The Component Starting Component: an environment for

distributed systems and peer to peer research

Kevin Kane and James C. Browne
Department of Computer Sciences
The University of Texas at Austin
1 University Station C0500
Austin, TX 78712-0233

{kane,browne}@cs.utexas.edu

April 25, 2003

1 Introduction and Motivation

Experimental research on distributed systems needs
automated support. Distributed systems, by defini-
tion, require processes to start and run on multiple
nodes in a network. This is often done either by man-
ually logging into each node and starting processes
by hand, or using one of a variety of parallel or grid
architectures. These systems require configuration
ahead of time so they have an up-to-date list of avail-
able workstations. Peer-to-peer systems do not ad-
dress this problem at all, as they consider the booting
and terminating of nodes to be caused by individual
users and outside the scope of their control. Peer-
to-peer research is inhibited by this lack of control,
as simulating joins and leaves in a way that gives re-
producible results is necessary for experimentation in
this area. Development and debugging of these sys-
tems requires several cycles of execution, collection
of results, analysis, and then further development to
add new functionality and correct programming er-
rors.

A system for supporting experiments in a dis-
tributed system needs the following:

e Discovery of available hosts. A bootstrap-
ping system must be able to find out what hosts
are available to participate in the experiment.
In the simplest case, this consists of a static list
of hosts which are assumed to be participating.
More sophisticated systems use live queries to
locate active hosts and prevent staleness of host
information.

Request authentication. Any system must
ensure that only requests with the proper se-
curity credentials are honored. Unauthorized
starting of programs on hosts is the main fea-
ture of a security breach, and a service whose
stated purpose is to start programs is an obvi-
ous target for intruders.

Filesystem independence. A distributed sys-
tem should not assume a shared filesystem. There-
fore it is its responsibility to see that binaries
are transported to the execution sites when boot-
strapping.

Host independence. A distributed system
should also not assume homogeneity of its hosts.
The system should handle the loading and ex-
ecution of code on a variety of architectures.

Lightweight and easily deployable. A light-
weight system allows for quick, easy setup and
deployment of such a system. These should be
doable quickly and easily for non-expert users
volunteering their hosts for participation. Such
a system should also not require any privileged
access to the host.

Minimal intrusiveness. A bootstrapping sys-
tem should minimally impact the host upon
which it is deployed, ideally to the point the
user is unaware of its impact.

Dynamic system structure. Such a sys-
tem should allow dynamic structuring of exper-
iments, as these experiments will often involve

joining and leaving protocols, and fault toler-
ance. A bootstrapping system should allow the
experiment to be structured any way without
reconfiguration of the bootstrapping system.

We present the “Component Starting Component”
(CSC), an environment for launching Java compo-
nents in a distributed system. Once the CSC is de-
ployed on participating systems in a network, it can
stay resident indefinitely. Clients can multicast a so-
licitation for available hosts to discover CSCs with-
out a priori knowledge of their locations. After re-
ceiving service offers, clients connect to one or more
responding hosts, and then send Java bytecode data
and startup instructions. The CSC then starts the
component in a different thread in its local Java Vir-
tual Machine (JVM). Communication is guarded by
signatures to prevent unauthorized use. The Com-
ponent Starting Component improves the develop-
ment and use of distributed systems by providing a
straightforward means of moving code to remote sites
and starting it both for the incremental development
and testing of an application by developers, and the
eventual use of the application by end users.

The remainder of the paper is as follows. Section
2 describes the Component Starting Component, its
operation, and its deployment. Section 3 analyzes the
CSC’s fulfillment of the requirements stated above.
Section 4 gives related work and contrasts the CSC
with similar systems. Section 5 describes two exam-
ple applications that use the CSC: one in a peer-to-
peer setting, and another in a distributed comput-
ing setting. Section 6 touches on issues affecting the
CSC’s performance both in its model and current im-
plementation. Section 7 describes future directions,
and section 8 concludes.

2 Component Starting Compo-
nent Protocol

The Component Starting Component is deployed on
individual hosts, and accepts requests to start compo-
nents on the local host. It operates in a single multi-
cast domain; that is the expanse of network from the
point of origin through which multicast datagrams
will be routed. This forms a “virtual organization”
of component hosts in which to deploy a distributed
or peer-to-peer application. A virtual organization
is one whose members are geographically apart, but
working together so as to appear as a single, unified
organization [20]. Once the CSC is deployed, it makes

Client CsC

cendnonce ™

cend YESO NO

Figure 1: Component Starting Component Protocol

conducting experiments easy. It can remain perma-
nently resident on hosts and be used in a number of
different experiments. Each operating CSC and any
clients all share a Digital Signature Algorithm pub-
lic/private key pair. The secure dissemination of this
keypair is beyond the scope of the system.

An application running on a client formulates a re-
quest to start a number of components. A client first
solicits, via a reliable multicast, all available Com-
ponent Starting Components. Currently, the reliable
multicast is implemented by the Light-weight Reli-
able Multicast Protocol (LRMP) [23]. It then waits
a user-defined time to receive “offers,” the endpoint
addresses of all operating CSCs. Assuming it receives
at least one solicitation, it iterates over its list of re-
quests, and iterates over the list of available CSCs,
and dispatches a request to each in turn, looping
around the CSC list as many times as necessary so as
to most evenly spread the components across avail-
able hosts.

Pseudocode for the CSC is as follows. C repre-
sents communication parameters. These consist of
the multicast group (denoted C.g), a port number
(denoted C.p) to use, and a multicast time-to-live (de-
noted C.t). Kpup, Kpriv are the DSA public/private
key pair. H represents the address of the local host.
R(B,P,n,S) is a client request, where B is a code
bundle, P specifies the method and arguments to in-
voke, n is a nonce, and S is the signature over all the
other fields.

CSC(C, Kpup)

start CSC-Multicast-Listener(C') in its own thread
start CSC-TCP-Listener(C, Kpyp, Kpriv) in its own thread

end

CSC-Multicast-Listener(C')
m < open multicast socket (C.g, C.p)
while (true)
zid «— m.receive()
m.send(zid, H, C.p)
end

CSC-TCP-Listener(C, Kpyp)
[«— open point-to-point listen socket (C.p)
while (true)
s « l.accept()
n « random
s.send(n)
R(B, P,n,S) « s.receive()
if (verify_signature(R,n, Kpup))
s.send(YES)
load code bundle R.B into Java VM
launch another thread according to R.P
else
s.send(NO)
s.close()
end

Pseudocode for the client is as follows. C spec-
ifies communication parameters as above, and @ =
Ry, ..., R, is an array of requests to make. Each R;
contains a code bundle B and starting parameters
P. K,y is the private key corresponding to Ky
above. m.receive(t), where m is a multicast socket,
represents receiving on the multicast socket until a
timeout interval ¢ has elapsed.

Make-CSC-Requests(C, @, Kpriv, t)
m « open multicast socket (C.g,C.p)
zid «— random
{ Solicit available CSCs }
m.send (zid)
offers <+ m.receive(t)
for each R; € Q
for each O € offers
s « connect(O)
if s is null
offers « offers — O
try again with next O € offers
n « s.receive()
S « signature(R;.B, R;.P,n, Kpriy)
create request R(R;.B, R;.P,n,S)

s.send(R)
r « s.receive()
ifr=YES
proceed to next request
else try again with next O € offers
end

The interaction between a client and an individual
CSC proceeds as in figure 1.

2.1 CSC Deployment

The Component Starting Component must first be
started on the hosts to be used in the distributed sys-
tems. This procedure is intentionally simple to make
deployment quick and inobstrusive. The procedure
is:

1. Download CSC Java Archive (JAR) file to host.
2. Securely transfer security keys to host.

3. Execute CSC with security keys and communi-
cation parameters.

The secure transfer of the keys is done out-of-band
through a mechanism such as Secure Shell (SSH).
These three steps can be automated with a script.

3 Analysis of Requirements

The Component Starting Component uses a multi-
cast to discover all available hosts at the moment
components are ready to start. This requires no ad-
vance knowledge of the hosts that are available, only
the multicast group being used. Presently it is lim-
ited to use within a multicast domain, but a network
of CSCs could be used to bootstrap systems using
other communications layers, such as the planned im-
plementation of the CSC atop Scribe [10], a peer-to-
peer group communication package based on Pastry
[9]. This would allow virtual organizations to span
several multicast domains.

All requests must be signed by the provided se-
curity keys. Any unsigned or improperly signed re-
quests will be rejected, which protects against re-
quests being altered in transit.

Requests also contain all the necessary code to
start components. The only software required on
each site is the Java system, and the CSC code it-
self. No sharing of filesystems or copying of files is
otherwise required. Users deploying the CSC must

have accounts on the hosts, but once the CSC is de-
ployed, any user, even those without accounts, can
make use of the CSC when they posess the proper se-
curity keys. At present the CSC will run components
with the full privileges of the virtual machine. Fu-
ture versions will use Java’s permissions architecture
as described in section 7.

The CSC works with Java-based components, and
therefore leverages Java’s platform independence. Any
components are therefore applicable to any host on
which a Java environment exists.

The CSC is also lightweight, and easily deploy-
able. A three-step process is all that is required to
deploy the CSC, and the system remains idle when
not in use. It therefore proides minimal impact on
the system. At present there is no way to control re-
source consumption of Java applications aside from
limitations imposed by the operating system on the
entire virtual machine itself, but such resource man-
agement is planned for Java’s future [19].

Finally, the CSC allows components to be dynam-
ically started at any time, and its discovery mecha-
nism allows these components to be spread across
whatever hosts are available at the time of the re-
quest. This allows as many copies to be started as
desired for fault tolerance and replication, and can
be done so without regard to which specific hosts are
online at the time.

4 Related Work

Remote procedure call (RPC) type systems, such as
Grid RPC, Java RMI, and Web Services all provide
for the remote invocation of programs. In all these
cases, components must already be executing on those
remote sites and have registered their interfaces. Grid
RPC provides some discovery mechanism by main-
taining mappings between grid-enabled services and
the actual hosts where they reside. In all cases, these
services must be started ahead of time by some out-
of-band means; any facilities for starting up new ser-
vices must be provided by such a service rather than
by the RPC mechanism itself.

Simple distributed systems use manual startup
of components, or use a combination of shell scripts
and remote login utilities like rsh and Secure Shell.
These approaches are typically non-scalable, and of-
fer no dynamic discovery of available hosts, as the
hosts to be used are manually coded into the shell
script. This approach also delegates authentication
and authorization to the remote login utility. Often,

these approaches also assume a shared filesystem, and
those that don’t must use a file copying utility, such
as rcp or scp. Any allowances for host heterogeneity
must also be manually handled by the system, or the
hosts must be kept homogenous.

The Message Passing Interface (MPI) [2] and Par-
allel Virtual Machine (PVM) [3] both utilize daemons
running on each participating host to start new pro-
cesses. However, each refers to a static administrator-
provided listing of available hosts to discover where
processes can be started, and provide no automatic
discovery. Both systems relegate the details of au-
thentication and authorization to other system utili-
ties, such as remote shell (rsh) or secure shell (ssh).
Similar utilities are also used to copy program bi-
naries to execution sites. Java Parallel Virtual Ma-
chine (jJPVM) [4], a system based on the ideas of
PVM implemented in Java, requires that after the
daemons are started on individual hosts, the user
then constructs a list of their execution locations so
that daemons may find each other. No authentica-
tion is performed to guard access to spawning new
processes. All executed code must also already be
resident on the remote host; jJPVM supports no mo-
bile code. jJPVM is a “lightweight” system, but starts
new instances of the Java Virtual Machine for each
component booted.

Globus [5] uses a certificate system where authen-
ticated users have a certificate signed by a trusted
Certifying Authority (CA). These credentials are then
authorized by a particular site. This guards access
to the resources, but job dispatching is still done
through a statically provided list of available hosts.
Globus is also a “heavyweight” system, where the
overhead of installation and maintenance is high.

Legion [7], like Globus, also provides a security
architecture for guarding access to resources, as well
as a unified naming model for access across its data
grid using public and private keys. Available hosts
for execution are maintained by objects existing in
Legion’s distributed filesystem, where a host or set
of hosts manifests itself as an abstract Host object,
exporting an interface for execution of programs [8].
Therefore, if a host is aware a priori of the existence
of a Legion data grid, it can make itself available to
the grid for computation. Code bundles are not sent
explicitly with these requests; rather code is placed
in Legion’s distributed file system and referenced in
the request. Legion is also a “heavyweight” system.

Klava [1] is a distributed tuple space system based
on many of the ideas of Linda [6]. Klava implements

dynamic starting of execution engines that it calls
“Nodes.” These nodes are coordinated through a
“Net,” which is a centralized coordination point that
maintains a list of all operating nodes. Klava sup-
ports sending bundles of code to remote sites for ex-
ecution and for starting new Nodes, although there
is no mention of security protections around these
functions. But since Klava uses the Linda model, it
is less suited to distributed systems research. Fea-
tures useful for distributed systems research, such as
associative matching, must be manually implemented
atop Linda primitives.

Web services [12] are the most popular manifes-
tation of component-based architectures. Using the
universal XML [13] standard allows communication
between different architectures. The overhead of set-
ting up a “servlet container” can be initially heavy,
but deployment of web services themselves once the
container is operational is simple and straightforward;
even very simple Java classes can be converted into a
web service with little or no change at all. Web ser-
vices can be discovered through centralized indexes
such as UDDI [14]. Web services are tied to their
hosts, however, as servlet containers load their ser-
vices from files resident on the host system. There is
no provison for loading a web service from the net-
work, and no provison for the dynamic restructuring
of a service at runtime, apart from deactivating the
service and booting a new one in its place.

The “Grid MetaProcessor” [17] extends the com-
putation model of SETI@home [18] by introducing an
agent that includes a kernel which allows the pulling
down of software and data for processing in the back-
ground, utilizing idle periods of the system just as
SETI@home does. Under this model, clients request
units of work when they are ready, as opposed to
started at the behest of the application.

PlanetLab [21] is an international set of hosts made
available by component research institutions for wide-
area network research, which is not unified by any
multicast domain. It uses a resource reservation sys-
tem called “slices” [22] to control use of component
hosts. SliceDeploy by Robert Adams, available from
the PlanetLab web site, is an application which does
the job of shell scripts to make reservations in this
system, copy programs to component hosts, and start
or stop them at will. This system is lightweight and
takes care of filesystem independence, while using
system utilities to handle request authentication.
SliceDeploy provides no discovery features, and re-
quires all component hosts to be manually specified

on the command line.

5 Example Applications

5.1 Experiments with Peer-to-Peer Sys-
tems

Most research on establishment and use of peer-to-
peer networks and their applications use ad-hoc or
uncontrolled environments for their execution envi-
ronments. Systematic evaluation of peer-to-peer al-
gorithms and applications requires establishment of
known and reproducible system configurations and
execution environments. This section describes the
use of the CSC to instantiate Pastry [9] and Scribe
[10] package built atop it. Scribe is a group communi-
cation package built on top of Pastry, a peer-to-peer
distributed hash table system. FreePastry [11] is an
implementation of these and other sample programs
built atop Pastry, and is available in Java as a Java
Archive (JAR) file. Scribe comes with a simple test
application, which starts a default of 5 nodes on the
local host, which form several groups and publish a
message every ten seconds. These hosts may them-
selves exist in separate multicast domains, although
at present this implies multiple networks of CSC, each
occupying a single multicast domain.

A single node is started in a well-known location
manually. Pastry applications require a “bootstrap”
node in a well-known location. Any number of other
nodes are then started with the CSC, including a pa-
rameter that specifies the location of the “bootstrap”
node. This instantly creates a peer-to-peer network
with any desired number of physical nodes, each with
five virtual nodes resident.

The “bootstrap” node is manually started from
the command line on a well known location. A sec-
ond program, which makes CSC requests, is then
started. This program will construct a number of
those requests, which will include the name of the
“bootstrap” location as part of the starting parame-
ters, and make those requests following the protocol
specified in section 2.

This allows for the simulation of a network of com-
municating entities, which can be used for a variety of
applications. A distributed system that makes heavy
use of group communication, such as CoorSet below,
could use such a network as its communications layer
instead of a traditional multicast. Large networks of
data use distributed hash table systems like Pastry,
and this system can be used to bring up a suitably-

sized network before populating it with data.

5.2 Experiments on Distributed Algo-
rithms and Computations

Systematic experimental evaluations of distributed
algorithms and distributed computations have been
difficult to conduct for the same reasons as for peer
to peer systems, which are a special case of the more
general concepts of distributed systems. We have im-
plemented and are applying a distributed program-
ming system based on broadcast communication [16].
The first motivation for providing support for im-
plementation of experimental research on distributed
systems was the effort required to manually conduct
experiments evaluating the properties and behaviors
of algorithms programmed in the CoorSet program-
ming model.

The CoorSet [16] system, short for Coordinating
Set, is an experimental component-based distributed
architecture, where components are specified in terms
of their exported interfaces. The initial configuration
of the distributed application is specified in a single
configuration file, which specifies the interfaces and
numbers of each component to launch.

Each component maintains a profile, which is a
list of attribute/value pairs that describe a compo-
nent’s state. All communication is broadcast commu-
nication, where messages are sent to all components.
Components also maintain an accepts interface which
specifies message types it can receive, and a requests
interface which specifies message types it will need to
send. Messages are addressed using selectors, which
are boolean logic propositions specifying properties of
the receiver set. Each component evalutes the selec-
tor against its local profile, and if the selector evalu-
ates true, the component is a member of the receiver
set and processes the message. This allows runtime
matching of interfaces with any components that are
online at the time a request is made.

CoorSet requires the ability to launch components
on nodes around the network when the application is
started. It does this by using the Component Starting
Component, using the user’s definition of an individ-
ual component to gather the required binaries, bun-
dle them up in a CSC request, and dispatch them
to available CSCs. This allows it to distribute all
the components of an application across all available
hosts. Without this functionality, a user would need
to manually launch the initial components in the ap-
plication by hand at various locations in the network.

5.2.1 CoorSet Example

Consider a distributed readers and writers system in
CoorSet. Most of the details of this system are be-
yond the scope of this paper, but we give an overview
as an illustration. The system configuration file spec-
ifies a set of active data objects which implement a
replicated data item. The configuration file speci-
fies their initial external interface, which they use to
maintain consistency amongst each other, and to ser-
vice reading and writing requests from clients.

Such a system consists of k replicas of a single
data item. In a more general case there would be
multiple data items, but for this example we restrict
ourselves to a single datum. Each replica will identify
itself by its index 7,0 < i < k — 1. In a production
deployment, clients will come up and interact on their
own, but in an experimental deployment, a number r
readers of various data items will be instantiated as
well. The components will be deployed as follows:

1. CoorSet formulates a list of k£ + r CSC requests
R, one for each of the k replicas to service, and
one for each of the r experimental readers.

2. The CSC client receives this list, and makes a
multicast solicitation for available CSCs.

3. The client then waits a time t while it receives
a number of offers from available CSCs.

4. With the list of received offers O and requests
R, the client then connects to each CSC in O in
a round-robin fashion, submitting an individual
request in R. As each request is accepted by a
CS(C, it is removed from the list R. When R is
empty, the client completes.

5.3 Example of Development Cycle

The previous two examples show instances of already
completed applications being deployed in a produc-
tion circumstance. The Component Starting Compo-
nent is also useful for the development of a distributed
application, as it saves the repeated steps to log into
remote hosts, copy a new revision of a component,
and then launch it. This cuts down on the develop-
test-analyze cycle of software development.

Consider an implementation of the classic “Din-
ing Philosophers” problem. There are n philosophers
sitting around a table, n forks on the table, one on
each side of each philosopher, and n — 1 meal tick-
ets in the middle of the table (to prevent deadlock).

Each philosopher, fork, and meal ticket exists as an
entity in the distributed system. Each fork and meal
ticket does not initiate any activity, but merely re-
sponds to requests to be picked up or put down, or
to terminate.

Each philosopher does the following;:

1. Obtain a meal ticket.

2. Obtain the fork on either side of the philoso-
pher. These will be forks numbered i and ¢ +
1 mod n for philosopher 3.

3. “Eat.” In this implementation, this just repre-
sents a successful completion of one loop.

4. Return both forks and the meal ticket to the
table.

This process is repeated a configurable number of
times. But even for a modest system of 5 philoso-
phers, this requires 5 philosopher components, 5 fork
components, and 4 meal ticket components to be run-
ning in the system, which would be a considerable
amount of work to do by hand for each iteration of
the development cycle. The CSC allows the code to
be developed for each of these three types of com-
ponents, and then deployed from a single centralized
location, their output observed and then used in sub-
sequent analysis for future iterations. The work of
logging in to fourteen different systems and relaunch-
ing each component is saved.

being available at the time of this writing. Still, in
an unknown network situation, an out-of-band means
must be used to configure the delay the client waits
before starting to make requests. Offers may come in
after the client begins to distribute components, and
when they do they will be added to the list, but this
can cause an uneven distribution of work.

When a work unit is dispatched to a remote host,
the request is sent over a point-to-point reliable TCP
connection. If the same code bundle is to be used in
more than one requests, the code will be sent out over
the wire multiple times. Large code bundles are un-
suitable for the fixed-length datagrams used in mul-
ticasting, and the current protocol, LRMP, enforces
a Maximum Transfer Unit size of 1400 data bytes per
datagram.

Each multicasted solicitation carries with it a ran-
dom transaction identifier on the interval [0, 800000).
These random identifiers are generated from Java’s
java.util.Random class. This class bases its seed
on the current time, so requests made when the local
clock contains the same value as the local clock of an-
other client when it makes its request, they will use
the same random transaction identifiers. In this case,
each will also receive offers resulting from the other’s
solicitation. This unlikely possibility was deemed ac-
ceptable as opposed to using a more computationally-
intensive cryptographic random number generator,
such as Java’s java.security.SecureRandonm class.

7 Future Work

6 Performance AnalySIS and Lim—- necessary step to move beyond the limiting box of

itations

In this section we discuss some of the performance
issues of the Component Starting Component. We
focus on the communication issues between clients
and candidate hosts as that will dominate its perfor-
mance.

The central issue to its performance is the mul-
ticast used in the initial solicitation. Since no cen-
tral list of active CSCs is maintained, a client must
“guess” an amount of time to wait for offers to arrive.
This amount of time is highly dependent on the scope
of the multicast domain and the level of connected-
ness amongst the candidate hosts. On a single net-
work with well-connected hosts, offers arrive almost
immediately and from all candidate hosts. Evalua-
tion on a larger multicast domain that spans multiple
networks was not conducted, due to no such domain

IP Multicast is to move to an overlay network type
multicast, like Scribe [10] or End System Multicast
[15]. IP Multicast suffers from administrative lim-
itations which are unlikely to be removed, making
it unsuitable for communication beyond a single ad-
ministrative domain. A multicast mechanism which
can span multiple networks allows for even larger dis-
tributed systems. This will then make the CSC ap-
plicable to PlanetLab, where the hosts are geograph-
ically distributed and exist in different multicast do-
mains.

Currently, all clients and servers share the same
public/private DSA key pair. Use of X.509 certifi-
cates with authorized signatures directly extends this
authentication mechanism into one where authority
is more easily delegated, and also provides the pos-
sibility of Certificate Revocation Lists, allowing such
privileges to be revoked.

At present, the CSC starts components as simple
threads in its own virtual machine, with no security
protection at all. Although this will not interfere with
the correct operation of benign software, this does
give any software started total access to the virtual
machine, which could allow it to interfere with other
threads or terminate the virtual machine, CSC and
all. Java provides an elaborate access control mech-
anism for controlling applications’ access to the vir-
tual machine, although it is disabled by default when
running normal applications. Use of this permissions
system allows each site to configure permissions for
each application if desired, and specify a minimum
set of permissions for all such applications. The CSC
also does not yet keep track of the components it
has started, and which are running and which have
terminated, but such a function and an interface for
querying it can be useful for monitoring components
both for the development cycle, and for production
use.

Many distributed systems currently exist only as
native code, so future work also includes the trans-
port and dynamic loading of shared libraries that
make use of the Java Native Interface (JNI). By def-
inition these libraries will be platform-specific, and
will therefore require facilities to match the appropri-
ate libraries to the corresponding architectures. But
this can be used to escape Java for those applications
which still exist as native code. In a future version of
the CSC, a native code library can be transmitted as
part of the code bundle, dynamically loaded into the
virtual machine, and then invoked from a stub Java
class.

For applications which are completely indepen-
dent of Java, the CSC could be used just as a trans-
port mechanism. The same means can be used to
transmit code bundles, but they can be then written
to local disk and passed to the underlying operat-
ing system for execution. The CSC would then be
outfitted with information about its local host, and
would only respond to solicitations for its particular
platform.

8 Conclusion

Distributed systems of all kinds, from traditional master-

slave architectures to current peer-to-peer methods,
all require some method of supporting experimen-
tal research in an automated and reproducible way,
and in the case of some architectures, for production
use. We have provided such an environment for sys-

tems based in Java, that can be bundled up and sent
across the network to participating hosts, with proper
authentication protecting those hosts from unautho-
rized users attempting to run their own code. This al-
lows applications to be tested during development by
simplifying the process of execution for testing pur-
poses, and once an application is ready for production
use, it can be deployed across a network in the same
way.

References

[1] Lorenzo Bettini, Rocco De Nicola, and Rosario
Pugliese. “Klava: a Java Framework for
Distributed and Mobile Applications.” Software
— Practice and Ezxperience, 32:1365-1394, 2002.

[2] The Message Passing Interface (MPI).
http://www-unix.mcs.anl.gov/mpi/

[3] Parallel Virtual Machine (PVM).
http://www.csm.ornl.gov/pvm/pvm_home.html

[4] Adam J. Ferrari. “JPVM: Network Parallel
Computing in Java.” Concurrency: Practice and
Ezperience, 10(11-13):985-992, 1998.

[5] I. Foster, and C. Kesselman. “Globus: A
Metacomputing Infrastructure Toolkit.” Intl J.
Supercomputer Applications, 11(2):115-128, 1997.

[6] David Gelernter. “Generative communication in
Linda.” ACM Transactions on Programming
Languages and Systems, 7(1):80-112, 1985.

[7] A.S. Grimshaw, A. J. Ferrari, and E. West.
“The Legion Vision of a Worldwide Virtual
Computer.” Communications of the ACM,
40(1):39-45, January 1997.

[8] Andrew S. Grimshaw, Michael J. Lewis, Adam
J. Ferrari, and John F. Karpovich.
“Architectural Support for Extensibility and
Autonomy in Wide-Area Distributed Object
Systems.” University of Virginia Technical
Report CS-98-12.

A. Rowstron and P. Druschel, ”Pastry: Scalable,
distributed object location and routing for
large-scale peer-to-peer systems”. IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany,
pp- 329-350, November, 2001.

[10] A. Rowstron, A-M. Kermarrec, M. Castro and
P. Druschel, ”SCRIBE: The design of a
large-scale event notification infrastructure”,
NGC2001, UCL, London, November 2001.

[11] Peter Druschel, Eric Engineer, Romer Gil, Y.
Charlie Hu, Sitaram Iyer, Andrew Ladd, et. al.
“FreePastry.” Software available at
http://www.cs.rice.edu/CS/Systems/Pastry
/FreePastry/.

[12] World Wide Web Consortium. “Web Services.”
http://www.w3.org/2002/ws/.

[13] World Wide Web Consortium. “Extensible
Markup Language (XML)”.
http://www.w3.org/XML/.

[14] “Universal Description, Discovery, and
Integration of Web Services (UDDI)”.
http://www.uddi.org/.

[15] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang.

“A Case for End System Multicast.” ACM
SIGMETRICS, pp. 1-12, June 2000.

[16] Kevin Kane. “CoorSet: An Interface
Description Language for
Associatively-Coordinated Components.”
Preprint.

[17] United Devices. “Grid MetaProcessor.”
http://www.ud.com/.

[18] David P. Anderson, Jeff Cobb, Eric Korpela,
Matt Lebofsky, and Dan Werthimer.
“SETI@Qhome: An Experiment in
Public-Resource Computing.” Communications
of the ACM, 45(11):56-61, November 2002.

[19] Li Gong. “Java 2 Platform Security
Architecture.”

[22] The PlanetLab Architecture Team. “Dynamic
Slice Creation.” PlanetLab Design Notes
PDN-02-005.
http://www.planet-lab.org/pdn/pdn02-005.pdf.

[23] Tie Liao. “Light-weight Reliable Multicast
Protocol.”
http://webcanal.inria.fr/Irmp/lrmp_paper.ps

[24] J. C. Browne, K. Kane, and H. Tian. “An
Associative Broadcast Based Coordination
Model for Distributed Processes.” Coordination
Models and Languages, Proceedings of
COORDINATION 2002, Lecture Notes in
Computer Science 2315, Springer-Verlag, p. 96.

http://java.sun.com/j2se/1.4.1/docs/guide/security

/spec/security-spec.doc.html.

[20] TechTarget Network. “Whatis virtual
organization.”

http://whatis.techtarget.com/

[21] Larry Peterson, Tom Anderson, David Culler,
and Timothy Roscoe. “A Blueprint for
Introducing Disruptive Technology Into the
Internet.” Proceedings of the 1st Workshop on
Hot Topics in Networks, October 2002.

