
Parallel Out-of-Core Computation andUpdating of the QR Fa
torizationUTCS Te
hni
al Report TR-03-40PLAPACK Working Note #13Brian C. GunterCenter for Spa
e Resear
hThe University of Texas at AustinAustin, TX 78712gunter�
sr.utexas.edu Robert A. van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712rvdg�
s.utexas.eduSeptember 10, 2003Abstra
tThis paper dis
usses the high-performan
e parallel implementation of the
omputation and updatingof QR fa
torizations of dense matri
es, in
luding problems large enough to require out-of-
ore
omputa-tion, where the matrix is stored on disk. The algorithms presented here are s
alable both in problem sizeand as the number of pro
essors in
reases. Implementation using the Parallel Linear Algebra Pa
kage(PLAPACK) and the Parallel Out-of-Core Linear Algebra Pa
kage (POOCLAPACK) is dis
ussed. Themethods are shown to attain ex
ellent performan
e, in some
ases attaining roughly 80% of the peak ofthe ar
hite
tures on whi
h the experiments were performed.1 Introdu
tionWith the re
ent improvements in memory a

ess, storage
apa
ity, and pro
essing power of high-performan
e
omputers, operating on large dense linear systems is not as daunting a task as it has been in the past. Onesu
h realm where this new
apability has been of extreme value is in the Earth s
ien
es, where large overde-termined Linear Least-Squares problems are en
ountered whi
h
an involve tens of thousands of parametersand millions of observations [16℄. Sin
e these systems have the potential to be mildly ill-
onditioned, themethod
hosen to
ompute the least-squares solution is one utilizing the QR fa
torization, sin
e it providesgreater a

ura
y than the Method of Normal Equations. To ta
kle a problem of this size requires the useof an eÆ
ient and s
alable implementation of the QR fa
torization that
an take advantage of the powerof modern day super
omputers. Initially, an in-
ore parallel implementation was developed, but later anout-of-
ore (OOC) implementation was
reated to handle even larger problems.In reporting the results of our resear
h, this paper makes the following
ontributions:� It reviews the standard te
hniques for the high-performan
e implementation of the QR fa
torizationbased on the Householder transformation [4, 3, 13, 8℄.� It extends these te
hniques to the problem of updating the QR fa
torization as additional bat
hes ofobservations are added to the system.� It demonstrates how the te
hniques used to update a QR fa
torization
an be used to implement anOOC QR fa
torization algorithm that is more s
alable than other previously proposed OOC approa
hes1

for this problem [7℄. In parti
ular, while it was previously observed that so-
alled tiled approa
hes aremore s
alable than so-
alled "slab" approa
hes for the OOC
omputation of the Cholesky fa
toriza-tion [31, 26, 25, 17℄ and a (possibly unstable) variant of the LU fa
torization [27℄, only (nons
alable)slab approa
hes had been previously proposed for the OOC QR fa
torization.� It dis
usses a parallel implementation of the algorithms using the Parallel Linear Algebra Pa
kage(PLAPACK) [32℄ and its out-of-
ore extension, the Parallel Out-of-Core Linear Algebra Pa
kage(POOCLAPACK) [26, 25, 17, 1℄.� It reports ex
ellent performan
e attained on massively parallel distributed memory super
omputers.While we reported initial performan
e results for the implementations in a previous (
onferen
e) paper [19℄,this paper goes into
onsiderably more depth.This paper is stru
tured as follows: Se
tion 2 brie
y des
ribes the notation used in the paper. Se
tion 3reviews the QR fa
torization using Householder transformations. This in
ludes a dis
ussion of the blo
kalgorithm as well as the QR fa
torization's appli
ation to the least squares problem. Se
tion 4 dis
usses howthe standard QR fa
torization
an be updated when new information be
omes available. This te
hniquelater be
omes a key
omponent of the OOC algorithm, whi
h is given in Se
tion 5. The a
tual parallelimplementation is dis
ussed in Se
tion 6. Results from experiments are reported in Se
tion 7. Se
tion 8provides some �nal thoughts and
on
lusions.2 NotationIn this paper, we adopt the following
onventions: Matri
es, ve
tors, and s
alars are denoted by upper-
ase,lower-
ase, and lower-
ase Greek letters, respe
tively. The identity matrix will be denoted by I and e1 willdenote the �rst
olumn of the identity matrix (in other words, the ve
tor with �rst element equal to unityand all other elements equal to zero). The dimensions and lengths of su
h matri
es and ve
tors will generallybe obvious from
ontext.Algorithms in this paper are given in a notation that we have re
ently adopted as part of the FLAMEproje
t [15, 24℄. If one keeps in mind that the double lines in the partitioned matri
es and ve
tors relateto how far into the matri
es and ve
tors the
omputation has pro
eeded, we believe the notation to beintuitively obvious. If not, we suggest that the reader
onsult some of these related papers.3 Computing the QR fa
torization via Householder Transforma-tionsGiven an m� n real-valued matrix A, with m � n, the QR fa
torization is given byA = QRwhere the m�m matrix Q has mutually orthonormal
olumns (QTQ = I) and the m�n matrix R is uppertriangular.There are many di�erent methods for
omputing the QR fa
torization, in
luding those based on Givens ro-tations, orthogonalization via Gram-S
hmidt and Modi�ed Gram-S
hmidt, and Householder transformations[13, 33℄. For dense matri
es, the method of
hoi
e depends largely on how the fa
torization is subsequentlyused, the stability of the system, and the dimensions of the matrix. For problems where m� n, the methodbased on Householder transformations is typi
ally the algorithm of
hoi
e, espe
ially when Q needs not beexpli
itly
omputed.3.1 Householder transformations (re
e
tors)Given the real-valued ve
tor x of length m, partitionx = � �1x2 �2

Partition A! � ATL ATRABL ABR � and b! � bTbB �where ATL is 0� 0 and bT has 0 elementswhile n(ABR) 6= 0 doRepartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � bTbB �! b0�1b2 !where �11 and �1 are s
alarsh� 1u2 � ; �; �1i := h� �11a21 ��11 := �a21 := u2wT := aT12 + uT2 A22� aT12A22 � := � aT12 � �1wTA22 � �1u2wT �Continue with� ATL ATRABL ABR � A00 a01 A02aT10 �11 aT12A20 a21 A22 ! and � bTbB � b0�1b2 !enddo Figure 1: Unblo
ked Householder QR fa
torization.where �1 equals the �rst element of x.The Householder ve
tor asso
iated with x is de�ned as the ve
toru = � 1x2=�1 � ;where �1 = �1 + sign(�1)kxk2. If � = 2uTu then (I � �uuT)x = �e1, annihilating all but the �rst element ofx. Here � = �sign(�1)kxk2. The transformation I � �uuT , with � = 2=uTu is referred to as a Householdertransformation or re
e
tor.Let us introdu
e the notation [u; �; �℄ := h(x) as the
omputation of the above mentioned �, u, and �from ve
tor x and the notation H(x) for the transformation (I��uuT) where [u; �; �℄ = h(x). An importantfeature of H(x) is that it is orthonormal (H(x)TH(x) = H(x)H(x)T = I) and symmetri
 (H(x)T = H(x)).3.2 A simple algorithm for the QR fa
torization via Householder transforma-tionsThe
omputation of the QR fa
torization
ommen
es as des
ribed in Figure 1. The idea is that Householdertransformations are
omputed to su

essively annihilate elements below the diagonal of matrix A. TheHouseholder ve
tors are stored below the diagonal over the elements of A that have been so annihilated.Upon
ompletion, matrix R has overwritten the upper triangular part of the matrix, while the Householderve
tors are stored in the lower trapezoidal part of the matrix. The s
alars � dis
ussed above are stored inthe ve
tor b.If the matrix Q is expli
itly desired, it
an be formed by
omputing the �rst n
olumns of H1H2 � � �Hnwhere Hi equals the ith Householder transformation
omputed as part of the fa
torization des
ribed above.In our appli
ation, we do not need to form Q expli
itly and thus will not dis
uss the issue further.3

Partition A! � ATL ATRABL ABR � and T ! � TTTB �where ATL is 0� 0 and TT has 0 rowswhile n(ABR) 6= 0 doDetermine blo
k size kRepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 ! and � TTTB �! T0T1T2 !where A11 is k � k and T1 has k rowsh� A11A21 � ; �; b1i := h� fY nRg11Y21 � ; �; b1i = QR�� A11A21 ��Compute T1 from h� fY nRg11Y21 � ; �; b1i� A12A22 � := �I + � Y11Y21 �TT1 � Y T11 Y T21 ��� A12A22 �Continue with� ATL ATRABL ABR � A00 A01 A02A10 A11 A12A20 A21 A22 ! and � TTTB � T0T1T2 !enddo Figure 2: Blo
ked Householder QR fa
torization.3.3 A high-performan
e (blo
ked) algorithm for the QR fa
torizationIt is well-known that high performan
e
an be a
hieved in a portable fashion by
asting algorithms in termsof matrix-matrix multipli
ation [2, 10, 12℄. We now review how to do so for the QR fa
torization [3, 2℄.Two observations play a key role:� Let u1; : : : ; uk equal the �rst k Householder ve
tors
omputed as part of the fa
torization and �1; : : : ; �kthe
orresponding s
alars. Then Hk � � �H2H1 = I + Y TY T where Y is a n� k unit lower-trapezoidalmatrix, T is a k � k upper-triangular matrix, and the jth
olumn of the lower-trapezoidal part of Yequals uj .� The QR fa
torization of the �rst k
olumns of A yields the same k ve
tors uk and same values in theupper triangular part of those k
olumns as would a full QR fa
torization.Noti
e that this suggests the blo
ked algorithm given in Figure 2.Note 1 Noti
e that the algorithm stores the \T" matri
es that are part of the blo
k Householder trans-formation I + Y TY T . This is a distin
t departure from traditional implementations like those found inLAPACK [2℄ and will allow us to avoid re
omputation of those matri
es as part of the OOC implementationof the QR fa
torization.3.4 Solving multiple Linear Least-Squares problemsGiven a real-valued m� n matrix A and ve
tor y of length m, the linear least-squares problem is generallystated as minx ky �Axk2where the desired result is a ve
tor x that minimizes the above expression. It is well-known that theminimizing ve
tor x
an be found by
omputing the QR fa
torization A = QR,
omputing z = QT y, andsolving Rx = zT where zT denotes the �rst n elements of z.4

Partition A! � ATL ATRABL ABR �, B ! � BTBB � and T ! � TTTB �where ATL is 0� 0 and BT and TT have 0 rowswhile n(ABR) 6= 0 doDetermine blo
k size kRepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 !,� BTBB �! B0B1B2 !, and � TTTB �! T0T1T2 !where A11 is k � k and B1 and T1 have k rows� B1B2 � := �I +� Y11Y21 �TT1 � Y T11 Y T21 ��� B1B2 �NOTE: Here Y11 refers to the lower triangular part of A11 and Y21 to A21Continue with� ATL ATRABL ABR � A00 A01 A02A10 A11 A12A20 A21 A22 !,� BTBB � B0B1B2 !, and � TTTB � T0T1T2 !enddoFigure 3: Forward substitution-like of right-hand-side matrix B.Alternatively, one
an think of this as follows: Append y to A to form � A y �. Compute the QRfa
torization A = QR, storing the Householder ve
tors and R over A. Update y by applying the Householdertransformations used to
ompute R to ve
tor y, whi
h overwrites y with z. Finally, solve Rx = zT with the�rst n elements of the updated y. This se
ond approa
h is reminis
ent of how a linear system
an be solvedby appending the right-hand-side ve
tor to the system and performing an LU fa
torization (or, equivalently,Gaussian elimination) on the appended system, followed by a ba
k-substitution step.Finally, if there exists a set of right-hand-sides, one
an simultaneously solve a linear least-squares problemwith A and
olumns of B by the following approa
h: Append B to A to form � A B �. Compute the QRfa
torization A = QR, storing the Householder ve
tors and R over A. Update B by applying the Householdertransformations used to
ompute R to matrix B, whi
h overwrites B with Z. Finally, solve RX = ZT withthe �rst n rows of the updated B. It is this se
ond operation with a right-hand-side B that we will en
ounterin the OOC implementation of the QR fa
torization. An algorithm for the �rst, forward substitution-like,step is given in Figure 3.Note 2 Noti
e that be
ause we store the \T" matri
es that are part of the blo
k Householder transformationI + Y TY T , they need not be re
omputed as part of the \forward substitution" step on matrix B. This isagain a distin
t departure from traditional implementations like those found in LAPACK.4 Updating the QR Fa
torizationFrequently, the linear equations used in the least squares problem are
olle
ted in
rementally. For example, ifthe observations from a parti
ular instrument are only
olle
ted or
ontributed on a monthly basis, it wouldbe useful to
ombine ea
h new bat
h of data into the existing solution without having to re
ombine all of the5

Partition R! � RTL RTRRBL RBR �, C ! � CL CR �, and b! � bTbB �where RTL and CL are 0� 0 and bT has 0 elementswhile n(RBR) 6= 0 doRepartition� RTL RTRRBL RBR �! R00 r01 R02rT10 �11 rT12R20 r21 R22 !,� CL CR �! � C0
1 C2 �, and � bTbB �! b0�1b2 !where �11 and �1 are s
alars and
1 is a
olumnh� 1u2 � ; �; �1i := h� �11
1 ��11 := �
1 := u2wT := rT12 + uT2 C2� rT12C2 � := � rT12 � �1wTC2 � �1u2wT �Continue with� RTL RTRRBL RBR � R00 r01 R02rT10 �11 rT12R20 r21 R22 !,� CL CR � � C0
1 C2 �, and � bTbB � b0�1b2 !enddo Figure 4: Unblo
ked update to a QR fa
torization.previous data again. In other words, it would be ni
e to update the QR fa
torization rather than
omputeit from the original data to whi
h the new data has been added. We now show how the QR fa
torization
an be updated as additional bat
hes of equations (i.e., observations) be
ome available.4.1 Fa
torizationLet us assume that we have
omputed Q and R su
h that A = QR, overwriting A with the Householderve
tors and upper triangular matrix R, and storing the \T" matri
es in matrix T . Thus, we have availableA = fY nRg and T . Now,
onsider the QR fa
torization of matrix� AC � = �Q �R (1)A key observation is that the QR fa
torization of � RC � (2)produ
es the same upper triangular matrix �R as does the fa
torization in (1). If we are not interested inexpli
itly forming �Q and are satis�ed with storing the Householder ve
tors required to �rst
ompute the QRfa
torization of A and next the QR fa
torization in (2), then we have an approa
h for
omputing the QRfa
torization of an updated system. The unblo
ked and blo
ked algorithm for doing so is given in Figures 4and 5, respe
tively. 6

Partition R! � RTL RTRRBL RBR �, C ! � CL CR �, and T ! � TTTB �where RTL and CL are 0� 0 and TT has 0 rowswhile n(RBR) 6= 0 doDetermine blo
k size kRepartition� RTL RTRRBL RBR �! R00 R01 R02R10 R11 R12R20 R21 R22 !,� CLCR �! � C0 C1 C2 �, and � TTTB �! T0T1T2 !where A11 is k � k, C1 has k
olumns and T1 has k rowsh� R11C1 � ; �; b1i := h� f0nRg11Y1 � ; �; b1i = QR�� R11C1 ��Compute T1 from h� IY1 � ; �; b1i� R12C2 � := �I +� IY1 �TT1 � I Y T1 ��� R12C2 �Continue with� RTL RTRRBL RBR � R00 R01 R02R10 R11 R12R20 R21 R22 !,� CL CR � � C0 C1 C2 �, and � TTTB � T0T1T2 !enddo Figure 5: Blo
ked update to a QR fa
torization.Note 3 Noti
e that the algorithm is expli
itly designed to take advantage of the zeros below the diagonal of R.As a result, fa
toring A followed by an update of the fa
torization requires essentially no more
omputationthan the fa
torization in (1). Also, the Householder ve
tors that are stored below the diagonal are notoverwritten. It is the
ase that an additional ve
tor b is required to store the \�"s for the unblo
ked algorithmand an additional matrix is required to store the triangular \T" matri
es for the blo
ked algorithm.4.2 Solving multiple Linear Least-Squares problemsIf we now wish to
ompute multiple Linear Least-Squares solutions, one for ea
h of the systems of linearequations de�ned by pi
king one
olumn of the right-hand-side of� AC �X = � BD �the following approa
h will yield the desired result:� Append � A BC D �.� Overwrite A with its fa
tors fY nRg, also
omputing matrix T , as in Figure 2.� Overwrite � RC � with � �RY (C) �, also
omputing T (C) as in Figure 5.7

Partition B ! � BTBB �, C ! � CL CR �, and T ! � TTTB �where CL has 0
olumns, and BT and TT have 0 rowswhile n(CR) 6= 0 doDetermine blo
k size kRepartition� CL CR �! � C0 C1 C2 �,� BTBB �! B0B1B2 !, and � TTTB �! T0T1T2 !where C1 has k
olumns and B1 and T1 have k rows� B1D � := �I + � IC1 �TT1 � I CT1 ��� B1D �Continue with� CL CR � � C0 C1 C2 �,� BTBB � B0B1B2 !, and � TTTB � T0T1T2 !enddoFigure 6: Forward substitution
onsistent with the QR fa
torization of an updated matrix.� Update B by forward substitution as in Figure 3.� Update � BD � by forward substitution using the Householder transformations
omputed as part ofthe update of R, as in Figure 6.� Solve �RX = BT where BT denotes the top n rows of the updated matrix B.5 Out-of-Core AlgorithmsHaving now des
ribed the in-
ore algorithm, we
an apply a similar strategy for problems that are too largeto �t in the available memory of the ma
hine. To deal with these problems, we have developed an out-of-
orealgorithm that allows us to store the bulk of the matrix
omponents on disk, while only working on sele
tpie
es in-
ore at any one time. The algorithm we will outline here is unique in that it is both s
alable andeÆ
ient.5.1 Out-of-
ore QR fa
torizationTraditional OOC algorithms of the QR fa
torization have used a slab approa
h, in whi
h the OOC matrixis pro
essed by bringing into memory one or more slabs (blo
ks of
olumns) of the matrix at a time [6, 21,7, 31, 27℄. The problem with this te
hnique is that it is inherently not s
alable in the following sense: Asthe row dimension, m, of A be
omes larger and larger, the width of the slab you
an bring into memorybe
omes proportionally smaller. As m rea
hes into the millions, the number of
olumns able to be broughtinto memory numbers only in the dozens, even on today's powerful ma
hines with large memories.The alternative that we have found to the slab approa
h is to work with the matrix as a
olle
tion of tiles,where a tile is a submatrix that is roughly square. As was shown for the OOC Cholesky fa
torization [31,26, 25, 17℄, a tiled approa
h provides true s
alability. We will see that the pro
essing of these tiles be
omes a8

