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Abstract
This paper explores integrating data prefetching and data
consistency to enable transparent replication of large-
scale information dissemination services. We focus our
attention on information dissemination services, a class
of service where updates occur at an origin server and
reads occur at a number of replicas, and we seek to pro-
vide transparent replication by providing sequential con-
sistency guarantees across the replicated data. To meet
these goals our system integrates prefetching and con-
sistency by (1) providing self-tuning push-based prefetch
from the server and (2) buffering and carefully schedul-
ing the application of invalidations and updates at repli-
cas to maximize the amount of valid data—and there-
fore maximize the hit rate, minimize the response time,
and maximize availability—at a replica. Our analysis of
simulations and our evaluation of a prototype implemen-
tation support the hypothesis that it is feasible to pro-
vide transparent replication for information dissemina-
tion applications by carefully integrating consistency and
prefetching. For example, in our simulations when the
network 40% of the bandwidth it needs to push all up-
dates, our system’s performance is more than a factor of
three faster than a demand-based system.

1 Introduction
This paper explores integrating data prefetching and data
consistency to enable transparent replication of large-
scale information dissemination services. Researchers
are working to develop programming environments [11,
46, 2, 20] and scalable servers [3, 50] for distributing ser-
vice code to replicas across a network in order to improve
service availability [15, 30, 55] and performance [6]. But
for this approach to be useful, this distributed code must
operate on a common set of shared data. Thus, a fun-
damental challenge to large-scale service replication is
replication of the underlying data.

Our goal is to develop a data replication toolkit that
supports transparent service replication where service
threads designed to run on a single machine or LAN clus-
ter by accessing shared state in a file system or database
can be distributed across WAN edge servers without re-
writing the service and without introducing new bugs.
Thus, we focus on providing the strong guarantee of se-
quential consistency [32] because weaker semantics can
introduce new bugs, require subtle reasoning from the
programmer, or both [21].

Providing strong consistency guarantees in a large
scale system while providing good availability [9] and

performance [34] is fundamentally difficult in the gen-
eral case. We therefore focus our attention on the key
subproblem of replicated dissemination services where
all updates occur at one origin server and where multi-
ple edge server replicas treat the underlying data as read
only and perform services such as data caching, fragment
assembly, per-user customization, and advertising inser-
tion. Although this case is restrictive, it represents an
important class of services; for example, Akamai’s Edge
Side Include [2] and IBM’s Sport and Event replication
system [12] both focus on improving the performance,
availability, and scale of dissemination services. Further-
more, we believe that this case may represent an impor-
tant building block for more general services where one
subset of the data is read-only at the replicas, where an-
other subset is read/write at the replicas, and where dif-
ferent subsets use different consistency algorithms [47].

This paper explores integrating prefetching and con-
sistency to provide this transparent replication. We be-
lieve this combination is vital. On one hand strong
consistency increases the need for prefetching because
strong consistency prevents the use of stale data, which
could hurt performance and availability, but prefetching
replaces stale data with valid data. On the other hand,
prefetching means that data are no longer fetched near
the time they are used, so a prefetching system must rely
heavily on its consistency protocol for correct operation.

A simple solution would be to replace an invalidation-
based protocol with an update-based protocol that sends
all updates to all replicas. Such an approach could pro-
vide sequential consistency if all updates are applied
in the order they occur and could provide excellent re-
sponse time and availability because a replica would ser-
vice all requests from its local storage. Unfortunately,
this FIFO push-all algorithm sends all updates over the
wire whether they are eventually read or not, which may
require arbitrarily large amounts of network bandwidth.
This approach may be appropriate in some environments,
since falling bandwidth costs may make it attractive to
trade bandwidth for improved latency and availability. At
the same time, the approach is potentially fragile: if the
update rate exceeds the available bandwidth, the updates
overload the network, interfering with other applications
and causing unbounded delays between when the update
occurs at the origin server and when it is seen at the repli-
cas.

In this paper, we describe the TRIP (Transparent
Replication through Invalidation and Prefetching) sys-
tem that integrates sequential consistency with self tun-
ing prefetch in a way that approximates FIFO update
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when network bandwidth is plentiful but that approxi-
mates FIFO invalidate when bandwidth is scarce, and
that gracefully/incrementally tracks between these two
extremes based on available bandwidth.

The TRIP algorithm has two parts. First, the server
implements the system’s self-tuning, push-based prefetch
by sending a replica’s invalidation messages and re-
sponses to demand reads on one channel and by pushing
the replica’s updates on another channel. In particular,
the server sends invalidations and demand responses over
FIFO channels at normal network priority, but it buffers
updates in a priority queue that drains through a low pri-
ority network connection to avoid interfering with other
network traffic [48]. Thus, when bandwidth is high, the
priority queue is empty and the approach approximates
FIFO push-all, but when bandwidth is low, only the most
valuable updates are sent. The replicas implement the
second important part of the algorithm by buffering the
messages they receive and both (1) applying them in a
careful order to maintain sequential consistency and (2)
delaying application of some messages to minimize the
amount of invalid data and thereby maximize the local hit
rate, minimize response time, and maximize availability.

This paper evaluates this strategy using both trace-
based simulation and evaluation of an implementation.
Our simulations use traces of access to the 2000 Sum-
mer Olympics Games web site, a large-scale information
dissemination service that was served from several ge-
ographically distributed service replicas. Our prototype
provides a file system interface at each replica via a local
NFS server [36]. This implementation allows us to run
unmodified edge servers that provide both static HTML
files and dynamic responses generated by programs (e.g.,
CGI, Servelets, Server Side Include, or Edge Side In-
clude), and that share data through the file system. A
similar approach could be used to support a database in-
terface to the shared state.

Our evaluation supports the hypothesis that it is fea-
sible to provide transparent replication for information
dissemination applications by carefully integrating con-
sistency and prefetching. In particular, this combina-
tion yields three good properties. First, it simplifies
application development by providing sequential con-
sistency and supporting transparency. Second, whereas
strong consistency might be expected to hurt system per-
formance, by combining it with self-tuning prefetching
the system often gets better performance than demand-
based replication systems that provide weaker consis-
tency guarantees. For example, in our simulations when
the network 40% of the bandwidth it needs to push all
updates while meeting timeliness guarantees, our sys-
tem’s performance is more than a factor of three faster
than a demand-based system. Third, whereas strong con-
sistency might be expected to hurt availability, prefetch-
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Fig. 1: High level system architecture.

ing updates and attempting to delay the application of
invalidations until the corresponding update is available
can allow replicas to maintain local copies of large frac-
tions of system state and thereby mask server failures
and network partitions. For example, in our simulations
when the network has enough bandwidth to allow the
server to push 70% of all updates, a replica is able to
completely mask server disconnections by serving local
copies of sequentially consistent state for varying periods
of time with the maximum masking duration exceeding
9000 seconds for more than half of the randomly arriving
disconnections.

This paper makes three contributions. First, it pro-
vides evidence that systems can maintain sequential con-
sistency for some key WAN distributed service despite
CAP dilemma, which states that systems cannot get
strong Consistency and high Availability for systems vul-
nerable to Partitions [9]. The replication system cir-
cumvents this dilemma by (a) restricting the workload it
considers and (b) integrating consistency with prefetch-
ing. Second, it presents a novel system that integrates
prefetching and consistency by (a) using a new self-
tuning push-based prefetching algorithm and (b) care-
fully ordering and delaying the application of messages
at replicas. Third, it provides a systematic evaluation and
a working prototype of such a system to provide evidence
for the effectiveness and practicality of the approach.

The rest of the paper proceeds as follows. Section 2
provides background on prefetching and consistency and
more precisely defines the environments in which our
framework can be used. Then, Section 3 details the al-
gorithms at the core of our approach. Section 4 describes
our prototype implementation, and Section 5 discusses
both our simulation and prototype evaluation. Finally,
Section 6 provides an overview of related work and Sec-
tion 7 highlights our conclusions and discusses some po-
tential future directions.
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2 System model
Figure 1 provides a high level view of the replication
environment we assume. An origin server and several
replicas (also called content distribution nodes or edge
servers) share data, and clients access the service via
the replicas, which can not only provide static HTML
files but can also run service-specific code to dynami-
cally generate responses to requests [2, 3, 11, 20, 46, 50].
A redirection infrastructure [12, 28, 54] directs client re-
quests to a good (e.g., nearby, lightly loaded, or available)
replica. In such an environment, the focus of this paper is
on the data replication system that provides shared state
across the origin server and the replicas.

Proposed service replication architectures [2, 3, 11,
20, 46, 50] vary in their assumptions about the number of
replicas (e.g., 10 replicas to thousands), whether a given
replica is typically installed for long periods of time on
the same machine(s) or whether replicas are dynamically
created, destroyed, or moved over fine time scales to re-
spond to changing demand, and whether a replica caches
a small subset of hot pages or replicates most or all of a
service. We focus on supporting modest numbers (e.g.,
10-100) of long-lived replicas that each have sufficient
local storage to maintain a local copy of the full set of
their service’s shared data. Our protocol remains correct
under other assumptions, but optimizing performance in
other environments may require different trade-offs.

2.1 Consistency and timeliness
This study focuses on protocols that simultaneously en-
force both sequential consistency, which restricts the per-
mitted ordering among reads and writes across all ob-
jects, and

�
-coherence, which limits the real-time dura-

tion between when a write of an object occurs and when
the write becomes visible to subsequent reads of that ob-
ject. The rest of this subsection defines these concepts
more precisely.

To support transparency, we focus on providing se-
quential consistency. As defined by Lamport, “The result
of any execution is the same as if the [read and write] op-
erations by all processes were executed in some sequen-
tial order and the operations of each individual processor
appear in this sequence in the order specified by its pro-
gram.” [32] Sequential consistency is attractive for trans-
parent replication because the results of all read and write
operations are consistent with an order that could legally
occur in a centralized system, so—absent time or other
communication channels outside of the shared state—a
program that is correct for all executions under a local
model with a centralized storage system is also correct
for the distributed storage system.

Typically, providing sequential consistency is expen-
sive in terms of latency [10, 34] or availability [9]. How-
ever, we restrict our study to dissemination services that

have one writer (the origin server) and many readers (the
replicas), and we enforce FIFO consistency [34] guar-
antees. Under FIFO consistency (a.k.a., PRAM consis-
tency) writes by a process appear to all other processes in
the order they were issued, but different processes can ob-
serve different interleavings between the writes issued by
one process and the writes issued by another. Note that
for applications that include only a single writer, FIFO
consistency is identical to sequential consistency.

Although ensuring sequential consistency at each
replica provides strong semantic guarantees, clients ac-
cessing a service through the replicas may observe unex-
pected behaviors in at least two ways due to communica-
tion channels outside of the shared state.

First, because sequential consistency does not specify
any real-time requirement, a client may observe a stale
version of the service. For example, if a network parti-
tion separates a replica from the origin server, the view
of the service provided by the replica will not reflect re-
cent updates even if the view continues to obey sequen-
tial consistency. A user could observe, for example, the
anomalous behavior of a stock price not changing for sev-
eral minutes during a disconnection. In this case, phys-
ical time acts as a communications channel outside of
the control of the data replication system that could al-
low a user to detect anomalous behavior introduced by
the replication system.

Therefore, replicated services may want to enforce
timeliness constraints on data updates to ensure that, for
example, replicas transmit views of the service that are
within

�
seconds of the view at the central server and of

other replicas. An extreme version of such guarantees is
linearizability [24], which enforces the same constraints
as sequential consistency but which also requires that the
total ordering of events follow timestamps assigned to
read and write operations so that if �������	��

����������������

��� ,
then operation ������� �"! should precede ���$#%� &%! in the to-
tal order. In web service environments, however, a more
flexible definition may be useful because different ser-
vices will depend on timeliness to different degrees.

�
-

coherence requires that any read reflect at least all writes
that occurred before the current global time minus

�
. By

combining
�

-coherence with sequential consistency, a
protocol enforces a tunable staleness limit on the sequen-
tially consistent view. Note that reducing

�
improves

timeliness guarantees but may hurt availability because
disconnected edge servers may be obligated to refuse a
request rather than serve too-stale data.

Second, some redirection infrastructures [12, 28, 54]
may cause a client to switch between replicas. Even if
each replica provides a sequentially consistent view of
the data, a client switching between replicas may see in-
consistencies. For example, consider two replicas ' � and
' � where ' � processes messages somewhat more slowly
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Fig. 2: Overview of replication algorithm. The circled numbers
are discussed in the text.

than ' � . If objects ( and ) are initially in states (+* and
) * , then ( is written to state ( � , and finally ) is written
to state ) � , a client could read object ) and observe state
) � from replica ' � and then switch to replica ' � and read
object ( and observe state ( * . Even though neither ' �
nor ' � observes any state inconsistent with ( � happens
before [31] ) � , by switching between replicas the client
can observe such an inconsistent state. In Section 3.4 we
discuss how to adapt Bayou’s session consistency proto-
col [44] to our replication environment to ensure that each
client observes a sequentially consistent view regardless
of how often the redirection infrastructure switches the
client among replicas.

3 Algorithm
Figure 2 provides a high-level view of the algorithm
for synchronizing a replica’s data store with the origin
server’s. The strategy revolves around two simple parts
(1) the server’s self-tuning efforts to send updates in pri-
ority order without interfering with other network users
and (2) each replica’s efforts to buffer messages it re-
ceives, to apply them in an order that meets consistency
constraints, and to delay applying some of these mes-
sages to improve availability and performance. In par-
ticular,

1. When the origin server writes an object (number 1 in
the figure), it immediately sends an invalidation to each
replica (2) and it enqueues the body of the update in a
priority queue for each replica (3). In contrast with the
immediate transmission of invalidations on a normal-
priority lossless network connection (4), each priority
queue drains by sending its highest-priority update to
its replica via a low-priority network channel when the
network path between the origin server and replica has
spare capacity (5).

2. At the replica both invalidation (6) and update (7) mes-
sages that arrive are buffered rather than being imme-
diately applied to the replica’s local data store (8). A
scheduler at each replica applies invalidations in strict
sequence-number order (9), delaying the application
of each successive invalidation until its corresponding
update appears in the update buffer or until its dead-
line (under

�
-coherence) arrives. Similarly, when the

scheduler at a replica applies a buffered update (10),

State
seqNo // Global sequence number
storage // Sequence number and body of each object
nReplicas // Number of replicas
updateChannel[] // Lossy, priority-order, low-priority channels
invalDemandChannel[] // Lossless, FIFO channels

local call to write(objId, body, priority, timestamp)
seqNo++;
storage.update(objId, body, seqNo);
for(i = 0; i , nReplicas; i++)

invalDemandChannel[i].send(INVAL, objId, seqNo, timestamp);
updateChannel[i].insert(UPDATE, objId, body, seqNo, priority);

receive (READ, objId) from replicaId
(body, objSeqNo) = storage.get(objId);
invalDemandChannel[replicaId].send(REPLY, objId, body, objSeqNo);
updateChannel[replicaId].cancel(objId);

Fig. 3: Origin server algorithm. Bold labels indicate the events
that trigger the actions.

it always applies the one with the lowest available se-
quence number and it only applies an update if all in-
validations with lower sequence numbers have already
been applied.
The full algorithm must also handle demand reads,

network disconnections, and machine failures. We there-
fore detail the server and replica algorithms in the next
two subsections. Then Section 3.3 discusses key proper-
ties of this algorithm, and Section 3.4 discusses several
limitations of the basic algorithm and possible optimiza-
tions available within this framework.

3.1 Origin server
As the pseudocode in Figure 3 shows, the origin server
maintains a global monotonically increasing sequence
number seqNo, local storage with the body and sequence
number of each object, a set of per-replica channels in-
valDemandChannel[] for sending invalidations and de-
mand replies, and a set of per-replica channels update-
Channel[] for pushing updates.

To write an object, an origin server increments seqNo,
updates storage with seqNo and the object’s new body,
sends invalidations on each replica’s invalDemandChan-
nel, and enqueues updates on each replica’s updateChan-
nel.

Each enqueued update includes a priority that spec-
ifies the update’s relative ranking to other pending up-
dates. Our interface allows a server to use any algorithm
for choosing the priority of an update, and this paper does
not attempt to extend the state of the art in prefetch pre-
diction policies. A number of standard prefetching pre-
diction algorithms exist [17, 22, 23, 40, 49] or the server
may make use of application-specific knowledge to pri-
oritize an item (e.g., a news editor may know that the
day’s headline article will be widely read before the sys-
tem has measured the story’s read frequency). Note that
some implementations may extend this interface to spec-
ify different priorities for propagating a given update to
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different replicas to, for example, account for different
access patterns at different replicas.

When the server receives a demand read(objId) from
a replica, it retrieves from its local store the object’s body
and per-object sequence number, it sends on the replica’s
invalDemandChannel a demand reply message. Notice
that this reply includes the sequence number stored with
the object when it was last updated, which may be much
smaller than the current global seqNo. Upon sending a
demand reply to a client, the origin server also cancels
any push of the object’s update to that client still pending
in updateChannel.

Communication channels. The system design de-
pends on the distinct properties of the invalDemand-
Channels and the updateChannels.

Each invalDemandChannel for invalidations and de-
mand replies is a lossless FIFO channel that operates at
normal network priority. Our protocol uses a persistent
message queue [27] to ensure that this channel is lossless
even across crashes and network partitions, which dra-
matically simplifies crash recovery.

Each updateChannel provides an abstraction suited
for self-tuning push-based prefetch by buffering updates
in a priority queue and then sending them across the net-
work using a low priority network protocol. Three ac-
tions manipulate each per-replica priority queue.

First, an insert adds an update with a specified pri-
ority. If another update to the same objId occupies the
priority queue, the older update is discarded. An imple-
mentation may bound the upper size of the priority queue
buffer and discard low priority items to maintain this size
bound. Second a cancel(objId) call removes any pending
update for objId. Third, a worker thread loops, remov-
ing the highest priority update from the queue and then
doing a low-priority network send of a push-update mes-
sage containing the objId, body, and seqNo of the item.
The low priority network protocol should ensure that low
priority traffic does not delay, inflict losses on, or take
bandwidth from normal-priority traffic; a number of such
protocols have been proposed [7, 8, 39, 48].

3.2 Replica
The pseudocode in Figure 4 describes the behavior of
a replica. Each replica maintains five main data struc-
tures. First, a replica maintains a local data store that
maps each object ID for the shared state to either the tu-
ple (INVALID, seqNo) if the local copy of the object is
in the invalid state or the tuple (VALID, seqNo, body) if
the local copy of the object is in the valid state. Sec-
ond, a replica maintains pendingInval, a list of pend-
ing invalidation messages that have been received over
the network but not yet applied to the local data store;
these invalidation messages are sorted by sequence num-
ber. Third, a replica maintains pendingUpdate, a list of

State
storage // Validity, sequence number, and body of each object
pendingInval // Received but unprocessed invalidation
pendingUpdate// Received but unprocessed updates
delta // Max staleness between server and replica
maxSkew // Max clock skew between server and replica

receive (INVAL, objId, seqNo, timestamp) on invalDemand channel
pendingInval.put(objId, seqNo, timestamp);

receive (UPDATE, objId, body, seqNo) on updateChannel
pendingUpdate.put(objId, body, seqNo);

pendingUpdate.head.seqNo - pendingInval.nextSeqToProcess()
// Scheduler applies an update
(objId, body, seqNo) = pendingUpdate.removeHead();
if(seqNo . storage.getSeqNo(objId))

storage.update(objId, VALID, seqNo, body);
if(seqNo == pendingInval.nextSeqToProcess())

pendingInval.doneProcessing(seqNo);

currentTime() - pendingInval.head.timestamp + delta - maxSkew
// Scheduler applies an invalidate
applyNextInval(); // See below

local call to read(objId)
if(VALID == storage.getState(objId))

return storage.getBody(objId);
send (READ, objId) to origin server;
storage.waitUntilValid(objId);
return storage.getBody(objId);

receive (REPLY, objId, body, seqNo) on invalDemandChannel
while(pendingInval.nextSeqToProcess() - seqNo)

applyNextInval();
storage.update(objId, VALID, seqNo, body); // Unblocks waiting read

applyNextInval() // Internal private method called from above
(objId, seqNo, timestamp) = pendingInval.readHead();
if(seqNo . storage.getSeqNo(objId)) // ’At least once’ channel

storage.update(objId, INVALID, seqNo);
pendingInval.doneProcessing(seqNo);

Fig. 4: Replica algorithm. Bold labels indicate the conditions
and events that trigger the actions.

pending pushed updates that have been received over the
network but not yet applied to the local data store; no-
tice that although the origin server sorts and sends these
update messages by priority, each replica sorts its list of
pending updates by sequence number. Finally,

�
spec-

ifies the maximum staleness allowed between when an
update is applied at the origin server and when the up-
date affects subsequent reads, and maxSkew bounds the
clock skew between the origin server and the replica.

The system’s correctness depends on following two
constraints on its actions:

C1 A replica must apply all invalidations with sequence
numbers less than / to its storage before it can apply
an invalidation, update, or demand reply with sequence
number / .

C2 A replica must apply an invalidation with timestamp �
to its storage no later than ��0 �214365 �87:9<;�= .

Scheduler actions. After INVAL and UPDATE mes-
sages arrive and are enqueued in pendingInval and
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pendingUpdate, a scheduler applies these buffered mes-
sages in a careful order to meet the two constraints above
and to minimize the amount of invalid data and thereby
maximize local hit rate, maximize availability, and mini-
mize response time.

The scheduler removes the update message with the
lowest sequence number from its pendingUpdates and
applies it to its storage as soon as it knows it has ap-
plied all invalidations with lower sequence numbers. Ap-
plying a prefetched update normally entails updating the
local sequence number and body for the object, but if the
locally stored sequence number already exceeds the up-
date’s sequence number, the replica must discard the up-
date because a newer demand reply or invalidation has
already been processed. Also note that in the case where
update / arrives before invalidation / is applied, update
/ can be applied as soon as invalidation / 1 � has been
applied and then invalidation / need never be applied. In
this case, the procedure informs the pendingInval queue
that seqNo has been processed, which allows pendingIn-
val to garbage collect the message and to acknowledge
processing of invalidation seqNo to the origin server.

The scheduler removes the invalidation message with
the lowest sequence number from pendingInval and ap-
plies it to its storage when the invalidation’s deadline ar-
rives at �?> 3 ;@��� 5A3CB 0 �D1E365 �"7F9<;�= . The pendingIn-
val queue and network channel normally provide FIFO
message delivery, and they guarantee at least once de-
livery of each invalidation when crashes occur. To sup-
port end-to-end at-least-once semantics, before applying
an invalidation, a replica verifies that it is a new one, and
after applying an invalidation a replica calls pendingIn-
val.doneProcessing(seqNo) to allow garbage collection
of the message and to acknowlege processing of invali-
dation seqNo to the origin server.

Processing requests from clients. When a servicing
a client request that reads object GIH�JAK�L (either as input
to a dynamic content-generation program or as the re-
ply to a request for a static data file), a replica uses the
locally stored body if objId is in the VALID state. But,
if the object is in the INVALID state, the replica sends
a demand request message to the server and then waits
for the demand reply message. Note that by sending de-
mand replies and invalidations on the same FIFO network
channel, the origin server guarantees that when a de-
mand reply with sequence number / arrives at a replica,
the replica has already received all invalidations with se-
quence numbers less than / , though some of these inval-
idations may still be buffered in pendingInval. So when
a demand reply arrives, the replica enforces condition C1
by simply applying all invalidation messages whose se-
quence numbers are at most the reply’s sequenceNumber
before applying the reply’s update to the local state and

returning the reply’s value to the read request.
Our protocol implements an additional optimization

(not shown in the pseudo-code for simplicity) by main-
taining an index of pending updates searchable by ob-
ject ID. Then, when a read request encounters an invalid
object, before sending a demand request to the origin
server, the replica checks the pending update list. If a
pending update for the requested object is in the pending
update list, the system applies all invalidations whose se-
quence numbers are no larger than the pending update’s
sequence number, applies that pending update, and re-
turns the value to the read request.

A remaining design choice is how to handle a second
read requests ' � for object G � that arrives when a first
read request ' � for object G � is blocked and waiting to
receive a demand reply from the origin server. Allowing
' � to proceed and potentially access a cached copy of G �
risks violating sequential consistency [1]: for example, if
the replica has processed all invalidations with sequence
numbers up to MONQP�RSRUTWV@X , if G � has a pending invalidation
with sequence nuber M	Y �[Z MONQP�RSRUTWV@X , and if G � has a
pending invalidation with sequence number M\Y �]Z MOY � ,
then read ' � will ultimately return the version of G � as-
sociated with sequence number M	Y � . But, for sequential
consistency to hold, any read of G � that happens after read
' � must return a version of G � with a sequence number at
least MOY � . Thus, if program order specifies that ' � hap-
pens before ' � , then request ' � must block until request
' � has been processed. The program order relationship
between ' � and ' � depends on the programming model:
if ' � and ' � are asynchronous reads issued by a single
thread, it is clear that read ' � must block in this case.
Similarly, if ' � and ' � are issued by threads that coor-
dinate their actions through local shared memory and if
these threads synchronize through local shared memory
in a way that reveals that read ' � was issued before read
' � , then read ' � must block [21]. But, if ' � and ' � are
issued by independent threads of computation that have
not so synchronized, then the threads are logically con-
current and it would be legal to allow read ' � to “pass”
read ' � in the cache [21, 32].

Absent information about the causal relationship
among different requests, our system makes the conser-
vative choice and blocks all read requests when a replica
is waiting for a demand read miss to be satisifed by the
origin server. Note that many web server runtime systems
(1) assume that concurrent client requests are causally in-
dependent, (2) process each client request with a single
thread, and (3) use blocking read requests when accessing
file system or database state and could therefore tolerate
allowing cached reads to “pass” concurrent read misses.
It would be straightforward to change our implementa-
tion to process multiple read requests concurrently rather
than block when the system is used in enviroments where

6



such assumptions are known to be valid. Therefore, our
performance and availability results should be regarded
as conservative. 1

Operating during disconnection. When a replica be-
comes disconnected from the server due to a network par-
tition or server failure, the replica attempts to service re-
quests from its local store. If the local copies of most
objects are valid, a replica may be able to mask the dis-
connection for an extended period. Note that to enforce�

-coherence, a replica must block all reads if it has not
communicated with the origin server for

�
seconds. We

use a heartbeat protocol to ensure liveness when the net-
work is available.

If a read miss occurs during a disconnection, it logi-
cally blocks until the connection is reestablished and the
server satisfies the demand miss. Note that in our con-
servative design described above, reads that arrive after
such a blocking read must also block to ensure sequential
consistency.

Note that in a web service environment, blocking a
client indefinitely is an undesirable behavior. Therefore,
the protocol provides two ways for services to give up
some transparancy of distributing their application in or-
der to gain control of recovery in the case where a replica
blocks because it is disconnected from the origin server.

First, after a time-out a read returns an error code. Al-
though a correct program should always check for error
codes on file or database reads, in practice this interface is
not fully transparent because (a) many applications fail to
check for error codes on IO operations and (b) the actions
an application should take on a read error may differ in
this distributed case (where, say, redirecting the request
to a different replica may work) versus the centralized
case (where probably little can be done.)

A second option is for the replication layer to take two
actions when a demand read times out: (1) signal the redi-
rection layer [12, 28, 54] to stop sending requests to this
replica and (2) signal the local web server infrastructure
to close all existing connections to all clients and to re-
spond to subsequent client requests with an HTTP redi-
rect [19] to a different replica. The approach then relies
on client-initiated request retransmission for end-to-end
recovery [9]. This option provides less precise control to
the application, but it also requires less invasive modifi-
cations of the service application code.

Finally, given the choice between reducing availability
and increasing staleness during disconnections, some ser-
vices may choose the latter. Such services may configure

1The reader may notice that if one assumes that different clients are
completely independent, it is in principle possible to go even further
and have a replica to maintain different sequentially consistent “views”
for different clients and serve data to client ^ that client _ ’s view re-
gards as invalid. We are not certain that such optimizations warrent the
additional complexity, but this may be an avenue for future work.

the replication layer to increase
�

when a disconnection
from a server is suspected.

3.3 Properties and rationale
Sequential consistency. Although invalidation mes-
sages arrive at a replica in strict sequence number order,
updates and demand read replies can arrive out of order:
updates arrive out of sequence number order because they
are sent in priority order, and demand replies arrive out of
sequence number order because they are sent at the time
of a demand read but they include the sequence number
of their earlier write.

The replica ensures sequential consistency [32] by en-
forcing condition C1 across invalidations, updates, and
demand read replies.

Lemma 1 If condition C1 holds, then the system pro-
vides sequential consistency.

Proof sketch. Assemble a sequential order for all write
and read operations as follows. Assign =+` , the > th write
operation at the origin server � , an ordering number
Ma

bSc ` � which equals the global sequence number the ori-
gin server uses for = ` ’s invalidations. At each replica
server copy d , assign '�e , the J th read operation at that
replica, the ordering number MF
 N c e � equal to the highest
sequence number of any invalidation processed by replica
d when '�e executes its return. Now, sort all read and write
operations by their ordering numbers with writes coming
before reads with the same ordering number and with ties
among reads broken by lexical ordering of replica IDs.
Such an ordering is sequentially consistent because (1)
the result of each read in the system is the same as its re-
sult if executed in this sequential order and (2) read and
writes from any program that executes at a node in the
system appear in this sequence in program order.

The system enforces C1 by the program constraints
described above and by relying on per-replica reliable
FIFO channels both to deliver invalidations in sequence
number order and to ensure that when a demand read re-
ply arrives, all earlier invalidations have arrived as well.

Self-tuning prefetching. By combining a priority
queue and a low-priority network protocol, the updates’
channel provides for self-tuning prefetching for each
replica. When the network between the origin server and
a replica provides a large amount of spare bandwidth, the
priority queue drains quickly and the channel approxi-
mates a lossless, FIFO, push-all channel. But, when net-
work bandwidth is scarce, only valuable items are sent
and the buffering delay allows multiple updates of the
same data to collapse into a single update and save net-
work bandwidth [5]. Note that unlike many traditional
prefetching protocols [17, 22, 23, 40, 49], there is no pre-
set threshold that determines whether a given object is
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valuable enough to send; instead, we rely on the low-
priority network protocol to ensure that objects are only
sent when the value of doing so exceeds the cost .

A replica maximizes the benefit of this prefetching by
maximizing the amount of valid data in its local stor-
age. It does this by delaying application of invalidation
messages as long as it can (subject to consistency and
staleness constraints). In particular, it tries to delay ap-
plying an invalidation with sequence number / until it
has an update with the same sequence number. But, it is
forced to apply an invalidation earlier than that in two cir-
cumstances: (1) the staleness deadline for an invalidation
forces it to be applied or (2) a demand read reply that
reflects state f ( f Z / ) arrives at the replica. Note
that in the latter case, a replica applies pending invalida-
tions “early” rather than force a demand request to wait
for staleness deadlines to expire.

3.4 Limitations and optimizations
Our current protocol is limited in at least two ways. These
limitations could be addressed with future optimizations.

First, our current protocol can allow a client that
switches between replicas to observe violations of se-
quential consistency. In particular, if replica ( has pro-
cessed an invalidation with sequence number ��;�g@/ih 3kj
and replica ) has processed an invalidation with se-
quence number ��;�g@/ih 3ml

( ��;�g@/ih 3nj Z ��;�g@/ih 3il
)

and a client first access replica ( and then accesses
replica ) , it could observe values at ) that are incon-
sistent with sequential consistency. Therefore, for best
results the redirection algorithm should direct a client to
the same replica for long periods of time.

We speculate that a system could adapt Bayou’s ses-
sion guarantees protocol [44] to maintain sequential con-
sistency semantics when a client switches replicas. In
particular, a replica’s web server could insert an HTTP
cookie reflecting the highest sequence number observed
by a client in responses to a client and inspect this cookie
on all requests from a client. If the sequence number
in a request exceeds the replica’s sequence number, the
replica web server signals the replication infrastructure to
process pending invalidations to bring the sequence num-
ber to a point where the request can be processed. This
optimization compromises transparency, but we specu-
late that the necessary modifications to the server would
generally not be too invasive.

Second, our protocol sends each invalidation to all
replicas even if a replica does not currently have a valid
copy of the object being invalidated. We take this ap-
proach for simplicity and because we primarily target
environments that trade cheap bandwidth and storage
for improved availability and responsiveness and where
replicas are therefore able to maintain valid copies of
most data. Our protocols could be extended to more tra-

ditional caching environments where replicas maintain
small subsets of data by adding callback state [26]. Given
our target environment, we have no current plans to pur-
sue this optimization.

4 Prototype
We have developed a prototype that implements the al-
gorithm described in Section 3. The implementation in-
cludes essentially all of the features described above: the
prototype accepts updates at servers and reads at repli-
cas, it prioritizes and orders messages and requests at
the server and replica using the policies described above,
it includes custom implementations of persistent mes-
sage queues [27] to ensure end-to-end reliable commu-
nication, it implements low-priority network send using
a server-side congestion control protocol [48], and the
prototype includes operation across and recovery from
replica, server, and network failures. Deployment does
depend on two additional subsystems that are outside the
scope of this project: a protocol for limiting the clock
skew between each replica and the origin server [37]
and a policy for prioritizing which documents to push
to which replicas [23, 49], which may, in turn, require
some facility for gathering read frequency information
from replicas [41].

Our prototype is implemented in Java, C, and C++ on
a Linux platform, but we expect the server code to be
readily portable to any standard operating system and the
replica code to be portable to any system that supports
mounting an NFS server.

The rest of this section discusses internal details and
design decisions in the server and replica implementa-
tions.

4.1 Server
The server is implemented as user-level daemon that pro-
vides an interface for local write insertions and remote
reads. It uses the local file system for file storage. Note
that rather than store per-file sequence numbers, which
the protocol sends with demand read replies, our proto-
type only maintains a global sequence number. The algo-
rithm operates as described in Section 3 except the server
includes the current global sequence number when send-
ing a demand reply rather than the sequence number of
the object’s most recent update. This simplification can
force a replica to process more invalidation messages be-
fore processing a demand reply; the resulting protocol
thus continues to provide sequential consistency, but its
performance and availability may be reduced compared
to the full protocol.

The server uses a custom-built persistent message
queue for sending updates and invalidations to each
replica. The implementation buffers invalidation mes-
sages on the server’s disk, manages TCP connections be-
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tween the server and replicas, and buffers pending inval-
idations and updates in the replica’s memory sorted by
sequence number. The implementation ensures end-to-
end, at-least-once message delivery by allowing a replica
to wait to process a pending message until the message’s
deadline, read the message and apply it to its local persis-
tent state, and finally explicitly tell the replica’s message
layer to acknowledge the message to the server’s message
layer.

The use of a persistent message queue for delivering
invalidation messages simplifies our implementation by
avoiding the need for a separate resynchronization proto-
col to handle failures [4].

Each update channel between the server and a replica
is similar to a persistent message queue except (a) the
server buffer is in memory because it is permissible to
lose an update if the server crashes and (b) messages are
queued in priority rather than FIFO order at the server.
A key optimization in our implementation of the update
queue is to enqueue an updated file’s name rather than the
updated file’s body. As described in Section 3, our update
protocol only ever sends the most recent version of a file,
so there is no need for each queue to maintain its own
copies of files. A potential future optimization would be
to send diffs rather than the entire new file [38].

To provide a low-priority network channel for up-
dates that does not interfere with other network traffic,
we reimplement TCP-Nice [48] as a user-level proto-
col that makes use of libpcap for packet monitoring to
measure round-trip times. This implementation retains
TCP-Nice’s non-interference properties, but because of
the additional measurement overheads at user-level, the
implementation may be too conservative and may there-
fore realize somewhat lower network utilization than an
in-kernel implementation.

4.2 Replica
Our replica exports the system’s shared state via a local
user-level NFS file server [36]. The replica mounts this
local file server as if it were a normal NFS server, allow-
ing local processes to access shared data as if they were
stored in a standard file system. The replica’s in-kernel
NFS client sends all requests to the local user-level NFS
server, which implements our replication algorithm.

Our implementation uses the local file system for stor-
age. Each shared file is represented by two local files: a
shadow file for metadata (whether the file is valid and the
version number of the local copy) and a data file for the
body of valid files.

4.3 Limitations to transparency
Our goal is to provide transparent replication to existing
applications, but the system does expose a few aspects

of replication. Some of these issues are implementation
choices and some are more fundamental.

In our current implementation, an application at the
server inserts updates into the system using a special
write call that includes the object ID, the updated data,
and the replication priority. We provide this interface to
allow applications to control the replication policy. An
alternative would be to intercept write calls at the origin
server as we now intercept read calls at the replicas. In
such an implementation, the system would have to imple-
ment a default policy for prioritizing updates by, for ex-
ample, tracking the write rate of each object at the server,
tracking the read rate of each object at each client, propa-
gating read frequency information to the server, and esti-
mating the priorities of an update as the read rate divided
by the write rate and scaled by the object size [49].

A more fundamental issue is that the correct configu-
ration of a replicated service may depend on the internal
structure of a service. For example, we currently set a
single

�
value to limit the staleness of a replica, but it

might be desirable to allow different updates to specify
different

�
values. Similarly, our current interface ap-

plies each update individually, but some applications may
wish group a set of updates into a single atomic group.
Finally, although we focus on dissemination services, it
may be desirable restructure a more complex services
into different pieces with different replication strategies
for each piece. Some services, for instance, may not
replicate some critical pieces for security when replicas
are less trusted than the origin server. Or, some services
may wish to make use of different consistency protocols
for different subsets of data [47].

5 Evaluation
We evaluate our traces using two approaches: by employ-
ing a trace-driven simulator and constructing a prototype.

5.1 Simulation methodology
Our trace-driven simulator models an origin server and
twenty replicas, and it assumes that the primary bot-
tleneck in the system is the network bandwidth from
the origin server. To simplify analysis and comparisons
among algorithms, we assume that the bandwidth avail-
able to the system does not change throughout a simu-
lation run. As described below, we take the size of ob-
jects from a trace, and we assume that the size of con-
trol messages is insignificant compared to the size of
objects, so we consider them to be of 0 size. Transfer-
ring an object over the network thus consumes a link for
GIH�JA;�do���o>QpA;IqIH 5 MOL�=r>QL���s seconds, the delay from when a
message is sent to when it is received is M�=+t 5 �Q;�MOdu&C03 ;@��� 5wv ;@7a>Qp�;IqwH 5 MOLw=r>QLA��s , and by default we assume
that the nwLatency of the network between the server and
a replica is 200ms +/- 90%.
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We compare TRIP’s FIFO-Delayed-Invalidation/Pri-
ority-Delayed-Update algorithm to (a) FIFO-Inval/De-
mand-Update which delivers updates eagerly in FIFO or-
der and which does no prefetching, (b) FIFO-Inval/Pri-
ority-Update which delivers both invalidations and up-
dates eagerly while still enforcing sequential consistency,
and (c) FIFO-Push-All, which pushes all updates to all
replicas. All of the algorithms enforce sequential con-
sistency, and we assume that the system also requires a�

-coherence guarantee of
�yx{zw|

seconds, which the
FIFO-Inval algorithms naturally meet, which the Delayed
algorithm consciously enforces, and which the FIFO-
Update-All algorithm may or may not meet depending
on available bandwidth.

5.1.1 Workload

We evaluate the algorithms using a trace-based workload
of the Web site of a major sporting event 2 hosted at sev-
eral geographically distributed locations. The logs con-
tain a total of 22.8 million requests from clients and 281
thousand writes occurring at the origin server, and span
one day. We use logs in two formats: standard web traces
and update traces. Web traces are traces of requests by
clients at each replica, whereas update traces contain in-
formation about which object was modified and when.

In order to simplify simulations we ignore certain en-
tries in our trace file. In particular, we remove from the
trace files (1) all dynamic requests, (13.9%) (2) all re-
quests that do not contain 200 or 304 as server return
codes, (36.7%) (3) entries that appear out of order in the
trace files (0.58%), and (4) requests that our parser fails
to parse (0.17%).

We eliminate those requests with return codes other
than 304 and 200 because we assume that the expensive
operations at a replica are those that potentially lead to
communication with the origin server. Although requests
that result in error codes of 302 (server redirection) are
valid requests, we remove them from our traces because
those requests reappear in our trace files as requests with
304 or 200 as return codes. We remove out-of-order re-
quests because they pose a problem for the event queue in
our trace-driven simulator. Given that they are infrequent
we do not believe they influence our results. Finally, we
remove requests that have valid return codes but that our
conservative trace parser fails to parse. Since the number
of requests we remove because of our parser is small, we
do not believe removing them influences our results.

5.1.2 Prediction policy

Our interface allows a server to use any algorithm to
choose the priority of an update, and this paper does not
attempt to extend the state of the art in prefetch predic-
tion. A number of standard prefetching prediction al-

2The 2000 Summer Olympic games
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Fig. 5: The effect of bandwidth availability on response times

gorithms exist [17, 22, 23, 40, 49] or the server may
make use of application-specific knowledge to prioritize
an item (e.g., a news editor may know that the day’s
headline article will be widely read before the system
has measured the story’s read frequency). Our simple
default heuristic for estimating the benefit/cost ratio of
one update compared to another is to first approximate
the probability that the new version of an object will be
read before it is written as the observed read frequency of
the object divided by the observed write frequency of the
object and then to set the relative priority of the object
to be this probability divided by the object’s size. This
algorithm appears to be a reasonable heuristic for server
push-update protocols: it favors read-often objects over
write-often objects and it favors small objects over large
ones.

5.2 Simulation results
Our primary simulation results are that (1) self-tuning
prefetching can dramatically improve the response time
of serving requests at replicas compared to demand-based
strategies, (2) when prefetching is used, delaying ap-
plication of invalidation messages by up to 60 seconds
provides a modest additional improvement in response
times, (3) although a push-all strategy enjoys excellent
response times by serving all requests directly from repli-
cas’ local storage, this strategy is fragile in that if update
rates exceed available bandwidth for an extended period
of time, the service must either violate its

�
-consistency

guarantee or become unavailable, and (4) by maximizing
the amount of valid data at replicas, prefetching can im-
prove availability by masking disconnections between a
replica and the origin server.

5.2.1 Response times and staleness
In Figure 5 we quantify the effect of available bandwidth
on client-perceived response times. We assume that client
requests for valid objects at the replica are satisfied in
20ms, whereas requests for invalidated objects are for-
warded from the replica to the origin over a network with
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an average round-trip latency of 200ms as noted above.
Additionally, Figure 6 plots the average staleness ob-
served by a request. We define staleness as follows. If
a replica serves version 9 of an object after the origin
site has already (in real time) written version J}�
J Z 9%! ,
we define the staleness of a request to be the difference
between when the request arrived at the replica and when
version 9	0~� was written. To facilitate comparison across
algorithms, this average staleness figure includes non-
stale requests in the calculations. We omit due to space
constraints a second graph that shows the (higher) aver-
age staleness observed by the subset of reads that receive
stale data. In both figures, we vary the available band-
width on the x-axis.

The data indicate that the simple FIFO-Push-All algo-
rithm provides much better response time than the FIFO-
Inval/Demand-Update strategy, speeding up responses by
a factor of at least four for all bandwidth budgets ex-
amined. However, this comparison is a bit mislead-
ing as Figure 6 indicates: for bandwidth budgets be-
low 2.1MB/s, FIFO-Push-All fails to deliver all of the
updates and serves data that becomes increasingly stale
as the simulation progresses. If the system enforces

�
-

coherence with
��x�zw|

seconds, FIFO-Push-All replicas
would be forced to either violate this freshness guaran-
tee or become unavailable when the available bandwidth
falls below about 5MB/s.

The systems that use self-tuning prefetch have sig-
nificant advantages over both FIFO-Push-All and FIFO-
Inval/Demand-Update even when they enforce both se-
quential consistency and a

�
-coherence guarantee with��x�zw|

seconds. When available bandwidth exceeds
5MB/s they match FIFO-Push-All’s excellent response
time and provide 4x speedups compared to the Demand-
Update system. At lower bandwidths, these algorithms
meet the timeliness bound of 60 seconds, but they still
significantly outperform the Demand-Update strategy.
For example, when 2MB/s of bandwidth is available
(about 40% of the bandwidth required for FIFO-Push-

All to meet the
��x�zw| � constraint), FIFO-Inval/Pri-

ority-Update and FIFO-Delayed-Inval/Priority-Delayed-
Update provide speedups of 3.3 and 3.5 respectively
compared to FIFO-Inval/Demand-Update; and FIFO-
Update-All provides only additional speedups of 1.3 and
1.2 despite the latter’s liberties with the system’s fresh-
ness requirements. Even at low bandwidths, the self-
tuning prefetching algorithms get significantly better re-
sponse time than the demand algorithm because (a) the
self-tuning network scheduler allows prefetching to occur
during lulls in demand traffic even for a heavily loaded
system and (b) the priority queue at the origin server
ensures that the prefetching that occurs is of high ben-
efit/cost items.

5.3 Bandwidth v. availability
We measure the replication policies’ effect on availability
as follows. For each run of our simulator, we randomly
choose a point in time when we assume that the origin
server becomes unreachable to replicas. We simulate a
failure at that point in time and measure the length of
time that the system can continue to function before any
replica receives a request that it cannot mask due to dis-
connection. We refer to this duration as the mask dura-
tion. We assume that systems enforce

�
-coherence with��x�zw|

seconds before the disconnection but that discon-
nected replicas maximize their mask duration by stopping
their processing of invalidations and updates during dis-
connections and extending

�
as long as they can continue

to service requests. Note that given this data, the impact
of enforcing shorter

�
s during disconnections can be es-

timated as the minimum of the time reported here and the�
limit enforced.
Figure 7(a) shows the distribution of mask dura-

tions when we configure our system with 3.5MBps of
available bandwidth available. We show on the x-axis
the mask time and use the y-axis the fraction of sam-
ples in the cumulative distribution. Figure 7(b) shows
how the average mask duration varies with bandwidth
for the FIFO-Inval/Demand-Update, FIFO-Inval/Prior-
ity-Update, and FIFO-Delayed-Inval/Priority-Delayed-
Update algorithms (note that the Demand-Update algo-
rithm’s line is near the x axis.) We plot along with the
lines, bars representing confidence intervals between 5%
and 95% for all samples. Different trials show high vari-
ability due to impact of the timing of failures.

We note that the FIFO-Inval/Demand-Update algo-
rithm performs poorly. In Figure 7(a), the line closely
follow & x�|

, indicating virtually no ability to mask fail-
ures. This poor behavior arises from the fact that a replica
waits until the arrival of a request for an object to refresh
that object in its cache. As a result, the first request for
an object after that object is modified at the server causes
the replica to experience an unmaskable failure. On the
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other hand, as Figure 7(a) indicates, the FIFO-Update-
All algorithm can mask all failures due to the fact that at
any point in time, the entries in a replica’s cache form a
sequentially consistent (though potentially stale) view of
data.

The FIFO-Delayed-Inval/Priority-Delayed-Update al-
gorithm outperforms the eager FIFO-Inval/Demand-Up-
date algorithm in both graphs by maximizing the amount
of local valid data. We note that both algorithms pro-
vide average masking times of thousands of seconds for
bandwidth of 1.5MB/s and above and that providing ad-
ditional bandwidth allows these systems to prefetch more
data and hence mask a failure for a longer duration. As
noted in Section 3, systems may choose to relax their

�
-

coherence time bound to some longer
���

value during
periods of disconnection to improve availability. These
data suggest that systems may often be able to completely
mask failures that last the maximum maskable duration���

even for relatively large
���

limits during disconnec-
tions. Finally note the wide experimental variability in
measured masking durations. Although replication often
allows systems to mask failures for long durations, they
can occasionally get unlucky and block on a demand read
soon after a failure.

5.4 Prototype measurements
We run the system over the Emulab testbed [51]. The
network between our origin servers and replicas is config-
ured to have 3Mbit/s of bandwidth and 100ms of latency.
We mount the local user-level file server using NFS with
attribute caching disabled.

Figure 8 shows the values read from two variables
stored in the shared file system provided by the TRIP pro-
totype. In this experiment, the origin server increments
the value in a file, alternating between the files every five
seconds, and each replica reads each file every second. In
this system, we allow prefetching to one replica but dis-
able it for the other. First, note that both replicas observe
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Fig. 8: Consistency and timeliness observed by a TRIP replica
when one replica is able to prefetch and the other is not.

sequentially consistent views of the data—once a replica
observes that the second file has been incremented, it
never observes an older value of the first file. Second
note that the first replica applies invalidations as soon as
it receives updates to mask them, but the second replica
receives no prefetched updates and therefore delays ap-
plying invalidations as long as it can. Therefore, during
the first 60 seconds of the experiment, the second replica
sees the original value of the data; after that, it sees values
that ware current 60 seconds earlier.

6 Related work
Yu and Vahdat [55] show that minimizing the time be-
tween when an update occurs and when it propagates
maximizes system availability for any given consistency
constraint. Our protocol demonstrates how to exploit this
observation for dissemination workloads by integrating
consistency and self-tuning prefetch.

Our argument is similar in spirit to Hill’s position
that multiprocessors should support simple memory con-
sistency models like sequential consistency rather than
weaker models [25]. Hill argues that speculative execu-
tion reduces the performance benefit that weaker models
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provide to the point that their additional complexity is not
worth it. We similarly argue that for dissemination work-
loads, as technology trends reduce the cost of bandwidth,
prefetching can reduce the cost of sequential consistency
so that little additional benefit is gained by using a weaker
model and exposing more complexity to the programmer.

A number of efforts address providing coherence for
individual web objects [53, 35, 52], but little that ad-
dresses providing consistency across objects or integrat-
ing consistency and prefetching in this environment.

Several studies have examined ways to cache pages
that are dynamically generated based on some underly-
ing data [43]. Challenger et al.’s [12, 13] Data Update
Propagation allows replicas to cache pages or page frag-
ments that are dynamically generated at an origin server
by tracking dependencies between pages and the under-
lying data used to generate them and by sending invali-
dations or updates to cached pages when the underlying
data change.

Several strategies for mixing updates and invalidates
have been explored for multicast networks. Fei [18]
simulates a threshold policy that uses an object’s read
rate, its write rate, and the network topology to choose
between multicasting updates on one hand or multi-
casting invalidates and unicasting demand read replies.
SPREAD [42] dynamically builds application-level in-
validation and multicast hierarchies for each volume of
objects, with each proxy cache using a threshold scheme
to choose between polling, joining the invalidation tree,
and joining the update tree for each volume. Li and
Cheriton [33] propose a push-all multicast strategy that
separates data into volumes so that a replica only receives
updates for volumes it has referenced. All of these mul-
ticast proposals provide a best-effort approximation of
linearizability by immediately applying all messages to
reduce the risk that reordering compromises consistency
and to minimize real-time staleness. A potential avenue
for future work is to develop a way for our algorithm
with delayed message delivery, sequential consistency
constraints on message order, and self-tuning prefetch to
make use of multicast or application-level multicast to
scale to larger numbers of replicas.

In replicated databases, several systems have explored
ways to allow different updates to specify different con-
sistency requirements. Lazy Replication [30] allows an
update to enforce causal, sequential, or linearizable con-
sistency. Bayou [45] allows each update to specify its
consistency dependencies and inconsistency-resolution
techniques. These systems both focus on multi-writer
environments and eventually propagate all updates to all
replicas.

A number of web prefetching systems have been pro-
posed, but most rely on statically tuned thresholds to de-
cide which objects are valuable enough to push in order to

reduce network and server interference [17, 22, 23, 40].
Davison et al. [16] propose using a connectionless trans-
port protocol and using low priority datagrams (the in-
frastructure for which is assumed) to reduce network in-
terference. Crovella et al. [14] show that a window-based
rate controlling strategy for sending prefetched data leads
to less bursty traffic and network smaller queue lengths.
Kokku et al. [29] describe a threshold-free prefetching
system that like our system also makes use of TCP-
Nice [48] to avoid network interference. They focus on
supporting prefetching of soon-to-be-accessed objects by
client browsers rather than pushing of updates by ori-
gin servers to replicas, and they do not consider the
problem of maintaining consistency for data that may be
prefetched long before it is used.

7 Conclusion
This paper explores integrating data prefetching and data
consistency to enable transparent replication of large-
scale information dissemination services. Our system
succeeds in integrating prefetching and consistency by
(1) providing self-tuning push-based prefetch from the
server and (2) buffering and carefully scheduling the ap-
plication of invalidations and updates at replicas to max-
imize the amount of valid data—and therefore maximize
the hit rate, minimize the response time, and maximize
availability—at a replica. Our analysis of simulations
and our evaluation of a prototype implementation support
the hypothesis that it is feasible to provide transparent
replication for information dissemination applications by
carefully integrating consistency and prefetching.

A limitation of this work is its focus on information
dissemination applications. This class of applications is
important, but in the future we hope to apply our protocol
as one part of a more general system where one subset of
the data is read-only at the replicas, where another subset
is read/write at the replicas, and where different subsets
use different consistency algorithms [47].
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