CHAPTER III

RESIDUE MATRICES WITH POLYNOMIAL ELEMENTS

1. Introduction. We shall be concerned in the next chapter with the concept

of "similarity modulo m" of residue matrices, Though these matrices are
integral, various concepts related to the theory of similarity modulo m
involve residue matrices whose elements are Polynomials. It is for this
reason that we shall now examine the theory of residue matrices with
polynomial elements.

Since, in this paper, we shall be concerned primarily with the

case in which m ig a prime number, we shall assume from this point on that

m is a prime and that F is the field of integers modulo m. We shall denote

by F[A] the domain of integral polynomials in A with coefficients in F.
Our attention, then, will be focused on nxn matrices over FIA]. we shall

refer to these matrices as polynomial matrices modulo m or A-matrices

modulo m. A A-matrix modulo m, A(A), can be represented as follows
= = r.(k) (k-1) (1), k-1 (0). &k
AN = [aij(7\)] = [aij tagy A+ L FagyAaT a3 AL,
where k is the largest of the degrees of the polynomials aij(A), or in the

form of a matrix polynomial modulo m in A with residue matrix coefficients

3

Most of the following definitions, theorems and proofs in this
Chapter and the next are analogous to those found in any book on matrix
theory, See, for example, Gantmacher [1960] and Perlis [1952].

We assume from this point on that m is greater than the order of
37
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a1l matrices and the degree of all polynomials considered.

2. Equivalence Modulo m over F[A]. We introduce the following elementary

operations on a A-matrix modulo m:

(a) Interchange of any two rows (or two columns),
(b) Multiplication of any row (or column) by a nonzero constant, followed
by reduction modulo m,
(c) Addition to the ith row of any other row, for example the jth, multiplied

by any polynomial modulo m, and followed by reduction modulo m (and

the analogous operation on columns).

An elementary A-matrix modulo m, E(A), is a matrix obtained from In by
performing one of the above elementary operations on In' An elementary
operation can be performed on A(A) by multiplying by E(A) on the appropriate
side, followed by reduction modulo m.

Clearly, every elementary A-matrix modulo m has a nonzero determinant

modulo m which does not depend on A. Therefore, every elementary operation

L

has an inverse. It can easily be shown that the matrix corresponding to

this inverse is an elementary A-matrix modulo m.

We have a theorem which is analogous to theorem (3.17).

(2.1) THEOREM. Multiplication of a matrix A(A) by an elementary A-matrix
modulo m does not change rm(A(K)).
Proof. The proof is analogous to that of theorem (3.17).

(2.2) DEFINITION. If A()\) and B(A) are two A-matrices modulo m, then

B(A) is said to be equivalent modulo m over £[A] to A(A) if and

only if B(A) can be obtained from A(A) by a series of elementary

operations, in other words,
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IBov |, = lrav ] acolem] |,

where P(A) and Q(A) are products of elementary A-matrices

podulo m.

|

1t is a simple matter to show that equivalence modulo m over F[A] is reflexive,
symmetric, and transitive, and that rank modulo m is not affected by equiva-
lence transformations modulo m over F[A]. Thus, it is sufficient to say

|
merely that A(A) and B(A) are equivalent modulo m over F[A].

EXAMPLE. Let m = 13,

3A 1+A 2

A(A) = 2 44N -5 s
6 -7A 15A
and
3A 646 2 ’

OB = 2432 c2t6A-A? o542

-2 A -Sk__
Then, A(Ki and B(A) are equivalent modulo m over F[A], since
1.0 o]Br wn 2|1 o 0
| BV 4[A #\% sl lo 6 o
0O 0 4 6 =77 15A1 |0 0 1
J 13

I

s
o
[y

Thus, in definition (2.2), we have
1 0 0 K

lp(A)llB =|/A 1 0

0 0 4
and
1 0 0]
lQ(x)l13 =|0 6 0




A natural question is whether certain A-matrices modulo m which

are equivalent modulo m over f£[A] can be strictly equivalent modulo m.

That is, if

CIBOOI, = [rVAeM |,
can we find matrices S and T over F such that

|B(7\)|m = |s A(N) Tlm ?

This is answered by the following lemma and theorem.

(2.3) LEMMA. (division algorithm for matrix polynomials modulo m). Let

k-1 k
AN = “Aklm + A I A+ la [ + ag] A lm
(2.4)
-1
B(A) = “lem + Bl A+ .+ | | A7 + lBOImkslm ’
where

laee 18,1 |_#o.

Then there exist unique A-matrices modulo m Qr(K), Rr(h),

Qx(x), and RI(A) such that

A = [o MBQ) + RW)|

and

B(A) = [B(MQ, (M) +R,M|_

where either Rr(K) # or the degree of Rr(k) is less than s,

and either RI(K) = @ or the degree of RL(K) is less than s.

Proof. [Perlis, 1952, pp. 134-135] [Gantmacher, 1960, pp. 78-79] 1If A(M)
or k < g, then we can set Qr(A) = Qt(A) = @ and Rr(k) = Rl(%) = A(N) ..
Ifk 2 5 and A(A) # @, then we apply the usual scheme for division of

Polynomials modulo m. Let

¢y = |am - Iagg; @ el senl

40
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(1) )
k- k
- \lci%i)lm + |c;}i)_1|mx R N I R S I

m ’

where either C(l)(%) = @ or the degree of C(l)(K), k(l), is less than k.

1f c(l)(K) = @ or if k(l) < s, then (2.6) is satisfied by

RN = cPoy

and
-1 k-s
Q (M) = !lelmBO GO T
1f k(l) > s, then we repeat the process and compute
@y = [c®ay - 1MW )Kk(l)—s‘ 3|
- 0o ‘o '\ m m
(2)

- (2) _ 10(2) (2)) 4k

- }[ck(z)gm - 108y Lt e 1o |,
where k(z) < k(l).

Since the degrees of A(A), C(l)(%), C(z)(A), ... are decreasing,

we must at some stage reach the situation in which k(l) < s. Then (2.6) is
satisfied by

= D
Rr(%) = C (N

and
k(l)—s

Q (N = AOBal(m)Kk-s 3 cél)nal(m)x o cgi'l)sal(m)x

k(inl)—s
o

Thus, right division of matrix polynimials modulo m is possible if the

conditions (2.4) and (2.5) exist. Similarly, we can show that left division

is possible by computing the sequence A(A), D(l)(K), D(Z)(K),... , D(l>(%),

where

(j-l)_s’ I

m 'm

)

D(j)(7\) = lp(j'l)(m - B(x)lsal(m)néj'l)xm

. N
-1, ‘D(()J)!mxm Ln

. . B
||Digg)1m + lD;%%liln9\+ co o [p{D ] m
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() . -0

of j=2,...,L and m is the degree of D(j)(k), and where

(L) < s and

pM = laey - 3]sy ma e |

(1
- (1) (1) () .m
= lle(l)lm + le(l)-llmA + ...+ gt A }m
jIn this case, (2.7) is satisfied by letting
R, = 0
and
- - - (1)_ - - (£-1)_
QN = }Bol(m)onk S+ Bgl(m)D(()l)?\m S+ .+ Bol(m)Dég 1ym Slm.

We shall now prove uniqueness for Qr(K) and Rr(k). The uniqueness

of QL(A) and RL(K) can be shown in a similar manner. Suppose we have

(2.8) A = [Q (MBM) + RN

and
* *
(2.9) A = [Q (VB + R NV,

*
where the degrees of Rr(R) and Rr(k) are both less than s. Subtracting

(2.8) from (2.9) modulo m, we obtain

* *
8=} ) - (MIBM) + [R (N -rR (V]|

or

(2.10) [, - LM IBM | = =X - =] -

The degree of the matrix polynomial modulo m on the right-hand side of

. %*
(2.10) is less than s. If we had lQr(K) - Qr(A)Im # P , then the degree of
the matrix polynomial on the left-hand side of (2.10) would be greater

than s...Hence, we must have
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*
lo,) - M| =90,

and thus

X - RV =9 .
Therefore

EM | = o,
and

L WeSYIE WS Y I

% *
gince the matrix polynomials Qr(R), Qr(K), Rr(K), and Rr(k) are all poly-

nomials modulo m, we must have

QLM

QM)

and

*
KD =R 11

(2.11) THEOREM. Let A(A) and B(A) be two A-matrices modulo m of degree one:

AQN) = |A07\ + Allm,

B()A) = 11307\ + Bllm,
and

laet |8yl | # 0.

Then A(A) and B(A) are equivalent modulo m over F[A] if and only
if there exist residue matrices S and T over F which are

nensingular modulo m, such that

(2.12) BN = [s A T -

In other words, A(}) and B(A) are strictly equivalent modulo m.

Proof. [Gantmacher, 1960, pp. 146-147] If (2.12) holds for matrices S5 and

T over F, then since matrices over F are also matrices over F[K], then

A(M\) and B()A) are equivalent modulo m over F[A].
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Suppose A(A) and B(A) are equivalent modulo m over F[Al, so that

(2.13) - BV = [pMAIAY]

where P(A) and Q(A) are products of elementary A-matrices modulo m. Thus,

[P(x)]-l(m) exists, and from (2.13) we can write

(2.14) eI @) 3] = [avem]_
Since [P(A)]-l(m) is a A-matrix modulo m, we can use lemma (2.2) to write

(2.15) I @) = A, M) + & M,

and

QN = IQr(?\)BO\) + Rr(?\)lm .

Since A(A) and B(A) are of degree one, then RL(A) and Rr(K) must both be
of degree zero. In other words, Rz(K) and Rr(K) are both matrices over F,
and we can write
-1
(2.16) [POV] ") = [ADQ (V) +R
latie, ¢ )l
and

Q) = | (MBM) + R | .

Substituting these expressions for [P(R)]-l(m) and Q(A) into (2.14), we obtain

“A(?\)QLO\) + Rzlm B(A)lm lAO\) [Qr(?\)BO\) + er:m. ]m

which can be rewritten as

latue, B + R BV, = |20, MVBAY + AR |

or
AR, M - o M1 B, = [a0)R_ - R BV,

Since the right-hand side is of degree = 1, then the left-hand side must also
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pe of degree = 1. This implies that the expression in brackets must be
congruent to zero, for otherwise the left-hand side would be of degree = 2.

Hence, wWe have
(2.17) lagy ® | = lRLBO\)lm .

It remains to show that R, and Rr are nonsingular modulo m. 1In

L

order to show that RL is nonsingular modulo m, we first write
P(A) = |B(AMC(N) + D(7\>lm

using lemma (2.2) Since P(A) is of degree one, D(A) must be of degree

zero, and hence

(2.18) P(N) = |[BOYC) + D] .

From (2.14), (2.15), and (2.18), we have

I
n

e m Povl

e M) (B + DI

(2.19) 11 @ 30l con + e e o, -

]

Substituting (2.14) and (2.16) into (2.19) we have

1
n

| Iaamcom + Iaga o + 5,1, ol

[aeMe® +ame, (D + R Dl

A [Q(ME) +Q () D] + R D] .

L L 'm
Because the above equation must be of degree zero (since it is equal to
In)’ the expression in brackets must be congruent to zero, giving

1_=|rR D
n Lm

or




(2.20) R'Ll(m) = D.

Hence R, is nonsingular modulo m. From (2.17) and(2.20) we have

L

-1 ‘
R, @AMR [, = 3V,

B(A) .

Thus, letting

S = Ri}(m)
and
T = Rr’
we obtain

B(A) = |s A\ T| .
T is nonsingular modulo m, since
“det s| |det A | |det T| l = |det B |
m o'm m 'm o'm
# 0.

Therefore, we have proved theorem (2.11). 11/

3. The Canonical Form of a A-Matrix Modulo m. We shall now examine a

simple form for a A-matrix modulo m which can be obtained by means of the

elementary operations described in section 2.

(3.1) LEMMA. A nonzero A-matrix modulo m A(A) is equivalent modulo m

over F[A] to a matrix of the form

£.(N)
BV = | ‘ O
O I 2m»

where fl(l) is a monic polynomial modulo m which divided

3
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modulo m each of the nonzero elements of Az(k).

proof. [Perlis, 1952, p. 125], [Gantmacher, 1960, pp. 134-138] Of all the
nonzero elements of A(A) we choose the one of least degree, and by performing
a suitable combination of elementary operations of type (a), we can bring

it into the all(k) position. By the division algorithm for polynomials
modulo m (II-4.5), we can find polynomials modulo m, qil(K), qlk(K),

ril(A), and rlk(K), such that

a1 My = o, May; M) + 1, W

and

lap M1, = la;; Ma;, M + M, , (1,k=2,...,n).

If any of the remainders ril(K) or rlk(K) is not congruent to zero, for
example ril(%), then we perform an elementary operation of type (c¢) and
subtract qil(%) times the first row from the ith. This replaces the element
ail(k) by ril(K), which is of smaller degree than ail(k). By carrying out
an operation of type (a) again, we can reduce the degree of the element in
the top left corner by bringing the new element ril(K) into the all(%)
position. This process of replacing the elements ail(K) and alk()) by
ril(K) and rlk(K), and of reducing the element in the top left corner must
at some time reach the situation in which all of the ril(K) and rlk(K) are
zero. When this occurs, then by subtracting qil(x) times row one from row i
and qlk(K) times column one from column k, we can reduce the A-matrix moduloﬁ
m to a matrix in which ail(%) = alk(k) = 0, (i,k=2,...,n).

If any of the nonzero elements aik(K) (i,k=2,...,n) is not divisible
modulo m without remainder by all(K), then we can add the column containing

this element to column one and again apply the procedure described above,

thereby replacing all(k) again by an element of smaller degree. After
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performing a finite number of elementary operations, we must obtain a matrix

of the form stated in the lemma.

/11

If AZ(A) is not identically equal to zero, then we can apply to this

matrix the procedure just applied to A(N) .

During this process, clearly,

all elements of AZ(K) remain multiples of all(h). Hence we obtain a matrix

equivalent modulo m over F[A] to A(A) which has the form

B,(\) = £,(N) O

£,(N)

O | AW

in which fl(K) divides fz(%), and fZ(K) divides all the elements of A3(K).

Continuing in this manner, we obtain a matrix of the form

(3.2) Br(R) =

where each fi(%) divides f

r+l

i+l
when A . (A) is the null matrix modulo m.

fl(%)
fZ(K). o) ?
fr(R)
O O

(\). The process terminates when r =

equivalence transformations modulo m over F[A] , we must have r =

n or

Since rank is invariant under

rm(A(K)).

By multiplying the first r rows by suitable nonzero constants, followed by

reduction modulo m, each fi(%) can be made monic. (We know that such

constants exist since m is a prime.) Thus, we have proved the following

theorem:

(3.3) THEOREM. Each A-matrix modulo m of rank r is equivalent modulo m

over F[A] to a A-matrix modulo m Br(%) such that

(i) Br(k) is diagonal,
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(ii) the first r diagonal elements of Br(%) are monic poly-
nomials modulo m fl(K),...,fr(%),
(iii) the diagonal elements in row r+l through row n are zero
(if r #n),

(iv) fi(R) divides f,,,(A), i=1,...,xr-1.

i+l

4. Invariant Factors Modulo m. Let A()\) be a A-matrix modulo m of rank r

which is in the form (3.2), and let d (\) denote the greatest common divisor

3
modulo m of all the minors modulo m of order j (j=1,...,n) in A(A). 1If
j > r, then all j-rowed minors modulo m are zero. For j =, the only

nonzero j-rowed minors modulo m are congruent to products of j of the diagonal

elements fi(K). Thus, since each fi(%) is a factor of fi+1(K) modulo m,

we have
(4.1) dj(7\) = |f1(7\) fj(7\)lm, (3=1,...,r).
1f we let do(K) = 1, then
d.(N)
fj(%) = |1 (3=1,...,).
dj-l(k) m

Before we state the main theorem of this section, we need to prove

two lemmas.

(4.2) LEMMA. If B(N) = |P(K)A(K)lm, where P(A) is a product of elementary
A-matrices modulo m, then the jxj subdeterminants modulo m of
B(A\) are congruent to a linear combination, with coefficients

over F[A], of the jxj subdeterminants modulo m of A(%b.

Proof. [Perlis, 1952, p. 127] It is dufficient to let P(A) be an elementary

A-matrix modulo m, E(A), and to prove the theorem for B(A) = ‘E(K)A(K)‘m.
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We shall let Bl(K) be a jxj submatrix of B(A) and let Al(l) be the submatrix

of A(A) occupying the same rows and columns as Bl(h). If E(N\) does not
affect the rows of Al(k), then Idet Bl(R)lm = ldet AI(K)]m. 1f E(N\) inter-
changes two rows of AI(K), then ldet Bl(K)Im = ~|det Al(%)lm, and if it
interchanges a row of Al(K) with a row of A(A) not in AI(K), then.l&iBl(Aﬂm
is plus or minus some other jxj subdetermiﬁant modulo m of A(A). If E(D)
multiplies a row of AI(K) by some nonzero constant c, then ‘det Bl(A)lm =
]c-det Al(K)lm . When E(A) adds £(A) times row j to row i, and row j is in
Al(K), then Idet Bl(K)lm = Idet Al(R)‘m. If row 1 is in Al(k) and row j

is not, then |det Bl(K)]m = lldet Al(K)lm + £(A\) -|det C(%)lm lm’ where

|det C(A)im is some jxj subdeterminant modulo m of A(A). Thus, |det B(K)im
is congruent to a sum of terms of the form¢1xPA(A), where d% is a coefficient

over F[A] and PA(K) is a jxj subdeterminant modulo m of A(A).
/11

(4.3) LEMMA. If P(MA) and Q(A) are products of elementary A-matrices
modulo m, then the gcd of all jxj subdeterminants modulo m of
C(A) = |P(%)A(%)Q(%)|m is the ged of all jxj subdeterminants

modulo m of A(A), a A-matrix modulo m.

Proof. We shall use the notation gM(K) to denote the ged of all jxj

subdeterminants modulo m of M(A), a A-matrix modulo m. Let

B(A) = |P(7\)A(?\)]m .
Then

cD) = [BYAM|
and

M = [FMEM_

From lemma (4.2), g,(A) divides g, (A). Also, g (A) divides g ,(A). But
A B BT CT
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o\ = gB(K) and gCT(K) = gc(h). Thus, gB(K) divides gc(%), and hence
gA(7\) divides gC(A).

Since
A = [ 7M@) e W @],

and [P(K)]-l(m) and [Q(K)]-l(m) are also A-matrices modulo m, then an
argument similar to the one above shows that gC(K) divides gA(A). Since both
SA(A) and gC(K) are monic polynomials modulo m, we must have gA(%) =

. 11/

We can now prove the uniqueness of the canonical form (3.2).

(4.4) THEOREM. [Perlis, 1952, p. 128] All A-matrices which are equivalent

modulo m over F[A] have the same canonical form (3.2).

Proof. Let A(A) be a nonzero A-matrix modulo m and B(A) a A-matrix which

is equivalent modulo m over F[A] and which has the form stated in theorem

(3.3). From (4.1) we see that the gcd of all jxj subdeterminants modulo m
of B(A) is dj(7\) = |f1(7\) fj(7\)|m . By lemma (4.3), the ged of all

jxj subdeterminants modulo m of A(A) must also be d (A) . It remains to

]

show, then, that the fi(K) are unique. Suppose

;N = |f1(7\) fj(7\)]m = lhl('/\) hjo\)lm ,

where the hi(K) are monic polynomials modulo m. Then,

4G = 5], = b

and

d. () ) |f1(7\) fj(7\)lm ) |h1(7\) h1(7\)]m
dj_l(7\) - If1(7\) fj_l(x)lmm [h1(7\) hj_1(7\)l.m

= 5,00, = [b,M, , G=2,...,0).
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Thus, the canonical form (3.2) ig unique. /1)

(4.5) DEFINITION. The polynomialg fi(h) are called the invariant factors

modulo m or the invariant Polynomials modulo m of A(A), the

Square A-matrix modulo m.

important A-matrices modulo m,

5. The Characterigtic Matrix Modulo m. An important role in the study of

the residue matrix a8 over F is played by the nonzero vector x over F such

that
(5.1) lax| = |ax| ,
where
[l = =
and
Al =2,

for some scalar A over F, The scalar A ig called an eigenvalue modulo m of

A. The vector x is called the eigenvector modulo m of A which is associated

With A, the eigenvalue modulo m. Equation (5.1) may ailso be written in X

the form

(5.2) ,(A-Al)xlm =p

where the A-matrix modulo m, A-AI, is called the characteristic matrix
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modulo m of A.

(5.3) THEOREM. There exists a nonzero (nontrivial) solution for the
residue matrix equation (5.2) if and only if the matrix A-AI
is singular modulo m for some value of A. In other words, we

have a nontrivial solution for (5.2) if and only if

(5.4) | det (A-?\I)Im =0

Proof. Assume that for some value of A the matrix A-AI is singular modulo m.
If we let r = rm(A-KI), where A is nxn, then.r < n. Thus, we can solve for

r of the unknowns, Xy o5 oeee i , in terms of the remaining n-r unknowns,

1

X, s eee s i s, by using Gaussian elimination for residue arithmetic
r+l

[Howell and Gregory, 1969a, pp. 217-220] and by assigning arbitrary values

to the unknowns x, > e s Xgoo Thus, if not all of the unknowns
r+l n

.« s X, are assigned the value zero, we have a nontrivial solution

X, s
1r+l n

for (5.2).
Suppose (5.2) has a nontrivial solution. Then we cannot have
r = n, for this would imply the existence of (A-KI)—l(m), and hence we

would have

X = (A-AL) L(m) -9
= Q’
the trivial solution. Therefore, r < n. /1]

The values of A for which (5.2) has a nontrivial solution are the
roots of equation (5.4). The determinantal equation (5.4) can be expanded

to give the polynomial equation modulo m of degree n

n,n n-1
(5.5) |17 - AT - L - b A= b)) =
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or

n n-1
(5.6) | la -+ a (-1 4 || 4 3N +a | =0

1¢
whose coefficient a  1is 1 and whose constant term a = | det A|m. In general,
a; is the residue modulo m of the sum of the principal minors modulo m

of order i of the residue matrix A. Equation (5.4), (5.5), or (5.6) is

called the characteristic equation modulo m of the residue matrix A, and

the polynomial on the left-hand side of (5.4), (5.5), or (5.6) is called

its characteristic polynomial modulo m. Clearly there are at most n

eigenvalues modulo m for the matrix A (since n < m).

EXAMPIE. Let m = 13 and

1 -3 -19
A= |-12 3 3
0 1 10

Then the characteristic matrix modulo m for A ig
1-A -3 -6
|A—AI]13 =1 3-2A 31,
0 1 -3-A

and the characteristic Polynomial modulo m for A is
_ 3,.3 2
|det (A—M)l13 = -1 - A% + 4\ 4+ 1)]13.

It is easily verified that the eigenvalues modulo 13 and their

associated eigenvectors modulo 13 for A are as follows:
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5 0 4
X, = 51, x, = =21, Xq = -6
1 1 1

We note that any multiple k # 0 (mod m) of the vectors X, would

also satisfy

ol = [l

We have an explicit expression for the characteristic polynomial

modulo m.

(5.7) THEOREM. The characteristic polynomial modulo m of A equals
l(—l)nf (A) ... fn(R)Im, where the fi(A) are the invariant

factors modulo m of |A-KI|ﬁ.

Proof. Since the characteristic polynomial modulo m is ldet (A-%I)lm,
we shall examine |A-K1lm. By theorem (3.3) we can reduce IA-KIlm to the
diagonal canonical form (3.2), B(A), by means of equivalence transformations

modulo m, given by

B(M = [B() (A-AD) QM) _.

Since Idet (A-?\I)lm in its matrix polynomial form (5.5) has a leading
coefficient of (-l)n, then the rank modulo m of IA-AI]m equals n. Further-

more since Idet B(?\)Im must be a monic polynomial modulo m, then we must have
n
|det P(A)-det A = [¢-D |-

Thus,

ldet BV, = |det P(A) -det (A-AD)-det QM|

n
= |(-1)" det (A-kI)]m,

and so
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]

|det A-AD)| = [(-1)"det BV,

Dm0 g ] /11

EXAMPLE. If we let A(A) be the characteristic matrix modulo m in the
previous example and compute the invariant factors modulo 13
of A(A) by the method described in the proof of lemma(3.1),
then we find that

£ =£,M0 =1,

and
£5M =27 - A+ 4+ 1.
?hus,
ldee AV 15 = 118, Mg, e, 4
- 10’07 - A% w s ),
and hence

: 1 an3,.3 .2
|det (A-A1)|13 = [(-1)°Q7 - A + 40+ 1)|13
as stated in theorem (5.7).
We shall now exhibit a particular property of the characteristic

equation modulo m. But first, we need to introduce a definition and a

lemma.

(5.8) DEFINITION. Let £(A) be a polynomial modulo m of degree n > 0.

If £f(A) = @ » then f£(A) is said to be an annihilating polynomial

modulo m for the matrix A.

(5.9) LEMMA. Let
k
C(A) = |ck7\ ..o+ CAH colm

and
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AN = |A-7\I|m.

If we divide C(A) b A(A) modulo m on the right or on the left

as described in lemma (2.3), we obtain for Rr(A) and Rl(A)

= k '
c (&) = |CkA ..+ CAF ¢ Iy
or
C (A) = |Akc + ...+ AC, +C.]
A k 1 O'm °
respectively.

Proof. [Perlis, 1952, p. 135] By direct multiplication we see that

] j-2 j-1 - = 1add
(5.10) “7\I+...+7\A +A0 |a Al |m—|A 7\11m.
Multiplying both sides on the left by Cj’ we have

e + + -2, j-1 - = 53
(5.11) \I?\ Ci+ .o +NCA c A |, la-az]_ Im |ch A cjlm.

Then summing both sides over j, we obtain

k k k
|2 lop eyl |, =1 Zlepll, - 2 ey, |,

j=1
=llc + §0Aj| - e+ ;_j?\jc ]
o =1 j 'm o =1 m ‘m
= [c(a) - co\)lm
- | }lf M, + ... +2ca3 2+ cad | |an] |
PN ] i m m
= low fa-nl_ | :
Thus,
le@) - enl_ = lam la-at] .
and so

ICO\)lm = ‘-Q(?\) |A-?\I|m + Cr(A)‘m.
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By uniqueness of the remainder in lemma (2.3), we have

Cr(A) = Rf(A)'

Similarly, by reversing the two factors on the left in (5.10) and by multi-
plying on the right in (5.11) we can show that

CL(A) = EL(A). 11/

(5.12) THEOREM. Let £(A) = |(-)"(\® - blx“’l T N N R

n-1
be the characteristic polynomial modulo m for A. Then f(A) = §.
Proof. [Eves, 1966, p. 201] From (II-3.12) we have

la-am@a-an®| = ||dee aan)]_o1 |

- n, n n-1
= |(-1)"(\ - bATT - - b)) |

n n-1
(5.13) = [T - b AT - L - b D)

Since the matrix polynomial on the right-hand side of (5.13) is divisible
modulo m on the left by lA-KIIm, then by lemma (5.9), the remainder is

n,.n n-1
IR, W1, = D" - ba

= sse ™ bn)]m
=@,
Therefore

@], = 0. /11

In other words, the characteristic polynomial modulo m is an annihilating

polynomial modulo m.

EXAMPLE. If we let A be the same matrix as in the last two examples,



1 -3 -19

and m = 13, then

3,32
l£a)] 53 = [¢-D7@A7 - 4% + 48 + D],

6 7 1]
=len3lo 4 5| -
1 -4 =3
4 1 2]
+ |6 -1 -1] +
o 4 1
3

2 -5
4 -4
1 o
1 o
0 1
0o 0

L!‘"

13




CHAPTER IV

SIMILARITY MODULO m OF MATRICES

1. Introduction. Transformations of the form

(1.1) ]Blm = ¢ m) a ¢l

on the residue matrix A, where C is a residue matrix which is nonsingular
modulo m, are of fundamental importance here and are known as similarity

transformations modulo m. Then, B is said to be similar modulo m to the

matrix A. The relation of similarity modulo m is symmetric, since from

theorem (II-3.13) we get

[

1Al = lec ) & coc™hwy |

m

-1
lcBcC @]

(1.2)

]

l(C'l(m»'l(m)-n-c‘l(m)lm .

Thus, it is sufficient to say merely that B and A are similar modulo m.
If we let C be any residue matrix which commutes with A, for example,

the identity matrix, then we can show that similarity modulo m is reflexive,

since
-1 _ -1
[€7 (m) A ¢l = l]c (m)c| Alm
(1.3) = !Alm
Transitivity also holds, since if
el

]Dlm = |F “(m) B Fl_
and

31, = le @ a ¢l ,




then, using theorem (I1-3.13) we get

ol = e7hm) (5] ]

]

IF“I(m) lc™ (m) A ¢l Flm

L]

“F'l(m)c°1(m) ]m A ICFlm ]m

(1.4)

]

](CF)'I(m) A ICF]m ,m .

Thus, we have proved the following

(1.5) THEOREM. Similarity modulo m is an equivalence relation,

EXAMPLE. Let A be the matrix used in the last example,

1 -3 -19
A= -12 3 3 ,
0 1 10
and
0 0 -1
B = 1 0 -4
0 1 1

Then A and B are similar modulo 13 since

1 -1 6|[ 1 -3 -19] |1
]s'l(m)As[13= 0 1 <412 3 3 o
0 0 Il o 1 10{ |o

0 o ]

= |1 0 -4

0 1 1]

61

13
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2. Basic Properties of Similarity Modulo m. We shall now exhibit the

relationship between similarity modulo m of two matrices, A and B, and

equivalence modulo m over F[A] of their corresponding A-matrices modulo m,

A-AI and B-AIL.

(2.1) THEOREM. Two residue matrices A and B are similar modulo m if and
only if A-AI and B-AI have the same invariant factors modulo m,

that is, if and only if A-AI and B-)AI are equivalent modulo m
over F[A].

Proof. [Perlis, 1952, pp. 143-144], [Gantmacher, 1960, pp. 147-148] Let

A and B be similar modulo m. Then there exists a residue matrix C which is

nonsingular modulo m and such that

B=|c m) a clm .
Then

lc'l(m)(A-M)clm lc™ m)ac - ¢ lmy O cl,

hc‘l(m)Ac]m - M:]m

| B-A1]
m

B-AIL.

Thus, A-AI and B-AI are strictly equivalent modulo m, and hence, by theorem

(III-2.28) they are equivalent over F[A]. Then, from theorem (111-4.14),

A-AI and B-AI have the same invariant factors modulo n.

Suppose A-AL and B-AI have the same invariant factors modulo m.

Then these A-matrices modulo m are equivalent modulo m over F[A], and there

&xist A-matrices modulo m P(A) and Q(A) such that
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(2.2) B-AL = [P(A) (A-AI) Q(?\)lm .
From theorem (III-2.28), we can write (2.2) as

B-AL = |S (A-AI) Tlm
(2.3) = lISATIm - IA.s'rim lm .

Equating coefficients on the powers of A on both sides of (2.3), we obtain

B = |SAT]
m

and

I_=|sT| .

n m
Hence

s =1 1w
and so

-1
B=|T (m)AT]m.

Therefore, A and B are similar modulo m. 11/

The following is an important result which concerns the characteristic

polynomials modulo m of matrices which are similar modulo m.

(2.4) THEOREM. If |13|m = ¢ (m) A c]m , then

|aee 15x], | = laee jan)_ |

m .

Proof. ]det IB-KI]m im det IBIm - KIlm ’m

1]

det ||c (@) A cl, - M’m ‘m

= |det Ic'l(m)Aclm - e tmy o) cl, lm o

= |det c'l(m)-{A-Mlm-clm ‘m
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‘det c'l(m)‘m.\det |A-RIim tm‘\dEt C‘m lm

- Jaet Jaaz) | . 111

Thus, from the above theorem we see that matrices which are similar modulo

m have the same eigenvalues modulo m.

Since the transforming matrix C is nonsingular modulo m, we have

the following theorem.

(2.5) THEOREM. 1f |B| = lc™'(m) A €|, then A and B have the same

rank (rm(A) = rm(B)).

Proof. This follows from theorem (II-3.17).

Furthermore, if the matrix A is nonsingular modulo m, then we can prove

the following theorem.

(2.6) _tHEOREM. 1f |B|_= [c™'(m) A C|_, then A and B have the same

determinant modulo m.

Proof. If A is singular modulo m then from theorem (2.5), both A and B
have determinants modulo m which are 0. If A is nonsingular modulo m,

then we must show that
|det A!m = |det Blm.

We have, from theorem (II-3.14) and (II-3.15)

|det B| = |det [ m) A cll

“det c'l(m)lm-ldet A|_-ldet c| ‘m

‘ldet Cl;l(m)'|det Alm-!det Clm ‘m




65

= ‘det A!m. /1]
EXAMPLE. We let
1 -3 -19]
A= |-12 3 3
0 1 19“
and
0 0 -iﬁ
B = 1 0 41 .
0 1 1]

In the example following theorem (1.5) we showed that A and B
are similar modulo 13. It is easily verified that

|det Al13 = -1

= |det B|13 .

We note that if A is of the form

el -—J

then we can produce a matrix which is similar modulo m to A by permuting the

blocks in A in an arbitrary manner along the diagonal.

(2.7) THEOREM. If

A

then A is similar modulo m to a matrix
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A
i1
B = -
Aik
L‘ e
where the subscripts il,...,ik denote an arbitrary arrangement

of the integers 1, ..., k.

Proof. [Perlis, 1952, pp. 150-151] It is sufficient to show that we can
permute any two blocks, say the ith and jth, by means of similarity trans-
formations modulo m. Suppose A is partitioned into k blocks each of order

n, . Then we partition the identity matrix similarly into k blocks of

order o, - Thus,

In
1
In
i
I = .
n .
In
k|
1
e
Then we choose -
Inl 'T
1n
i
(2.8) P = T R
In
k|
.
M

where the ith and jth columns of blocks have been interchanged. It is easy

to see that postmultiplying A by P interchanges the ith and jth columns of

T
blocks in A. Since |P.P lm = I, then |PTAP|m = lp'l(m)Aplm is a similarity
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transformation modulo m. Furthermore, Premultiplying IAP]m by P‘l(m)
produces a matrix B with the ith and jth diagonal blocks interchanged,

thus proving the theorem.
/17
(2.9) COROLIARY. If A(A) is a A-matrix modulo m in block-diagonal form,
then A()) is equivalent modulo m overlF[A] to a matrix B(A)
which is a block-diagonal A-matrix modulo m, where the blocks

of B(A) are the same as those in A(A), but in permuted arrangement.

Proof. The proof is similar to the above Proof. We choose P as in (2.8)
and form IPTA(A)PIm = B(MA). Since P is a residue matrix over F which is
nonsingular modulo m, then it is also a matrix over F[A]. Thus, lPtA(A)PIm =
B(A) is an equivalence transformation over F[A].

/17

3. The Minimum Polynomial Modulo m of a Matrix. Before applying our

knowledge of the Properties of matrices which are gimilar modulo m, we
need to introduce one further concept regarding residue matrices. This is

the concept of the minimum polynomial modulo m. We have shown in chapter

III that every residue matrix A satisfies itg characteristic equation

modulo m. A natural question is whether there are other polynomial equations
modulo m which are satisfied by the matrix A. 1In particular we would like

to know when there exist Polynomial equations of lower degree than the

characteristic equation modulo m which are satisfied by A. We shall answer

these questions in this section.

(3.1) DEFINITION. A monic polynomial modulo m of positive degree, p(A),
for which lp(A)Im'- # and which has minimal degree among all

annihilating Polynomials modulo m is called a minimum polynomial

modulo m of A,
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Among all monic annihilating polynomials modulo m for a matrix A, clearly
there is one of minimal degree. The relationship between this minimum
polynomial modulo m and all other annihilating polynomials modulo m for A

is stated specifically below.

(3.2) THEOREM. Every annihilating polynomial modulo m for a matrix A

is divisible modulo m by any minimum polynomial modulo m for A.

Proof. [Perlis, 1952, pp. 145-146], [Gantmacher, 1960, pp. 89-90] Let
p(A) be a minimum polynomial modulo m for A and f(A) an arbitrary annihilating
polynomial modulo m for A. Since m is a prime, we know from theorem

(II-4.6) that we can find polynomials q(A) and r(A) such that

[E, = [eMya + x|

where either r(A) = § (mod m) or the degree of r(A\) is less than that of
p(A). In order to show that £(A) is divisible modulo m by p(A), we must

show that r(A) = # (mod m). We know that

[E@ 1, = Ip)a@) +r@)|_ .

Since p(A) and £(A) are both annihilating polynomials modulo m, we have

that

le)| =9
and

£ =9 .
Hence, we have

Ir(A)lm = ¢:

in which case, r(A) is also an annihilating polynomial modulo m. But,

because of the minimality of p(A), r(A\) cannot be of degree less than that
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of p(A\). Therefore, r(\) = § (mod m), and p(A) divides £()\) modulo m.
11/

From the above theorem, we see that, in particular, a minimum polynomial

modulo m divides the characteristic polynomial modulo m.

We shall now prove the uniqueness of a minimum polynomial modulo

m for a matrix A.

(3.3) THEOREM. A matrix A has a unique minimum polynomial modulo m.

Proof. [Hohn, 1964, pp. 286-287] Suppose pl(k) and pz(K) are both minimum
polynomials modulo m for A, and that both are of degree k. The, A satisfies

both

P, (M)

k k-1
A +a N7+ L+ g Ao |

and

P, (M)

Thus, A also satisfies

k k-1
A" + B T e+ B _AFB Im .

121 = 2, DI = 1B )N+ L+ (-8 A+ (@Bl -
If pl(h) and pz(K) are different, then the polynomial lpl(K) - pz(K)|m must
be of degree less than k. But, by the minimality of pl(K) and pz(h), A can
satisfy no polynomial of degree less than k. Hence, lpl(A) - pz(?\)lm must

be the zero polynomial modulo m. Therefore, pl(K) = pz(K) and the minimum

polynomial modulo m for A is unique. /11

We shall now show that the invariant factor modulo m for |A-7\I|m

of highest order is the minimum polynomial modulo m for A.

(3.4) LEMMA. The minimum polynomial modulo m for A, p(A), divides the

highest order invariant factor modulo m for lA—RI‘m .
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Proof. [Perlis, 1952, p. 146], [Gantmacher, 1960, p. 90] 1In chapter III,
section 4, we saw that the highest order invariant factor modulo m for the

matrix ]A—Kllm is given by

d N
d 1M

(3.5) £, ] =

m

where dk(K) is the greatest common divisor modulo m of all minors modulo

m of order k for [A-AIIm - Then we can write

(3.6) £ M, = la o]

If we look at the adjoint modulo m for IA-KI!m » We see that the elements
of I(A-Kl)adjlm are all multiples modulo m of dn_l(R). Furthermore,

dn_l(R) is the greatest common divisor modulo m of the elements of

I(A-KI)adjlm. Hence, we can write
(3.7) l@-a02Y] = a vy,
m n-1 m
where the greatest common divisor modulo m of the elements of the matrix
Q(A) is 1. From theorem (II-3.12) we can write
|-y - a-an®) - HOB

where f(A) is the characteristic polynomial modulo m of A. Since lf(%)[m =

ldn(A)lm » this becomes

- aryadiy
(3.8) | (A-AT) . (A-AT) I, = |dn(?\).I|m .
Combining (3.6), (3.7), and (3.8), we have

la-am) -0 e = l£, e 1]

and hence

(3.9) | (A-AT) QM| = ]fn(x)-’:im .
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Therefore,
lfn(A)!m = ¢ Y

and by theorem (3.2) we have that p(A) divides fn(%). /1/

(3.10) THEOREM. The minimum polynomial modulo m for A, p(N), is equal to
fn(K).

Proof. [Perlis, 1952, PP. 146-147], [Gantmacher, 1960, pp. 90-91] By
lemma (III-5.9), we can divide the matrix polynomial modulo m !p(%)-Ilm s

by the characteristic matrix modulo m of A, obtaining
(3.11) [PV 1] = |B(A) -a-21) + O]

where pr(A) is identically equal to zero. From lemma (3.4) we have that

(3.12) lfn(7\)lm = lh(K)-p(%)!m ,
and hence
(3.13) lan\)Ilm = lh(7\)~p(7\)IIm.

Substituting (3.9) and (3.11) into (3.13), we obtaln

la-anem| = le BN (a-An)|_

and hence
(3.14) la|_ = lh(MBO\)Im .

This implies that the polynomial h(A) divides all of the elements of lQ(K)lm

modulo m. From (3.7), we note that the greatest common divisor modulo m

of the elements of Q()) is one, so that h(A) must be a constant,k. Then
£, M, = lep)]_
But, both fn(R) and p(A) are monic - polynomials modulo m. Thus,
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From the above lemma and theorem, we have an expression for the
minimum polynomial modulo m for a matrix A. Since dn(R) = ](-l)n‘det(A-AI)lm,

then from (3.5) we obtain

(3.15) M = [ D det A-A) [m
m

dn-l(x)

In case Idn-l(k)lm = 1, then we see that the minimum polynomial
modulo m for A & congruent to (-1)n times the characteristic polynomial

modulo m for A.

(3.16) DEFINITION. A matrix A whose minimum polynomial modulo m is congruent
to (—1)n times its characteristic polynomial modulo m is called

nonderogatory modulo m. Otherwise, A is called derogatory

modulo m.

We see that a matrix which is nonderogatory modulo m has only one invariant

factor modulo m which is not congruent to one.

EXAMPLE. Let m = 13 and

1 -3 -19
A= |-12 3 3.
0 1 10

The minimum polynomial modulo m for A is

3

pA) = A° - A% 4 4h + 1

3
| (-1)" det (A-7\I)|13.

Thus, the matrix A is nonderogatory modulo 13.
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EXAMPLE. Let m = 13 and

The minimum polynomial modulo m for A is

p(A) =A% -6A -5,

and the characteristic polynomial modulo m is

e = [0+ 02+ 54 - )],

Thus, A is derogatory modulo 13.

In the next section we examine a particular matrix which is nonderogatory

modulo m, and we apply the results of section 2.

4. The Companion Matrix Modulo m. If we let lg(%)lm be a monic polynomial

modulo m,
n,n n-1 ' S .
(4.1) [GDTAT - o270 - o= b A - b)) = e,

then associated with !g(%)lm is an nxn residue matrix, lC(g)!m, where

(0 0 0 ... 0 b
n
1 0 0 ... 0 b .
0 1 0 ... 0 b _,
(4.2) G ,
0o 0 0 0 b,
0 0 o 1 by |

which we call the companion matrix modulo m for [g(%)lm . It is not difficult

to show that Ig(%)lm is the characteristic polynomial modulo m for |C(g)lm .
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Furthermore, if we examine

A0 0 . 0 b |

1 -A O 0o b,
(4.3) lC(g)-?xI\m= 0 1 -A ... 0 bl >

0 0 0 -A b,

_o 0 0 1 bl-?\—

we see that the minor modulo m for the element bn is (—1)n-1. Then, the

greatest common divisor modulo m for all n-1 x n-1 subdeterminants modulo m
of lC(g) - yI|m is 1. Hence, we have ldn_l(K)lm = 1. From (3.15), it
follows that the minimum polynomial modulo m for ‘C(g)‘m equals (-1)n times
the characteristic polynomial modulo m for |C(g)|m. Therefore, by definition

(3.16) we have proved the following:

(4.4) THEOREM. The companion matrix modulo m, lC(g)im , is nonderogatory

modulo m.

It follows from the above that lC(g) - %I‘m has only one nontrivial

invariant factor modulo m.

(4.5) THEOREM. 1If lB‘m = ‘S“l(m) A Slm and lBlm is the companion matrix

modulo m for |det CA-KI)]m then ‘A‘m is nonderogatory modulo m.

Proof. From theorem (2.1), IA—KI‘m and lB-kI‘m have the same invariant
factors modulo m. Since |B‘m is in the form (4.2), it is nondercgato;y
modulo m and has only one nontrivial invariant factor modulo m. Thus,

|A]m also has only one nontrivial invariant factor modulo m and is nonderoga-

tory modulo m. /11
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(4.6) COROLIARY. If A is derogatory modulo m, then A cannot be similar

modulo m to the companion matrix modulo m of |det (A-%I)‘h.

Proof. The proof is by contradiction. Suppose A is similar modulo m to
the companion matrix modulo m of ‘det (A-%I)lm. Then A is nonderogatory
modulo m. Hence, we have a contradiction to the assumption that A is deroga-

tory modulo m. | /17

In the above discussion we have shown that A is similar modulo m
to |C(f)1m, where £(A) = |det (A—%I)lm if and only if A is nonderogatory
modulo m. We shall now show that when A is similar modulo m to

C(g1>
4.7) B

C(gz)

then A is nonderogatory modulo m if and only if gl(K) and gz(K) are relatively
prime modulo m. In order to prove this, we need to exhibit a canonical

form for residue matrices and prove two lemmas.

(4.8) THEOREM. Let IA-}I]m have invariant factors modulo m fl(K) s see s

fn(%). Then A is similar modulo m to

C(fi)
i C(fn)
where fl(k) = ... = fi_l(%) = 1 and fj(K) divides fj+1(%) >
modulom (j = 1,...,n).

Proof. [Gantmacher, 1960, p. 142], [Perlis, 1952, p. 153] Let the matrices
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C(fj), j=1,...,n, have order nj, so that the polynomial modulo m fj(K) has

degree nj. Then the characteristic polynomial modulo m and the minimum
polynomial modulo m of C(fj) are both equal to fj(%). Since IC(fj) - kIn lm

has only one nontrivial invariant factor modulo m, it is equivalent modulo

m to a matrix lKj(K)Im of order ng, where

1 =
&, W=
1
£.(A
j( )
Then |B-RIlm is equivalent modulo m to
R, (V)
|E(x)|m = Kip1 M

K (A)

——

S

By corollary (2.9) we can reorder the elements in the blocks and obtain

a matrix with all of the ones in the upper left-hand corner

1

) 1
[FV] = £,(N)

£ (N

bt

—ad

But IF(A)Im is equivalent modulo m to IA—XIlm. Therefore, lB-KIIm is

equivalent modulo m to IA-Kllm, and by theorem (2.1), A and B are similar

modulo m. /)/

(4.9) LEMMA. If we let
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where D and G have minimum polynomials modulo m d(A) and g(A),
respectively, then the minimum polynomial modulo m for |B\m

is the least common multiple modulo m of d(A) and g(A).

Proof. [Perlis, 1952, p. 151] Let |p(}) by the minimum polynomial modulo
e m

m for lB]m. Then, by definition (3.1)

p(D)
= lp®)| =
p(G)

But Ip(B)lm = § if and only if both ]p(D)lm = @ and Ip(G)lm = §. By theorem
(3.2), this implies that both d(A) and g(A) divide p(A) modulo m. From the
definition of ‘p(%)lm, it is the monic polynomial modulo m of least degree
such that ‘p(B)lm = @, and hence it is also the polynomial of least degree
such that d(A) and g(A) both divide p(A) modulo m. In other words, Ip(%)‘m
is the monic polynomial modulo m of smallest degree such that lp(k)lm is

a common multiple modulo m of d(A) and g(A). By definition (II-4.14), we

have that Ip(%)lm is the least common multiple modulo m of d(A) and g(A).
111

EXAMPIE. Letm = 13 and

4 0 0
B = 0 0 5
0 1 6

D
8 G
The minimum polynomial modulo m for D is

d(A) = A - 4

and the minimum polynomial modulo m for G is

A -6 - 5
(A - &)\ - 2)  (mod 13).

g(N)

]

I
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Thus, the minimum polynomial modulo m for B is

i

p(N) = |(A - &) - 21,5

7\2

-6\ -5

which verifies the result obtained in the last example.

From the above lemma we see that if d(A) and g()\) are relatively prime

modulo m, then
(4.10) oM, = laem|_ -

(4.11) LEMMA. 1If the characteristic polynomial modulo m of IAIm is
Id(%)g(%)]m, where d(A) and g(A\) are relatively prime modulo m,

then [Alm is similar modulo m to a matrix B, where

m
and where D and G have characteristic polynomials modulo m

d(A) and g(A), respectively.

Proof. [Perlis, 1952, pp. 154-155] Let lA-%Iim have the following invariant
factors modulo m: fl(k),...,fn(%). Then, from theorem (4.8), A is similar

modulo m to a matrix F, where

C(fi)

C(fn)

and where fl(K) = ,,. = fi_l(K) = 1. Then, by theorem (III-5.7),

.
n
|det @a-aD)|_ = |(-1) TJL £,(M) |

By hypothesis, then,




lay g = 1D, .o e V]

From theorem (II-4.18), we can find unique monic polynomials modulo m,

d'(A) and g'(A), such that
l£, M1, = layMeiMl

where d}(%) divides d(A) modulo m and gg(%) divides g(A) modulo m. Since
d(A\) and g(A) are relatively prime modulo m, then d'i(A) and g'(A) are
relatively prime modulo m. Thus, from lemma (4.9), the.the matrix
c(a!')
le,| =|

Jj'm '
C(g!
(gJ)

has minimum polynomial modulo m ldi(%)g&(%)lm . But this is also the character-
istic polynomial modulo m. Hence, lGjlm is nonderogatory modulo m and is
similar modulo m to |C(dsg3)lm = C(fj). This implies that F is similar

modulo m to
o 1
Gi C(di)
1
. C(gy)
G .

i

S c(al)

-C(gg)

By theorem (2.7) we can shuffle the blocks and obtain a matrix similar

).
T, D
C(dé)

C(g;)

<::::> . C(g)

medulo m to F,
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where the characteristic polynomials modulo m for D and G are di(%) cee d;(%) =
d(A) and gi(%) - gh(%) = g(A), respectively.

17/

(4.12) THEOREM. Let A be similar modulo m to B, where

D
LR

and where D and G are companion matrices modulo m to d(A) and
g(A). Then A is nonderogatory modulo m if and only if d(A)

and g(A) are relatively prime modulo m.

Proof. First let d(A) and g(A) be relatively prime modulo m. By lemma

(4.9), the minimum polynomial modulo m for ]Blm is [d(h)g(%)lm. But, since

D and G are companion matrices modulo m for d(A) and g(A), then the character-
istic polynomial modulo m for IBlm is Id(K)g(R)lm. Thus, [Blmlis nonderoga-
tory modulo m, and hence, so is A.

Now let A be nonderogatory modulo m. Then, the minimum polynomial
modulo m of A equals the characteristic polynomial modulo m of A, which is
]d(%)g(%)[m. But, from lemma (4.9), the minimum polynomial modulo m of B,
and hence of A, is the least common multiple modulo m of d(A) and g(}).

By uniqueness of the minimum polynomial modulo m, d(A) and g(A\) are relatively

prime modulo m. /1/

In chapters II, III, and IV we surveyed the main theorems of residue
arithmetic. We are now prepared to discuss the modified Danilewski method,

which uses residue arithmetic.



