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On the Shortest Path andMinimum Spanning Tree ProblemsPubliation No.Seth Pettie, Ph.D.The University of Texas at Austin, 2003Supervisor: Vijaya RamahandranThe shortest path and minimum spanning tree problems are two of the lassitextbook problems in ombinatorial optimization. They are simple to desribe andadmit simple polynomial-time algorithms. However, despite years of onerted researhe�ort, the asymptoti omplexity of these problems remains unresolved.The main ontributions of this dissertation are a number of asymptotially fasteralgorithms for the minimum spanning tree and shortest path problems. Of equal interest,we provide some lues as to why these problems are so diÆult. In partiular, weshow why ertain modern approahes to the problems are doomed to have super-linearomplexity.A sampling of our results are listed below. We emphasize that all of our algo-rithms work with general graphs, and make no restritive assumptions on the numerialrepresentation of edge-lengths.� A provably optimal deterministi minimum spanning tree algorithm. (We give aonstrutive proof that the algorithmi omplexity of the minimum spanning treeproblem is equivalent to its deision-tree omplexity.)� An all-pairs shortest path algorithm for general graphs running in time O(mn+n2 log log n), where m and n are the number of edges and verties. This providesthe �rst improvement over approahes based on Dijkstra's algorithm.� An all-pairs shortest path algorithm for undireted graphs running in O(mn log�)time, where � = �(m;n) is the inverse-Akermann funtion.vi
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Chapter 1IntrodutionAs optimization problems go, the minimum spanning tree and shortest path problemsare as old as the hills. They are so �rmly established in the anon of omputer sieneeduation that today no student an avoid learning the algorithms of Dijkstra, Prim,Bellman-Ford, Floyd-Warshall, Kruskal, and Bor�uvka. Given the rih history of bothproblems (the minimum spanning tree problem dates bak 75 years) and the vigor ofreent researh e�orts, it is thoroughly surprising that neither problem is solved. Inpartiular, the question of their inherent algorithmi omplexity has yet to be fullyanswered.The primary fous of this dissertation is obtaining asymptotially faster algorithmsfor three lassial graph optimization problems: single-soure shortest paths, all-pairsshortest paths, and minimum spanning trees. For eah problem we o�er algorithms thatahieve optimality, or make substantial strides toward optimality. Highlights of ourresults inlude a provably optimal minimum spanning tree algorithm (with unknownrunning time) and an all-pairs shortest paths algorithm that improves on Dijkstra'stextbook algorithm from 1959. We survey our results in more detail in Setion 1.1.1(shortest paths) and Setion 1.1.2 (minimum spanning trees). Before delving into details,we would like to highlight our assumptions onerning the model of omputation.Any disussion of an algorithmi result must begin with the answers to two fun-damental questions: What does the input to the algorithm look like? and what an our(imaginary) omputer do (and at what ost)? The answers to these questions de�ne theomputational model, or simply model. Most researhers hoose a model by onsider-ing aestheti simpliity, historial preedent, realism, onveniene, or some ombinationthereof. In this dissertation we study the shortest path and minimum spanning treeproblems under the traditional textbook model. The input is assumed to be given asa real-weighted general graph, either direted or undireted, and the de�ning hara-teristi of the mahine model is that real numbers are only subjet to a spei� set ofunit-time operations, e.g., addition, subtration, and omparison. (See Setions 2.4 and1



7.2.1 for the spei�s.)The strength of the traditional model is its weakness. It is weak in that it makesminimal assumptions about the form of the input, and minimal assumptions about howthe abstrat omputer an manipulate the input. As a onsequene, algorithms designedfor the traditional model map easily onto atual physial omputers, usually withoutmodi�ation. The traditional model also fores us, as theoretiians, to onentrate onthe problem at hand. A number of algorithms these days | even for shortest paths andminimum spanning trees | apply very model-spei� tehniques and, as suh, revealless about the problem than they do about the power of the underlying mahine.1.1 Overview of the Results1.1.1 Shortest PathsIn 1997 Thorup invented what we dub the hierarhy-based approah to shortest paths.Thorup's original algorithm was designed for integer-weighted undireted graphs, andthe powerful RAM model, or random aess mahine. Beause the hierarhy approahseemed to depend on all kinds of model-spei� tehniques, it was unlear whether themore general problem | shortest paths on real-weighted graphs | would admit aneÆient hierarhy-based algorithm. In Chapters 2{6 we develop a number of fastershortest path algorithms, all hierarhy-based, and explore the inherent limitations ofthe approah.In Chapter 3 we de�ne a large lass of hierarhy-type algorithms, and prove that,in general, no hierarhy-type algorithm an improve on Dijkstra's lassial single-soureshortest path (SSSP) algorithm. Basially, we show that there is an inherent \sortingbottlenek" in the approah, just as there is in Dijkstra's algorithm. However our lowerbound does not sale up well. For instane it does not say that omputing SSSP 5 timesfrom di�erent soures is 5 times as hard as SSSP. This is beause shortest paths on thesame graph are, by their nature, highly dependent. Knowing some shortest paths mightgive you a great deal of information about others.The main theoretial ontributions of our shortest path algorithms are some newtehniques for identifying and exploiting the dependenies among shortest paths in thesame graph. In Chapter 4 we give a new all-pairs shortest path (APSP) algorithmthat runs in time O(mn + n2 log logn), where m and n are the number of edges andverties respetively. This is the �rst theoretial improvement over Dijkstra's 1959algorithm, whih runs in O(mn+ n2 log n) time if implemented with a Fibonai heap.In Chapter 4 we also address the non-uniform omplexity of APSP. In partiular wegive an APSP algorithm making O(mn log�(m;n)) numerial operations, where � isthe inverse-Akermann funtion. Due to the trivial lower bound of 
(n2), our algorithm2



is within a tiny log�(n; n) fator of optimal when m = O(n).In Chapter 5 we give a faster shortest path algorithm for undireted graphs. Asan undireted APSP algorithm, it runs in O(mn log�(m;n)) time | again, nearlyoptimal for m = O(n). As an undireted SSSP algorithm it runs in O(m�(m;n) +n log log r) time, where r bounds the ratio of any two edge lengths. Thus for r = poly(n),our undireted SSSP algorithm runs in O(m + n log log n) time, an improvement overDijkstra's. In Chapter 6 we present the results of some experiments with a simpli�edversion of our undireted shortest path algorithm. It onsistently outperforms Dijkstra'son a variety of sparse graph types, and omes surprisingly lose to the speed of breadth�rst searh, whih we use as a benhmark linear-time algorithm.1.1.2 Minimum Spanning TreesThe minimum spanning tree problem (MST) has been studied for over 75 years, thoughit was only in reent years that sophistiated tehniques were applied to the problem.In 1994 Karger, Klein, and Tarjan [127℄ developed a randomized expeted linear timealgorithm based on two key tehniques: random sampling and minimum spanning treeveri�ation. In 1997 Chazelle [28℄ addressed the deterministi omplexity of the MSTproblem. The running time of his algorithm was slightly super-linear (of the inverse-Akermann variety) and was based on a new approximate priority queue alled the SoftHeap [29℄.In Chapter 8 we solve part of the MST problem. We give, in partiular, a provablyoptimal MST algorithm, and show that the deision-tree (omparison) omplexity of theproblem is equivalent to its algorithmi omplexity. Thus, we have separated the issuesof �nding an optimal algorithm with analyzing its omplexity. Our algorithm, likeChazelle's [28℄, is based on the Soft Heap.In [28℄ Chazelle wondered what sort of data struture might be the key to anexpliit linear-time MST algorithm. Clearly inspired by the suess of MST veri�ationin the randomized algorithm of Karger et al. [127℄, he proposed a \dynami equivalent"to MST veri�ation. In Chapter 9 we give an inverse-Akermann type lower bound forthe online MST veri�ation problem, whih may be onsidered the simplest dynamiequivalent. Our lower bound seems to rule out a faster expliit MST algorithm based ononline MST veri�ation. Parenthetially, this is the �rst inverse-Akermann type lowerbound for any omparison-based problem.In Chapter 10 we give the �rst randomized time-work optimal parallel MST algo-rithm. Our algorithm improves on a long line of results, some time-optimal and somework-optimal.One disadvantage of the randomized MST algorithms is that they use a number ofrandom bits that is linear in the size of the problem. In reality however random bits areusually onsidered a sare resoure. In Chapter 11 we develop a new randomized MST3



algorithm that runs in expeted linear-time, even if only a polylogarithmi number ofrandom bits are available. It is parallelizable, and also gives an eÆient parallel on-netivity algorithm using polylogarithmi random bits. (A simple tweak of our optimalMST algorithm yields one that runs in expeted linear time using o(log�n) random bits.However this algorithm is not parallelizable.)1.2 PreliminariesWe assume no speialized bakground knowledge. However the reader should be familiarwith asymptoti notation (O;
;�; !; o), graph terminology (tree, path, vertex, edge,yle, et.), and a little probability for the latter hapters. Refer to any standardalgorithms textbook [47℄ for the neessary de�nitions.We have summarized the standard asymptoti notation in Setion 1.2.1. In Setion1.2.2 we summarize the hapter dependenies.1.2.1 Asymptoti NotationWe use the standard asymptoti notations. Below, f and g are funtions from naturalsto naturals. f(n) = O(g(n)) � 91; 2 8n > 0 : f(n) � 1 � g(n) + 2f(n) = 
(g(n)) � g(n) = O(f(n))f(n) = �(g(n)) � f(n) = O(g(n)) and f(n) = 
(g(n))f(n) = !(g(n)) � limn!1 g(n)=f(n) = 0f(n) = o(g(n)) � g(n) = !(f(n))Remark. Some soures in the literature use the asymmetri de�nition: f(n) = 
(g(n))if there exists a onstant  suh that  � f(n) � g(n) for in�nitely many integers n.1.2.2 Chapter DependeniesParts I and II, on shortest paths and minimum spanning trees, respetively, are entirelyindependent.Chapters 4 (direted shortest paths) and 5 (undireted shortest paths) are bothbuilt on the foundation of Chapters 2 and 3. Chapter 6 (experimental shortest paths)may be read separately, though it does frequently refer to the algorithm from Chapter5. 4



Chapters 8{11 (results on minimum spanning trees) are independent of one an-other, though eah should be read following the introdution to minimum spanningtrees, in Chapter 7.
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Part IShortest Paths
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Chapter 2Introdution to Shortest Paths2.1 HistoryIn Setions 2.1.1 and 2.1.2 we survey the history of the single-soure and all-pairs shortestpath problems, whih are the \textbook" shortest path problems and the subjet ofsubsequent hapters. In Setion 2.1.3 we attempt to survey a slew of results extendingthe shortest path problem in various diretions.2.1.1 Single-Soure Shortest PathsThe single-soure shortest path problem, or SSSP, is a deeptively diÆult problem. Asearly as 1960 there were two algorithmi solutions: Bellman and Ford's [17, 65, 47℄,whih worked on arbitrarily weighted graphs, and Dijkstra's [52℄, whih was a bit fasterbut assumed non-negatively weighted graphs. To date neither of these algorithms havebeen improved in the ontext of general real-weighted graphs. However there have beena number of quali�ed suesses, as we shall see.The Bellman-Ford algorithm runs in O(mn) time, where m and n are the numberof edges and verties respetively. However this ost is generally very pessimisti; a�ner analysis shows it runs in O(hm) time, where h is the maximum number of edges inany shortest path. Goldberg [87℄, improving very slightly on Gabow and Tarjan's work[77, 80℄, gave an SSSP algorithm for integer-weighted graphs running in O(pnm logN)time, where N bounds the magnitude of the negative edge-lengths.Dijkstra's 1959 SSSP algorithm [52℄ runs in O(n2) time if implemented in astraightforward fashion; this is optimal for dense graphs. It was quikly observed thatspeeding up Dijkstra's algorithm is tantamount to implementing a fast priority queue.Using Johnson's d-ary heap [118, 119℄, a generalization of Williams' binary heap [205℄,Dijkstra's algorithm runs in O(m log2+m=n n) time, whih is optimal for moderatelydense graphs, say when m=n = n
(1). The fastest implementation of Dijkstra's algo-7



rithm to date runs in O(m + n logn) time, making it optimal for m=n = 
(log n). Ituses Fredman and Tarjan's Fibonai heap [73℄. In a omparison-based model of ompu-tation, one an easily show that Fibonai heaps are asymptotially optimal, and thatin the worst ase Dijkstra's algorithm requires 
(m+ n log n) time to solve. Thus anyresearh on the SSSP problem must depart from the general omparison-based model,or keep the omparison model and depart from Dijkstra's algorithm. We take the latterapproah. E�orts on the former have foused on implementations of Dijkstra's algorithmfor integer-weighted graphs in the unit-ost RAM (random aess mahine) model ofomputation.1Fredman and Willard [74, 75℄ showed that in the RAM model it is possible to sortn integers in o(n log n) time, and to implement priority queue operations in o(log n) time.(In other words the information-theoreti bottleneks inherent in a omparison-basedmodel do not apply here.) To date the best implementations of Dijkstra's algorithm oninteger-weighted graphs run in time O(mplog logn) [102℄ (expeted) and time O(m +n log log n) [199℄.In 1997, Thorup [196℄ invented the hierarhy-based approah to shortest paths |a lean break from Dijkstra's algorithm | and gave a linear-time SSSP algorithm forthe restrited ase of non-negative integer-weighted undireted graphs. The question ofwhether the hierarhy-based approah ould be adapted to direted graphs and/or aomparison-based model of omputation was left unanswered. Hagerup [98℄, in 2000,showed that indeed the hierarhy approah an be applied to direted integer-weightedgraphs. His SSSP algorithm ran in O(m log logN) time, where N is the largest edgelength. Hagerup's algorithm provided no speedup over existing RAM-based SSSP algo-rithms, though it was deterministi and used only linear spae.2.1.2 All-Pairs Shortest PathsThe APSP problem | �nd the shortest path from every vertex to every other | aneasily be solved with n SSSP omputations. Thus, Bellman-Ford solves APSP inO(mn2)time and Dijkstra solves APSP (on non-negative edge lengths) in O(mn + n2 log n) =O(n3) time. However a more diret approah to APSP an give better bounds.Dense GraphsThe Floyd-Warshall algorithm [47℄ omputes APSP in O(n3) time, and has the pra-tial advantages of being simple and streamlined. It is well known that a (min;+)matrix multiplier an be used to solve the all-pairs distane problem (APD), whih doesnot ask for shortest paths per se. This gives an obvious O(n3 log n)-time APD/APSP1The phrase unit-ost here emphasizes that all operations take unit time, even non-AC0 ones likemultipliation, and that all memory aesses take unit time, i.e., there is no ahe in the model.8



algorithm. What is less obvious is that the omplexity of APD is asymptotially equiv-alent to (min;+) matrix multipliation | see Aho et al. [4℄. Fredman [69℄ gave amin-plus multiplier that performs O(n2:5) numerial operations; however there is noknown polynomial-time implementation of Fredman's algorithm. The fastest min-plusalgorithm to date is due to Takaoka [188℄, who uses Fredman's approah on small sub-problems. Takaoka's algorithm runs in time O(n3q log log nlog n ), whih is a sub-logarithmiimprovement over standard matrix multipliation.One annot diretly apply the \fast" matrix multipliers, suh as those of Strassen[186℄ or Coppersmith and Winograd [45℄, beause (min;+) is not a ring: min has noinverse. However, ring-based matrix multipliation an be used in less obvious ways toompute APSP. The algorithms of [180, 82, 182, 9, 189, 209℄ take this approah, andyield improved, o(n3) APSP algorithms on integer-weighted graphs, provided that themagnitude of the integers is suÆiently small | always sublinear in n.Sparse GraphsJohnson [119℄ gave an interesting solution to the problem of negative edge-lengths. As-suming that no negative-length yles exist, he showed that the shortest path problemis reduible in O(mn) time to one of the same size, but having only non-negative edgelengths. Combined with Dijkstra's algorithm this immediately yields an APSP algo-rithm for arbitrarily weighted graphs running in O(mn + n2 logn) time. SurprisinglyDijkstra's algorithm (with or without Johnson's redution) remained the fastest generalAPSP algorithm for many years. (Refer to Chapters 4 and 5 for our improved APSPalgorithms.)In the ontext of integer-weighted graphs and the RAM model, the existing im-plementations of Dijkstra's SSSP algorithm [102, 199℄ imply some bounds on APSP:O(minfmnplog logn; mn + n2 log logng). The hierarhy-type algorithms of Thorup[196℄ and Hagerup [98℄ also give bounds on APSP. Hagerup's algorithm solves APSPin O(mn+ n2 log logn) time,2 and Thorup's algorithm [196℄ solves undireted APSP inO(mn) time.2.1.3 VariationsDue to the pratial signi�ane of shortest paths, a number of variations on the problemhave been proposed, eah restriting or generalizing some aspet of the SSSP or APSPproblems.2Although their running times are idential, Hagerup's APSP algorithm is theoretially leaner thanthe one derived from an implementation of Dijkstra's algorithm with Thorup's reent integer priorityqueue [199℄. Thorup uses multipliation whereas Hagerup only uses standard AC0 operations.9



The ase of planar graphs has been studied extensively [151, 152, 66, 67, 105, 61℄.Interestingly the SSSP problem on planar graphs is only slightly more diÆult underarbitrary edge-lengths [61℄ as opposed to positive edge lengths [105℄. A number of al-gorithms have been analyzed under the assumption of a omplete graph with randomlyhosen edge lengths [184, 165, 128, 140, 187, 44℄, and two SSSP algorithms were pre-sented reently [160, 89℄ that run in expeted linear time when the edge-lengths areseleted uniformly from some interval. There are shortest path algorithms guaranteeingapproximate solutions (see Zwik's survey [208℄), dynami shortest path algorithms (seeDemetresu and Italiano [50℄ for more referenes), preproessing shemes for answering(approximate) shortest path queries [200, 197, 136, 96, 144, 51℄, parallel shortest pathalgorithms [201, 137, 101, 161℄, ahe-eÆient shortest path algorithms [155, 156, 162℄,geometri shortest path algorithms [164℄, and a zillion others. (We have only sampledthe available literature and make no laim to ompleteness.)2.1.4 OrganizationIn Setion 2.2 we summarize our ontributions to the shortest path problem, whih arerevealed in meriless detail in Chapters 3{6. In Setion 2.3 we give a formal de�nitionof the problem and introdue some notational onventions. In Setion 2.4 we de�ne theomparison-addition model, and disuss various aspets of the model. In Setion 2.5 wedesribe Dijkstra's algorithm and disuss a lass of Dijkstra-like algorithms. In Setion2.6 we give a gentle introdution to the hierarhy-based approah to shortest paths.2.2 Our ContributionsThorup's hierarhy approah [196℄ to shortest paths is designed for integer-weightedgraphs, and at �rst glane, seems to depend essentially on the RAM model and theassumption of integral edge-lengths. Indeed, any straightforward \port" of Thorup'sSSSP algorithm to the omparison-addition model (see Setion 2.4) will inur a sortingbottlenek, that is, a running time of 
(n logn). In Setion 3.6 we give a fairly stronglower bound showing that any hierarhy-type SSSP algorithm must, in the worst ase,perform 
(m + n logn) numerial operations, even if the graph is undireted. Theimpliations for hierarhy-type APSP algorithms are less severe. Our lower bound showsthat solving APSP with n independent exeutions of a hierarhy-type SSSP algorithmis sure to lead to running times of at least 
(mn + n2 log n) | no improvement overDijkstra | sine eah SSSP omputation is subjet to the lower bound.The way out of this bind is to exploit the strong dependenies that exist amongshortest paths in the same graph. Our undireted shortest path algorithm [Chapter5℄, for instane, onstruts a linear-spae hierarhy struture that enodes useful in-10



formation about every shortest path in the graph. One the hierarhy struture isbuilt we an ompute SSSP from any soure in O(m log�(m;n)) time | essentiallylinear | with a relatively simple and streamlined algorithm. This leads diretly to anO(mn log�(m;n)) APSP algorithm for undireted graphs. In the ontext of omputingAPSP, or even SSSP multiple times, the ost of omputing the hierarhy struture isinsigni�ant. However it may be the dominant ost when omputing SSSP exatly one.Our best bound on SSSP is O(m�(m;n)+minfn log log r; n log ng), where r bounds theratio of any two edge lengths. For r = poly(n) | a fairly reasonable assumption | thebound beomes O(m+ n log logn), whih is an improvement over Dijkstra's algorithm.Direted graphs are a di�erent beast. At a high level our direted shortest pathalgorithms [Chapter 4℄ are applying the same general tehnique: trimming osts byexploiting ertain dependenies among shortest paths. However the tehniques wedevelop for direted graphs are signi�antly more sophistiated than those for undi-reted graphs. In Setion 4.1 we present a direted APSP algorithm that runs in timeO(mn + n2 log log n); this is the �rst improvement over Dijkstra's APSP algorithm onreal-weighted graphs. We annot �nd a faster direted APSP algorithm, but in Setion4.2 we give a non-uniform APSP algorithm performing O(mn log�(m;n)) numerialoperations. Notie that for m = O(n), this bound is only a minisule log�(n; n) fatorfrom optimal omplexity. (This is very enouraging. It suggests that some part of theAPSP problem is atually soluble with existing tehniques.)In Chapter 6 we present the results of some experiments with a simpli�ed versionof our undireted shortest path algorithm [Chapter 5℄. The results are fairly impressive.After the hierarhy struture is built, our algorithm onsistently outperforms Dijkstra'salgorithm on a variety of graph lasses and sizes. It also performs between 1.81 and2.77 times the speed of breadth �rst searh, whih an be onsidered a reasonable lowerbound on the pratial limits of any shortest path algorithm.2.3 Problem De�nitionThe input is a weighted direted graph G = (V;E; `) where jV j = n; jEj = m, and` : E ! R assigns a real length to every edge. It was mentioned in Setion 2.1.2 that theshortest path problem is reduible in O(mn) time to one of the same size but havingonly non-negative edge lengths, assuming that no negative length yles exist. We willassume heneforth that ` : E ! R+ assigns only non-negative lengths.The length of a path is de�ned to be the sum of its onstituent edge lengths, anda shortest path, from one spei�ed vertex to another, is one having minimum length.The distane from u to v, denoted d(u; v) is the length of a shortest path from u tov, or 1 if none exists. The APSP problem is to ompute the values d(u; v), for all(u; v) 2 V �V , and the SSSP problem is to ompute the values d(s; u) for a �xed soure11



s 2 V and all u 2 V . The SSSP problem is sometimes de�ned to be that of �ndingshortest paths, not distanes. However, one an easily show that given one | shortestpaths or distanes | the other is omputable in linear time. For the sake of simpliitywe fous on distanes.We frequently extend the distane notation to inlude objets other than verties.For instane, if H is a subgraph, a set of verties, or any objet identi�ed with a set ofverties, we let d(u;H) denote the minimum distane from u to any vertex in H.2.4 The Comparison-Addition ModelMany omputational models, suh as the Turing mahine and the word RAM, have theproperty that data is �nite, disrete, and inspetible. That is, the representation of anelemental piee of data (a symbol on the tape of a Turing mahine or the bits of a wordin a word RAM) an be fully known. For problems whose input onsists of real-weightedelements, suh as the shortest path problem, it is impossible to work within a modelwhose data is both �nite and inspetible. In the omparison-addition model we sari�einspetibility in order to retain the full generality of real-weighted data. Real numbersare represented in speial variables of type real. The only operations allowed on realsare additions and omparisons, of the form:a := b+ and if a < b then . . . else . . .The omparison-addition model is not really omplete beause we have yet to de�newhat happens on non-real data. All of our algorithms work under the RAM model(random aess mahine). Spei�ally, we assume the existene of a type integer, whih,like reals, is subjet to omparisons and additions. We also assume that integers an beused to index arrays. That is, if A is an array and i an integer, the element A[i℄ an beretrieved in unit-time. We assume no primitive operations that onvert reals to integersor vie versa.A realist may argue that sine real-life mahines have �nite, disrete, and in-spetible data, one should study optimization problems (e.g., shortest paths) whoseweighted elements are assumed to be integers. In the abstrat this has ertainly beena very suessful endeavor. For several important optimization problems, suh as max-imum ow [91℄, maximum weight mathing [80, 81℄, and single-soure shortest paths[87, 80℄, the fastest algorithms for integer-weighted inputs an be faster than their oun-terparts for real-weighted inputs by up to a polynomial fator, so long as the magnitudeof the integers does not get too large. These theoretial improvements are signi�ant,12



though they do not always result in orresponding real-world improvements. In pratieit is not unusual for an algorithm to have wildly di�ering worst-ase and typial-aserunning times (Bellman-Ford and nearly all maximum ow algorithms ome to mind).Depending on the problem, there may be no pratial bene�t to assuming integer-weighted graphs.An often overlooked aspet of the omparison-addition model is that its restritive,algebrai framework is atually useful in pratie. By not meddling with the internalrepresentation of numbers, algorithms in the omparison-addition model naturally workwith a variety of numerial types.3 Moreover, it is possible to prove the orretness ofsuh algorithms with lean mathematial arguments.2.4.1 Non-Uniform ComplexityWe will use the term omparison-addition omplexity to refer to the number of real-number operations performed by an algorithm. This is a non-uniform omplexity mea-sure, in the sense that an algorithm with a ertain omparison-addition omplexity willnot, in general, have the same running time asymptotially. The di�erene betweenuniform and non-uniform omputation is usually understood as the di�erene betweenTuring mahine omplexity and iruit omplexity. Our situation is basially analo-gous to this one, where our souped-up RAM takes the plae of the Turing mahine andalgebrai deision trees replae iruits.42.4.2 Basi TehniquesWe frequently make use of real number operations not inluded in the omparison-addition model, suh as subtration, multipliation by an integer, division and the ooroperation. We show below how these operations an be simulated in the omparison-addition model, sometimes without asymptoti penalty.To simulate subtration we represent eah abstrat real number a by two atualreal numbers a1 and a2 suh that a = a1 � a2. Both abstrat addition and abstratsubtration are aomplished with two atual additions, sine a+b = (a1+b1)�(a2+b2)and a � b = (a1 + b2) � (a2 + b1). An abstrat omparison between a and b translatesinto an atual omparison between (a1 + b2) and (a2 + b1).Multipliation by an integer is also not diÆult. Suppose a is a real and N aninteger. We an alulate Na in O(logN) time as follows. Produe the set of realsB = fa; 2a; 4a; 8a; : : : ; 2blogNag, using logN additions, then produe Nx by summing3LEDA [157℄, for instane, has a number of numerial data types beyond the usual int and float,as do the Java & C# programming languages.4This analogy is not entirely tight. A family of iruits solving a problem would have one iruit perproblem size, whereas in the shortest path problem we would have one algebrai deision tree for eahdistint input graph. 13



up the appropriate subset of B. Division by an integer is aomplished in a similarfashion. Suppose we set a := b=N . If we want to ompare a with another number,say , we an substitute the equivalent omparison between b and N. Here b=N is notalulated but represented symbolially. (In general division an be very ineÆient; itan ause a large blow-up in the time to simulate future omparisons.)An operation that omes in very handy is taking the oor (or eiling) of theratio of two reals, i.e., omputing the integer �ab �. This operation is di�erent from theones disussed above beause the result is an integer rather than a real number. Weompute the oor of a ratio using a method similar to our simulation of multipliation.To ompute �ab � we �rst produe the set B = fb; 2b; 4b; 8b; : : : ; 2dlog ab ebg, then usethe elements of B to implement a binary searh to �nd the integer �ab �. This takesO(1 + log ab ) time2.4.3 Lower BoundsThere are several known lower bounds on various shortest path problems in the omparison-addition model. However, they are all very weak. Spira and Pan [185℄ showed that,regardless of additions, 
(n2) omparisons are neessary to solve SSSP on the ompletegraph. Karger et al. [128℄ proved that all-pairs shortest paths requires 
(mn) om-parisons if all summations orrespond to paths in the graph. However, this assumptionis restritive: the Fredman and Takaoka algorithms [69, 188℄ are not path-based, andneither are ours. Kerr [132℄ showed that any straight-line (oblivious) APSP algorithmperforms 
(n3) operations, and Kolliopoulos and Stein [140℄ proved that any �xed se-quene of edge relaxations solving SSSP must have length 
(mn). By \�xed sequene"they mean one whih depends on m and n but not the graph topology. Graham et al.[95℄ did not give a lower bound but showed that the standard information-theoreti ar-gument annot yield a non-trivial, !(n2) lower bound in the APSP problem. Similarly,no information-theoreti argument an provide an interesting lower bound on SSSP.2.5 Dijkstra's AlgorithmIt is sometimes useful to think about the SSSP problem as that of simulating a physialproess. Suppose that the graph represents a network of water pipes, and that at timezero we begin injeting water into the network at a spei� plae: the soure. TheSSSP problem is to ompute when the water reahes eah plae in the network. Othernetwork optimization problems orrespond to ertain physial proesses (network owand minimum spanning trees ome to mind). Dijkstra's algorithm is one of the fewthat atually simulates the physial proess diretly. That is, the states of Dijkstra'salgorithm orrespond to states in the physial system.14



Reall that the soure vertex is represented by s. Dijkstra's algorithm maintainsa set of visited verties S, whih, from the point of view of the simulation, orrespondsexatly to the plaes in the pipe network already reahes by the water. Therefore, atany point in Dijkstra's algorithm we are impliitly at time maxv2S d(s; v). Dijkstra'salgorithm maintains a tentative distane D(v) for eah v 2 V , satisfying the followinginvariant.Invariant 1 (Dijkstra's Invariant) For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) isthe distane from s to v in the subgraph indued by S [ fvg.In the simulation D(v) represents the estimated time when water will reah v,based on when water reahed verties in S. D(v) is an upper bound on d(s; v) and isnot equal to d(s; v) preisely when the shortest path to v passes through some vertexin V � S. Dijkstra's algorithm adds verties to the set S one by one, whih implies,sine it is a physial simulation, that the next vertex added is always the v 2 (V � S)minimizing d(s; v). This is the same v 2 (V � S) minimizing D(v) sine edge lengthsare assumed to be non-negative. One we set S := S [ fvg, the D-values may notsatisfy Dijkstra's Invariant. To restore Invariant 1 we relax eah outgoing edge (v; w)of v, setting D(w) := minfD(w);D(v) + `(v; w)g. Eventually S = V , implying thatD(v) = d(s; v) for all v 2 V .The only ompliated part of Dijkstra's algorithm is deiding whih vertex to visitnext. Dijkstra [52℄, more onerned with spae than time, proposed examining D(v)for all v 2 (V � S). This gives an SSSP algorithm with overall running time O(n2).Using Fibonai heaps [73℄, Dijkstra's algorithm an be made to run muh faster | inO(m+ n logn) time | with only a small onstant fator inrease in spae usage.It is important to notie that Dijkstra's algorithm represents only one method formaintaining Invariant 1 and that, in priniple, there are many \Dijkstra-like" algorithmsthat grow the set S while preserving Invariant 1. When suh an algorithm adds a vertexto S, say v, it must have a erti�ate that D(v) = d(s; v), in partiular that for allu 62 S, D(u) + d(u; v) � D(v). Dijkstra's erti�ate is simply that D(u) � D(v) byhoie of v, and that d(u; v) � 0 by the assumption that edge-lengths are non-negative.To depart from Dijkstra's algorithm one must be able to �nd a better lower bound ond(u; v) than the trivial d(u; v) � 0.Our shortest path algorithms are all Dijkstra-like, aording to the de�nitionabove. Therefore, the meaning of D, S, and s will be preserved in later hapters, as willthe meaning of the terms \visit" and \relax." We may refer to Invariant 1 as simplyDijkstra's Invariant.
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2.6 The Hierarhy ApproahThe main limitation of Dijkstra's algorithm is that it visits verties in order of inreasingdistane from the soure. If we view the set S as the state, Dijkstra's algorithm passesthrough n distint states orresponding to n physial states. Dini [56℄ observed thatin general, not every state of the SSSP algorithm must orrespond to a physial state.Let t > 0 be the minimum edge length in the graph. In Dini's variation on Dijkstra'salgorithm, rather than visiting v 2 (V � S) minimizing D(v), we visit any v 2 (V � S)minimizing bD(v)=t, or indeed, every suh v minimizing bD(v)=t simultaneously. Inother words, we are setting up hekpoints at \time" 0; t; 2t; 3t; : : : where the physialand algorithmi states are in alignment. Between these hekpoints the algorithm passesthrough states that have no physial equivalent.Generally speaking Dini's algorithm provides no improvement over Dijkstra'salgorithm. However, it is the kernel of the hierarhy-based approah, whih was inventedby Thorup [196℄ for the speial ase of integer-weighted undireted graphs. Thorup'sinsight was that Dini's algorithm an be generalized to arbitrary (and even multiple)values of t; it need not �x t at the minimum edge length. Consider a simpli�ed, butillustrative example.Suppose that t > 0 is arbitrary and the vertex set V is partitioned into disjointsets V1; V2; : : : ; Vk where any edge from Vi to Vj , i 6= j, has length at least t. LetG be derived from the input graph G by ontrating V1; : : : ; Vk to single verties,denoted v1; : : : ; vk. On suh a graph one an think of a hierarhy-type SSSP algorithmas being omposed of (at least) k + 1 proesses, one that operates on G, and k thatoperate on the graphs indued by V1; : : : ; Vk. The proess operating on G basiallyruns Dini's SSSP algorithm. It needs a slight modi�ation beause a vertex vi 2 V (G)is really a subgraph on Vi, not an atual vertex. Therefore, rather than vi being eithervisited or not, it an be partially visited if Vi is only partially ontained in S. Theproess operating on G proeeds as follows. It visits, by delegating responsibility tothe other proesses, all verties whose distanes lie in the interval [0; t), followed bythose that lie in [t; 2t), [2t; 3t), et. Suppose that the proess governing Vi is told tovisit all verties in Vi whose distanes lie in [jt; (j + 1)t). This proess is given whatin later setions is alled an independent subproblem, meaning that it an be solvedby looking only at Vi and the urrent tentative distanes, i.e. D-values. (Provingindependene is not diÆult; the argument is essentially the same as that found in theproof of orretness of Dini's algorithm.) The proess governing Vi ould solve itssubproblems using Dijkstra's algorithm, where the heap would ontain the D-values ofjust those verties in Vi. However, there is no reason why we annot apply the samesheme reursively. We would simply hoose a new threshold ti and partition Vi intoVi;1; Vi;2; : : : ; Vi;ki suh that all edges rossing the partition have length at least ti. We16



refer to this reursive partitioning of the verties as a hierarhy.It is ertainly not obvious how to implement this algorithm eÆiently. Thereis the question of whether a good hierarhy an be omputed eÆiently, and | thisis a separate issue | whether the algorithm admits a fast implementation, given asuÆiently good hierarhy. One of our primary onerns is whether there is an inherentsorting bottlenek in the approah. If there is suh a bottlenek, then all hierarhy-basedalgorithms are doomed to have running times of 
(m+n logn), the same as Dijkstra's.Of ourse, the absene of any kind of information-theoreti bottlenek does not implya faster hierarhy-based shortest path algorithm, but it would suggest the existene ofone. In subsequent hapters we give a nearly-omplete answer to the sorting bottlenekquestion, though it is more ompliated than simply yes or no. Several fators inuenethe omplexity of the hierarhy-type shortest path algorithms, inluding:� Whether the graph is direted or undireted.� Whether the ratio of the maximum-to-minimum edge length is large, as a funtionof the number of verties.� Whether a good hierarhy is given or needs to be omputed from srath. (Com-puting it from srath an involve a sorting bottlenek.)� Whether SSSP is to be omputed one, or repeatedly on the same graph.� Whether the topology and edge-length distribution of the input graph is typial.Typial graphs are very di�erent than our worst-ase examples.
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Chapter 3Hierarhies & Shortest PathsThe entral idea in hierarhy-type algorithms is that of dividing the SSSP problem intoa series of independent subproblems. In this hapter we de�ne preisely this notion of in-dependene, and show how independent subproblems an be reated and manipulated.13.1 Independent SubproblemsReall that s denotes the soure of the SSSP problem. Let X � V denote a set ofverties. We de�ne dX(s; v) to be the distane from s to v in the subgraph indued byX (or 1 if X does not ontain both s and v.) If I is a real interval, we de�ne XI tobe the set fv 2 X : d(s; v) 2 Ig, that is, those verties in X whose distanes from thesoure lie in I.De�nition 1 Let X and S be sets of verties and I be a real interval. We will all X(S; I)-independent if for all v 2 XI , d(s; v) = dS[XI (s; v)To paraphrase De�nition 1, if X is (S; I)-independent then one an determinethe set XI by examining only the subgraph indued by S [ XI . Suppose that wedisover that X is (S; I)-independent in the ontext of a Dijkstra-like algorithm, i.e.one satisfying Invariant 1. Now we an say something stronger: beause the D-valuesfor verties in XI � S enode all the relevant information about the subgraph induedon S, one an determine XI by examining only the subgraph indued by XI � S andthe D-values of those verties.1This hapter's notation and exposition are taken largely from two papers: (1) S. Pettie, A fasterall-pairs shortest path algorithm for real-weighted sparse graphs, Pro. 29th Int'l Colloq. on Automata,Languages, and Programming (ICALP), pp. 85{97, 2002, full version to appear in Theoretial ComputerSiene, and (2) S. Pettie and V. Ramahandran, Computing shortest paths with omparisons andadditions, Pro. 13th ACM-SIAM Symp. on Disrete Algorithms (SODA), pp. 267{276, 2002. Theresults of Setion 3.6.3 will appear in the journal version of (2).18



A t-partition, de�ned below, is a key tool for reating new, smaller independentsubproblems given a larger one.De�nition 2 Let X be a set of verties. The sequene (X1;X2; : : : ;Xk) is a t-partitionof X if fXigi is a partition of X and for every edge (u; v) where u 2 Xi; v 2 Xj, andj < i, we have `(u; v) � t.Note the asymmetry in De�nition 2. In a t-partition only \bakward" edgesrossing the partition have length at least t; \forward" edges an have any length.Lemma 1 shows the relationship between t-partitions and independent subproblems. Itgeneralizes some of the Lemmas given by Thorup [196℄.Lemma 1 Suppose that X is (S; [a; b))-independent. Let (X1; : : : ;Xk) be a t-partitionof X, let I be the interval [a;minfa+ t; bg), and let Si = S [XI1 [XI2 [ � � � [XIi . Then1. Xi+1 is (Si; I)-independent2. X is (Sk; [a+ t; b))-independentProof: First onsider Part (2). The assumption is that X is (S; [a; b))-independent,meaning that for v 2 X [a;b), dS[X[a;b)(s; v) = d(s; v). Sine Sk = S [ XI , we haveS[X [a;b) = Sk[X [a+t;b), whih immediately implies that X is (Sk; [a+t; b))-independentas well. Note that the interval [a+ t; b) may be empty if b � a+ t.Now onsider Part (1). The set Xi+1 is (Si; I) independent if for any v 2 XIi+1,d(s; v) = dSi[XIi+1(s; v). Suppose that this is not the ase, that is, that every shortest s{to{v path is not ontained in Si[XIi+1 = Si+1. Let w be the last vertex on suh a shortestpath whih is not in Si+1. The independene of X w.r.t. (S; [a; b)) implies w 2 X, andthe inequalities d(s; w) � d(s; v) < minfa+ t; bg further imply w 2 (Sk � Si+1). By thede�nition of a t-partition we have that d(w; v) � t. Together with the inequality d(s; v) =d(s; w) + d(w; v) < minfa+ t; bg we also have that d(s; w) < a. We now have enough toobtain a ontradition. For any shortest s{to{v path we proved the existene of a w onthis path that is neither in S nor in X [a;b), implying that d(s; v) < dS[X[a;b)(s; v). Thisdiretly ontradits our initial assumption that X is (S; [a; b))-independent.2Lemma 1 is essentially desribing a divide and onquer sheme for SSSP. The ideais to �nd an independent subproblem on the vertex setX, divide it into a series of smallerindependent subproblems, with the aid of a t-partition, then solve the smaller problemsreursively. There are several major obstales to implementing this general algorithmeÆiently, whih we will address in subsequent hapters. The �rst order of business isomputing and representing t-partitions. All of our shortest path algorithms have theproperty that the hoie of t-partitions does not depend on the soure vertex. Therefore,for any input graph we shall ompute, one and for all, a single set of t-partitions, whihwe represent using a rooted tree, or hierarhy.19



3.2 A Strati�ed HierarhyA hierarhy is a rooted tree where there is a one-to-one orrespondene between its leavesand the graph's verties. There is a natural orrespondene between hierarhy nodesand graph objets. We will frequently use the same notation to refer to leaf-nodes andgraph verties, and will treat internal nodes as representing either sets of verties or theindued subgraphs of those verties. If x is an internal node we let V (x) be the vertiesrepresented by x, i.e. the set of leaf-nodes desending from x. We denote the parent ofx in the hierarhy by p(x), and let hild(x) = (x1; x2; : : : ; xdeg(x)) denote the hildrenof x, from left to right, where deg(x) = jhild(x)j. The jV (x)j and deg(x) statistisprovide two ways to measure how \big" a node x is. Two others will ome in handy.We let diam(x) represent an upper bound on the diameter of V (x), where diameter isde�ned as maxu;v2V (x) fd(u; v)g. We assoiate with x a real number norm(x), and referto the ratio diam(x)=norm(x) as the normalized diameter of x. We assign norm-valuesto hierarhy nodes with several objetives in mind, namely the orretness, speed, andsimpliity of our shortest path algorithms. Sine the main onerns of this hapter areonly orretness and simpliity, we an say that norm-values are assigned to satisfy twoonditions.1. Either norm(p(x)) is an integer multiple of norm(x) or norm(p(x)) > diam(x).2. Let hild(x) = (x1; : : : ; xdeg(x)). Then (V (x1); : : : V (xdeg(x))) is a norm(x)-partition of V (x).Item (1) allows us to avoid great ompliations in our shortest path algorithms,but is otherwise of no interest. Item (2), in onjuntion with Lemma 1, will learly beuseful in the reation of independent shortest path subproblems.Our system for assigning norm-values is best explained by demonstrating why thesimple shemes used by Thorup and Hagerup [196, 98℄ do not work in the omparison-addition model. Thorup and Hagerup always hoose their norm-values from the setf2igi�0; a node with norm-value 2i then orresponds to a onneted omponent [196℄(or strongly onneted omponent [98℄) in the graph restrited to edges with lengthless than 2i+1. In the omparison-addition model, however, the set f2igi�0 annot begenerated beause there is no sequene of operations (that is, additions) that generatesthe onstant 1. This, of ourse, is no great obstale. We an simply hoose our norm-values from the set f`1 � 2igi�0, where `1 denotes the minimum non-zero edge lengthin the graph. In other words, we are just using the old system, under the irrefutableassumption that `1 = 1. Although this system should work well in pratie, there is atheoretial objetion to it that must be addressed. In the omparison-addition model thetime required to generate `1 �2i is exatly i, so if the ratio of the maximum-to-minimumedge length is r, generating the largest norm-value ould take log r time, whih is20



unbounded2 in terms of m and n. Our solution is to build a strati�ed hierarhy SH,where eah stratum orresponds to a di�erent normalizing edge length. For example,the sheme with norm-values from f`1 � 2igi�0 would have one stratum, with `1 as itsnormalizing edge length. We ensure that the ratio of two norm-values within a stratumis bounded as a funtion of n, and that the strata are well-separated in a ertain sense.We now de�ne the struture of our strati�ed hierarhy SH. First, let `1; : : : ; `mbe the non-zero edge lengths of the graph in sorted order. We hoose, as our set ofnormalizing lengths, f`1g [ f`j : `j > 2n � `j�1g [ f1gThat is, every normalizing length is muh larger than any shorter edge lengths. Let `rkbe the kth smallest normalizing length. The nodes of SH are indexed by their stratumand level within the stratum. For stratum k the levels run from 0 to the maximum isuh that `rk �2i < `rk+1 . The stratum k, level i nodes of SH orrespond to the stronglyonneted omponents 3 (SCCs) in the graph restrited to edges with length less than`rk � 2i. If x is suh an SH-node then norm(x) is de�ned as:norm(x) def= `rk � 2i�1; where x is at stratum k, level i (3.1)A node x is an anestor of y if V (x) � V (y) and x is higher in SH than y (higherstratum of same stratum and higher level). If V (x) = V (y), where y is a desendant of x,then we will all x irrelevant. In the tree representation of SH we shall ignore irrelevantnodes, that is, nodes with one hild. Heneforth, \x 2 SH" means x is a relevant nodein SH. The notation p(x) and hild(x) should be interpreted with respet to the treeof relevant SH nodes. That is, p(x) is the nearest relevant anestor, and hild(x) is asequene of nodes (xi)i for whih p(xi) = x. Figure 3.1 gives an example input graphand its assoiated SH.If fxig1�i�deg(x) is the set of x's hildren, we set hild(x) = (x1; x2; : : : ; xdeg(x))so that (V (x1); V (x2); : : : ; V (xdeg(x))) is a norm(x)-partition of V (x). Lemma 2 guar-antees that suh a left-to-right ordering of x's hildren always exists.Lemma 2 Let x 2 SH and fxigi be the hildren of x. Then for at least one permutation�, (V (x�(1)); V (x�(2)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x). Moreover,if the graph is undireted then then all suh permutations give norm(x)-partitions ofV (x).2In the algorithms of Thorup and Hagerup [196, 98℄ log r is also unbounded in terms of m and n,but, by assumption, not in terms of the mahine's word size. Therefore the [196, 98℄ algorithms getaround this issue by assuming that the power of the mahine sales with the largest edge-length, notwith m or n.3A strongly onneted omponent is a maximal subgraph suh that any vertex in the subgraph isreahable from any other. 21
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Figure 3.1: Above: the input graph. Cirled edge lengths represent \normalizing"lengths. Below: the assoiated SH. It has two strata, based on the normalizing lengths`r1 = 1:5 and `r2 = 100. A stratum k, level i node x has norm(x) = `rk � 2i�1, andrepresents a strongly onneted omponent of the graph, when restrited to edges withlength less than 2 � norm(x). Irrelevant SH-nodes (those having one hild) are notshown in the �gure.Proof: Let G(x) be the subgraph of G indued by V (x). By de�nition G(x) is stronglyonneted, even when restrited to edges with length less than 2 � norm(x). Let G(x)be the graph derived from G(x) by ontrating G(x1); G(x2); : : : ; G(xdeg(x)) and re-taining only edges with length less than norm(x). There is a natural orrespondenebetween verties in G(x) and the hildren of x. We laim that (a) G(x) is ayliand (b) If we let �(i) be the index of the ith vertex in a topologial sort of G(x), then(V (x�(1)); : : : ; V (x�(deg(x)))) is a norm(x)-partition of V (x).Consider laim (a). By de�nition V (xi) is a maximal strongly onneted set, inthe graph restrited to edges with length less than norm(x). If xi were ontained in ayle in G(x), then the maximality of V (xi) would be violated, sine all edges in G(x)have length less than norm(x).We turn to laim (b). Assume w.l.o.g. that �(i) = i. If the laim were not truethen by the de�nition of t-partition (De�nition 2) there must be an edge e = (xj ; xi)where i < j and `(e) < norm(x). However, `(e) < norm(x) implies e was inluded in22



G(x), whih implies that j < i { a ontradition { sine xj must preede xi in everytopologial sort.Now suppose that G were undireted, or rather, G is a direted graph where theexistene of an edge (u; v) implies an edge (v; u) with equal length. Claim (a) abovestates that G(x) is ayli. This implies that G(x) has no edges, sine the existeneof one edge immediately implies the existene of a yle of length 2. Therefore, anypermutation � orresponds to a topologial sort of G(x).2Reall that diam(x) represented an upper bound on the diameter of V (x). Forany leaf-node z, setting diam(z) = 0 is learly satisfatory. We ompute diam(x) forall internal SH-nodes with the following reursive de�nition.diam(x) = 2norm(x) � (deg(x)� 1) + Xy 2hild(x)diam(y) (3.2)Lemma 3, given below, summarizes all the relevant properties of SH used in ouralgorithm's analysis and proof of orretness. Parts 2 and 4 are impliit in [196, 98℄;weaker versions of Part 6 were also used in [196, 98℄.Lemma 3 SH has the following properties:1. SH has a single root, denoted root(SH).2. Let hild(x) = (x1; x2; : : : ; xdeg(x)). Then (V (x1); : : : ; V (xdeg(x))) is a norm(x)-partition of V (x).3. Either norm(p(x)) is an integer multiple of norm(x) or diam(x) < norm(p(x)).4. Xx2SHdeg(x) < 2n� 15. For any x 2 SH, diam(x)norm(x) < 2n6. Xx2SH diam(x)norm(x) < 4n7. �����x 2 SH : diam(x)norm(x) � k����� < 4nk23



8. SH is onstrutible in O(m log n) time.Proof:(1) The input graph may or may not be strongly onneted. However, we will interpretthe graph as being omplete: any edges not appearing in the input impliitly have length1. Sine we inluded 1 as one of the normalizing lengths, there is some (possiblyirrelevant) node x suh that norm(x) =1 and V (x) = V .(2) See Lemma 2.(3) If p(x) and x are in the same stratum, then learly norm(p(x)) is a multiple ofnorm(x). If norm(p(x)) = `rk � 2i, where i � �1, and x is not in stratum k, thendiam(x) < (jV (x)j � 1) � 2norm(x) < n � `rk=2n � norm(p(x)).(4) Every relevant SH-node has at least two hildren. The sum ounts every relevantSH-node (exept the root) exatly one.(5) V (x) is a strongly onneted set, even when restrited to edges with length less than2norm(x). Therefore, diam(x) < jV (x)� 1j � 2norm(x) < 2n � norm(x).(6) Let zj denote the jth anestor of z 2 SH. Sine the norm-value of a node is no morethan half that of its parent (see Equation 3.1), we have norm(z)=norm(zj) � 2�j. Wewrite z des. x to mean z is a (not neessarily proper) desendant of x in SH. Usingthe de�nition of diam from Equation 3.2 we an bound the sum as follows.Xx2SH diam(x)norm(x) = Xx2SH 2norm(x) � (deg(x)� 1) +Py2hild(x) diam(y)norm(x)= Xx2SH Xz des. x 2norm(z) � (deg(z)� 1)norm(x)= Xz2SH Xj�0 2norm(z) � (deg(z)� 1)norm(zj)< Xz2SH 1Xj=0 deg(z) � 12j�1= Xz2SH 4 � (deg(z)� 1) < 4n(7) Follows from Part 6.(8) We onstrut SH using essentially the same algorithm found in [98℄. The idea isto determine those nodes in the \middle" level of SH, then �nd those nodes above themiddle and below the middle reursively. As in [98℄ we use Tarjan's linear-time algorithmfor �nding SCCs. We �rst sort the edge-lengths and determine the O(m log n) possiblenorm-values in O(m log n) time. Let norm1 < norm2 < � � � < normk be the possiblenorm-values and G0 be the input graph G restrited to edges with length less than24



2normbk=2. We �nd the SCCs of G0 in O(m + n) time; let fCigi be the set of SCCsand G be derived from G by ontrating the fCigi into single verties. The fCigiorrespond to SH-nodes with norm-values equal to normbk=2. We proeed reursivelyon the fCigi (�nding SH-nodes with norm-values in the range norm1::normbk=2�1)and on the graph G (for norm-values in the range normbk=2+1::normk). There arelog(m log n) = O(logn) levels of reursion and for eah level the number of edges andverties for subgraphs at that level is no more than m and 2n, respetively. Therefore,the total time required is O(m log n).23.3 A Generalized Hierarhy-Type AlgorithmThe hierarhy-type algorithms are Dijkstra-like in the sense that they �x the distane of,or visit, verties one by one, while maintaining Invariant 1. We generalize, somewhat,the notions of visit and tentative distane used in Dijkstra's algorithm. Reall that theD-value of a vertex is its tentative distane from the soure. We de�ne the D-value ofan SH-node as the minimum over its onstituent verties:D(x) def= minv2V (x)fD(v)g; where x 2 SHNote that the D-value of a leaf node is the same as its orresponding vertex.We ompute SSSP with a reursive algorithm alled Generalized-Visit, givenin Figure 3.2. Applied to a leaf-node of SH, Generalized-Visit works just like theusual visit routine: it visits the leaf's assoiated vertex, and updates tentative distanesto aord with Dijkstra's Invariant 1. However, Generalized-Visit an be used tosolve any independent subproblem of SSSP. It takes two arguments: an SH-node x andan interval I with the guarantee that V (x) is (S; I)-independent, where S is the urrentset of visited verties. Its only task is to visit the verties in V (x)I and update thetentative distanes, restoring Invariant 1. Using the Generalized-Visit proedure, wean ompute SSSP from soure s as follows. We set S := ;, D(s) := 0, and D(v) :=1for all v 6= s, then all Generalized-Visit(root; [0;1)), where root = root(SH).Invariant 1 is learly satis�ed w.r.t. S = ;, and V (root) = V is learly (;; [0;1))-independent, so the input guarantees for the initial all to Generalized-Visit aremet. After the all to Generalized-Visit(root; [0;1)), Invariant 1 will hold w.r.t.S � V (root)[0;1) = V , implying D(v) = d(s; v) for all v 2 S = V .In eah all to Visit there are two ases, depending on whether x is a leaf nodeor an internal node of SH. Suppose x is a leaf and V (x) = fvg. Beause we maintainInvariant 1, deiding whether v 2 V (x)I is equivalent to deiding if D(v) 2 I, whih issimple to do. In the general ase x is an internal node. We determine V (x)I by makinga series of reursive alls to hildren of x, using subintervals of I of width norm(x).25



Generalized-Visit(x; [a; b))Spei�ations: It is assumed that V (x) is (S; [a; b))-independent, where Sis the set of visited verties at the time of the all, and that Dijkstra'sInvariant 1 is satis�ed. Upon ompletion all verties in V (x)[a;b) will havebeen visited.1. If x is a leaf and D(x) 2 [a; b), then set S := S [ fxg and relax all of x'soutgoing edges.2. If Visit(x; �) is being alled for the �rst time, assign intervals to x's buk-ets. Buket i is labeled[tx + i � norm(x); tx + (i+ 1)norm(x))where tx is set totx = ( D(x) if D(x) + diam(x) < bb� norm(x) l b�D(x)norm(x)m otherwise3. Set ax = � tx if this is the �rst all to Visit(x; �)a otherwiseWhile ax < b and V (x) 6� SWhile buket [ax; ax + norm(x)) is not emptyLet y be the leftmost hild of x in buket [ax; ax + norm(x))Visit(y; [ax; ax + norm(x)))Remove y from its buketIf V (y) 6� S, put y in buket [ax + norm(x); ax + 2norm(x))ax := ax + norm(x)Figure 3.2: A general divide-and-onquer algorithm for single-soure shortest paths.
26



The ruial property of SH that we use is that the ordered set hild(x) represents anorm(x)-partition of V (x) | see Lemma 3(2). Together with Lemma 1 we are able toguarantee that eah reursive all represents an independent subproblem.To bound the number of reursive alls, it is important not to make too manytrivial ones, that is, alls whih ause no vertex to be visited. To that end we assoiatewith x an array of bukets that will ontain the hildren of x. The bukets representonseutive real intervals of width norm(x) and the buket array represents an intervalspanning [d(s; x); d(s; x) + diam(x)℄ where d(s; x) = d(s; V (x)) is the distane to anynode in V (x). When Generalized-Visit(x; �) is alled for the �rst time we hoosea suitable starting point tx and label eah buket with its assoiated interval: the ithbuket is assigned the interval [tx + inorm(x); tx + (i+ 1)norm(x)). We will hoose txsuh that tx � d(s; x) < tx + norm(x). Therefore, at most l diam(x)norm(x)m + 1 bukets arerequired. For notational onveniene we may refer to a buket by its assoiated interval.We will say x is inative until Generalized-Visit(x; �) is alled, and ative af-terward. We will assume, for the time being, that Invariant 2 is maintained.Invariant 2 (Buket Invariant) Let x be an ative SH-node. A hild y of x appearsin one of x's bukets, unless D(y) = 1 or V (y) � S, in whih ase y appears in nobuket. Every node y appearing in buket [q; q + norm(x)) is either an inative hildsuh that D(y) 2 [q; q + norm(x)), or an ative hild suh that V (y)[0;q) � S, butV (y)[q;q+norm(x)) 6� S.Suppose that in the all to Generalized-Visit(x; I), I spans the intervals ofk of x's bukets, say, bukets bj+1; bj+2; : : : ; bj+k. Generalized-Visit performs upto k iterations. In the ith iteration it repeatedly loates the leftmost4 hild y of x inbuket bj+i, performs a reursive all on y, whose interval argument is the same intervalassoiated with bj+i, then restores the Buket Invariant 2. This involves either movingy to the next buket if V (y) is not yet ontained in S, or removing y from the buketarray altogether if V (y) � S. If, after proessing some buket, V (x) � S, the urrentall to Generalized-Visit(x; �) halts. In the next setion we prove the orretness ofthis algorithm. Many of the �ner points in the analysis revolve around our hoie of txin Step 2 of Generalized-Visit.3.4 Corretness of Generalized-VisitIn this setion we prove that Generalized-Visit works orretly. Spei�ally, we showthat Generalized-Visit(x; I) visits (adds to the set S) all verties in V (x)I . We as-sume that Dijkstra's Invariant and the Buket Invariant (1 and 2) are magially updated4Reall that the set hild(x) has some left-to-right ordering.27



behind the senes. That is, adding a vertex to S auses the D-values of all verties andSH-nodes to be updated, restoring Dijkstra's Invariant, and auses some number ofSH-nodes to be moved to di�erent bukets in aordane with the Buket Invariant.In Setion 3.5 we disuss the problem of eÆiently implementing Generalized-Visit;o�-the-shelf data strutures and tehniques seem inadequate. In Chapters 4 and 5 wedevelop shortest path algorithms for direted and undireted graphs, respetively, basedon more sophistiated implementations of Generalized-Visit.The following lemmas look at Generalized-Visit from the perspetive of someSH-node x. They assume impliitly that at the all Generalized-Visit(x; I), V (x) is(S; I)-independent. They also assume that the initial all wasGeneralized-Visit(root; [0;1)).Lemma 4 In any two alls Generalized-Visit(x; I1) and Generalized-Visit(x; I2),jI1j = jI2j = norm(p(x)).Proof: All reursive alls on x are made from alls on p(x). Moreover, all reursivealls from p(x) have interval arguments of width norm(p(x)).2Lemma 5 If Generalized-Visit(x; I) is the �rst all to an SH-node x, then we haveD(x) = d(s; x) 2 I.Proof: The lemma learly holds for the initial all Generalized-Visit(root; [0;1)),so onsider the ase when x 6= root. Before the reursive allGeneralized-Visit(x; I),x must have been in p(x)'s buket spanning the interval I. Sine x was inative beforethe all, the Buket Invariant 2 guarantees that D(x) 2 I. Together with the assumptionthat V (x) is (S; I)-independent we have the equality D(x) = d(s; x).2Lemma 6 Consider the variables ax and b in any all to Generalized-Visit(x; [a; b)).Either norm(x) divides b� ax or V (x)[0;b) = V (x).Proof: In the �rst all to Generalized-Visit(x; [a; b)), ax is set to tx. Suppose thattx = D(x), beause D(x) + diam(x) < b. By Lemma 5, D(x) = d(s; x), implyingthat V (x)[0;b) = V (x). If, on the other hand, tx is set to b � norm(x) l b�D(x)norm(x)m, thennorm(x) divides b�tx and, at least initially, b�ax as well. Sine ax is only inrementedin units of norm(x), b� ax remains divisible by norm(x). We have proved the lemmafor the �rst reursive all on x.Now suppose that Generalized-Visit(x; [a; b)) is not the �rst reursive all onx, hene we set ax := a initially. Aording to Lemma 3(3) either norm(x) dividesnorm(p(x)) or diam(x) < norm(p(x)). Suppose norm(x) divides norm(p(x)). ByLemma 4, norm(p(x)) = b � a and therefore norm(x) divides b � ax initially, and,28



with the observation that ax is inremented in units of norm(x), ever after. Nowsuppose diam(x) < norm(p(x)). Sine this is not the �rst reursive all on x, weknow, by Lemma 5, that d(s; x) < a and therefore that d(s; x) +diam(x) < b, implyingV (x)[0;b) = V (x).2Lemma 6 is a little tehnial. We use it to show that the intervals generated bya node and its parent are properly aligned. Consider I1, the set of intervals passed inreursive alls from p(x) to x, and I2, the set of intervals passed from x to its hildren.We require that intervals in I1 and I2 have widths norm(p(x)) and norm(x) respe-tively, and that they eah over the interval [d(s; x); d(s; x) + diam(x)℄. Furthermore,eah interval in I2 must be wholly ontained in one interval from I1. Beause we usea strati�ed hierarhy, norm(p(x)) is not neessarily a multiple of norm(x). Therefore,these requirements an only be satis�ed if diam(x) < norm(p(x)), i.e., if norm(x) doesnot divide norm(p(x)) then it is impossible for I1 to ontain more than two intervals.Our hoie of tx in Step 2 of Generalized-Visit is ertainly not profound, but it doesgreatly simplify the algorithm's analysis and proof of orretness.The following Lemma proves that Generalized-Visit works as advertised. Wepoint out, sine it may not be obvious on the �rst reading, that the proof of Lemma 7is omposed of three indution arguments. There is an indution over time, where weassume previous reursive alls behaved properly. There is an indution over problemsize, where we assume ertain future reursive alls behave properly, and �nally, adouble-indution over the two while-loops in Step 3 of Generalized-Visit, addressingthe urrent reursive all.Lemma 7 After the all to Generalized-Visit(x; [a; b)), V (x)[a;b) � S.Proof: We assume indutively that V (x) is (S; [a; b))-independent whenGeneralized-Visit(x; [a; b)) is alled. This learly holds for the �rst reursive all, when x = root,[a; b) = [0;1), and S = ;.Consider the ase when x is a leaf in SH, that is, a vertex. Generalized-Visitinludes x in S preisely whenD(x) 2 [a; b). Aording to the de�nition of independeneD(x) 2 [a; b) implies D(x) = d(s; x), so in this ase the lemma is satis�ed.Suppose, now, that x is an internal node in SH. We will assume, indutively, thateah time through the outer while loop in Step 3 of Generalized-Visit, V (x)[0;ax) � Sand V (x) is (S; [ax; b))-independent w.r.t. the urrent values for ax and S. Let usexamine the base ases, onerning the �rst entry into the outer while loop. If axis set to tx initially, then ax � D(x) = d(s; x), implying that V (x)[0;ax) = ; � S.Furthermore, sine V (x) is (S; [a; b))-independent, it is (S; [ax; b))-independent as well.The other ase is when ax is set to a on entry into the outer while loop. In this aseV (x)[0;ax) � S follows from our indutive assumption (w.r.t. the parent of x in SH) and29



the (S; [a; b))-independene of V (x) has already been assumed. Sine ax is inrementedby preisely norm(x) after eah iteration of the outer while loop, to omplete theindution we will show that the reursive alls in the inner while loop ause all vertiesin V (x)[ax;ax+norm(x)) to be visited.Consider the entry into the inner while loop in Generalized-Visit, and letI = [ax; ax + norm(x)), that is, the urrent buket is labeled I. Imagine that weonsider eah node in hild(x) = (xj)j in left-to-right order. We will show two things:�rst, that when xj is onsidered V (xj) is (S; I)-independent for the urrent value ofS. Therefore, if the reursive all Generalized-Visit(xj; I) is made, we an assumeindutively that it visits all verties in V (xj)I . Seond, if no reursive all is made onxj (meaning xj never appears in the buket labeled I) then V (xj)I � S = ;. This willestablish the orretness of the inner while loop.We laim that when xj is onsidered V (xj) is (S; I)-independent. Let S0 be the setS just before this iteration of the outer while loop, and assume indutively that whenxj is onsidered S = S0 [ V (x1)I [ � � � [ V (xj�1)I . Lemma 3(2) states that (V (xi))i isa norm(x)-partition of V (x). Together with the assumption that V (x) is (S0; [ax; b))-independent and Lemma 1(1), we have that V (xj) is (S; [ax;minfax + norm(x); bg))-independent. However, we need to show that it is (S; I)-independent, sine it is theinterval I = [ax; ax + norm(x)) that would be passed to the reursive all. By Lemma6, either norm(x) divides b � ax or V (x)[0;b) = V (x). If norm(x) divides b � ax thenI = [ax;minfax + norm(x); bg) sine we only entered the outer while loop if ax < b,implying ax � b � norm(x). On the other hand, if V (x)[0;b) = V (x), then V (xj)being (S; [ax;minfax + norm(x); bg))-independent implies that it is (S; I)-independentas well. To omplete the indution we must show that after xj is onsidered, S =S0 [ V (x1)I [ � � � [ V (xj)I . If we perform the reursive all Generalized-Visit(xj; I)then we an assume indutively that verties in V (xj)I are visited. Therefore, we mustonly prove that if no suh reursive all is made, then V (xj)I � S = ;. We performreursive alls on all hildren that end up in buket I. By Invariant 2, if xj is not inbuket I when it is onsidered, then either D(xj) � ax+norm(x) (implying V (xj)I = ;)or V (xj) � S; in either ase V (Cxj )I � S = ;. This ompletes the indution for theinner and outer while loops.The outer while loop in Step 3 terminates either beause ax � b or V (x) � S, bothof whih imply V (x)[0;b) � S. Therefore, after the all to Generalized-Visit(x; [a; b)),all verties in V (x)[a;b) are visited. This establishes the lemma.2
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3.5 Implementation DetailsAn eÆient implementation of the Generalized-Visit routine must solve two datastrutural problems, orresponding to Dijkstra's Invariant 1 and the Buket Invariant 2.Whereas Dijkstra's algorithm only has to maintain the D-values (tentative distanes) ofverties, whih is trivial, we must maintain theD-values of hierarhy nodes as well, whihis no longer trivial. The problem of maintaining the Buket Invariant is not diÆult,but maintaining (or simulating) it eÆiently is quite triky. Eah of our shortest pathalgorithms uses a di�erent tehnique for simulating the Buket Invariant.We �rst show that the osts of implementing Generalized-Visit are linear inthe number of verties, assuming Invariants 1 and 2 are maintained behind the senes.We must aount for two osts: that of performing some number of reursive alls, andthat of omputing tx in Step 2, for all x 2 SH.Lemma 8 For eah SSSP omputation, the total number of reursive alls to Generalized-Visit is less than 5n.Proof: By Lemma 5, if Generalized-Visit(x; I) is the �rst reursive all on x, thenD(x) = d(s; x) 2 I. Together with Invariant 2 and Lemma 4, this implies that eahnode x 2 SH is passed to at most l diam(x)norm(p(x))m + 1 reursive alls, where p(x) is theparent of x in SH. The total number of reursive alls is thenXx � diam(x)norm(p(x))�+ 1 � jSHj+Xx � diam(x)2norm(x)� (3.3)< jSHj+ n� 1 + 12 �Xx diam(x)norm(x) (3.4)< 5n (3.5)Line 3.3 follows from the inequality norm(p(x)) � 2norm(x). Line 3.4 followssine l diam(x)norm(x)m is only stritly greater than diam(x)norm(x) if x is an internal node of SH, ofwhih there are no more than n � 1. (If x were a leaf, then diam(x) = 0.) Line 3.5follows from the bounds jSHj < 2n and, by Lemma 3(6), Px diam(x)norm(x) < 4n.2Lemma 9 The total time required to �nd ftxgx2SH is O(n).Proof: In Step 2 of Generalized-Visit, tx is set to D(x) if D(x) + diam(x) < b andb � norm(x) l b�D(x)norm(x)m otherwise. Cheking whether D(x) + diam(x) < b takes O(1)time, and omputing b� norm(x) l b�D(x)norm(x)m takes O( b�D(x)norm(x) ) time: one simply ounts31



bak from b in units of norm(x) in order to �nd minfj : b � j � norm(x) � D(x)g.Given that b �D(x) � diam(x), the total time to �nd all ftxgx2SH is PxO( diam(x)norm(x)),whih is O(n) by Lemma 3(6).2We support an implementation of Generalized-Visit with two abstrat datastrutures, denoted D and B. D updates the D-values of SH-nodes as ditated byInvariant 1, and B maintains the buket arrays of ative SH-nodes in aordane withInvariant 2. Although it is typial to assume that data strutures do not talk to eahother, it is oneptually simpler here to think of D and B making queries to eah other.We desribe their interations below, then bound their omplexity.When an edge (u; v) is relaxed in Step 1 of Generalized-Visit, we tell D toset D(v) := minfD(v);D(u) + `(u; v)g. If this dereases D(v) then it may derease theD-values of many anestors of v in SH as well. Let y be the unique anestor of v whihis an inative hild of an ative node. If D(y) is also dereased then to restore Invariant2 y may have to be moved to a di�erent buket. If this is the ase then D noti�es B thatD(y) has hanged. D also aepts queries to D-values. In partiular, when an SH-nodex beomes ative B �les eah hild y of x in its buket array based on the value of D(y).The buketing struture B must also ful�ll the needs of Generalized-Visit. Speif-ially, in a all to Generalized-Visit(x; �), Generalized-Visit repeatedly requeststhe leftmost hild of x in the urrent buket labeled [ax; ax + norm(x)), and possiblymoves that node to the next buket, labeled [ax+ norm(x); ax+2norm(x)). Lemmas10 and 11 bound the omplexities of D and B, respetively.Lemma 10 D an be implemented to run in time �(split-findmin(m;n)) = O(m log�(m;n)),where split-findmin(m;n) is the deision-tree omplexity of the split-�ndmin problemon m operations on an n-element sequene.We show below how the split-�ndmin data struture an be used to implement D.The omplexity bounds on split-�ndmin laimed in Lemma 10 are proved in AppendixA. The split-�ndmin data struture operates on a olletion of disjoint sequenes ofelements. Initially, there is one sequene ontaining all n elements, and eah elementhas key 1. The following operations are supported.split(u) Splits the sequene ontaining u into two sequenes, one onsisting of thoseelements up to and inluding u, the other sequene taking the rest.�ndmin(u) Returns the element in u's sequene with minimum key.derease-key(u; �) sets key(u) := minfkey(u); �g.32



The elements in the split-�ndmin struture orrespond to the leaves of SH andthe keys orrespond to D-values. Thus, edge relaxations an be implemented withderease-key operations: if (u; v) is to be relaxed, we tell the split-�ndmin struture toderease-key(v; D(u)+`(u; v)). The sequenes in the split-�ndmin struture orrespondto inative SH-nodes that are the hildren of ative parents. One an readily verify thatGeneralized-Visit only queries the D-values of suh nodes; thus, requesting D(x)translates into the operation �ndmin(u), where u is any leaf in V (x). Whenever a nodex beomes ative, we perform splits on the sequene representing x so that the resultingsub-sequenes orrespond to x's hildren. There are learly no more than m derease-keys and O(m + n) splits and �ndmins. In Appendix A we show that the omplexityof split-�ndmin on a RAM is asymptotially equivalent to its deision-tree omplexity,whih is O(m log�(m;n)).Lemma 11 Suppose B is assigned to maintain the buket arrays of just those nodes inX � SH. Then B an be implemented in timeO m + n log logn + Xx2X deg(x) � log diam(Cx)norm(x) !Proof: Fix some SH-node x 2 X. The Buket Invariant 2 says that all inativehildren of x are buketed by their D-values. However, in Generalized-Visit weonly extrat x's hildren from the \urrent" buket, hene any struture that plaesthe orret ontents in the urrent buket an be said to simulate Invariant 2. Weuse the hierarhial buketing struture from Setion 5.1.3 to simulate Invariant 2. Theamortized ost of a derease-key and an insert are, respetively, O(1) and O(log diam(x)norm(x)),where diam(x)norm(x) represents the maximum number of bukets assoiated with x. Thisstruture aounts for the �rst and third term in the laimed running time. The seondterm arises out of our need to enumerate the ontents of the urrent buket in left-to-right order. We use a van Emde Boas heap [203℄ to prioritize nodes in the urrentbuket. For any hild of x the amortized ost of all van Emde Boas operations isO(log logdeg(x)), whih is O(n log logn) over all x 2 X and all hildren of x.2Let us make a few observations. First, the O(n log log n) term in the runningtime of Lemma 11 reets the ost of sorting siblings in left-to-right order. However,by Lemma 2 all suh orderings are equally good on undireted graphs. Therefore,no van Emde Boas heaps are used in the undireted version of Generalized-Visit.Moreover, the ost of van Emde Boas heaps an be ignored when analyzing the non-uniform omplexity of shortest paths, sine they are used to sort disrete data, not realdata. 33



The third term in Lemma 11's running time is ertainly the most interesting: ThesumPx2X deg(x) log diam(x)norm(x) an be thought of as a measure of the entropy of a spei�hierarhy, under two strong assumptions: �rst, that eah y 2 hild(x) an appear ineah of x's diam(x)=norm(x) bukets with (more or less) equal probability, and seond,that whih buket y appears in is independent of whih bukets other nodes appear in.For X = SH it is fairly easy to fore the time bound of Lemma 11 to be 
(m+n log n).To improve upon it, we must either derive a hierarhy with lower entropy (see Chapter5) or irumvent the entropy lower bound by exploiting the dependenies among shortestpaths.Lemma 11 is more useful than it may �rst appear. For instane, if we let X be theset of hierarhy nodes with small normalized diameter, say all x with diam(x)=norm(x) <(log n)O(1), then the bound from Lemma 11 is O(m + n log logn). Thus, with low-diameter nodes being handled by Lemma 11, we are free to deal with high-diameternodes by other means. This is exatly the strategy taken by the direted shortest pathalgorithm of Setion 4.1.3.6 Lower BoundsIn a omparison-based model of omputation, the easiest way to lower bound the om-plexity of a problem is by a simple information-theoreti argument. In partiular, thelogarithm of the number of distint solutions to the problem gives an immediate lowerbound on the number of omparison operations required to solve it. Unfortunately,ounting distint solutions does not lead to any non-trivial lower bounds on the SSSPproblem. Indeed, it seems quite plausible that there are no non-trivial lower boundsfor SSSP. Nonetheless, it is still useful to lower bound the omplexities of spei� algo-rithms or approahes to SSSP. Suh lower bounds an tell us why a ertain algorithmor approah is doomed to be suboptimal, and, perhaps, how the bottlenek in suh anapproah ould be overome.We lower bound the omplexity of an algorithm in two steps. First, we haraterizethe extra information derived by running the algorithm. Seond, we lower bound theomplexity of omputing that extra information from srath. The robustness of thisapproah depends, of ourse, on how ruial the extra information is to the algorithmin question. Consider Dijkstra's algorithm. It omputes, besides shortest paths, apermutation �s of the verties satisfying Property 1.Property 1 �s satis�es:For all u; v 2 V , �s(u) < �s(v) =) d(s; u) � d(s; v)Any lower bound on the time to ompute a �s from srath that satis�es Property 1e�etively lower bounds the omplexity of Dijkstra's algorithm. The star graph in Figure34



3.3, for instane, provides a very simple worst-ase senario for Dijkstra's algorithm.Visiting the verties in order of distane neessarily involves sorting the edge lengths |that is, sorting n� 1 arbitrary numbers.
s

Figure 3.3: The star graph. If edge-lengths are permuted at random, �nding a �ssatisfying Property 1 takes log((n� 1)!) = 
(n logn) omparisons.One is tempted to say that this is a weak lower bound, beause it an be ir-umvented by an algorithm that does not satisfy Property 1 but is, but any reasonableperson's estimate, an implementation of Dijkstra's algorithm. The algorithm is, namely,to ontrat edges not on any yle and run Dijkstra's algorithm on whatever is left.The refutation to this argument is that the star graph is not laimed to be a hardinstane of SSSP but the kernel of hard instanes for Dijkstra's algorithm. Therefore,the lower bound applies not to one graph but any graph that has, embedded in it in someway, a small set of large star graphs. It is often the ase that simple worst-ase graphstranslate into strong lower bounds and ompliated ones into weaker lower bounds.In this Setion we give a haraterization of all hierarhy-type algorithms that par-allels Property 1's haraterization of Dijkstra's algorithm. Using slightly more ompli-ated hard kernel graphs than the star graph of Figure 3.3, we show that suh algorithmsannot ompute SSSP in o(n log n) time. This lower bound also holds for undiretedgraphs, though it an only be attained on unusually weighted graphs, where the ratioof the maximum to minimum edge-length is large.3.6.1 Charaterization of Hierarhy-Type AlgorithmsThe permutation �s from Property 1 simply orresponds to the order in whih vertiesare visited in Dijkstra's algorithm. All Dijkstra-like algorithms (those maintaining Di-jkstra's Invariant 1) an therefore be haraterized by the restritions plaed on theirallowable permutations. Property 2, given below, de�nes one suh restrition that isintrinsi to all existing hierarhy-based algorithms. Before stating it we need someadditional notation. 35



Let yles(u; v) be the set of all yles, not neessarily simple, ontaining vertiesu and v. For instane, on an undireted graph the yle ould follow a path from u tov then retrae its steps from v to u. We de�ne sep(u; v) as:sep(u; v) = minC 2 yles(u;v) maxe 2 C `(e)To see the onnetion between the sep-values and SH, notie that Rt(u; v) � (sep(u; v) �t) is an equivalene relation, and that the equivalene lasses of Rt orrespond to thestrongly onneted omponents of the graph restrited to edges with length at most t.Moreover, as t varies Rt de�nes a set of laminar relations. That is, Rt(u; v)) Rt0(u; v)if t0 > t. Therefore, any set of relations fRtigi, an be represented by a rooted tree, orhierarhy.Observation 1 gives us a leaner interpretation of sep-values when the graph isundireted. Thorup [196℄ makes a similar observation, although he never uses the ideaof a sep funtion.Observation 1 If the graph is undireted, sep(u; v) equals the length of the longest edgeon the minimum spanning tree path onneting u and v.Regardless of whether the graph is undireted or direted, all hierarhy-basedalgorithms generate a permutation �s satisfying Property 2, given below. We provethat Generalized-Visit satis�es Property 2 in Lemma 12.Property 2 If sep(u; v) > 0 then �s satis�es:d(s; v) � d(s; u) + sep(u; v) ) �s(u) < �s(v)Is there a sorting bottlenek inherent in Property 2? The short answer is yes.However, the nature of the sorting bottlenek depends, to a large extent, on the littledetails. For instane, suppose we onsider, besides m and n, a new parameter r repre-senting a bound on the ratio of any two edge lengths. In Setions 3.6.2 and 3.6.3 weshow that our lower bounds for direted and undireted graphs beome, respetively,
(minfn logn; n log rg) and 
(minfn log n; n log log rg). In other words, to indue an
(n logn) lower bound r must be exponential in n for undireted graphs, but only poly-nomial for direted ones. As we show in Chapter 5, both of these bounds are, somewhatsurprisingly, tight.55Atually, the undireted bound is tight only if r is not in the viinity of �(m;n), whih is exep-tionally small.
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We show that undireted graphs are qualitatively easier in another respet. InProperty 2, notie that the sep(u; v) term is independent of the soure s. From the per-spetive of an algorithm omputing many shortest paths on the same graph,6 omputa-tion relating to sep-values may be onsidered a one-time ost, whereas omputing SSSPgiven the sep-values represents the marginal ost of omputing SSSP.7. For diretedgraphs, we show that our lower bound holds even if all sep-values (and any funtionsthereof) are known a priori. This is in ontrast to undireted graphs, where the onlyobstale to omputing SSSP in near-linear time is omputing (or approximating) thesep funtion. sep known sep unknownUndireted SSSP 
( m ) 
( m + minf n log log r; n log n g )Direted SSSP 
( m + min f n log r; n logn g )Figure 3.4: Lower bounds on SSSP algorithms satisfying Property 2 in the omparison-additionmodel. The parameter r bounds the ratio of any two non-zero edge lengths.Lemma 12 Generalized-Visit generates a permutation of the verties satisfying Prop-erty 2.Proof: The permutation named in the lemma is, of ourse, the order in whih vertiesare visited by Generalized-Visit. Let u; v be leaves of SH (i.e. graph verties),let x = LCA(u; v), and let u0; v0 be the hildren of x that are anestors of u and v,respetively. By the de�nition of SH, norm(x) � sep(u; v). Now onsider the reursivealls on u0 and v0 that aused u and v to be visited, say Generalized-Visit(u0; Iu)and Generalized-Visit(v0; Iv), where jIuj = jIvj = norm(x). If d(s; v) � d(s; u) +sep(u; v) � d(s; u) + norm(x) then Iu 6= Iv, implying Generalized-Visit visits ubefore v.2We present our direted and undireted lower bounds in Setions 3.6.2 and 3.6.3,respetively. Figure 3.4 summarizes these results.6As a onrete example, the website MapQuest laims to serve 10 million requests a day (manyshortest path queries) on a graph (the US road network) that rarely hanges.7One may read \ompute sep-values" as \ompute SH" or \ompute a good hierarhy" sine SHis just a very ompat struture for representing (approximate) sep-values. In partiular, if u; v areleaf-nodes in SH and x = LCA(u; v) then sep(u; v) 2 [norm(x); 2norm(x)).37



3.6.2 Lower Bound: Direted GraphsWe will say that an SSSP algorithm satis�es Property 2 if, in addition to omputingSSSP, it omputes a permutation �s satisfying Property 2. In this setion we will alsoassume a slightly more powerful omputation model. Besides omparisons, we willassume that any operation mapping tuples of reals to tuples of reals an be performedat unit ost.Theorem 1 Suppose sep(u; v) is already known, for all verties u; v. Any diretedSSSP algorithm satisfying Property 2 performs 
(m+minfn log r; n log ng) operations,where the soure an be any of n � o(n) verties and r bounds the ratio of any twonon-zero edge-lengths.Proof: Clearly every edge length must partiipate in at least one operation. Thisgives us the 
(m) lower bound. The rest of the proof is devoted to showing thatminfn log r; n log ng omparisons are required. In partiular, we give a �xed graph(depending on n and r) and a set of possible edge-length funtions L. We show thatany SSSP algorithm satisfying Property 2 must deide whih length funtion was hosen,implying a lower bound of log jLj.A permutation of the verties is said to be ompatible with a ertain edge-lengthfuntion if it satis�es Property 2.
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Figure 3.5: The \broom" graph.Our �xed graph, depited in Figure 3.5, is organized a little like a broom. It hasa \broom stik" of k � 2 verties, whose head is the soure s and whose tail onnets tothe remaining n � k verties (the \bush"), eah of whih is onneted bak to s by anedge (s appears twie to simplify the �gure). All these edges have equal length UNIT,whih is an arbitrary positive real. Additionally, there are n� k edges direted from s38



to eah of the verties in the bush, having lengths of the form j �UNIT, where j, hosenbelow, is a non-negative integer. One may easily on�rm that sep(u; v) = UNIT for alldistint u; v. (Our lower bound holds even if the SSSP algorithm is assumed to knowthis.) Assuming without loss of generality that k divides n, we de�ne L to be the setof length funtions that assign the edge length j �UNIT to exatly (n� k)=k = n=k� 1edges from s to the \bush", for 0 � j < k. Consider the following laims:1. For v in the \bush", d(s; v) = `(s; v) < k � UNIT. (Reall that d and ` are thedistane and length funtions.)2. jLj = (n� k)!=(nk � 1)!k and log jLj = 
(n log k)3. For `1; `2 2 L, there always exists u; v in the \bush" suh that d1(s; u) < d1(s; v)but d2(s; v) < d2(s; u), where di is distane w.r.t. `i.4. No permutation of the verties an be ompatible with two distint length fun-tions in L.(1) follows beause the path from s to v along the \broomstik" has length k �UNIT. (2)is simple ounting. (3) follows from the pidgeonhole priniple: beause `1; `2 2 L assigneah length to an equal number of edges, d1(s; u) < d2(s; u) implies the existane of av suh that fd1(s; u); d2(s; v)g < fd1(s; v); d2(s; u)g. (4) follows from (3). To see this,notie that for any two verties u; v, d(s; u) < d(s; v) implies d(s; u) � d(s; v)+UNIT =d(s; v) + sep(u; v), whih implies that if �s is a ompatible permutation, �s(u) < �s(v).Along with (3) we an onlude that no two length funtions in L are ompatible withthe same permutation. Therefore, at least log jLj = 
(n log k) omparisons are requiredto deide whih ` 2 L is the atual length funtion.The above argument an be repeated with little modi�ation if the soure vertexlies in the broom's bush. Together with the observation that r = k � 1, the Theoremfollows.23.6.3 Lower Bound: Undireted GraphsTheorem 2 Any undireted single-soure shortest path algorithm for real-weighted graphssatisfying Property 2 makes 
(m+minfn log log r; n logng) operations in the worst ase,where r bounds the ratio of any two non-zero edge lengths.Proof: The minimum spanning tree of the input graph is as depited in Figure 3.6.It onsists of the soure vertex s whih is onneted to p = (n � 1)=2 verties in thetop row, eah of whih is paired with one vertex in the bottom row. We divide thepairs into q � 2 disjoint groups and assign edge lengths based on group. Group i,39
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Figure 3.6: The minimum spanning tree of the graphwhere 1 � i � q, onsists of exatly p=q pairs of verties. Edges in group i have length2i �UNIT, where UNIT is an arbitrary positive real. This inludes edges onneting s toa top-row vertex and edges onneting the two rows. All non-MST edges are assignedany lengths less than 2O(q) �UNIT suh that the shortest path tree from s oinides withthe MST. Assuming, without loss of generality, that q divides p, the number of grouparrangements is p!=(p=q)!q = q
(p). We will show that any SSSP algorithm satisfyingProperty 2 must sort the verties by group number. Beause the groups are of equalsize, by the pidgeonhole priniple no permutation of the verties an be ompatible withtwo distint group arrangements. This implies a lower bound of 
(p log q) on suh anSSSP algorithm. Sine log r = �(q), this also implies a bound of 
(n log log r).Let vi denote some vertex in the bottom row of group i. Then d(s; vi) = 2�2i �UNITand sep(vi; vj) = 2maxfi;jg � UNIT. By Property 2, �s(vi) must be less than �s(vj) ifd(s; vi) + sep(vi; vj) � d(s; vj). This is equivalent to (2 � 2i + 2j) �UNIT � 2 � 2j �UNIT,whih holds preisely when i < j. Therefore, any SSSP algorithm satisfying Property 2must sort the verties by group number.2Remark. Note that in the proof of Theorem 2, we are essentially bounding the time toompute the sep funtion (equivalently, the group arrangement), whereas in Theorem1 we assume the sep funtion is ommon knowledge.
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Chapter 4Shortest Paths onDireted GraphsIn Setion 3.5 we showed that in order to implement Generalized-Visit, it suÆesto solve ertain abstrat data struturing problems, all of whih, save for B, admitrelatively simple near-linear time solutions. The primary fous of eah of our shortestpath algorithms is an eÆient implementation of B, the buketing struture.1The struture B is really just a restrited form of priority queue. Indeed, one obvi-ous way to implement B is with an o�-the-shelf data struture, suh as a Fibonai heap[73℄. Unfortunately, any general data struture implementing B will invariably inur asorting bottlenek. In order to implement B more eÆiently it is ruial that we takeinto aount the underlying graph. In partiular, we must exploit the highly redundantnature of the distane funtion. After all, the distanes, if represented expliitly, oupy�(n2) spae, whereas they are represented impliitly by the graph itself, whih oupiesjust �(m) spae.The most straightforward orrelations in the distane funtion are the pair-wisesibling orrelations: for any y; z 2 hild(x), and any soure vertex s, we have:jd(s; y) � d(s; z)j � diam(x)whih is just a rephrasing of the parent-hild orrelation: d(s; y) � d(s; x) � diam(x)for any y 2 hild(x). These orrelations are trivial. One interpretation of Theorem 1is that, in the worst ase, there are essentially no non-trivial orrelations, assuming adireted graph with �xed soure vertex. As we will see in Chapter 5, undireted graphs1The algorithms presented in this hapter were originally published as: S. Pettie, A faster all-pairsshortest path algorithm for real-weighted sparse graphs, Pro. 29th Int'l Colloq. on Automata, Lan-guages, and Programming (ICALP), pp. 85{97, 2002, and S. Pettie, On the omparison-addition om-plexity of all-pairs shortest paths, Pro. 13th Int'l Symp. on Algorithms and Computation (ISAAC),pp. 32{43, 2002. 41



are an entirely di�erent story, even when the soure is �xed. In this Chapter we willstudy the orrelations between elements of the setf d(s; y) gs2V; y2 hild(x)In other words, we �x an SH-node x and look at the sibling orrelations among nodes inhild(x), ranging over all soure verties. Although the tehnial language we introduein Setions 4.1 and 4.2 does not refer to sibling orrelations and other intuitive ideas,orrelation between distanes is the priniple that underlies our algorithms, and shouldalways be kept in mind.In Setion 4.1 we give an APSP algorithm whose running time isO(mn+n2 log logn).The running time measure takes into aount both real-number operations and datastrutural issues as well. In Setion 4.2 we look at how far our tehniques an be pushedif the only measure of eÆieny is real-number operations. The result is a non-uniformAPSP algorithm making O(mn log�(m;n)) omparison and addition operations.4.1 A Faster APSP AlgorithmWe have shown in Setion 3.5 that an implementation of the Generalized-Visit al-gorithm amounts, essentially, to an implementation of B, the buketing struture. Onemight just as easily say that we have redued Generalized-Visit to B, and that theAPSP problem is reduible to n runs of Generalized-Visit. We will show, in thissetion, that the problem of implementing B is itself reduible to a set of O(n) SSSPproblems. Eah suh problem is on a graph whose topology is basially the same asthe original graph, but whose length funtion is soure-dependent. This sequene ofredutions does not seem pro�table at �rst sine APSP is trivially reduible to n SSSPomputations on the original graph. However, not all SSSP problems are equal. Of ourO(n) derived SSSP problems, only O(n= log n) are on real-weighted graphs. The restare on graphs whose lengths are relatively small integers. Beause integer variables arenot bound by the limitations of the omparison-addition model, we are able to solvethese SSSP problems in amortized linear time.In Setion 4.1.1 we introdue the notions of relative distane and approximaterelative distane. (These distanes are the solutions to the derived SSSP problemsmentioned above.) In Setion 4.1.2 we show how approximate relative distanes areuseful in the implementation of Generalized-Visit, and in Setion 4.1.3 we show howthey an be omputed heaply.4.1.1 Relative Distanes and Their ApproximationsLet x be an arbitrary internal SH-node, and reall that hild(x) represents the hildrenof x in SH. For y 2 hild(x) we let �x(u; y) denote the relative distane from u to y,42



de�ned as: �x(u; y) def= d(u; y)� d(u; x)Sine V (y) � V (x), it follows that �x is always non-negative. Our algorithm doesnot deal with �x diretly but rather with a disrete approximation to it. We de�ne �̂xas: �̂x(u; y) def= ��x(u; y)�x � or ��x(u; y)�x �where �x def= norm(x)2It is ruial that �̂x be represented as an integer, not as a real. Lemma 13 and14 apture the salient features of the �̂ funtion: that it is relatively heap to ompute,and that despite its approximate nature, it is useful in implementing the Generalized-Visit routine.Lemma 13 The �̂x funtion an be omputed for every SH node x for whih diam(x)norm(x) �log n, in O(mn) time total.Lemma 14 If �̂x is known for all x 2 SH for whih diam(x)norm(x) � logn, then we anompute SSSP in O(m+ n log log n) time using Generalized-Visit.Together with Lemma 3(8), stating that SH an be onstruted in O(m log n)time, Lemmas 13 and 14 diretly imply Theorem 3.Theorem 3 The all-pairs shortest path problem on real-weighted direted graphs anbe solved in O(mn + n2 log logn) time, where the only operations allowed on reals areomparisons and additions.We prove Lemma 14 in Setion 4.1.2. Lemma 13 is addressed in Setion 4.1.3.4.1.2 Generalized-Visit and Relative DistanesIn this setion we show how to implement the buketing struture B, assuming that �̂xis already omputed for all x 2 SH for whih diam(x)=norm(x) � logn. The remainderof this setion will onstitute a proof of Lemma 14. As it was observed in Setion 3.5,managing the buket arrays for all SH-nodes x with diam(x) � log n�norm(x) requires,by Lemma 11, only O(m+ n log logn) time. Therefore, we onentrate on an arbitrarySH-node x for the ase when �̂x is known.We remarked earlier that maintaining the Buket Invariant 2 is expensive. Con-sider the following weakened form of Invariant 2.43



Invariant 3 Suppose that y is a hild of an ative SH-node x. Then y is either buketedin aordane with Invariant 2, or it is known that D(y) will derease in the future, inwhih ase y appears in no buket.By Lemma 5, we only extrat a node y from its buket when D(y) is �nalized,that is, when D(y) = d(s; y). Therefore, the orretness of Generalized-Visit w.r.tInvariant 2 implies its orretness w.r.t. Invariant 3. The only question is whetherInvariant 3 is any easier to maintain, spei�ally, whether it is possible to tell if a node'sD-value will derease in the future. This is where the �̂ funtion omes into play.Suppose that we are attempting to buket an inative node y by its D-value,either beause its parent, x, just beame ative, or beause we just relaxed an edge(u; v), where v 2 V (y). We know d(s; x) lies in the interval of x's �rst buket, that is,tx � d(s; x) < tx + norm(x). Aording to Invariant 2, y belongs in buket number�D(y)� txnorm(x) � = �D(y)� d(s; x)norm(x) � or �D(y)� d(s; x)norm(x) �+ 1Therefore, if D(y) does not derease in the future, then D(y) = d(s; y) and�x(s; y) = D(y) � d(s; x). This implies that y must be buketed in either buketnumber j �x(s;y)norm(x)k or the following buket. On the other hand, if D(y) dereases in thefuture, we have, aording to Invariant 3, the freedom not to buket y at all.The situation is made only slightly more ompliated by the fat that we are notdealing with �x but a disrete approximation to it. Reall that �̂x(s; y) is an integerand j�x � �̂x(s; y) � �x(s; y)j < �x = norm(x)2 . Using the same argument as above,it follows that if D(y) = d(s; y), that is, D(y) will not derease in the future, then ybelongs in some buket numbered in the interval"$�x � �̂x(s; y)� �xnorm(x) % ; $�x � �̂x(s; y) + �x + norm(x)norm(x) %#= "$(�̂x(s; y)� 1)2 % ; $(�̂x(s; y) + 3)2 %#Thus, the number of eligible bukets is at most three. Sine �̂x(s; y) is representedas an integer, we an identify the three eligible bukets in onstant time, and, by hekingD(y) against the bukets' labels, we an determine whih, if any, should ontain y. Tosum up, all insert and derease-key operations on y take onstant time, provided �̂x isknown.The other osts of implementing Generalized-Visit were disussed in Setion3.5. The D struture is implemented in O(m log�(m;n)) = O(m + n log logn) time,and the ost of prioritizing nodes within the same buket is O(n log logn) using a vanEmde Boas heap [203℄. This onludes the proof of Lemma 14.44



4.1.3 The Computation of �̂We show in this setion that for any SH node x, all �̂x(�; �)-values an be omputed intime O(m log n+m �deg(x)+n � diam(x)norm(x)). It turns out that this ost is a�ordable if them log n term is not signi�antly larger than the others. It is for this reason that Lemma13 only onsiders SH nodes x suh that diam(x)=norm(x) � logn.Consider the two edge-labeling funtions Æx : E ! R and Æ̂x : E ! N, givenbelow. Æx(u; v) def= `(u; v) + d(v; x) � d(u; x)Æ̂x(u; v) def= �Æx(u; v)�0x � or 1 if Æx(u; v) > diam(x)where �0x def= �xn = norm(x)2nWe let GÆ = (V (G); E(G); Æ) denote the graph G under a new length funtion Æ,and let dÆ be the distane funtion for GÆ. We show that �x(u; y) is equal to dÆx(u; y)and that dÆ̂x provides a suÆiently good approximation to �x to satisfy the onstraintsput on �̂x. Our method for omputing �̂x is given in Figure 4.1. We spend theremainder of this setion analyzing its omplexity and proving its orretness.Compute-�̂x:(1) Generate the graph GÆ̂x(2) For all u 2 V and y 2 hild(x); ompute dÆ̂x(u; y)(3) Set �̂x(u; y) := &dÆ̂x(u; y)n '
Figure 4.1: A three-step method for omputing �̂x.The following Lemma establishes the properties of �x; Æx; and Æ̂x used in theanalysis of Compute-�̂x.Lemma 15 Suppose x 2 SH, y 2 hild(x) and u 2 V . Then1. �x(u; y) = dÆx(u; y)2. dÆx(u; y) � diam(x)3. dÆx(u; y) � �0x � dÆ̂x(u; y) 2 [0; �x)4. dÆ̂x(u; y) < 2n diam(x)norm(x) 45



Proof: (1) Denote by hu1; u2; : : : ; uji a path from u1 to uj. ThendÆx(u; y) = minj; hu=u1;:::;uj 2V (y)i (j�1Xi=1 Æx(ui; ui+1)) (4.1)= minj; hu=u1;:::;uj 2V (y)i n`(hu1; : : : ; uji) + d(uj ; x)� d(u1; x)o (4.2)= d(u; y)� d(u; x) = �x(u; y) (4.3)Line 4.1 is simply the de�nition of dÆx . Line 4.2 is derived by anelling terms in thetelesoping sum. Note that d(uj ; x) = 0 sine uj 2 V (y) � V (x), and that d(u1; x) =d(u; x). Line 4.3 then follows from the de�nition of d and �x.(2) From part (1) we have dÆx(u; y) = �x(u; y) = d(u; y)�d(u; x). The inequalityd(u; y) � d(u; x) � diam(x) follows trivially from the fat that V (y) � V (x).(3) Let e be an arbitrary edge. By de�nition of Æx and Æ̂x, we have that eitherÆx(e) > diam(x) (i.e., Æ̂x(e) = 1) or �0x � Æ̂x(e) � Æx(e) < �0x � (Æ̂x(e) + 1). Let Puybe the shortest path from u to y in GÆx , and denote by jPuyj the number of its edges.Aording to part (2), dÆx(u; y) � diam(x), implying that for e 2 Puy, Æ̂x(e) 6=1, and�0x � dÆ̂x(u; y) � dÆx(u; y) < �0x � �dÆ̂x(u; y) + jPuyj� < �0x � dÆ̂x(u; y) + �xThe last inequality follows from the bound jPuyj < n and the de�nition of �x =n � �0x. This proves part (3).(4) From parts (2) and (3) we havedÆ̂x(u; y) � dÆx(u; y)�0x � diam(x)�0x � 2n � diam(x)norm(x)whih proves part (4).2Lemma 16 bounds the time to ompute the Æ̂x funtion in Step 1.Lemma 16 GÆ̂x is omputable in O(m log n) time.Proof: Let (u; v) be an arbitrary edge. Reall that Æ̂x(u; v) is either 1 or:�`(u; v) + d(v; x) � d(u; x)�0x �The original length funtion ` is, of ourse, already known. We ompute the other termsin the numerator with one Dijkstra omputation. Let G1 be derived from G by reversingthe diretion of all edges and ontrating V (x) into a single vertex. Computing SSSPfrom the soure V (x) in G1 produes the d(�; x) distanes. This takes O(m + n logn)46



time with Fibonai heaps. However, we an a�ord to spend O(m log n) time using asimpler binary heap.If Æx(u; v) � diam(x), whih an be heked in onstant time, then Æ̂x(u; v) anbe expressed as:Æ̂x(u; v) = maxfj : 2n � d(u; x) + j � norm(x) � 2n � (`(u; v) + d(v; x))gwhih follows from the de�nition of Æ̂x and �0x = norm(x)=2n. The terms 2n � d(u; x)and 2n � (`(u; v)+d(v; x)) are easily omputable in O(log n) time | see Setion 2.4. Weompute Æ̂x(u; v) in O(log diam(x)�0x ) = O(logn) time by �rst generating the valuesnnorm(x); 2norm(x); 4norm(x); : : : ; 2llog diam(x)�0x mnorm(x)ousing simple doubling, then using these values to perform a binary searh to �nd themaximal j satisfying the inequality above. This binary searh is performed one foreah edge, taking O(m log n) time in total.2In Step 2 of Compute-�̂x we ompute ertain distanes in the graph GÆ̂x , usinga variation on Dial's implementation of Dijkstra's algorithm. We are free to use Dial'salgorithm here beause GÆ̂x is an integer-weighted graph, whose shortest paths havebounded length.Lemma 17 Step 2 requires O(m � deg(x) + n � diam(x)norm(x) ) time.Proof: Let y 2 hild(x) be a hild of x and let N denote an upper bound on dÆ̂x(u; y).Let G1 be the graph derived fromGÆ̂x by reversing the diretion of all edges inG. ClearlydÆ̂x(u; y) is equal to the distane from V (y) to u in G1. Therefore, we an performStep 2 of Compute-�̂x by omputing SSSP in G1 from the soure V (y) (viewing it asa single vertex), for eah y 2 hild(x). To save time we solve eah of these deg(x)SSSP problems simultaneously, using Dial's implementation of Dijkstra's algorithm. Thepriority queue is implemented as a buket array of length N . If the pair hy; ui appearsin buket b this indiates that in the SSSP omputation with soure V (y), the tentativedistane to u is b. Sine Æ̂x is an integer-valued funtion, edge relaxations take onstanttime. The overall running time is then O(#(edge relaxations)+#(bukets sanned)) =O(m � deg(x) + N) = O �m � deg(x) + n � diam(x)norm(x)�. The bound on N follows fromLemma 15(4).2Lemmas 16 and 17 prove that Steps 1 and 2 take O(m log n+mdeg(x)+n diam(x)norm(x) )time. Step 3 just involves dividing dÆ̂x(u; y) by n and rounding up. We did not assumea general integer division operation. However, Step 3 an easily be inorporated into47



Step 2 by keeping trak of the number � bn� where b is the urrent buket number. InLemma 18 we prove the orretness of Compute-�̂x.Lemma 18 Step 3 sets �̂x orretly, i.e.�̂x(u; y) is an integer and ����x � �̂x(u; y) � �x(u; y)��� < �xProof: It is lear from Step 3 that �̂x(u; y) is assigned an integer value. We turn to theseond requirement, that ����x � �̂x(u; y) � �x(u; y)��� < �x. Notie that �0x�x = 1n . Fromthe de�nition of the eiling funtion we have:�0x � dÆ̂x(u; y) � �x � &dÆ̂x(u; y)n ' < �0x � dÆ̂x(u; y) + �x (4.4)From Lemma 15 parts (1) and (3) we have that:�0x � dÆ̂x(u; y) � �x(u; y) = dÆx(u; y) < �0x � dÆ̂x(u; y) + �x (4.5)Notie that in lines 4.4 and 4.5 the upper and lower bounds are idential, and thatthey are separated from eah other by �x. Therefore,������x � &dÆ̂x(u; y)n ' � �x(u; y)����� = ����x � �̂x(u; y) � �x(u; y)��� < �xwhih proves the lemma.2Now that the orretness of this sheme is established, we are ready to prove theoverall time bound of Lemma 13.Proof: (Lemma 13) Let T (m;n; k) be the time to ompute �̂x for all SH nodes x forwhih diam(x)norm(x) � k. From Lemmas 16 and 17 we an bound T as follows.T (m;n; k) = Xx : diam(x)norm(x)�kO(m logn+mdeg(x) + n diam(x)norm(x) )= O(4mn log nk + 2mn+ 4n2) fLemma 3(4), (6) & (7)g= O(mn� lognk �)hene T (m;n; logn) = O(mn)2 48



4.2 A Non-Uniform APSP AlgorithmThe APSP algorithm from Setion 4.1 has two distint parts: a �rst pass for omputingdisrete, approximate distanes and a subsequent pass for omputing the exat distanes.In this Setion we show how to ompute APSP with asymptotially fewer omparisonand addition operations by basially running the two passes onurrently.Our method for implementing the buketing struture B is a hybrid of previoustehniques. For every internal node x 2 SH, we will simulate Invariant 2 with an atualbuket array and a heap, denoted Hx. The idea is to properly buket nodes when wehave enough information to do so (for instane, if we know the �̂x-values) and to keepall unbuketed hildren of x in the heap Hx. When new information beomes availablewe may deide to migrate nodes from Hx to the buket array. Consider the followingbuketing invariant, whih is weaker than both Invariants 2 and 3.Invariant 4 Let x be an ative SH-node. Ative hildren of x appear in a buketonsistent with Invariant 2. An inative node y 2 hild(x) either appears in a buketnumbered between jd(s;y)�txnorm(x) k� 2 and jD(y)�txnorm(x)k inlusive, or in the heap Hx.We need to make a ouple modi�ations to Generalized-Visit so that Invariant4 an be said to simulate Invariant 2. Sine Generalized-Visit only extrats nodesfrom the ative buket (the one labeled [ax; ax + norm(x)) in Step 3 of Generalized-Visit), we will migrate the appropriate nodes from Hx to the ative buket, wheneverthe ative buket hanges. Beause of the onspiuous \�2" in Invariant 4 the ativebuket may ontain nodes that logially belong in later bukets. Whenever suh a nodeis disovered (whih an happen at most twie per node) we simply move it to thenext buket. One an easily see that under these modi�ations to Generalized-Visit,Invariant 4 simulates Invariant 2.The simple method for maintaining Invariant 4 is to keep all inative hildren ofx in Hx. However, this sort of dependene on heaps leads inextriably to some kind ofsorting bottlenek. The eÆieny of our APSP algorithm depends on minimal use ofthe heaps.In Setion 4.2.2 we de�ne funtions �x, �̂x, x, and ̂x that losely parallel thefuntions �x, �̂x, Æx, Æ̂x from Setions 4.1.1 and 4.1.3. In Setion 4.2.3 we show howthe �̂x and x funtions an be used to maintain Invariant 4 inexpensively.4.2.1 PreliminariesIn our algorithm we use the phrase is known in a tehnial sense. The statement\it is known that a < b" means that the inequality a < b ould be inferred fromthe known set of linear inequalities, as revealed by previous omparison and addition49



operations. Similarly, \�ab � is known" means the integer �ab � ould be inferred fromprevious operations, and \a is known", where a is a real, means a is atually stored in aspei� real variable. As omparison-addition omplexity is the only measure of interestin this setion, we need not provide any method for deiding when something is knownor not.The sequene of operations performed by our algorithm is rather unpreditable. Itdepends, to a great extent, on what is known at a given time. We desribe parts of ouralgorithm using triggers, whih are of the form \Whenever some (Preondition) holds,perform some (Ation)," where the (Preondition) typially depends on whether some-thing is known. We assume that triggers are invoked at the earliest possible moment,and that for any two appliable triggers, the lower numbered one takes preedene. As aonsequene of this poliy, our high-level algorithm,Generalized-Visit, only proeedsif every trigger's preondition is unsatis�ed.4.2.2 Lengths, Distanes, and Their ApproximationsDe�ne the edge-length funtion x : E ! R as:x(u; v) def= `(u; v) + wx(v)� wx(u)where wx(v) and wx(u) are initially unspei�ed. Trigger 1 shows how wx(v) is assigned.Trigger 1 When the variable wx(u) is unspei�ed but d(u; v) is known, for some v 2V (x), set wx(u) := d(u; v).It follows from Trigger 1 that if u 2 V (x), wx(u) = 0 holds initially sine d(u; u) =0 is known a priori. Note that if we set wx(�) = d(�; x) then x would be idential to theÆx funtion de�ned in Setion 4.1.3.We de�ne the disrete approximation ̂x : E ! N as:̂x(u; v) def= �x(u; v)�x � or 1 if x(u; v) > 2 � diam(x)where �x def= norm(x)4 � deg(x)Trigger 2, given below, updates the ̂x funtion whenever possible:Trigger 2 When x(u; v) is known but ̂x(u; v) is unknown, ompute ̂x(u; v).Lemma 19 gives a ouple properties of the x and ̂x funtions, and lets us boundthe ost of Trigger 2. 50



Lemma 19 Properties of ̂x:1. �x � ̂x(u; v) 2 (�diam(x)� �x; 2diam(x)℄ [ f1g. Moreover, if ̂x(u; v) =1 then(u; v) is not on any shortest path from u to any vertex in V (x).2. The ost of omputing ̂x(u; v) for all x 2 SH and (u; v) 2 E, is O(mn).Proof: (1) By Trigger 1 we have wx(u) 2 [d(u; x); d(u; x) + diam(x)℄. We also havethat `(u; v) + d(v; x) � d(u; x) 2 [0; 1), and furthermore, if (u; v) is on a shortest pathto some vertex in V (x), then `(u; v) + d(v; x) � d(u; x) 2 [0; diam(x)℄. Thus:x(u; v) = `(u; v) + wx(v)� wx(u)= `(u; v) + d(v; x) � d(u; x) + [�diam(x);diam(x)℄= [�diam(x); 1) fin generalg= [�diam(x); 2 � diam(x)℄ fif (u; v) is relevantgTherefore ̂x(u; v) = 1 only if (u; v) is not on any shortest path to a vertex inV (x). Furthermore, if ̂x(u; v) 6=1 then �x�̂x(u; v) = x(u; v)+(��x; 0℄ = (�diam(x)��x; 2diam(x)℄.(2) Given x(u; v), we ompute ̂x(u; v) using essentially the same algorithm fromLemma 16 in Setion 4.1.3. It takes time logarithmi in the range, i.e.log�3 � diam(x)�x � = log�12 � deg(x) � diam(x)norm(x) � � deg(x) + diam(x)norm(x) +O(1)By Lemma 3 parts (4) and (6), the ost of omputing ̂x(e), for all x 2 SH and e 2 E,is O(mn).2The x and ̂x funtions are learly analogues of Æx and Æ̂x from Setion 4.1.3. Be-low we de�ne the funtions �x; �̂x, and ~�x, where �x is a real-valued funtion analogousto �x and �̂x and ~�x are ertain integer-valued approximations of �x.�x(u; y) = d(u; y)� wx(u)~�x(u; y) def= ��x(u; y)�x ��x � �̂x(u; y) def= �x(u; y)� [0; �x � deg(x))�̂x is atually not ompletely de�ned. We use it to denote any integer-valuedfuntion satisfying the inequalities above.The �̂x funtion is the one we wish to ompute. It is, however, a little too expensiveto ompute diretly. Lemma 20, given below, shows how we might infer the �̂x funtionby omputing a few well-hosen ~�x-values and the ̂x funtion.51



Lemma 20 Suppose hv1; : : : ; vi; : : : ; vj 2 V (y)i is known to be the shortest path from v1to y 2 hild(x), and suppose that ~�x(vi; y) is known. If i � deg(x) then �̂x(vi0 ; y) isknown as well, for 1 � i0 � i.Proof: Beause hv1; : : : ; vji is known to be a shortest path to V (y) � V (x), it followsfrom Triggers 1 and 2 that the ̂x-values are known for all edges in hv1; : : : ; vji. We laimthat for i0 � i, ̂x(hvi0 ; : : : ; vii)+~�x(vi; y) is a good enough approximation to �x(vi0 ; y) tosatisfy the onstraints put on �̂x(vi0 ; y). Note that in general, �x � ̂x(e) = x(e)� [0; �x)and �x � ~�x(ui; y) = �x(ui; y)� [0; �x). Therefore,�x �̂x(hvi0 ; : : : ; vii) + ~�x(vi; y)�= x(hvi0 ; : : : ; vii) + �x(vi; y)� [0; �x � (i� i0 + 1))= d(vi0 ; vi) + wx(vi)� wx(vi0) + d(vi; y)� wx(vi)� [0; �x � deg(x))= �x(vi0 ; y)� [0; �x � deg(x)) = �̂x(vi0 ; y)2Lemma 20 shows that we an infer a �̂x-value if a \nearby" ~�x-value is alreadyknown. We will show that Trigger 3 omputes a relatively small set of ~�x-values at ana�ordable ost. Before giving Trigger 3 we have to introdue a little more notation. Letin(u) be the tree rooted at u of known shortest paths to u. Similarly, de�ne out(u) tobe the known shortest paths out of u. (If u is an SH-node then in(u) is atually anin-forest, whose roots are the verties of V (u).)Trigger 3 When the following hold: y 2 hild(x), u 2 in(y), v is the nearest an-estor of u in in(y) for whih ~�x(v; y) is known, and v is at (unweighted) distane atleast deg(x) from u, we ompute the value ~�x(w; y), where w is the anestor of u at(unweighted) distane jdeg(x)2 k.Lemma 21 Properties of �̂x:1. If u 2 in(y), where y 2 hild(x), then �̂x(u; y) is known.2. The ost of omputing all �̂-values with Trigger 3 is O(n2).Proof: Trigger 3 ensures that every vertex in in(y) has an anestor at distane atmost deg(x)� 1 (unweighted distane, that is) whose ~�x(�; y)-value is known. Part (1)then follows diretly from Lemma 20. To prove Part (2) we �rst show that at most3n=deg(x) di�erent ~�x(�; y) values are ever omputed by Trigger 3; we then bound theoverall omparison-addition ost. When Trigger 3 is invoked we say u laims the edgesbetween u and w. For the purpose of obtaining a ontradition, suppose an edge waslaimed twie, say by u (with w) and subsequently by u0 (with w0). Whether w0 is an52



anestor or desendant of w, the fat that u{w overlaps with u0{w0 at one edge impliesthe (unweighted) length of u0{w is at most 2 � jdeg(x)2 k � 1 < deg(x). Therefore,Trigger 3 ould not have been invoked at u0, a ontradition, and onsequently, at most(n� 1)= bdeg(x)=2 < 3n=deg(x) ~�x(�; y)-values were omputed. The time required toompute a ~�x(�; y)-value is the same as a ̂x-value: O(deg(x) + diam(x)norm(x) ) aording toLemma 19(2). Summing over all x 2 SH; y 2 hild(x), and u 2 V , the total ost ofTrigger 3 is: Xx deg(x) � 3ndeg(x) ��deg(x) + diam(x)norm(x)� = O(n2)The O(n2) bound follows diretly from Lemma 3 (4) and (6).24.2.3 Bukets, Heaps, and Invariant 4Reall that Hx is a heap assoiated with x 2 SH that holds any unbuketed hildrenof x. The main fous of this Setion is how to keep nodes out of Hx while maintainingInvariant 4. We will analyze, in partiular, Triggers 4, 5, and 6, given below.Trigger 4 Upon ativation of x, for eah y 2 hild(x), if possible, buket y aordingto Invariant 4; otherwise put y in Hx.Trigger 5 Whenever new ̂x-values beome known (Triggers 1 and 2) and x is ative,for eah y 2 hild(x), if possible, buket y aording to Invariant 4; otherwise keep yin Hx.Trigger 6 Whenever D(y) is dereased, where y is a buketed hild of x, if possible,keep y buketed aording to Invariant 4; otherwise, move y to Hx.We will larify in due time what is meant by \if possible" in Triggers 4, 5, and 6.For the moment, let it suÆe to say that suessfully (or unsuessfully) buketing a nodetakes onstant time. Therefore, eah invoation of Triggers 4 and 5 takes O(deg(x))time and eah invoation of Trigger 6 takes onstant time. These times reet someassumptions about the heap Hx. We assume, in partiular, that heap inserts, derease-keys, and �nd-mins take onstant amortized time, and that deleting any subset of theheap takes O(jHxj) = O(deg(x)) time.2The problem of buketing y in onstant time is that of �nding a disrete approx-imation to the quantity d(s; y) � d(s; x). Of ourse, sine we do not know the shortest2These are weak assumptions. For instane, Hx ould be implemented as a singly linked list with apointer pointing to the minimum element. 53



path from s{to{y, we have little ertain information about d(s; y). Our solution is toonsider many hypothetially shortest s{y paths, and for eah suh path Q, estimate thequantity `(Q)�d(s; x). In partiular, we will examine all paths of the form hPh; Pb; Pti,where Ph, the head, is a pre�x of the known shortest path from s to x, Pt, the tail, is itselfa known shortest path into y (and therefore part of in(y)), and Pb, the bridge, onnetsPh to Pt | see Figure 4.2. If, in the atual shortest s{to{y path P � = hP �h ; P �b ; P �t i,the bridge P �b satis�es ertain onditions, we show that y an always be buketed inonstant time.
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Figure 4.2: The path hs; : : : ; vji, broken into a head hs; : : : ; v0i, a bridge hv0; : : : ; vii,and a tail hvi; : : : ; vji.When attempting to buket y, we onsider the paths in Qy | see De�nition 3.Paths in Qy have no heads; they onsist of a bridge and tail of a hypothetially shortests{to{y path.De�nition 3 Let z 2 hild(x) and f 2 V (z) � V (x) be the vertex satisfying d(s; f) =d(s; x). Let Psf be the shortest path from s to f (and from s to x). We de�ne Qy, wherey 2 hild(x), to be the set of paths of the form hv0; : : : ; vi; : : : ; vji that satisfy:1. v0 2 Psf � out(s)2. ̂x(hv0; : : : ; vii) is known3. i � deg(x)4. vj 2 V (y) and hvi; : : : ; vji � in(y)We de�ne the integer diff(Qy) below. Under the assumption that Qy ontains asuÆx of the shortest s{to{y path, we an plae some interesting bounds on diff(Qy)in terms of d(s; y); however, in general diff(Qy) might not approximate any usefulquantity. 54



For Q 2 Qy, where Q = hv0; : : : ; vi; : : : ; vji as in De�nition 3, we de�ne diff(Q)and diff(Qy) as: diff(Qy) def= minQ 2 Qy diff(Q)diff(Q) def= �̂x(vi; y) + ̂x(hv0; : : : ; vii) � �̂x(v0; z)Lemma 22 diff has the following properties:1. diff(Qy) is an integer and its urrent value is known impliitly2. At all times, �x � diff(Qy) > d(s; y)� d(s; x)� norm(x)23. If some Q� 2 Qy is a suÆx of the shortest s{to{y path, then it holds that �x �diff(Qy) < d(s; y)� d(s; x) + norm(x)4Proof: diff(Qy) is an expression over integers, eah of whih is impliitly knownaording to Lemma 21(1) and De�nition 3(2). This implies part (1). We turn to parts(2) and (3). Reall that by de�nition of �̂x and ̂x we have the inequalities �x ��̂x(u; y) =�x(u; y)� [0; �x �deg(x)) and �x � ̂x(u; v) = x(u; v)� [0; �x). Let Q 2 Qy be arbitrary,and, following the terms of De�nition 3, we write Q as hv0; : : : ; vi; : : : ; vji and let z 2hild(x) be suh that d(s; z) = d(s; x). Let � be the interval ��norm(x)2 ; norm(x)4 �.�x � diff(Q) = �x � [�̂x(vi; y) + ̂x(hv0; : : : ; vii) � �̂x(v0; z)℄ (4.6)= �x(vi; y) + x(hv0; : : : ; vii) � �x(v0; z) + � (4.7)= d(vi; y) + `(hv0; : : : ; vii) � wx(v0) � �x(v0; z) + � (4.8)= `(Q) � d(v0; x) + � (4.9)Line 4.6 is the de�nition of diff; Line 4.7 follows from the de�nitions of ̂x; �̂x,and �x = norm(x)4�deg(x) , and De�nition 3(3) stating that i � deg(x). Line 4.8 is derived byexpanding �x(vi; y) and x(hv0; : : : ; vii) and anelling terms. Line 4.9 follows from thede�nition of �x and the identity d(s; z) = d(s; x).Consider Line 4.9. Clearly `(Q)�d(v0; x) = (d(s; v0);+`(Q))�(d(s; v0)+d(v0; x)) �d(s; y) � d(s; x), and that `(Q) � d(v0; x) = d(s; y) � d(s; x) only if Q is a suÆxof a shortest s{to{y path. By taking into aount the upper and lower bounds of� = ��norm(x)2 ; norm(x)4 �, parts (2) and (3) immediately follow.2We use the diff-values to quikly deide if it is possible to buket nodes in aor-dane with Invariant 4. Suppose that we are attempting to buket a node y 2 hild(x)due to either Trigger 4, 5, or 6. Our proedure is as follows:55



1. Reall that x's �rst buket spans the interval [tx; tx + norm(x)). Let [�; � +norm(x)) be the buket in x's buket array suh that tx+ �x �diff(Qy) 2 [�; �+norm(x)).2. If D(y) � �, put y in buket [�; � + norm(x)) and stop.3. If D(y) � � � norm(x); put y in buket [� � norm(x); �) and stop.4. Otherwise, put or keep y in Hx.Lemma 23 The buketing proedure does not violate Invariant 4 and if Qy ontains asuÆx of a shortest s{to{y path, then y is suessfully buketed.Proof: Reall from Lemma 5 in Setion 3.4 that tx was hosen so that d(s; x) 2 [tx; tx+norm(x)). Lines 2 and 3 of the buketing proedure guarantee that y is never buketedin a higher buket than jD(y)�txnorm(x)k. To show that Invariant 4 is preserved, we needonly prove that in Line 2, y is not buketed before buket jd(s;y)�txnorm(x) k � 2. Lemma22(2) states that �x � diff(Qy) > d(s; y) � d(s; x) � 12norm(x), whih implies that�x �diff(Qy) > d(s; y)� tx� 32norm(x). So buketing y aording to �x �diff(Qy) anput it at most �32� = 2 bukets before buket jd(s;y)�txnorm(x) k, whih is the slak toleratedby Invariant 4. For the seond part of the Lemma, assume that some Q 2 Qy is asuÆx of the shortest s{to{y path. It follows from Lemma 22(3) that �x � diff(Qy) <d(s; y)� tx+ 14norm(x). By hoie of �, we have � � tx � �x � diff(Qy), whih impliesthat � � 14norm(x) < d(s; y) � D(y) Therefore, y must have been buketed in Step 2or 3 or the buketing proedure.2Lemma 24 Suppose that we perform n SSSP omputations with Generalized-Visit.Then the ost of all heap operations, inluding the ost of Triggers 4, 5, and 6, is O(mn).Proof: Reall that attempting to buket a node takes onstant time, and that eahinvoation of Triggers 4, 5 take O(deg(x)) time, and that Trigger 6 takes onstanttime. Trigger 4 is alled one per SH-node per SSSP omputation. Thus the total ostfor Trigger 4 is Px2SHO(deg(x)) � n, whih is O(n2) by Lemma 3(4). Trigger 5 isinvoked whenever new ̂x-values beome known (for any x 2 SH), whih, by Triggers 1and 2, means that for some vertex u, wx(u) was just �xed in Trigger 1. This an onlyhappen n times (for x), for a total ost of PxO(deg(x)) � n = O(n2). Finally, Trigger6 is alled one per edge relaxation, of whih there are no more than O(mn).We now aount for the ost of extrating items from Hx Let y 2 hild(x),and let Psy and Psx be the shortest paths from s{to{y and s{to{x, respetively. Now56



suppose that y is inserted into Hx. We an write Psy as hP1; P2; P3i, where P1 and P3are maximal suh that P1 � Psx � out(s) and P3 � in(y). By Lemma 23, y would havebeen buketed (rather than inserted into Hx) if hP2; P3i 2 Qy. By De�nition 3 hP2; P3iis not inQy either beause (a) jP2j > deg(x) or (b) wx(u) is not known, for some u 2 P2.Case (a) an only happen n=deg(x) times for y, beause after the SSSP omputationfrom soure s, in(y) will have absorbed P2 (and P1 for that matter). Thus the totalost for (a) is PxO(deg(x))2 � n=deg(x) = O(n2). The ost of (b) has atually beenaounted for, sine one wx(u) is �xed, for all u 2 P2, y will be immediately buketedby Trigger 5.2The only osts not overed by Lemma 24 are onstruting the strati�ed hierarhy,whih is O(m log n) by Lemma 3(8), omputing the �̂ and ̂ funtions, whih is O(mn)by Lemmas 19(2) and 21(2) and implementing the D data struture, whih, by Lemma10, is O(m log�(m;n)) for eah SSSP omputation. Theorem 4 follows.Theorem 4 The all-pairs shortest path problem on arbitrarily-weighted, direted graphsan be solved with O(mn log�(m;n)) omparisons and additions, where m and n are thenumber of edges and verties, respetively, and � is the inverse-Akermann funtion.
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Chapter 5Shortest Paths onUndireted GraphsIn this Chapter we give an implementation ofGeneralized-Visit for undireted graphsthat is quantitatively and qualitatively superior to those algorithms for direted graphspresented in Chapter 4. Why are undireted graphs so muh easier? The short answer isthat undireted graphs an be e�etively lustered, whereas direted graphs, in general,annot. Consider a single edge (u; v). In an undireted graph we an laim that jd(s; u)�d(s; v)j � `(u; v), regardless of the rest of the graph, whereas in a direted graph onlythe inequality d(s; v) � d(s; u)+`(u; v) holds. Thus, the distane funtion for undiretedgraphs exhibits muh stronger orrelations.1The partiulars of our lustering sheme are a bit involved, though the overallidea is quite simple. Suppose that x is an SH-node. Unless we know something aboutthe input graph, the set fd(s; y)�d(s; x)gy2hild(x) onsists of more or less independentvariables, eah somewhere is the range [0;diam(x)). Therefore, barring any extra in-formation about the graph, the set fb[d(s; y) � d(s; x)℄=norm(x)gy2hild(x) has aboutdeg(x) log(diam(x)=norm(x)) bits of information in it. In other words, we are imag-ining that the graph is hosen at random | though still onsistent with the hierarhySH | and asking about the entropy of ertain variables. It is not diÆult to show thatthe entropy of SH an be as muh as 
(n log n). We show that by arefully introduingnew layers of nodes into SH, the overall entropy an be redued to O(n). Furthermore,we give a buketing sheme (an implementation of the B struture) whose running timemathes the entropy of the given hierarhy.The running time of our algorithm is signi�antly more impressive than the al-gorithms from Chapter 4. The time required to ompute a low-entropy hierarhy is1The results of this hapter appeared in: S. Pettie and V. Ramahandran, Computing shortest pathswith omparisons and additions, Pro. 13th Ann. ACM-SIAM Symp. on Disrete Algorithms (SODA),pp. 267{276, 2002. The full version is under review.58



only O(m�(m;n)+minfn log n; n log log rg), where r bounds the ratio of any two edge-lengths. One this hierarhy is given, we are able to ompute SSSP from any soure inO(split-findmin(m;n)) = O(m log�(m;n)) time, whih is nearly linear-time | per-haps even linear-time | and essentially unimprovable. As we will see in Chapter 6the algorithm is streamlined and fares well in head-to-head omparisons with Dijkstra'salgorithm. A stubborn bottlenek, both theoretially and pratially, is the ost of om-puting a low-entropy hierarhy. Thus, for the problem of omputing SSSP exatly one,our algorithm is only a theoretial improvement for reasonably-sized r. For instane,the asymptoti running time for r = poly(n) is O(m+ n log log n).5.1 An Undireted Shortest Path Algorithm5.1.1 Re�ned HierarhiesLet H1 and H2 be two hierarhies. We will say that H2 is a re�nement of H1 if for everyx1 2 H1, there exists an x2 2 H2 suh that V (x1) = V (x2) and norm(x1) = norm(x2).Our undireted shortest path algorithm operates on a hierarhy alled RH, whih is are�nement of SH having ertain properties. We onstrut RH in Setion 5.2.We will exploit the orrespondene between SH-nodes and their ounterparts inRH. For instane, if x is known to be anRH-node, the assertion that x 2 SH is short for9x0 2 SH : V (x) = V (x0). The nodes in RH�SH will be alled auxiliary. Let x 2 SHand let � be the hildren of x in SH. We de�ne Hx to be the subtree of RH indued byx, �, and all the auxiliary nodes between x and �. For the moment we will only maketwo assumptions about Hx (and by extension RH): that any auxiliary node y 2 Hxhas at least two hildren (implying jRHj = O(n)), and that norm(y) = norm(x). It iseasily shown that if SH satis�es Lemma 3 Parts (2) and (3) (the properties ruial foromputing SSSP orretly) then RH satis�es these properties as well.5.1.2 The Undireted-Visit AlgorithmOur shortest path algorithm for undireted graphs is given in Figure 5.1. It is nearlyidential to the Generalized-Visit algorithm from Chapter 3, save for two smallmodi�ations. Sine there is no distintion between onneted and strongly onnetedomponents in undireted graphs, we an treat any t-partition as an unordered (ratherthan ordered) partition | see Lemma 2. In terms of the e�et on our algorithm, ratherthan extrating the leftmost node from the urrent buket, as we do in Generalized-Visit, we are free to extrat any node in the urrent buket.22Inidentally, this eliminates the need for the van Emde Boas heap [203℄ used in our implementationof Generalized-Visit. 59



Undireted-Visit(x; [a; b))Input: x 2 SH and V (x) is (S; [a; b))-independentOutput: All verties in V (x)[a;b) are visited1. If x is a leaf and D(x) 2 [a; b), then let S := S [ fxg, relax all edges inident onx, restoring Invariant 1, and return.2. If Undireted-Visit(x; �) is being alled for the �rst time, reate a buket arrayof ddiam(x)=norm(x)e + 1 bukets. Buket i represents the interval[tx + i � norm(x); tx + (i+ 1) � norm(x))where tx is set to:tx = ( D(x) if D(x) + diam(x) < bb� l b�D(x)norm(x)mnorm(x) otherwiseBuket the nodes in hild(x) by their D-values3. Set ax = � tx if this is the �rst all to Visit(x; �)a otherwiseWhile ax < b and V (x) 6� SWhile buket [ax; ax + norm(x)) ontains an auxiliary node yRemove y from the buket arrayBuket the nodes in hild(y)While buket [ax; ax + norm(x)) ontains any node yUndireted-Visit(y; [ax; ax + norm(x)))Remove y from its buketIf V (y) 6� S, put y in buket [ax + norm(x); ax + 2norm(x))ax := ax + norm(x)Figure 5.1: The Undireted-Visit proedure.
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The Undireted-Visit proedure is only alled on SH-nodes, never auxiliarynodes. Indeed, the pattern of reursive alls with Undireted-Visit is idential tothat of Generalized-Visit. We simply use the auxiliary nodes as representatives formultiple SH-nodes in the buket arrays. Spei�ally, we maintain that for any ativeSH-node x, every leaf y 2 Hx that belongs in x's buket array (aording to Invariant2) is represented in x's buket array by some anestor of y in Hx. Furthermore, if y isitself ative, or if it belongs in the urrent buket, then y is represented by itself. Onean learly see that Undireted-Visit maintains this invariant. When x �rst beomesative, in Step 2, we buket only x's hildren, a set that learly represents the leaves ofHx. When a new buket beomes the urrent buket, in Step 3, we repeatedly replae anauxiliary node in the urrent buket by its hildren, and proeed only after no auxiliarynodes remain. This buketing regimen learly simulates Invariant 2.5.1.3 A Lazy Buketing StrutureIn this setion we desribe a simple abstrat buketing struture whih is speiallysuited for use in Undireted-Visit. However, it is still general enough to be used inother situations. The struture operates on an array of bukets and a set of elementswith assoiated real-valued keys. The ith buket represents a real interval Ii, whihis adjaent to Ii+1, and an element with key � belongs in the unique buket i suhthat � 2 Ii. As a simplifying assumption, we assume that given i, Ii is omputable inonstant time. Bukets are either open or losed; only the ontents of open bukets mayhange.The Buket-Heap:reate(f) Create a new Buket-Heap, where f(i) = Ii is onstant time omputable.All bukets are initially open.insert(y; �) Insert a new item y with key(y) := �.derease-key(y; �) Set key(y) := minfkey(y); �g. It is guaranteed that y is not movedto a losed buket.lose Close the �rst open buket, and remove and enumerate its ontents.Lemma 25 The Buket-Heap an be implemented to run in time O(N +Py log�(y)),where N is the total number of operations and �(y) is the number of lose operationsbetween y's insertion and its removal.Proof: Our buketing struture simulates the logial spei�ation given above; it atu-ally onsists of levels of buket arrays. The level zero bukets are the ones referred toin the Buket-Heap's spei�ation, and the level i bukets preside over disjoint pairs of61


