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PREFACE

This thesis is concerned with an algorithm for computing exactly the
characteristic polynomial of an integral matrix A (or in some cases, a
factorization of it over the integers). The algorithm described here,
which uses residue arithmetic, is analogous to the Danilewski method for
reducing a matrix to Frobenius form. The algorithm can be performed using
either single-modulus or multiple-modulus residue arithmetic, and examples
are given for both cases.

We take advantage of the fact that the integers modulo a prime form
a finite field, F. Thus, all the theorems relative to matrices and poly~-
nomials over a field can be utilized in describing the algorithm. Using
the residue arithmetic algorithm, we reduce a matrix to Frobenius form. The
Frobenius form obtained using residue arithmetic is the residue modulo m
of the Frobenius form obtained using rational arithmetic. Then, if the
modulus is sufficiently large, the two Frobenius forms are the same. Thus,
from the blocks along the diagonal of the Frobenius form we obtain the exact
multiple-precision coefficients of the characteristic polynomial or of its
factors over the integers.

The thesis begins in chapter I with a description of the reduction
to Frobenius form using rational arithmetic. Chapters II, III, and IV survey
the theory of residue arithmetic for integers, matrices, and polynomials. 1In
chapter V the single-modulus algorithm for reducing a matrix to Frobenius
form is described , and examples are given. The multiple-modulus algorithm
is described in chapter VI. It is shown that different moduli may yield
different factorizations. 1In section 3 a theorem is proved which gives an

algorithm for determining which factorizations are incorrect. All of the

material related to the multiple-modulus algorithm is thought to be new.
iv




Bounds are given in section 5 for the number of moduli required to guarantee
that the coefficients can be reconstructed using the Chinese Remainder
Theorem. AExamples are given which illustrate the algorithm in section 6.
Chapter VII gives numerical results from a computer program.

The author wishes to express her appreciation to the Computation
Center of The University of Texas at Austin for the use of their facilities
in preparing computer programs based on the material in this thesis.
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my graduate study.

August 1971




ABSTRACT

This thesis is concerned with the reductiog of an integral matrix
to Frobenius form exactly using residue arithmetic. Thus, exact integral
factors of the characteristic polynomial are obtained. The algorithm is
based on a modification of the Danilewski method. This algorithm can be
performed using either single-modulus or multiple-modulus residue arithmetic,
and examples are given for both cases.

Included in this thesis is a description of the Danilewski method.
The theory of residue arithmetic for integers, matrices, and polynomials
is surveyed in order to provide an adequate background for describing the
modified Danilewski method. The selection of the moduli is discussed, and

numerical results from a computer program are given.

vi
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CHAPTER I

THE DANILEWSKI METHOD

1. Introduction. It is well known that the Danilewski method [Danilewski,

1937] for reducing a matrix A to Frobenius form,

2
(1.1) F= <:::> '.. ’
Fl
where each diagonal block has the form
r'-- —
000 ... 0 xD
Ty
100 ... 0 xiizz ; ;
(1.2) Fi = i s
010 ... 0 xWP
r.-3
i
0 00 ... 1 xii)
- —

is numerically unstable [Frank, 1958]. Several attempts have been made to
reduce the inaccuracies by using multiple-precision arithmetic and pivoting
for size [Chartres, 1964], [Hansen, 1963]. These variations yield a Frobenius
form much more accurately than previously reported. However, it has been
shown that because of the ill-condition of the Frobenius form of a matrix,

the Danilewski method and its variations usually prove unsatisfactory for
determining eigenvalues [Wilkinson, 1965, pp. 405-411]. Even small errors

in the diagonal blocks, the Fi’ may lead to catastrophic errors in the

eigenvalues.
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Owing to the fact that a Frobenius form* of a matrix does give us
a factorization of the characteristic polynomial and some information on
the derogatory nature of the matrix, this condensed form is still of some
interest to us. For matrices arising from damped mechanical or electrical
systems it is common for the Frobenius form to be well-conditioned [Wilkinson,
1965, p. 482].

It is for these reasons that we describe here a modification of the
Danilewski method with which we can reduce a matrix to Frobenius form, that
is compute the Fi exactly, without the use of multiple-precision arithmetic
or pivoting for size [Slotnick, 1963, pp. 4-42 - 4-46]. Since this modifica-
tion uses residue (or modular) arithmetic, it is applicable only to integral
matrices. This restriction is not serious, however, since fixed-word-length
computers store only rational numbers which can be scaled to integer form.

We observe that if the Frobenius form of the matrix A is

then the Frobenius form of the scaled matrix k°A is given by

[0 00 0 ... 0 K% 7
n
1 00 ... o kL
n-1
n-2
FkA-O]_O...Ok Xn‘z -
0 0 0 ... 1 kx
| 1 ]

* The nonuniqueness of this form (and hence of the factors) is discussed
below.




Hence, given FkA and k we can compute FA'
In the remainder of this chapter we briefly describe the Danilewski

method in order to provide an adequate background for describing the modified

method. Other descriptions of the method are given in Wilkinson [1965,

pp. 405-407], Householder and Bauer [1959], Householder[1964, pp. 156-1587,

and Wayland [1945].

2. The Algorithm. Using the Danilewski method we transform a matrix A, by

means of similarity transformations, into a matrix F, which is in the form

(1.1). The elements in the last column of the Fi are coefficients of the

characteristic polynomial for Fi’

T T r.-1
= (-1y I 1 _ (1)1 L) a2 (d) _ L)
pi(K) = (-1) “[A X A - .. xri_ZK xri_lk . 1.

Thus, the characteristic polynomial for F is

T

p(A) = P (A) ... pLO\)-

Since A and F are similar, then p(A) is also the characteristic polynomial for
A. Thus, by using the Danilewski method, we can compute the characteristic

polynomial (or a factorization of it) for the matrix A. We observe also

i s A S A

that the matrix F is a special case of a Hessenberg form for A.

The matrix F is obtained after a finite number of similarity trans-

formations of the form
A =S "A.S (k = 0,1,2,...M)

where A = A. It is recommended by both Hansen[1963] and Wilkinson (1965,
P. 409] that the computation be broken into two stages. During the first
stage, the matrix A is reduced to Hessenberg form. Wilkinson has shown that

for this step of the algorithm, single~precision arithmetic is usually

j sufficient. In the second stage, the Hessenberg matrix if further reduced to
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Frobenius form. It is during this stage that we generally need to work in
higher precision arithmetic. (See, for example, [Chartres, 1964].)

We shall assume here that step one and step two are carried out
using elementary similarity transformations, since analogous transformations
will be used in carrying out the modified algorithm. These transformations
consist of one of the following three types of operations:

(a.) 1Interchange of rows i and j (or columns i and j),

(b.) Multiplication of row i (or column i) by a nonzero constant,X,

(c.) Addition to the ith row of an arbitrary multiple, K, of row j (and
the analogous operation on columns).

Thus, the Sk can be assumed to be the elementary matrices which are obtained

from the identity matrix by performing one of the above operations on it.
We denote these by Iij s Ei(K)’ and Eij(K)’ respectively.

We now consider the problem of reducing a matrix A to Hessenberg
form. This is accomplished in n-2 major steps of the form

-1
A = T Ak o

where Ao = A and J, is a product of elementary matrices. Each transformation

k
changes a matrix Ak into a matrix, Ak+1 ,» in which there is a row of zeros
(where there was not one before) below the subdiagonal. After the first

transformation we have

A1 - J;1A0Jo
[ x x|
X X .
x
= . s
X X
() X X




S SR o e . =

R P

i

T,

£
s

iz
%
-
i}
£
a1
*

where

and

The case in which a pivotal element ago)

The (j + 1)st transformation produces

In-Z CD
= un,l “n,z 11n,n-2
I
0 0 0 2
_a(®
u - n,i
n,i )
a
n,n-1
= 0 1is treated below.
i,i-1

A =J,"A,J
j+ i3
-1 -1 -1
= (Jj Jj-l Jo ) A0 (Jo . Jj-l Jj)
X |
= |Ix x X s
C) H
where H is a Hessenberg matrix of order jt+2, _
[ 0 )
Tn-j-2 O
0
T3 7 Pa-5,1 Paeg,2 Pa-j,n-g-2 [ 1|0 O s
0
Tit1
0
L _
and
(D
- - n-j,i
n-j,1

Finally at the (n-2)nd step, if no pivots are zero, we

Hessenberg form,

&)

n-j,n-j-1

have a matrix in
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Aneg T 95038037 3
_ =1 1 -1
= ( n-3 “n-4 ° Jo ) A, (Jo
— e
X X X X X X
X X X ...X X X
= X X ...X X X
X X X
X X
— -
where
— —
e
1R
I 4 31
C) ! In-z
and
(n-3)
py = 51
(n-3)
a3
(n-1)

Clearly if a pivotal element a

errors to occur. Thus, by searching through the elements a
for the largest element, and interchanging columns and corresponding rows,

we can pivot a‘relatively large element into the (i,i-1) position before

annihilating row 1i.

In case we have a(?-1)= 0 (j=1,...,i-1), then we simply partition

ij

the matrix as follows and apply the algorithm to the principal submatrix §

in rows one through i-1:

S

O

i,i-1

respect to other elements in the row, then we can expect excessive roundoff

9‘

H

is small in magnitude with

(j=1,...,i-1)
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where H is a Hessenberg matrix of order n-i+l. If the pivotal element is
not zero, but less than some threshold value € , say Z—tﬂ A ”E » Where t

is the number of bits in the mantissa of the floating-point computer word,
then we can replace & by zero and partition the matrix as described above.
What we have, then, at the end of the first stage of computation is a matrix

of the form

which is similar to A, and where each Bi is in.hessenberg form with nonzero
subdiagonal elements. ’

In stage two of the reduction of A we must annihilate the elements
on and above the main diagonal of each of the diagonal blocks Bi except for
the elements in the last column, and we must normalize the subdiagonal
elements to unity. Hansen[1963] suggests deferring the normalization
until after producing the zeros in order to save arithmetic and to increace
accuracy.

It is desirable to produce the zero elements in an order that will
save some arithmetic [Hansen, 1963]. We have at least two choices of
orderings which possess this property. One choice is to annihilate the
elements by rows from the top using row operations. 1In a given row we must
annihilate the diagonal element first in order not to destroy zeros already
produced in that row. Here, the inverse operations involve only one multi-
plication and one addition for every non-zero element in the row un&er
consideration.

Another choice is to annihilate the elements by columns, beginning

with column one. 1In this case, the diagonal element of a given column
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should be the last element annihilated in order to save arithmetic.

these operations, the matrix A is reduced to block triangular form

where each diagonal block Di is of the
—; 0 0

déi) 0 o

D,= |0 dgz) 0

0 0 0

vy

D,
form

0 yii)
i

(i)

0 yri-—l
(1)

0 yr -2
i

(1)
d y
ﬁﬂ&'l 1

After

In both choices above it is usually necessary to utilize double-precision

accumulation of inner products in order to save accuracy.

The coefficients, x(l), of the characteristic polynomial of Di s

3

r, -1
i xii)x i

ri r
p; (M) = (-1) A

are thus given by

oD

and

R OO TR C O W e L
r.~1 r,

ri-2
_ (1)

ri-l

xD =y {0 TT A1,k

J J

(These products usually must be camputed in double precision to reduce error.)

(1)
g P

(1) by the xgi)

Hence, replacing the Y5 j

k=]i-j+1

and replacing the a4

completes the computation of the Fi of the form (1.1).

(j=2,..

Ty

1

).

by unity




We should point out that the form (1.1) is not unique for a given

$
=
1
L

matrix. In fact, the form obtained depends upon the order in which the

elements below the first subdiagonal are annihilated. For example, if the
elements are annihilated by coluﬁns, beginning with column one, we might
product a Frobenius form with the Fi permuted or with a completely different
set of Fi than we would obtain by annihilating the elements by rows, beginning

with row n.

Before describing a modification of the Danilewski method which

R B SR e e SR

uses residue arithmetic, it is necessary to review the theorems of residue

arithmetic. Chapters II, III, and IV summarize these theorems.
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CHAPTER II

RESIDUE ARITHMETIC FOR INTEGERS, MATRICES, AND POLYNOMIALS

1. Introduction. In this chapter we review some of the main definitions and

theorems on residue arithmetic for integers, matrices, and polynomials.

The results on integers can be found in Szabo and Tanaka [1967], and the
results on polynomials in most elementary number theory books. For example
see Griffin [1954]. The results on matrices can be found in Howell and
Gregory [1969a]. The proofs of these theorems can be found in Howell [1969]
and Howell and Gregory [1969c]. For this reason, some of the theorems will

be stated here without proof.

2. Integers. Since the moduli m and -m generate the same residue classes,
and since the case m=1 is not of interest to us, we shall assume in the

following discussion that m is an integer greater than one.

(2.1) DEFINITION. Given integers a and b, if -m/2 < a s m/2 and if a = b
(mod m), then we write
a= |b|m

and say a is a residue of b modulo m.

Notice that Szabo and Tanaka define Iblm to be the unique number a in the
interval [0,m-1]. We find it more convenient, however, to use the "symmetric'.
residue, a, where a € (-m/2, m/2]. We can show that this residue is unique.
Hence we may say that a is the residue of b modulo m. From the defi;itions

of congruence and residue, we can prove the following.

10
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(2.2) THEOREM. [Szabo and Tanaka, 1967, pp. 16-24] Let a and k be integers.

Then
(a) lkm]m = 0.
() k|a| = lka}km .

(c) |a]m = a, if and only if -m/2 < a = m/2.
@) |a=+ kmlm = |a|m.

(e) I-alm = lm-a]m.

(f) Ifm is a prime, then Iam]m = la]m.
(8) Ifml, chen ||| = |a] .
Multiplication, addition, and subtraction have the following proper-

ties.

(2.3) THEOREM. [Szabé and Tanaka, 1967, pp. 18,19] If a and b are integers,

then

@ faxnly =l 25, = oz 1ol 1 = 1 (ol
and

@ fal, = Halpl, = lalol ], = Tlal ol ], = [val_.

Division, on the other hand, must be treated with more care. The
basic rules concerning division modulo m are established by the following

theorems. We begin by introducing the concept of multiplicative inverse

modulo m.

(2.4) DEFINITION. [Szabo and Tanaka, 1967, p. 21] If a and b are integers,
and if
(i) -m/2 < b = m/2
(ii) ]ablm = |ba|m =1

then we write




12

b= a-l(m)

¥
I
¥
1

'
/;? 4
!

i

and say b is a multiplicative inverse of a modulo m.

T,

(2.5) THEOREM. [Szabd and Tanaka, 1967, p. 22] If a is an integer,

i

then a-l(m) exists if and only if

(1) |a| #0

L B

(ii) (a,m) = 1.

(2.6) THEOREM. [Szabd and Tanaka, 1967, p. 22] 1If a‘l(m) exists, it is .

unique.

S e e

(2.7) THEOREM. [Szabo and Tanaka, 1967, p. 26] If a and b are integers,
then
-1, -1
(a) (a @) “(m) = [a]_,

®) (@) @ = [aT@ v @ = b - 2w,

(¢) Ifm|M, then la-l(M)lm = a-l(m).

If m is a prime then we have an explicit expression for the multi-

plicative inverse.

(2.8) THEOREM. [Szabd and Tanaka, 1967, p. 24] If a is an integer and m

-1
a prime, then if a "(m) exists, we have

a~1(m) = ]am-zlm.

Using the above theorems, we can now perform division to a limited

extent.

The following properties can be proved using the above theorems and definitions.
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(2.9) THEOREM. {Szab& and Tanaka, 1967, p. 38] If a and b are integers,

and

(1) alb

. -1
(1i) a “(m) exists,

then

]
|

_b_
a

Furthermore, there is a cancellation law for integers modulo m.

(2.10) THEOREM. [Szabd and Tanaka, 1967, p. 21] If a and b and k#0
are integers, and
(1) |ka|_ = |kb|
X -1
(ii) %k “(m) exists
then

lal_ = [b]_.
This leads to the solution of a single linear equation in one unknown.

(2.11) THEOREM. [Szabd and Tanaka, 1967, p. 24] 1If a and b are integers
and a-l(m) exists, then !ax‘m = lblm has a solution x which lies

in a unique residue class which is given by

| x|

1f, additionally, m is a prime, then

]

= |bra |

]
o
V]

I«
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The results in the above theorems relating to multiplicative inverses modulo
m show that if m is properly chosen, then division by an integer a in ordinary

arithmetic is analogous to multiplication by a—l(m) in residue arithmetic.

EXAMPLE. Let

m= 13
a=17
b= 11.
If
lax| = |b]
then
x| _ = la ™ (m)-b]_

177 13) 11

13
= |2 . 11|13
= [2215
= -4,

3. Matrices. Most of the theorems on integers have an analogue in matrix
theory for residue arithmetic. Where there are differences, they will be
pointed out. As before we shall assume m>1. All matrices are assumed to
have dimensions which are conformable for the operations indicated. We

also assume that m is always greater than the order of the matrices. .

(3.1) THEOREM. [Howell and Gregory, 196%9a, p. 210] Given pxq integral
matrices A and B, if

a.j = [b

i ijlm

for all i and j, then we write




R
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A= ‘Blm’

and say A is a residue of B modulo m.

As with integers, this residue modulo m of a matrix A is unique. Thus, we

can say that A is the residue of B modulo m.

From the definition of residue modulo m for matrices we can establish

the following basic rules for doing matrix arithmetic modulo m.

(3.2) THEOREM.

[Howell and Gregory, 1969c, p. 24] Let A and B be integral

matrices and k an integer. Then

(a)
(b)
(c)

(d)
(e)
(£)

lmAlm =¢ (the null matrix).

kla| = lkAlkm.

IAIm = A, if and only if -m/2 < a4 = m/2 for all i and j.
(Here, we call A a residue matrix or a matrix modulo m.)
| £ usl, = [al,,

|-al_ = lmI-Alm.

1f m|M, then ‘IA‘M‘m = lAlm.

Addition, subtraction, and multiplication of matrices modulo m

have the following properties.

(3.3) THEOREM.

[Howell and Gregory, 1969a, p. 211] If A and B are integral

matrices, then

(a)

and

(b)

Notice, however,

Ccommutative.

laxsl_=lal_+8l_=laxisl | =|al_=z]

la 181 = iallsl,) .

|as|_ = |1al 3l

that multiplication modulo m of matrices modulo m is not




i
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With matrices, we have a cancellation law for scalar multiplication. !

(3.4) THEOREM. [Howell and Gragory, 1969a, p. 212] If A and B are pxq
integral matrices, and k#0 is an integer, and if
(0 |l = ksl
. -1 .
(ii) %k "(m) exists,

then

lal_ = 3]

For the following discussion on matrix inverses modulo m, we must

restrict ourselves to square matrices. As before, we assume that all matrices

are conformable for the operations indicated.

(3.5) DEFINITION. [Howell and Gregory, 1969a, p. 212] If A and B are

nxn integral matrices, and if

(1) \AB]m = |m| =1
(1) |B| =3,
then we write
B = A" (m)

and call B a multiplicative inverse modulo m of A.

The question of the uniqueness of the multiplicative inverse modulo m is

answered by the following theorem.

(3.6) THEOREM. [Howell and Gregory, 1969a, p. 212] If A is an nxn integral -

matrix, and if A—l(m) exists, then it is unique.

In order to discuss existence, we first need to introduce the concepts of

nonsingularity modulo m and adjoint matrix modulo m.
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(3.7) DEFINITION. [Howell and Gregory, 1969a, p. 212] If A is an nxn

integral matrix, then A is said to be nonsingular modulo m if

and only if both
(1) |det Alm # 0
(ii) (det A, m) = 1.

Otherwise A is called singular modulo m.

Wwe frequently refer to Idet Alm as the determinant modulo m of A,

(3.8) THEOREM. [Howell and Gregory, 1969a, p. 212] If A is an nxn integral

matrix, then

|det Al = ldet IAIm‘m.

EXAMPLE. Let m = 13 and

Then A is singular modulo 13 since

Idet lA[ 0,

13\13 -
even though A is nonsingular over the real number field. By
changing m to 11, we have

ldec !Alll\ll =2

and

(2,11) = 1.

Thus, A is nonsingular modulo 11. =

(3.9) DEFINITION. (i) The determinant modulo m of an rxr submatrix of

A is called a minor modulo m of A of order r. (ii) When the

submatrix is located symmetrically with respect to the main

diagonal of A, we call the corresponding minor modulo m a principal
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minor modulo m. (iii) If the submatrix is formed by deleting

row i and column j, then we define the cofactor modulo m of

the element aij to be

A, = | (-1

ij ijlm’

where Mij is the determinant modulo m of that submatrix.

(3.10) DEFINITION. We define the adjoint modulo m of a matrix A to be

adj; _
lA ‘m = l(Aji)‘m"

where Ai is the cofactor modulo m of the element a, ..

] ij

(3.11) DEFINITION. An integral matrix A is said to have rank rm(A) if and
only if it has at least one nonzero minor modulo m of order r,

but has no nonzero minor modulo m of order greater than r.

EXAMPLE. Let

a=|> 3

5 10

For the modulus m = 19, we have

ldet Al g = -3
and
rlgﬁA) = 2.
For the modulus m = 7, on the other hand, we have
|det A |, =0 .
and

r7(A) = 1.

We are now prepared to discuss the existence of the multiplicative

inverse modulo m of a matrix A.




only if A is nonsingular modulo m. In this case
-1 -1 ad
37w = |amy (a2 |

where d = det A,

in other words, rm(A) must be n.

EXAMPLE. Let m = 11 and

7 ~-15 3
A= ~1 4 -6
0 1 -2

Then
|d|11 = |det Alll

=2
and

-2 -5 1
adj _ - - -
|a l11 = | -2 3 5
-1 4 2

Thus, from theorem (3.12),

2 -5 1
]A'l(m)lm = |27tay | -2 -3 s
1w 2]y,
2 -5 i
=|-5.|-2 -3 s
14 2| |,

19

(3.12) THEOREM. [Howell and Gregory, 1969a, p. 213] A‘l(m) exists if and
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-1 3 -5
= |-1 4 3
5 2 1

As a computational check, observe that

ad
]
Pt
Lo
]
w

7 =15

la-a™tan|,, -1 4 6| |-1 4 3

0 1 -2 5 2 1

11
23 -33  -77
= -33 1 11

-11 0 1
-1

(3.13) THEOREM. If A and B are nxn integral matrices, then

@ @) iw) = Al
® a7 @ 3w = @) T

(¢) If m|M, then lA'l(M)lm = 2" ).

We have two theorems regarding the determinant modulo m of a matrix.

k k
(3.14) THEOREM. |det TTAi lm = | T ldet Al |m .
i=1 i=1

k k
Proof. |[det TT A, | = | TT det a, |
=1 1 ® i=1 1m
|7 |
= E1|det TV I /17

(3.15) THEOREM. |det A'l(m)lm []det Alm]'l(m)-
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Proof. | |4et A7) ldee Al | = aee (a7hmy a1l

=1

|det [A -A'l(m)]lm

~1
||deca] -ldet a2 | .

By the uniqueness of the multiplicative inverse, we have

|det A7 )| = []det a] 1" ). /11

The following theorem gives us an expression for the solution of a

residue system of equations,
|ax| =8| ,

where A, B, and X are integral matrices.

(3.16) THEOREM. 1If A is an nxn integral matrix which is nonsingular modulo
m, B is an nxp integral matrix, and lAle = |Blm , then
-1
I, = [ @lsl ],

where X is an nxp integral matrix.

A discussion with examples of the solution of [Ax]m = lb]m » Where
X and b are nxl vectors, can be found in Howell and Gregory [1969a, pp.214,
217-224]. The method of solution is based on the following three types of

Operations, which are called elementary operations or elementary trans-

formations modulo m-

(a) Interchange of rows i and j (or columns i and j),
(b) Multiplication of row i (or column i) by a nonzero constant, k, where
(k,m) = 1, and followed by reduction modulo m,

(¢) Addition to the ith row of an arbitrary multiple, k, of row j, followed
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by reduction modulo m (and the analogous operation on columns).

An elementary matrix modulo m is a matrix obtained from the identity matrix

py performing one of the above operations on it. We shall denote matrices
of these kinds by IIijlm s lEi(k)lm , and lEij(k)lm » respectively. An
elementary operation modulo m can be performed on a general matrix A by

multiplying A by an elementary matrix on the appropriate side followed by

reduction modulo m.
Clearly, since (k,m) = 1, elementary matrices modulo m are nonsingular

modulo m, and their inverses modulo m are as follows :

2

-1 _
lIij‘m (m) = IIijlm

-1 -1
B, GO ") = |5, @y,
and

B 001 @ =[5 0,

Thus, their inverses modulo m are also elementary matrices modulo m. If m

is a prime, and (k,m) = 1, then we can guarantee that inverses modulo m exist.

(3.17) THEOREM. Performing an elementary operation modulo m on a matrix

A does not change the rank rm(A), provided (k,m)=1.
Proof. [Hohn, 1964, p. 116] We shall assume that the elementary operation
modulo m is a row operation, since analogous arguments hold for column
operations. If the rank rm(A) is n, then the theorem follows from theorem
(3.14). Thus, we shall let rm(A) be r<n, so that the determinants modulo m -
of all submatrices of order r+l are zero. We shall first show that applying4
these row operations cannot increase rm(A). 3

Let a transformation of type (a) be applied to the matrix A, forming

8 new residue matrix A'. If we consider any submatrix of A' of order r+l,
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we see that either it is identical to the corresponding submatrix of A, or it
is the corresponding submatrix with two rows interchanged, or it is equal
tb some other submatrix of A of order r+l. 1In all three cases, the deter-
minant modulo m of this submatrix of A' is zero.

If a transformation of type (b) is performed on A, then any submatrix
of order rtl of A' is either identical to :the corresponding submatrix of
A, or it is the corfesponding submatrix of A with one row multiplied by k,
or it is some other submatrix of A with one row mul;iplied by k. 1In the
first case, the determinant modulo m of the submatrix is zero. In the
second and third cases the determinant modulo m is of the formd = |k-d I
where d1 is the determinant modulo m of some r+l order submatrix of A.
Since d1 = 0, then we have d = 0.

For transformations of type (c), we see that any submatrix of order
r+l of A' either is identical to the corresponding submatrix of A, or it
has a row which is a sum of two rows of the matrix A. In the first case,
its determinant modulo m is zero. 1In the second case, its determinant
medulo m, d, may be written in the form ]dl + kdzlm » where d1 is the deter-
minant modulo m of an r+l order submatrix of A, and d2 is either the deter-
minant modulo m of another r+l order submatrix of A, or it has two equal rows.
Thus, d1 and d2 are both zero, and hence d is zero.

From the above result, we see that performing an elementary operation
°n A does not increase r (A). Thus, r (A') s r. If it were less than r,
then performing the inverse transformation would raise the rank, contradicting

what we have just shown above. Therefore, r (A ) =

11/

4. Polynomials. We shall assume here that all polynomials have integral

Coefficients, that m > 1, and that m is greater than the degree of the
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polynomials.

(4.1) DEFINITION. Given integral polynomials

a + ax -+ a x2 + ...+ a xn_1 + a xn
o 1 2 n-1 n

L]

Py (x)

and

2 k-1 k
bo + blx + b2x + ...+ bk-lx 4+ bkx

P, (x)
where lbkim # 0 and n 2 k, such that

(i) b, = lailm | (1 =0, ..., ¥

"

(ii) }ailm =0 (i = k+1, ..., n)

then we write
Py (x) = |p )|

and say pz(x) is a residue of pl(x) molulo m.

(4.1a) DEFINITION. A polynomial modulo m

n-1 n
p(x) = a_ + alx + ...+ an_lx + a x
1s said to be of degree k if Iaklm # 0 and lak+1'm = L..= ]an’m

= 0. We refer to ak as the leading nonzero coefficient modulo

m of p(x).

EXAMPLE. Let

p(x) = 22x4 + 15x3 + 8x2 - 17x - 14,
Then

IP(X)|11= 4){3 - 3X2 + 5x - 3,

and p(x) is of degree 3 modulo 11.

This residue can be shown to be unique. We say that a polynomial p(x) is a
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monic polynomial modulo m if a its leading nonzero coefficient modulo m,

{s congruent to 1 modulo m [Griffin, 1954, p. 187], and the polynomial

whose coefficients are all congruent to zero is called a null (or zero)

Eolynomial modulo m.

The following theorem establishes some of the basic rules for doing

arithmetic with polynomials modulo m.

(4.2) THEOREM. Let pl(x) and pz(x) be integral polynomials and K an

integer. "Then

(a) lm'pl(x)]m 0 (the null polynomial modulo m).

®) K-lpy@o] = {Rep 0] -

]

(c) ]pl(x)lm pl(x) if and only if -m/2 < a, s m/2 (i=1,...,n).

i S
(Here we call pl(x) a residue polynomial or a polynomial

modulo m.)

(@ o) xmep, 0] = |p 0] -

Addition, subtraction, and multiplication of polynomials modulo m
have the following properties.
(4.3) THEOREM. If pl(x) and pz(x) are integral polynomials, then
@ ey 2,60l = [ ol + 9,0l = Ip,60 £ le,0l |

= [lp 01, 2 Ipyeo 1|,

and

®  |py) p, ]| = llpl(x)lm pz(X)im = lpl(X) IPZ(X)\m!ﬁ
=‘lP1(X)|m IPZ(X)lmIm = |p,(x) py| -

Thus, addition and multiplication of polynomial modulo m are commutative.
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Division of polynomials modulo m is an operation which causes more

difficulty. We have first the cancellation law for scalar multiplication of

Eolxnomials modulo m.

(4.4) THEOREM. if pl(x) and pz(x) are integral polynomials, and K # 0

is an integer, and if

(1) Rep @, = [Rep, O
. -1

(ii) K "(m) exists

then

lp, G, = To, (0] -

(4.5) DEFINITION. [Griffin, 1954, p. 72] 1f pl(x) and pz(x) are integral
polynomials, and if it is possible to find integral polynomials

q(x) and r(x) such that

lp |, = [Py () -ax) + | s

where either the degree of r(x) is less than the degree of pz(x)

or ]r(x)lm = 0, then we call q(x) the quotient modulo m and

r(x) the remainder modulo m in the division modulo m of pl(x)

by pZ(X>.

When |r(x)lm = 0, we say that pz(x) igs a divisor modulo m or a factor modulo

m of pl(x), and that pl(x) is a multiple modulo m of pz(x) [Griffin, 1954,

p. 72]. Then we write

pl(X)
la|, = |=—=
PZ(X) _

In order to determine whether or not such a q(x) and r(x) can be

found, we need to examine the coefficients of pl(x) and pz(x). 1f
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pl(x) =a + a,x + ...+a .x + a x

and

PZ(X) = b, + blx ..o+ b X + b x

where lbklm # 0, and where nz k, then a sufficient condition for the existence

of q(x) and r(x) is that b;l(m) exists.

(4.6) THEOREM. [Griffin, 1954, p. 186] If m is a prime, then we can

compute

Pl(x) - r(x)

la)|_ =

pz(X) n

provided pz(x) is not the zero polynomial modulo m.

EXAMPLE. Let
Pl(X) = 4x4 - 6x3 + sz - 2x - 6
and
2
pz(x) = 3x" - 6x + 5
and
m= 13,
We shall compute q(x) and r(x) using long division, reducing all

results at intermediate steps modulo m:

3% + 5% -5
%% - 6x + 5 )4x4 - 6x° + 5x° - 2% - 6

4x4 + Sx3 - 2x2

2x3 - 6%

2 - 2X
Zx3 - 4x2 - X
-2x2 - x -6
2

~2%" + 4x + 1

- 5¢x + 6
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Thus,
2
q(x) = -3x“ +5x - 5

and

r(x) = -5x + 6.

We note that the leading coefficient of q(x) is obtained by
solving the residue equation

l3.ylm = 4,
It is easily verified that
lp, ()] = lp,(x)-q(x) + r()| .
(4.7) DEFINITION. [Griffin, 1954, pp. 179; 187] A residue polynomial d(x)

which divides two or more polynomials modulo m, not all of which

are congruent to zero modulo m, is called a common divisor

modulo m. If d(x) is divisible modulo m by every other common
divisor modulo m, and if it is monic, then it is called a

greatest common divisor modulo m.

(4.8) THEOREM. The greatest common divisor modulo m of two or more poly-

nomials is unique, provided m is.a prime.

JLProof. [Griffin, 1954, p. 181] Let d(x) and d'(x) be two polynomials which
are both greatest common divisors modulo m for f(x) and g(x). Then d(x)
divides d'(x) modulo m, and so -

lar @], = laGq@ | .

Also, d'(x) divides d(x) modulo m. Hence,

lae ], = 4" Gopex)] .
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Id(X)q(X)p(X)lm fd‘(X)p(X)lm

‘d(x)‘m.

Then, [q(x)p(x)!m = 1, and both q(x) and p(x) are integers. Since d(x) and

d'(x) are both monic polynomials modulo m, then q(x) and p(x) = 1 and
f E—1
|d (x)lm ]d(x)[m.
Since d'(x) and d(x) are residue polynomials, we have

d'(x) = d(x).
/117

Polynomials which have no common divisors modulo m other than the

trivial ones, the integers + 1, are of special interest to us.

(4.9) DEFINITION. [Eames, 1967, p. 115] Two or more polynomials are said

to be relatively prime modulo m when their greatest common divisor

modulo m is one.

EXAMPLE. Let m = 13,

pl(x) X" + 20x - 18,

and

2. 6x + 6.

|
»

pz(x) s
Since we can write

lpy 15 = [x-2)x-0)]

and

]pz(X)ll3 = I(X+1)(x+6)!13 ,

then pl(x) and pz(x) have no common divisors modulo m other than
+ 1. Hence pl(x) and pz(x) are relatively prime modulo m.

If we change pl(x) to
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2
pl(x) = x" 4+ 16x - 11

then we can write

lp 0 5 = [t (x42)] 5 -

Thus pl(x) and pz(x) have (x+1) as a common divisor modulo 13,

and hence pl(x) and pz(x) are not relatively prime modulo 13.

The next theorem gives us an expression for the greatest common divisor

module m of two polynomials.

(4.10) THEOREM. 1If pl(x) and pz(x) are polynomials modulo m neither of
which is the zero polynomial modulo m, and if m is a prime, then
d(x), the greatest common divisor modulo m of pl(x) and pz(x)
exists. Furthermore, we can find polynomials r(x) and s(x)
such that

laG |, = [rGdpy (x) + s(xIp, ()] -
Proof. See [Griffin, 1954, pp. 187-188].

An algorithm for computing d(x), r(x), and s(x) is given in Griffin [1954,

p. 187-1881].

EXAMPLE. Let m = 13 and
Pl(x) = X3 - 6x2 - 6x - 2
and .

pz(x) = x2 + 14x + 11.

Then simple computation shows that the greatest common divisor

modulo m of pl(x) and pz(x) is x-1, and that
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x-1

|-4Gx> - 6x% - 6x - 2) + (4x - 2)(x2 + 14x + ],

]

l-4-p1(x) + (4x - 2)-p2(x)|13 .

Thus, in theorem (4.10)

d(x) = x-1,

r(x) = -4
and

s(x) = 4x-2.

(4.11) COROLLARY. [Eames, 1968, p. 116] If m is a prime, two polynomials

pl(x) and pz(x) are relatively prime modulo m if and only if

there exist polynomials r(x) and s(x) such that

lz()p G0 + s, (0| = 1.

(4.12) THEOREM. If m is a prime and if two polynomials pl(x) and pz(x) are
relatively prime modulo m and qi(x) divides pi(x) modulo m

(i=1,2), then ql(x) and qz(x) are relatively prime modulo m.

Proof. From corollary (4.11) we can find polynomials r(x) and s(x) such that

|r(x)p (x) + s(x)p,y(x)| =1
Since qi(x) divides pi(x) modulo m (i=1,2), then

lps GOl = la; Gon o], (i=1,2).

Thus,

e
]

lr(X)ql(X)hl(X) + S(X)qz(X)hz(X)lm

[£,(0)q; (=) + £,)q,(x)|

and we have that ql(x) and qz(x) are relatively prime modulo m.

/17
In the discussion following definition (4.5) we introduced the
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concept of multiple modulo m of a Polynomial. Any two nonzefo polynomials

have a common multiple modulo m and a least common multiple modulo m.

These two concepts play an important role in chapter 1V.

(4.13) DEFINITION. 1If pl(x) divides p(x) modulo m and pz(x) divides p(x)

modulo m then p(x) 1s a common multiple modulo m of pl(x) and

pz(X)-

(4.14) DEFINITION. A least common multiple modulo m of two Oor more poly-

nomials is a monic common multiple modulo m that is a divisor
modulo m of every common multiple modulo m of the given poly-

nomials,

EXAMPLE. Let m = 13,

p(x) = x? + 16x - 11,
and
2
pz(x) =X -~ 6x + 6.
Then
lpl(x)|13 = l(x + 1)(x + 2)!13
and

,pz(x)ll3 = I(x + 1)(x + 6)]13 .
Thus, a common multiple modulo m of pl(x) and pz(x) is
4 3 2
l(x+1)(x+2)(x+1)(x+6)[13 = |x - 3% + 3%% + 6x - 1]13 .
The least common multiple modulo m is

|(x+1)(x+2)(x+6)!13 = [x3 - 4x® - 6x - 1{13 .

The following definition and two lemmas will be used in the proof

of theorem (4.18).
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(4.15) DEFINITION. [Niven and Zuckermen, 1966, p. 194] A polynomial p(x)

which is not the zero polynomial modulo m is irreducible modulo m

if there is no factoring p(x) = lg(x)h(x)lm of p(x) into two

polynomials g(x) and h(x) of positive degree.

(4.16) LEMMA. If m is a prime, pl(x) and pz(x) are polynomials which are
relatively prime modulo m, and if pl(x) divides Ipz(x)p3(x)lm

modulo m, then pl(x) divides p3(x) modulo m.

Proof. See [Nagell, 1964, p. 96].

(4.17) LEMMA. Every polynomial p(x) of degree n can be written in the

form
€1 ) ®r
lpGo] = fewp () ", 00 © ool p ) T

where m is a prime, the pi(x) are distinct, monic, irreducible
polynomials modulo m, ¢ is an integer, e1+...+er = n, and the

form is unique apart from the order of the pi(x).
Proof. See [Nagell, 1964, p. 97].

3

EXAMPLE. Let p(x) = 3x4 + 12x + 4x2 - 19x - 6 and m = 13. Then we can

write

‘p(x)l13 |3x4 + 12x3 + 4x> - 19x -

6l13

|3(x2 + 6)(x + 2)2113 .

Thus, in lemma (4.17)

c =3, e, = 1,

= x% +6 =
pl(x) = X , e, =2,
pz(x) =x+ 2, r=2,
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(4.18) THEOREM. [Perlis, 1952, p. 118] If m is a prime, c(x) and d(x)
are relatively prime modulo m, and g(x) is a monic polynomial
which divides |c(x) d(x)lm modulo m, then there exist unique

monic polynomials modulo m, ¢'(x) and d'(x), such that
= ' '
le@|, = le'ya' |
where c¢'(x) divides c(x) and d'(x) divides d(x) modulo m.

Proof. Let the degrees of c¢(x) and d(x) be n, and n, , respectively. Then,

since g(x) divides c(x)d(x) modulo m, we have

Ig(X)q(X)lm Ic(X)d(X)lm

f

1 ®r 1 fs
= Iplcl(x) ce cr(x) pzdl(x) ces ds(x) |

m 2

where the ci(x) and di(x) are the unique factors of c(x) and d(x) which are

monic and irreducible modulom, e, + ... +e_e=n_ , and £, + ... + f =n_.
1 r 1 1 s 2

Thus, because of the uniqueness of these factors, g(x) must have the same

irreducible factors, though possibly to different powers. Hence,
i

31 e, b s
Ig(x)lm = |c1(x) v cr(x) dl(x) vee ds(x) lm ,
where jk S e, and ik = fk , for all k. Then we can write
e, = le'Gyd ],
where
3 3
' - 1 r
Ic (x)[m = lcl(x) .o cr(x) lm
and -
il is
1 -
|d ] = ldl(x) cee d_(x) lm

and c'(x) divides c(x) and d'(x) divides d(x) modulo m.

We shall now prove the uniqueness of c'(x) and d'(x). Suppose
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3 3 i 1
ey G L Fa, () Lo, a,t0 °| = g

8!

ky L
= Icl(x) oo (%) dl(X) cee

Ls
ds(x) lm .
k i j i i
Then c, (%) 1 divides Ic (x) 1 cee € (%) T4 (x) 1 oo d (%) SI modulo m.
1 kl r J 1 s m
By lemma (4.16) cl(x) 1 divides cl(x) 1 , and so

X :
ey @ Te @ = le 7Y

By a similar argument

]

hj k
lcl(x) 1cl(x)tlm |c1(x) l'm .

Thus,

k., i
Icl(X) 1cl(X)hcl(X)tlm = Icl(X) 1cl(X)tIm

k
= [cl(x) 1lm .

This implies that
h t
lcl(x) cl(x) lm = 1.

h .
Hence, cl(x) and cl(x)t must be constants. But since the ci(x) are monic,

we must have
h t
[cl(x) lm = lcl(x) |, =1
Therefore,
k 3
1 _ 1
Icl(x) Im = Icl(x) ]m .
and

A j i i k k L
lcz(x) z . cr(x) rdl(x) L. ds(x) Slm = Icz(x) z .. cr(x) rdl(x) 1 };.
a,60% |,
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gimilar arguments show that

i ky 31
'Ici(x) lm ]ci(x) lm , (1= 2,...,1)

and

Lj i,
la,60 71 = lay60 No» =18,
Uniqueness of c'(x) and d'(x) is thus established.
/11




