Copyright
by
Seth Pettie

2003

The Dissertation Committee for Seth Pettie
certifies that this is the approved version of the following dissertation:

On the Shortest Path and
Minimum Spanning Tree Problems

Committee:

Vijaya Ramachandran, Supervisor

Harold Gabow

Anna G4l

Tandy Warnow

David Zuckerman

On the Shortest Path and

Minimum Spanning Tree Problems

by

Seth Pettie, B.A.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2003

for my mother and my muse

Acknowledgments

This thesis would not have been possible without the support and guidance of my
advisor, Vijaya Ramachandran. She encouraged all of my research endeavors and has
been my staunchest advocate.

I must also thank my committee members, Hal Gabow, Anna G&l, Tandy Warnow,
and David Zuckerman, as well as the theory group at UT—Austin. Their comments
greatly helped to improve the presentation of this thesis. I would also like to thank Jay
Misra. We have had too few conversations, but for those I am grateful. (One cannot be
in the presence of Jay without learning — as if by osmosis — that clear presentation
and clear thinking are inseparable — and that both are in short supply.)

Grad school could not have been as enjoyable without my fellow grad students. I
would like to thank, in particular, Lisa Kaczmarczyk for taking the coffee break to the
next level, and my office-mate Eunjin Jung, a good friend and conversationalist and a
great chef.

I have failed, on many occasions, to properly explain to my family what algo-
rithms are and why they’re worth studying. Nonetheless, they supported my pursuits
simply because they were mine. I would especially like to thank my mother and father,
Andy, grandma Betty, and uncle Tim, who treated me like a grad student since I was 5
years old. I cannot thank my mother enough. This thesis, my grad school career, and
everything else would not have been possible without her active support.

Lastly, I must thank my muse, Elizabeth Harr. Her joie de vivre has made the
last 2% years the best of my life. Without her life would be nothing but an empty void.

SETH PETTIE

The University of Texas at Austin
August 2003

On the Shortest Path and

Minimum Spanning Tree Problems

Publication No.

Seth Pettie, Ph.D.
The University of Texas at Austin, 2003

Supervisor: Vijaya Ramachandran

The shortest path and minimum spanning tree problems are two of the classic
textbook problems in combinatorial optimization. They are simple to describe and
admit simple polynomial-time algorithms. However, despite years of concerted research
effort, the asymptotic complexity of these problems remains unresolved.

The main contributions of this dissertation are a number of asymptotically faster
algorithms for the minimum spanning tree and shortest path problems. Of equal interest,
we provide some clues as to why these problems are so difficult. In particular, we
show why certain modern approaches to the problems are doomed to have super-linear
complexity.

A sampling of our results are listed below. We emphasize that all of our algo-
rithms work with general graphs, and make no restrictive assumptions on the numerical
representation of edge-lengths.

e A provably optimal deterministic minimum spanning tree algorithm. (We give a
constructive proof that the algorithmic complexity of the minimum spanning tree
problem is equivalent to its decision-tree complexity.)

e An all-pairs shortest path algorithm for general graphs running in time O(mn +
n?loglogn), where m and n are the number of edges and vertices. This provides
the first improvement over approaches based on Dijkstra’s algorithm.

e An all-pairs shortest path algorithm for undirected graphs running in O(mn log o)
time, where @ = a(m, n) is the inverse-Ackermann function.

vi

A single-source shortest path algorithm running in O(ma+min{n loglogr, nlogn})
time, where r bounds the ratio of any two edge lengths. For r polynomial in n
this is O(m + nloglogn), an improvement over Dijkstra’s algorithm.

An inverse-Ackermann style lower bound for the online minimum spanning tree
verification problem. This is the first inverse-Ackermann type lower bound for a
comparison-based problem.

An Q(m + nlogn) lower bound on any hierarchy-type single-source shortest path
algorithm, implying that this type of algorithm cannot improve upon Dijkstra’s
algorithm. (All of our shortest path algorithms are of the hierarchy type.)

The first parallel minimum spanning tree algorithm that is optimal w.r.t. to both
time and work. Our algorithm is for the EREW PRAM model.

A parallel, expected linear-work minimum spanning tree algorithm using only a
polylogarithmic number of random bits.

An O(mn log a) bound on the comparison-addition complexity of all-pairs shortest
paths. This is within a tiny log « factor of optimal when m = O(n).

vil

Contents

Acknowledgments v
Abstract vi
Chapter 1 Introduction 1
1.1 Overview of the Results 2
1.1.1 Shortest Paths 2

1.1.2 Minimum Spanning Trees 3

1.2 Preliminaries L 4
1.2.1 Asymptotic Notation 4

1.2.2 Chapter Dependencies 4

I Shortest Paths 6
Chapter 2 Introduction to Shortest Paths 7
2.1 History 7
2.1.1 Single-Source Shortest Paths 7

2.1.2 All-Pairs Shortest Paths 8

2.1.3 Variations e e 9

2.1.4 Organization 10

2.2 Our Contributions e 10
2.3 Problem Definition 11
2.4 The Comparison-Addition Model 12
2.4.1 Non-Uniform Complexity 13

2.4.2 Basic Techniques o 13

243 Lower Bounds 14

2.5 Dijkstra’s Algorithm oL 14
2.6 The Hierarchy Approach, 16

viii

Chapter 3 Hierarchies & Shortest Paths

3.1
3.2
3.3
3.4
3.5
3.6

Independent Subproblems
A Stratified Hierarchy
A Generalized Hierarchy-Type Algorithm

Correctness e

Implementation Details

Lower Bounds e

3.6.1
3.6.2
3.6.3

Characterization of Hierarchy-Type Algorithms
Lower Bound: Directed Graphs
Lower Bound: Undirected Graphs

Chapter 4 Shortest Paths on Directed Graphs
4.1 A Faster APSP Algorithm

4.2

4.1.1
4.1.2
4.1.3

Relative Distances and Their Approximations
GENERALIZED- VISIT and Relative Distances
Computing Relative Distances

A Non-Uniform APSP Algorithm

4.2.1
4.2.2
4.2.3

Preliminaries
Lengths, Distances, etc.
Buckets, Heaps, etc.

Chapter 5 Shortest Paths on Undirected Graphs
5.1 An Undirected Shortest Path Algorithm

5.2

5.3

5.1.1
5.1.2
5.1.3
5.1.4

Refined Hierarchies
The UNDIRECTED-VISIT Algorithm
A Lazy Bucketing Structure L.
Analysis of UNDIRECTED-VISIT oo ..

An Algorithm for a Refined Hierarchy

5.2.1
5.2.2
5.2.3
5.2.4

Phase 1: Computing the MST and SH
Definitions and Properties
Phase 2: Computing Shortcut Trees
Phase 3: Computing a Refined Hierarchy

Variations on the Algorithm

5.3.1
5.3.2

Simpler and Slower oL
Sort-of-Undirected Graphs.

5.4 DIscussion e e e e e

Chapter 6 Experimental Evaluation of a Shortest Path Algorithm

6.1 Introduction

6.1.1

Previous Work

X

18
18
20
25
27
31
34
35
38
39

41
42
42
43
45
49
49
50
53

58
59
59
59
61
63
64
64
65
69
71
75
75
76
77

6.2

6.3

6.4
6.5

6.1.2 Scope of the Experiment
Design Choices o . v i i vt e
6.2.1 Dijkstra’s Algorithm
6.2.2 Pettie-Ramachandran Algorithm
6.2.3 Breadth First Search
Experimental Set-up
6.3.1 Graph Classes
Results. o e
Discussion L

IT Minimum Spanning Trees

Chapter 7 Introduction to Minimum Spanning Trees

7.1
7.2

8.1

8.2
8.3

8.4

8.5
8.6
8.7

History e e e
Preliminaries e
7.2.1 The Model
7.2.2 Cut and Cycle Properties
7.2.3 Basic Algorithms L L oo
Chapter 8 An Optimal Minimum Spanning Tree Algorithm
Introduction L
8.1.1 Uniform vs. Non-Uniform Complexity
8.1.2 Speculation about MST*
The Soft Heap
Corruption and Contractibility
8.3.1 A Robust Contraction Lemma
8.3.2 The Partition Procedure L.
The Algorithm
8.4.1 Overview e
8.4.2 MST Decision Trees
8.4.3 The Dense Case Algorithm
8.4.4 An Optimal Algorithm
845 Analysis L
Avoiding Pointer Arithmetic. L L L.
Introducing A Little Randomness
Performance on Random Graphs
8.7.1 The Edge-Addition Martingale
87.2 Analysis
Discussion Lo

8.8

95

96
96
100
100
100
103

Chapter 9 A Lower Bound on MST Verification 125

9.1 Introduction. e e 125
9.1.1 Related Work o 126
9.1.2 Organization 128

9.2 Preliminaries e e e e e e 129
9.2.1 A Variation on Ackermann’s Function 129
9.2.2 The Input Distribution 130
9.2.3 A Measure of Information 131

9.3 The Lower Bound 134
9.3.1 Proof of Main Theorem 138

94 UpperBounds 141

Chapter 10 A Time-Work Optimal Parallel MST Algorithm 144

10.1 The PRAM Model 144

10.2 History« . o 145

10.3 Techniques L 146

10.4 The High-Level Algorithm 148

10.5 Phase 1 oL 149
10.5.1 The k-Min Forest 150
10.5.2 Boruvka-A Steps 151
10.5.3 Filtering Edges via The Filter Forest 155
10.5.4 Finding a k-Min Forest 158
10.5.5 Performance of Find-k-min 159

10.6 Phase 2 L 160
10.6.1 The Find-MST Procedure 160

10.7 Proof of the Main Theorem 162

10.8 Processor Allocation 163

10.9 Adaptations to Practical Parallel Models 166

10.10DISCUSSION v v v o e e e e e e e e e e e e e 166

Chapter 11 A Reduced Randomness MST Algorithm 168

11.1 Limited Independence Sampling. 169
11.1.1 Pairwise Independent Sampling on the EREW PRAM 172

11.2 A Low-Randomness MST Algorithm 174
11.2.1 Techniques e 174
11.2.2 The Algorithm L L 178

11.3 DiSCussion o v v i e e e e e e 181

x1

Appendix A Split-Findmin and Its Applications
A1 Background

A.2 An Optimal Split-Findmin Structure
A.3 MST and SSSP Sensitivity Analysis

Appendix B Publications
Bibliography

Vita

xii

182
182
183
185

187

189

204

Chapter 1

Introduction

As optimization problems go, the minimum spanning tree and shortest path problems
are as old as the hills. They are so firmly established in the canon of computer science
education that today no student can avoid learning the algorithms of Dijkstra, Prim,
Bellman-Ford, Floyd-Warshall, Kruskal, and Boruvka. Given the rich history of both
problems (the minimum spanning tree problem dates back 75 years) and the vigor of
recent research efforts, it is thoroughly surprising that neither problem is solved. In
particular, the question of their inherent algorithmic complexity has yet to be fully
answered.

The primary focus of this dissertation is obtaining asymptotically faster algorithms
for three classical graph optimization problems: single-source shortest paths, all-pairs
shortest paths, and minimum spanning trees. For each problem we offer algorithms that
achieve optimality, or make substantial strides toward optimality. Highlights of our
results include a provably optimal minimum spanning tree algorithm (with unknown
running time) and an all-pairs shortest paths algorithm that improves on Dijkstra’s
textbook algorithm from 1959. We survey our results in more detail in Section 1.1.1
(shortest paths) and Section 1.1.2 (minimum spanning trees). Before delving into details,
we would like to highlight our assumptions concerning the model of computation.

Any discussion of an algorithmic result must begin with the answers to two fun-
damental questions: What does the input to the algorithm look like? and what can our
(imaginary) computer do (and at what cost)? The answers to these questions define the
computational model, or simply model. Most researchers choose a model by consider-
ing aesthetic simplicity, historical precedent, realism, convenience, or some combination
thereof. In this dissertation we study the shortest path and minimum spanning tree
problems under the traditional textbook model. The input is assumed to be given as
a real-weighted general graph, either directed or undirected, and the defining charac-
teristic of the machine model is that real numbers are only subject to a specific set of
unit-time operations, e.g., addition, subtraction, and comparison. (See Sections 2.4 and

7.2.1 for the specifics.)

The strength of the traditional model is its weakness. It is weak in that it makes
minimal assumptions about the form of the input, and minimal assumptions about how
the abstract computer can manipulate the input. As a consequence, algorithms designed
for the traditional model map easily onto actual physical computers, usually without
modification. The traditional model also forces us, as theoreticians, to concentrate on
the problem at hand. A number of algorithms these days — even for shortest paths and
minimum spanning trees — apply very model-specific techniques and, as such, reveal
less about the problem than they do about the power of the underlying machine.

1.1 Overview of the Results

1.1.1 Shortest Paths

In 1997 Thorup invented what we dub the hierarchy-based approach to shortest paths.
Thorup’s original algorithm was designed for integer-weighted undirected graphs, and
the powerful RAM model, or random access machine. Because the hierarchy approach
seemed to depend on all kinds of model-specific techniques, it was unclear whether the
more general problem — shortest paths on real-weighted graphs — would admit an
efficient hierarchy-based algorithm. In Chapters 2—6 we develop a number of faster
shortest path algorithms, all hierarchy-based, and explore the inherent limitations of
the approach.

In Chapter 3 we define a large class of hierarchy-type algorithms, and prove that,
in general, no hierarchy-type algorithm can improve on Dijkstra’s classical single-source
shortest path (SSSP) algorithm. Basically, we show that there is an inherent “sorting
bottleneck” in the approach, just as there is in Dijkstra’s algorithm. However our lower
bound does not scale up well. For instance it does not say that computing SSSP 5 times
from different sources is 5 times as hard as SSSP. This is because shortest paths on the
same graph are, by their nature, highly dependent. Knowing some shortest paths might
give you a great deal of information about others.

The main theoretical contributions of our shortest path algorithms are some new
techniques for identifying and exploiting the dependencies among shortest paths in the
same graph. In Chapter 4 we give a new all-pairs shortest path (APSP) algorithm
that runs in time O(mn + n?loglogn), where m and n are the number of edges and
vertices respectively. This is the first theoretical improvement over Dijkstra’s 1959
algorithm, which runs in O(mn + n?logn) time if implemented with a Fibonacci heap.
In Chapter 4 we also address the non-uniform complexity of APSP. In particular we
give an APSP algorithm making O(mn log a(m,n)) numerical operations, where « is
the inverse-Ackermann function. Due to the trivial lower bound of Q(n?), our algorithm

is within a tiny log a(n, n) factor of optimal when m = O(n).

In Chapter 5 we give a faster shortest path algorithm for undirected graphs. As
an undirected APSP algorithm, it runs in O(mnloga(m,n)) time — again, nearly
optimal for m = O(n). As an undirected SSSP algorithm it runs in O(ma(m,n) +
nloglogr) time, where r bounds the ratio of any two edge lengths. Thus for » = poly(n),
our undirected SSSP algorithm runs in O(m + nloglogn) time, an improvement over
Dijkstra’s. In Chapter 6 we present the results of some experiments with a simplified
version of our undirected shortest path algorithm. It consistently outperforms Dijkstra’s
on a variety of sparse graph types, and comes surprisingly close to the speed of breadth
first search, which we use as a benchmark linear-time algorithm.

1.1.2 Minimum Spanning Trees

The minimum spanning tree problem (MST') has been studied for over 75 years, though
it was only in recent years that sophisticated techniques were applied to the problem.
In 1994 Karger, Klein, and Tarjan [127] developed a randomized expected linear time
algorithm based on two key techniques: random sampling and minimum spanning tree
verification. In 1997 Chazelle [28] addressed the deterministic complexity of the MST
problem. The running time of his algorithm was slightly super-linear (of the inverse-
Ackermann variety) and was based on a new approximate priority queue called the Soft
Heap [29].

In Chapter 8 we solve part of the MST problem. We give, in particular, a provably
optimal MST algorithm, and show that the decision-tree (comparison) complexity of the
problem is equivalent to its algorithmic complexity. Thus, we have separated the issues
of finding an optimal algorithm with analyzing its complexity. Owur algorithm, like
Chazelle’s [28], is based on the Soft Heap.

In [28] Chazelle wondered what sort of data structure might be the key to an
ezplicit linear-time MST algorithm. Clearly inspired by the success of MST verification
in the randomized algorithm of Karger et al. [127], he proposed a “dynamic equivalent”
to MST verification. In Chapter 9 we give an inverse-Ackermann type lower bound for
the online MST verification problem, which may be considered the simplest dynamic
equivalent. Our lower bound seems to rule out a faster explicit MST algorithm based on
online MST verification. Parenthetically, this is the first inverse-Ackermann type lower
bound for any comparison-based problem.

In Chapter 10 we give the first randomized time-work optimal parallel MST algo-
rithm. Our algorithm improves on a long line of results, some time-optimal and some
work-optimal.

One disadvantage of the randomized MST algorithms is that they use a number of
random bits that is linear in the size of the problem. In reality however random bits are
usually considered a scarce resource. In Chapter 11 we develop a new randomized MST

algorithm that runs in expected linear-time, even if only a polylogarithmic number of
random bits are available. It is parallelizable, and also gives an efficient parallel con-
nectivity algorithm using polylogarithmic random bits. (A simple tweak of our optimal
MST algorithm yields one that runs in expected linear time using o(log*n) random bits.
However this algorithm is not parallelizable.)

1.2 Preliminaries

We assume no specialized background knowledge. However the reader should be familiar
with asymptotic notation (0,2, ©,w,0), graph terminology (tree, path, vertex, edge,
cycle, etc.), and a little probability for the latter chapters. Refer to any standard
algorithms textbook [47] for the necessary definitions.

We have summarized the standard asymptotic notation in Section 1.2.1. In Section
1.2.2 we summarize the chapter dependencies.

1.2.1 Asymptotic Notation

We use the standard asymptotic notations. Below, f and g are functions from naturals
to naturals.

f(n) =0(g(n)) = Fe1,c2¥n >0 : f(n) < c1-g(n)+co
f(n) =Qg(n)) = g(n) = O(f(n))
f(n) =0O(g(n)) = f(n)=0(g(n)) and f(n) = (g(n))

f(n) =o(g(n)) = g(n) = w(f(n))

Remark. Some sources in the literature use the asymmetric definition: f(n) = Q(g(n))
if there exists a constant ¢ such that ¢- f(n) > g(n) for infinitely many integers n.

1.2.2 Chapter Dependencies

Parts I and II, on shortest paths and minimum spanning trees, respectively, are entirely
independent.

Chapters 4 (directed shortest paths) and 5 (undirected shortest paths) are both
built on the foundation of Chapters 2 and 3. Chapter 6 (experimental shortest paths)
may be read separately, though it does frequently refer to the algorithm from Chapter
5.

Chapters 8-11 (results on minimum spanning trees) are independent of one an-
other, though each should be read following the introduction to minimum spanning
trees, in Chapter 7.

Part I

Shortest Paths

Chapter 2

Introduction to Shortest Paths

2.1 History

In Sections 2.1.1 and 2.1.2 we survey the history of the single-source and all-pairs shortest
path problems, which are the “textbook” shortest path problems and the subject of
subsequent chapters. In Section 2.1.3 we attempt to survey a slew of results extending
the shortest path problem in various directions.

2.1.1 Single-Source Shortest Paths

The single-source shortest path problem, or SSSP, is a deceptively difficult problem. As
early as 1960 there were two algorithmic solutions: Bellman and Ford’s [17, 65, 47],
which worked on arbitrarily weighted graphs, and Dijkstra’s [52], which was a bit faster
but assumed non-negatively weighted graphs. To date neither of these algorithms have
been improved in the context of general real-weighted graphs. However there have been
a number of qualified successes, as we shall see.

The Bellman-Ford algorithm runs in O(mn) time, where m and n are the number
of edges and vertices respectively. However this cost is generally very pessimistic; a
finer analysis shows it runs in O(hm) time, where h is the maximum number of edges in
any shortest path. Goldberg [87], improving very slightly on Gabow and Tarjan’s work
[77, 80], gave an SSSP algorithm for integer-weighted graphs running in O(y/nmlog N)
time, where IV bounds the magnitude of the negative edge-lengths.

Dijkstra’s 1959 SSSP algorithm [52] runs in O(n?) time if implemented in a
straightforward fashion; this is optimal for dense graphs. It was quickly observed that
speeding up Dijkstra’s algorithm is tantamount to implementing a fast priority queue.
Using Johnson’s d-ary heap [118, 119], a generalization of Williams’ binary heap [205],
Dijkstra’s algorithm runs in O(mlogy,,/, n) time, which is optimal for moderately

Q(1)

dense graphs, say when m/n = n**"). The fastest implementation of Dijkstra’s algo-

rithm to date runs in O(m + nlogn) time, making it optimal for m/n = Q(logn). It
uses Fredman and Tarjan’s Fibonacci heap [73]. In a comparison-based model of compu-
tation, one can easily show that Fibonacci heaps are asymptotically optimal, and that
in the worst case Dijkstra’s algorithm requires Q(m + nlogn) time to solve. Thus any
research on the SSSP problem must depart from the general comparison-based model,
or keep the comparison model and depart from Dijkstra’s algorithm. We take the latter
approach. Efforts on the former have focused on implementations of Dijkstra’s algorithm
for integer-weighted graphs in the unit-cost RAM (random access machine) model of
computation.!

Fredman and Willard [74, 75] showed that in the RAM model it is possible to sort
n integers in o(n log n) time, and to implement priority queue operations in o(log n) time.
(In other words the information-theoretic bottlenecks inherent in a comparison-based
model do not apply here.) To date the best implementations of Dijkstra’s algorithm on
integer-weighted graphs run in time O(m+/loglogn) [102] (expected) and time O(m +
nloglogn) [199].

In 1997, Thorup [196] invented the hierarchy-based approach to shortest paths —
a clean break from Dijkstra’s algorithm — and gave a linear-time SSSP algorithm for
the restricted case of non-negative integer-weighted undirected graphs. The question of
whether the hierarchy-based approach could be adapted to directed graphs and/or a
comparison-based model of computation was left unanswered. Hagerup [98], in 2000,
showed that indeed the hierarchy approach can be applied to directed integer-weighted
graphs. His SSSP algorithm ran in O(mloglog N) time, where N is the largest edge
length. Hagerup’s algorithm provided no speedup over existing RAM-based SSSP algo-
rithms, though it was deterministic and used only linear space.

2.1.2 All-Pairs Shortest Paths

The APSP problem — find the shortest path from every vertex to every other — can
easily be solved with n SSSP computations. Thus, Bellman-Ford solves APSP in O(mn?)
time and Dijkstra solves APSP (on non-negative edge lengths) in O(mn + n?logn) =
O(n?) time. However a more direct approach to APSP can give better bounds.

Dense Graphs

The Floyd-Warshall algorithm [47] computes APSP in O(n?) time, and has the prac-
tical advantages of being simple and streamlined. It is well known that a (min,+)
matrix multiplier can be used to solve the all-pairs distance problem (APD), which does
not ask for shortest paths per se. This gives an obvious O(n?logn)-time APD/APSP

!The phrase unit-cost here emphasizes that all operations take unit time, even non-AC® ones like
multiplication, and that all memory accesses take unit time, i.e., there is no cache in the model.

algorithm. What is less obvious is that the complexity of APD is asymptotically equiv-
alent to (min,+) matrix multiplication — see Aho et al. [4]. Fredman [69] gave a
min-plus multiplier that performs O(n?®°) numerical operations; however there is no
known polynomial-time implementation of Fredman’s algorithm. The fastest min-plus

algorithm to date is due to Takaoka [188], who uses Fredman’s approach on small sub-

loglogn

Togn), which is a sub-logarithmic

problems. Takaoka’s algorithm runs in time O(n?
improvement over standard matrix multiplication.

One cannot directly apply the “fast” matrix multipliers, such as those of Strassen
[186] or Coppersmith and Winograd [45], because (min,+) is not a ring: min has no
inverse. However, ring-based matrix multiplication can be used in less obvious ways to
compute APSP. The algorithms of [180, 82, 182, 9, 189, 209] take this approach, and
yield improved, o(n®) APSP algorithms on integer-weighted graphs, provided that the

magnitude of the integers is sufficiently small — always sublinear in n.

Sparse Graphs

Johnson [119] gave an interesting solution to the problem of negative edge-lengths. As-
suming that no negative-length cycles exist, he showed that the shortest path problem
is reducible in O(mn) time to one of the same size, but having only non-negative edge
lengths. Combined with Dijkstra’s algorithm this immediately yields an APSP algo-
rithm for arbitrarily weighted graphs running in O(mn + n?logn) time. Surprisingly
Dijkstra’s algorithm (with or without Johnson’s reduction) remained the fastest general
APSP algorithm for many years. (Refer to Chapters 4 and 5 for our improved APSP
algorithms.)

In the context of integer-weighted graphs and the RAM model, the existing im-
plementations of Dijkstra’s SSSP algorithm [102, 199] imply some bounds on APSP:
O(min{mn+/loglogn, mn + n?loglogn}). The hierarchy-type algorithms of Thorup
[196] and Hagerup [98] also give bounds on APSP. Hagerup’s algorithm solves APSP
in O(mn + n?loglogn) time,? and Thorup’s algorithm [196] solves undirected APSP in
O(mn) time.

2.1.3 Variations

Due to the practical significance of shortest paths, a number of variations on the problem
have been proposed, each restricting or generalizing some aspect of the SSSP or APSP
problems.

% Although their running times are identical, Hagerup’s APSP algorithm is theoretically cleaner than
the one derived from an implementation of Dijkstra’s algorithm with Thorup’s recent integer priority
queue [199]. Thorup uses multiplication whereas Hagerup only uses standard AC° operations.

The case of planar graphs has been studied extensively [151, 152, 66, 67, 105, 61].
Interestingly the SSSP problem on planar graphs is only slightly more difficult under
arbitrary edge-lengths [61] as opposed to positive edge lengths [105]. A number of al-
gorithms have been analyzed under the assumption of a complete graph with randomly
chosen edge lengths [184, 165, 128, 140, 187, 44], and two SSSP algorithms were pre-
sented recently [160, 89] that run in expected linear time when the edge-lengths are
selected uniformly from some interval. There are shortest path algorithms guaranteeing
approximate solutions (see Zwick’s survey [208]), dynamic shortest path algorithms (see
Demetrescu and Italiano [50] for more references), preprocessing schemes for answering
(approximate) shortest path queries [200, 197, 136, 96, 144, 51|, parallel shortest path
algorithms [201, 137, 101, 161], cache-efficient shortest path algorithms [155, 156, 162],
geometric shortest path algorithms [164], and a zillion others. (We have only sampled
the available literature and make no claim to completeness.)

2.1.4 Organization

In Section 2.2 we summarize our contributions to the shortest path problem, which are
revealed in merciless detail in Chapters 3—6. In Section 2.3 we give a formal definition
of the problem and introduce some notational conventions. In Section 2.4 we define the
comparison-addition model, and discuss various aspects of the model. In Section 2.5 we
describe Dijkstra’s algorithm and discuss a class of Dijkstra-like algorithms. In Section
2.6 we give a gentle introduction to the hierarchy-based approach to shortest paths.

2.2 Our Contributions

Thorup’s hierarchy approach [196] to shortest paths is designed for integer-weighted
graphs, and at first glance, seems to depend essentially on the RAM model and the
assumption of integral edge-lengths. Indeed, any straightforward “port” of Thorup’s
SSSP algorithm to the comparison-addition model (see Section 2.4) will incur a sorting
bottleneck, that is, a running time of Q(nlogn). In Section 3.6 we give a fairly strong
lower bound showing that any hierarchy-type SSSP algorithm must, in the worst case,
perform Q(m + nlogn) numerical operations, even if the graph is undirected. The
implications for hierarchy-type A PSP algorithms are less severe. Our lower bound shows
that solving APSP with n independent executions of a hierarchy-type SSSP algorithm
is sure to lead to running times of at least Q(mn + n?logn) — no improvement over
Dijkstra — since each SSSP computation is subject to the lower bound.

The way out of this bind is to exploit the strong dependencies that exist among
shortest paths in the same graph. Our undirected shortest path algorithm [Chapter
5], for instance, constructs a linear-space hierarchy structure that encodes useful in-

10

formation about every shortest path in the graph. Once the hierarchy structure is
built we can compute SSSP from any source in O(mloga(m,n)) time — essentially
linear — with a relatively simple and streamlined algorithm. This leads directly to an
O(mnloga(m,n)) APSP algorithm for undirected graphs. In the context of computing
APSP, or even SSSP multiple times, the cost of computing the hierarchy structure is
insignificant. However it may be the dominant cost when computing SSSP exactly once.
Our best bound on SSSP is O(ma(m,n)+min{nloglogr, nlogn}), where r bounds the
ratio of any two edge lengths. For r = poly(n) — a fairly reasonable assumption — the
bound becomes O(m + nloglogn), which is an improvement over Dijkstra’s algorithm.

Directed graphs are a different beast. At a high level our directed shortest path
algorithms [Chapter 4] are applying the same general technique: trimming costs by
exploiting certain dependencies among shortest paths. However the techniques we
develop for directed graphs are significantly more sophisticated than those for undi-
rected graphs. In Section 4.1 we present a directed APSP algorithm that runs in time
O(mn + n?loglogn); this is the first improvement over Dijkstra’s APSP algorithm on
real-weighted graphs. We cannot find a faster directed APSP algorithm, but in Section
4.2 we give a non-uniform APSP algorithm performing O(mnloga(m,n)) numerical
operations. Notice that for m = O(n), this bound is only a miniscule log a(n, n) factor
from optimal complexity. (This is very encouraging. It suggests that some part of the
APSP problem is actually soluble with ezisting techniques.)

In Chapter 6 we present the results of some experiments with a simplified version
of our undirected shortest path algorithm [Chapter 5]. The results are fairly impressive.
After the hierarchy structure is built, our algorithm consistently outperforms Dijkstra’s
algorithm on a variety of graph classes and sizes. It also performs between 1.81 and
2.77 times the speed of breadth first search, which can be considered a reasonable lower
bound on the practical limits of any shortest path algorithm.

2.3 Problem Definition

The input is a weighted directed graph G = (V, E,{) where |V| = n, |E| = m, and
{: E — R assigns a real length to every edge. It was mentioned in Section 2.1.2 that the
shortest path problem is reducible in O(mn) time to one of the same size but having
only non-negative edge lengths, assuming that no negative length cycles exist. We will
assume henceforth that £: E — R" assigns only non-negative lengths.

The length of a path is defined to be the sum of its constituent edge lengths, and
a shortest path, from one specified vertex to another, is one having minimum length.
The distance from u to v, denoted d(u,v) is the length of a shortest path from u to
v, or oo if none exists. The APSP problem is to compute the values d(u,v), for all
(u,v) € V xV, and the SSSP problem is to compute the values d(s, u) for a fixed source

11

s € V and all w € V. The SSSP problem is sometimes defined to be that of finding
shortest paths, not distances. However, one can easily show that given one — shortest
paths or distances — the other is computable in linear time. For the sake of simplicity
we focus on distances.

We frequently extend the distance notation to include objects other than vertices.
For instance, if H is a subgraph, a set of vertices, or any object identified with a set of
vertices, we let d(u, H) denote the minimum distance from u to any vertex in H.

2.4 The Comparison-Addition Model

Many computational models, such as the Turing machine and the word RAM, have the
property that data is finite, discrete, and inspectible. That is, the representation of an
elemental piece of data (a symbol on the tape of a Turing machine or the bits of a word
in a word RAM) can be fully known. For problems whose input consists of real-weighted
elements, such as the shortest path problem, it is impossible to work within a model
whose data is both finite and inspectible. In the comparison-addition model we sacrifice
inspectibility in order to retain the full generality of real-weighted data. Real numbers
are represented in special variables of type real. The only operations allowed on reals
are additions and comparisons, of the form:

a =b+c

and
if a<b then . . . else .

The comparison-addition model is not really complete because we have yet to define
what happens on non-real data. All of our algorithms work under the RAM model
(random access machine). Specifically, we assume the existence of a type integer, which,
like reals, is subject to comparisons and additions. We also assume that integers can be
used to index arrays. That is, if A is an array and ¢ an integer, the element A[i] can be
retrieved in unit-time. We assume no primitive operations that convert reals to integers
or vice versa.

A realist may argue that since real-life machines have finite, discrete, and in-
spectible data, one should study optimization problems (e.g., shortest paths) whose
weighted elements are assumed to be integers. In the abstract this has certainly been
a very successful endeavor. For several important optimization problems, such as max-
imum flow [91], maximum weight matching [80, 81|, and single-source shortest paths
[87, 80], the fastest algorithms for integer-weighted inputs can be faster than their coun-
terparts for real-weighted inputs by up to a polynomial factor, so long as the magnitude
of the integers does not get too large. These theoretical improvements are significant,

12

though they do not always result in corresponding real-world improvements. In practice
it is not unusual for an algorithm to have wildly differing worst-case and typical-case
running times (Bellman-Ford and nearly all maximum flow algorithms come to mind).
Depending on the problem, there may be no practical benefit to assuming integer-
weighted graphs.

An often overlooked aspect of the comparison-addition model is that its restrictive,
algebraic framework is actually useful in practice. By not meddling with the internal
representation of numbers, algorithms in the comparison-addition model naturally work
with a variety of numerical types.®> Moreover, it is possible to prove the correctness of
such algorithms with clean mathematical arguments.

2.4.1 Non-Uniform Complexity

We will use the term comparison-addition complexity to refer to the number of real-
number operations performed by an algorithm. This is a non-uniform complexity mea-
sure, in the sense that an algorithm with a certain comparison-addition complexity will
not, in general, have the same running time asymptotically. The difference between
uniform and non-uniform computation is usually understood as the difference between
Turing machine complexity and circuit complexity. Our situation is basically analo-
gous to this one, where our souped-up RAM takes the place of the Turing machine and
algebraic decision trees replace circuits.*

2.4.2 Basic Techniques

We frequently make use of real number operations not included in the comparison-
addition model, such as subtraction, multiplication by an integer, division and the floor
operation. We show below how these operations can be simulated in the comparison-
addition model, sometimes without asymptotic penalty.

To simulate subtraction we represent each abstract real number a by two actual
real numbers a; and ao such that a = a1 — as. Both abstract addition and abstract
subtraction are accomplished with two actual additions, since a+b = (a1 +b1)— (a2 +b2)
and a — b = (a1 + b2) — (a2 + b1). An abstract comparison between a and b translates
into an actual comparison between (a; + b2) and (ag + by).

Multiplication by an integer is also not difficult. Suppose a is a real and N an
integer. We can calculate Na in O(log N) time as follows. Produce the set of reals
B = {a,2a,4a,8a,...,2"8N]g} using log N additions, then produce Nz by summing

SLEDA [157], for instance, has a number of numerical data types beyond the usual int and float,
as do the Java & C# programming languages.

“This analogy is not entirely tight. A family of circuits solving a problem would have one circuit per
problem size, whereas in the shortest path problem we would have one algebraic decision tree for each
distinct input graph.

13

up the appropriate subset of B. Division by an integer is accomplished in a similar
fashion. Suppose we set a := b/N. If we want to compare a with another number,
say ¢, we can substitute the equivalent comparison between b and Nc. Here b/N is not
calculated but represented symbolically. (In general division can be very inefficient; it
can cause a large blow-up in the time to simulate future comparisons.)

An operation that comes in very handy is taking the floor (or ceiling) of the
ratio of two reals, i.e., computing the integer L%J This operation is different from the
ones discussed above because the result is an integer rather than a real number. We
compute the floor of a ratio using a method similar to our simulation of multiplication.
To compute L%J we first produce the set B = {b,2b,4b, 8b,...,2[1°g%]b}, then use
the elements of B to implement a binary search to find the integer L%J This takes
O(1 +log £) time

2.4.3 Lower Bounds

There are several known lower bounds on various shortest path problems in the comparison-
addition model. However, they are all very weak. Spira and Pan [185] showed that,
regardless of additions, Q(n?) comparisons are necessary to solve SSSP on the complete
graph. Karger et al. [128] proved that all-pairs shortest paths requires Q(mn) com-
parisons if all summations correspond to paths in the graph. However, this assumption
is restrictive: the Fredman and Takaoka algorithms [69, 188] are not path-based, and
neither are ours. Kerr [132] showed that any straight-line (oblivious) APSP algorithm
performs Q(n?) operations, and Kolliopoulos and Stein [140] proved that any fixed se-
quence of edge relaxations solving SSSP must have length Q(mn). By “fixed sequence”
they mean one which depends on m and n but not the graph topology. Graham et al.
[95] did not give a lower bound but showed that the standard information-theoretic ar-
gument cannot yield a non-trivial, w(n?) lower bound in the APSP problem. Similarly,
no information-theoretic argument can provide an interesting lower bound on SSSP.

2.5 Dijkstra’s Algorithm

It is sometimes useful to think about the SSSP problem as that of simulating a physical
process. Suppose that the graph represents a network of water pipes, and that at time
zero we begin injecting water into the network at a specific place: the source. The
SSSP problem is to compute when the water reaches each place in the network. Other
network optimization problems correspond to certain physical processes (network flow
and minimum spanning trees come to mind). Dijkstra’s algorithm is one of the few
that actually simulates the physical process directly. That is, the states of Dijkstra’s
algorithm correspond to states in the physical system.

14

Recall that the source vertex is represented by s. Dijkstra’s algorithm maintains
a set of visited vertices S, which, from the point of view of the simulation, corresponds
exactly to the places in the pipe network already reaches by the water. Therefore, at
any point in Dijkstra’s algorithm we are implicitly at time max,cg d(s,v). Dijkstra’s
algorithm maintains a tentative distance D(v) for each v € V, satisfying the following
invariant.

Invariant 1 (Dijkstra’s Invariant) For v € S, D(v) = d(s,v) and for v & S, D(v) is
the distance from s to v in the subgraph induced by S U {v}.

In the simulation D(v) represents the estimated time when water will reach v,
based on when water reached vertices in S. D(v) is an upper bound on d(s,v) and is
not equal to d(s,v) precisely when the shortest path to v passes through some vertex
in V — S. Dijkstra’s algorithm adds vertices to the set .S one by one, which implies,
since it is a physical simulation, that the next vertex added is always the v € (V — 5)
minimizing d(s,v). This is the same v € (V — S) minimizing D(v) since edge lengths
are assumed to be non-negative. Once we set S := S U {v}, the D-values may not
satisfy Dijkstra’s Invariant. To restore Invariant 1 we relaz each outgoing edge (v, w)
of v, setting D(w) := min{D(w), D(v) + £(v,w)}. Eventually S = V, implying that
D(v) =d(s,v) for allv € V.

The only complicated part of Dijkstra’s algorithm is deciding which vertex to visit
next. Dijkstra [52], more concerned with space than time, proposed examining D(v)
for all v € (V — S). This gives an SSSP algorithm with overall running time O(n?).
Using Fibonacci heaps [73], Dijkstra’s algorithm can be made to run much faster — in
O(m + nlogn) time — with only a small constant factor increase in space usage.

It is important to notice that Dijkstra’s algorithm represents only one method for
maintaining Invariant 1 and that, in principle, there are many “Dijkstra-like” algorithms
that grow the set S while preserving Invariant 1. When such an algorithm adds a vertex
to S, say v, it must have a certificate that D(v) = d(s,v), in particular that for all
u & S, D(u) + d(u,v) > D(v). Dijkstra’s certificate is simply that D(u) > D(v) by
choice of v, and that d(u,v) > 0 by the assumption that edge-lengths are non-negative.
To depart from Dijkstra’s algorithm one must be able to find a better lower bound on
d(u,v) than the trivial d(u,v) > 0.

Our shortest path algorithms are all Dijkstra-like, according to the definition
above. Therefore, the meaning of D, S, and s will be preserved in later chapters, as will
the meaning of the terms “visit” and “relax.” We may refer to Invariant 1 as simply
Dijkstra’s Invariant.

15

2.6 The Hierarchy Approach

The main limitation of Dijkstra’s algorithm is that it visits vertices in order of increasing
distance from the source. If we view the set S as the state, Dijkstra’s algorithm passes
through n distinct states corresponding to n physical states. Dinic [56] observed that
in general, not every state of the SSSP algorithm must correspond to a physical state.
Let ¢ > 0 be the minimum edge length in the graph. In Dinic’s variation on Dijkstra’s
algorithm, rather than visiting v € (V' — S) minimizing D(v), we visit any v € (V — 5)
minimizing | D(v)/t|, or indeed, every such v minimizing |D(v)/t| simultaneously. In
other words, we are setting up checkpoints at “time” 0,¢,2t, 3t,... where the physical
and algorithmic states are in alignment. Between these checkpoints the algorithm passes
through states that have no physical equivalent.

Generally speaking Dinic’s algorithm provides no improvement over Dijkstra’s
algorithm. However, it is the kernel of the hierarchy-based approach, which was invented
by Thorup [196] for the special case of integer-weighted undirected graphs. Thorup’s
insight was that Dinic’s algorithm can be generalized to arbitrary (and even multiple)
values of ¢; it need not fix ¢t at the minimum edge length. Consider a simplified, but
illustrative example.

Suppose that ¢ > 0 is arbitrary and the vertex set V is partitioned into disjoint
sets V1, Va,...,Vy where any edge from V; to Vj, i # j, has length at least t. Let
G°¢ be derived from the input graph G by contracting Vi,..., V) to single vertices,
denoted vy, ...,v;. On such a graph one can think of a hierarchy-type SSSP algorithm
as being composed of (at least) k + 1 processes, one that operates on G¢, and k that
operate on the graphs induced by Vi,...,V;. The process operating on G¢ basically
runs Dinic’s SSSP algorithm. It needs a slight modification because a vertex v; € V(G°¢)
is really a subgraph on V;, not an actual vertex. Therefore, rather than v; being either
visited or not, it can be partially visited if V; is only partially contained in S. The
process operating on G°¢ proceeds as follows. It visits, by delegating responsibility to
the other processes, all vertices whose distances lie in the interval [0,¢), followed by
those that lie in [t,2t), [2t,3t), etc. Suppose that the process governing V; is told to
visit all vertices in V; whose distances lie in [j¢,(j + 1)t). This process is given what
in later sections is called an independent subproblem, meaning that it can be solved
by looking only at V; and the current tentative distances, i.e. D-values. (Proving
independence is not difficult; the argument is essentially the same as that found in the
proof of correctness of Dinic’s algorithm.) The process governing V; could solve its
subproblems using Dijkstra’s algorithm, where the heap would contain the D-values of
just those vertices in V;. However, there is no reason why we cannot apply the same
scheme recursively. We would simply choose a new threshold ¢; and partition V; into
Vi1, Via,..., Vi, such that all edges crossing the partition have length at least ¢;. We

16

refer to this recursive partitioning of the vertices as a hierarchy.

It is certainly not obvious how to implement this algorithm efficiently. There
is the question of whether a good hierarchy can be computed efficiently, and — this
is a separate issue — whether the algorithm admits a fast implementation, given a
sufficiently good hierarchy. One of our primary concerns is whether there is an inherent
sorting bottleneck in the approach. If there is such a bottleneck, then all hierarchy-based
algorithms are doomed to have running times of Q(m + nlogn), the same as Dijkstra’s.
Of course, the absence of any kind of information-theoretic bottleneck does not imply
a faster hierarchy-based shortest path algorithm, but it would suggest the existence of
one.

In subsequent chapters we give a nearly-complete answer to the sorting bottleneck
question, though it is more complicated than simply yes or no. Several factors influence
the complexity of the hierarchy-type shortest path algorithms, including:

e Whether the graph is directed or undirected.

e Whether the ratio of the maximum-to-minimum edge length is large, as a function
of the number of vertices.

e Whether a good hierarchy is given or needs to be computed from scratch. (Com-
puting it from scratch can involve a sorting bottleneck.)

e Whether SSSP is to be computed once, or repeatedly on the same graph.

e Whether the topology and edge-length distribution of the input graph is typical.
Typical graphs are very different than our worst-case examples.

17

Chapter 3

Hierarchies & Shortest Paths

The central idea in hierarchy-type algorithms is that of dividing the SSSP problem into
a series of independent subproblems. In this chapter we define precisely this notion of in-
dependence, and show how independent subproblems can be created and manipulated.t

3.1 Independent Subproblems

Recall that s denotes the source of the SSSP problem. Let X C V denote a set of
vertices. We define dx(s,v) to be the distance from s to v in the subgraph induced by
X (or oo if X does not contain both s and v.) If I is a real interval, we define X' to
be the set {v € X : d(s,v) € I}, that is, those vertices in X whose distances from the
source lie in 1.

Definition 1 Let X and S be sets of vertices and I be a real interval. We will call X
(S, I)-independent if for all v € X1, d(s,v) = dg x1(s,)

To paraphrase Definition 1, if X is (S, I)-independent then one can determine
the set X! by examining only the subgraph induced by S U X!. Suppose that we
discover that X is (S, I)-independent in the context of a Dijkstra-like algorithm, i.e.
one satisfying Invariant 1. Now we can say something stronger: because the D-values
for vertices in X! — S encode all the relevant information about the subgraph induced
on S, one can determine X! by examining only the subgraph induced by X! — S and
the D-values of those vertices.

!This chapter’s notation and exposition are taken largely from two papers: (1) S. Pettie, A faster
all-pairs shortest path algorithm for real-weighted sparse graphs, Proc. 29th Int’l Collog. on Automata,
Languages, and Programming (ICALP), pp. 85-97, 2002, full version to appear in Theoretical Computer
Science, and (2) S. Pettie and V. Ramachandran, Computing shortest paths with comparisons and
additions, Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 267-276, 2002. The
results of Section 3.6.3 will appear in the journal version of (2).

18

A t-partition, defined below, is a key tool for creating new, smaller independent
subproblems given a larger one.

Definition 2 Let X be a set of vertices. The sequence (X1, Xs,...,X}) is a t-partition
of X if {Xi}; is a partition of X and for every edge (u,v) where u € X;, v € Xj, and
j < i, we have £(u,v) > t.

Note the asymmetry in Definition 2. In a ¢-partition only “backward” edges
crossing the partition have length at least ¢; “forward” edges can have any length.
Lemma 1 shows the relationship between t-partitions and independent subproblems. It
generalizes some of the Lemmas given by Thorup [196].

Lemma 1 Suppose that X is (S, [a,b))-independent. Let (Xq,...,Xy) be a t-partition
of X, let I be the interval [a, min{a +t,b}), and let S; = SUXF UXI U UX]. Then

1. X;4q is (S;, I)-independent
2. X is (Sg,[a+t,b))-independent

Proof: First consider Part (2). The assumption is that X is (S, [a,b))-independent,
meaning that for v € Xab) dgixtan (8,v) = d(s,v). Since S = S U X!, we have
Suxled) = g uxettd) which immediately implies that X is (Sk, [a+t, b))-independent
as well. Note that the interval [a + ¢,b) may be empty if b < a + .

Now consider Part (1). The set X;y1 is (Sj,I) independent if for any v € X/, ,,
d(s,v) = dsiuXiI+1(8, v). Suppose that this is not the case, that is, that every shortest s—
to—v path is not contained in ,S'Z-UXiI_i_1 = S;+1. Let w be the last vertex on such a shortest
path which is not in S;;;. The independence of X w.r.t. (S,[a,b)) implies w € X, and
the inequalities d(s, w) < d(s,v) < min{a + ¢, b} further imply w € (S — S;+1). By the
definition of a t-partition we have that d(w, v) > t. Together with the inequality d(s,v) =
d(s,w) 4+ d(w,v) < min{a +t,b} we also have that d(s,w) < a. We now have enough to
obtain a contradiction. For any shortest s—to—v path we proved the existence of a w on
this path that is neither in S nor in X[%*) implying that d(s,v) < dg_ v (5,v). This
directly contradicts our initial assumption that X is (S, [a, b))-independent.

O

Lemma 1 is essentially describing a divide and conquer scheme for SSSP. The idea
is to find an independent subproblem on the vertex set X, divide it into a series of smaller
independent subproblems, with the aid of a t-partition, then solve the smaller problems
recursively. There are several major obstacles to implementing this general algorithm
efficiently, which we will address in subsequent chapters. The first order of business is
computing and representing t-partitions. All of our shortest path algorithms have the
property that the choice of ¢-partitions does not depend on the source vertex. Therefore,
for any input graph we shall compute, once and for all, a single set of t-partitions, which
we represent using a rooted tree, or hierarchy.

19

3.2 A Stratified Hierarchy

A hierarchy is a rooted tree where there is a one-to-one correspondence between its leaves
and the graph’s vertices. There is a natural correspondence between hierarchy nodes
and graph objects. We will frequently use the same notation to refer to leaf-nodes and
graph vertices, and will treat internal nodes as representing either sets of vertices or the
induced subgraphs of those vertices. If z is an internal node we let V(z) be the vertices
represented by z, i.e. the set of leaf-nodes descending from x. We denote the parent of
z in the hierarchy by p(z), and let CHILD(z) = (z1, %2, ..., Tppa(s)) denote the children
of z, from left to right, where DEG(z) = |CHILD(z)|. The |V (x)| and DEG(z) statistics
provide two ways to measure how “big” a node z is. Two others will come in handy.
We let DIAM(x) represent an upper bound on the diameter of V' (z), where diameter is
defined as max, ,cy () {d(u,v)}. We associate with x a real number NORM(z), and refer
to the ratio DIAM(z)/NORM(z) as the normalized diameter of x. We assign NORM-values
to hierarchy nodes with several objectives in mind, namely the correctness, speed, and
simplicity of our shortest path algorithms. Since the main concerns of this chapter are
only correctness and simplicity, we can say that NORM-values are assigned to satisfy two
conditions.

1. Either NORM(p(x)) is an integer multiple of NORM(z) or NORM(p(z)) > DIAM(z).

2. Let cHILD(z) = (21,...,%pgg(z)). Then (V(x1),...V(Zppg(z))) is @ NORM(z)-
partition of V(z).

Item (1) allows us to avoid great complications in our shortest path algorithms,
but is otherwise of no interest. Item (2), in conjunction with Lemma 1, will clearly be
useful in the creation of independent shortest path subproblems.

Our system for assigning NORM-values is best explained by demonstrating why the
simple schemes used by Thorup and Hagerup [196, 98] do not work in the comparison-
addition model. Thorup and Hagerup always choose their NORM-values from the set
{2i}i20; a node with NORM-value 2¢ then corresponds to a connected component [196]
(or strongly connected component [98]) in the graph restricted to edges with length
less than 201, In the comparison-addition model, however, the set {2i}i20 cannot be
generated because there is no sequence of operations (that is, additions) that generates
the constant 1. This, of course, is no great obstacle. We can simply choose our NORM-
values from the set {/{; - 2i}i20, where /; denotes the minimum non-zero edge length
in the graph. In other words, we are just using the old system, under the irrefutable
assumption that ¢; = 1. Although this system should work well in practice, there is a
theoretical objection to it that must be addressed. In the comparison-addition model the
time required to generate ¢; - 2¢ is exactly i, so if the ratio of the maximum-to-minimum
edge length is r, generating the largest NORM-value could take logr time, which is

20

unbounded® in terms of m and n. Our solution is to build a stratified hierarchy SH,
where each stratum corresponds to a different normalizing edge length. For example,
the scheme with NORM-values from {1 - 2};>9 would have one stratum, with ¢; as its
normalizing edge length. We ensure that the ratio of two NORM-values within a stratum
is bounded as a function of n, and that the strata are well-separated in a certain sense.

We now define the structure of our stratified hierarchy SH. First, let £1,...,40p
be the non-zero edge lengths of the graph in sorted order. We choose, as our set of
normalizing lengths,

Ly Ul o 4y > 2n-4;_1} U {oo}

That is, every normalizing length is much larger than any shorter edge lengths. Let £,
be the k™ smallest normalizing length. The nodes of SH are indexed by their stratum
and level within the stratum. For stratum k the levels run from 0 to the maximum ¢
such that £, 2t < lrpir
connected components > (SCCs) in the graph restricted to edges with length less than
lr, - 2% If z is such an SH-node then NORM(z) is defined as:

The stratum k, level ¢ nodes of SH correspond to the strongly

NORM(z) = £, -2°"' where z is at stratum k, level i (3.1)

k

A node z is an ancestor of y if V(z) 2 V(y) and z is higher in SH than y (higher
stratum of same stratum and higher level). If V(z) = V (y), where y is a descendant of z,
then we will call irrelevant. In the tree representation of SH we shall ignore irrelevant
nodes, that is, nodes with one child. Henceforth, “c € SH” means z is a relevant node
in SH. The notation p(z) and CHILD(z) should be interpreted with respect to the tree
of relevant SH nodes. That is, p(z) is the nearest relevant ancestor, and CHILD(z) is a
sequence of nodes (z;); for which p(z;) = x. Figure 3.1 gives an example input graph
and its associated SH.

If {Zi}1<i<pra(e) 1S the set of 2’s children, we set CHILD(z) = (%1, %2, ..., Tprg(z))
so that (V(z1),V(22),...,V(%prg(z))) is @ NORM(z)-partition of V(z). Lemma 2 guar-
antees that such a left-to-right ordering of x’s children always exists.

Lemma 2 Let z € SH and {x;}; be the children of x. Then for at least one permutation
T, (V(zrq)), V(Zx2))s---» V(Tr(prc(2)))) 8 @ NORM(z)-partition of V(x). Moreover,
if the graph is undirected then then all such permutations give NORM(z)-partitions of
V(z).

%In the algorithms of Thorup and Hagerup [196, 98] log r is also unbounded in terms of m and n,
but, by assumption, not in terms of the machine’s word size. Therefore the [196, 98] algorithms get
around this issue by assuming that the power of the machine scales with the largest edge-length, not
with m or n.

3A strongly connected component is a maximal subgraph such that any vertex in the subgraph is
reachable from any other.

21

3.2
2.5 250 101

stratum 2, level 2, NORM = 20!

stratum 2, level 1, NORM = 10!
stratum 1, level 2, NORM =3
stratum 1, level 1, NORM = 1.5

stratum 1, level 0, NORM = .75

graph vertices

Figure 3.1: Above: the input graph. Circled edge lengths represent “normalizing”
lengths. Below: the associated SH. It has two strata, based on the normalizing lengths
¢, = 1.5 and {,, = 100. A stratum k, level i node has NORM(z) = £, .21 and
represents a strongly connected component of the graph, when restricted to edges with
length less than 2 - NORM(z). Irrelevant SH-nodes (those having one child) are not
shown in the figure.

Proof: Let G(z) be the subgraph of G induced by V(z). By definition G(z) is strongly
connected, even when restricted to edges with length less than 2 - NORM(z). Let G¢(x)
be the graph derived from G(x) by contracting G(z1), G(22),...,G(Zpra(s)) and re-
taining only edges with length less than NORM(z). There is a natural correspondence
between vertices in G¢(x) and the children of . We claim that (a) G¢(z) is acyclic
and (b) If we let 7(¢) be the index of the ith vertex in a topological sort of G¢(x), then
(V(zrw)),-- > V(Zr(pEc(z)))) s @ NORM(z)-partition of V (z).

Consider claim (a). By definition V(z;) is a mazimal strongly connected set, in
the graph restricted to edges with length less than NORM(z). If x; were contained in a
cycle in G¢(z), then the maximality of V(x;) would be violated, since all edges in G¢(x)
have length less than NORM(z).

We turn to claim (b). Assume w.l.o.g. that 7(i) = ¢. If the claim were not true
then by the definition of ¢-partition (Definition 2) there must be an edge e = (xj, z;)
where 7 < j and £(e) < NORM(z). However, {(e) < NORM(z) implies e was included in

22

G°(z), which implies that j < ¢ — a contradiction — since x; must precede z; in every
topological sort.

Now suppose that G were undirected, or rather, G is a directed graph where the
existence of an edge (u,v) implies an edge (v,u) with equal length. Claim (a) above
states that G¢(x) is acyclic. This implies that G¢(x) has no edges, since the existence
of one edge immediately implies the existence of a cycle of length 2. Therefore, any
permutation 7 corresponds to a topological sort of G¢(x).

O

Recall that DIAM(z) represented an upper bound on the diameter of V(z). For
any leaf-node z, setting DIAM(z) = 0 is clearly satisfactory. We compute DIAM(z) for
all internal SH-nodes with the following recursive definition.

DIAM(z) = 2NORM(z)- (DEG(z) —1) + » DIAM(Y) (3.2)
y € CHILD()

Lemma 3, given below, summarizes all the relevant properties of SH used in our
algorithm’s analysis and proof of correctness. Parts 2 and 4 are implicit in [196, 98];
weaker versions of Part 6 were also used in [196, 98].

Lemma 3 SH has the following properties:
1. SH has a single root, denoted ROOT(SH).

2. Let CHILD(z) = (z1,%2,...,Tpga(z)). Then (V(z1),...,V(Tpra(z))) 15 @ NORM(z)-
partition of V (z).

3. Either NORM(p(x)) is an integer multiple of NORM(z) or DIAM(z) < NORM(p(x)).

/.
Z DEG(z) < 2n—1

zeSH
5.
DIAM(z)
For anyx € SH, ———= < 2n
NORM(z)
6.
DIAM
3 Diam(z) -
NORM(z)
zeSH
7.

HxGSH:LM(‘”)zkH <
NORM(z)

23

8. SH s constructible in O(mlogn) time.

Proof:

(1) The input graph may or may not be strongly connected. However, we will interpret
the graph as being complete: any edges not appearing in the input implicitly have length
00. Since we included oo as one of the normalizing lengths, there is some (possibly
irrelevant) node z such that NORM(z) = o0 and V(z) = V.

(2) See Lemma 2.

(3) If p(z) and z are in the same stratum, then clearly NORM(p(x)) is a multiple of
NORM(z). If NORM(p(z)) = £, - 2¢, where i > —1, and z is not in stratum k, then
DIAM(z) < (|V(z)| — 1) - 2NORM(z) < n - £,, /2n < NORM(p(z)).

(4) Every relevant SH-node has at least two children. The sum counts every relevant
SH-node (except the root) exactly once.

(5) V() is a strongly connected set, even when restricted to edges with length less than
2NORM(z). Therefore, DIAM(z) < |V (z) — 1| - 2NORM(z) < 2n - NORM(Z).

(6) Let 27 denote the j** ancestor of z € SH. Since the NORM-value of a node is no more
than half that of its parent (see Equation 3.1), we have NORM(z)/NORM(z7) < 277. We
write z desc. ¢ to mean z is a (not necessarily proper) descendant of z in SH. Using
the definition of DIAM from Equation 3.2 we can bound the sum as follows.

2NORM(z) - (DEG(z) — 1) + X ccmun(z) PIAM(Y)

DIAM(z)
2. NORM(z) 2

cESH e NORM(z)
B 2NORM(z) - (DEG(z) — 1)
B Z Z NORM(z)

z€ESH z desc. z

B 2NORM(z) - (DEG(2) — 1)
= 2 2 NORM (27

ze€SH j>0
2. DEG(z) —1
< XX T
2ESH j=0
=) 4-(pEG(2)—1) < 4n
zESH

(7) Follows from Part 6.

(8) We construct SH using essentially the same algorithm found in [98]. The idea is
to determine those nodes in the “middle” level of SH, then find those nodes above the
middle and below the middle recursively. As in [98] we use Tarjan’s linear-time algorithm
for finding SCCs. We first sort the edge-lengths and determine the O(m logn) possible
NORM-values in O(mlogn) time. Let NORM; < NORM2 < --- < NORMy, be the possible
NORM-values and G’ be the input graph G restricted to edges with length less than

24

2NORM /5. We find the SCCs of G’ in O(m + n) time; let {C;}; be the set of SCCs
and G¢ be derived from G by contracting the {C;}; into single vertices. The {C;};
correspond to SH-nodes with NORM-values equal to NORM /2. We proceed recursively
on the {C;}; (finding SH-nodes with NORM-values in the range NORM;..NORM /2| _1)
and on the graph G¢ (for NORM-values in the range NORM| /9| 41..-NORM). There are
log(mlogn) = O(logn) levels of recursion and for each level the number of edges and
vertices for subgraphs at that level is no more than m and 2n, respectively. Therefore,
the total time required is O(mlogn).
O

3.3 A Generalized Hierarchy-Type Algorithm

The hierarchy-type algorithms are Dijkstra-like in the sense that they fix the distance of,
or wvisit, vertices one by one, while maintaining Invariant 1. We generalize, somewhat,
the notions of wvisit and tentative distance used in Dijkstra’s algorithm. Recall that the
D-value of a vertex is its tentative distance from the source. We define the D-value of
an SH-node as the minimum over its constituent vertices:
D(z) = min {D(v)}, wherez € SH
veV (x)

Note that the D-value of a leaf node is the same as its corresponding vertex.

We compute SSSP with a recursive algorithm called GENERALIZED-VISIT, given
in Figure 3.2. Applied to a leaf-node of SH, GENERALIZED- VISIT works just like the
usual visit routine: it visits the leaf’s associated vertex, and updates tentative distances
to accord with Dijkstra’s Invariant 1. However, GENERALIZED-VISIT can be used to
solve any independent subproblem of SSSP. It takes two arguments: an SH-node and
an interval I with the guarantee that V(x) is (5, I)-independent, where S is the current
set of visited vertices. Its only task is to visit the vertices in V(z)! and update the
tentative distances, restoring Invariant 1. Using the GENERALIZED-VISIT procedure, we
can compute SSSP from source s as follows. We set S := 0, D(s) := 0, and D(v) := o0
for all v # s, then call GENERALIZED-VISIT(ROOT, [0, 00)), where ROOT = ROOT(SH).
Invariant 1 is clearly satisfied w.r.t. S = 0, and V(rOOT) = V is clearly (0, [0,00))-
independent, so the input guarantees for the initial call to GENERALIZED-VISIT are
met. After the call to GENERALIZED-VISIT(ROOT, [0,00)), Invariant 1 will hold w.r.t.
S D V(rooT)0®) =V implying D(v) = d(s,v) forallv € S =V.

In each call to VISIT there are two cases, depending on whether z is a leaf node
or an internal node of SH. Suppose z is a leaf and V(z) = {v}. Because we maintain
Invariant 1, deciding whether v € V(z)! is equivalent to deciding if D(v) € I, which is
simple to do. In the general case x is an internal node. We determine V' (z)! by making
a series of recursive calls to children of z, using subintervals of I of width NORM(z).

25

GENERALIZED-VISIT(z, [a, b))

Specifications: It is assumed that V(z) is (S, [a,b))-independent, where S
is the set of wisited vertices at the time of the call, and that Digkstra’s
Invariant 1 is satisfied. Upon completion all vertices in V(m)[a’b) will have
been visited.

1. If z is a leaf and D(z) € [a,b), then set S := S U {z} and relax all of z’s
outgoing edges.

2. If ViSIT(z, -) is being called for the first time, assign intervals to z’s buck-
ets. Bucket ¢ is labeled

[tz + 1 - NORM(z), t; + (i + 1)NORM(x))

where ¢, is set to

D(z) if D(z) + p1aMm(z) < b
e =9 p_ NORM(7) [b=D(e) -| otherwise

Set q. — tp if this is the first call to VisiT(z,-)
T a otherwise

While a, <band V(z) £ S
While bucket [ag, a; + NORM(z)) is not empty
Let y be the leftmost child of z in bucket [a,, a; + NORM(z))
VIsIT(y, [az, az + NORM(x)))
Remove y from its bucket
If V(y) £ S, put y in bucket [a; + NORM(x), a; + 2 NORM(x))
ay := az + NORM(z)

Figure 3.2: A general divide-and-conquer algorithm for single-source shortest paths.

26

The crucial property of SH that we use is that the ordered set CHILD(x) represents a
NORM(z)-partition of V(z) — see Lemma 3(2). Together with Lemma 1 we are able to
guarantee that each recursive call represents an independent subproblem.

To bound the number of recursive calls, it is important not to make too many
trivial ones, that is, calls which cause no vertex to be visited. To that end we associate
with & an array of buckets that will contain the children of . The buckets represent
consecutive real intervals of width NORM(z) and the bucket array represents an interval
spanning [d(s,z),d(s,z) + DIAM(x)] where d(s,z) = d(s,V(x)) is the distance to any
node in V(z). When GENERALIZED-VISIT(z,-) is called for the first time we choose
a suitable starting point ¢, and label each bucket with its associated interval: the i*"
bucket is assigned the interval [t; + iNORM(z), t, + (i + 1)NORM(z)). We will choose ¢,
such that t; < d(s,z) < t; + NORM(z). Therefore, at most Ré’;h&((?ﬂ + 1 buckets are
required. For notational convenience we may refer to a bucket by its associated interval.

We will say x is inactive until GENERALIZED-VISIT(z, -) is called, and active af-
terward. We will assume, for the time being, that Invariant 2 is maintained.

Invariant 2 (Bucket Invariant) Let x be an active SH-node. A child y of x appears
in one of x’s buckets, unless D(y) = oo or V(y) C S, in which case y appears in no
bucket. Every node y appearing in bucket [q,q + NORM(z)) is either an inactive child
such that D(y) € [q,q + NORM(z)), or an active child such that V(y)%9 C S, but
V (y)loa+Norn(@) 7 g,

Suppose that in the call to GENERALIZED-VISIT(z,), I spans the intervals of
k of x’s buckets, say, buckets bji1,bji2,...,bj4r. GENERALIZED-VISIT performs up
to k iterations. In the i*® iteration it repeatedly locates the leftmost* child y of z in
bucket b;;, performs a recursive call on y, whose interval argument is the same interval
associated with b;;, then restores the Bucket Invariant 2. This involves either moving
y to the next bucket if V(y) is not yet contained in S, or removing y from the bucket
array altogether if V(y) C S. If, after processing some bucket, V(z) C S, the current
call to GENERALIZED-VISIT(z, -) halts. In the next section we prove the correctness of
this algorithm. Many of the finer points in the analysis revolve around our choice of ¢,
in Step 2 of GENERALIZED- VISIT.

3.4 Correctness of GENERALIZED-VISIT

In this section we prove that GENERALIZED- VISIT works correctly. Specifically, we show
that GENERALIZED-VISIT(z, I) visits (adds to the set S) all vertices in V(z)!. We as-
sume that Dijkstra’s Invariant and the Bucket Invariant (1 and 2) are magically updated

“Recall that the set CHILD(z) has some left-to-right ordering.

27

behind the scenes. That is, adding a vertex to .S causes the D-values of all vertices and
SH-nodes to be updated, restoring Dijkstra’s Invariant, and causes some number of
SH-nodes to be moved to different buckets in accordance with the Bucket Invariant.
In Section 3.5 we discuss the problem of efficiently implementing GENERALIZED- VISIT;
off-the-shelf data structures and techniques seem inadequate. In Chapters 4 and 5 we
develop shortest path algorithms for directed and undirected graphs, respectively, based
on more sophisticated implementations of GENERALIZED- VISIT.

The following lemmas look at GENERALIZED-VISIT from the perspective of some
SH-node z. They assume implicitly that at the call GENERALIZED-VISIT(z,), V(z) is
(S, I)-independent. They also assume that the initial call was GENERALIZED- VISIT(ROOT, [0, 00)).

Lemma 4 In any two calls GENERALIZED- VISIT(z, I1) and GENERALIZED- VISIT(z, I5),
|I1] = |Iz| = NORM(p(z)).

Proof: All recursive calls on z are made from calls on p(z). Moreover, all recursive
calls from p(x) have interval arguments of width NORM(p(z)).
a

Lemma 5 If GENERALIZED-VISIT(z, I) is the first call to an SH-node x, then we have
D(z) = d(s,z) € I.

Proof: The lemma clearly holds for the initial call GENERALIZED- VISIT(ROOT, [0, 00)),
so consider the case when x # ROOT. Before the recursive call GENERALIZED- VISIT(z, I),
x must have been in p(x)’s bucket spanning the interval I. Since x was inactive before
the call, the Bucket Invariant 2 guarantees that D(z) € I. Together with the assumption
that V(z) is (S, I)-independent we have the equality D(z) = d(s, x).

a

Lemma 6 Consider the variables az; and b in any call to GENERALIZED- VISIT(z, [a, b)).
Either NORM(z) divides b — a, or V(x)00) =V (z).

Proof: In the first call to GENERALIZED-VISIT(z, [a, b)), a, is set to t,. Suppose that
te = D(z), because D(x) + pDi1AM(z) < b. By Lemma 5, D(z) = d(s,x), implying
that V(z)!%) = V(z). If, on the other hand, t, is set to b — NORM(z) [1\?;5/[(&))1, then
NORM(z) divides b—t, and, at least initially, b—a, as well. Since a, is only incremented

in units of NORM(z), b — a; remains divisible by NORM(z). We have proved the lemma
for the first recursive call on x.

Now suppose that GENERALIZED- VISIT(z, [a, b)) is not the first recursive call on
z, hence we set a; := a initially. According to Lemma 3(3) either NORM(z) divides
NORM(p(z)) or DIAM(z) < NORM(p(z)). Suppose NORM(z) divides NORM(p(z)). By
Lemma 4, NORM(p(z)) = b — a and therefore NORM(z) divides b — a, initially, and,

28

with the observation that a, is incremented in units of NORM(z), ever after. Now
suppose DIAM(z) < NORM(p(z)). Since this is not the first recursive call on z, we
know, by Lemma 5, that d(s,z) < a and therefore that d(s,z) + DIAM(z) < b, implying
V(z)00 =V (z).

O

Lemma 6 is a little technical. We use it to show that the intervals generated by
a node and its parent are properly aligned. Consider Z;, the set of intervals passed in
recursive calls from p(z) to x, and Zy, the set of intervals passed from z to its children.
We require that intervals in Z; and Zp have widths NORM(p(x)) and NORM(z) respec-
tively, and that they each cover the interval [d(s,z), d(s,z) + DIAM(z)]. Furthermore,
each interval in Zo must be wholly contained in one interval from Z;. Because we use
a stratified hierarchy, NORM(p(z)) is not necessarily a multiple of NORM(z). Therefore,
these requirements can only be satisfied if DIAM(z) < NORM(p(x)), i.e., if NORM(z) does
not divide NORM(p(x)) then it is impossible for Z; to contain more than two intervals.
Our choice of t; in Step 2 of GENERALIZED- VISIT is certainly not profound, but it does
greatly simplify the algorithm’s analysis and proof of correctness.

The following Lemma proves that GENERALIZED- VISIT works as advertised. We
point out, since it may not be obvious on the first reading, that the proof of Lemma 7
is composed of three induction arguments. There is an induction over time, where we
assume previous recursive calls behaved properly. There is an induction over problem
size, where we assume certain future recursive calls behave properly, and finally, a
double-induction over the two while-loops in Step 3 of GENERALIZED-VISIT, addressing
the current recursive call.

Lemma 7 After the call to GENERALIZED-VISIT(z, [a, b)), V(z)*?) C 8.

Proof: We assume inductively that V(z) is (5, [a, b))-independent when GENERALIZED-
VisiT(z, [a,b)) is called. This clearly holds for the first recursive call, when # = ROOT,
[a,b) = [0,00), and S = 0.

Consider the case when « is a leaf in SH, that is, a vertex. GENERALIZED-VISIT
includes « in S precisely when D(z) € [a,b). According to the definition of independence
D(z) € [a,b) implies D(z) = d(s,), so in this case the lemma is satisfied.

Suppose, now, that z is an internal node in SH. We will assume, inductively, that
each time through the outer while loop in Step 3 of GENERALIZED-VIsIT, V (z)%%) C §
and V(x) is (S,[ag,b))-independent w.r.t. the current values for a, and S. Let us
examine the base cases, concerning the first entry into the outer while loop. If a,
is set to t, initially, then a, < D(z) = d(s,z), implying that V(z)%%) = ¢ C S.
Furthermore, since V(z) is (S, [a, b))-independent, it is (S, [ag, b))-independent as well.
The other case is when a; is set to a on entry into the outer while loop. In this case
V (z)1%) C S follows from our inductive assumption (w.r.t. the parent of z in SH) and

29

the (S, [a,b))-independence of V(x) has already been assumed. Since a, is incremented
by precisely NORM(z) after each iteration of the outer while loop, to complete the
induction we will show that the recursive calls in the inner while loop cause all vertices
in V (x)le:0e tNORM(2)) {6 he visited.

Consider the entry into the inner while loop in GENERALIZED-VISIT, and let
I = [az,a; + NORM(z)), that is, the current bucket is labeled I. Imagine that we
consider each node in CHILD(z) = (x;); in left-to-right order. We will show two things:
first, that when z; is considered V(x;) is (S, I)-independent for the current value of
S. Therefore, if the recursive call GENERALIZED- VISIT(z;,) is made, we can assume
inductively that it visits all vertices in V(z;)!. Second, if no recursive call is made on
zj (meaning z; never appears in the bucket labeled I) then V(z;)! — S = 0. This will
establish the correctness of the inner while loop.

We claim that when x; is considered V' (z;) is (S, I)-independent. Let S’ be the set
S just before this iteration of the outer while loop, and assume inductively that when
z; is considered S = S’ UV (z1)! U--- UV (2j_1)!. Lemma 3(2) states that (V(z;)); is
a NORM(x)-partition of V(x). Together with the assumption that V(x) is (5, [az,b))-
independent and Lemma 1(1), we have that V(z;) is (S, [az, min{a, + NORM(z), b}))-
independent. However, we need to show that it is (.S, I)-independent, since it is the
interval I = [az,a; + NORM(z)) that would be passed to the recursive call. By Lemma
6, either NOrRM(z) divides b — a, or V()% = V(z). If NorM(z) divides b — a, then
I = [az, min{a, + NORM(x),b}) since we only entered the outer while loop if a, < b,
implying a, < b — NORM(z). On the other hand, if V()% = V(z), then V(z;)
being (S, [ag, min{a; + NORM(x), b}))-independent implies that it is (.S, I)-independent
as well. To complete the induction we must show that after x; is considered, S =
S'UV(z1)fU--- UV (z;)!. If we perform the recursive call GENERALIZED-VISIT(z, I)
then we can assume inductively that vertices in V(a:j)l are visited. Therefore, we must
only prove that if no such recursive call is made, then V(a:j)I — S = 0. We perform
recursive calls on all children that end up in bucket I. By Invariant 2, if z; is not in
bucket I when it is considered, then either D(z;) > a,;+NORM(z) (implying V (z;)! = 0)
or V(zj) C S; in either case V(Cy,;)! — S = 0. This completes the induction for the
inner and outer while loops.

The outer while loop in Step 3 terminates either because a; > b or V(z) C S, both
of which imply V(x)[%%) C S. Therefore, after the call to GENERALIZED-VISIT(z, [a, b)),
all vertices in V (z)? are visited. This establishes the lemma.

O

30

3.5 Implementation Details

An efficient implementation of the GENERALIZED-VISIT routine must solve two data
structural problems, corresponding to Dijkstra’s Invariant 1 and the Bucket Invariant 2.
Whereas Dijkstra’s algorithm only has to maintain the D-values (tentative distances) of
vertices, which is trivial, we must maintain the D-values of hierarchy nodes as well, which
is no longer trivial. The problem of maintaining the Bucket Invariant is not difficult,
but maintaining (or simulating) it efficiently is quite tricky. Each of our shortest path
algorithms uses a different technique for simulating the Bucket Invariant.

We first show that the costs of implementing GENERALIZED-VISIT are linear in
the number of vertices, assuming Invariants 1 and 2 are maintained behind the scenes.
We must account for two costs: that of performing some number of recursive calls, and
that of computing ¢, in Step 2, for all z € SH.

Lemma 8 For each SSSP computation, the total number of recursive calls to GENERALIZED-
VISIT is less than 5n.

Proof: By Lemma 5, if GENERALIZED-VISIT(z,) is the first recursive call on z, then
D(z) = d(s,z) € I. Together with Invariant 2 and Lemma 4, this implies that each

DIAM(z)
NORM(p(z))

-| + 1 recursive calls, where p(z) is the
parent of in SH. The total number of recursive calls is then

node x € SH is passed to at most [

DIAM(z) DIAM(z
zw: ’VNORM(p(m))-| o< [SHI+ Z ’72NORM -| (3:3)
< |SH|+n—1+§-Z%ILI(&)) (3.4)
< bn (3.5)

Line 3.3 follows from the inequality NORM(p(z)) > 2NORM(z). Line 3.4 follows
DIAM(z) DIAM(z)
NORM(z) NORM(z)
which there are no more than n — 1. (If z were a leaf, then DIAM(z) = 0.) Line 3.5

follows from the bounds |S#| < 2n and, by Lemma 3(6), 3, 2240 4p

Z NORM(x)
|

since { 1 is only strictly greater than if x is an internal node of SH, of

Lemma 9 The total time required to find {t;}zcsy is O(n).

Proof: In Step 2 of GENERALIZED- VISIT, ¢, is set to D(z) if D(z) + DIAM(z) < b and
b — NORM(z) {b_D(w)-| otherwise. Checking whether D(z) + DIAM(z) < b takes O(1)

NORM(z)

time, and computing b — NORM(z) [ﬁ;@(&ﬂ takes O(ﬁg@(é))) time: one simply counts

31

Given that b — D(z) < DIAM(x), the total time to find all {t;}zes is Y, O(DIAM(z)

NORM(z) /?

back from b in units of NORM(z) in order to find min{j : b — j - NOrRM(z) < D(z)}.
)

which is O(n) by Lemma 3(6).

O

We support an implementation of GENERALIZED-VISIT with two abstract data
structures, denoted D and B. D updates the D-values of SH-nodes as dictated by
Invariant 1, and B maintains the bucket arrays of active SH-nodes in accordance with
Invariant 2. Although it is typical to assume that data structures do not talk to each
other, it is conceptually simpler here to think of D and B making queries to each other.
We describe their interactions below, then bound their complexity.

When an edge (u,v) is relaxed in Step 1 of GENERALIZED-VISIT, we tell D to
set D(v) := min{D(v), D(u) 4+ £(u,v)}. If this decreases D(v) then it may decrease the
D-values of many ancestors of v in SH as well. Let y be the unique ancestor of v which
is an inactive child of an active node. If D(y) is also decreased then to restore Invariant
2 y may have to be moved to a different bucket. If this is the case then D notifies B that
D(y) has changed. D also accepts queries to D-values. In particular, when an S#H-node
x becomes active B files each child y of z in its bucket array based on the value of D(y).
The bucketing structure B must also fulfill the needs of GENERALIZED-VISIT. Specif-
ically, in a call to GENERALIZED-VISIT(z, -), GENERALIZED-VISIT repeatedly requests
the leftmost child of = in the current bucket labeled [a,, a; + NORM(x)), and possibly
moves that node to the next bucket, labeled [a; + NORM(z), az + 2 NORM(z)). Lemmas
10 and 11 bound the complexities of D and B, respectively.

Lemma 10 D can be implemented to run in time ©(SPLIT-FINDMIN(m,n)) = O(mlog a(m,n)),
where SPLIT-FINDMIN(m, n) is the decision-tree complezity of the split-findmin problem
on m operations on an n-element sequence.

We show below how the split-findmin data structure can be used to implement D.
The complexity bounds on split-findmin claimed in Lemma 10 are proved in Appendix
A.

The split-findmin data structure operates on a collection of disjoint sequences of
elements. Initially, there is one sequence containing all n elements, and each element
has key co. The following operations are supported.

split(u) Splits the sequence containing w into two sequences, one consisting of those
elements up to and including u, the other sequence taking the rest.

findmin(u) Returns the element in u’s sequence with minimum key.

decrease-key(u, k) sets key(u) := min{key(u), k}.

32

The elements in the split-findmin structure correspond to the leaves of SH and
the keys correspond to D-values. Thus, edge relaxations can be implemented with
decrease-key operations: if (u,v) is to be relaxed, we tell the split-findmin structure to
decrease-key(v, D(u)+£(u,v)). The sequences in the split-findmin structure correspond
to inactive SH-nodes that are the children of active parents. One can readily verify that
GENERALIZED-VISIT only queries the D-values of such nodes; thus, requesting D(x)
translates into the operation findmin(u), where u is any leaf in V' (z). Whenever a node
x becomes active, we perform splits on the sequence representing = so that the resulting
sub-sequences correspond to z’s children. There are clearly no more than m decrease-
keys and O(m + n) splits and findmins. In Appendix A we show that the complexity
of split-findmin on a RAM is asymptotically equivalent to its decision-tree complexity,
which is O(mlog a(m,n)).

Lemma 11 Suppose B is assigned to maintain the bucket arrays of just those nodes in
X CSH. Then B can be implemented in time

O(m + nloglogn + Y _ DEG(z) - log TSQ%Z”)))
rzeX

Proof: Fix some SH-node € X. The Bucket Invariant 2 says that all inactive
children of x are bucketed by their D-values. However, in GENERALIZED-VISIT we
only extract x’s children from the “current” bucket, hence any structure that places
the correct contents in the current bucket can be said to simulate Invariant 2. We

use the hierarchical bucketing structure from Section 5.1.3 to simulate Invariant 2. The
DIAM(T)
NORM(z))’

amortized cost of a decrease-key and an insert are, respectively, O(1) and O(log
DIAM(z)
NORM(z)
structure accounts for the first and third term in the claimed running time. The second

where represents the maximum number of buckets associated with z. This
term arises out of our need to enumerate the contents of the current bucket in left-
to-right order. We use a van Emde Boas heap [203] to prioritize nodes in the current
bucket. For any child of = the amortized cost of all van Emde Boas operations is
O(loglog DEG(z)), which is O(nloglogn) over all € X and all children of x.

O

Let us make a few observations. First, the O(nloglogn) term in the running
time of Lemma 11 reflects the cost of sorting siblings in left-to-right order. However,
by Lemma 2 all such orderings are equally good on undirected graphs. Therefore,
no van Emde Boas heaps are used in the undirected version of GENERALIZED-VISIT.
Moreover, the cost of van Emde Boas heaps can be ignored when analyzing the non-
uniform complexity of shortest paths, since they are used to sort discrete data, not real
data.

33

The third term in Lemma 11’s running time is certainly the most interesting: The

sum) x DEG(z) log 1?:)?{1\:4((?) can be thought of as a measure of the entropy of a specific

hierarchy, under two strong assumptions: first, that each y € CHILD(z) can appear in
each of 2’s DIAM(z)/NORM(z) buckets with (more or less) equal probability, and second,
that which bucket y appears in is independent of which buckets other nodes appear in.
For X = SH it is fairly easy to force the time bound of Lemma 11 to be Q(m + nlogn).
To improve upon it, we must either derive a hierarchy with lower entropy (see Chapter
5) or circumvent the entropy lower bound by exploiting the dependencies among shortest
paths.

Lemma 11 is more useful than it may first appear. For instance, if we let X be the
set of hierarchy nodes with small normalized diameter, say all with DIAM(z)/NORM(z) <
(logn)°M), then the bound from Lemma 11 is O(m + nloglogn). Thus, with low-
diameter nodes being handled by Lemma 11, we are free to deal with high-diameter
nodes by other means. This is exactly the strategy taken by the directed shortest path
algorithm of Section 4.1.

3.6 Lower Bounds

In a comparison-based model of computation, the easiest way to lower bound the com-
plexity of a problem is by a simple information-theoretic argument. In particular, the
logarithm of the number of distinct solutions to the problem gives an immediate lower
bound on the number of comparison operations required to solve it. Unfortunately,
counting distinct solutions does not lead to any non-trivial lower bounds on the SSSP
problem. Indeed, it seems quite plausible that there are no non-trivial lower bounds
for SSSP. Nonetheless, it is still useful to lower bound the complexities of specific algo-
rithms or approaches to SSSP. Such lower bounds can tell us why a certain algorithm
or approach is doomed to be suboptimal, and, perhaps, how the bottleneck in such an
approach could be overcome.

We lower bound the complexity of an algorithm in two steps. First, we characterize
the extra information derived by running the algorithm. Second, we lower bound the
complexity of computing that extra information from scratch. The robustness of this
approach depends, of course, on how crucial the extra information is to the algorithm
in question. Consider Dijkstra’s algorithm. It computes, besides shortest paths, a
permutation 7, of the vertices satisfying Property 1.

Property 1 7, satisfies:
For allu,v eV, m4(u) <ms(v) = d(s,u) <d(s,v)
Any lower bound on the time to compute a 7 from scratch that satisfies Property 1

effectively lower bounds the complexity of Dijkstra’s algorithm. The star graph in Figure

34

3.3, for instance, provides a very simple worst-case scenario for Dijkstra’s algorithm.
Visiting the vertices in order of distance necessarily involves sorting the edge lengths —
that is, sorting n — 1 arbitrary numbers.

Figure 3.3: The star graph. If edge-lengths are permuted at random, finding a
satisfying Property 1 takes log((n — 1)!) = Q(nlogn) comparisons.

One is tempted to say that this is a weak lower bound, because it can be cir-
cumvented by an algorithm that does not satisfy Property 1 but is, but any reasonable
person’s estimate, an implementation of Dijkstra’s algorithm. The algorithm is, namely,
to contract edges not on any cycle and run Dijkstra’s algorithm on whatever is left.

The refutation to this argument is that the star graph is not claimed to be a hard
instance of SSSP but the kernel of hard instances for Dijkstra’s algorithm. Therefore,
the lower bound applies not to one graph but any graph that has, embedded in it in some
way, a small set of large star graphs. It is often the case that simple worst-case graphs
translate into strong lower bounds and complicated ones into weaker lower bounds.

In this Section we give a characterization of all hierarchy-type algorithms that par-
allels Property 1’s characterization of Dijkstra’s algorithm. Using slightly more compli-
cated hard kernel graphs than the star graph of Figure 3.3, we show that such algorithms
cannot compute SSSP in o(nlogn) time. This lower bound also holds for undirected
graphs, though it can only be attained on unusually weighted graphs, where the ratio
of the maximum to minimum edge-length is large.

3.6.1 Characterization of Hierarchy-Type Algorithms

The permutation 7 from Property 1 simply corresponds to the order in which vertices
are visited in Dijkstra’s algorithm. All Dijkstra-like algorithms (those maintaining Di-
jkstra’s Invariant 1) can therefore be characterized by the restrictions placed on their
allowable permutations. Property 2, given below, defines one such restriction that is
intrinsic to all existing hierarchy-based algorithms. Before stating it we need some
additional notation.

35

Let cYCLES(u, v) be the set of all cycles, not necessarily simple, containing vertices
u and v. For instance, on an undirected graph the cycle could follow a path from w to
v then retrace its steps from v to u. We define SEP(u, v) as:

SEP(u,v) = min max {(e)
C € cYCLES(u,v) e€C

To see the connection between the SEP-values and SH, notice that Ry(u,v) = (SEP(u,v) <
t) is an equivalence relation, and that the equivalence classes of R; correspond to the
strongly connected components of the graph restricted to edges with length at most ¢.
Moreover, as t varies R; defines a set of laminar relations. That is, R¢(u,v) = Ry (u,v)
if ¢ > t. Therefore, any set of relations {Ry, };, can be represented by a rooted tree, or
hierarchy.

Observation 1 gives us a cleaner interpretation of sSEP-values when the graph is
undirected. Thorup [196] makes a similar observation, although he never uses the idea
of a SEP function.

Observation 1 If the graph is undirected, SEP(u,v) equals the length of the longest edge

on the minimum spanning tree path connecting u and v.

Regardless of whether the graph is undirected or directed, all hierarchy-based
algorithms generate a permutation m, satisfying Property 2, given below. We prove
that GENERALIZED-VISIT satisfies Property 2 in Lemma 12.

Property 2 If SEP(u,v) > 0 then 75 satisfies:
d(s,v) > d(s,u) + SEP(u,v) = ms(u) < ms(v)

Is there a sorting bottleneck inherent in Property 27 The short answer is yes.
However, the nature of the sorting bottleneck depends, to a large extent, on the little
details. For instance, suppose we consider, besides m and n, a new parameter r repre-
senting a bound on the ratio of any two edge lengths. In Sections 3.6.2 and 3.6.3 we
show that our lower bounds for directed and undirected graphs become, respectively,
Q(min{nlogn, nlogr}) and Q(min{nlogn, nloglogr}). In other words, to induce an
Q(nlogn) lower bound r must be exponential in n for undirected graphs, but only poly-
nomial for directed ones. As we show in Chapter 5, both of these bounds are, somewhat
surprisingly, tight.®

% Actually, the undirected bound is tight only if 7 is not in the vicinity of a(m,n), which is excep-
tionally small.

36

We show that undirected graphs are qualitatively easier in another respect. In
Property 2, notice that the SEP(u,v) term is independent of the source s. From the per-
spective of an algorithm computing many shortest paths on the same graph,® computa-
tion relating to SEP-values may be considered a one-time cost, whereas computing SSSP
given the SEP-values represents the marginal cost of computing SSSP.”. For directed
graphs, we show that our lower bound holds even if all SEp-values (and any functions
thereof) are known a priori. This is in contrast to undirected graphs, where the only
obstacle to computing SSSP in near-linear time is computing (or approximating) the
SEP function.

SEP known SEP unknown

Undirected SSSP Q(m) Q(m + min{nloglogr, nlogn})

Directed SSSP Q(m + min {nlogr, nlogn})

Figure 3.4: Lower bounds on SSSP algorithms satisfying Property 2 in the comparison-addition
model. The parameter r bounds the ratio of any two non-zero edge lengths.

Lemma 12 GENERALIZED- VISIT generates a permutation of the vertices satisfying Prop-
erty 2.

Proof: The permutation named in the lemma is, of course, the order in which vertices
are visited by GENERALIZED-VISIT. Let u,v be leaves of SH (i.e. graph vertices),
let ©+ = LCA(u,v), and let u',v' be the children of z that are ancestors of u and v,
respectively. By the definition of SH, NORM(x) < SEP(u,v). Now consider the recursive
calls on u' and v’ that caused u and v to be visited, say GENERALIZED-VISIT(u’, I,,)
and GENERALIZED-VISIT(v', I,,), where |I,| = |I,| = NorRM(z). If d(s,v) > d(s,u) +
SEP(u,v) > d(s,u) + NORM(z) then I, # I,, implying GENERALIZED-VISIT visits u
before v.

O

We present our directed and undirected lower bounds in Sections 3.6.2 and 3.6.3,
respectively. Figure 3.4 summarizes these results.

®As a concrete example, the website MapQuest claims to serve 10 million requests a day (many
shortest path queries) on a graph (the US road network) that rarely changes.

"One may read “compute SEP-values” as “compute SH” or “compute a good hierarchy” since SH
is just a very compact structure for representing (approximate) SEP-values. In particular, if u,v are
leaf-nodes in SH and & = LC A(u,v) then SEP(u,v) € [NORM(z), 2NORM(z)).

37

3.6.2 Lower Bound: Directed Graphs

We will say that an SSSP algorithm satisfies Property 2 if, in addition to computing
SSSP, it computes a permutation 7, satisfying Property 2. In this section we will also
assume a slightly more powerful computation model. Besides comparisons, we will
assume that any operation mapping tuples of reals to tuples of reals can be performed
at unit cost.

Theorem 1 Suppose SEP(u,v) is already known, for all vertices u,v. Any directed
SSSP algorithm satisfying Property 2 performs Q(m + min{nlogr, nlogn}) operations,
where the source can be any of n — o(n) vertices and r bounds the ratio of any two

non-zero edge-lengths.

Proof: Clearly every edge length must participate in at least one operation. This
gives us the Q(m) lower bound. The rest of the proof is devoted to showing that
min{nlogr,nlogn} comparisons are required. In particular, we give a fixed graph
(depending on n and r) and a set of possible edge-length functions £. We show that
any SSSP algorithm satisfying Property 2 must decide which length function was chosen,
implying a lower bound of log |L]|.

A permutation of the vertices is said to be compatible with a certain edge-length
function if it satisfies Property 2.

n - k edges, connected to the n -k "bush" vertices.
Edge lengths are of the form j* UNIT, -1 <j<k.

A
et TTTTTTTTTTTTTTTTTTTTE IO -~ >
7 - = |
// ~
Il

Sb—»o—» , —————-0— r_<|2
§.
k vertices S 10

Solid edges have UNIT length

Figure 3.5: The “broom” graph.

Our fixed graph, depicted in Figure 3.5, is organized a little like a broom. It has
a “broom stick” of £ > 2 vertices, whose head is the source s and whose tail connects to
the remaining n — k vertices (the “bush”), each of which is connected back to s by an
edge (s appears twice to simplify the figure). All these edges have equal length UNIT,
which is an arbitrary positive real. Additionally, there are n — k edges directed from s

38

to each of the vertices in the bush, having lengths of the form j- UNIT, where j, chosen
below, is a non-negative integer. One may easily confirm that SEP(u,v) = UNIT for all
distinct u,v. (Our lower bound holds even if the SSSP algorithm is assumed to know
this.) Assuming without loss of generality that k divides n, we define £ to be the set
of length functions that assign the edge length j - UNIT to exactly (n —k)/k =n/k—1
edges from s to the “bush”, for 0 < j < k. Consider the following claims:

1. For v in the “bush”, d(s,v) = £(s,v) < k- UNIT. (Recall that d and ¢ are the
distance and length functions.)

2. |L] = (n—k)!/(} — 1)!* and log |£]| = Q(nlogk)

3. For (1,02 € L, there always exists u, v in the “bush” such that d'(s,u) < d'(s,v)
but d?(s,v) < d?(s,u), where d' is distance w.r.t. .

4. No permutation of the vertices can be compatible with two distinct length func-
tions in L.

(1) follows because the path from s to v along the “broomstick” has length k- UNIT. (2)
is simple counting. (3) follows from the pidgeonhole principle: because £!,¢? € L assign
each length to an equal number of edges, d'(s,u) < d?(s,u) implies the existance of a
v such that {d*(s,u), d®(s,v)} < {d*(s,v), d*(s,u)}. (4) follows from (3). To see this,
notice that for any two vertices u, v, d(s,u) < d(s,v) implies d(s,u) < d(s,v)+ UNIT =
d(s,v) 4 SEP(u,v), which implies that if 75 is a compatible permutation, ms(u) < ms(v).
Along with (3) we can conclude that no two length functions in £ are compatible with
the same permutation. Therefore, at least log |£| = Q(n log k) comparisons are required
to decide which ¢ € L is the actual length function.

The above argument can be repeated with little modification if the source vertex
lies in the broom’s bush. Together with the observation that » = k — 1, the Theorem
follows.

O

3.6.3 Lower Bound: Undirected Graphs

Theorem 2 Any undirected single-source shortest path algorithm for real-weighted graphs
satisfying Property 2 makes Q(m+min{nloglogr, nlogn}) operations in the worst case,
where r bounds the ratio of any two non-zero edge lengths.

Proof: The minimum spanning tree of the input graph is as depicted in Figure 3.6.
It consists of the source vertex s which is connected to p = (n — 1)/2 vertices in the
top row, each of which is paired with one vertex in the bottom row. We divide the
pairs into ¢ > 2 disjoint groups and assign edge lengths based on group. Group ¢,

39

groupl group 2 group q

Figure 3.6: The minimum spanning tree of the graph

where 1 < ¢ < g, consists of exactly p/q pairs of vertices. Edges in group ¢ have length
2t . UNIT, where UNIT is an arbitrary positive real. This includes edges connecting s to
a top-row vertex and edges connecting the two rows. All non-MST edges are assigned
any lengths less than 20(9) . UNIT such that the shortest path tree from s coincides with
the MST. Assuming, without loss of generality, that ¢ divides p, the number of group
arrangements is p!/(p/q)!? = ¢*®). We will show that any SSSP algorithm satisfying
Property 2 must sort the vertices by group number. Because the groups are of equal
size, by the pidgeonhole principle no permutation of the vertices can be compatible with
two distinct group arrangements. This implies a lower bound of Q(plogq) on such an
SSSP algorithm. Since logr = ©(q), this also implies a bound of Q(nloglogr).

Let v; denote some vertex in the bottom row of group i. Then d(s, v;) = 2-2¢-UNIT
and SEP(v;,vj) = 2mae{ij}l . UNIT. By Property 2, ms(v;) must be less than mg(v;) if
d(s,v;) + SEP(v;, vj) < d(s,v;). This is equivalent to (2-2°+27) - UNIT < 2-27 - UNIT,
which holds precisely when i < j. Therefore, any SSSP algorithm satisfying Property 2
must sort the vertices by group number.

O
Remark. Note that in the proof of Theorem 2, we are essentially bounding the time to
compute the SEP function (equivalently, the group arrangement), whereas in Theorem
1 we assume the SEP function is common knowledge.

40

Chapter 4

Shortest Paths on
Directed Graphs

In Section 3.5 we showed that in order to implement GENERALIZED- VISIT, it suffices
to solve certain abstract data structuring problems, all of which, save for B, admit
relatively simple near-linear time solutions. The primary focus of each of our shortest
path algorithms is an efficient implementation of B, the bucketing structure.!

The structure B is really just a restricted form of priority queue. Indeed, one obvi-
ous way to implement B is with an off-the-shelf data structure, such as a Fibonacci heap
[73]. Unfortunately, any general data structure implementing B will invariably incur a
sorting bottleneck. In order to implement B more efficiently it is crucial that we take
into account the underlying graph. In particular, we must exploit the highly redundant
nature of the distance function. After all, the distances, if represented explicitly, occupy
©(n?) space, whereas they are represented implicitly by the graph itself, which occupies
just ©(m) space.

The most straightforward correlations in the distance function are the pair-wise
sibling correlations: for any y,z € CHILD(z), and any source vertex s, we have:

|d(s,y) —d(s,z)| < pD1AM(z)

which is just a rephrasing of the parent-child correlation: d(s,y) — d(s,z) < DIAM(z)
for any y € cHILD(x). These correlations are trivial. One interpretation of Theorem 1
is that, in the worst case, there are essentially no non-trivial correlations, assuming a
directed graph with fixed source vertex. As we will see in Chapter 5, undirected graphs

!The algorithms presented in this chapter were originally published as: S. Pettie, A faster all-pairs
shortest path algorithm for real-weighted sparse graphs, Proc. 29th Int’l Collog. on Automata, Lan-
guages, and Programming (ICALP), pp. 85-97, 2002, and S. Pettie, On the comparison-addition com-
plexity of all-pairs shortest paths, Proc. 13th Int’l Symp. on Algorithms and Computation (ISAAC),
pp. 32-43, 2002.

41

are an entirely different story, even when the source is fixed. In this Chapter we will
study the correlations between elements of the set

{d(s,y) }s €V, y € cHILD ()

In other words, we fix an S#H-node = and look at the sibling correlations among nodes in
CHILD(z), ranging over all source vertices. Although the technical language we introduce
in Sections 4.1 and 4.2 does not refer to sibling correlations and other intuitive ideas,
correlation between distances is the principle that underlies our algorithms, and should
always be kept in mind.
In Section 4.1 we give an APSP algorithm whose running time is O(mn-+n?2loglogn).

The running time measure takes into account both real-number operations and data
structural issues as well. In Section 4.2 we look at how far our techniques can be pushed
if the only measure of efficiency is real-number operations. The result is a non-uniform
APSP algorithm making O(mn log a(m,n)) comparison and addition operations.

4.1 A Faster APSP Algorithm

We have shown in Section 3.5 that an implementation of the GENERALIZED-VISIT al-
gorithm amounts, essentially, to an implementation of B, the bucketing structure. One
might just as easily say that we have reduced GENERALIZED-VISIT to B, and that the
APSP problem is reducible to n runs of GENERALIZED-VISIT. We will show, in this
section, that the problem of implementing B is itself reducible to a set of O(n) SSSP
problems. Each such problem is on a graph whose topology is basically the same as
the original graph, but whose length function is source-dependent. This sequence of
reductions does not seem profitable at first since APSP is trivially reducible to n SSSP
computations on the original graph. However, not all SSSP problems are equal. Of our
O(n) derived SSSP problems, only O(n/logn) are on real-weighted graphs. The rest
are on graphs whose lengths are relatively small integers. Because integer variables are
not bound by the limitations of the comparison-addition model, we are able to solve
these SSSP problems in amortized linear time.

In Section 4.1.1 we introduce the notions of relative distance and approximate
relative distance. (These distances are the solutions to the derived SSSP problems
mentioned above.) In Section 4.1.2 we show how approximate relative distances are
useful in the implementation of GENERALIZED-VISIT, and in Section 4.1.3 we show how
they can be computed cheaply.

4.1.1 Relative Distances and Their Approximations

Let = be an arbitrary internal S#-node, and recall that CHILD(z) represents the children
of z in SH. For y € cHILD(z) we let A, (u,y) denote the relative distance from u to y,

42

defined as:
def
A:c(uv y) = d(u7 y) - d(uv CC)

Since V(y) C V(z), it follows that A, is always non-negative. Our algorithm does
not deal with A, directly but rather with a discrete approximation to it. We define A,
as:

) % (2l [2e0)]

€z €z
where
def NORM(z)
€ = —3
It is crucial that A, be represented as an integer, not as a real. Lemma 13 and
14 capture the salient features of the A function: that it is relatively cheap to compute,
and that despite its approximate nature, it is useful in implementing the GENERALIZED-
VISIT routine.

DIAM(z)
NORM(z) =

Lemma 13 The A, function can be computed for every SH node @ for which
logn, in O(mn) time total.

DIAM(z)

Lemma 14 If A, is known for all x € SH for which Nor(2)
compute SSSP in O(m + nloglogn) time using GENERALIZED- VISIT.

> logn, then we can

Together with Lemma 3(8), stating that SH can be constructed in O(m logn)
time, Lemmas 13 and 14 directly imply Theorem 3.

Theorem 3 The all-pairs shortest path problem on real-weighted directed graphs can
be solved in O(mn + n?loglogn) time, where the only operations allowed on Teals are
comparisons and additions.

We prove Lemma 14 in Section 4.1.2. Lemma 13 is addressed in Section 4.1.3.

4.1.2 GENERALIZED-VISIT and Relative Distances

In this section we show how to implement the bucketing structure B, assuming that A,
is already computed for all z € SH for which DIAM(z)/NORM(z) > log n. The remainder
of this section will constitute a proof of Lemma 14. As it was observed in Section 3.5,
managing the bucket arrays for all SH-nodes « with DIAM(z) < log n-NORM(x) requires,
by Lemma 11, only O(m + nloglogn) time. Therefore, we concentrate on an arbitrary
SH-node z for the case when A, is known.

We remarked earlier that maintaining the Bucket Invariant 2 is expensive. Con-
sider the following weakened form of Invariant 2.

43

Invariant 3 Suppose that y is a child of an active SH-node x. Then y is either bucketed
in accordance with Invariant 2, or it is known that D(y) will decrease in the future, in
which case y appears in no bucket.

By Lemma 5, we only extract a node y from its bucket when D(y) is finalized,
that is, when D(y) = d(s,y). Therefore, the correctness of GENERALIZED-VISIT w.r.t
Invariant 2 implies its correctness w.r.t. Invariant 3. The only question is whether
Invariant 3 is any easier to maintain, specifically, whether it is possible to tell if a node’s
D-value will decrease in the future. This is where the A function comes into play.

Suppose that we are attempting to bucket an inactive node y by its D-value,
either because its parent, x, just became active, or because we just relaxed an edge
(u,v), where v € V(y). We know d(s, z) lies in the interval of x’s first bucket, that is,
te < d(s,x) <tz + NORM(z). According to Invariant 2, y belongs in bucket number

D ~te| _ |DW-dso)| |DW-dso)|
NORM(z) NORM(z) NORM(z)

Therefore, if D(y) does not decrease in the future, then D(y) = d(s,y) and

Agz(s,y) = D(y) — d(s,x). This implies that y must be bucketed in either bucket

number LAI(W) J or the following bucket. On the other hand, if D(y) decreases in the

NORM(z)
future, we have, according to Invariant 3, the freedom not to bucket y at all.

The situation is made only slightly more complicated by the fact that we are not
dealing with A, but a discrete approximation to it. Recall that Aw(s, y) is an integer
and |ey - Ap(s,y) — Au(s,y)| < e = NORTM(QE). Using the same argument as above,
it follows that if D(y) = d(s,y), that is, D(y) will not decrease in the future, then y

belongs in some bucket numbered in the interval

NORM(z) NORM(z)

Hex-Aw(s,y)—exJ rm-Aw(s,y)ﬁﬁNORM(z)“

2 2

{(Aw@,y)—n‘ {(Aw<s,y>+3>J

Thus, the number of eligible buckets is at most three. Since Ax(s, y) is represented
as an integer, we can identify the three eligible buckets in constant time, and, by checking
D(y) against the buckets’ labels, we can determine which, if any, should contain y. To
sum up, all insert and decrease-key operations on y take constant time, provided A, is
known.

The other costs of implementing GENERALIZED- VISIT were discussed in Section
3.5. The D structure is implemented in O(mloga(m,n)) = O(m + nloglogn) time,
and the cost of prioritizing nodes within the same bucket is O(n loglogn) using a van
Emde Boas heap [203]. This concludes the proof of Lemma 14.

44

4.1.3 The Computation of A

We show in this section that for any SH node z, all Aw(, -)-values can be computed in
time O(mlogn+m-DEG(z)+n- 1\?:)?{1\:4((?)). It turns out that this cost is affordable if the
m logn term is not significantly larger than the others. It is for this reason that Lemma
13 only considers SH nodes such that DIAM(z)/NORM(z) > logn.

Consider the two edge-labeling functions é, : £ — R and 6y + E = N, given

below.

0z (u,v) def l(u,v) +d(v,z) — d(u, x)

s e 6 9 .
0z (u, v) def {MJ or oo if dz(u,v) > DIAM(z)
€$
where € def o _ 7NORM($)
v n 2n

We let G% = (V(G), E(G),§) denote the graph G under a new length function 4,
and let d® be the distance function for G°. We show that A, (u,y) is equal to d® (u,y)
and that d% provides a sufficiently good approximation to A, to satisfy the constraints
put on A,. Our method for computing A, is given in Figure 4.1. We spend the
remainder of this section analyzing its complexity and proving its correctness.

COMPUTE-A,:
(1) Generate the graph Gd=

(2) Forallu eV and y € CHILD(z), compute dd (u,y)

(3) Set Au(uy) = {M }

n

Figure 4.1: A three-step method for computing A,.

The following Lemma establishes the properties of A,,d,, and b, used in the

~

analysis of COMPUTE-A,.

Lemma 15 Suppose x € SH, y € CHILD(z) and v € V. Then

1. Ag(u,y) = d®(u,y)

(
2. d‘sﬂ”(u,y) < DIAM(z)
(u,y) — € dP(u,y) € [0, e)
(

4. d%(u,y) < 2n brav(z)

NORM(z)

45

Proof: (1) Denote by (u1,us,...,u;) a path from u; to u;. Then

j-1
% (u,y) = min W) {Z&x(ui, ui+1)} (4.1)
=1

Jh{u=u1,.,uj €V
- ~ E((uas - - -5 ug)) + d(uy, 7) — d(ug, 4.2
Mu:uf.l.l,gjeV(y» { ((wr uj)) + d(uj, z) — d(uy x)} (4.2)

= d(u,y) —d(u,z) = Ag(u,y) (4.3)

Line 4.1 is simply the definition of d%. Line 4.2 is derived by cancelling terms in the
telescoping sum. Note that d(uj,x) = 0 since u; € V(y) C V(x), and that d(ui,z) =
d(u,x). Line 4.3 then follows from the definition of d and A;.

(2) From part (1) we have d% (u,y) = Ay(u,y) = d(u,y) — d(u, z). The inequality
d(u,y) — d(u,z) < p1AM(z) follows trivially from the fact that V(y) C V(x).

(3) Let e be an arbitrary edge. By definition of §, and 6z, we have that either

dz(e) > piaM(z) (i.e., dz(e) = 00) or €, - dy(e) < dz(e) < €, - (3z(e) +1). Let Py
be the shortest path from u to y in G%, and denote by | Puy| the number of its edges.
According to part (2), d% (u,y) < DIAM(z), implying that for e € Py, b2 (e) # oo, and

e d(uy) < d(uy) < & (d(u,y) +|Pyl) < & d*(uy) +e

The last inequality follows from the bound |P,,| < n and the definition of €, =
n - eh. This proves part (3).
(4) From parts (2) and (3) we have

; d% (u,y) . DiaM(z) _ 2n-DIAM(z)

do= <
(wy) < el el - NORM(x)

which proves part (4).
a

Lemma 16 bounds the time to compute the Sm function in Step 1.
Lemma 16 G% is computable in O(mlogn) time.

Proof: Let (u,v) be an arbitrary edge. Recall that é,(u,v) is either oo or:

V(u, v) + d(v,) — d(u,) J

!
6$

The original length function £ is, of course, already known. We compute the other terms
in the numerator with one Dijkstra computation. Let G; be derived from G by reversing
the direction of all edges and contracting V (z) into a single vertex. Computing SSSP
from the source V(z) in G; produces the d(-,x) distances. This takes O(m + nlogn)

46

time with Fibonacci heaps. However, we can afford to spend O(mlogn) time using a
simpler binary heap.

If 6,(u,v) < DIAM(z), which can be checked in constant time, then d,(u,v) can
be expressed as:

bz(u,v) = max{j : 2n-d(u,z) + j - NORM(z) < 2n - (L(u,v) + d(v, z))}

which follows from the definition of é, and €, = NORM(z)/2n. The terms 2n - d(u, z)
and 2n - ({(u,v) +d(v, x)) are easily computable in O(logn) time — see Section 2.4. We

compute dg(u,v) in O(log DIA?,:(Q”)) = O(logn) time by first generating the values
[1 g DIAM(:v)-I
{NORM(:C), 2NORM(z),4NORM(z),...,2 <% NORM(:C)}

using simple doubling, then using these values to perform a binary search to find the
maximal j satisfying the inequality above. This binary search is performed once for
each edge, taking O(mlogn) time in total.

O

In Step 2 of COMPUTE-A, we compute certain distances in the graph G‘gw, using
a variation on Dial’s implementation of Dijkstra’s algorithm. We are free to use Dial’s
algorithm here because G% is an integer-weighted graph, whose shortest paths have
bounded length.

DIAM(z)
NORM(z)

Lemma 17 Step 2 requires O(m - DEG(z) +n -) time.
Proof: Let y € CHILD(z) be a child of x and let N denote an upper bound on dde (u,y).
Let G be the graph derived from G by reversing the direction of all edges in G. Clearly
dde (u,y) is equal to the distance from V(y) to w in G;. Therefore, we can perform
Step 2 of COMPUTE-A, by computing SSSP in G from the source V(y) (viewing it as
a single vertex), for each y € CHILD(z). To save time we solve each of these DEG(x)
SSSP problems simultaneously, using Dial’s implementation of Dijkstra’s algorithm. The
priority queue is implemented as a bucket array of length N. If the pair (y,u) appears
in bucket b this indicates that in the SSSP computation with source V (y), the tentative
distance to w is b. Since 8, is an integer-valued function, edge relaxations take constant
time. The overall running time is then O(#/(edge relaxations) + #(buckets scanned)) =
O(m - DEG(z) + N) = O (m -DEG(z) + n - 1?:)?{1\1\44((?))' The bound on N follows from
Lemma 15(4).

O

Lemmas 16 and 17 prove that Steps 1 and 2 take O(m log n+m DEG(z)+n

DIAM(z))
NORM(z)

time. Step 3 just involves dividing % (u,y) by n and rounding up. We did not assume
a general integer division operation. However, Step 3 can easily be incorporated into

47

Step 2 by keeping track of the number {%] where b is the current bucket number. In

Lemma 18 we prove the correctness of COMPUTE-A,.

Lemma 18 Step & sets A, correctly, 1.e.

~

Ay (u,y) is an integer and

~

€z Aw(u,y) - Aw(u7y) < €g

Proof: It is clear from Step 3 that A, (u,y) is assigned an integer value. We turn to the

second requirement, that |e; - Az(u,y) — Ax(u,y)‘ < €. Notice that % = % From

~

the definition of the ceiling function we have:

n

. bz .
e d?(uy) < e {M} < g do(uy) te (4.4)
From Lemma 15 parts (1) and (3) we have that:

e - d7(uy) < Dp(u,y) = d¥(uy) < € d?(uy) t+e (4.5)

Notice that in lines 4.4 and 4.5 the upper and lower bounds are identical, and that
they are separated from each other by €,. Therefore,

SV |77d5’” (u,y)-‘ — Az(u,y)

ew-Ax(u,y) - Aw(u,y) < €

n

which proves the lemma.

O

Now that the correctness of this scheme is established, we are ready to prove the
overall time bound of Lemma 13.
Proof: (Lemma 13) Let T'(m,n, k) be the time to compute A, for all SH nodes z for

which 1\?(1;:\1\44((?) > k. From Lemmas 16 and 17 we can bound T as follows.

T(m,n, k) = z O(mlogn + mDEG(z) + nﬁé’?{“&(&)))
o DIAM@2)
* NORM(z) =

= O(4mn'%" 1 2mn +4n?) {Lemma 3(4), (6) & (7)}
_ logn
= O(mn [. -|)

hence T'(m,n,logn) = O(mn)
a

48

4.2 A Non-Uniform APSP Algorithm

The APSP algorithm from Section 4.1 has two distinct parts: a first pass for computing
discrete, approximate distances and a subsequent pass for computing the exact distances.
In this Section we show how to compute APSP with asymptotically fewer comparison
and addition operations by basically running the two passes concurrently.

Our method for implementing the bucketing structure B is a hybrid of previous
techniques. For every internal node x € SH, we will simulate Invariant 2 with an actual
bucket array and a heap, denoted H,. The idea is to properly bucket nodes when we
have enough information to do so (for instance, if we know the Aw—values) and to keep
all unbucketed children of x in the heap H,. When new information becomes available
we may decide to migrate nodes from H, to the bucket array. Consider the following

bucketing invariant, which is weaker than both Invariants 2 and 3.

Invariant 4 Let x be an active SH-node. Active children of x appear in a bucket
consistent with Invariant 2. An inactive node y € CHILD(x) either appears in a bucket

numbered between L%J —2 and Kéfiﬁ(iﬂ inclusive, or in the heap H,.

We need to make a couple modifications to GENERALIZED- VISIT so that Invariant
4 can be said to simulate Invariant 2. Since GENERALIZED-VISIT only extracts nodes
from the active bucket (the one labeled [az, az + NORM(z)) in Step 3 of GENERALIZED-
VisIT), we will migrate the appropriate nodes from H, to the active bucket, whenever

“—2” in Invariant 4 the active

the active bucket changes. Because of the conspicuous
bucket may contain nodes that logically belong in later buckets. Whenever such a node
is discovered (which can happen at most twice per node) we simply move it to the
next bucket. One can easily see that under these modifications to GENERALIZED- VISIT,
Invariant 4 simulates Invariant 2.

The simple method for maintaining Invariant 4 is to keep all inactive children of
x in H,. However, this sort of dependence on heaps leads inextricably to some kind of
sorting bottleneck. The efficiency of our APSP algorithm depends on minimal use of
the heaps.

In Section 4.2.2 we define functions I'y, f‘w, Yz, and 4, that closely parallel the
functions Ag, Ax, Oz, 3,; from Sections 4.1.1 and 4.1.3. In Section 4.2.3 we show how

the I'y and v, functions can be used to maintain Invariant 4 inexpensively.

4.2.1 Preliminaries

In our algorithm we use the phrase is known in a technical sense. The statement
“it is known that a < b’ means that the inequality a < b could be inferred from
the known set of linear inequalities, as revealed by previous comparison and addition

49

%J is known” means the integer L%J could be inferred from

operations. Similarly, “L
previous operations, and “a is known”, where a is a real, means a is actually stored in a
specific real variable. As comparison-addition complexity is the only measure of interest
in this section, we need not provide any method for deciding when something is known
or not.

The sequence of operations performed by our algorithm is rather unpredictable. It
depends, to a great extent, on what is known at a given time. We describe parts of our
algorithm using triggers, which are of the form “Whenever some (Precondition) holds,
perform some (Action),” where the (Precondition) typically depends on whether some-
thing is known. We assume that triggers are invoked at the earliest possible moment,
and that for any two applicable triggers, the lower numbered one takes precedence. As a
consequence of this policy, our high-level algorithm, GENERALIZED-VISIT, only proceeds
if every trigger’s precondition is unsatisfied.

4.2.2 Lengths, Distances, and Their Approximations

Define the edge-length function v, : £ — R as:

def
Ye(u,v) = L (u, 0) + we(v) — wy(u)
where w,(v) and w,(u) are initially unspecified. Trigger 1 shows how w,(v) is assigned.

Trigger 1 When the variable w;(u) is unspecified but d(u,v) is known, for some v €
V(x), set wy(u) := d(u,v).

It follows from Trigger 1 that if u € V(x), wy(u) = 0 holds initially since d(u,u) =
0 is known a priori. Note that if we set w;(-) = d(-, =) then v, would be identical to the
0, function defined in Section 4.1.3.

We define the discrete approximation 9, : £ — N as:

S (u,v) = {M

o J or oo if 7z(u,v) > 2-DI1AM(x)
Px

where
def NORM(z)

4 - DEG(z)

T

Trigger 2, given below, updates the 4, function whenever possible:
Trigger 2 When v4(u,v) ts known but 5 (u,v) is unknown, compute Y5 (u,v).

Lemma 19 gives a couple properties of the v, and 4, functions, and lets us bound
the cost of Trigger 2.

50

Lemma 19 Properties of Y :

1. pg - Yz(u,v) € (—DIAM(x) — pg, 2DIAM(z)] U {oco}. Moreover, if Y5 (u,v) = co then
(u,v) is not on any shortest path from u to any vertex in V(z).

2. The cost of computing Y5 (u,v) for all x € SH and (u,v) € E, is O(mn).

Proof: (1) By Trigger 1 we have wy(u) € [d(u,z), d(u,z) + DIAM(x)]. We also have
that £(u,v) + d(v,z) — d(u,x) € [0,), and furthermore, if (u, v) is on a shortest path
to some vertex in V(x), then £(u,v) + d(v,z) — d(u, z) € [0, DIAM(z)]. Thus:

Yo(u,v) = Lu,v) + wz(v) — we(u)
L(u,v) + d(v,z) — d(u,) + [-DIAM(x), DIAM(z)]

[-DIAM(z), 00) {in general}
[_

DIAM(x), 2 - DIAM(z)] {if (u,v) is relevant}

Therefore 7;(u,v) = oo only if (u,v) is not on any shortest path to a vertex in
V (z). Furthermore, if 4, (u, v) # oo then p;-§.(u, v) = vz (u, v)+(—pz, 0] = (—DIAM(z)—
Pz, 2DIAM(z)].

(2) Given 7;(u,v), we compute 9, (u,v) using essentially the same algorithm from
Lemma 16 in Section 4.1.3. It takes time logarithmic in the range, i.e.

log <M> = log (12 ' DEG(x) - DIAM(2)

NORM(z)

DIAM(z)
NORM(z)

) < DEG(z) + O(1)

Pe
By Lemma 3 parts (4) and (6), the cost of computing 9, (e), for all z € SH and e € E,
is O(mn).
O
The v, and 4, functions are clearly analogues of J, and 596 from Section 4.1.3. Be-
low we define the functions I';, f‘w, and f‘w, where I'; is a real-valued function analogous
to A, and f‘w and f‘w are certain integer-valued approximations of I',.

Fw(u’ y) = d(u7 y) - wx(u)

To(u,y) = {Px(u, y)J

Pz
~ def
pz - La(u,y) = Tz(u,y) — [0, pp - DEG(2))

~

I'; is actually not completely defined. We use it to denote any integer-valued
function satisfying the inequalities above.

The I, function is the one we wish to compute. It is, however, a little too expensive
to compute directly. Lemma 20, given below, shows how we might infer the I', function
by computing a few well-chosen I',-values and the 4, function.

51

Lemma 20 Suppose (vy,...,v;...,vj € V(y)) is known to be the shortest path from vy
to y € CHILD(x), and suppose that Ty(vi,y) is known. If i < DEG(z) then Iy(vyr,y) is
known as well, for 1 <i' <i.

Proof: Because (vy,...,v;) is known to be a shortest path to V(y) C V(z), it follows
from Triggers 1 and 2 that the 4,-values are known for all edges in (v1,...,v;). We claim
that for i’ < i, Y, (v, . . ., v))+ s (vs,y) is a good enough approximation to I'y(vy, y) to
satisfy the constraints put on I';(vy,). Note that in general, p, - 9,(e) = 7z(e) — [0, pz)

and pg - T (i, y) = T (i,) — [0, pe). Therefore,

Pz (%:((Ui’a ce) + fw(viay))
= Ye({(vir, ..., v5)) + To(vi,y) — [0, pz - (1 — i+ 1))
d(”i’avi) + wx(vz) - ww(vi’) + d(viv y) - wx(vz) - [O,pw : DEG(x))

~

= Tu(vir,y) — [0,pr - DEG(z)) = Du(vy,y)

a

Lemma 20 shows that we can infer a I'z-value if a “nearby” I',-value is already
known. We will show that Trigger 3 computes a relatively small set of T'y-values at an
affordable cost. Before giving Trigger 3 we have to introduce a little more notation. Let
IN(u) be the tree rooted at u of known shortest paths to w. Similarly, define ouT(u) to
be the known shortest paths out of u. (If w is an SH-node then IN(u) is actually an
in-forest, whose roots are the vertices of V'(u).)

Trigger 3 When the following hold: y € CHILD(z), u € IN(y), v is the nearest an-
cestor of w in IN(y) for which Ty(v,y) is known, and v is at (unweighted) distance at
least DEG(x) from u, we compute the value Ty(w,y), where w is the ancestor of u at
(unweighted) distance [%G(MJ

Lemma 21 Properties of I'y:
1. If u € IN(y), where y € CHILD(z), then Ty(u,y) is known.

2. The cost of computing all I'-values with Trigger 8 is O(n?).

Proof: Trigger 3 ensures that every vertex in IN(y) has an ancestor at distance at
most DEG(z) — 1 (unweighted distance, that is) whose ', (-, y)-value is known. Part (1)
then follows directly from Lemma 20. To prove Part (2) we first show that at most
3n/DEG(z) different I';(-,y) values are ever computed by Trigger 3; we then bound the
overall comparison-addition cost. When Trigger 3 is invoked we say u claims the edges
between uw and w. For the purpose of obtaining a contradiction, suppose an edge was
claimed twice, say by u (with w) and subsequently by v’ (with w’). Whether w' is an

52

ancestor or descendant of w, the fact that u—w overlaps with u'-w' at one edge implies
the (unweighted) length of u'-w is at most 2 - L%G'(MJ — 1 < DEG(z). Therefore,

Trigger 3 could not have been invoked at u’, a contradiction, and consequently, at most

(n—1)/ |DEG(z)/2]| < 3n/DEG(z) I'y(+, y)-values were computed. The time required to
1\?:);“1\/[/[((?)) according to
Lemma 19(2). Summing over all z € SH,y € CHILD(z), and u € V, the total cost of

Trigger 3 is:

compute a [,(-, y)-value is the same as a 4,-value: O(DEG(z) +

3n DIAM(z) \ 9
;DEG(QS) DEa(D) (DEG(:C) + N0RM(:c)> = 0O(n®)
The O(n?) bound follows directly from Lemma 3 (4) and (6).
O

4.2.3 Buckets, Heaps, and Invariant 4

Recall that H, is a heap associated with x € SH that holds any unbucketed children
of . The main focus of this Section is how to keep nodes out of H, while maintaining
Invariant 4. We will analyze, in particular, Triggers 4, 5, and 6, given below.

Trigger 4 Upon activation of x, for each y € CHILD(z), if possible, bucket y according
to Invariant 4; otherwise put y in Hy.

Trigger 5 Whenever new 4 -values become known (Triggers 1 and 2) and x is active,
for each y € CHILD(x), if possible, bucket y according to Invariant 4; otherwise keep y
m H.

Trigger 6 Whenever D(y) is decreased, where y is a bucketed child of x, if possible,
keep y bucketed according to Invariant 4; otherwise, move y to H,.

We will clarify in due time what is meant by “if possible” in Triggers 4, 5, and 6.
For the moment, let it suffice to say that successfully (or unsuccessfully) bucketing a node
takes constant time. Therefore, each invocation of Triggers 4 and 5 takes O(DEG(x))
time and each invocation of Trigger 6 takes constant time. These times reflect some
assumptions about the heap H,. We assume, in particular, that heap inserts, decrease-
keys, and find-mins take constant amortized time, and that deleting any subset of the
heap takes O(|H|) = O(DEG(z)) time.?

The problem of bucketing y in constant time is that of finding a discrete approx-
imation to the quantity d(s,y) — d(s,z). Of course, since we do not know the shortest

2These are weak assumptions. For instance, H, could be implemented as a singly linked list with a
pointer pointing to the minimum element.

53

path from s—to—y, we have little certain information about d(s,y). Our solution is to
consider many hypothetically shortest s—y paths, and for each such path @, estimate the
quantity £(Q) —d(s,x). In particular, we will examine all paths of the form (P}, Py, P;),
where Py, the head, is a prefix of the known shortest path from s to x, P, the tail, is itself
a known shortest path into y (and therefore part of IN(y)), and Py, the bridge, connects
Py to P; — see Figure 4.2. If, in the actual shortest s-to—y path P* = (Py, P, P{),
the bridge P, satisfies certain conditions, we show that y can always be bucketed in
constant time.

.\
"\ the head
/7 \\\
- Vo the bridge V;
: SR S =e part of IN(y)
partof OUT(s) thetail s _ |

&>
Figure 4.2: The path (s,...,v;), broken into a head (s,...,vp), a bridge (vo,...,v;),
and a tail (v;,...,v;).
When attempting to bucket y, we consider the paths in Q, — see Definition 3.

Paths in @, have no heads; they consist of a bridge and tail of a hypothetically shortest
s—to—y path.

Definition 3 Let z € CHILD(z) and f € V(z) C V(x) be the vertex satisfying d(s, f) =
d(s,x). Let Pss be the shortest path from s to f (and from s to x). We define Q,, where
y € CHILD(x), to be the set of paths of the form (vo,...,v;,...,v;) that satisfy:

1. vg € Pgy C OUT(s)

2. z((vo, . ..,v;)) is known

3. 1 < DEG(x)

4. v; € V(y) and (vi,...,v;) CIN(y)

We define the integer DIFF(Q,) below. Under the assumption that Q, contains a
suffix of the shortest s—to—y path, we can place some interesting bounds on DIFF(Q,)

in terms of d(s,y); however, in general DIFF(Q,) might not approximate any useful
quantity.

54

For Q € Q,, where Q = (vg,...,v;,...,v;) as in Definition 3, we define DIFF(Q)
and DIFF(Qy) as:

DIFF(Qy) ' min DIFF(Q)

Qe Qy

~ ~

def ~
DIFF(Q) = Fw(vzay) + ’Yw(<'U0,...,'UZ‘>) - F-’/U(UO’Z)
Lemma 22 DIFF has the following properties:

1. DIFF(Qy) is an integer and its current value is known implicitly

2. At all times, p, - DIFF(Qy) > d(s,y) —d(s,z) — NORTM(w)

3. If some Q* € Qy 1s a suffic of the shortest s—to—y path, then it holds that p, -
DIFF(Qy) < d(s,y) — d(s, v) + X5

Proof: DIFF(Q,) is an expression over integers, each of which is implicitly known
according to Lemma 21(1) and Definition 3(2). This implies part (1). We turn to parts
(2) and (3). Recall that by definition of I'; and 4, we have the inequalities py -I's(u,y) =
Iz(u,y) — 1[0, pg-DEG(x)) and pg - Yz (u, v) = v5(u,v) — [0, pg). Let Q € Qy be arbitrary,

and, following the terms of Definition 3, we write @ as (vo,...,v;...,v;j) and let z €
CHILD(z) be such that d(s, z) = d(s,x). Let £ be the interval (—NOR;w(w), NORf(m)).

pe DIFF(Q) = po- [Palviry) + A((v0y .-, 03)) — Fu(vn,2)] (46)

Lp(vi,y) + Y((vo, ..., vi)) — LFa(vo,2) + £ (4.7)

d(vi,y) + £({vo,...,vi)) — we(vo) — I'e(vo,2) + & (4.8)

= UQ) — d(vo,w) + ¢ (4.9)

Line 4.6 is the definition of DIFF; Line 4.7 follows from the definitions of 4,, Iz,
z%?ég;, and Definition 3(3) stating that ¢ < DEG(z). Line 4.8 is derived by
expanding 'z (v;,y) and v;((vo, ..., v;)) and cancelling terms. Line 4.9 follows from the
definition of I'; and the identity d(s, z) = d(s,).

Consider Line 4.9. Clearly £(Q)—d(vo,z) = (d(s,vo), +£(Q))—(d(s,vo)+d(vo, x)) >
d(s,y) — d(s,z), and that £(Q) — d(vo,z) = d(s,y) — d(s,x) only if @ is a suffix

of a shortest s—to—y path. By taking into account the upper and lower bounds of
¢ = __ NORM(z) NORM(z)
= 2 7 14

and p, =

), parts (2) and (3) immediately follow.
We use the DIFF-values to quickly decide if it is possible to bucket nodes in accor-

dance with Invariant 4. Suppose that we are attempting to bucket a node y € CHILD(x)
due to either Trigger 4, 5, or 6. Our procedure is as follows:

55

1. Recall that z’s first bucket spans the interval [t., t, + NORM(z)). Let [3, B +
NORM(z)) be the bucket in 2’s bucket array such that ¢, + p, - DIFF(Qy) € [5, 5+
NORM(z)).

2. If D(y) > B, put y in bucket [3, §+ NORM(z)) and stop.
3. If D(y) > B — NORM(z), puty in bucket [3 — NORM(z), 3) and stop.

4. Otherwise, put or keep y in H,.

Lemma 23 The bucketing procedure does not violate Invariant 4 and if Q, contains a
suffiz of a shortest s—to—y path, then y is successfully bucketed.

Proof: Recall from Lemma 5 in Section 3.4 that ¢, was chosen so that d(s,z) € [tg,to+
NORM(z)). Lines 2 and 3 of the bucketing procedure guarantee that y is never bucketed

in a higher bucket than Lféﬁ)M_(;’gJ To show that Invariant 4 is preserved, we need

NORM(z)
22(2) states that p, - DIFF(Q,) > d(s,y) — d(s,z) — 1NORM(z), which implies that
pz - DIFF(Qy) > d(s,y) — t, — 3NORM(z). So bucketing y according to p, - DIFF(Q,) can
put it at most [%] = 2 buckets before bucket [MJ, which is the slack tolerated

by Invariant 4. For the second part of the Lenl:r(;gl,(wa)dssume that some Q € Q, is a
suffix of the shortest s—to—y path. It follows from Lemma 22(3) that p, - DIFF(Q,) <
d(s,y) — tz + INORM(z). By choice of 3, we have 3 —t, < p, - DIFF(Q,), which implies
that 3 — NORM(z) < d(s,y) < D(y) Therefore, y must have been bucketed in Step 2
or 3 or the bucketing procedure.

O

only prove that in Line 2, y is not bucketed before bucket LMJ — 2. Lemma

Lemma 24 Suppose that we perform n SSSP computations with GENERALIZED-VISIT.
Then the cost of all heap operations, including the cost of Triggers 4, 5, and 6, is O(mn).

Proof: Recall that attempting to bucket a node takes constant time, and that each
invocation of Triggers 4, 5 take O(DEG(z)) time, and that Trigger 6 takes constant
time.

Trigger 4 is called once per SH-node per SSSP computation. Thus the total cost
for Trigger 4 is Y., .5y O(DEG(2)) - n, which is O(n?) by Lemma 3(4). Trigger 5 is
invoked whenever new 4,-values become known (for any € SH), which, by Triggers 1
and 2, means that for some vertex u, w,(u) was just fixed in Trigger 1. This can only
happen n times (for z), for a total cost of >, O(DEG(z)) - n = O(n?). Finally, Trigger
6 is called once per edge relaxation, of which there are no more than O(mn).

We now account for the cost of extracting items from H, Let y € CHILD(z),
and let P,y and P, be the shortest paths from s—to-y and s-to-z, respectively. Now

56

suppose that y is inserted into H,. We can write Py, as (Pi, P, P3), where P, and P;
are maximal such that P; C P;; C oUT(s) and P; C IN(y). By Lemma 23, y would have
been bucketed (rather than inserted into Hy) if (P, P3) € Q. By Definition 3 (P, P3)
is not in Q, either because (a) | P»| > DEG(z) or (b) wg(u) is not known, for some u € Ps.
Case (a) can only happen n/DEG(z) times for y, because after the SSSP computation
from source s, IN(y) will have absorbed P, (and P; for that matter). Thus the total
cost for (a) is Y., O(DEG(x))? - n/DEG(z) = O(n?). The cost of (b) has actually been
accounted for, since once w,(u) is fixed, for all u € P, y will be immediately bucketed
by Trigger 5.

O

The only costs not covered by Lemma 24 are constructing the stratified hierarchy,
which is O(mlogn) by Lemma 3(8), computing the I’ and 4 functions, which is O(mn)
by Lemmas 19(2) and 21(2) and implementing the D data structure, which, by Lemma
10, is O(m log a(m,n)) for each SSSP computation. Theorem 4 follows.

Theorem 4 The all-pairs shortest path problem on arbitrarily-weighted, directed graphs
can be solved with O(mnloga(m,n)) comparisons and additions, where m and n are the
number of edges and vertices, respectively, and « is the inverse-Ackermann function.

57

Chapter 5

Shortest Paths on
Undirected Graphs

In this Chapter we give an implementation of GENERALIZED- VISIT for undirected graphs
that is quantitatively and qualitatively superior to those algorithms for directed graphs
presented in Chapter 4. Why are undirected graphs so much easier? The short answer is
that undirected graphs can be effectively clustered, whereas directed graphs, in general,
cannot. Consider a single edge (u, v). In an undirected graph we can claim that |d(s,u)—
d(s,v)| < {(u,v), regardless of the rest of the graph, whereas in a directed graph only
the inequality d(s,v) < d(s,u)+£(u,v) holds. Thus, the distance function for undirected
graphs exhibits much stronger correlations.’

The particulars of our clustering scheme are a bit involved, though the overall
idea is quite simple. Suppose that x is an SH-node. Unless we know something about
the input graph, the set {d(s,y) —d(s, %) }yccmmn(z) consists of more or less independent
variables, each somewhere is the range [0, DIAM(z)). Therefore, barring any extra in-
formation about the graph, the set {[[d(s,y) — d(s,x)]/NORM(%)] }ycomrn(z) has about
DEG(x) log(DIAM(z)/NORM(z)) bits of information in it. In other words, we are imag-
ining that the graph is chosen at random — though still consistent with the hierarchy
SH — and asking about the entropy of certain variables. It is not difficult to show that
the entropy of SH can be as much as Q(nlogn). We show that by carefully introducing
new layers of nodes into SH, the overall entropy can be reduced to O(n). Furthermore,
we give a bucketing scheme (an implementation of the B structure) whose running time
matches the entropy of the given hierarchy.

The running time of our algorithm is significantly more impressive than the al-
gorithms from Chapter 4. The time required to compute a low-entropy hierarchy is

!The results of this chapter appeared in: S. Pettie and V. Ramachandran, Computing shortest paths
with comparisons and additions, Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp- 267-276, 2002. The full version is under review.

58

only O(ma(m,n)+ min{n logn,nloglogr}), where r bounds the ratio of any two edge-
lengths. Once this hierarchy is given, we are able to compute SSSP from any source in
O(SPLIT-FINDMIN(m,n)) = O(mlog a(m,n)) time, which is nearly linear-time — per-
haps even linear-time — and essentially unimprovable. As we will see in Chapter 6
the algorithm is streamlined and fares well in head-to-head comparisons with Dijkstra’s
algorithm. A stubborn bottleneck, both theoretically and practically, is the cost of com-
puting a low-entropy hierarchy. Thus, for the problem of computing SSSP ezactly once,
our algorithm is only a theoretical improvement for reasonably-sized r. For instance,
the asymptotic running time for » = poly(n) is O(m + nloglogn).

5.1 An Undirected Shortest Path Algorithm

5.1.1 Refined Hierarchies

Let H1 and Ho be two hierarchies. We will say that Hs is a refinement of H; if for every
r1 € Hi, there exists an xo € Hy such that V(z1) = V(z2) and NORM(z;) = NORM(z2).
Our undirected shortest path algorithm operates on a hierarchy called RH, which is a
refinement of SH having certain properties. We construct RH in Section 5.2.

We will exploit the correspondence between SH-nodes and their counterparts in
RH. For instance, if x is known to be an R’H-node, the assertion that x € SH is short for
dz' € SH : V(z) = V(2'). The nodes in RH — SH will be called auziliary. Let ¢ € SH
and let x be the children of z in SH. We define H, to be the subtree of RH induced by
x, X, and all the auxiliary nodes between = and . For the moment we will only make
two assumptions about H, (and by extension R#): that any auxiliary node y € H,
has at least two children (implying |[RH| = O(n)), and that NORM(y) = NORM(x). It is
easily shown that if SH satisfies Lemma 3 Parts (2) and (3) (the properties crucial for
computing SSSP correctly) then RH satisfies these properties as well.

5.1.2 The UNDIRECTED-VISIT Algorithm

Our shortest path algorithm for undirected graphs is given in Figure 5.1. It is nearly
identical to the GENERALIZED-VISIT algorithm from Chapter 3, save for two small
modifications. Since there is no distinction between connected and strongly connected
components in undirected graphs, we can treat any ¢-partition as an unordered (rather
than ordered) partition — see Lemma 2. In terms of the effect on our algorithm, rather
than extracting the leftmost node from the current bucket, as we do in GENERALIZED-
VISIT, we are free to extract any node in the current bucket.?

%Incidentally, this eliminates the need for the van Emde Boas heap [203] used in our implementation
of GENERALIZED-VISIT.

59

UNDIRECTED- VISIT(z, [a, b))

Input: x € SH and V(z) is (S, [a,b))-independent
Output: All vertices in V ()%t are visited

1. If z is a leaf and D(z) € [a,b), then let S := S U {x}, relax all edges incident on
x, restoring Invariant 1, and return.

2. If UNDIRECTED-VISIT(z, -) is being called for the first time, create a bucket array
of [DIAM(z)/NORM(z)] + 1 buckets. Bucket ¢ represents the interval

[tz + 1 - NORM(z), ty + (¢ + 1) - NORM(z))

where ¢, is set to:
{ D(z) if D(z) + DIAM(z) < b
ty =

b— [%1 NORM(z) otherwise

Bucket the nodes in CHILD(z) by their D-values

ty if this is the first call to VisiT(z,-)
a otherwise

3. Set a = {

While a, < band V(z) £ S

While bucket [a, az + NORM(z)) contains an auxiliary node y
Remove y from the bucket array
Bucket the nodes in CHILD(y)

While bucket [a;, a; + NORM(z)) contains any node y
UNDIRECTED-VISIT(y, [ag, az + NORM(z)))
Remove y from its bucket
If V(y) £ S, put y in bucket [a; + NORM(z), a; + 2 NORM(x))

az := az + NORM(z)

Figure 5.1: The UNDIRECTED- VISIT procedure.

60

The UNDIRECTED-VISIT procedure is only called on SH-nodes, never auxiliary
nodes. Indeed, the pattern of recursive calls with UNDIRECTED-VISIT is identical to
that of GENERALIZED-VISIT. We simply use the auxiliary nodes as representatives for
multiple SH-nodes in the bucket arrays. Specifically, we maintain that for any active
SH-node z, every leaf y € H, that belongs in z’s bucket array (according to Invariant
2) is represented in x’s bucket array by some ancestor of y in H,. Furthermore, if y is
itself active, or if it belongs in the current bucket, then y is represented by itself. One
can clearly see that UNDIRECTED- VISIT maintains this invariant. When « first becomes
active, in Step 2, we bucket only z’s children, a set that clearly represents the leaves of
H,. When a new bucket becomes the current bucket, in Step 3, we repeatedly replace an
auxiliary node in the current bucket by its children, and proceed only after no auxiliary
nodes remain. This bucketing regimen clearly simulates Invariant 2.

5.1.3 A Lazy Bucketing Structure

In this section we describe a simple abstract bucketing structure which is specially
suited for use in UNDIRECTED-VISIT. However, it is still general enough to be used in
other situations. The structure operates on an array of buckets and a set of elements
with associated real-valued keys. The ith bucket represents a real interval I;, which
is adjacent to I;;;, and an element with key x belongs in the unique bucket ¢ such
that k € I;. As a simplifying assumption, we assume that given ¢, I; is computable in
constant time. Buckets are either open or closed; only the contents of open buckets may
change.

The Bucket-Heap:

create(f) Create a new Bucket-Heap, where f(i) = I; is constant time computable.
All buckets are initially open.

insert(y, x) Insert a new item y with key(y) := &.

decrease-key(y, k) Set key(y) := min{key(y), x}. It is guaranteed that y is not moved
to a closed bucket.

close Close the first open bucket, and remove and enumerate its contents.

Lemma 25 The Bucket-Heap can be implemented to run in time O(N + 3, log A(y)),
where N is the total number of operations and A(y) is the number of close operations
between y’s insertion and its remouval.

Proof: Our bucketing structure simulates the logical specification given above; it actu-
ally consists of levels of bucket arrays. The level zero buckets are the ones referred to
in the Bucket-Heap’s specification, and the level i buckets preside over disjoint pairs of

61

