
Parallel Out-of-Core Computation andUpdating of the QR FatorizationUTCS Tehnial Report TR-03-40PLAPACK Working Note #13Brian C. GunterCenter for Spae ResearhThe University of Texas at AustinAustin, TX 78712gunter�sr.utexas.edu Robert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712rvdg�s.utexas.eduSeptember 10, 2003AbstratThis paper disusses the high-performane parallel implementation of the omputation and updatingof QR fatorizations of dense matries, inluding problems large enough to require out-of-ore omputa-tion, where the matrix is stored on disk. The algorithms presented here are salable both in problem sizeand as the number of proessors inreases. Implementation using the Parallel Linear Algebra Pakage(PLAPACK) and the Parallel Out-of-Core Linear Algebra Pakage (POOCLAPACK) is disussed. Themethods are shown to attain exellent performane, in some ases attaining roughly 80% of the peak ofthe arhitetures on whih the experiments were performed.1 IntrodutionWith the reent improvements in memory aess, storage apaity, and proessing power of high-performaneomputers, operating on large dense linear systems is not as daunting a task as it has been in the past. Onesuh realm where this new apability has been of extreme value is in the Earth sienes, where large overde-termined Linear Least-Squares problems are enountered whih an involve tens of thousands of parametersand millions of observations [16℄. Sine these systems have the potential to be mildly ill-onditioned, themethod hosen to ompute the least-squares solution is one utilizing the QR fatorization, sine it providesgreater auray than the Method of Normal Equations. To takle a problem of this size requires the useof an eÆient and salable implementation of the QR fatorization that an take advantage of the powerof modern day superomputers. Initially, an in-ore parallel implementation was developed, but later anout-of-ore (OOC) implementation was reated to handle even larger problems.In reporting the results of our researh, this paper makes the following ontributions:� It reviews the standard tehniques for the high-performane implementation of the QR fatorizationbased on the Householder transformation [4, 3, 13, 8℄.� It extends these tehniques to the problem of updating the QR fatorization as additional bathes ofobservations are added to the system.� It demonstrates how the tehniques used to update a QR fatorization an be used to implement anOOC QR fatorization algorithm that is more salable than other previously proposed OOC approahes1



for this problem [7℄. In partiular, while it was previously observed that so-alled tiled approahes aremore salable than so-alled "slab" approahes for the OOC omputation of the Cholesky fatoriza-tion [31, 26, 25, 17℄ and a (possibly unstable) variant of the LU fatorization [27℄, only (nonsalable)slab approahes had been previously proposed for the OOC QR fatorization.� It disusses a parallel implementation of the algorithms using the Parallel Linear Algebra Pakage(PLAPACK) [32℄ and its out-of-ore extension, the Parallel Out-of-Core Linear Algebra Pakage(POOCLAPACK) [26, 25, 17, 1℄.� It reports exellent performane attained on massively parallel distributed memory superomputers.While we reported initial performane results for the implementations in a previous (onferene) paper [19℄,this paper goes into onsiderably more depth.This paper is strutured as follows: Setion 2 briey desribes the notation used in the paper. Setion 3reviews the QR fatorization using Householder transformations. This inludes a disussion of the blokalgorithm as well as the QR fatorization's appliation to the least squares problem. Setion 4 disusses howthe standard QR fatorization an be updated when new information beomes available. This tehniquelater beomes a key omponent of the OOC algorithm, whih is given in Setion 5. The atual parallelimplementation is disussed in Setion 6. Results from experiments are reported in Setion 7. Setion 8provides some �nal thoughts and onlusions.2 NotationIn this paper, we adopt the following onventions: Matries, vetors, and salars are denoted by upper-ase,lower-ase, and lower-ase Greek letters, respetively. The identity matrix will be denoted by I and e1 willdenote the �rst olumn of the identity matrix (in other words, the vetor with �rst element equal to unityand all other elements equal to zero). The dimensions and lengths of suh matries and vetors will generallybe obvious from ontext.Algorithms in this paper are given in a notation that we have reently adopted as part of the FLAMEprojet [15, 24℄. If one keeps in mind that the double lines in the partitioned matries and vetors relateto how far into the matries and vetors the omputation has proeeded, we believe the notation to beintuitively obvious. If not, we suggest that the reader onsult some of these related papers.3 Computing the QR fatorization via Householder Transforma-tionsGiven an m� n real-valued matrix A, with m � n, the QR fatorization is given byA = QRwhere the m�m matrix Q has mutually orthonormal olumns (QTQ = I) and the m�n matrix R is uppertriangular.There are many di�erent methods for omputing the QR fatorization, inluding those based on Givens ro-tations, orthogonalization via Gram-Shmidt and Modi�ed Gram-Shmidt, and Householder transformations[13, 33℄. For dense matries, the method of hoie depends largely on how the fatorization is subsequentlyused, the stability of the system, and the dimensions of the matrix. For problems where m� n, the methodbased on Householder transformations is typially the algorithm of hoie, espeially when Q needs not beexpliitly omputed.3.1 Householder transformations (reetors)Given the real-valued vetor x of length m, partitionx = � �1x2 �2



Partition A! � ATL ATRABL ABR � and b! � bTbB �where ATL is 0� 0 and bT has 0 elementswhile n(ABR) 6= 0 doRepartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � bTbB �! b0�1b2 !where �11 and �1 are salarsh� 1u2 � ; �; �1i := h� �11a21 ��11 := �a21 := u2wT := aT12 + uT2 A22� aT12A22 � := � aT12 � �1wTA22 � �1u2wT �Continue with� ATL ATRABL ABR �  A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � bTbB �  b0�1b2 !enddo Figure 1: Unbloked Householder QR fatorization.where �1 equals the �rst element of x.The Householder vetor assoiated with x is de�ned as the vetoru = � 1x2=�1 � ;where �1 = �1 + sign(�1)kxk2. If � = 2uTu then (I � �uuT )x = �e1, annihilating all but the �rst element ofx. Here � = �sign(�1)kxk2. The transformation I � �uuT , with � = 2=uTu is referred to as a Householdertransformation or reetor.Let us introdue the notation [u; �; �℄ := h(x) as the omputation of the above mentioned �, u, and �from vetor x and the notation H(x) for the transformation (I��uuT ) where [u; �; �℄ = h(x). An importantfeature of H(x) is that it is orthonormal (H(x)TH(x) = H(x)H(x)T = I) and symmetri (H(x)T = H(x)).3.2 A simple algorithm for the QR fatorization via Householder transforma-tionsThe omputation of the QR fatorization ommenes as desribed in Figure 1. The idea is that Householdertransformations are omputed to suessively annihilate elements below the diagonal of matrix A. TheHouseholder vetors are stored below the diagonal over the elements of A that have been so annihilated.Upon ompletion, matrix R has overwritten the upper triangular part of the matrix, while the Householdervetors are stored in the lower trapezoidal part of the matrix. The salars � disussed above are stored inthe vetor b.If the matrix Q is expliitly desired, it an be formed by omputing the �rst n olumns of H1H2 � � �Hnwhere Hi equals the ith Householder transformation omputed as part of the fatorization desribed above.In our appliation, we do not need to form Q expliitly and thus will not disuss the issue further.3



Partition A! � ATL ATRABL ABR � and T ! � TTTB �where ATL is 0� 0 and TT has 0 rowswhile n(ABR) 6= 0 doDetermine blok size kRepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 ! and � TTTB �! T0T1T2 !where A11 is k � k and T1 has k rowsh� A11A21 � ; �; b1i := h� fY nRg11Y21 � ; �; b1i = QR�� A11A21 ��Compute T1 from h� fY nRg11Y21 � ; �; b1i� A12A22 � := �I + � Y11Y21 �TT1 � Y T11 Y T21 ��� A12A22 �Continue with� ATL ATRABL ABR �  A00 A01 A02A10 A11 A12A20 A21 A22 ! and � TTTB �  T0T1T2 !enddo Figure 2: Bloked Householder QR fatorization.3.3 A high-performane (bloked) algorithm for the QR fatorizationIt is well-known that high performane an be ahieved in a portable fashion by asting algorithms in termsof matrix-matrix multipliation [2, 10, 12℄. We now review how to do so for the QR fatorization [3, 2℄.Two observations play a key role:� Let u1; : : : ; uk equal the �rst k Householder vetors omputed as part of the fatorization and �1; : : : ; �kthe orresponding salars. Then Hk � � �H2H1 = I + Y TY T where Y is a n� k unit lower-trapezoidalmatrix, T is a k � k upper-triangular matrix, and the jth olumn of the lower-trapezoidal part of Yequals uj .� The QR fatorization of the �rst k olumns of A yields the same k vetors uk and same values in theupper triangular part of those k olumns as would a full QR fatorization.Notie that this suggests the bloked algorithm given in Figure 2.Note 1 Notie that the algorithm stores the \T" matries that are part of the blok Householder trans-formation I + Y TY T . This is a distint departure from traditional implementations like those found inLAPACK [2℄ and will allow us to avoid reomputation of those matries as part of the OOC implementationof the QR fatorization.3.4 Solving multiple Linear Least-Squares problemsGiven a real-valued m� n matrix A and vetor y of length m, the linear least-squares problem is generallystated as minx ky �Axk2where the desired result is a vetor x that minimizes the above expression. It is well-known that theminimizing vetor x an be found by omputing the QR fatorization A = QR, omputing z = QT y, andsolving Rx = zT where zT denotes the �rst n elements of z.4



Partition A! � ATL ATRABL ABR �, B ! � BTBB � and T ! � TTTB �where ATL is 0� 0 and BT and TT have 0 rowswhile n(ABR) 6= 0 doDetermine blok size kRepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 !,� BTBB �! B0B1B2 !, and � TTTB �! T0T1T2 !where A11 is k � k and B1 and T1 have k rows� B1B2 � := �I +� Y11Y21 �TT1 � Y T11 Y T21 ��� B1B2 �NOTE: Here Y11 refers to the lower triangular part of A11 and Y21 to A21Continue with� ATL ATRABL ABR �  A00 A01 A02A10 A11 A12A20 A21 A22 !,� BTBB �  B0B1B2 !, and � TTTB �  T0T1T2 !enddoFigure 3: Forward substitution-like of right-hand-side matrix B.Alternatively, one an think of this as follows: Append y to A to form � A y �. Compute the QRfatorization A = QR, storing the Householder vetors and R over A. Update y by applying the Householdertransformations used to ompute R to vetor y, whih overwrites y with z. Finally, solve Rx = zT with the�rst n elements of the updated y. This seond approah is reminisent of how a linear system an be solvedby appending the right-hand-side vetor to the system and performing an LU fatorization (or, equivalently,Gaussian elimination) on the appended system, followed by a bak-substitution step.Finally, if there exists a set of right-hand-sides, one an simultaneously solve a linear least-squares problemwith A and olumns of B by the following approah: Append B to A to form � A B �. Compute the QRfatorization A = QR, storing the Householder vetors and R over A. Update B by applying the Householdertransformations used to ompute R to matrix B, whih overwrites B with Z. Finally, solve RX = ZT withthe �rst n rows of the updated B. It is this seond operation with a right-hand-side B that we will enounterin the OOC implementation of the QR fatorization. An algorithm for the �rst, forward substitution-like,step is given in Figure 3.Note 2 Notie that beause we store the \T" matries that are part of the blok Householder transformationI + Y TY T , they need not be reomputed as part of the \forward substitution" step on matrix B. This isagain a distint departure from traditional implementations like those found in LAPACK.4 Updating the QR FatorizationFrequently, the linear equations used in the least squares problem are olleted inrementally. For example, ifthe observations from a partiular instrument are only olleted or ontributed on a monthly basis, it wouldbe useful to ombine eah new bath of data into the existing solution without having to reombine all of the5



Partition R! � RTL RTRRBL RBR �, C ! � CL CR �, and b! � bTbB �where RTL and CL are 0� 0 and bT has 0 elementswhile n(RBR) 6= 0 doRepartition� RTL RTRRBL RBR �! R00 r01 R02rT10 �11 rT12R20 r21 R22 !,� CL CR �! � C0 1 C2 �, and � bTbB �! b0�1b2 !where �11 and �1 are salars and 1 is a olumnh� 1u2 � ; �; �1i := h� �111 ��11 := �1 := u2wT := rT12 + uT2 C2� rT12C2 � := � rT12 � �1wTC2 � �1u2wT �Continue with� RTL RTRRBL RBR �  R00 r01 R02rT10 �11 rT12R20 r21 R22 !,� CL CR � � C0 1 C2 �, and � bTbB �  b0�1b2 !enddo Figure 4: Unbloked update to a QR fatorization.previous data again. In other words, it would be nie to update the QR fatorization rather than omputeit from the original data to whih the new data has been added. We now show how the QR fatorizationan be updated as additional bathes of equations (i.e., observations) beome available.4.1 FatorizationLet us assume that we have omputed Q and R suh that A = QR, overwriting A with the Householdervetors and upper triangular matrix R, and storing the \T" matries in matrix T . Thus, we have availableA = fY nRg and T . Now, onsider the QR fatorization of matrix� AC � = �Q �R (1)A key observation is that the QR fatorization of � RC � (2)produes the same upper triangular matrix �R as does the fatorization in (1). If we are not interested inexpliitly forming �Q and are satis�ed with storing the Householder vetors required to �rst ompute the QRfatorization of A and next the QR fatorization in (2), then we have an approah for omputing the QRfatorization of an updated system. The unbloked and bloked algorithm for doing so is given in Figures 4and 5, respetively. 6



Partition R! � RTL RTRRBL RBR �, C ! � CL CR �, and T ! � TTTB �where RTL and CL are 0� 0 and TT has 0 rowswhile n(RBR) 6= 0 doDetermine blok size kRepartition� RTL RTRRBL RBR �! R00 R01 R02R10 R11 R12R20 R21 R22 !,� CLCR �! � C0 C1 C2 �, and � TTTB �! T0T1T2 !where A11 is k � k, C1 has k olumns and T1 has k rowsh� R11C1 � ; �; b1i := h� f0nRg11Y1 � ; �; b1i = QR�� R11C1 ��Compute T1 from h� IY1 � ; �; b1i� R12C2 � := �I +� IY1 �TT1 � I Y T1 ��� R12C2 �Continue with� RTL RTRRBL RBR �  R00 R01 R02R10 R11 R12R20 R21 R22 !,� CL CR � � C0 C1 C2 �, and � TTTB �  T0T1T2 !enddo Figure 5: Bloked update to a QR fatorization.Note 3 Notie that the algorithm is expliitly designed to take advantage of the zeros below the diagonal of R.As a result, fatoring A followed by an update of the fatorization requires essentially no more omputationthan the fatorization in (1). Also, the Householder vetors that are stored below the diagonal are notoverwritten. It is the ase that an additional vetor b is required to store the \�"s for the unbloked algorithmand an additional matrix is required to store the triangular \T" matries for the bloked algorithm.4.2 Solving multiple Linear Least-Squares problemsIf we now wish to ompute multiple Linear Least-Squares solutions, one for eah of the systems of linearequations de�ned by piking one olumn of the right-hand-side of� AC �X = � BD �the following approah will yield the desired result:� Append � A BC D �.� Overwrite A with its fators fY nRg, also omputing matrix T , as in Figure 2.� Overwrite � RC � with � �RY (C) �, also omputing T (C) as in Figure 5.7



Partition B ! � BTBB �, C ! � CL CR �, and T ! � TTTB �where CL has 0 olumns, and BT and TT have 0 rowswhile n(CR) 6= 0 doDetermine blok size kRepartition� CL CR �! � C0 C1 C2 �,� BTBB �! B0B1B2 !, and � TTTB �! T0T1T2 !where C1 has k olumns and B1 and T1 have k rows� B1D � := �I + � IC1 �TT1 � I CT1 ��� B1D �Continue with� CL CR � � C0 C1 C2 �,� BTBB �  B0B1B2 !, and � TTTB �  T0T1T2 !enddoFigure 6: Forward substitution onsistent with the QR fatorization of an updated matrix.� Update B by forward substitution as in Figure 3.� Update � BD � by forward substitution using the Householder transformations omputed as part ofthe update of R, as in Figure 6.� Solve �RX = BT where BT denotes the top n rows of the updated matrix B.5 Out-of-Core AlgorithmsHaving now desribed the in-ore algorithm, we an apply a similar strategy for problems that are too largeto �t in the available memory of the mahine. To deal with these problems, we have developed an out-of-orealgorithm that allows us to store the bulk of the matrix omponents on disk, while only working on seletpiees in-ore at any one time. The algorithm we will outline here is unique in that it is both salable andeÆient.5.1 Out-of-ore QR fatorizationTraditional OOC algorithms of the QR fatorization have used a slab approah, in whih the OOC matrixis proessed by bringing into memory one or more slabs (bloks of olumns) of the matrix at a time [6, 21,7, 31, 27℄. The problem with this tehnique is that it is inherently not salable in the following sense: Asthe row dimension, m, of A beomes larger and larger, the width of the slab you an bring into memorybeomes proportionally smaller. As m reahes into the millions, the number of olumns able to be broughtinto memory numbers only in the dozens, even on today's powerful mahines with large memories.The alternative that we have found to the slab approah is to work with the matrix as a olletion of tiles,where a tile is a submatrix that is roughly square. As was shown for the OOC Cholesky fatorization [31,26, 25, 17℄, a tiled approah provides true salability. We will see that the proessing of these tiles beomes a8


