
���������
	��������������������������� ��!#"�	$����%	&�'���(�)�$*+�����,�.-/	$"����0�1	&�'����243����$�
��� 56�
�7�&�8��9

Chandrajit Bajaj, Shashank Khandelwal, J Moore, Vinay Siddavanahalli :
Center for Computational Visualization
Dept. of Computer Sciences and ICES

University of Texas at Austin
http://www.ices.utexas.edu/ccv/

;=<?>A@CBED?FG@

We explore a new symbolic visualization model for semi-automatic
theorem provers. Mechanized formal methods are finding increased
use in the design and development of complex hardware and soft-
ware systems. Most proofs are presented in a textual format, with
intermediate formulas possibly consisting of megabytes of data,
which are difficult to analyze and understand. This paper introduces
a preliminary visualization environment for semi-automatic theo-
rem provers in an attempt to help users steer the theorem proving
process. The environment provides synchronized multi-resolution
textual and graphical views and direct navigation of large expres-
sions or proof trees from either of the twin interfaces. We iden-
tify three levels of the proof process at which synchronized multi-
resolution graphical and textual visualization enhance user under-
standing.

CR Categories: H.4, F.3 [Information Systems Applications]:
Logics and Meanings of Programs—; D.2.8 [Software Engineer-
ing]: Metrics—complexity measures, performance measures

Keywords: Symbolic visualization, Approximate tree matching,
HCI

H IKJ @CBMLONQP#FG@
RSL J

Formal methods allow users to mathematically describe a system,
and then verify that the system behaves according to a given set of
specifications. In software engineering, artifacts such as specifica-
tions, design, and source code can be formally defined and veri-
fied, helping in the development of “bug free” systems. Software
and hardware systems have become complex enough for the formal
verification process to require the use of semi-automatic theorem
provers.

Although the applications have become more complex, user in-
teraction with theorem provers remains mostly text based. When a
proof attempt fails, the user needs to diagnose the problem and then
come up with new theorems, lemmas and hints to proceed with the
proof. This requires a thorough understanding of the proof attempt.
Theorem provers typically generate large amounts of text during
proof attempts – making an attempt difficult to understand.

A command line interface is used with most theorem provers.
Pretty printing and text based primitives like searching are the main
tools available to help reduce or manage visual complexity. Since
theorem proving is, by definition, concerned with the syntactic ma-
nipulation of formulas in a formally defined syntax, the focus on
text is inescapable. But that is not an argument that all interaction
needs to be text based. The challenge is to integrate text-based tools
with visualization tools to speed comprehension and interaction.

The design of user friendly interfaces to such large and com-
plex text based systems is a well known problem. We have made a

TVU
bajaj, shrew, moore, skvinay W @cs.utexas.edu

preliminary effort towards identifying three levels at which we can
augment the command line interface with visualizations:

1. The overall proof process can be visualized by displaying a
graph of the theorems and sets of previously proved theorems
(books) used during a particular proof attempt.

2. The structure of the proof can be visualized, by displaying the
subgoals created at each step, and indicating which subgoals
could be proved or not. Navigating and browsing through the
structure of a proof tree may help the user better understand a
proof attempt.

3. The visualization of a single subgoal is something that is
much required. Examining failed subgoals is critical towards
understanding why a proof attempt failed. Within the proof
of critical subgoals, the user needs to understand the steps
taken by the theorem prover. Following the progress of simi-
lar subgoals through a proof attempt is useful in this situation.
Graphical visualization would help quickly identify similar
subgoals and their locations within the overall proof.

The visualization at all three levels involves finding a spatial
mapping for the data at each level - data that is inherently not spa-
tial. From our knowledge of interaction with theorem provers, we
believe we have developed a mapping that we think will be cogni-
tively useful. Our visualizations should help increase the efficiency
of current users as well as provide a friendly environment to help
new users learn the theorem proving system.

In this paper, we introduce a hierarchy of levels at which we
can perform synchronizd multi-view textual and graphical visual-
izations. Domain specific pattern matching is used to enhance user
understanding of proof attempts. To ensure interactivity, we use
fast dynamic synchronized reconstruction of trees.

In section 2 we discuss our test case theorem prover, the cur-
rent interaction methods and quantify the output generated during
complex proof attempts. Section 3 presents related work on visu-
alization in theorem provers, tree visualization and tree matching.
In section 4 we provide details on the visualization of theorems and
books, proof tree visualization, and function visualization. Section
5 describes the synchronized multi-view aspect of our visualization
environment. Section 6 describes case studies. The final section
presents our conclusions.

X ;ZYZ[X D J N\R]@A>^Y0P_B`BEa J @cbdRS>eP#D#fSRSg/Dh@
RSL J

We choose ACL2 [Kaufmann and Moore 1997], [Kaufmann and
Moore 1994], an industrial strength theorem prover, for our case
study.

ACL2 is a tool that can be used to model hardware and software
systems and then prove properties pertaining to those models. It is
also a general purpose semi-automatic theorem prover, with a sim-
ple dialect of the LISP programming language. Other examples of

Queries

Visualization
Tree

Hierarchical

Visualization
Function

Tree Matching
Approximate

Existing component

Added as part of the visualization system

Large amounts of text

Graphics stream

Theorem
Prover

1. Synchronized 3D Proof Trees

2. Function Visualization
with Pattern Matching

Queries

EMACS/LISP
Text Interface Visualization

GUI

Client

Client Side User Interface

Proof Attempts
Output From

Output From Proof Attempts

Visualization Server

Figure 1: An Architectural Overview of our Symbolic Visualization System for Theorem Provers

similar theorem provers are NQTHM [Boyer and Moore 1988] (the
predecessor of ACL2), PVS [Owre et al. 1992], and HOL [Gordon
and Melham 1993].

����� ���	��
���������

Symbolic manipulation is the method employed by ACL2 to prove
theorems. It uses the axioms present in the logic and previously
proved theorems/lemmas to prove the current goal. If a proof at-
tempt fails, the user needs to understand the logical reason behind
the failure, and then provide the system with hints, missing theo-
rems or lemmas. This process requires a thorough understanding of
ACL2 and the specific system being analyzed.

The proof of correctness of the kernel of the AMD5K86’s floating
point algorithm involved 1600 definitions and lemmas. ACL2 can
produce terms 300,000 (20 Mb) lines long (as were produced while
proving an equivalence condition related to the Motorola CAP digi-
tal signal processing co-processor). [B. Brock et al. 1996] discusses
using ACL2 to prove theorems about these commercial micropro-
cessors. The large amounts of text generated in such proofs is too
cumbersome to comprehend even with powerful text manipulation
and pretty printing tools. Graphical visualization makes compre-
hension of complex proofs easier by using higher spatial dimen-
sions, a cleaner level-of-detail implementation and abstract repre-
sentations.

����� ���������
������������
����! "#�$�&%'

Most users run ACL2 in a shell running in a buffer inside an Emacs
editor. The current user interaction is through a command line in-
terface, with a read-evaluate-print loop. Emacs provides excellent
support for searching, text manipulation and matching parentheses
and other textual patterns. There is an option to obtain the proof
tree and browse it in the same text model, allowing users to make
simple queries on different subgoals. Although this system is pow-
erful, it is entirely text based and relies largely on the discipline and
Emacs skill of the user to impose structure.

() a?f]D'@Aa?N+*ZL B-,

We provide references to relevant previous work done in visual-
ization of output from theorem provers. Tree visualization is re-
quired for the levels two (section 4.2) and three (section 4.3) and
we present past work of interest. Tree matching is required in level
three.

.���� /0�1�2�� �31�54# 6�$�&%�
7��
8�-9�:%:�!�;=<6��%�>?����

[Thiry et al. 1992] discuss the need and requirements for a friendlier
user interface to theorem provers, but do not attempt to visualize the
information inherent in the proof process as a way to understand the
proof attempt.

In [Goguen 1999], we see an attempt to use visualization to
understand the structure of proofs and a complete system for de-
veloping a user interface. There are a few major differences be-
tween their system and ours. Their system is designed for users
that read proofs (as opposed to specifiers or provers). The inter-
face is through web pages that explain the proof with links to back-
ground material and tutorials. Their system is also designed with
distributed co-operative collaboration between users in mind. Our
system is designed to be used by theorem provers, working alone.

.���� @A���6�B>:�1�2�� �31�54# 6�$�&%�

There has been a significant amount of research in the visualization
of data, and specifically in tree visualization. In [Keller and Keller
1994], there are a number of generic techniques and hints to visu-
alize a variety of generic data (including time varying, animated,
volumetric models). [Tufte 1990] describes a variety of commonly
used data visualization techniques, presenting methods to increase
our understanding of data by better representation. [Brown 1987]
describes a system for algorithm animation, where the user can ob-
serve an algorithm’s behavior through time. Algorithm comparison
methods are also presented.

Complexity in tree visualization is reduced using hierarchies
or culling of irrelevant information. Cone trees [Robertson et al.
1991], [Carriere and Kazman 1995] are a popular 3D visualization
technique for trees. Space filling curves and fractals are other tree
representations, but can lose structural information. [Shneiderman
1992]’s space filling approach is an example of maximum utiliza-
tion of screen space but tree maps do not provide structural infor-
mation with the same ease as a more traditional node-link approach.
[Koike and Yoshihara 1993] improve on cone trees by using frac-
tals to represent self similar nodes in a hierarchy. They give ex-
amples of browsing a large Unix directory structure. [Robertson
et al. 1991] define traditional cone trees and the use of animation
to reduce the cognitive load on users when they select a new node
to focus on. [Carriere and Kazman 1995] try to improve the clut-
ter present in cone trees as the size of data grows large by adding
visual cues, hierarchical models and filtering to reduce size of ren-
dered trees. In another attempt at the same goal, [Jeong and Pang
1998] describe Reconfigurable Disc Trees which alleviate some of
the problems with traditional cone trees by using a disc as the ba-
sic shape instead of a cone. A new technique for rendering trees

was introduced in [Lamping and Rao 1994]. They use hyperbolic
spaces to render arbitrary sized data in a limited space. [Munzner
1998] shows how large graphs can be represented and rendered in
3D hyperbolic space by laying out spanning trees.

Previous works on 2D tree layout algorithms, from which we
derived our layout algorithm, are: [Walker 1990], [Reingold and
Tilford 1981] and [Frank Van Ham 2001].

In section 4.3 we explain the need for tree matching in support-
ing expression visualization. There have been a lot of recent im-
provements in tree matching algorithms. In [Kosaraju 1989], the
idea of convolutions between trees and strings, suffix trees of trees
and don’t care symbols are used to obtain an algorithm which has a
cost of O � nm0 � 75 polylog � m ��� where m is the size of the pattern tree
and n is the size of the text tree. polylog is defined as the a poly-
nomial of logs. Using substrings appearing periodically in the pat-
tern tree [Dubiner et al. 1994] improve the O � nm0 � 75 polylog � m ���
bound to O � n � m polylog � m ��� . In a series of papers, Cole et al.
[Cole and Hariharan 1997], [Cole et al. 1999] show bounds of
O � n log3m

loglogm � m � , a randomized algorithm of cost O � nlog3m � and

then later claim a deterministic algorithm at the cost of O � nlog3n � .
In [Luccio et al. 2001], we see one of the first polynomial time al-
gorithms for unordered exact matching.

� �	��
+<_LfSR F bdRS>eP?D fSRSg/Dh@
RSL J

In this section we provide details and justifications for the visualiza-
tions (and the types of visualizations) at each level of the hierarchy.

Figure 1 presents an architectural overview of our system. Tak-
ing an idea from [Thiry et al. 1992] our visualizations are generated
by a separate server which communicates with the theorem prover
through a simple protocol. The protocol can be implemented in the
theorem prover’s language providing access to information, as if
the visualization server is a regular user.

� ��� /0�1�2�� �31�54# 6�$�&%�
7%� �-9��6%���; � ��$���

A theorem is proved by using previously verified theorems and lem-
mas. Sets of theorems in different topics are proved and stored in
collections used as a knowledge base for the theorem prover. By
looking at the theorems and lemmas used in the proof of a previ-
ously verified theorem, a user may gain insight on how to steer a
current proof attempt.

The hierarchy of theorems arranged in an order that shows inter-
dependency forms a directed acyclic graph. This can be visualized
using a node-link diagram as shown in figure 2.

Book 2Book 1

Lemma 1

Book 3

Lemma 2

Lemma 4

Theorem

Lemma 3

Figure 2: A schematic view of lemmas and books used to prove a
theorem

In this paper, we will present details and results on visualization
of the next two levels.

� ��� � �!% %� �	���?�7>6�1�2� �31�&4# :�$�&%'

Most proof attempts from theorem provers have a tree structured
approach. The root of the tree can be considered to be the main the-
orem being proved. A theorem prover then either proves/disproves
the theorem or divides the theorem into subgoals. Each of these
subgoals is then tackled, in an order determined by the particular
theorem proving system. ACL2 tends to use a depth first search.

Figure 3: Proof tree visualization. Three different time steps during
a proof attempt are shown in clockwise order.

Actions taken by the theorem provers like breaking up a complex
expression into a composition of several sub-expressions, each of
which can be proved in a similar fashion, yields very similar struc-
tures. Different structures in the proof tree provide different insights
about the actions taken by the theorem prover at those points. It be-
comes easy to observe induction, or simplification being applied to
a subgoal.

Another reason to perform proof tree visualization is to observe
the structure of the proof, without the limitations placed in the case
of textual data, and to navigate the proof tree more easily. The
overall structure of the proof tree, combined with a close mapping
to the text data, and vice versa, allows users to navigate failed proofs
comfortably.

������� ��� �������! "� #%$����&�'�)(*��+-,.�/��� ���0�'�21�+3����(4�5+36"6/#
There is a lot

of information that can be clearly presented to the user through the
visualization of proof trees. While the structure of the overall proof
will be clear in the tree structure, visual cues are used to present
interesting details.

7 ACL2 has a model in which the subgoals can be reduced us-
ing generalization, induction, simplification etc. These ac-
tions are limited and distinct. The action taken by the theorem

prover at any subgoal can be visualized by the corresponding
node’s color (see figure 5).

7 ACL2 provides the user with a set of statements indicating its
reasoning at each subgoal. This text can be parsed and stored
at each node of the proof tree to be accessed by the user.

7 The subgoal expressions at a node are later used for expres-
sion visualization, but are also stored at this level. Textual and
graphical multi-view visualization provides details through
the text, and overall structure through the graphics at the same
time. This is illustrated in figure 5.

7 As the theorem prover proceeds, we have a set of nodes that
were generated, a set of nodes that were proved, and possibly
a node that could not be proved. Such information can be dy-
namically stored at the links by coloring them appropriately.

���������	� #�6�+&�'�)� 6�+*��
 ��� ����#
The following interactions are considered necessary for interacting
with a proof attempt’s tree:

7 The rendering of the proof tree must be synchronized with
the progress of the proof attempt. This helps us see patterns
developing as the proof proceeds. It becomes trivial to catch
many infinite recursions, understand the structure of the proof,
see the current part of the main theorem being tackled, locate
those subgoals that were not proved immediately, and iden-
tify the inductions which were attempted. Figure 3 shows the
progress of a proof attempt at three different time steps (in
clockwise order).

7 Rotating, zooming, and panning of the proof tree, without los-
ing track of nodes of interest.

7 The movement from one subgoal of interest to another must
be smooth. Animation sequences must help the user navigate
without losing the overall location of the viewpoint in the tree.
To do this, we choose a unique path from the current node, to
the root and then down to the other node.

7 Users should be able to move from the text to the visual tree
(and vice versa), by selecting subgoals in either.

7 Some domain specific interactions required would be obtain-
ing definitions and previous uses of axioms.

To ensure real-time user interaction with the multi-view visual-
ization of the proof process, we need fast construction and render-
ing of the proof tree. Since proof attempts tend to be large, tak-
ing possibly hours to finish, users prefer being given synchronized
feedback in both textual and graphical views of the current state of
the proof. Thus we need to use a dynamic tree construction and
rendering algorithm.

��������� ��/����, ��
4�5+36/6�
 ����# �5+-$�
 ��� ���
We get the information on the number of children at a node as soon
as each node is evaluated. Hence we know the distribution of nodes
at each level as the theorem prover starts proving them in order.

We use a variant of the cone tree layout algorithm to render our
trees interactively.

The implementation costs O � nlog � n ��� , where n is the total num-
ber of nodes in the tree. It does not require pre-processing (which
was important so that we could obtain synchronized interactive vi-
sualizations of information from the theorem prover).

� ��. ����<6�!�?�$�	�&%'
 >6�1�2� �31�&4# :�$�&%'

When a large complex proof fails, it is relatively easy to obtain
the point of failure in the overall proof structure, by looking at the
proof tree and with knowledge of the theorem being proved. The
main hurdle in finding out why the theorem prover could not prove
a theorem is understanding the critical node at which the theorem
prover failed or deviated from the expected path.

Expressions representing the subgoal at a node can be arbitrarily
large. The expression tree of such a function can be visualized as a
two-dimensional tree.

We make the following observations:

7 The proof proceeds by manipulating arguments, possibly
through substitution, permutations, or using some rule to
change the current formula to another, but retaining the ar-
guments in some form.

7 Different parts of the tree are usually related. This is because
large proofs that are proved in similar ways tend to have simi-
lar expressions in them. The difference between such expres-
sions could be of interest to the user.

7 While the operation performed could be simple, the actual
subtrees could be arbitrarily large. A simple operation in
which two arguments to a function were swapped could be
extremely difficult to catch by looking at text.

a

b
nilc

nil

multiply

add

S

Figure 4: Function Visualization

Figure 4 is the tree of the LISP expression � add � multiply a b � c �
add has two parameters: � multiply a b � and c. add and multiply
are operators.

�&6"6)� (*��+ �5+36"6 ,.�/��
����'���
In theorem proving, larger proof at-

tempts are always cumbersome to follow. From one goal to another,
the theorem prover performs some actions, modifying the expres-
sions at each level. In order to follow changes, pattern matching can
be applied to the expressions (after suitably representing them as
trees). Users can use this pattern matching to see what is changing
at each step and also verify that the proof is proceeding as expected.

Consider ACL2. In a typical step, it transforms a formula into
a “simplified” formula using previously proved lemmas, definitions
etc. The simplified formula is not necessarily smaller, but is gener-
ally closer to some canonical form. Typically, the user is familiar
with the formula before simplification, having understood the pre-
ceeding steps in the proof attempt. ACL2 displays the formulas
after simplification, together with a note listing the names of the
lemmas and definitions used. For smaller formulas, it is not diffi-
cult for the user to understand what happened.

But, if the two formulas each required several megabytes to print,
it is virtually impossible to comprehend the transformation. What
is needed are ways to:

7 abstract a large formula so that its structure can be compre-
hended

7 use the screen real estate to make explicit the necessary details
in the formula

7 visually communicate how the formula is related to others

A key component of this problem is similarity matching, ie.
quantifying how much one expression resembles another.

The representation of an expression as a binary tree is just the
Lisp representation of expressions. Thus, in our case, we perform
the approximate matching of trees. Consider any expression E. E
can be represented as a function symbol F operating on a set of pa-
rameters p1 � p2 ������� pn. In a binary tree representation, the left child
of the root node contains the function symbol F . The parameters are
then the left children of all the nodes on the right side path from the
root to a leaf. See figure 4 for an example. While most tree match-
ing algorithms try to match children of roots, we slightly change
this to matching function symbols and parameters in the binary tree
structure. The binary tree structure is maintained to help in parsing
information from the parser to tree form and vice versa.

�&6)$�+3� #�����
 # (*��+ ,.�/��
����'���
We define a similarity factor χ ,

bounded between 0 and 1, which is 1 if and only if the two trees be-
ing compared match exactly. Two trees which have different opera-
tors will result in a low value of χ . Through tree matching, we need
to obtain close matches when two trees differ only at the leaves.
This requires χ to reflect the first level at which the difference was
present (note that level refers to level in the parameters and not the
binary tree itself). Permutations are tougher to handle. We should
allow for permutations in the subtrees in the sense that two trees
which are exactly similar, allowing for permutation of parameters
must be given a high value of χ .

We need to augment similarity with more quantitative informa-
tion such as the depth and parameter number that has changed.

We use a simple domain specific heuristic based algorithm that
can help prune the search space quickly. When the proofs proceed
from one step to another, parameters could get swapped. Thus we
need to do unordered matching. At each step we could use a depth
threshold to further optimize the matching. This is consistent with
our goal of achieving higher similarity when the higher levels in
the tree match. As presented in section 3.2, there are many algo-
rithms which improve on the simple quadratic bound for ordered
searching, and polynomial time for unordered searching.

� $������'��� ���',.6 ��(.��� ����+3� � ��,
The algorithm we use is similar

to the recursive algorithms presented by [Hoffmann and O’Donnell
1982] which take O � mn � time, where n ���T � and m ���P � to ob-
tain all ordered matches, and P is the pattern tree being searched in
tree T . See [Luccio et al. 2001] for faster unordered matching al-
gorithms. Using a depth threshold, we can reduce this complexity,
but get worse approximations.

	 �	� J F�
_BEL J RSg/ahN� P f @
R����hRSa * IKJ�� L B"
 Dh@
RSL J bdR��
>eP?D fSRSg/Dh@
RSL J

Our environment provides synchronized multi-view representations
of the proof tree to the user. The pretty printed text is synchronized
with our graphical visualization presenting the information in two
different formats enabling better comprehension.

The visualization helps the user identify similarities, browse the
entire proof expediently, and ascertain location information about
a particular subgoal. The user still needs to read the text for de-
tails. The point of failure of a proof attempt can be easily identified
through graphical visualization.

We can achieve synchronization by updating users actions in one
view, in the other. Browsing and searching can be updated in both

Figure 5: Multi-view text and graphical visualization of a proof
attempt. The text windows on the left contain the contents of some
nodes from the proof tree on the right.

views simultaneously. Figure 5 is a multi-view representation of a
particular proof attempt. The text windows on the left contain the
contents of some nodes from the proof tree on the right.

��� 6)+3�/+
 ����
 ���! "� # $���� � � �/��� ���
As proof trees or functions in sub-

goals get larger, there needs to be some hierarchical representa-
tion for the visualizations to be effective. This needs to be done
in both the textual and graphical domain for two reasons. First,
the text can easily exceed hundreds of pages, and the number of
nodes rendered in the tree can be very large. Second, we are try-
ing to achieve a synchronized multi-view representation. Graphical
tree representations have generally created hierarchies by collaps-
ing subtrees into different models, and we use the same approach
in our case. For textual visualizations, one of the ways in which
hierarchical representation can be managed is through hyperlinks.
Functions can be replaced by symbols to form a hierarchy, in syn-
chronization with the graphical tree. In [Megill 2002], we can see
examples of how proofs can be presented in one hierarchical man-
ner. Multi-resolution techniques for rendering text could be more
useful to browse than hypertext and needs to be further examined.

� Y Dh> a >
@CP#N_RSa'>

We have implemented the dynamic proof tree visualization compo-
nent, with a Java client. In figure 3, we see a sample proof tree vi-
sualization, with node colors representing the type of action taken
by the theorem prover at that stage. This was a proof involving
threads, states and state transitions, and proving the correctness of

a state in the Java Virtual Machine. It is an example of a large prac-
tical proof, involving 1772 subgoals. The primary goal is broken
up into 81 subgoals. The output from the proof attempt is 364,433
lines of text (about 13.6 Mb). The rendering of the proof tree is
synchronized with the progress of the theorem prover.

The visualization of the results from the pattern matching been
implemented in both text and graphics. In figure 6, we see two sets
of texts (in the middle and right column). A sub-expression from
column two is matched with the entire expression on the right. The
values returned by χ were used to color the text. The font color
indicates how similar an expression is to the search expression. Un-
selected text is light grey, while selected text is black. The results
from pattern matching are shown by varying the font color from
bright red (high match) to dark red (low match).

The results from the pattern matching are also shown with the
synchronized graphical expression viewer. The result is shown in
figure 6 (in column on the left). The unselected sections are grey,
while selections are cyan. The selected expression in the top tree in
the left column was searched for in the selected part of the middle
tree. Again, bright to dark red is used to show high to low matches
between the patterns. The third tree in the left column is a zoomed
in view of the outlined box in the second tree.

Figure 5 is a screen shot from the proof of the proposition that
the reverse of the reverse of a list is the list itself (given certain
conditions and definitions). The proof is a canonical example since
the subgoals are proved using a variety of different methods.

� Y L J F�f.P?> RSL J

We provide an approach to formal methods visualization. We iden-
tify a hierarchy of levels where graphical visualization will aug-
ment the text interface to help users better understand the proof
process. We provide details of a system where a synchronized in-
teractive symbolic visualization through a graphical user interface
helps users navigate, browse and view animated dynamic views
of the proofs. We also include in our system a pattern matching
component to help users debug proofs by following and comparing
changes in subgoals.

� ;ZF , J L * f]ahN��	
 a J @A>

We are grateful to Robert Krug for writing the socket code that
helps us communicate with ACL2. Research supported in part by
grants from NSF CCR-9988357and ACI 9982297.

) a � a BMa J F a'>

B. BROCK, M. KAUFMANN, AND JS. MOORE. 1996. ACL2 theo-
rems about commercial microprocessors. In proceedings of first
international conference on Formal Methods in Computer-aided
Design, Springer Verlag, Palo Alto, CA, USA, M. Srivas and A.
Camilleri, Eds., vol. 1166, 275–293.

BOYER, R. S., AND MOORE, J. S. 1988. A computational logic
handbook. Academic Press Professional, Inc.

BROWN, M. H. 1987. Algorithm animation. MIT press.

BUTLER, R. W., MILLER, S. P., POTTS, J. N., AND CARRENO,
V. A. 1998. A formal methods approach to the analysis of mode
confusion. In proceedings of 17th AIAA/IEEE Digital Avionics
Systems Conference.

CARRIERE, J., AND KAZMAN, R. 1995. Interacting with huge
hierarchies: Beyond cone trees. In proceedings of IEEE Infor-
mation Visualization, 74–78.

COLE, R., AND HARIHARAN, R. 1997. Tree pattern matching
and subset matching in randomized o(nlog3m) time. In proceed-
ings of the twenty-ninth annual ACM symposium on Theory of
Computing, ACM Press, 66–75.

COLE, R., HARIHARAN, R., AND INDYK, P. 1999. Tree pattern
matching and subset matching in deterministic o(n log3 n)-time.
In proceedings of the tenth annual ACM-SIAM symposium on
Discrete Algorithms, ACM Press, 245–254.

DUBINER, M., GALIL, Z., AND MAGEN, E. 1994. Faster tree
pattern matching. Journal of the ACM (JACM) 41, 2, 205–213.

FRANK VAN HAM, HUUB VAN DE WETERING, J. J. V. W. 2001.
Visualization of state transition graphs. In proceedings of IEEE
Symposium on Information Visualization, 59–66.

GOGUEN, J. A. 1999. Social and semiotic analyses for theorem
prover user interface design. Formal Aspects of Computing 11,
3, 272–301.

GORDON, M. J. C., AND MELHAM, T. F. 1993. Introduction
to HOL: a theorem proving environment for higher order logic.
Cambridge University Press.

HOFFMANN, C. M., AND O’DONNELL, M. J. 1982. Pattern
matching in trees. Journal of the ACM (JACM) 29, 1, 68–95.

JEONG, C. S., AND PANG, A. 1998. Reconfigurable disc trees for
visualizing large hierarchical information space. In proceedings
of IEEE Information Visualization, Computer Society Press, 19–
25.

KAUFMANN, M., AND MOORE, J. S. 1994. Design goals of
ACL2. Tech. Rep. 101, Computational Logic, Inc., August.

KAUFMANN, M., AND MOORE, J. S. 1997. An industrial strength
theorem prover for a logic based on common Lisp. Transactions
on Software Engineering 23, 4, 203–213.

KELLER, P. R., AND KELLER, M. M. 1994. Visual cues: Practical
data visualization. IEEE Computer Society Press.

KOIKE, H., AND YOSHIHARA, H. 1993. Fractal approaches for
visualizing huge hierarchies. In Proceedings of IEEE Symposium
on Visual Languages, VL, IEEE Computer Society, E. P. Glinert
and K. A. Olsen, Eds., 55–60.

KOSARAJU, S. R. 1989. Efficient tree pattern matching. In pro-
ceedings of 30th Annual Symposium on Foundations of Com-
puter Science, 178–183.

LAMPING, J., AND RAO, R. 1994. Laying out and visualizing large
trees using a hyperbolic space. In proceedings of the 7th annual
ACM symposium on User Interface Software and Technology,
ACM Press, 13–14.

LUCCIO, F., ENRIQUEZ, A. M., RIEUMONT, P. O., AND PAGLI,
L. 2001. Exact rooted subtree matching in sublinear time. Tech.
Rep. TR-01-14, University of Pisa, 09.

MEGILL, N. D., 2002. Metamath : A computer language for pure
mathematicians. http://metamath.org.

MUNZNER, T. 1998. Exploring large graphs in 3d hyper-
bolic space. IEEE Computer Graphics and Applications 18, 1
(July/Aug), 18–23.

Figure 6: A synchronized view of text and graphics visualizations from level 3. Pattern matching of expressions from a proof: A composition
of screen shots from our implementation.

OWRE, S., RUSHBY, J. M., AND SHANKAR, N. 1992. PVS: A
prototype verification system. In proceedings of 11th Interna-
tional Conference on Automated Deduction (CADE), Springer-
Verlag, Saratoga, NY, D. Kapur, Ed., vol. 607 of Lecture Notes
in Artificial Intelligence, 748–752.

REINGOLD, E. M., AND TILFORD, J. S. 1981. Tidier drawings
of trees. IEEE Transactions on Software Engineering 7, 2, 223–
228.

ROBERTSON, G. G., MACKINLAY, J. D., AND CARD, S. K. 1991.
Cone trees: animated 3D visualizations of hierarchical informa-
tion. In proceedings of the SIGCHI conference on Human Fac-
tors in Computing Systems, ACM Press, 189–194.

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-D
space-filling approach. ACM Transactions on Graphics (TOG)
11, 1, 92–99.

THIRY, L., BERTOT, Y., AND KAHN, G. 1992. Real theorem
provers deserve real user-interfaces. In proceedings of the fifth
ACM SIGSOFT symposium on Software Development Environ-
ments, ACM Press, 120–129.

TUFTE, E. 1990. Envisioning information. Graphics Press,
Cheshire, Connecticut.

WALKER, J. Q. 1990. A node-positioning algorithm for general
trees. Software Practice and Experience 20, 7, 685–705.

