
Greedy Strict-Consensus Merger: A New Method to Combine
Multiple Phylogenetic Trees

Usman Roshan� Bernard M.E. Moret† Tandy Warnow† Tiffani L. Williams�
Abstract

Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for clas-
sification purposes. One approach for obtaining large phylogenies is to combine the topologies (or source trees) from
previous phylogenetic studies. Tree reconstruction techniques that use the above methodology are known as supertree
methods. In this paper, we develop a new supertree algorithmcalled Greedy Strict-Consensus Merger (GSCM) and
compare it to Matrix Representation Parsimony (MRP), the most popular supertree method. We test the behavior of
GSCM and MRP on biological datasets and examine their performance with respect to maximum parsimony scores
and running time. Our results demonstrate that the GSCM method outperforms MRP with respect to both these
criteria on all the datasets we examined.

Contact: usman@cs.utexas.edu
Keywords: disk covering methods, maximum parsimony, matrix parsimony, supertree, strict consensus merger

1 Introduction

Many phylogenetic reconstruction methods attempt to solveNP-hard optimization problems such as Maximum Par-
simony (MP) and Maximum Likelihood (ML) (Felsenstein, 1981; Hillis et al., 1996; Foulds & Graham, 1982; Steel,
1994), with the result that a biologically acceptable phylogenetic analysis can take years to complete on only a few
hundred taxa (see (Chaseet al., 1993; Riceet al., 1997) for a well known example). The computational requirements
of large-scale phylogenetics have motivated systematiststo develop alternative techniques for reconstructing evolu-
tionary trees, such as so-called “supertree methods.”
Supertree methods combine smaller, overlapping subtrees into a larger tree. They can thus use existing, published
reconstructions on which the community agrees as well as combine the outcomes of reconstruction on decomposi-
tions of a large dataset. The most popular supertree method is Matrix Representation Parsimony (MRP) (Baum, 1992;
Ragan, 1992), which has been used in a number of phylogeneticstudies (Joneset al., 2002; Liuet al., 2001; Bininda-
Emonds & Sanderson, 2001; Bininda-Emondset al., 1999; Purvis, 1995); Bininda-Emonds and colleagues examined
the topological accuracy of reconstructions made with several variants of MRP in simulations (Bininda-Emonds &
Sanderson, 2001), while Page compared it to a different method (based on mincuts) (Page, 2002). Beyond these three
studies, little has been done to investigate the relative performance of supertree methods in an experimental setting.

Our study addresses the performance of Greedy Strict-Consensus Merger (GSCM) and MRP to assemble a single,
supertree from subtrees. The mathematical optimization criterion Maximum Parsimony (MP) is used as our perfor-
mance metric. We consider the following questions:� How do supertree methods respond to subtrees constructed from different dataset decomposition techniques?� Given a fixed collection of overlapping subtrees, what is thebest method to assemble them into a single su-

pertree?�Department of Computer Science, University of Texas at Austin, usman,tandy@cs.utexas.edu
†Department of Computer Science, University of New Mexico,moret,tlw@cs.unm.edu

1



To answer the first question, we constructed source trees from nucleotide sequences using two decomposition strate-
gies to create the overlapping subproblems. One decomposition technique is to randomly partition the dataset into
overlapping subproblems. The other partitioning strategyis based on disk-covering methods (DCMs), which are
geared towards reducing the evolutionary diameter within each subset. We address the second question by observing
the performance of the supertree methods with respect to maximum parsimony scores and running time.

We compare GSCM and MRP on real datasets that range from 300 tomore than 700 taxa. Our study shows that
GSCM outperformed MRP in terms of running time and maximum parsimony scores.

The rest of the paper is organized as follows. We describe oursupertree algorithms in Section 3. We explain our
experimental design, datasets, and implementations in Section 4. Finally, we discuss our results in Section 5.

2 Supertree Reconstruction Algorithms

Supertree-building algorithms combine phylogenetic trees from multiple studies to produce a supertree. Formally,
L(Ti) is the set of leaves of a treeTi. Let T represent the set ofk source trees labeledT1;T2; : : : ;Tk. The complete
set of taxa inT is S = [k

i=1L(Ti). A supertree method requires a set of treesT and outputs a treeT with the leaf
setS. Although consensus techniques also work on topologies to produce a summarized phylogenetic tree, supertree
reconstruction has the advantage of not requiring identical terminal taxa sets. Only overlapping sets are needed, which
allows the supertree method to produce more comprehensive phylogenies from the smaller reconstructions. For an
extensive review and critique of current supertree methodssee (Bininda-Emondset al., 2002).

2.1 Greedy Strict-Consensus Merger (GSCM)

Our Greedy Strict-Consensus Merger (GSCM) supertree algorithm is an extension of SCM which is an essential com-
ponent of the supertree construction algorithm of Disk Covering Methods (DCM) (Nakhlehet al., 2001; Warnowet al.,
2001; Husonet al., 1999a,b). The DCM supertree construction algorithm undercertain conditions is guaranteed to
construct the true tree (see (Husonet al., 1999a)). Our previous studies (Moretet al., 2003) show that the supertree
construction algorithm of DCMs outperform the current standard supertree method, MRP, if it were used as the su-
pertree component. Motivated by that study we have designeda supertree method which employs SCM and can be
applied to any set of subtrees.

SCM The SCM method takes two treesT1 andT2 on possibly different leaf sets, identifies the set of leavesX that
they share, and modifiesT1 andT2 through a minimal set of edge contractions, so that they induce the same subtree
on X—called the “backbone”. OnceT1 andT2 are modified in this way, they can be merged. The details of theSCM
algorithm are given below.� SetX = L(T1)\L(T2). We callX thebackbone, and it must satisfyjX j � 3. Otherwise, the merged tree will be

unresolved.� Compute the strict consensusTX of T1 andT2, which are restricted to the leaf setX (i.e.,TX =Strict Consensus(T1jX ;T2jX).� Add the remaining subtrees fromT1 andT2 into TX while not violating any of the bipartitions inT1 andT2. Note
that it is possible that some piece ofT1 or T2 may attach onto the same edge ofTX . In this case, acollision occurs
(see Figure 1).� ReturnTX .

Greedy SCM We adapt the SCM algorithm to handle arbitrary dataset decompositions by merging trees in a greedy
fashion. Our GSCM algorithm merges a set of treesT = fT1;T2; : : : ;Tkg and returns a tree leaf-labeled byS =[k

i=1L(Ti). For notation letresolution(T) be the number of internal edges inT divided byjL(T )�3j.
1. SetS = fT1; : : : ;Tkg
2. While jS j � 2 do the following:

2



5

47
3

1 2
4 6

3

1 2

5

1

1

1

2

2

2

3

3

3 3

1

6

47

4

4

4

2

Figure 1: Merging two trees together, by first computing the strict consensus of the two trees restricted to the backbone,
and adding remaining leaves so as not to violate bipartitions in the input trees. Note that the leaves 6 and 7 attach to
the same edge which is acollision.

(a) Find treesTi;Tj which maximize
resolution(SCM(Ti;Tj))jL(Ti)[L(Tj)j , i.e. the normalized resolution of the Strict Consen-

sus Merger ofTi andTj. S = S �fTi;Tjg.

(b) SetTi = SCM(Ti;Tj) where SCM(Ti;Tj) is the Strict Consensus Merger ofT1 andT2. SetS = S [fTig.

3. ReturnS .

Since GSCM works with arbitrary dataset decompositions, there are no performance guarantees like there are for
the DCM supertree construction algorithm, however we measure its performance by comparing it against MRP (see
below) using simulation studies.

2.2 Matrix Representation Parsimony (MRP)

The MRP approach encodes a setT of k source trees labeledT1 : : :Tk as binary characters with missing values (i.e.,
“partial binary characters”) as follows. Consider a treeTi 2 T and lete be an arbitrary edge inTi. The deletion of the
edgee from Ti induces a bipartitionπe on L(Ti) into setsA andB, whereL(Ti) is the leaf set ofTi. Let S = [k

i=1L(Ti).
Now define a characterce on all of S by extendingπe with ce(s) = 0 for s 2 A, ce(s) = 1 for s 2 B, andce(s) =? for
s 62 L(Ti). The setC(T ) = fce j 9Ti 2 T ; e2E(Ti)g is thus a set of partial binary characters that encodes all topological
information of the trees inT . Furthermore, if a supertree exists which exactly satisfiesall the constraints in the setT ,
then it will have optimal parsimony score with respect toC(T ). Hence, the supertree will be the maximum parsimony
solution forS on this set of characters. Since MRP involves solving MP, it is an NP-hard problem and hill climbing
heuristics are used in practice.

MRP implementation We used a medium speed MP search for MRP which uses 10 initial starting trees and 100
saved trees, however, this too can take a long time to finish, thus, we enforced a time limit on the search equal to the
total time taken by Greedy-SCM followed by the refinement phase. We used the following PAUP*4.0 commands:

set criterion=parsimony maxtrees=100 increase=no;
hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=10

timelimit=<total time taken to compute Greedy-SCM tree and refine it>;

3 Experimental Methodology

To analyze the behavior of GSCM and MRP supertree algorithms, our simulation procedure consists of the following
four steps.

1. Decompose the dataset into smaller, overlapping subsets.

3



A

A

A

1

2

A3

4

X

S
ti

Tq

(a) (b) (c)

Figure 2: The three steps in Phase I of DCM2: (a) compute a clique separatorX for S (relative to the triangulation of
G(d;q)), producing subproblemsA1[X ;A2[X ; : : : ;Ar[X ; (b) compute a treeti for each subproblemAi[X using the
chosen base method; and (c) merge the computed subtrees to obtain supertreeTq.

2. Construct phylogenetic trees on the subsets using the desired “base” phylogenetic reconstruction method.

3. Merge the subtrees into a single (not necessarily fully resolved) tree on the entire dataset.

4. Refine the resultant tree to produce a binary tree, and compare the MP scores.

5. Compare the running time of the supertree method, and the time to refine the supertree.

Initially, we begin with a set of nucleotide sequences that are partitioned into a set of overlapping subproblems based
on two decomposition strategies—one decomposition is found using DCMs, and the other is a modification of the
hierarchical clustering algorithm. The phylogenetic trees (or source trees) are constructed on these subsets using a
maximum parsimony heuristic. The source trees are merged into a supertree by either the GSCM or MRP algorithm.
If the supertree is not fully resolved, a heuristic search using maximum parsimony is performed to refine the merged
supertree into a binary (i.e., bifurcating) tree. Even though the supertree methods are constructed on subtrees, we can
compare their MP scores since we have the full set of sequences available, unlike in reality we may havemissing data
between the subtrees.

The MP score of a tree can be computed in polynomial time and isjust the minimum number of times the sequences
change across the tree. In order to measure the topological accuracy of a tree we need some definitions. The removal
of an edgee in a treeT induces abipartition on the leaves ofT . Let C(T ) denote the set of bipartitions in treeT . If
T is a model tree andT 0 is the tree obtained by a phylogenetic reconstruction method, then the false positive rate is

defined asjC(T 0)�C(T )j
n�3 and the false negative rate is defined asjC(T )�C(T 0)j

n�3 wheren is the number of leaves in treeT .

3.1 Data Decomposition

DCM2 decomposition DCMs are based on a divide-and-conquer strategy for phylogenetic reconstruction, based
upon dividing a dataset into overlapping subsets, construction trees on these subsets, and then merging them into a
tree on the full dataset. In (Husonet al., 1999b) we described a DCM, called DCM2, for speeding up searches for
Maximum Parsimony trees; we use that same DCM here. The inputto DCM2 is a setS = fs1; : : : ;sng of n aligned
biomolecular sequences, a matrixd containing an estimate of their interleaf distances, and a particularq 2 fdi jg.
DCM2 then computes a threshold graphG(d;q), as follows: the vertices ofG(d;q) are the taxa,s1;s2; : : : ;sn, and the
edges ofG(d;q) are those pairs(si;s j) obeyingdi; j � q. A greedy heuristic is used to triangulate this graph so as to
minimize the weight of the heaviest edge added; letG� denote the triangulation ofG(d;q). We then compute a clique
separatorX of G�, which minimizes the maximum size of any set defined asX [Ai, whereAi is one of the components
of G��X (Figure 2). Once we have this separator, we compute trees on each subproblem (the setsX [Ai).

DCM2 requires a particular threshold value,q, which influences the size of the subproblems examined (larger
values tend to give larger subproblems for DCM2). We looked at five thresholds:d0, the smallest threshold for which
the threshold graph is connected, andd2, d4, d6, andd8 which are the 3rd, 5th, 7th, and 9th thresholds of evenly
spaced values betweend0 andd9 = maxfdi jg. Intuitively, higher thresholds means the subproblems arelarger and the
separator has a larger size also, thus larger overlap.

4



Random Decomposition We implement a method named RANDOM to decompose the dataset into random, over-
lapping subsets. This method requires three parameters: the numberx of subproblems, the desired mean sizey of each
subproblem, and the desired sizez of the setwise intersection of all the subsets.

We now describe how RANDOM(x,y,z) works. Letn = jSj, be the number of taxa to be distributed among the
subsets. Thex subsets are populated as follows. First,z taxa are randomly selected, and each of thesez taxa are placed
in each of the subsets. For each subset, we then randomly select an additional(y� z) taxa from the remaining(n� z)
taxa. Finally, if any taxa have not been placed in any particular subset, we then add these taxa randomly to subsets.
Note that this method does not guarantee that the subsets will have size exactlyy; rather, every subset has size at least
y. Furthermore, the cardinality of the setwise intersectionis also guaranteed to be at least, but not necessarily exactly
equal to,z.

In our experiments we varied subset sizes and fixed thecoverage to be 2. The coverage can be thought of the
number of subsets a taxon appears in, on the average. We chosethe number of subproblems to be

number of subproblems= f loor
�

coverage�dataset-size
average subproblem size

�
The floor of a real numberx is the largest integer that is less than or equal tox. We examined 5 values of average

subproblem sizes, namely 10%, 30%, 50%, 70% and 90%.

3.2 Phylogenetic Base Method and OTR

We computed the subtrees on the subproblems using the RATCHET (Nixon, 1999) which is a maximum parsimony
hill climbing heuristic that doubles the weight of 25% of randomly chosen sites once it reaches a local optimum,
performs a hill climbing search in theperturbed space till it reaches a local optimum, sets the sites to theiroriginal
weights and performs one more hill climbing search to completion. The result is the strict consensus of the best of the
three trees found. We implemented the RATCHET inPAUP*4.0.

The Optimal Tree Refinement (OTR) problem is NP-hard, so we again use a fast heuristic search implemented
in PAUP*4.0. We pass the unresolved supertree as a constraint tree to PAUP* and receive a binary tree refining the
constraint tree, one that tends to optimize the parsimony score. We used the following PAUP*4.0 (Swofford, 1996)
command:

constraints c1 (monophyly) = <constraint_tree>;
set criterion=parsimony maxtrees=1 increase=no;
pset collapse=no;
hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=1

constraints=c1 enforce=yes;

4 Experimental Design

4.1 Datasets and Implementation

Biological datasets We obtained six biological datasets (two DNA and four RNA) from various sources, listed below
with the number of sequences, their lengths, and the maximump-distance (normalized Hamming distance) between
any two sequences in the set.

1. A set 328 ITS sequences (946 characters) from the floweringplant Asteracaeae obtained from the Gutell Lab at
the Institute for Cellular and Molecular Biology, The University of Texas at Austin (max p-distance = 0.524).

2. A set of 388 aligned 16S rRNA sequences (2497 characters) for three different classes of Bacteria: Plancto-
mycetes, Chlamydiae, and Verrucomicrobia (Maidaket al., 2001) (max p-distance = 0.456).

3. A set of 500 alignedrbcL DNA sequences (1428 characters) also known as the Zilla dataset (Riceet al., 1997)
(max p-distance = 0.184).

4. A set of 567 “three gene:rbcL, atpB, and 18s” aligned sequences (2497 characters) of mostly angiosperms and
and a carefully selected group of gymnosperms (Soltiset al., 2000) (max p-distance = 0.15).

5



5. A set of 590 aligned small subunit Eukaryotic rRNA sequences (1962 characters) (Wuytset al., 2002) (max
p-distance = 0.382).

6. A set of 778 aligned small subunit Mitochondrial rRNA sequences (1836 characters) (Wuytset al., 2002) (max
p-distance = 0.656).

Since, both the decomposition methods require a distance matrix to compute the subproblems, we computed a dis-
tance matrix on each biological dataset using PAUP*4.0 by selecting theml option (maximum likelihood) to estimate
distances.

Implementation and Platforms Our data decomposition and supertree methods implementations are a combination
of C++ (which uses LEDA 4.3) and Perl scripts which were written by us. Our experiments were run on modest
Pentium 500 MHz machines under Debian Linux.

5 Experimental Results

Overview We began by comparing GSCM to MRP on RANDOM decompositions. We saw that GSCM trees were
very poorly resolved (before OTR) on RANDOM decompositions. Thus, OTR would be doing most of the work. In
that case, the comparison between GSCM and MRP becomes very difficult because most of the added edges (in the
unresolved tree) would come from OTR. On the DCM2 decompositions, we saw that the GSCM trees were very well
resolved.

A closer look at the RANDOM and DCM2 subproblems revealed that RANDOM subproblems had larger diame-
ters compared to DCM2 decompositions. In practice biologists compute subtrees on sets of closely related sequences;
thus, RANDOM decompositions serve as a poor model to capturea real life decomposition. We then proceeded to
compare GSCM to MRP on DCM2 decompositions. There we saw thatGSCM+OTR trees had better MP scores than
MRP+OTR trees, and GSCM+OTR finished quicker than MRP+OTR.

5.1 Experiment 1: Comparison of GSCM and MRP resolutions on RANDOM and DCM2
decompositions

We computed RANDOM decompositions of five average subproblem sizes: 10%;30%;50%;70%, and 90% with
the coverage parameter set to 2. We also computed DCM2 decompositions at 5 threshold values as described in
Section 3.1. In our tables we list the DCM2 average subproblem sizes (rather than the threshold value) so that a
comparison against RANDOM can be made easily. Note that the DCM2 average subproblem sizes sometimes start
at large values; that only happens because we use the threshold parameter to compute DCM2 subproblems, and the
average subproblem size for the first threshold value examined can be large. Subtrees on each decomposition were
computed using the MP heuristic described in Section 3.2.

Table 1 compares the resolution of GSCM trees to MRP trees on RANDOM decompositions of the six biological
datasets we studied. The resolution of a treeT is just the number of internal edges inT divided byjL(T )�3j where
L(T ) is the number of leaves inT (jL(T )�3jwould be the number of internal edges in an unrooted binary treeT ).From
Table 1 we can see that GSCM trees have poor resolution compared to the MRP ones. The resolution of both the trees
improve as we move to larger subproblems. However, even at subproblems of average size 90%, the GSCM trees
are all less than 75% resolved. Table 2 shows that on DCM2 decompositions, GSCM trees are much better resolved.
There, most of the GSCM trees are more than 75% resolved.

To understand the difference in GSCM resolution on RANDOM and DCM2 decompositions, we proceed to com-
pute the diameters of these decompositions. Themaximum diameter of a subproblems is the largest distance between
all pairs of sequences(i; j) 2 s, and theaverage maximum diameter is the the average of the maximum diameter of all
the subproblems in a given decomposition.

Table 3 shows that RANDOM decompositions have larger diameters compared to DCM2 decompositions. A
biologically realistic decomposition would have a small diameter since biologists construct trees on sets of closely
related species. Thus, RANDOM decompositions do not capture a biologically realistic decomposition. We abandon

6



DataSet #1
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0.052 0.036 0.1 0.3 0.61
MRP .41 0.6 0.84 0.89 0.96

DataSet #2
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0.025 0.01 0.072 0.21 0.45
MRP 0.21 0.57 0.81 0.86 0.92

DataSet #3
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0.002 0.008 0.016 0.19 0.46
MRP 0.39 0.67 0.94 0.96 0.96

DataSet #4
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0.001 0.003 0.028 0.22 0.60
MRP 0.42 0.78 0.96 0.98 0.98

DataSet #5
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0.001 0 0.02 0.18 0.44
MRP 0.39 0.80 0.89 0.93 0.96

DataSet #6
Avg RANDOM subproblem size 10% 30% 50% 70% 90%

GSCM 0 0.001 0.01 0.07 0.36
MRP 0.33 0.83 0.94 0.96 0.98

Table 1: Degree of resolutions of GSCM and MRP on RANOM decompositions. GSCM returns poorly resolved trees
(compared to MRP) leaving the OTR component to do all the work. RANDOM subproblems , however, have very
large diameters which makes them biologically unrealistic.

DataSet #1
Avg DCM2 subproblem size 78.0% 82.0% 86.0% 94.0% 95.0%

GSCM 0.75 0.68 0.79 0.74 0.79
MRP 0.95 0.95 0.94 0.94 0.86

DataSet #2
Avg DCM2 subproblem size 54.0% 68.0% 79.0% 86.0% 93.0%

GSCM 0.81 0.77 0.76 0.68 0.74
MRP 0.72 0.79 0.8 0.76 0.84

DataSet #3
Avg DCM2 subproblem size 85.0% 86.0% 90.0% 93.0% 97.0%

GSCM 0.74 0.76 0.78 0.78 0.81
MRP 0.93 0.95 0.85 0.86 0.87

DataSet #4
Avg DCM2 subproblem size 54.0% 74.0% 98.0% 99.0% 99.0%

GSCM 0.98 0.89 0.82 0.88 0.86
MRP 0.98 0.98 0.97 0.92 0.9

DataSet #5
Avg DCM2 subproblem size 68.0% 77.0% 84.0% 86.0% 95.0%

GSCM 0.75 0.76 0.79 0.79 0.76
MRP 0.91 0.92 0.88 0.86 0.84

DataSet #6
Avg DCM2 subproblem size 88.0% 89.0% 95.0% 96.0% 97.0%

GSCM 0.64 0.64 0.61 0.59 0.62
MRP 0.94 0.92 0.93 0.92 0.90

Table 2: Degree of resolutions of GSCM and MRP on DCM2 decompositions. GSCM returns fairly resolved trees
(compared to MRP). In this case we can make a fair comparison between GSCM+OTR to MRP+OTR

7



RANDOM and compare GSCM to MRP on DCM2 decompositions where the comparison can be made clearly, and
where the decompositions are more biologically realistic than RANDOM ones.

Dataset# 1 2 3 4 5 6
DCM2 avg max diameter at avg subproblem size 96%93.2% 98.6% 91.5% 93.3% 93.9% 78.2

RANDOM avg max diameter at avg subproblem size 90%100% 100% 99.4% 99.7% 100% 95.5%

Table 3: Comparison of RANDOM and DCM2 subproblems. Note that the RANDOM subproblems have larger
diameters. The maximum diameters are presented as a % of the complete dataset diameter

5.2 Experiment 2: Comparison of GSCM+OTR to MRP+OTR on DCM2 decompositions

We selected the four biological datasets with the highest average resolution of GSCM trees, and compared GSCM+OTR
to MRP+OTR on those datasets. In particular, we selected datasets #1,#3,#4, and #5. We computed DCM2 decompo-
sitions on these datasets as described in Section 3.1, and constructed GSCM+OTR and MRP+OTR supertrees on each
decomposition. We then compared the MP scores and the total running time of each method. The total running time
is the time for constructing the supertree and applying OTR on it.

Figure 3 through 6 in the Appendix show that GSCM+OTR tree have better MP scores than MRP+OTR trees
on all the datasets and all the average subproblem sizes. Theimprovement in MP scores by SCM+OTR is quite
significant on all datasets and settings. GSCM+OTR returns trees which are many steps better than the MRP+OTR
trees. Furthermore, GSCM+OTR is much faster than MRP+OTR. MRP takes a long time to finish if we were to let it
run to completion.

6 Summary and Conclusions

We proposed a new supertree method and experimentally compare it to the standard popular supertree method used by
biologists, MRP. We used random and DCM2-based dataset decompositions to obtain subtrees. We saw that random
decompositions are not very biologically realistic and give subproblems with very large diameters; moreover, the
comparison between GSCM+OTR and MRP+OTR cannot be made on random subproblems due to low resolution of
GSCM trees before OTR.

On DCM2 decompositions, we see that the subproblems have smaller diameters (than RANDOM subproblems)
and the GSCM trees are well-resolved (at least 75% resolution). Thus, DCM2 subproblems allow for a biologically
realistic and fair comparison of GSCM+OTR to MRP+OTR. On DCM2 decompositions, GSCM+OTR has better MP
scores than MRP+OTR and is much faster than MRP+OTR. Thus, for supertree construction GSCM may possibly
return better supertrees in real studies.

In the future, we intend to explore the performance of GSCM onother types of dataset decompositions. It would
also be interesting to apply GSCM to a real life supertree study and compare it to the MRP supertree.

7 Acknowledgments

This work was supported by the National Science Foundation under grants ACI 00-81404 (Moret), DEB 01-20709
(Moret and Warnow), EIA 01-13095 (Moret), EIA 01-13654 (Warnow), EIA 01-21377 (Moret), and EIA 01-21680
(Warnow), by the David and Lucile Packard Foundation (Warnow), and by an Alfred P. Sloan Foundation Postdoctoral
Fellowship in Computational Molecular Biology, DOE grant DE-FG03-02ER63426 (Williams).

8


