bu
ket i is labeled[tx + i � norm(x); tx + (i+ 1)norm(x))where tx is set totx = (D(x) if D(x) + diam(x) < bb� norm(x) l b�D(x)norm(x)m otherwise3. Set ax = � tx if this is the �rst
all to Visit(x; �)a otherwiseWhile ax < b and V (x) 6� SWhile bu
ket [ax; ax + norm(x)) is not emptyLet y be the leftmost
hild of x in bu
ket [ax; ax + norm(x))Visit(y; [ax; ax + norm(x)))Remove y from its bu
ketIf V (y) 6� S, put y in bu
ket [ax + norm(x); ax + 2norm(x))ax := ax + norm(x)Figure 3.2: A general divide-and-
onquer algorithm for single-sour
e shortest paths.
26

The
ru
ial property of SH that we use is that the ordered set
hild(x) represents anorm(x)-partition of V (x) | see Lemma 3(2). Together with Lemma 1 we are able toguarantee that ea
h re
ursive
all represents an independent subproblem.To bound the number of re
ursive
alls, it is important not to make too manytrivial ones, that is,
alls whi
h
ause no vertex to be visited. To that end we asso
iatewith x an array of bu
kets that will
ontain the
hildren of x. The bu
kets represent
onse
utive real intervals of width norm(x) and the bu
ket array represents an intervalspanning [d(s; x); d(s; x) + diam(x)℄ where d(s; x) = d(s; V (x)) is the distan
e to anynode in V (x). When Generalized-Visit(x; �) is
alled for the �rst time we
hoosea suitable starting point tx and label ea
h bu
ket with its asso
iated interval: the ithbu
ket is assigned the interval [tx + inorm(x); tx + (i+ 1)norm(x)). We will
hoose txsu
h that tx � d(s; x) < tx + norm(x). Therefore, at most l diam(x)norm(x)m + 1 bu
kets arerequired. For notational
onvenien
e we may refer to a bu
ket by its asso
iated interval.We will say x is ina
tive until Generalized-Visit(x; �) is
alled, and a
tive af-terward. We will assume, for the time being, that Invariant 2 is maintained.Invariant 2 (Bu
ket Invariant) Let x be an a
tive SH-node. A
hild y of x appearsin one of x's bu
kets, unless D(y) = 1 or V (y) � S, in whi
h
ase y appears in nobu
ket. Every node y appearing in bu
ket [q; q + norm(x)) is either an ina
tive
hildsu
h that D(y) 2 [q; q + norm(x)), or an a
tive
hild su
h that V (y)[0;q) � S, butV (y)[q;q+norm(x)) 6� S.Suppose that in the
all to Generalized-Visit(x; I), I spans the intervals ofk of x's bu
kets, say, bu
kets bj+1; bj+2; : : : ; bj+k. Generalized-Visit performs upto k iterations. In the ith iteration it repeatedly lo
ates the leftmost4
hild y of x inbu
ket bj+i, performs a re
ursive
all on y, whose interval argument is the same intervalasso
iated with bj+i, then restores the Bu
ket Invariant 2. This involves either movingy to the next bu
ket if V (y) is not yet
ontained in S, or removing y from the bu
ketarray altogether if V (y) � S. If, after pro
essing some bu
ket, V (x) � S, the
urrent
all to Generalized-Visit(x; �) halts. In the next se
tion we prove the
orre
tness ofthis algorithm. Many of the �ner points in the analysis revolve around our
hoi
e of txin Step 2 of Generalized-Visit.3.4 Corre
tness of Generalized-VisitIn this se
tion we prove that Generalized-Visit works
orre
tly. Spe
i�
ally, we showthat Generalized-Visit(x; I) visits (adds to the set S) all verti
es in V (x)I . We as-sume that Dijkstra's Invariant and the Bu
ket Invariant (1 and 2) are magi
ally updated4Re
all that the set
hild(x) has some left-to-right ordering.27

behind the s
enes. That is, adding a vertex to S
auses the D-values of all verti
es andSH-nodes to be updated, restoring Dijkstra's Invariant, and
auses some number ofSH-nodes to be moved to di�erent bu
kets in a

ordan
e with the Bu
ket Invariant.In Se
tion 3.5 we dis
uss the problem of eÆ
iently implementing Generalized-Visit;o�-the-shelf data stru
tures and te
hniques seem inadequate. In Chapters 4 and 5 wedevelop shortest path algorithms for dire
ted and undire
ted graphs, respe
tively, basedon more sophisti
ated implementations of Generalized-Visit.The following lemmas look at Generalized-Visit from the perspe
tive of someSH-node x. They assume impli
itly that at the
all Generalized-Visit(x; I), V (x) is(S; I)-independent. They also assume that the initial
all wasGeneralized-Visit(root; [0;1)).Lemma 4 In any two
alls Generalized-Visit(x; I1) and Generalized-Visit(x; I2),jI1j = jI2j = norm(p(x)).Proof: All re
ursive
alls on x are made from
alls on p(x). Moreover, all re
ursive
alls from p(x) have interval arguments of width norm(p(x)).2Lemma 5 If Generalized-Visit(x; I) is the �rst
all to an SH-node x, then we haveD(x) = d(s; x) 2 I.Proof: The lemma
learly holds for the initial
all Generalized-Visit(root; [0;1)),so
onsider the
ase when x 6= root. Before the re
ursive
allGeneralized-Visit(x; I),x must have been in p(x)'s bu
ket spanning the interval I. Sin
e x was ina
tive beforethe
all, the Bu
ket Invariant 2 guarantees that D(x) 2 I. Together with the assumptionthat V (x) is (S; I)-independent we have the equality D(x) = d(s; x).2Lemma 6 Consider the variables ax and b in any
all to Generalized-Visit(x; [a; b)).Either norm(x) divides b� ax or V (x)[0;b) = V (x).Proof: In the �rst
all to Generalized-Visit(x; [a; b)), ax is set to tx. Suppose thattx = D(x), be
ause D(x) + diam(x) < b. By Lemma 5, D(x) = d(s; x), implyingthat V (x)[0;b) = V (x). If, on the other hand, tx is set to b � norm(x) l b�D(x)norm(x)m, thennorm(x) divides b�tx and, at least initially, b�ax as well. Sin
e ax is only in
rementedin units of norm(x), b� ax remains divisible by norm(x). We have proved the lemmafor the �rst re
ursive
all on x.Now suppose that Generalized-Visit(x; [a; b)) is not the �rst re
ursive
all onx, hen
e we set ax := a initially. A

ording to Lemma 3(3) either norm(x) dividesnorm(p(x)) or diam(x) < norm(p(x)). Suppose norm(x) divides norm(p(x)). ByLemma 4, norm(p(x)) = b � a and therefore norm(x) divides b � ax initially, and,28

with the observation that ax is in
remented in units of norm(x), ever after. Nowsuppose diam(x) < norm(p(x)). Sin
e this is not the �rst re
ursive
all on x, weknow, by Lemma 5, that d(s; x) < a and therefore that d(s; x) +diam(x) < b, implyingV (x)[0;b) = V (x).2Lemma 6 is a little te
hni
al. We use it to show that the intervals generated bya node and its parent are properly aligned. Consider I1, the set of intervals passed inre
ursive
alls from p(x) to x, and I2, the set of intervals passed from x to its
hildren.We require that intervals in I1 and I2 have widths norm(p(x)) and norm(x) respe
-tively, and that they ea
h
over the interval [d(s; x); d(s; x) + diam(x)℄. Furthermore,ea
h interval in I2 must be wholly
ontained in one interval from I1. Be
ause we usea strati�ed hierar
hy, norm(p(x)) is not ne
essarily a multiple of norm(x). Therefore,these requirements
an only be satis�ed if diam(x) < norm(p(x)), i.e., if norm(x) doesnot divide norm(p(x)) then it is impossible for I1 to
ontain more than two intervals.Our
hoi
e of tx in Step 2 of Generalized-Visit is
ertainly not profound, but it doesgreatly simplify the algorithm's analysis and proof of
orre
tness.The following Lemma proves that Generalized-Visit works as advertised. Wepoint out, sin
e it may not be obvious on the �rst reading, that the proof of Lemma 7is
omposed of three indu
tion arguments. There is an indu
tion over time, where weassume previous re
ursive
alls behaved properly. There is an indu
tion over problemsize, where we assume
ertain future re
ursive
alls behave properly, and �nally, adouble-indu
tion over the two while-loops in Step 3 of Generalized-Visit, addressingthe
urrent re
ursive
all.Lemma 7 After the
all to Generalized-Visit(x; [a; b)), V (x)[a;b) � S.Proof: We assume indu
tively that V (x) is (S; [a; b))-independent whenGeneralized-Visit(x; [a; b)) is
alled. This
learly holds for the �rst re
ursive
all, when x = root,[a; b) = [0;1), and S = ;.Consider the
ase when x is a leaf in SH, that is, a vertex. Generalized-Visitin
ludes x in S pre
isely whenD(x) 2 [a; b). A

ording to the de�nition of independen
eD(x) 2 [a; b) implies D(x) = d(s; x), so in this
ase the lemma is satis�ed.Suppose, now, that x is an internal node in SH. We will assume, indu
tively, thatea
h time through the outer while loop in Step 3 of Generalized-Visit, V (x)[0;ax) � Sand V (x) is (S; [ax; b))-independent w.r.t. the
urrent values for ax and S. Let usexamine the base
ases,
on
erning the �rst entry into the outer while loop. If axis set to tx initially, then ax � D(x) = d(s; x), implying that V (x)[0;ax) = ; � S.Furthermore, sin
e V (x) is (S; [a; b))-independent, it is (S; [ax; b))-independent as well.The other
ase is when ax is set to a on entry into the outer while loop. In this
aseV (x)[0;ax) � S follows from our indu
tive assumption (w.r.t. the parent of x in SH) and29

the (S; [a; b))-independen
e of V (x) has already been assumed. Sin
e ax is in
rementedby pre
isely norm(x) after ea
h iteration of the outer while loop, to
omplete theindu
tion we will show that the re
ursive
alls in the inner while loop
ause all verti
esin V (x)[ax;ax+norm(x)) to be visited.Consider the entry into the inner while loop in Generalized-Visit, and letI = [ax; ax + norm(x)), that is, the
urrent bu
ket is labeled I. Imagine that we
onsider ea
h node in
hild(x) = (xj)j in left-to-right order. We will show two things:�rst, that when xj is
onsidered V (xj) is (S; I)-independent for the
urrent value ofS. Therefore, if the re
ursive
all Generalized-Visit(xj; I) is made, we
an assumeindu
tively that it visits all verti
es in V (xj)I . Se
ond, if no re
ursive
all is made onxj (meaning xj never appears in the bu
ket labeled I) then V (xj)I � S = ;. This willestablish the
orre
tness of the inner while loop.We
laim that when xj is
onsidered V (xj) is (S; I)-independent. Let S0 be the setS just before this iteration of the outer while loop, and assume indu
tively that whenxj is
onsidered S = S0 [V (x1)I [� � � [V (xj�1)I . Lemma 3(2) states that (V (xi))i isa norm(x)-partition of V (x). Together with the assumption that V (x) is (S0; [ax; b))-independent and Lemma 1(1), we have that V (xj) is (S; [ax;minfax + norm(x); bg))-independent. However, we need to show that it is (S; I)-independent, sin
e it is theinterval I = [ax; ax + norm(x)) that would be passed to the re
ursive
all. By Lemma6, either norm(x) divides b � ax or V (x)[0;b) = V (x). If norm(x) divides b � ax thenI = [ax;minfax + norm(x); bg) sin
e we only entered the outer while loop if ax < b,implying ax � b � norm(x). On the other hand, if V (x)[0;b) = V (x), then V (xj)being (S; [ax;minfax + norm(x); bg))-independent implies that it is (S; I)-independentas well. To
omplete the indu
tion we must show that after xj is
onsidered, S =S0 [V (x1)I [� � � [V (xj)I . If we perform the re
ursive
all Generalized-Visit(xj; I)then we
an assume indu
tively that verti
es in V (xj)I are visited. Therefore, we mustonly prove that if no su
h re
ursive
all is made, then V (xj)I � S = ;. We performre
ursive
alls on all
hildren that end up in bu
ket I. By Invariant 2, if xj is not inbu
ket I when it is
onsidered, then either D(xj) � ax+norm(x) (implying V (xj)I = ;)or V (xj) � S; in either
ase V (Cxj)I � S = ;. This
ompletes the indu
tion for theinner and outer while loops.The outer while loop in Step 3 terminates either be
ause ax � b or V (x) � S, bothof whi
h imply V (x)[0;b) � S. Therefore, after the
all to Generalized-Visit(x; [a; b)),all verti
es in V (x)[a;b) are visited. This establishes the lemma.2
30

3.5 Implementation DetailsAn eÆ
ient implementation of the Generalized-Visit routine must solve two datastru
tural problems,
orresponding to Dijkstra's Invariant 1 and the Bu
ket Invariant 2.Whereas Dijkstra's algorithm only has to maintain the D-values (tentative distan
es) ofverti
es, whi
h is trivial, we must maintain theD-values of hierar
hy nodes as well, whi
his no longer trivial. The problem of maintaining the Bu
ket Invariant is not diÆ
ult,but maintaining (or simulating) it eÆ
iently is quite tri
ky. Ea
h of our shortest pathalgorithms uses a di�erent te
hnique for simulating the Bu
ket Invariant.We �rst show that the
osts of implementing Generalized-Visit are linear inthe number of verti
es, assuming Invariants 1 and 2 are maintained behind the s
enes.We must a

ount for two
osts: that of performing some number of re
ursive
alls, andthat of
omputing tx in Step 2, for all x 2 SH.Lemma 8 For ea
h SSSP
omputation, the total number of re
ursive
alls to Generalized-Visit is less than 5n.Proof: By Lemma 5, if Generalized-Visit(x; I) is the �rst re
ursive
all on x, thenD(x) = d(s; x) 2 I. Together with Invariant 2 and Lemma 4, this implies that ea
hnode x 2 SH is passed to at most l diam(x)norm(p(x))m + 1 re
ursive
alls, where p(x) is theparent of x in SH. The total number of re
ursive
alls is thenXx � diam(x)norm(p(x))�+ 1 � jSHj+Xx � diam(x)2norm(x)� (3.3)< jSHj+ n� 1 + 12 �Xx diam(x)norm(x) (3.4)< 5n (3.5)Line 3.3 follows from the inequality norm(p(x)) � 2norm(x). Line 3.4 followssin
e l diam(x)norm(x)m is only stri
tly greater than diam(x)norm(x) if x is an internal node of SH, ofwhi
h there are no more than n � 1. (If x were a leaf, then diam(x) = 0.) Line 3.5follows from the bounds jSHj < 2n and, by Lemma 3(6), Px diam(x)norm(x) < 4n.2Lemma 9 The total time required to �nd ftxgx2SH is O(n).Proof: In Step 2 of Generalized-Visit, tx is set to D(x) if D(x) + diam(x) < b andb � norm(x) l b�D(x)norm(x)m otherwise. Che
king whether D(x) + diam(x) < b takes O(1)time, and
omputing b� norm(x) l b�D(x)norm(x)m takes O(b�D(x)norm(x)) time: one simply
ounts31

ba
k from b in units of norm(x) in order to �nd minfj : b � j � norm(x) � D(x)g.Given that b �D(x) � diam(x), the total time to �nd all ftxgx2SH is PxO(diam(x)norm(x)),whi
h is O(n) by Lemma 3(6).2We support an implementation of Generalized-Visit with two abstra
t datastru
tures, denoted D and B. D updates the D-values of SH-nodes as di
tated byInvariant 1, and B maintains the bu
ket arrays of a
tive SH-nodes in a

ordan
e withInvariant 2. Although it is typi
al to assume that data stru
tures do not talk to ea
hother, it is
on
eptually simpler here to think of D and B making queries to ea
h other.We des
ribe their intera
tions below, then bound their
omplexity.When an edge (u; v) is relaxed in Step 1 of Generalized-Visit, we tell D toset D(v) := minfD(v);D(u) + `(u; v)g. If this de
reases D(v) then it may de
rease theD-values of many an
estors of v in SH as well. Let y be the unique an
estor of v whi
his an ina
tive
hild of an a
tive node. If D(y) is also de
reased then to restore Invariant2 y may have to be moved to a di�erent bu
ket. If this is the
ase then D noti�es B thatD(y) has
hanged. D also a

epts queries to D-values. In parti
ular, when an SH-nodex be
omes a
tive B �les ea
h
hild y of x in its bu
ket array based on the value of D(y).The bu
keting stru
ture B must also ful�ll the needs of Generalized-Visit. Spe
if-i
ally, in a
all to Generalized-Visit(x; �), Generalized-Visit repeatedly requeststhe leftmost
hild of x in the
urrent bu
ket labeled [ax; ax + norm(x)), and possiblymoves that node to the next bu
ket, labeled [ax+ norm(x); ax+2norm(x)). Lemmas10 and 11 bound the
omplexities of D and B, respe
tively.Lemma 10 D
an be implemented to run in time �(split-findmin(m;n)) = O(m log�(m;n)),where split-findmin(m;n) is the de
ision-tree
omplexity of the split-�ndmin problemon m operations on an n-element sequen
e.We show below how the split-�ndmin data stru
ture
an be used to implement D.The
omplexity bounds on split-�ndmin
laimed in Lemma 10 are proved in AppendixA. The split-�ndmin data stru
ture operates on a
olle
tion of disjoint sequen
es ofelements. Initially, there is one sequen
e
ontaining all n elements, and ea
h elementhas key 1. The following operations are supported.split(u) Splits the sequen
e
ontaining u into two sequen
es, one
onsisting of thoseelements up to and in
luding u, the other sequen
e taking the rest.�ndmin(u) Returns the element in u's sequen
e with minimum key.de
rease-key(u; �) sets key(u) := minfkey(u); �g.32

The elements in the split-�ndmin stru
ture
orrespond to the leaves of SH andthe keys
orrespond to D-values. Thus, edge relaxations
an be implemented withde
rease-key operations: if (u; v) is to be relaxed, we tell the split-�ndmin stru
ture tode
rease-key(v; D(u)+`(u; v)). The sequen
es in the split-�ndmin stru
ture
orrespondto ina
tive SH-nodes that are the
hildren of a
tive parents. One
an readily verify thatGeneralized-Visit only queries the D-values of su
h nodes; thus, requesting D(x)translates into the operation �ndmin(u), where u is any leaf in V (x). Whenever a nodex be
omes a
tive, we perform splits on the sequen
e representing x so that the resultingsub-sequen
es
orrespond to x's
hildren. There are
learly no more than m de
rease-keys and O(m + n) splits and �ndmins. In Appendix A we show that the
omplexityof split-�ndmin on a RAM is asymptoti
ally equivalent to its de
ision-tree
omplexity,whi
h is O(m log�(m;n)).Lemma 11 Suppose B is assigned to maintain the bu
ket arrays of just those nodes inX � SH. Then B
an be implemented in timeO m + n log logn + Xx2X deg(x) � log diam(Cx)norm(x) !Proof: Fix some SH-node x 2 X. The Bu
ket Invariant 2 says that all ina
tive
hildren of x are bu
keted by their D-values. However, in Generalized-Visit weonly extra
t x's
hildren from the \
urrent" bu
ket, hen
e any stru
ture that pla
esthe
orre
t
ontents in the
urrent bu
ket
an be said to simulate Invariant 2. Weuse the hierar
hi
al bu
keting stru
ture from Se
tion 5.1.3 to simulate Invariant 2. Theamortized
ost of a de
rease-key and an insert are, respe
tively, O(1) and O(log diam(x)norm(x)),where diam(x)norm(x) represents the maximum number of bu
kets asso
iated with x. Thisstru
ture a

ounts for the �rst and third term in the
laimed running time. The se
ondterm arises out of our need to enumerate the
ontents of the
urrent bu
ket in left-to-right order. We use a van Emde Boas heap [203℄ to prioritize nodes in the
urrentbu
ket. For any
hild of x the amortized
ost of all van Emde Boas operations isO(log logdeg(x)), whi
h is O(n log logn) over all x 2 X and all
hildren of x.2Let us make a few observations. First, the O(n log log n) term in the runningtime of Lemma 11 re
e
ts the
ost of sorting siblings in left-to-right order. However,by Lemma 2 all su
h orderings are equally good on undire
ted graphs. Therefore,no van Emde Boas heaps are used in the undire
ted version of Generalized-Visit.Moreover, the
ost of van Emde Boas heaps
an be ignored when analyzing the non-uniform
omplexity of shortest paths, sin
e they are used to sort dis
rete data, not realdata. 33

The third term in Lemma 11's running time is
ertainly the most interesting: ThesumPx2X deg(x) log diam(x)norm(x)
an be thought of as a measure of the entropy of a spe
i�
hierar
hy, under two strong assumptions: �rst, that ea
h y 2
hild(x)
an appear inea
h of x's diam(x)=norm(x) bu
kets with (more or less) equal probability, and se
ond,that whi
h bu
ket y appears in is independent of whi
h bu
kets other nodes appear in.For X = SH it is fairly easy to for
e the time bound of Lemma 11 to be
(m+n log n).To improve upon it, we must either derive a hierar
hy with lower entropy (see Chapter5) or
ir
umvent the entropy lower bound by exploiting the dependen
ies among shortestpaths.Lemma 11 is more useful than it may �rst appear. For instan
e, if we let X be theset of hierar
hy nodes with small normalized diameter, say all x with diam(x)=norm(x) <(log n)O(1), then the bound from Lemma 11 is O(m + n log logn). Thus, with low-diameter nodes being handled by Lemma 11, we are free to deal with high-diameternodes by other means. This is exa
tly the strategy taken by the dire
ted shortest pathalgorithm of Se
tion 4.1.3.6 Lower BoundsIn a
omparison-based model of
omputation, the easiest way to lower bound the
om-plexity of a problem is by a simple information-theoreti
 argument. In parti
ular, thelogarithm of the number of distin
t solutions to the problem gives an immediate lowerbound on the number of
omparison operations required to solve it. Unfortunately,
ounting distin
t solutions does not lead to any non-trivial lower bounds on the SSSPproblem. Indeed, it seems quite plausible that there are no non-trivial lower boundsfor SSSP. Nonetheless, it is still useful to lower bound the
omplexities of spe
i�
 algo-rithms or approa
hes to SSSP. Su
h lower bounds
an tell us why a
ertain algorithmor approa
h is doomed to be suboptimal, and, perhaps, how the bottlene
k in su
h anapproa
h
ould be over
ome.We lower bound the
omplexity of an algorithm in two steps. First, we
hara
terizethe extra information derived by running the algorithm. Se
ond, we lower bound the
omplexity of
omputing that extra information from s
rat
h. The robustness of thisapproa
h depends, of
ourse, on how
ru
ial the extra information is to the algorithmin question. Consider Dijkstra's algorithm. It
omputes, besides shortest paths, apermutation �s of the verti
es satisfying Property 1.Property 1 �s satis�es:For all u; v 2 V , �s(u) < �s(v) =) d(s; u) � d(s; v)Any lower bound on the time to
ompute a �s from s
rat
h that satis�es Property 1e�e
tively lower bounds the
omplexity of Dijkstra's algorithm. The star graph in Figure34

3.3, for instan
e, provides a very simple worst-
ase s
enario for Dijkstra's algorithm.Visiting the verti
es in order of distan
e ne
essarily involves sorting the edge lengths |that is, sorting n� 1 arbitrary numbers.
s

Figure 3.3: The star graph. If edge-lengths are permuted at random, �nding a �ssatisfying Property 1 takes log((n� 1)!) =
(n logn)
omparisons.One is tempted to say that this is a weak lower bound, be
ause it
an be
ir-
umvented by an algorithm that does not satisfy Property 1 but is, but any reasonableperson's estimate, an implementation of Dijkstra's algorithm. The algorithm is, namely,to
ontra
t edges not on any
y
le and run Dijkstra's algorithm on whatever is left.The refutation to this argument is that the star graph is not
laimed to be a hardinstan
e of SSSP but the kernel of hard instan
es for Dijkstra's algorithm. Therefore,the lower bound applies not to one graph but any graph that has, embedded in it in someway, a small set of large star graphs. It is often the
ase that simple worst-
ase graphstranslate into strong lower bounds and
ompli
ated ones into weaker lower bounds.In this Se
tion we give a
hara
terization of all hierar
hy-type algorithms that par-allels Property 1's
hara
terization of Dijkstra's algorithm. Using slightly more
ompli-
ated hard kernel graphs than the star graph of Figure 3.3, we show that su
h algorithms
annot
ompute SSSP in o(n log n) time. This lower bound also holds for undire
tedgraphs, though it
an only be attained on unusually weighted graphs, where the ratioof the maximum to minimum edge-length is large.3.6.1 Chara
terization of Hierar
hy-Type AlgorithmsThe permutation �s from Property 1 simply
orresponds to the order in whi
h verti
esare visited in Dijkstra's algorithm. All Dijkstra-like algorithms (those maintaining Di-jkstra's Invariant 1)
an therefore be
hara
terized by the restri
tions pla
ed on theirallowable permutations. Property 2, given below, de�nes one su
h restri
tion that isintrinsi
 to all existing hierar
hy-based algorithms. Before stating it we need someadditional notation. 35

Let
y
les(u; v) be the set of all
y
les, not ne
essarily simple,
ontaining verti
esu and v. For instan
e, on an undire
ted graph the
y
le
ould follow a path from u tov then retra
e its steps from v to u. We de�ne sep(u; v) as:sep(u; v) = minC 2
y
les(u;v) maxe 2 C `(e)To see the
onne
tion between the sep-values and SH, noti
e that Rt(u; v) � (sep(u; v) �t) is an equivalen
e relation, and that the equivalen
e
lasses of Rt
orrespond to thestrongly
onne
ted
omponents of the graph restri
ted to edges with length at most t.Moreover, as t varies Rt de�nes a set of laminar relations. That is, Rt(u; v)) Rt0(u; v)if t0 > t. Therefore, any set of relations fRtigi,
an be represented by a rooted tree, orhierar
hy.Observation 1 gives us a
leaner interpretation of sep-values when the graph isundire
ted. Thorup [196℄ makes a similar observation, although he never uses the ideaof a sep fun
tion.Observation 1 If the graph is undire
ted, sep(u; v) equals the length of the longest edgeon the minimum spanning tree path
onne
ting u and v.Regardless of whether the graph is undire
ted or dire
ted, all hierar
hy-basedalgorithms generate a permutation �s satisfying Property 2, given below. We provethat Generalized-Visit satis�es Property 2 in Lemma 12.Property 2 If sep(u; v) > 0 then �s satis�es:d(s; v) � d(s; u) + sep(u; v)) �s(u) < �s(v)Is there a sorting bottlene
k inherent in Property 2? The short answer is yes.However, the nature of the sorting bottlene
k depends, to a large extent, on the littledetails. For instan
e, suppose we
onsider, besides m and n, a new parameter r repre-senting a bound on the ratio of any two edge lengths. In Se
tions 3.6.2 and 3.6.3 weshow that our lower bounds for dire
ted and undire
ted graphs be
ome, respe
tively,
(minfn logn; n log rg) and
(minfn log n; n log log rg). In other words, to indu
e an
(n logn) lower bound r must be exponential in n for undire
ted graphs, but only poly-nomial for dire
ted ones. As we show in Chapter 5, both of these bounds are, somewhatsurprisingly, tight.55A
tually, the undire
ted bound is tight only if r is not in the vi
inity of �(m;n), whi
h is ex
ep-tionally small.
36

We show that undire
ted graphs are qualitatively easier in another respe
t. InProperty 2, noti
e that the sep(u; v) term is independent of the sour
e s. From the per-spe
tive of an algorithm
omputing many shortest paths on the same graph,6
omputa-tion relating to sep-values may be
onsidered a one-time
ost, whereas
omputing SSSPgiven the sep-values represents the marginal
ost of
omputing SSSP.7. For dire
tedgraphs, we show that our lower bound holds even if all sep-values (and any fun
tionsthereof) are known a priori. This is in
ontrast to undire
ted graphs, where the onlyobsta
le to
omputing SSSP in near-linear time is
omputing (or approximating) thesep fun
tion. sep known sep unknownUndire
ted SSSP
(m)
(m + minf n log log r; n log n g)Dire
ted SSSP
(m + min f n log r; n logn g)Figure 3.4: Lower bounds on SSSP algorithms satisfying Property 2 in the
omparison-additionmodel. The parameter r bounds the ratio of any two non-zero edge lengths.Lemma 12 Generalized-Visit generates a permutation of the verti
es satisfying Prop-erty 2.Proof: The permutation named in the lemma is, of
ourse, the order in whi
h verti
esare visited by Generalized-Visit. Let u; v be leaves of SH (i.e. graph verti
es),let x = LCA(u; v), and let u0; v0 be the
hildren of x that are an
estors of u and v,respe
tively. By the de�nition of SH, norm(x) � sep(u; v). Now
onsider the re
ursive
alls on u0 and v0 that
aused u and v to be visited, say Generalized-Visit(u0; Iu)and Generalized-Visit(v0; Iv), where jIuj = jIvj = norm(x). If d(s; v) � d(s; u) +sep(u; v) � d(s; u) + norm(x) then Iu 6= Iv, implying Generalized-Visit visits ubefore v.2We present our dire
ted and undire
ted lower bounds in Se
tions 3.6.2 and 3.6.3,respe
tively. Figure 3.4 summarizes these results.6As a
on
rete example, the website MapQuest
laims to serve 10 million requests a day (manyshortest path queries) on a graph (the US road network) that rarely
hanges.7One may read \
ompute sep-values" as \
ompute SH" or \
ompute a good hierar
hy" sin
e SHis just a very
ompa
t stru
ture for representing (approximate) sep-values. In parti
ular, if u; v areleaf-nodes in SH and x = LCA(u; v) then sep(u; v) 2 [norm(x); 2norm(x)).37

3.6.2 Lower Bound: Dire
ted GraphsWe will say that an SSSP algorithm satis�es Property 2 if, in addition to
omputingSSSP, it
omputes a permutation �s satisfying Property 2. In this se
tion we will alsoassume a slightly more powerful
omputation model. Besides
omparisons, we willassume that any operation mapping tuples of reals to tuples of reals
an be performedat unit
ost.Theorem 1 Suppose sep(u; v) is already known, for all verti
es u; v. Any dire
tedSSSP algorithm satisfying Property 2 performs
(m+minfn log r; n log ng) operations,where the sour
e
an be any of n � o(n) verti
es and r bounds the ratio of any twonon-zero edge-lengths.Proof: Clearly every edge length must parti
ipate in at least one operation. Thisgives us the
(m) lower bound. The rest of the proof is devoted to showing thatminfn log r; n log ng
omparisons are required. In parti
ular, we give a �xed graph(depending on n and r) and a set of possible edge-length fun
tions L. We show thatany SSSP algorithm satisfying Property 2 must de
ide whi
h length fun
tion was
hosen,implying a lower bound of log jLj.A permutation of the verti
es is said to be
ompatible with a
ertain edge-lengthfun
tion if it satis�es Property 2.
s

s

n − k edges, connected to the n − k "bush" vertices.
Edge lengths are of the form j * UNIT, −1 < j < k.

Solid edges have UNIT length

n
 −

 k ve
rtice

s

k vertices

. . .

. . .

Figure 3.5: The \broom" graph.Our �xed graph, depi
ted in Figure 3.5, is organized a little like a broom. It hasa \broom sti
k" of k � 2 verti
es, whose head is the sour
e s and whose tail
onne
ts tothe remaining n � k verti
es (the \bush"), ea
h of whi
h is
onne
ted ba
k to s by anedge (s appears twi
e to simplify the �gure). All these edges have equal length UNIT,whi
h is an arbitrary positive real. Additionally, there are n� k edges dire
ted from s38

to ea
h of the verti
es in the bush, having lengths of the form j �UNIT, where j,
hosenbelow, is a non-negative integer. One may easily
on�rm that sep(u; v) = UNIT for alldistin
t u; v. (Our lower bound holds even if the SSSP algorithm is assumed to knowthis.) Assuming without loss of generality that k divides n, we de�ne L to be the setof length fun
tions that assign the edge length j �UNIT to exa
tly (n� k)=k = n=k� 1edges from s to the \bush", for 0 � j < k. Consider the following
laims:1. For v in the \bush", d(s; v) = `(s; v) < k � UNIT. (Re
all that d and ` are thedistan
e and length fun
tions.)2. jLj = (n� k)!=(nk � 1)!k and log jLj =
(n log k)3. For `1; `2 2 L, there always exists u; v in the \bush" su
h that d1(s; u) < d1(s; v)but d2(s; v) < d2(s; u), where di is distan
e w.r.t. `i.4. No permutation of the verti
es
an be
ompatible with two distin
t length fun
-tions in L.(1) follows be
ause the path from s to v along the \broomsti
k" has length k �UNIT. (2)is simple
ounting. (3) follows from the pidgeonhole prin
iple: be
ause `1; `2 2 L assignea
h length to an equal number of edges, d1(s; u) < d2(s; u) implies the existan
e of av su
h that fd1(s; u); d2(s; v)g < fd1(s; v); d2(s; u)g. (4) follows from (3). To see this,noti
e that for any two verti
es u; v, d(s; u) < d(s; v) implies d(s; u) � d(s; v)+UNIT =d(s; v) + sep(u; v), whi
h implies that if �s is a
ompatible permutation, �s(u) < �s(v).Along with (3) we
an
on
lude that no two length fun
tions in L are
ompatible withthe same permutation. Therefore, at least log jLj =
(n log k)
omparisons are requiredto de
ide whi
h ` 2 L is the a
tual length fun
tion.The above argument
an be repeated with little modi�
ation if the sour
e vertexlies in the broom's bush. Together with the observation that r = k � 1, the Theoremfollows.23.6.3 Lower Bound: Undire
ted GraphsTheorem 2 Any undire
ted single-sour
e shortest path algorithm for real-weighted graphssatisfying Property 2 makes
(m+minfn log log r; n logng) operations in the worst
ase,where r bounds the ratio of any two non-zero edge lengths.Proof: The minimum spanning tree of the input graph is as depi
ted in Figure 3.6.It
onsists of the sour
e vertex s whi
h is
onne
ted to p = (n � 1)=2 verti
es in thetop row, ea
h of whi
h is paired with one vertex in the bottom row. We divide thepairs into q � 2 disjoint groups and assign edge lengths based on group. Group i,39

s

group qgroup 1 group 2

. . .

Figure 3.6: The minimum spanning tree of the graphwhere 1 � i � q,
onsists of exa
tly p=q pairs of verti
es. Edges in group i have length2i �UNIT, where UNIT is an arbitrary positive real. This in
ludes edges
onne
ting s toa top-row vertex and edges
onne
ting the two rows. All non-MST edges are assignedany lengths less than 2O(q) �UNIT su
h that the shortest path tree from s
oin
ides withthe MST. Assuming, without loss of generality, that q divides p, the number of grouparrangements is p!=(p=q)!q = q
(p). We will show that any SSSP algorithm satisfyingProperty 2 must sort the verti
es by group number. Be
ause the groups are of equalsize, by the pidgeonhole prin
iple no permutation of the verti
es
an be
ompatible withtwo distin
t group arrangements. This implies a lower bound of
(p log q) on su
h anSSSP algorithm. Sin
e log r = �(q), this also implies a bound of
(n log log r).Let vi denote some vertex in the bottom row of group i. Then d(s; vi) = 2�2i �UNITand sep(vi; vj) = 2maxfi;jg � UNIT. By Property 2, �s(vi) must be less than �s(vj) ifd(s; vi) + sep(vi; vj) � d(s; vj). This is equivalent to (2 � 2i + 2j) �UNIT � 2 � 2j �UNIT,whi
h holds pre
isely when i < j. Therefore, any SSSP algorithm satisfying Property 2must sort the verti
es by group number.2Remark. Note that in the proof of Theorem 2, we are essentially bounding the time to
ompute the sep fun
tion (equivalently, the group arrangement), whereas in Theorem1 we assume the sep fun
tion is
ommon knowledge.
40

Chapter 4Shortest Paths onDire
ted GraphsIn Se
tion 3.5 we showed that in order to implement Generalized-Visit, it suÆ
esto solve
ertain abstra
t data stru
turing problems, all of whi
h, save for B, admitrelatively simple near-linear time solutions. The primary fo
us of ea
h of our shortestpath algorithms is an eÆ
ient implementation of B, the bu
keting stru
ture.1The stru
ture B is really just a restri
ted form of priority queue. Indeed, one obvi-ous way to implement B is with an o�-the-shelf data stru
ture, su
h as a Fibona

i heap[73℄. Unfortunately, any general data stru
ture implementing B will invariably in
ur asorting bottlene
k. In order to implement B more eÆ
iently it is
ru
ial that we takeinto a

ount the underlying graph. In parti
ular, we must exploit the highly redundantnature of the distan
e fun
tion. After all, the distan
es, if represented expli
itly, o

upy�(n2) spa
e, whereas they are represented impli
itly by the graph itself, whi
h o

upiesjust �(m) spa
e.The most straightforward
orrelations in the distan
e fun
tion are the pair-wisesibling
orrelations: for any y; z 2
hild(x), and any sour
e vertex s, we have:jd(s; y) � d(s; z)j � diam(x)whi
h is just a rephrasing of the parent-
hild
orrelation: d(s; y) � d(s; x) � diam(x)for any y 2
hild(x). These
orrelations are trivial. One interpretation of Theorem 1is that, in the worst
ase, there are essentially no non-trivial
orrelations, assuming adire
ted graph with �xed sour
e vertex. As we will see in Chapter 5, undire
ted graphs1The algorithms presented in this
hapter were originally published as: S. Pettie, A faster all-pairsshortest path algorithm for real-weighted sparse graphs, Pro
. 29th Int'l Colloq. on Automata, Lan-guages, and Programming (ICALP), pp. 85{97, 2002, and S. Pettie, On the
omparison-addition
om-plexity of all-pairs shortest paths, Pro
. 13th Int'l Symp. on Algorithms and Computation (ISAAC),pp. 32{43, 2002. 41

are an entirely di�erent story, even when the sour
e is �xed. In this Chapter we willstudy the
orrelations between elements of the setf d(s; y) gs2V; y2
hild(x)In other words, we �x an SH-node x and look at the sibling
orrelations among nodes in
hild(x), ranging over all sour
e verti
es. Although the te
hni
al language we introdu
ein Se
tions 4.1 and 4.2 does not refer to sibling
orrelations and other intuitive ideas,
orrelation between distan
es is the prin
iple that underlies our algorithms, and shouldalways be kept in mind.In Se
tion 4.1 we give an APSP algorithm whose running time isO(mn+n2 log logn).The running time measure takes into a

ount both real-number operations and datastru
tural issues as well. In Se
tion 4.2 we look at how far our te
hniques
an be pushedif the only measure of eÆ
ien
y is real-number operations. The result is a non-uniformAPSP algorithm making O(mn log�(m;n))
omparison and addition operations.4.1 A Faster APSP AlgorithmWe have shown in Se
tion 3.5 that an implementation of the Generalized-Visit al-gorithm amounts, essentially, to an implementation of B, the bu
keting stru
ture. Onemight just as easily say that we have redu
ed Generalized-Visit to B, and that theAPSP problem is redu
ible to n runs of Generalized-Visit. We will show, in thisse
tion, that the problem of implementing B is itself redu
ible to a set of O(n) SSSPproblems. Ea
h su
h problem is on a graph whose topology is basi
ally the same asthe original graph, but whose length fun
tion is sour
e-dependent. This sequen
e ofredu
tions does not seem pro�table at �rst sin
e APSP is trivially redu
ible to n SSSP
omputations on the original graph. However, not all SSSP problems are equal. Of ourO(n) derived SSSP problems, only O(n= log n) are on real-weighted graphs. The restare on graphs whose lengths are relatively small integers. Be
ause integer variables arenot bound by the limitations of the
omparison-addition model, we are able to solvethese SSSP problems in amortized linear time.In Se
tion 4.1.1 we introdu
e the notions of relative distan
e and approximaterelative distan
e. (These distan
es are the solutions to the derived SSSP problemsmentioned above.) In Se
tion 4.1.2 we show how approximate relative distan
es areuseful in the implementation of Generalized-Visit, and in Se
tion 4.1.3 we show howthey
an be
omputed
heaply.4.1.1 Relative Distan
es and Their ApproximationsLet x be an arbitrary internal SH-node, and re
all that
hild(x) represents the
hildrenof x in SH. For y 2
hild(x) we let �x(u; y) denote the relative distan
e from u to y,42

de�ned as: �x(u; y) def= d(u; y)� d(u; x)Sin
e V (y) � V (x), it follows that �x is always non-negative. Our algorithm doesnot deal with �x dire
tly but rather with a dis
rete approximation to it. We de�ne �̂xas: �̂x(u; y) def= ��x(u; y)�x � or ��x(u; y)�x �where �x def= norm(x)2It is
ru
ial that �̂x be represented as an integer, not as a real. Lemma 13 and14
apture the salient features of the �̂ fun
tion: that it is relatively
heap to
ompute,and that despite its approximate nature, it is useful in implementing the Generalized-Visit routine.Lemma 13 The �̂x fun
tion
an be
omputed for every SH node x for whi
h diam(x)norm(x) �log n, in O(mn) time total.Lemma 14 If �̂x is known for all x 2 SH for whi
h diam(x)norm(x) � logn, then we
an
ompute SSSP in O(m+ n log log n) time using Generalized-Visit.Together with Lemma 3(8), stating that SH
an be
onstru
ted in O(m log n)time, Lemmas 13 and 14 dire
tly imply Theorem 3.Theorem 3 The all-pairs shortest path problem on real-weighted dire
ted graphs
anbe solved in O(mn + n2 log logn) time, where the only operations allowed on reals are
omparisons and additions.We prove Lemma 14 in Se
tion 4.1.2. Lemma 13 is addressed in Se
tion 4.1.3.4.1.2 Generalized-Visit and Relative Distan
esIn this se
tion we show how to implement the bu
keting stru
ture B, assuming that �̂xis already
omputed for all x 2 SH for whi
h diam(x)=norm(x) � logn. The remainderof this se
tion will
onstitute a proof of Lemma 14. As it was observed in Se
tion 3.5,managing the bu
ket arrays for all SH-nodes x with diam(x) � log n�norm(x) requires,by Lemma 11, only O(m+ n log logn) time. Therefore, we
on
entrate on an arbitrarySH-node x for the
ase when �̂x is known.We remarked earlier that maintaining the Bu
ket Invariant 2 is expensive. Con-sider the following weakened form of Invariant 2.43

Invariant 3 Suppose that y is a
hild of an a
tive SH-node x. Then y is either bu
ketedin a

ordan
e with Invariant 2, or it is known that D(y) will de
rease in the future, inwhi
h
ase y appears in no bu
ket.By Lemma 5, we only extra
t a node y from its bu
ket when D(y) is �nalized,that is, when D(y) = d(s; y). Therefore, the
orre
tness of Generalized-Visit w.r.tInvariant 2 implies its
orre
tness w.r.t. Invariant 3. The only question is whetherInvariant 3 is any easier to maintain, spe
i�
ally, whether it is possible to tell if a node'sD-value will de
rease in the future. This is where the �̂ fun
tion
omes into play.Suppose that we are attempting to bu
ket an ina
tive node y by its D-value,either be
ause its parent, x, just be
ame a
tive, or be
ause we just relaxed an edge(u; v), where v 2 V (y). We know d(s; x) lies in the interval of x's �rst bu
ket, that is,tx � d(s; x) < tx + norm(x). A

ording to Invariant 2, y belongs in bu
ket number�D(y)� txnorm(x) � = �D(y)� d(s; x)norm(x) � or �D(y)� d(s; x)norm(x) �+ 1Therefore, if D(y) does not de
rease in the future, then D(y) = d(s; y) and�x(s; y) = D(y) � d(s; x). This implies that y must be bu
keted in either bu
ketnumber j �x(s;y)norm(x)k or the following bu
ket. On the other hand, if D(y) de
reases in thefuture, we have, a

ording to Invariant 3, the freedom not to bu
ket y at all.The situation is made only slightly more
ompli
ated by the fa
t that we are notdealing with �x but a dis
rete approximation to it. Re
all that �̂x(s; y) is an integerand j�x � �̂x(s; y) � �x(s; y)j < �x = norm(x)2 . Using the same argument as above,it follows that if D(y) = d(s; y), that is, D(y) will not de
rease in the future, then ybelongs in some bu
ket numbered in the interval"$�x � �̂x(s; y)� �xnorm(x) % ; $�x � �̂x(s; y) + �x + norm(x)norm(x) %#= "$(�̂x(s; y)� 1)2 % ; $(�̂x(s; y) + 3)2 %#Thus, the number of eligible bu
kets is at most three. Sin
e �̂x(s; y) is representedas an integer, we
an identify the three eligible bu
kets in
onstant time, and, by
he
kingD(y) against the bu
kets' labels, we
an determine whi
h, if any, should
ontain y. Tosum up, all insert and de
rease-key operations on y take
onstant time, provided �̂x isknown.The other
osts of implementing Generalized-Visit were dis
ussed in Se
tion3.5. The D stru
ture is implemented in O(m log�(m;n)) = O(m + n log logn) time,and the
ost of prioritizing nodes within the same bu
ket is O(n log logn) using a vanEmde Boas heap [203℄. This
on
ludes the proof of Lemma 14.44

4.1.3 The Computation of �̂We show in this se
tion that for any SH node x, all �̂x(�; �)-values
an be
omputed intime O(m log n+m �deg(x)+n � diam(x)norm(x)). It turns out that this
ost is a�ordable if them log n term is not signi�
antly larger than the others. It is for this reason that Lemma13 only
onsiders SH nodes x su
h that diam(x)=norm(x) � logn.Consider the two edge-labeling fun
tions Æx : E ! R and Æ̂x : E ! N, givenbelow. Æx(u; v) def= `(u; v) + d(v; x) � d(u; x)Æ̂x(u; v) def= �Æx(u; v)�0x � or 1 if Æx(u; v) > diam(x)where �0x def= �xn = norm(x)2nWe let GÆ = (V (G); E(G); Æ) denote the graph G under a new length fun
tion Æ,and let dÆ be the distan
e fun
tion for GÆ. We show that �x(u; y) is equal to dÆx(u; y)and that dÆ̂x provides a suÆ
iently good approximation to �x to satisfy the
onstraintsput on �̂x. Our method for
omputing �̂x is given in Figure 4.1. We spend theremainder of this se
tion analyzing its
omplexity and proving its
orre
tness.Compute-�̂x:(1) Generate the graph GÆ̂x(2) For all u 2 V and y 2
hild(x);
ompute dÆ̂x(u; y)(3) Set �̂x(u; y) := &dÆ̂x(u; y)n '
Figure 4.1: A three-step method for
omputing �̂x.The following Lemma establishes the properties of �x; Æx; and Æ̂x used in theanalysis of Compute-�̂x.Lemma 15 Suppose x 2 SH, y 2
hild(x) and u 2 V . Then1. �x(u; y) = dÆx(u; y)2. dÆx(u; y) � diam(x)3. dÆx(u; y) � �0x � dÆ̂x(u; y) 2 [0; �x)4. dÆ̂x(u; y) < 2n diam(x)norm(x) 45

Proof: (1) Denote by hu1; u2; : : : ; uji a path from u1 to uj. ThendÆx(u; y) = minj; hu=u1;:::;uj 2V (y)i (j�1Xi=1 Æx(ui; ui+1)) (4.1)= minj; hu=u1;:::;uj 2V (y)i n`(hu1; : : : ; uji) + d(uj ; x)� d(u1; x)o (4.2)= d(u; y)� d(u; x) = �x(u; y) (4.3)Line 4.1 is simply the de�nition of dÆx . Line 4.2 is derived by
an
elling terms in theteles
oping sum. Note that d(uj ; x) = 0 sin
e uj 2 V (y) � V (x), and that d(u1; x) =d(u; x). Line 4.3 then follows from the de�nition of d and �x.(2) From part (1) we have dÆx(u; y) = �x(u; y) = d(u; y)�d(u; x). The inequalityd(u; y) � d(u; x) � diam(x) follows trivially from the fa
t that V (y) � V (x).(3) Let e be an arbitrary edge. By de�nition of Æx and Æ̂x, we have that eitherÆx(e) > diam(x) (i.e., Æ̂x(e) = 1) or �0x � Æ̂x(e) � Æx(e) < �0x � (Æ̂x(e) + 1). Let Puybe the shortest path from u to y in GÆx , and denote by jPuyj the number of its edges.A

ording to part (2), dÆx(u; y) � diam(x), implying that for e 2 Puy, Æ̂x(e) 6=1, and�0x � dÆ̂x(u; y) � dÆx(u; y) < �0x � �dÆ̂x(u; y) + jPuyj� < �0x � dÆ̂x(u; y) + �xThe last inequality follows from the bound jPuyj < n and the de�nition of �x =n � �0x. This proves part (3).(4) From parts (2) and (3) we havedÆ̂x(u; y) � dÆx(u; y)�0x � diam(x)�0x � 2n � diam(x)norm(x)whi
h proves part (4).2Lemma 16 bounds the time to
ompute the Æ̂x fun
tion in Step 1.Lemma 16 GÆ̂x is
omputable in O(m log n) time.Proof: Let (u; v) be an arbitrary edge. Re
all that Æ̂x(u; v) is either 1 or:�`(u; v) + d(v; x) � d(u; x)�0x �The original length fun
tion ` is, of
ourse, already known. We
ompute the other termsin the numerator with one Dijkstra
omputation. Let G1 be derived from G by reversingthe dire
tion of all edges and
ontra
ting V (x) into a single vertex. Computing SSSPfrom the sour
e V (x) in G1 produ
es the d(�; x) distan
es. This takes O(m + n logn)46

time with Fibona

i heaps. However, we
an a�ord to spend O(m log n) time using asimpler binary heap.If Æx(u; v) � diam(x), whi
h
an be
he
ked in
onstant time, then Æ̂x(u; v)
anbe expressed as:Æ̂x(u; v) = maxfj : 2n � d(u; x) + j � norm(x) � 2n � (`(u; v) + d(v; x))gwhi
h follows from the de�nition of Æ̂x and �0x = norm(x)=2n. The terms 2n � d(u; x)and 2n � (`(u; v)+d(v; x)) are easily
omputable in O(log n) time | see Se
tion 2.4. We
ompute Æ̂x(u; v) in O(log diam(x)�0x) = O(logn) time by �rst generating the valuesnnorm(x); 2norm(x); 4norm(x); : : : ; 2llog diam(x)�0x mnorm(x)ousing simple doubling, then using these values to perform a binary sear
h to �nd themaximal j satisfying the inequality above. This binary sear
h is performed on
e forea
h edge, taking O(m log n) time in total.2In Step 2 of Compute-�̂x we
ompute
ertain distan
es in the graph GÆ̂x , usinga variation on Dial's implementation of Dijkstra's algorithm. We are free to use Dial'salgorithm here be
ause GÆ̂x is an integer-weighted graph, whose shortest paths havebounded length.Lemma 17 Step 2 requires O(m � deg(x) + n � diam(x)norm(x)) time.Proof: Let y 2
hild(x) be a
hild of x and let N denote an upper bound on dÆ̂x(u; y).Let G1 be the graph derived fromGÆ̂x by reversing the dire
tion of all edges inG. ClearlydÆ̂x(u; y) is equal to the distan
e from V (y) to u in G1. Therefore, we
an performStep 2 of Compute-�̂x by
omputing SSSP in G1 from the sour
e V (y) (viewing it asa single vertex), for ea
h y 2
hild(x). To save time we solve ea
h of these deg(x)SSSP problems simultaneously, using Dial's implementation of Dijkstra's algorithm. Thepriority queue is implemented as a bu
ket array of length N . If the pair hy; ui appearsin bu
ket b this indi
ates that in the SSSP
omputation with sour
e V (y), the tentativedistan
e to u is b. Sin
e Æ̂x is an integer-valued fun
tion, edge relaxations take
onstanttime. The overall running time is then O(#(edge relaxations)+#(bu
kets s
anned)) =O(m � deg(x) + N) = O �m � deg(x) + n � diam(x)norm(x)�. The bound on N follows fromLemma 15(4).2Lemmas 16 and 17 prove that Steps 1 and 2 take O(m log n+mdeg(x)+n diam(x)norm(x))time. Step 3 just involves dividing dÆ̂x(u; y) by n and rounding up. We did not assumea general integer division operation. However, Step 3
an easily be in
orporated into47

Step 2 by keeping tra
k of the number � bn� where b is the
urrent bu
ket number. InLemma 18 we prove the
orre
tness of Compute-�̂x.Lemma 18 Step 3 sets �̂x
orre
tly, i.e.�̂x(u; y) is an integer and ����x � �̂x(u; y) � �x(u; y)��� < �xProof: It is
lear from Step 3 that �̂x(u; y) is assigned an integer value. We turn to these
ond requirement, that ����x � �̂x(u; y) � �x(u; y)��� < �x. Noti
e that �0x�x = 1n . Fromthe de�nition of the
eiling fun
tion we have:�0x � dÆ̂x(u; y) � �x � &dÆ̂x(u; y)n ' < �0x � dÆ̂x(u; y) + �x (4.4)From Lemma 15 parts (1) and (3) we have that:�0x � dÆ̂x(u; y) � �x(u; y) = dÆx(u; y) < �0x � dÆ̂x(u; y) + �x (4.5)Noti
e that in lines 4.4 and 4.5 the upper and lower bounds are identi
al, and thatthey are separated from ea
h other by �x. Therefore,������x � &dÆ̂x(u; y)n ' � �x(u; y)����� = ����x � �̂x(u; y) � �x(u; y)��� < �xwhi
h proves the lemma.2Now that the
orre
tness of this s
heme is established, we are ready to prove theoverall time bound of Lemma 13.Proof: (Lemma 13) Let T (m;n; k) be the time to
ompute �̂x for all SH nodes x forwhi
h diam(x)norm(x) � k. From Lemmas 16 and 17 we
an bound T as follows.T (m;n; k) = Xx : diam(x)norm(x)�kO(m logn+mdeg(x) + n diam(x)norm(x))= O(4mn log nk + 2mn+ 4n2) fLemma 3(4), (6) & (7)g= O(mn� lognk �)hen
e T (m;n; logn) = O(mn)2 48

4.2 A Non-Uniform APSP AlgorithmThe APSP algorithm from Se
tion 4.1 has two distin
t parts: a �rst pass for
omputingdis
rete, approximate distan
es and a subsequent pass for
omputing the exa
t distan
es.In this Se
tion we show how to
ompute APSP with asymptoti
ally fewer
omparisonand addition operations by basi
ally running the two passes
on
urrently.Our method for implementing the bu
keting stru
ture B is a hybrid of previouste
hniques. For every internal node x 2 SH, we will simulate Invariant 2 with an a
tualbu
ket array and a heap, denoted Hx. The idea is to properly bu
ket nodes when wehave enough information to do so (for instan
e, if we know the �̂x-values) and to keepall unbu
keted
hildren of x in the heap Hx. When new information be
omes availablewe may de
ide to migrate nodes from Hx to the bu
ket array. Consider the followingbu
keting invariant, whi
h is weaker than both Invariants 2 and 3.Invariant 4 Let x be an a
tive SH-node. A
tive
hildren of x appear in a bu
ket
onsistent with Invariant 2. An ina
tive node y 2
hild(x) either appears in a bu
ketnumbered between jd(s;y)�txnorm(x) k� 2 and jD(y)�txnorm(x)k in
lusive, or in the heap Hx.We need to make a
ouple modi�
ations to Generalized-Visit so that Invariant4
an be said to simulate Invariant 2. Sin
e Generalized-Visit only extra
ts nodesfrom the a
tive bu
ket (the one labeled [ax; ax + norm(x)) in Step 3 of Generalized-Visit), we will migrate the appropriate nodes from Hx to the a
tive bu
ket, wheneverthe a
tive bu
ket
hanges. Be
ause of the
onspi
uous \�2" in Invariant 4 the a
tivebu
ket may
ontain nodes that logi
ally belong in later bu
kets. Whenever su
h a nodeis dis
overed (whi
h
an happen at most twi
e per node) we simply move it to thenext bu
ket. One
an easily see that under these modi�
ations to Generalized-Visit,Invariant 4 simulates Invariant 2.The simple method for maintaining Invariant 4 is to keep all ina
tive
hildren ofx in Hx. However, this sort of dependen
e on heaps leads inextri
ably to some kind ofsorting bottlene
k. The eÆ
ien
y of our APSP algorithm depends on minimal use ofthe heaps.In Se
tion 4.2.2 we de�ne fun
tions �x, �̂x,
x, and
̂x that
losely parallel thefun
tions �x, �̂x, Æx, Æ̂x from Se
tions 4.1.1 and 4.1.3. In Se
tion 4.2.3 we show howthe �̂x and
x fun
tions
an be used to maintain Invariant 4 inexpensively.4.2.1 PreliminariesIn our algorithm we use the phrase is known in a te
hni
al sense. The statement\it is known that a < b" means that the inequality a < b
ould be inferred fromthe known set of linear inequalities, as revealed by previous
omparison and addition49

operations. Similarly, \�ab � is known" means the integer �ab �
ould be inferred fromprevious operations, and \a is known", where a is a real, means a is a
tually stored in aspe
i�
 real variable. As
omparison-addition
omplexity is the only measure of interestin this se
tion, we need not provide any method for de
iding when something is knownor not.The sequen
e of operations performed by our algorithm is rather unpredi
table. Itdepends, to a great extent, on what is known at a given time. We des
ribe parts of ouralgorithm using triggers, whi
h are of the form \Whenever some (Pre
ondition) holds,perform some (A
tion)," where the (Pre
ondition) typi
ally depends on whether some-thing is known. We assume that triggers are invoked at the earliest possible moment,and that for any two appli
able triggers, the lower numbered one takes pre
eden
e. As a
onsequen
e of this poli
y, our high-level algorithm,Generalized-Visit, only pro
eedsif every trigger's pre
ondition is unsatis�ed.4.2.2 Lengths, Distan
es, and Their ApproximationsDe�ne the edge-length fun
tion
x : E ! R as:
x(u; v) def= `(u; v) + wx(v)� wx(u)where wx(v) and wx(u) are initially unspe
i�ed. Trigger 1 shows how wx(v) is assigned.Trigger 1 When the variable wx(u) is unspe
i�ed but d(u; v) is known, for some v 2V (x), set wx(u) := d(u; v).It follows from Trigger 1 that if u 2 V (x), wx(u) = 0 holds initially sin
e d(u; u) =0 is known a priori. Note that if we set wx(�) = d(�; x) then
x would be identi
al to theÆx fun
tion de�ned in Se
tion 4.1.3.We de�ne the dis
rete approximation
̂x : E ! N as:
̂x(u; v) def= �
x(u; v)�x � or 1 if
x(u; v) > 2 � diam(x)where �x def= norm(x)4 � deg(x)Trigger 2, given below, updates the
̂x fun
tion whenever possible:Trigger 2 When
x(u; v) is known but
̂x(u; v) is unknown,
ompute
̂x(u; v).Lemma 19 gives a
ouple properties of the
x and
̂x fun
tions, and lets us boundthe
ost of Trigger 2. 50

Lemma 19 Properties of
̂x:1. �x �
̂x(u; v) 2 (�diam(x)� �x; 2diam(x)℄ [f1g. Moreover, if
̂x(u; v) =1 then(u; v) is not on any shortest path from u to any vertex in V (x).2. The
ost of
omputing
̂x(u; v) for all x 2 SH and (u; v) 2 E, is O(mn).Proof: (1) By Trigger 1 we have wx(u) 2 [d(u; x); d(u; x) + diam(x)℄. We also havethat `(u; v) + d(v; x) � d(u; x) 2 [0; 1), and furthermore, if (u; v) is on a shortest pathto some vertex in V (x), then `(u; v) + d(v; x) � d(u; x) 2 [0; diam(x)℄. Thus:
x(u; v) = `(u; v) + wx(v)� wx(u)= `(u; v) + d(v; x) � d(u; x) + [�diam(x);diam(x)℄= [�diam(x); 1) fin generalg= [�diam(x); 2 � diam(x)℄ fif (u; v) is relevantgTherefore
̂x(u; v) = 1 only if (u; v) is not on any shortest path to a vertex inV (x). Furthermore, if
̂x(u; v) 6=1 then �x�
̂x(u; v) =
x(u; v)+(��x; 0℄ = (�diam(x)��x; 2diam(x)℄.(2) Given
x(u; v), we
ompute
̂x(u; v) using essentially the same algorithm fromLemma 16 in Se
tion 4.1.3. It takes time logarithmi
 in the range, i.e.log�3 � diam(x)�x � = log�12 � deg(x) � diam(x)norm(x) � � deg(x) + diam(x)norm(x) +O(1)By Lemma 3 parts (4) and (6), the
ost of
omputing
̂x(e), for all x 2 SH and e 2 E,is O(mn).2The
x and
̂x fun
tions are
learly analogues of Æx and Æ̂x from Se
tion 4.1.3. Be-low we de�ne the fun
tions �x; �̂x, and ~�x, where �x is a real-valued fun
tion analogousto �x and �̂x and ~�x are
ertain integer-valued approximations of �x.�x(u; y) = d(u; y)� wx(u)~�x(u; y) def= ��x(u; y)�x ��x � �̂x(u; y) def= �x(u; y)� [0; �x � deg(x))�̂x is a
tually not
ompletely de�ned. We use it to denote any integer-valuedfun
tion satisfying the inequalities above.The �̂x fun
tion is the one we wish to
ompute. It is, however, a little too expensiveto
ompute dire
tly. Lemma 20, given below, shows how we might infer the �̂x fun
tionby
omputing a few well-
hosen ~�x-values and the
̂x fun
tion.51

Lemma 20 Suppose hv1; : : : ; vi; : : : ; vj 2 V (y)i is known to be the shortest path from v1to y 2
hild(x), and suppose that ~�x(vi; y) is known. If i � deg(x) then �̂x(vi0 ; y) isknown as well, for 1 � i0 � i.Proof: Be
ause hv1; : : : ; vji is known to be a shortest path to V (y) � V (x), it followsfrom Triggers 1 and 2 that the
̂x-values are known for all edges in hv1; : : : ; vji. We
laimthat for i0 � i,
̂x(hvi0 ; : : : ; vii)+~�x(vi; y) is a good enough approximation to �x(vi0 ; y) tosatisfy the
onstraints put on �̂x(vi0 ; y). Note that in general, �x �
̂x(e) =
x(e)� [0; �x)and �x � ~�x(ui; y) = �x(ui; y)� [0; �x). Therefore,�x �
̂x(hvi0 ; : : : ; vii) + ~�x(vi; y)�=
x(hvi0 ; : : : ; vii) + �x(vi; y)� [0; �x � (i� i0 + 1))= d(vi0 ; vi) + wx(vi)� wx(vi0) + d(vi; y)� wx(vi)� [0; �x � deg(x))= �x(vi0 ; y)� [0; �x � deg(x)) = �̂x(vi0 ; y)2Lemma 20 shows that we
an infer a �̂x-value if a \nearby" ~�x-value is alreadyknown. We will show that Trigger 3
omputes a relatively small set of ~�x-values at ana�ordable
ost. Before giving Trigger 3 we have to introdu
e a little more notation. Letin(u) be the tree rooted at u of known shortest paths to u. Similarly, de�ne out(u) tobe the known shortest paths out of u. (If u is an SH-node then in(u) is a
tually anin-forest, whose roots are the verti
es of V (u).)Trigger 3 When the following hold: y 2
hild(x), u 2 in(y), v is the nearest an-
estor of u in in(y) for whi
h ~�x(v; y) is known, and v is at (unweighted) distan
e atleast deg(x) from u, we
ompute the value ~�x(w; y), where w is the an
estor of u at(unweighted) distan
e jdeg(x)2 k.Lemma 21 Properties of �̂x:1. If u 2 in(y), where y 2
hild(x), then �̂x(u; y) is known.2. The
ost of
omputing all �̂-values with Trigger 3 is O(n2).Proof: Trigger 3 ensures that every vertex in in(y) has an an
estor at distan
e atmost deg(x)� 1 (unweighted distan
e, that is) whose ~�x(�; y)-value is known. Part (1)then follows dire
tly from Lemma 20. To prove Part (2) we �rst show that at most3n=deg(x) di�erent ~�x(�; y) values are ever
omputed by Trigger 3; we then bound theoverall
omparison-addition
ost. When Trigger 3 is invoked we say u
laims the edgesbetween u and w. For the purpose of obtaining a
ontradi
tion, suppose an edge was
laimed twi
e, say by u (with w) and subsequently by u0 (with w0). Whether w0 is an52

an
estor or des
endant of w, the fa
t that u{w overlaps with u0{w0 at one edge impliesthe (unweighted) length of u0{w is at most 2 � jdeg(x)2 k � 1 < deg(x). Therefore,Trigger 3
ould not have been invoked at u0, a
ontradi
tion, and
onsequently, at most(n� 1)= bdeg(x)=2
 < 3n=deg(x) ~�x(�; y)-values were
omputed. The time required to
ompute a ~�x(�; y)-value is the same as a
̂x-value: O(deg(x) + diam(x)norm(x)) a

ording toLemma 19(2). Summing over all x 2 SH; y 2
hild(x), and u 2 V , the total
ost ofTrigger 3 is: Xx deg(x) � 3ndeg(x) ��deg(x) + diam(x)norm(x)� = O(n2)The O(n2) bound follows dire
tly from Lemma 3 (4) and (6).24.2.3 Bu
kets, Heaps, and Invariant 4Re
all that Hx is a heap asso
iated with x 2 SH that holds any unbu
keted
hildrenof x. The main fo
us of this Se
tion is how to keep nodes out of Hx while maintainingInvariant 4. We will analyze, in parti
ular, Triggers 4, 5, and 6, given below.Trigger 4 Upon a
tivation of x, for ea
h y 2
hild(x), if possible, bu
ket y a

ordingto Invariant 4; otherwise put y in Hx.Trigger 5 Whenever new
̂x-values be
ome known (Triggers 1 and 2) and x is a
tive,for ea
h y 2
hild(x), if possible, bu
ket y a

ording to Invariant 4; otherwise keep yin Hx.Trigger 6 Whenever D(y) is de
reased, where y is a bu
keted
hild of x, if possible,keep y bu
keted a

ording to Invariant 4; otherwise, move y to Hx.We will
larify in due time what is meant by \if possible" in Triggers 4, 5, and 6.For the moment, let it suÆ
e to say that su

essfully (or unsu

essfully) bu
keting a nodetakes
onstant time. Therefore, ea
h invo
ation of Triggers 4 and 5 takes O(deg(x))time and ea
h invo
ation of Trigger 6 takes
onstant time. These times re
e
t someassumptions about the heap Hx. We assume, in parti
ular, that heap inserts, de
rease-keys, and �nd-mins take
onstant amortized time, and that deleting any subset of theheap takes O(jHxj) = O(deg(x)) time.2The problem of bu
keting y in
onstant time is that of �nding a dis
rete approx-imation to the quantity d(s; y) � d(s; x). Of
ourse, sin
e we do not know the shortest2These are weak assumptions. For instan
e, Hx
ould be implemented as a singly linked list with apointer pointing to the minimum element. 53

path from s{to{y, we have little
ertain information about d(s; y). Our solution is to
onsider many hypotheti
ally shortest s{y paths, and for ea
h su
h path Q, estimate thequantity `(Q)�d(s; x). In parti
ular, we will examine all paths of the form hPh; Pb; Pti,where Ph, the head, is a pre�x of the known shortest path from s to x, Pt, the tail, is itselfa known shortest path into y (and therefore part of in(y)), and Pb, the bridge,
onne
tsPh to Pt | see Figure 4.2. If, in the a
tual shortest s{to{y path P � = hP �h ; P �b ; P �t i,the bridge P �b satis�es
ertain
onditions, we show that y
an always be bu
keted in
onstant time.
v0 vi

vjf
z

x
y

s

the bridge

the head

the tailpart of OUT(s)

part of IN(y)

Figure 4.2: The path hs; : : : ; vji, broken into a head hs; : : : ; v0i, a bridge hv0; : : : ; vii,and a tail hvi; : : : ; vji.When attempting to bu
ket y, we
onsider the paths in Qy | see De�nition 3.Paths in Qy have no heads; they
onsist of a bridge and tail of a hypotheti
ally shortests{to{y path.De�nition 3 Let z 2
hild(x) and f 2 V (z) � V (x) be the vertex satisfying d(s; f) =d(s; x). Let Psf be the shortest path from s to f (and from s to x). We de�ne Qy, wherey 2
hild(x), to be the set of paths of the form hv0; : : : ; vi; : : : ; vji that satisfy:1. v0 2 Psf � out(s)2.
̂x(hv0; : : : ; vii) is known3. i � deg(x)4. vj 2 V (y) and hvi; : : : ; vji � in(y)We de�ne the integer diff(Qy) below. Under the assumption that Qy
ontains asuÆx of the shortest s{to{y path, we
an pla
e some interesting bounds on diff(Qy)in terms of d(s; y); however, in general diff(Qy) might not approximate any usefulquantity. 54

For Q 2 Qy, where Q = hv0; : : : ; vi; : : : ; vji as in De�nition 3, we de�ne diff(Q)and diff(Qy) as: diff(Qy) def= minQ 2 Qy diff(Q)diff(Q) def= �̂x(vi; y) +
̂x(hv0; : : : ; vii) � �̂x(v0; z)Lemma 22 diff has the following properties:1. diff(Qy) is an integer and its
urrent value is known impli
itly2. At all times, �x � diff(Qy) > d(s; y)� d(s; x)� norm(x)23. If some Q� 2 Qy is a suÆx of the shortest s{to{y path, then it holds that �x �diff(Qy) < d(s; y)� d(s; x) + norm(x)4Proof: diff(Qy) is an expression over integers, ea
h of whi
h is impli
itly knowna

ording to Lemma 21(1) and De�nition 3(2). This implies part (1). We turn to parts(2) and (3). Re
all that by de�nition of �̂x and
̂x we have the inequalities �x ��̂x(u; y) =�x(u; y)� [0; �x �deg(x)) and �x �
̂x(u; v) =
x(u; v)� [0; �x). Let Q 2 Qy be arbitrary,and, following the terms of De�nition 3, we write Q as hv0; : : : ; vi; : : : ; vji and let z 2
hild(x) be su
h that d(s; z) = d(s; x). Let � be the interval ��norm(x)2 ; norm(x)4 �.�x � diff(Q) = �x � [�̂x(vi; y) +
̂x(hv0; : : : ; vii) � �̂x(v0; z)℄ (4.6)= �x(vi; y) +
x(hv0; : : : ; vii) � �x(v0; z) + � (4.7)= d(vi; y) + `(hv0; : : : ; vii) � wx(v0) � �x(v0; z) + � (4.8)= `(Q) � d(v0; x) + � (4.9)Line 4.6 is the de�nition of diff; Line 4.7 follows from the de�nitions of
̂x; �̂x,and �x = norm(x)4�deg(x) , and De�nition 3(3) stating that i � deg(x). Line 4.8 is derived byexpanding �x(vi; y) and
x(hv0; : : : ; vii) and
an
elling terms. Line 4.9 follows from thede�nition of �x and the identity d(s; z) = d(s; x).Consider Line 4.9. Clearly `(Q)�d(v0; x) = (d(s; v0);+`(Q))�(d(s; v0)+d(v0; x)) �d(s; y) � d(s; x), and that `(Q) � d(v0; x) = d(s; y) � d(s; x) only if Q is a suÆxof a shortest s{to{y path. By taking into a

ount the upper and lower bounds of� = ��norm(x)2 ; norm(x)4 �, parts (2) and (3) immediately follow.2We use the diff-values to qui
kly de
ide if it is possible to bu
ket nodes in a

or-dan
e with Invariant 4. Suppose that we are attempting to bu
ket a node y 2
hild(x)due to either Trigger 4, 5, or 6. Our pro
edure is as follows:55

1. Re
all that x's �rst bu
ket spans the interval [tx; tx + norm(x)). Let [�; � +norm(x)) be the bu
ket in x's bu
ket array su
h that tx+ �x �diff(Qy) 2 [�; �+norm(x)).2. If D(y) � �, put y in bu
ket [�; � + norm(x)) and stop.3. If D(y) � � � norm(x); put y in bu
ket [� � norm(x); �) and stop.4. Otherwise, put or keep y in Hx.Lemma 23 The bu
keting pro
edure does not violate Invariant 4 and if Qy
ontains asuÆx of a shortest s{to{y path, then y is su

essfully bu
keted.Proof: Re
all from Lemma 5 in Se
tion 3.4 that tx was
hosen so that d(s; x) 2 [tx; tx+norm(x)). Lines 2 and 3 of the bu
keting pro
edure guarantee that y is never bu
ketedin a higher bu
ket than jD(y)�txnorm(x)k. To show that Invariant 4 is preserved, we needonly prove that in Line 2, y is not bu
keted before bu
ket jd(s;y)�txnorm(x) k � 2. Lemma22(2) states that �x � diff(Qy) > d(s; y) � d(s; x) � 12norm(x), whi
h implies that�x �diff(Qy) > d(s; y)� tx� 32norm(x). So bu
keting y a

ording to �x �diff(Qy)
anput it at most �32� = 2 bu
kets before bu
ket jd(s;y)�txnorm(x) k, whi
h is the sla
k toleratedby Invariant 4. For the se
ond part of the Lemma, assume that some Q 2 Qy is asuÆx of the shortest s{to{y path. It follows from Lemma 22(3) that �x � diff(Qy) <d(s; y)� tx+ 14norm(x). By
hoi
e of �, we have � � tx � �x � diff(Qy), whi
h impliesthat � � 14norm(x) < d(s; y) � D(y) Therefore, y must have been bu
keted in Step 2or 3 or the bu
keting pro
edure.2Lemma 24 Suppose that we perform n SSSP
omputations with Generalized-Visit.Then the
ost of all heap operations, in
luding the
ost of Triggers 4, 5, and 6, is O(mn).Proof: Re
all that attempting to bu
ket a node takes
onstant time, and that ea
hinvo
ation of Triggers 4, 5 take O(deg(x)) time, and that Trigger 6 takes
onstanttime. Trigger 4 is
alled on
e per SH-node per SSSP
omputation. Thus the total
ostfor Trigger 4 is Px2SHO(deg(x)) � n, whi
h is O(n2) by Lemma 3(4). Trigger 5 isinvoked whenever new
̂x-values be
ome known (for any x 2 SH), whi
h, by Triggers 1and 2, means that for some vertex u, wx(u) was just �xed in Trigger 1. This
an onlyhappen n times (for x), for a total
ost of PxO(deg(x)) � n = O(n2). Finally, Trigger6 is
alled on
e per edge relaxation, of whi
h there are no more than O(mn).We now a

ount for the
ost of extra
ting items from Hx Let y 2
hild(x),and let Psy and Psx be the shortest paths from s{to{y and s{to{x, respe
tively. Now56

suppose that y is inserted into Hx. We
an write Psy as hP1; P2; P3i, where P1 and P3are maximal su
h that P1 � Psx � out(s) and P3 � in(y). By Lemma 23, y would havebeen bu
keted (rather than inserted into Hx) if hP2; P3i 2 Qy. By De�nition 3 hP2; P3iis not inQy either be
ause (a) jP2j > deg(x) or (b) wx(u) is not known, for some u 2 P2.Case (a)
an only happen n=deg(x) times for y, be
ause after the SSSP
omputationfrom sour
e s, in(y) will have absorbed P2 (and P1 for that matter). Thus the total
ost for (a) is PxO(deg(x))2 � n=deg(x) = O(n2). The
ost of (b) has a
tually beena

ounted for, sin
e on
e wx(u) is �xed, for all u 2 P2, y will be immediately bu
ketedby Trigger 5.2The only
osts not
overed by Lemma 24 are
onstru
ting the strati�ed hierar
hy,whi
h is O(m log n) by Lemma 3(8),
omputing the �̂ and
̂ fun
tions, whi
h is O(mn)by Lemmas 19(2) and 21(2) and implementing the D data stru
ture, whi
h, by Lemma10, is O(m log�(m;n)) for ea
h SSSP
omputation. Theorem 4 follows.Theorem 4 The all-pairs shortest path problem on arbitrarily-weighted, dire
ted graphs
an be solved with O(mn log�(m;n))
omparisons and additions, where m and n are thenumber of edges and verti
es, respe
tively, and � is the inverse-A
kermann fun
tion.

57

Chapter 5Shortest Paths onUndire
ted GraphsIn this Chapter we give an implementation ofGeneralized-Visit for undire
ted graphsthat is quantitatively and qualitatively superior to those algorithms for dire
ted graphspresented in Chapter 4. Why are undire
ted graphs so mu
h easier? The short answer isthat undire
ted graphs
an be e�e
tively
lustered, whereas dire
ted graphs, in general,
annot. Consider a single edge (u; v). In an undire
ted graph we
an
laim that jd(s; u)�d(s; v)j � `(u; v), regardless of the rest of the graph, whereas in a dire
ted graph onlythe inequality d(s; v) � d(s; u)+`(u; v) holds. Thus, the distan
e fun
tion for undire
tedgraphs exhibits mu
h stronger
orrelations.1The parti
ulars of our
lustering s
heme are a bit involved, though the overallidea is quite simple. Suppose that x is an SH-node. Unless we know something aboutthe input graph, the set fd(s; y)�d(s; x)gy2
hild(x)
onsists of more or less independentvariables, ea
h somewhere is the range [0;diam(x)). Therefore, barring any extra in-formation about the graph, the set fb[d(s; y) � d(s; x)℄=norm(x)
gy2
hild(x) has aboutdeg(x) log(diam(x)=norm(x)) bits of information in it. In other words, we are imag-ining that the graph is
hosen at random | though still
onsistent with the hierar
hySH | and asking about the entropy of
ertain variables. It is not diÆ
ult to show thatthe entropy of SH
an be as mu
h as
(n log n). We show that by
arefully introdu
ingnew layers of nodes into SH, the overall entropy
an be redu
ed to O(n). Furthermore,we give a bu
keting s
heme (an implementation of the B stru
ture) whose running timemat
hes the entropy of the given hierar
hy.The running time of our algorithm is signi�
antly more impressive than the al-gorithms from Chapter 4. The time required to
ompute a low-entropy hierar
hy is1The results of this
hapter appeared in: S. Pettie and V. Rama
handran, Computing shortest pathswith
omparisons and additions, Pro
. 13th Ann. ACM-SIAM Symp. on Dis
rete Algorithms (SODA),pp. 267{276, 2002. The full version is under review.58

only O(m�(m;n)+minfn log n; n log log rg), where r bounds the ratio of any two edge-lengths. On
e this hierar
hy is given, we are able to
ompute SSSP from any sour
e inO(split-findmin(m;n)) = O(m log�(m;n)) time, whi
h is nearly linear-time | per-haps even linear-time | and essentially unimprovable. As we will see in Chapter 6the algorithm is streamlined and fares well in head-to-head
omparisons with Dijkstra'salgorithm. A stubborn bottlene
k, both theoreti
ally and pra
ti
ally, is the
ost of
om-puting a low-entropy hierar
hy. Thus, for the problem of
omputing SSSP exa
tly on
e,our algorithm is only a theoreti
al improvement for reasonably-sized r. For instan
e,the asymptoti
 running time for r = poly(n) is O(m+ n log log n).5.1 An Undire
ted Shortest Path Algorithm5.1.1 Re�ned Hierar
hiesLet H1 and H2 be two hierar
hies. We will say that H2 is a re�nement of H1 if for everyx1 2 H1, there exists an x2 2 H2 su
h that V (x1) = V (x2) and norm(x1) = norm(x2).Our undire
ted shortest path algorithm operates on a hierar
hy
alled RH, whi
h is are�nement of SH having
ertain properties. We
onstru
t RH in Se
tion 5.2.We will exploit the
orresponden
e between SH-nodes and their
ounterparts inRH. For instan
e, if x is known to be anRH-node, the assertion that x 2 SH is short for9x0 2 SH : V (x) = V (x0). The nodes in RH�SH will be
alled auxiliary. Let x 2 SHand let � be the
hildren of x in SH. We de�ne Hx to be the subtree of RH indu
ed byx, �, and all the auxiliary nodes between x and �. For the moment we will only maketwo assumptions about Hx (and by extension RH): that any auxiliary node y 2 Hxhas at least two
hildren (implying jRHj = O(n)), and that norm(y) = norm(x). It iseasily shown that if SH satis�es Lemma 3 Parts (2) and (3) (the properties
ru
ial for
omputing SSSP
orre
tly) then RH satis�es these properties as well.5.1.2 The Undire
ted-Visit AlgorithmOur shortest path algorithm for undire
ted graphs is given in Figure 5.1. It is nearlyidenti
al to the Generalized-Visit algorithm from Chapter 3, save for two smallmodi�
ations. Sin
e there is no distin
tion between
onne
ted and strongly
onne
ted
omponents in undire
ted graphs, we
an treat any t-partition as an unordered (ratherthan ordered) partition | see Lemma 2. In terms of the e�e
t on our algorithm, ratherthan extra
ting the leftmost node from the
urrent bu
ket, as we do in Generalized-Visit, we are free to extra
t any node in the
urrent bu
ket.22In
identally, this eliminates the need for the van Emde Boas heap [203℄ used in our implementationof Generalized-Visit. 59

Undire
ted-Visit(x; [a; b))Input: x 2 SH and V (x) is (S; [a; b))-independentOutput: All verti
es in V (x)[a;b) are visited1. If x is a leaf and D(x) 2 [a; b), then let S := S [fxg, relax all edges in
ident onx, restoring Invariant 1, and return.2. If Undire
ted-Visit(x; �) is being
alled for the �rst time,
reate a bu
ket arrayof ddiam(x)=norm(x)e + 1 bu
kets. Bu
ket i represents the interval[tx + i � norm(x); tx + (i+ 1) � norm(x))where tx is set to:tx = (D(x) if D(x) + diam(x) < bb� l b�D(x)norm(x)mnorm(x) otherwiseBu
ket the nodes in
hild(x) by their D-values3. Set ax = � tx if this is the �rst
all to Visit(x; �)a otherwiseWhile ax < b and V (x) 6� SWhile bu
ket [ax; ax + norm(x))
ontains an auxiliary node yRemove y from the bu
ket arrayBu
ket the nodes in
hild(y)While bu
ket [ax; ax + norm(x))
ontains any node yUndire
ted-Visit(y; [ax; ax + norm(x)))Remove y from its bu
ketIf V (y) 6� S, put y in bu
ket [ax + norm(x); ax + 2norm(x))ax := ax + norm(x)Figure 5.1: The Undire
ted-Visit pro
edure.
60

The Undire
ted-Visit pro
edure is only
alled on SH-nodes, never auxiliarynodes. Indeed, the pattern of re
ursive
alls with Undire
ted-Visit is identi
al tothat of Generalized-Visit. We simply use the auxiliary nodes as representatives formultiple SH-nodes in the bu
ket arrays. Spe
i�
ally, we maintain that for any a
tiveSH-node x, every leaf y 2 Hx that belongs in x's bu
ket array (a

ording to Invariant2) is represented in x's bu
ket array by some an
estor of y in Hx. Furthermore, if y isitself a
tive, or if it belongs in the
urrent bu
ket, then y is represented by itself. One
an
learly see that Undire
ted-Visit maintains this invariant. When x �rst be
omesa
tive, in Step 2, we bu
ket only x's
hildren, a set that
learly represents the leaves ofHx. When a new bu
ket be
omes the
urrent bu
ket, in Step 3, we repeatedly repla
e anauxiliary node in the
urrent bu
ket by its
hildren, and pro
eed only after no auxiliarynodes remain. This bu
keting regimen
learly simulates Invariant 2.5.1.3 A Lazy Bu
keting Stru
tureIn this se
tion we des
ribe a simple abstra
t bu
keting stru
ture whi
h is spe
iallysuited for use in Undire
ted-Visit. However, it is still general enough to be used inother situations. The stru
ture operates on an array of bu
kets and a set of elementswith asso
iated real-valued keys. The ith bu
ket represents a real interval Ii, whi
his adja
ent to Ii+1, and an element with key � belongs in the unique bu
ket i su
hthat � 2 Ii. As a simplifying assumption, we assume that given i, Ii is
omputable in
onstant time. Bu
kets are either open or
losed; only the
ontents of open bu
kets may
hange.The Bu
ket-Heap:
reate(f) Create a new Bu
ket-Heap, where f(i) = Ii is
onstant time
omputable.All bu
kets are initially open.insert(y; �) Insert a new item y with key(y) := �.de
rease-key(y; �) Set key(y) := minfkey(y); �g. It is guaranteed that y is not movedto a
losed bu
ket.
lose Close the �rst open bu
ket, and remove and enumerate its
ontents.Lemma 25 The Bu
ket-Heap
an be implemented to run in time O(N +Py log�(y)),where N is the total number of operations and �(y) is the number of
lose operationsbetween y's insertion and its removal.Proof: Our bu
keting stru
ture simulates the logi
al spe
i�
ation given above; it a
tu-ally
onsists of levels of bu
ket arrays. The level zero bu
kets are the ones referred toin the Bu
ket-Heap's spe
i�
ation, and the level i bu
kets preside over disjoint pairs of61

