CHAPTER V

THE MODIFIED DANILEWSKI METHOD

1. Introduction. 1In this chapter we describe an algorithm which uses

residue arithmetic to reduce an nxn integral matrix A to Frobenius form,
and obtains exact integral factors of the characteristic polynomial. The

algorithm is based on the fact that if A has as its characteristic polynomial

£(A) = det (A-AI)

(1.1) PN ... pL(7\),

where pi(K) is an integral polynomial given by

o3

N B N e R it (1) (i)
(1.2) p; M = (-1 *(a b - piMa ST N bni ),

then the characteristic polynomial modulo m of [Alm, as defined in chapter III,

section 5, is

(1.3) [EM], = oy D ... M,
Thus, if we compute a bound* B, where

(1.4) B 2z max ‘b%l,
i,j

and if we choose m so that+
(1.5) mz 2.8,

and finally if we compute lf(%)lm using modular arithmetic, then

(1.6) D] = £n).

* Methods for computing B will be discussed in chapter VI.

* The 2 is necessary because we are using the symmetric residue system.
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In the next section we describe a method for computing the Ifi and,

la

hence, also lf(R)lm, using modular arithmetic based on Danilewski's method.

2. Computing If(%)lm. We recall from theorem (IV-2.4) that matrices which

are similar modulo m have the same characteristic polynomial modulo m. Thus,

if we can reduce lAlm to the form

— —
0 0 0...0 x
n
1 0 0...0 X1
0 1 0...0 X9
(2.1) C= . . e . s
0 0 Oo0...0 x,
6 0 o0...1 Xy
where C = ls-l(m) |A|m Slm » then the characteristic polynomial modulo m

of C, and hence of lAlm is

n,.n n-1
(2.2) |f(7\)|m = |(-1)" (A" - x A -

e - xn_lh - xn)lm .

Therefore, since the elements of C are reduced modulo m, we have, from (1.2),

(2.3) x, = [V

This assumes that IAlm is nonderogatory modulo m. The case in which IA!m
is derogatory modulo m is treated below.

We now consider the problem of reducing ‘Alm to the form (2.1).
This is accomplished in a finite number of similarity transformations

modulo m of the form
- st |
(2.4) lAk+1'm N Sk (m) lAklm Sk m °’

where le|m = [Alm. We shall let the Sk be elementary matrices modulo m

as described in chapter II, section 3.
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We could proceed in a manner analogous to the method for ordinary
arithmetic described in chapter I, first reducing the matrix to Hessenberg
form, then reducing the Hessenberg form to Frobenius form. However, the
main reason for separating the computation for ordinary arithmetic into
two stages is the difference in computational stability considerations
involved in each step. When performing the analogous operations in modular
arithmetic, all arithmetic is exact. Therefore, computational stability
is of no concern. Furthermore, if the two stages are combined, then one
transformation produces zeros in all the elements in one column except the
first subdiagonal element (the pivotal element), and the inverse transforma-
tion modifies only the elements in a single column. Thus, we shall combine
the two steps in the algarithm which uses modular arithmetic. We shall
now describe the transformations which produce the columns of(zeros.

In order to save arithmetic, we first reduce the matrix IAolm to

the form

(2.5) 2
O -,

where each diagonal block Di is in Frobenius form except for the subdiagonal

elements which are nonzero but not yet reduced to unity. The reduction of

]Aolm to this form requires at most n-1 steps of 'the form

(2.6) . 1Al = lJ;l(m) Al 3 Im ,

where ]J ] is a product of elementary matrices modulo m and IA [ .
(o?} A. The columns must be annihilated from left to right in order
not to destroy zeros produced by previous transformations. Each trans-

formation changes a matrix !Aklm into a matrix ‘Ak+1lm in which there is an

additional column with zeros everywhere except at the pivotal position.
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Thus, after the first transformation we have

-1
‘Alim N lJb (m) IAo‘m Io ‘m
— -
0 X .. X
x [ x ... x
2.7) = s
IS
0
where
B (m) ]
MO
0 0o 1
(2.8) J "(m) =
° (m)
0 By
. In-2
(m)
_? p'nl ]
and
m) (0) 0)-1
(2.9) n® o a0 @y @ = 1,346,000,

The case in which a pivotal element is congruent to zero is discussed below.

The (j+l)st transformation produces

-1
I8l = 197 @ 181, 5, L,

-1 -1
iJj (@ ... 3 "(m) [a| 3 ...

]

where F' is an nx(j+l) submatrix with zeros everywhere except on the first

(2.10)

1

subdiagonal, and where



(m)

B, 341
ERE O

(m)
b1, 541

(2.11) J;l(m)= 0 ... 011 0 ... 0
(m)

Pi43, 541

(m)
Ha, 3+l

and

(2.12) u&%ﬂ - |-a§j§+l -a§_*3,j_;1(m) | (=1, 341,343, 0

Finally, at the (n-1)st step, if no pivots are congruent to zero (if

£=11in (2.5)), we have a matrix in the form (2.5)

-1
la 1y = lJn-z(m) a5l Jn-zlm
1.1 -1
= ‘Jn_z(m) e I (Al T T \m
0 0 0...0 x
X 0 0...0 X
0 % 0. 0 X
(2.13) e ,
0 0 0...0 x
0 0 0. X X
where
i (m) ]
H1 n-1
(2.14) 3l =l Tar |
1J(m)
n-1,n-1
0...0 1|1
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and
m __.(n-2)  (n-2) -1 - _
(2.15) P a1 " | 3 n-1 N (m) lm, (i=1,...,n-1).
1f a pivotal element, agiilg , is zero, then a search is made among

the elements aij (i=j+2,...,n) for a nonzero element. If one is found,
then rows k and j+1 are interchanged. This corresponds to pre-

multiplying lAj-llm by the elementary matrix II Then, to complete

k,j+1‘m ’

the similarity transformation modulo m, lA must be postmultiplied by

j-llm

lI This interchanges columns k and j+l1. We should point out that

k,j+1‘m'
the reason the search for a nonzero pivot is not made among the elements
a(!‘l) (i=1,...,j) or a(j'l) (k=j+1l,...,n) is that pre- and post-multiplying
ij itk

< 3 < .
}Aj_llm by lIi,j'm (L < j+1) or by le+1,k|m (k < j) destroys zeros
produced by previous transformations.

In case no nonzero pivot can be found, then we partition the matrix

‘Aj-llm into blocks, as follows, and apply the algorithm to the @-j)x(n-j)

submatrix Hf

Dy X

o
where D1 is a jxj submatrix which is in Frobenius form except for the
elements on the first subdiagonal which are not yet reduced to unity, and

whose characteristic polynomial modulo m is |p1(A)lm . If partitioning

occurs when applying the algorithm to Hl’ we obtain

where the characteristic polynomial modulo m of D2 is Ipz(%)lm. Proceeding

in this manner, we obtain a block triangular matrix




(2.16)

which is similar modulo m to IAlm, and where each D, is in Frobenius form
except for the nonunity subdiagonal elements and has characteristic poly-
nomial modulo m Ipi(k)lm. Thus, the characteristic polynomial modulo m of

lAIm is

(2.17) laee (lal -2l = 1,0 o0 O

In a manner analogous to the one described in chapter I, we reduce

the subdiagonal elements in the Di to unity. 1If Di has the form

0O 0 0 ... 0 gD
r
i
(1) (1)
) 0 0 ... 0 Ve 1
- (1) (1)
(2.18) D,=lo 43’ 0 ... 0 e 2
(1) (1)
o o o ...a¥ .y
B ri,ri 1 1 i
(1)

then the coefficients, xj » of the characteristic polynomial modulo m

r,-1

r o
219 M| = I ot - <Dt LB xii))|m

are given by

(1 _ (1)
(2.20) ENRE IR g I
and
ri-l
W _ |
(2.21) Lo ij k=;1jg+1 Atk im s 372,01,

This corresponds to performing a similarity transformation modulo m on Di’

producing
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-1
(2.22) |7l = 2] (o, |
where
- —_
1
i
@) )
- - (1) (1), -
(2.23) B]tm) = (45173527 L m) .
ri-l
(1) -1
il U1, @
k=1
- | ]
Hence, after performing the transformations (2.22), l l is reduced to the

following block triangular form in which the diagonal blocks are companion

matrices for factors of the characteristic Polynomial modulo m for lAlm

(2.24)

We note that if A is derogatory (or]A[m

s lal sl -

- -

', 3K

2

O

L

F
Hlm

is derogatory modulo m) then this-

partitioning into a block triangular matrix must occur, by corollary (Iv-4.6) .

We illustrate the above method with an example.

EXAMPLE. Assume that by some scheme we have obtained the bound B =6 for

max lb( )] where
i,3
ERS!
A= 2 3
2 -1
1 2
det (A-AI) =

-4 7]
-2 -4
-3 9
-1 -3

PV ...V,




n, n n, -1
M = (- Fat -t L

Then we choose m = 13. Letting

1 5 0

3-1(13) - 0 1 0
o]

0 -1 1

0 6 0

the first transformation produces

[

-1
Ay lJo (13)AOJ0113

bl

For the second transformation we choose

1 0 2

9 o 1 1
3,7(13) =

o o0 1

o 0o 0

and hence

-1
A, = lJl (13)A1J1[13

°]

l | onud

(1)
- bni ).
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0 0 0 -1

Since the last pivotal element is 0, all that remains is to
reduce the subdiagonal elements to unity. This is accomplished

by the transformation

-1
F=|P "(13) A, P |13

- - - - - -

1 0 0 O 0 0 -3 -6 1 0 0 ©

0o -6 0 0 2 0 6 2 0 2 0 O

0 0 3 0 0 -2 1 6 0 0 -4 0

o 0o 0 1 0 0 0 -1 0 0 0 1]

— — 13

0 0 -1]-6 ,

1 0 1] 1

0 0 0;}-1
Hence, we have

loy M5 = 117 7 - 2% - a+ 1),

and
‘P2(7\)l13 = l'?\_ll 13?
and by (1.6)

det (A-AD) = (A2 - A2 - A+ DO+ 1).

We should point out that the Frobenius form (I-1.1) obtained using

the above algorithm is not a canonical form, since similar matrices may

yield different F This is illustrated below.

i
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Let m = 13 (we are assuming it is known that 13 2 2.max |b(i)|)
i,3
and
2 0 0
A= 10 1 O
0 4 5

The modified Danilewski algarithm transforms A into the form

F =
Hence
det (A-AI) = (A - 2)(A% - 6A + 5).
If we select
A' =

2 0 0
0o 1 of ,
0 0 5

(a matrix similar to A), we obtain

2]0]o0
F'=|0|1]0
. 0jo0ls

det (A-AIL) = (A-2)(A-1)(A-5).

Hence

‘Thus, A and A' yield different factorizations for the same

>

characteristic polynomial.



CHAPTER VI

THE MULTIPLE MODULUS-ALGORITHM

1. Introduction. The algorithm described in chapter V uses single-modulus

residue arithmetic to reduce a matrix A to Frobenius form (I-1.1). We
recall that the size of the modulus m depends on the bound B (V-1.4). 1If
28 is too large to be representable in a computer as a single-precision
integer, then m will have to be stored as a multiple-precision integer,
making computations modulo m too difficult to be practical.

In order to avoid this problem, we select a set of moduli, m,,

m ey Moy with

2’
(1.1) m=mm, ...0 ,

because, as we shall see in section 4, this enables us to obtain results

modulo m by doing most of the arithmetic modulo m for 1 = 1,2,...,s.

i’
More specifically, the moduli are chosen so that¥® (mi,mj) =1, for i # j,

and so that

v

(1.2) mz 2B

(1)
2 -max ‘b | s
i, 3 °

v

where the bgl) are defined in (V-1.2).

We perform similarity transformations modulo m, on |A|m , for

i
i
i=1,2,...,5, by using the single-modulus procedure described in chapter V
in order to obtain the residue representations (see Szabd and Tanaka [19§7,

p. 12]) for the factors of the characteristic polynomial modulo m of A,

* The restriction given here is required by the Chinese Remainder
Theorem, mentioned below.
92
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(1.3) Py ~ (IpiO\)lml, IpiO\)lmZ, PPN NI
]

From these s-tuples we can determine [pi(%)lm using the Chinese Remainder
Theorem or some variation of it such as the mixed-radix conversion procedure.
(See Szabd and Tanaka [1967, pp. 27, 431, Lipson [1971], and Howell and
Gregory [1970].) This means that since m is chosen according to (1.2),
we can determine pi(%). Examples illustrating the algorithm are given in
section 6.

Since different moduli may give us different factorizations, we
must monitor the reductions, keeping a record of rows which are interchanged
and pivots which vanish in order to use only the factorizations modulo
m, which give us the correct factorization over the integers for det (A-AI).
This monitoring scheme and the multiple-modulus reduction are described in

the next sections.

2. Block Structures in the Multiple-Modulus Algaorithm. In the ideal

situation all moduli used would yield the same block structure (blocks of
the same order and arranged in the same pattern along the diagonal). This

is not always the case, as an example illustrates.

EXAMPLE. Let

1 0 o0
A= i 0 o0
:5 2 -1
For m = 23, we obtain
—0 0 0~
A1 =11 1 0},
_0 7 -1J
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F = 1 0 1

0o 1 O

e ——

Hence, we have obtained a 3x3 block, and
ldet A-AD)].. = |(-13A° - W]
23 23°

For m = 7, we have

0 0 0
Al = |1 1 0
0 0 -1

=F,

which gives us the factorization
3.2
ldet -2, = [(-1)7(A° - MDA+ Di,.

Both of these are correct factorizations for the characteristic
polynomial, but the factorizations are not the same form = 7

and m = 23.

The following example illustrates that we can also obtain two
different factorizations for the characteristic polynomial modulo m, one

of which is not a correct factorization over the iﬁtegers for det (A-AL).

EXAMPLE. Let



o
Pt
L]
| e

which gives a correct factorization over the integers
ldet (A-AD)|.- = | (-1 - DO + A + D)
23 23°

Form = 7, IA|7 becomes immediately

which gives the factorization l(-1)3(k - DA+ 3N - 2)l7
for ldet (A-KI)|7, and this is not a correct factorization over

the integers for det (A-AI).

In order to guarantee that we can reconstruct the factors by means
of the Chinese Remainder Theorem, the factors obtained using the modulus m,
must be of the same degrees as those factors obtained using m (for all
i and k). Moreover, the factors must appear in the same order along the
diagonal. This implies that even if 2 or more factors of the same degree,

nj, are obtained using the modulus m,, they must appear in the same order

i,

as their corresponding factors of degree n, obtained using the modulus m, -

3
We now show that if we have obtained blocks of corresponding orders
for two or more moduli, then these blocks can be combined using the Chinese

Remainder Theorem to obtain the blocks we would have obtained had we done
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our calculations modulo mm,...m = m. That is to say, if the blocks
obtained using the multiple-modulus algorithm are of corresponding sizes

for different moduli, then they are in the proper order for obtaining the

Frobenius form modulo m using the Chinese Remainder Theorem.

m.e
We prove this by considering the transforming matrices J( 1)

j b
where
(m,) (m;) (m,) (m,) (m,) (m,)(m,) (m,)
i’-1 i i _ i’-1 i’-1 A S | i
IJJ. (mi)Aj Jj |mi = lqj (m,) ... ro (mdA T .. Jj n,
(@) 4 (m)  (m,)
= |3 (m) A, = 3 Imi
[ (m,) 7]
i
(2.1) = |B 7ol ,
(m,)
O 51

(m,)
and F1 Y is a (j+2)x(j+2) submatrix which is in Frobenius form except

for the subdiagonal elements which are not yet reduced to unity. We must

show that if

(w)_;  (m) (m) (m)_, (m)_, (m) (m) (m) |

le (m)Aj Jj_ [m=le (m) ... J ma, I ... Jj m

it
=
—~
=)
N’
>
-

o
(m) X
F
(2.2) = s
O 15
where Fgm) is a (j+2)x(j+2) submatrix in Frobenius form except for the
nonunity subdiagonal elements, then
(m,)
i
(2.3) Ea I F e
i i

for all i, and hence



(m), _p 1
(2.4) |7, |m Fy
i
and
(2.5) |2y lm =P .
i
(m,) (m)
The same arguments can then be applied to the submatrices P 1 and P
1 1
to show that
(m,)
(m) _p 1
(2.6) |F2 lmi F,
and
(m,)
(m) _ i
(2.7) |P2 |mi =B,

Continuing in this manner we can show that

(m,)
(2.8) |F1((m)|mi = F, 1

for all k. We now prove (2.4) and (2.5).

First we examine Jim) (k =1,...,j). We shall assume for the

moment that no row interchanges have taken place. We have
- -

_(m)
Pl kHl

et | (::>
_,(m)
el ket

(2.9) A 0... 0| 1 0 ...0 , (k=1,...,1)

(m)
A3, ket

i (m)
n,k+1

where

(m) = 1.(k) (k) -1
(2.10) LS ‘aL,k+1 ORI



Since, from theorem (II-2.7c) we have

(2.11)

then

(2.12)

Thus,

(2.13)
and hence

(2.14)

Therefore,

(2.15)

and thus

(2.16)

(™ (k) (k)
P Lkt “"‘L o %2, 11 @ ‘ m,

_1.(k) (k)
= |a 3kt k42, k+1(m )l

(mi)
= -ul,k+1lm
> i H]
(m,)
(m) i
‘Jk |m - ‘Jk ‘mi
(m,)
_ i
= Jk

(m) (m) (m) (m)
| | = |3, e 33 |

IJ(m) —l(m)lm

i i

(m) - (m) ;(m) l

15 “Lma; - |4 '1(¢>|A1mJ(m>\mi
(m,)_ ' (m,)
= lJ 1 1(mi)|AlmiJ i!

@), (@) (m)

=|J (m)A, = J

|F§m) | = 0y

i

98
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and
(m,)
(m) i
(2.17) Py |mi =P, .
(mi)

Applying the same arguments to P(m) and P (k=2,...,3-1) we can

k k
easily prove (2.8).
We see from the above that applying the Chinese Remainder Theorem
(m,)
to the Fk 1 gives us F

our arithmetic modulo m instead of modulo m, i=1,...,8. It is important

im) , the blocks we would have obtained had we done

to note that this analysis is based on the assumption that partitioning
occurred at the same point for all moduli.

If a zero pivot occurs somewhere between columns one and j+1 which
can be removed by pivoting rows, then the same rows must be pivoted for all
moduli. This necessitates a monitor on the rows being pivoted during the
course of reduction. If it is impossible to pivot the same rows for all
moduli, then the odd modulus (or moduli) must be discarded and another
tried. This assures us that even when pivoting occurs, (2.8) and (2.13)

still hold. An example illustrates the necessity of monitoring the pivots.

EXAMPLE. Let

7 1 0 1

5 0 0 O

If we choose m = 5, we must interchange rows 2 and 3 (and‘then

columns 2 and 3). We obtain
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0 0y 0] 0

L? 0! 010
Thus, we have as factors
ldet (a-AD)| = |2 2) Al

For m = 7/, we must interchange rows 2 and 4 (and columns 2 and

4). We obtain

6 O ©0f O

hoccame

and the factorization
ldet (a-AD}, = | (A% - Al

For all other prime moduli, we interchange rows 2 and 3 in the
first step. (A search is made downward in column one for a
nonzero element, and the first one encountered is selected for

pivoting.) This matrix is further discussed in section 5.

The Vanishing Pivot. From previous examples we see that different

moduli may yield different reductions, and hence different factorizations of

the characteristic polynomial. The problem which we discuss in this section

is how to select the correct factorization from a set which contains several

different ones. Since the factorizations are dependent on the vanishing of

pivotal elements, we approach the problem from this standpoint.

We would like to determine whether the vanishing of a pivot has
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occurred because it "should" (the same pivot would vanish in the real
arithmetic algorithm) or whether it has vanished as a result of our choice
of modulus. The following theorem exhibits the relationship between the
vanishing of pivots in the real arithmetic algorithm and in the modular

arithmetic algorithm.

k) (k)
3.1) THEOREM. Let Al = [a'( and = |la each be the kth matrix
(3.1) THEOREM Ak Pq ] Ak { Pq ]
in a sequence of matrices obtained in the reduction of a matrix
to Frobenius form (but not producing unity subdiagonal elements)

using real arithmetic and residue arithmetic modulo m, respectively.

(L =0 i o (1) =
Then, the statement ai+2,i+1 = 0 if and only if ai+2,i+1 =0
(1 £1i s j-1) implies that
R&) =0
_]+2 i+l

if and only if either

(a) al(j) - 0

j+2,j+1
of
1 (1) '(3-1) v (3- 2) .(0)
) laji5 541 ¢ 3+1j) (jjl) - (a )r‘
where
(i) b1 = 2
i-2
b, =1+ 2b + b.
i i-1 éél k
(ii) the pivots a3ii-§), cee aégo) are the nonzero pivots

obtained between step 1 and step j-1, and r is the number

of such pivots.
Proof. See Appendix.

From the above theorem we see that if a'(j) is nonzero for some
§42,+1
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modulus m

T then the same pivot must be nonzero in the real arithmetic

algorithm, provided previous pivots for the two algorithms vanished at the

same point. Thus, if a'(J) vanishes for m, (j # 1) , it must be vanishing
j+2,3+l j

because
(3.2) |a (3 G- 1)) . (a .(0)) r |

j+2 i+l j+1 i J

(DL
and not because aj+2,j+1 0. Thus, m, should be discarded.

This implies that if we compare the size of the initial (leading)
(m,)
blocks (F.'1 i ) obtained by reductions modulo m,, m2, evy Moy then only the

moduli which have produced those blocks of maximum size should be retained

and all others should be discarded. Thus, if the remaining moduli each
1 (3)

produced an initial block of order j+1, then either aj+2,j+1 = 0 or
1 (1) (- -1),P ,(0) Pr
(3.3) lali2) 412541 5 Y @) Ty

where M is the product of the remaining moduli. By demanding that we have
at least k moduli which produce like factorizations (k > 1 being some
input parameter dependent upon the size of the computer word and the size
of the moduli used) we can make M as large as we like. The larger M is,

the lesser the chance of having

() (G- 1, .(0)
(3.4) 3342, 1410254, 5 )P ey ) T

3

where C is an integer not equal to zero. Thus, a large M will increase the
. &) - ' (1) =
probability that aj+2,j+1 0 if and only if aj+2,j+1 = 0,
By comparing the sizes of blocks 2,...,4, in a similar manner we
can eliminate '"bad" choices of m, until we are left with a set of moduli
which have all produced the same block structures with blocks of maximal

size. If their pivoting patterns are all the same, if the number of

wguccessful" moduli is greater than k, and if the product of the moduli is
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greater than 2B, then we can apply the results of the last section and use
the Chinese Remainder Theorem to get the factors modulo m, where m is the
product of the moduli.

We must emphasize that even though we have at least k matching

reductions, and this increases the probability that agi; 3+1 = 0 if and only
s
a{(J) = 0, we can not guarantee that this is the case. For example, if
j+2,j+1
k = 3 and the m, are approximately 107, then M = 1021. Then, for the
method to fail to produce the correct factors, we must have a(j) = 0
j+2,3+1
and
b b
(1) (3-1)471 1 (0)y -
(3.5) aj+2,j+l(aj+1,j ee (351 ) C m,m,m,
= ¢-10%t,

where C is a positive integer. Although it is extremely unlikely for the
left side of (3.5) to be an exact integer multiple of mm,m, , a product

of primes, the possibility nevertheless still exists.

4, Selection of the Moduli. 1In practice, the moduli are chosen as large

prime numbers. The choice of the moduli as primes is necessary in order to
guarantee the existence of inverses for integers and matrices and in order
to be able to utilize the results of chapters III and IV. We recall that
when m is a prime, the integers modulo m form a field. Furthermore, by

choosing the m, as primes, we guarantee that

i
(4.1) (mi,mj) =1,

for i # j, as required by the Chinese Remainder Theorem.
Ideally, the primes should be chosen as large as possible and so
that mimj does not overflow a fixed-point computer word, for all i and j.

This guarantees that an intermediate result will not overflow before it
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can be reduced modulo my for all i. 1In addition to this, time can be
saved by using a small number of large primes rather than a large number of
small primes. Furthermore, by choosing the moduli as large prime numbers
we greatly incregse the probability that the disappearance of a pivot during
the reduction modulo m, has occurred because the same pivot would disappear
during the real arithmetic algorithm. (See theorem (3.1).) We must further
have m, > n for all i in order to be able to reconstruct the characteristic

polynomial from its residue representation.

5. Calculation of a Bound for m. Let

det (A-AD) = (-1) " - x A" o A -x)
(5.1) =5, (M ... p, (N,
where
ot Mt (1) (1)
(5.2) P,V = (-1t - i -l - bni_17\ - bni ).

We wish to compute a lower bound for m so that if we have a prestored set
of primes, we select and use as many moduli as necessary to guarantee a
solution {i.e. to guarantee that (V-1.6) holds).

If it is known that the matrix A has a characteristic polynomial
which is irreducible over the integers, then £ = 1. In this case we obtain
a bound for max |x l

j i 3

sum of the principal minors of order j. From Hadamard's inequality we have

by utilizing the fact that x, is plus or minus the

n n

x| s (S ]a.]? ... T |a |12
n j=1 1] jéi nj
(5.3) = k.

Thus, any principal minor of order less than n is also bounded by k.



Since the number of principal minors of order j is equal to

G) , we have

(5.4) Ile s (‘;} k
Hence
max |x,| S max (?)-k
PR 3 \J
n
(5.5) = (W?J)' k

and we should choose m so that

(5.6) m

v

2. (El[/l?-l) - k.
<£n729 . k.

If it is not known that [= 1, then the bound (5.7) may not be

Therefore, in (V-1.4) we have

(5.7) B

sufficient. It is possible for some of the coefficients of the pi(K) to
be greater in absolute value than max Ixj|. An example of such a situation

is given by the characteristic polynomial

det (A1) = A2 - 3 + 9 -1
PRI
=r -2 +a+ )3
(5.8) — o2 en - D S s s e .

Thus, for this example, a bound, B, for the coefficients of the characteristic
polynomial might not be large enough to guarantee that B 2 7. (This polynomial
is a special case of the polynomial (Kn - 1)i = (A - 1)(7\n-1 + ..o+ A+ 1)i

suggested by Musser [1971] .)
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A method for bounding the coefficients ‘bgi)‘ proposed by Collins

(see Knuth [1969, p. 392]) is based on the fact that we can write

_ nB () (1) (1)
I O HURR NG
n
(5.9) =D - vy o= vy,
1 n
(1)

where the Yj are eigenvalues of the matrix A. Thus, if we have a bound,

a, for the eigenvalues of A, then

(1) na o3
(5.10) |bj | = (jl)a
Therefore
max lb(.i)i S max (n3> Ozj
i, 1,5 M
(5.11)

#
/rg:\
N
I

Qﬁ

and we should choose m so that

B
v
N
T~
~p
\&.—/
Q
]

(5.12)

f
N
™

Bounds for o such as HA]Lo s HAHl, or the bound given by Ostrowski

[1952] are suitable. In practice, the bounds computed using either (5.6)
(1)
b

hj

or (5.12) are larger than necessary to guarantee that !

- (1)
= by

ln

6. Examples of the Multiple-Modulus Algorithm; Let A be the matrix used

in chapter V,

[ NN
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We let the stored set of moduli be {7, 11, 13, 17, 19}. We shall assume
that regardless of the computed bound B we require at least 2 moduli to give

the same block structures. If we compute a bound, B, b (5.7) we have

3 1/2
(2)

B

3 (2.8)

38.4

The bound from (3.12) with o = ”A”l is

i
(]
~
(%]

and with o = HAHw it is

™

[}
'-"\
N oW
N —

O
(%)

it

2187.

If @ is computed from Ostrowski [1952], we have
Q=R - (1-9)K,

where

w0
il

all,,

i j i
= ]_’
K = min [a [
1,5 1
= 1’

and




Then

and

™

]
—
N W
e S

[o}
(W%

1,536.

Clearly, all of these bounds are 1arger‘than necessary to guarantee that
lpi(%)lm = pi(R). In practice, the first bound is usually adeqﬁate, even
if it is not known that L= 1,

To illustrate the multiple-modulus algorithm for the matrix A,
we choose m, = 7 and m, = 11. (Note that 77 z 2B, where B is computed by

1 2

the first method.) Transforming the matrix modulo 7, we obtain

Thus, the residue modulo 7 of the factors of the characteristic polynomial

are
lp, M, =2 -2

and
2
lp, (M, = 2% + 2 - 2.

No rows were interchanged to produce a nonzemw pivot. Transforming the

matrix modulo 11, we have
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Thus,

lo, Ml =2 -2

and
)
lp,M [}, = 2% + 52 + 5.

Again, no rows were interchanged to produce a nonzero pivot.

The residue representations for pl(%) and pz(h) for moduli m, = 7

and m, = 11 are, thus,

PN ~ (A - 2,A - 2)
and

p2(7\)~ {?\2+)\ -2, 7\2+5>\+5}.

Since the two moduli used yield the same block structures, and since the
same pivoting strategies were used in both cases, we can apply the Chinese
Remainder Theorem to the coefficients of the polynomials [pi(K)Im , and

obtain results modulo mm, = 77,

oy M7 =2 -2

and
lo,M[,, =22 - & + 5.
Hence,
pl(%) =A-2
and

p,(N) = A - 6N+ 5.
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In the next example we let

o 0 1

|

0o 0 o O

7 1 0 1

5 0 0 O

and the stored set of moduli be {5, 7, 13, 17, 19}. Again we require that
at least 2 moduli give the same block structures. Computing § by (5.7)

we obtain

™
1

- (g)(1-51~25)1/2

6(35.7)

214.2.

Thus, we should have
m 2 428.4
We saw in section 3 that transforming A modulo 5 leads to an interchange of

rows 2 and 3, and we obtain

Thus, we have 3 factors
ldet (a-AD)|g = | - 2) Al

For m, = 7, we interchange rows 2 and 4 and obtain

P— -

o o 31|60
1 0 00

0o 1 0 ({-2
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and the factorization
ldet (a-aD)], = | (A% - 3.

For my = 13, we interchange rows 2 and 3 in step one, and later rows 3 and

4. We obtain

and hence the factorization
ldet (A-AD)|.. = | (A + 6 - 5) |
13 13 °

At this point we note that the product of moduli used so far exceeds

the bound 28 (m 455). If all block structures are the same at this

1m2"3 T
point, and if all pivoting strategies are the same, we can apply the
Chinese Remainder Theorem to the factors obtained. However, this is not

the case in this example. We can immediately discard m, since it produced

1

an initial block which is smaller than the one obtained using m, and m,.

The remaining two moduli yield identical block structures, but different
pivoting strategies. It is not apparent at this pqint which is the correct
one. Hence we must try other moduli. Since the bound 2B indicates that at
least 3 moduli will have to yield identical reductions (blocks of corresponding
orders and the same pivoting strategies) we will have to try at least 2

more primes.

For m, = 17, we obtain

4



0 0 512]

1 0 710
F=

o 1 0|7

o 0o 0]o0

and the factorization

3
|det (A-A1)|17 = |\ - 7\ - 5).x;17.

The rows interchanged are 2 and 4 and rows 3 and 4.

For my = 19, we obtain

and the factorization

Idet-(A-AI)I = l(?\3 - A = 5) AL,
19 19

The rows interchanged are rows 2 and 4 and rows 3 and 4.

We compare the results obtained using m,, Mg, W, . and mg . The block

structures are all the same. For mq, M, and m_ the pivoting strategies are

5

are the same. Since mqm,m, z 28 we can use the Chinese Remainder Theorem to

obtain the coefficients of the factors modulo m3m4m5 = 4199. We thus obtain

3
|det (A—KI)14199 (A" - 7 - 5)~x|4199,

and hence

det (A-AI) = (A2 =77 -5) A .

In a computer program it is more efficient to use the largest stored
primes first, since this may decrease the number of primes which must be

used to guarantee that m 2 28B.



CHAPTER VII

NUMERICAL RESULTS

A program for reducing a matrix to Frobenius form and obtaining
a factorization of its characteristic polynomial by the method described
in this paper was written in FORTRAN for the CDC 6600 at the University of
Texas at Austin. The set of stored primes used are as follows [Lehmer, 1914]:

10,000,019
10,000,079
10,000,103
10,000,121
10,000,139
10,000,141
10,000,169
10,000,189
10,000,223
10,000,229.

The bound B was computed using (VI-3.7). 1In each of the following examples
we exhibit a matrix and the factorization of its characteristic polynomial
obtained using the program. We required at least 3 like reductions regardless

of the size of B.

EXAMPLE 1. [Slotnick, 1963, p. 4-43]

— b
3 -1 -4 2
2 3 -2 -4
A=
2 -1 -3 2
1 2 -1 -3
Eigenvalues: A, =1 Ay =1
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B computed by program: 3.10 x 103

Number of moduli used: 3

Factorization of det (A-AI) from program:

det (A-AD) = (A2 - A2 = A+ 1)(A + 1)

EXAMPLE 2. [Varah, 1967, pp. 103, 207] [Gregory and Karney, 1969, p. 108]

-9 21 -15

4
-10 21 -14 4 2 0
4

-8 16 -11 2 0
A=
-6 12 -9 3 3 0
-4 8 -6 0 5 0
-2 4 -3 0 1 3
Eigenvalues: Kl =2+ 1 K4 =1
%2 =2 -1 KS =3
Ay =1 A, =3

B computed by program : 4.05 x 10
Number of moduli used: 3

Factorization of det (A-AI) from program:

det (A-AD) = (A2 -4A + 5)(A2 <27 + DA - (A - 3)

EXAMPLE 3. [Eberlein, 1962] [Gregory and Karney, 1969, p. 90]

15 11 6 -9  -15
1 3 9 -3 -8
7 6 6 -3 -11
A =
7 7 5 -3 -11
17 12 5 -10 -16




Eigenvalues: Al =1.5+\V12.75 i
A, = 1.5+ V12,75 4
Ay=1.5 - V1275 1
A, =15 - Vizl75 4
%5 = -1

7

B computed by program: 2.41 x 10
Number of moduli used: 3
%
Factorization of det (A-AI) from program:

4
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det (A-AI) = (-1)°(N° -52% + 333 - 51a2 + 135A + 225)

EXAMPLE 4. [Varah, 1967, pp. 211-212] [Gregory and Karney, 1969, p. 110]

rhl 1 1 -2 1 -1
-1 2 3 -4 2 -2
-1 0 5 -5 3 -3

A= -1 0 3 -6 5 -4

-1 0 3 -6 2 -2

-1 0 3 -6 2 -5

-1 0 3 -6 2 -5

-1 0 3 -6 2 -5

-1 0 3 -6 2 -5
Eigenvalues: kl = 2 K4 = 2 K7 = 3
AZ =2 KS = 3 AS =3

A3 = 2 KG = 3 Kg = 2

* We note that this is a case in whigh the cha£

factorable over the integers, (-1)"(A + 1)(A

but the program finds only one factor, that factor being the characteristic

polynomial itself.

2 -2
4 -4
6 -6
8 -8
10 -10
12 -12
15 -13
12 -11
12 -14
12 -14
K10= 1
actegistic
-6A" + 39A

12
16
20
24
28
32

37

-36

BO

-12

-15

-18

lynomial is
- 90A + 225),
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B computed by program: 4.56 x 1016

Number of moduli used: 3

Factorization of det (A-AL) from program:

det (A-AI) = (A2 - 4n + 8)(AZ - 4A + &)(AF - 6n + N2 - A+ DO - DA - 1)

EXAMPLE 5. [Gregory and Karney, 1969, p. 7]

A___B\C
cl| B

where
-364,270 0 0
1 ~364,270 0 (::::)
0 1 -364,270
B =
O -918,326 0
1 -918,326
L. -
and
-694,488 0 0
0 694,488 0 (::::)
0 0 694,488
C =
O 965,197 0
0 965,197
Eigenvalues: %1 = 330,218 %6 = -1,058,758
KZ = 330,218 k7 = -1,058,758
%3 = 330,218 %8 = -1,058,758
%4 = 46,871 Kg = -1,883,523
%5 = 46,871 K10= -1,883,523
62
g computed by program: 1.79 x 10
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Number of moduli used: 9

Factorization of det (A-AL) from program:
o2 + 1,836,652\ - 88,282,606,533) (A" + 1,836,652\ - 88,282,606,533) -
6 5 4 3
A% + 2,185,6200° + 543,448,747,068N" - 1,141,589,515,081,478,5607
_ 1,901,066,815,376, 621,816,592\
+ 267,158,841,389,405,409,701,792,512,320A

_ 42,735,849,656,157,591,523,087,007,405,518,784)

EXAMPLE 6. [Gregory and Karney, 1969, p.7]

Bj C
A=
C B

where
1,604,858 0 o
B= 1 -1,604,858 0
B 0 1 -1,604,858)
and
[ _8,314,154 0 0o
C = 0 -8,314,154 0
0 0 -8,314,154
L .
Eigenvalues: Kl = -9,919,012 %4 =6,709,2%
Rz = -9,919,012 KS =6,709,2%
Ay = -9,919,012 %6 =6,709,2%

43

f computed by program: 0.72 x 10

Number of moduli used: 7
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Factorization of det (A-AI) from program:
A%+ 9,629,1480° - 168,741,932,204,688)" - 1,248,564,272,754,076,565 , 696)°
+ 11,229,705,988,174,065,139, 941,067 , 77672
- 42,646,029,020,938,523,316,320,811,418,632,192%

-294,737,981,114,491,044,619,180,056,066, 964,562,116, 608




CHAPTER VIII

SUMMARY AND CONCLUDING REMARKS

In chapter I of this thesis is a discussion of the reduction of a
matrix A to Frobenius form using rational arithmetic. This form displays
the coefficienfs of the characteristic polynomial of A or the coefficients
of a factorization of it.

Chapters 1I, III, and IV summarize the main theorems and definitions
for residue arithmetic. Since the integers modulo a prime form a finite field,
F, all the theorems relative to matrices and polynomials over a field can
be applied. The most important theorems for matrices over F are those
regarding the similarity transformation modulo m.

Since similar matrices have the same characteristic polynomial,
we can use similarity transformations over F to reduce A to a Frobenius
form over F. The Frobenius form over F is the residue of the Frobenius form
obtained using rational arithmetic. Thus, if m is sufficiently large, we
can use residue arithmetic modulo m to obtain the Frobenius form which we
would have obtained had we used rational arithmetic.

An algorithm for reducing A to Frobenius form over F is described
in chapter V. This algorithm is analogous to the one described in chapter I.
The size of the modulus used depends upon a bound B (V-1.5), and since B
may be quite large, it is desirable to use multiple-modulus residue arithmetic.‘
The multiple-modulus algorithm is described in chapter VI. When using this

algorithm we obtain results modulo m , and m_, where the mi’are

1’ Mo
large primes. Then the Chinese Remainder Theorem is used to obtain the

results modulo m = mm, .. .m . This, in turn, yields the characteristic

polynomial for A (or a factorization of it aver the integers). Thus, the
119
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size of the moduli can be limited to a size which can be stored in a single-
precision computer word. Multiple-precision arithmetic usually must be
used for the Chinese Remainder Theorem, however.

Care must be taken in using the multiple-modulus algorithm, since
different moduli may yield different Frobenius forms, and hence different
factorizations for the characteristic polynomial modulo m. An algorithm is
described in chapter VI for deciding which reductions are the incorrect
ones. On all reductions remaining, a check must be made to insure that
their pivoting patterns are identical. The moduli yielding reductions with
identical block structures and pivoting patterns are then checked to see if
their product is greater than the predetermined bound, 28, and if their
number is greater than some preset constant,k. If so, then the Chinese
Remainder Theorem is applied to the residue representations for the coefficients
of the factors.

The number k should be some number greater than 1 such that a product
of k moduli yields some "large" number. As k becomes larger, the probability
becomes greater that the vanishing of a pivot for all moduli means that the
same pivot would have vanished had we used rational arithmetic. (See theorem
(VI-3.1).) It cannot be overemphasized that the method can fail if either k
is too small or if not enough moduli are stored to give m 2> 28. (See the
comments at the end of section 3 of chapter VI.)

The bound B can be computed by several methods, most of which
yield bounds which are larger than necessary. By choosing the moduli as
large as possible (see chapter VI,section 4), we can reduce the amount of
work to be performed even though the bound is too large.

Numerical results indicate that in some cases the characteristic

polynomial is obtained in a factored form which readily yields some of the
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eigenvalues. In other cases we obtain a factorization which does not
yield eigenvalues (without finding the zeros of a high-degree polynomiaﬁL
but it may give us some information about the structure of the matrix.
For instance, it may tell us that we have multiple eigenvalues. Another
type of result obtained from numerical testing is the case in which no
{mmediate information is obtained other than the coefficients of the character-
istic polynomial in unfactored form (the nonderogatory case). This is not
to say that results in this case are unusable, for the characteristic polynomial
itself gives us some information merely from its coefficients. The fact
that all results obtained are exact is of some use.

We emphasize that the block structure obtained for a given matrix is
not unique. The form obtained depends upon the order in which the elements
below the first subdiagonal are annihilated. Changing the order in which
the elements are annihilated may change either the order of the blocks on
the diagonal or the size of the blocks. Clearly, the form obtained is not
a canonical form. (See the example at the end of chapter V.)

This algorithm is not the sort of algorithm that one would normally
use by itself. It certainly should not be used with the idea that it can
obtain eigenvalues for matrices (although in some cases it can). It can
be a powerful tool for supplementing information obtained from other programs
in which approximate results are obtained. It is also a powerful tool in
that it yields (exactly) the characteristic polynomial or a factorization
over the integers of the characteristic polynomial. With conventional
computer arithmetic only an approximation can be obtained even when we

resort to multiple-precision arithmetic.




APPENDIX

Proof of Theorem (Vi-3.1). We first assume, for 1 = 1,2,...,3-1, that

(1) (L

|

i+2 141 # 0 and a1+2’i+1 # 0. Furthermore we assume that the real arithmetic
algorithm is performed with no roundoff error. We shall prove the main
theorem by proving first (by induction)“that

b
t(J) (3-1) y(3- 2) ((0)y ]
2342, 41t 541, 5 ) G 5310 o o )7

is an integer and that

() U -1) .(0) (3 ALE -1) (0),°
lajyz) 1 3+1,_]) - (a ) ‘ = lajia, 341 J+l,_]) - (a7 ‘m

for all j, 1 = j s n-2. Then for r = j, the main theorem follows.

In the following we let
-1

= —al val
LT TS Rl WY 25 R 2 I
for all i and £.

Step 1. For the first step of the reduction (that is, J = 1) in real

arithmetic we have

ajs - ajp vy 0% * 2 CMIC N, sy )

'(0) .(0) (0. .(0) -(0) (0) 1 .(0) .(0) ,(0).1.,(0)
aj, T 231 221 la + z&k (a aly Jayy  tayc )

for i = 3,...,n. Thus, -

.(1)( 2(0))2 .(0)( .(0))2 o (0, (0) a0 4 I: ,(OQai(O) 1 (0)

1 il 21 822 k
4] 0
i( ), ( ))
Since a;§0)= agg) for all i and j, each quantity on the right hand side is

an integer. Therefore a'(l)( '(0)) is an integer. Hence, we can consider

its residue modulo m which is 122
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(1) .(0) 2 .(0) :(0) 2 _ 41(0),.(0),,(0)
lajy " Capr Ny = lajy ey "% - af) 21 %22

_+zi av(o)( 1(0) éio) i§0) zio))l

= 12D @{D)? . 4(,0),(0)
il 21 22

. }5 (0) 4 (0),(0) _ (), (0)

akl ik 221 T 211 %k In

= 12y @M?|

for i = 3,...,n. Furthermore, for i,t = 3,...,n,

2O, (O

8 8 Y1821
e a1 | (0, (0)-1_,(0)
8 £1 21 8y o

and so

.(0) .(0) _ .(0) , (0) '(0) , (0)
(ay; ) = ai;ay; T8y 8y -

Thus a'(l)(a’(o)) is an integer. (This fact is needed for the inductive step.)

Step j-1. At step j-1 (j < n-1) in the real arithmetic algorithm we have,

for i = j+1,...,n,

2 GD L (-2) 2 (3-2), o (a1 37D a1 (3-2)
L S B R T TR ULt )

|(j 2) al(j'z)at(j ) 1 (j 2)
1,3 i,3-1 "3,3-1 jj

D02y GD) (2, (D1, (572
+ 3 (a 1y-(a ).
3,510,501 *1,3-1%1,31 3k



We assume that

|(j 1)( (3 2) 2, (j k)

5 ,(0) -1
HI o REVAL Snp ANPRY CYE 0p °3-

is an integer, and that
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|(j 1) (j ) 2 '(j'3) 5 !(o) -1
N IR eI = |
b
(3-1),_(3-2)y2,_(3-3) (0),73-1
ol E A CH IR R CHMg ORI c e ) T
Furthermore, we assume that, for t,i = j+l1,...,n,
.(j D, 1 (3-2)y,..(3-3),3 ,(0) -1
(aj j-1 )(a 231, 3- ®) )
is an integer, where
c1 =1
¢y = bty
and that
.(j D1 (3-2)y, ., (3-3) |3 .(0) 3-1
la; (a),3-120a57 52007 -+ )
c
3 i-1
- a4 x>(a(j zi<a§31 g 27 @ |
This completes the inductive bypothesis.
Step i. In the real arithmetic algorithm we have
IRTE) IR B3 § 2 UG-D 2 (3-1) o (-1
A342,341 T %542,54 T Y42,5%4, 5 T 2 Cudajy o uj+2 312441,k

k=3+1

)
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_ . 3-D - v (3-1)_,(3-D-1_,(3-1)
= 342,341 T %342,3 341,35 441,541

n
L3mD) L GeDa1y L 5D L GeD L Gl (1)
I SR TR T R I P I M TR

Then

/(3 (371032, (3-2),5 (03,
* gz, 525,507 (@) e Gagp )

= a

. b
1(J°1) v(j'l) 2 l( '2) 5 ' 0
IR ALCHY IO HCH M MR A N

(G711 D)1 (3-2)y5 IOERINIONE

T %3+2,5 23+1,3 2341, 541485, 51 -e- (agy 21
n . . . b
1(3'1) :(j'l) I(J‘l)_ n(J'l) v(j'l) 1(3'2) 1(0) i
Ptk R oLy e,y ()5 e (e )

VD) Gm2) g, (3-3) 43 (00,531, 0 (5-1)42,_,(§-2). 4
2,341$83,3-170 @507 109070 (a7 T T el 3 a5y

b,-c
(0)y73
7 h

= {a
...(aé

e G (372002, (393 35, (0)\Pi-1. ., (G-1), ,(§-2).2
R N R R e R O P e I I g CH S

.(av(j’3) )5

b
1(0) j'l
3-1,3-2 ) <)

...(a21

(31, (3-2)y, . (3-3) (3 1 (0),%5-1
A5 PR CANEO ICIR TP PR CIM ey h

n . . b
1 (3-1) 1 (5-2)32,_,(3-3) 5 v (0)4 i1
+ ééé+§akj (aj,j-l ) (aj-l,j-z) -ee(agy) }

e (GPD) o (Gm2)y 0 (5-3) 3 (0.6 5-10 . L GRD), 1 (5-2)12, ,(§=3) 5
SR I TR IS A PR I e g CHS TR I G e

b
...(aégo)) j-l}
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b
- l(j 1) !(j 2) |(j’3) 5 1(0) j -1 1 J 1) :(j 2) 1(3 3)
(alyy 57(a) 5.1 (o i-1,3-27 ro+(ayp ) 7 T)a 3i+1,k 83,3-1 28501, 5 2)

REIONERN

Since each product contained in braces is an integer (by the inductive
hyposhesis), the entire quantity must be an integer. By the previous step,

the, we have

1 (3) (3710424 (3-2)y5 .(0) >
LI CH S0 R CH s o PP CXh e I

(1) (3-1)2, _(3-2)\5 (0) J
IO CH e O R CHN DR ) g

Also, for t,i

i

j*2,...,n,

aégj)(aSii }))( 3(2 i))3 . (a :(O)) j

- .(J Dy (-1, G- DGy 0 (-1 1 (5-2)43 .(0) ‘3
- (a +at3 J+1 j J+1 i )(a J+1 i )(a j,i-1 ) - (a )

_ oG- G- D, g1 (-1 :(J )y,..(5-2)3 :(0) J
=@ T T Ay e, 0810 - (a1 )

- v(J 1) |(J 2) |(j‘3) 3 1(0) J -1 I(J 1) |(J 2) .(j‘3) 5

... (a! (0)) -1

}

I(J 1) I(J 2) |(j'3) 5 (O> J -1 l(J 1) ,(j‘Z)
R P O R TR G S IO IR C O By I E N P il g

(3-3) 3 .(0) 3-1
-(al .
CHE I RN IO T B
Since each product in braces is an integer, the entire quantity must be an

integer. Thus, from step j~1, we have

1 1 j-1 I o ¢,
| (J)(ajii,j))( (3 §)>3 IO
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DDy L (O
= lag e, P50 >,

This completes the induction. Thus, for all j, 1 = j = n-2, we have

l |(j) (a (3- l)) . (a 1(0)) Jl l (J) (J 1)) 1

(0)) jl
J+2,J+1 J+1,J J+2 J+1 j+1 j "t

We recall that we assumed that no previous pivots for either algorithm had

vanished. In order to include the case in which K pivots have vanished

at the same place in both algorithms (in other words agl) = 0 if and only
i+2,1+1

Lo (1) - .

if a i+2 i+l 0), we note that whenever a nonzero pivot cannot be found,

then no divisions take place on or below the first subdiagonal for that
step of the algorithm. Thus, this eliminates K factors form the product

of pivots used in scaling. Then, for r = j-K, the scaling factor is

(-1 (0)
] l
(a1, ) . )
. . . (1)
From the above proof by 1nduction we see that if either aj+2,j+1 0
j 1 0
or la3£%2j+1( 3ii J)) .. (a '( )) ]-fO, then
(1) (J -1) (0) r
la3i2, 511 J+1,3> " ) g
Since none of (a(illi) ,(a(o)) zero, we must have
(1 =
aty,541 = O
Conversely, if agi; %1 0, then either
E) N
j+2,5+1
or
 (3) v(J 1) 1(0) r
|a J+2,3+1( i+, ] ) - (2 ) l

This completes the proof‘of the theorem.
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