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Abstract

Large and comprehensive phylogenetic trees are desimadeLidying macroevolutionary processes and for clas-
sification purposes. One approach for obtaining large ggres is to combine the topologies (or source trees) from
previous phylogenetic studies. Tree reconstruction tigcias that use the above methodology are known as supertree
methods. In this paper, we develop a new supertree algoatiled Greedy Strict-Consensus Merger (GSCM) and
compare it to Matrix Representation Parsimony (MRP), thetrpopular supertree method. We test the behavior of
GSCM and MRP on biological datasets and examine their paefoce with respect to maximum parsimony scores
and running time. Our results demonstrate that the GSCM edetlutperforms MRP with respect to both these
criteria on all the datasets we examined.
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1 Introduction

Many phylogenetic reconstruction methods attempt to shiRehard optimization problems such as Maximum Par-
simony (MP) and Maximum Likelihood (ML) (Felsenstein, 198iillis et al., 1996; Foulds & Graham, 1982; Steel,
1994), with the result that a biologically acceptable plygioetic analysis can take years to complete on only a few
hundred taxa (see (Chastal., 1993; Ricest al., 1997) for a well known example). The computational requiats
of large-scale phylogenetics have motivated systematstievelop alternative techniques for reconstructingevol
tionary trees, such as so-called “supertree methods.”
Supertree methods combine smaller, overlapping subtntéesilarger tree. They can thus use existing, published
reconstructions on which the community agrees as well asgwthe outcomes of reconstruction on decomposi-
tions of a large dataset. The most popular supertree methddtrix Representation Parsimony (MRP) (Baum, 1992;
Ragan, 1992), which has been used in a number of phylogesteties (Jonesat al., 2002; Liuet al., 2001; Bininda-
Emonds & Sanderson, 2001; Bininda-Emosetlal., 1999; Purvis, 1995); Bininda-Emonds and colleagues axathi
the topological accuracy of reconstructions made with séwariants of MRP in simulations (Bininda-Emonds &
Sanderson, 2001), while Page compared it to a differentadghased on mincuts) (Page, 2002). Beyond these three
studies, little has been done to investigate the relativeopeance of supertree methods in an experimental setting.
Our study addresses the performance of Greedy Strict-@saséerger (GSCM) and MRP to assemble a single,
supertree from subtrees. The mathematical optimizatidarmm Maximum Parsimony (MP) is used as our perfor-
mance metric. We consider the following questions:

e How do supertree methods respond to subtrees construotediifferent dataset decomposition techniques?

e Given a fixed collection of overlapping subtrees, what isliket method to assemble them into a single su-
pertree?
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To answer the first question, we constructed source treesfiteleotide sequences using two decomposition strate-
gies to create the overlapping subproblems. One deconosiichnique is to randomly partition the dataset into
overlapping subproblems. The other partitioning stratisglgased on disk-covering methods (DCMs), which are
geared towards reducing the evolutionary diameter witarhesubset. We address the second question by observing
the performance of the supertree methods with respect tinmax parsimony scores and running time.

We compare GSCM and MRP on real datasets that range from 3@0r@than 700 taxa. Our study shows that
GSCM outperformed MRP in terms of running time and maximumsip@ony scores.

The rest of the paper is organized as follows. We describsapertree algorithms in Section 3. We explain our
experimental design, datasets, and implementations itioBet Finally, we discuss our results in Section 5.

2 Supertree Reconstruction Algorithms

Supertree-building algorithms combine phylogeneticdrfem multiple studies to produce a supertree. Formally,
L(T;) is the set of leaves of a trég. Let 7 represent the set &f source trees labelefl, Ty, ..., Tx. The complete
set of taxa inT is S= Uik:lL(Ti). A supertree method requires a set of treeand outputs a tree with the leaf
setS. Although consensus techniques also work on topologiesadyze a summarized phylogenetic tree, supertree
reconstruction has the advantage of not requiring idelrtécaninal taxa sets. Only overlapping sets are needed hwhic
allows the supertree method to produce more comprehenBixlegenies from the smaller reconstructions. For an
extensive review and critique of current supertree metlsedgBininda-Emonds al., 2002).

2.1 Greedy Strict-Consensus Merger (GSCM)

Our Greedy Strict-Consensus Merger (GSCM) supertreeittigois an extension of SCM which is an essential com-
ponent of the supertree construction algorithm of Disk CioegMethods (DCM) (Nakhlekt al., 2001; Warnovet al .,
2001; Husoret al., 1999a,b). The DCM supertree construction algorithm umeetain conditions is guaranteed to
construct the true tree (see (Husaral., 1999a)). Our previous studies (Mosettal., 2003) show that the supertree
construction algorithm of DCMs outperform the current staml supertree method, MRP, if it were used as the su-
pertree component. Motivated by that study we have desigmagertree method which employs SCM and can be
applied to any set of subtrees.

SCM The SCM method takes two tre@s andT, on possibly different leaf sets, identifies the set of leaabat
they share, and modifiég and T, through a minimal set of edge contractions, so that theydadhe same subtree
on X—called the “backbone”. Oncg andT, are modified in this way, they can be merged. The details oStk
algorithm are given below.

e SetX =L(T1) NL(T2). We callX the backbone, and it must satisfyX| > 3. Otherwise, the merged tree will be
unresolved.
e Compute the strict consensTisof T andTy, which are restricted to the leaf séfi.e., Tx = Strict Consensu3yx, Tzx)-

e Add the remaining subtrees frofm andT; into Tx while not violating any of the bipartitions ify andT,. Note
that it is possible that some pieceTafor T, may attach onto the same edgélgf In this case, &ollision occurs
(see Figure 1).

e ReturnTy.

Greedy SCM  We adapt the SCM algorithm to handle arbitrary dataset dpositions by merging trees in a greedy
fashion. Our GSCM algorithm merges a set of trees= {T1,To,..., Tk} and returns a tree leaf-labeled By=
UK ,L(Ti). For notation letesol ution(T) be the number of internal edgesTirdivided by|L(T) — 3|.

1. Sets ={Ty,..., Tk}

2. While|s| > 2 do the following:
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Figure 1: Merging two trees together, by first computing thietsconsensus of the two trees restricted to the backbone,

and adding remaining leaves so as not to violate biparttiorihe input trees. Note that the leaves 6 and 7 attach to
the same edge which iscallision.

(a) Find treed;, T; which maximize'SEMILT) | o the normalized resolution of the Strict Consen-
) [L(THUL(T))]

sus Merger off; andT;. s = — {T;, Tj}.
(b) SetTi = SCM(T;,T;) where SCMT;, Tj) is the Strict Consensus MergerBfandT,. Sets = sU{T;}.

3. Returns.

Since GSCM works with arbitrary dataset decompositionstettare no performance guarantees like there are for
the DCM supertree construction algorithm, however we mesitsi performance by comparing it against MRP (see
below) using simulation studies.

2.2 Matrix Representation Parsimony (MRP)

The MRP approach encodes a gebf k source trees labelel ... Tx as binary characters with missing values (i.e.,
“partial binary characters”) as follows. Consider a tfee 7 and lete be an arbitrary edge ifi. The deletion of the
edgee from T; induces a bipartitiome onL(T;) into setsA andB, whereL(T;) is the leaf set of;. LetS= UikzlL(Ti).
Now define a charactex on all of Sby extendingte with ce(s) = 0 for s€ A, ce(s) = 1 for s € B, andce(s) =? for

s¢ L(Ti). TheseC(7)={ce|3Ti € T, ec E(Ti)} is thus a set of partial binary characters that encodesmilegical
information of the trees ir. Furthermore, if a supertree exists which exactly satigliighe constraints in the set,
then it will have optimal parsimony score with respedE{@ ). Hence, the supertree will be the maximum parsimony
solution forS on this set of characters. Since MRP involves solving MR @n NP-hard problem and hill climbing
heuristics are used in practice.

MRP implementation We used a medium speed MP search for MRP which uses 10 irtaiding trees and 100
saved trees, however, this too can take a long time to firfigts, tve enforced a time limit on the search equal to the
total time taken by Greedy-SCM followed by the refinementgghdVe used the following PAUP*4.0 commands:

set criterion=parsinony maxtrees=100 i ncrease=no;
hsearch start=stepw se addseq=random swap=t br hol d=1 nreps=10
timelimt=<total time taken to conpute G eedy-SCMtree and refine it>;

3 Experimental M ethodology

To analyze the behavior of GSCM and MRP supertree algoritbonrssimulation procedure consists of the following
four steps.

1. Decompose the dataset into smaller, overlapping subsets
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Figure 2: The three steps in Phase | of DCM2: (a) compute aelggparatoX for S(relative to the triangulation of
G(d,q)), producing subproblem UX,AUX,..., A, UX; (b) compute a treg for each subproblem; U X using the
chosen base method; and (c) merge the computed subtreesito sipertred.

2. Construct phylogenetic trees on the subsets using thieedébase” phylogenetic reconstruction method.
3. Merge the subtrees into a single (not necessarily fullplked) tree on the entire dataset.

4. Refine the resultant tree to produce a binary tree, and aatpe MP scores.

5. Compare the running time of the supertree method, andhtieeto refine the supertree.

Initially, we begin with a set of nucleotide sequences thatpartitioned into a set of overlapping subproblems based
on two decomposition strategies—one decomposition isdawsing DCMs, and the other is a modification of the
hierarchical clustering algorithm. The phylogenetic sréer source trees) are constructed on these subsets using a
maximum parsimony heuristic. The source trees are mergeisupertree by either the GSCM or MRP algorithm.

If the supertree is not fully resolved, a heuristic seardhgimmaximum parsimony is performed to refine the merged
supertree into a binary (i.e., bifurcating) tree. Even titothe supertree methods are constructed on subtrees, we can
compare their MP scores since we have the full set of seqseawvedable, unlike in reality we may hawassing data
between the subtrees.

The MP score of a tree can be computed in polynomial time gjudtishe minimum number of times the sequences
change across the tree. In order to measure the topologicalacy of a tree we need some definitions. The removal
of an edgee in a treeT induces &ipartition on the leaves of . LetC(T) denote the set of bipartitions in tr@e If
T is a model tree and’ is the tree obtained by a phylogenetic reconstruction niktthen the false positive rate is

defined a: C(T,rf__g(T)‘ and the false negative rate is define L:%(T,)l wheren is the number of leaves in trde

3.1 Data Decomposition

DCM2 decomposition DCMs are based on a divide-and-conquer strategy for phyletieereconstruction, based
upon dividing a dataset into overlapping subsets, construtrees on these subsets, and then merging them into a
tree on the full dataset. In (Husanal., 1999b) we described a DCM, called DCM2, for speeding upcses for
Maximum Parsimony trees; we use that same DCM here. The todDEM2 is a seS= {s1,...,s} of n aligned
biomolecular sequences, a matdxcontaining an estimate of their interleaf distances, andrdiqularq € {d;;}.
DCM2 then computes a threshold grapfd, q), as follows: the vertices d&(d, q) are the taxas, s, ..., S, and the
edges ofG(d,g) are those pairgs;, sj) obeyingd; j < g. A greedy heuristic is used to triangulate this graph so as to
minimize the weight of the heaviest edge added@etenote the triangulation @(d,q). We then compute a clique
separatoK of G*, which minimizes the maximum size of any set defineX asA;, whereA is one of the components

of G* — X (Figure 2). Once we have this separator, we compute treeaamnseibproblem (the seXaJ A;).

DCM2 requires a particular threshold valug,which influences the size of the subproblems examineddiarg
values tend to give larger subproblems for DCM2). We lookdiva thresholdsdg, the smallest threshold for which
the threshold graph is connected, ail d4, dg, anddg which are the 3rd, 5th, 7th, and 9th thresholds of evenly
spaced values betweepanddg = max{d;j }. Intuitively, higher thresholds means the subproblemsaager and the
separator has a larger size also, thus larger overlap.



Random Decomposition We implement a method named RANDOM to decompose the datatsatandom, over-
lapping subsets. This method requires three parameterautinbex of subproblems, the desired mean sizd each
subproblem, and the desired sizef the setwise intersection of all the subsets.

We now describe how RANDOM(x,y,z) works. Lat= |S|, be the number of taxa to be distributed among the
subsets. Thg subsets are populated as follows. Firggxa are randomly selected, and each of tlzéaga are placed
in each of the subsets. For each subset, we then randomty aaladditionaly — z) taxa from the remainingn — 2)
taxa. Finally, if any taxa have not been placed in any padicsubset, we then add these taxa randomly to subsets.
Note that this method does not guarantee that the subsétsawd size exactly; rather, every subset has size at least
y. Furthermore, the cardinality of the setwise intersecigoaiso guaranteed to be at least, but not necessarily gxactl
equaltoz

In our experiments we varied subset sizes and fixecttlverage to be 2. The coverage can be thought of the
number of subsets a taxon appears in, on the average. Wettleas@mber of subproblems to be

coveragedataset—size)
e

number of subproblems floor (average subproblem si

The floor of a real numberis the largest integer that is less than or equal td/e examined 5 values of average
subproblem sizes, namely 10%, 30%, 50%, 70% and 90%.

3.2 Phylogenetic Base Method and OTR

We computed the subtrees on the subproblems using the RATENEon, 1999) which is a maximum parsimony
hill climbing heuristic that doubles the weight of 25% of damly chosen sites once it reaches a local optimum,
performs a hill climbing search in thgerturbed space till it reaches a local optimum, sets the sites to tivéginal
weights and performs one more hill climbing search to cotigte The result is the strict consensus of the best of the
three trees found. We implemented the RATCHEPAWP* 4. 0.

The Optimal Tree Refinement (OTR) problem is NP-hard, so venagse a fast heuristic search implemented
in PAUP*4. 0. We pass the unresolved supertree as a constraint tree tB*Padl receive a binary tree refining the
constraint tree, one that tends to optimize the parsimoasescWe used the following PAUP*4.0 (Swofford, 1996)
command:

constraints cl (nonophyly) = <constraint_tree>;

set criterion=parsinmony maxtrees=1 increase=no;

pset col | apse=no;

hsearch start=stepwi se addseq=random swap=t br hol d=1 nreps=1
constrai nts=cl enforce=yes;

4 Experimental Design

4.1 Datasetsand Implementation

Biological datasets We obtained six biological datasets (two DNA and four RNAfrvarious sources, listed below
with the number of sequences, their lengths, and the maxipndiistance (normalized Hamming distance) between
any two sequences in the set.

1. Aset 328 ITS sequences (946 characters) from the flowplarg Asteracaeae obtained from the Gutell Lab at
the Institute for Cellular and Molecular Biology, The Unisgy of Texas at Austin (max p-distance = 0.524).

2. A set of 388 aligned 16S rRNA sequences (2497 charactrshifee different classes of Bacteria: Plancto-
mycetes, Chlamydiae, and Verrucomicrobia (Maidg#l., 2001) (max p-distance = 0.456).

3. A set of 500 alignedbcL DNA sequences (1428 characters) also known as the ZillsetafRiceet al., 1997)
(max p-distance = 0.184).

4. A setof 567 “three genebcl, atpB, and 18s” aligned sequences (2497 characters) of mostlpsperms and
and a carefully selected group of gymnosperms (Setité., 2000) (max p-distance = 0.15).



5. A set of 590 aligned small subunit Eukaryotic rRNA seq@sn(l962 characters) (Wuygs al., 2002) (max
p-distance = 0.382).

6. A set of 778 aligned small subunit Mitochondrial rRNA seqoes (1836 characters) (Wugtsal., 2002) (max
p-distance = 0.656).

Since, both the decomposition methods require a distantexn@ compute the subproblems, we computed a dis-
tance matrix on each biological dataset using PAUP*4.0 lgcsiag theml option (maximum likelihood) to estimate
distances.

Implementation and Platforms Our data decomposition and supertree methods implemensaire a combination
of C++ (which uses LEDA 4.3) and Perl scripts which were writby us. Our experiments were run on modest
Pentium 500 MHz machines under Debian Linux.

5 Experimental Results

Overview We began by comparing GSCM to MRP on RANDOM decompositions.s&v that GSCM trees were
very poorly resolved (before OTR) on RANDOM decompositiomBus, OTR would be doing most of the work. In
that case, the comparison between GSCM and MRP becomesiffenylidbecause most of the added edges (in the
unresolved tree) would come from OTR. On the DCM2 decomjoust we saw that the GSCM trees were very well
resolved.

A closer look at the RANDOM and DCM2 subproblems revealed RENDOM subproblems had larger diame-
ters compared to DCM2 decompositions. In practice biotsgismpute subtrees on sets of closely related sequences;
thus, RANDOM decompositions serve as a poor model to captueal life decomposition. We then proceeded to
compare GSCM to MRP on DCM2 decompositions. There we sanGB&M+OTR trees had better MP scores than
MRP+OTR trees, and GSCM+OTR finished quicker than MRP+OTR.

5.1 Experiment 1. Comparison of GSCM and MRP resolutions on RANDOM and DCM 2
decompositions

We computed RANDOM decompositions of five average subprotdizes: 10%30% 50%, 70%, and 90% with
the coverage parameter set to 2. We also computed DCM2 dexsitiops at 5 threshold values as described in
Section 3.1. In our tables we list the DCM2 average subproldizes (rather than the threshold value) so that a
comparison against RANDOM can be made easily. Note that tBeIDaverage subproblem sizes sometimes start
at large values; that only happens because we use the thdgstrameter to compute DCM2 subproblems, and the
average subproblem size for the first threshold value exaaniian be large. Subtrees on each decomposition were
computed using the MP heuristic described in Section 3.2.

Table 1 compares the resolution of GSCM trees to MRP treesAdiFOM decompositions of the six biological
datasets we studied. The resolution of a ffeis just the number of internal edgesindivided by|L(T) — 3| where
L(T) is the number of leaves if (|L(T) — 3| would be the number of internal edges in an unrooted binagfty.From
Table 1 we can see that GSCM trees have poor resolution cechpathe MRP ones. The resolution of both the trees
improve as we move to larger subproblems. However, evenhkgireblems of average size 90%, the GSCM trees
are all less than 75% resolved. Table 2 shows that on DCM2mdpesitions, GSCM trees are much better resolved.
There, most of the GSCM trees are more than 75% resolved.

To understand the difference in GSCM resolution on RANDOM BXtM2 decompositions, we proceed to com-
pute the diameters of these decompositions. Méeémum diameter of a subproblensis the largest distance between
all pairs of sequencds, j) € s, and theaverage maximum diameter is the the average of the maximum diameter of all
the subproblems in a given decomposition.

Table 3 shows that RANDOM decompositions have larger diarsetompared to DCM2 decompositions. A
biologically realistic decomposition would have a smalmdieter since biologists construct trees on sets of closely
related species. Thus, RANDOM decompositions do not catuniologically realistic decomposition. We abandon



DataSet #1
Avg RANDOM subproblem size 10% | 30% | 50% | 70% | 90%
GSCM 0.052| 0.036| 0.1 0.3 | 0.61
MRP 41 0.6 0.84 | 0.89 | 0.96

DataSet #2
Avg RANDOM subproblem siz¢ 10% | 30% | 50% | 70% | 90%
GSCM 0.025| 0.01 | 0.072| 0.21 | 0.45
MRP 0.21 | 0.57 | 0.81 | 0.86 | 0.92

DataSet #3
Avg RANDOM subproblem size 10% | 30% | 50% | 70% | 90%
GSCM 0.002 | 0.008 | 0.016 | 0.19 | 0.46
MRP 0.39 | 0.67 | 0.94 | 0.96 | 0.96

DataSet #4
Avg RANDOM subproblem size 10% | 30% | 50% | 70% | 90%
GSCM 0.001 | 0.003 | 0.028 | 0.22 | 0.60
MRP 0.42 | 0.78 | 0.96 | 0.98 | 0.98

DataSet #5
Avg RANDOM subproblem siz¢ 10% | 30% | 50% | 70% | 90%
GSCM 0.001 0 0.02 | 0.18 | 0.44
MRP 0.39 | 0.80 | 0.89 | 0.93 | 0.96

DataSet #6
Avg RANDOM subproblem size 10% | 30% | 50% | 70% | 90%
GSCM 0 0.001| 0.01 | 0.07 | 0.36
MRP 0.33 | 0.83 | 0.94 | 0.96 | 0.98

Table 1: Degree of resolutions of GSCM and MRP on RANOM deauasitipns. GSCM returns poorly resolved trees
(compared to MRP) leaving the OTR component to do all the w&ANDOM subproblems , however, have very
large diameters which makes them biologically unrealistic

DataSet #1
Avg DCM2 subproblem sizg 78.0% | 82.0% | 86.0% | 94.0% | 95.0%
GSCM 0.75 0.68 0.79 0.74 0.79
MRP 0.95 0.95 0.94 0.94 0.86
DataSet #2
Avg DCM2 subproblem sizg 54.0% | 68.0% | 79.0% | 86.0% | 93.0%
GSCM 0.81 0.77 0.76 0.68 0.74
MRP 0.72 0.79 0.8 0.76 0.84
DataSet #3
Avg DCM2 subproblem sizg 85.0% | 86.0% | 90.0% | 93.0% | 97.0%
GSCM 0.74 0.76 0.78 0.78 0.81
MRP 0.93 0.95 0.85 0.86 0.87
DataSet #4
Avg DCM2 subproblem sizg 54.0% | 74.0% | 98.0% | 99.0% | 99.0%
GSCM 0.98 0.89 0.82 0.88 0.86
MRP 0.98 0.98 0.97 0.92 0.9
DataSet #5
Avg DCM2 subproblem sizg 68.0% | 77.0% | 84.0% | 86.0% | 95.0%
GSCM 0.75 0.76 0.79 0.79 0.76
MRP 0.91 0.92 0.88 0.86 0.84
DataSet #6
Avg DCM2 subproblem sizg 88.0% | 89.0% | 95.0% | 96.0% | 97.0%
GSCM 0.64 0.64 0.61 0.59 0.62
MRP 0.94 0.92 0.93 0.92 0.90

Table 2: Degree of resolutions of GSCM and MRP on DCM2 decaitipns. GSCM returns fairly resolved trees
(compared to MRP). In this case we can make a fair comparistmden GSCM+OTR to MRP+OTR



RANDOM and compare GSCM to MRP on DCM2 decompositions whisegecomparison can be made clearly, and
where the decompositions are more biologically realisttmtRANDOM ones.

Dataset# 1 2 3 4 5 6
DCM2 avg max diameter at avg subproblem size 96%93.2% | 98.6% | 91.5% | 93.3% | 93.9%| 78.2
RANDOM avg max diameter at avg subproblem size 909%00% | 100% | 99.4% | 99.7% | 100% | 95.5%

Table 3: Comparison of RANDOM and DCM2 subproblems. Notd the RANDOM subproblems have larger
diameters. The maximum diameters are presented as a % dfitiiete dataset diameter

5.2 Experiment 2. Comparison of GSCM+OTR to MRP+OTR on DCM 2 decompositions

We selected the four biological datasets with the highestaae resolution of GSCM trees, and compared GSCM+OTR
to MRP+OTR on those datasets. In particular, we selecteabdist #1,#3,#4, and #5. We computed DCM2 decompo-
sitions on these datasets as described in Section 3.1, asttwcted GSCM+OTR and MRP+OTR supertrees on each
decomposition. We then compared the MP scores and the twiairg time of each method. The total running time
is the time for constructing the supertree and applying OMR.o

Figure 3 through 6 in the Appendix show that GSCM+OTR treechastter MP scores than MRP+OTR trees
on all the datasets and all the average subproblem sizes.imifirevement in MP scores by SCM+OTR is quite
significant on all datasets and settings. GSCM+OTR retugestwhich are many steps better than the MRP+OTR
trees. Furthermore, GSCM+OTR is much faster than MRP+OTRPNbakes a long time to finish if we were to let it
run to completion.

6 Summary and Conclusions

We proposed a new supertree method and experimentally ¢ertpathe standard popular supertree method used by
biologists, MRP. We used random and DCM2-based datasetwjmasitions to obtain subtrees. We saw that random
decompositions are not very biologically realistic andeggubproblems with very large diameters; moreover, the
comparison between GSCM+OTR and MRP+OTR cannot be madendomasubproblems due to low resolution of
GSCM trees before OTR.

On DCM2 decompositions, we see that the subproblems haviéesd@mmeters (than RANDOM subproblems)
and the GSCM trees are well-resolved (at least 75% resalutibhus, DCM2 subproblems allow for a biologically
realistic and fair comparison of GSCM+OTR to MRP+OTR. On DZ#§ecompositions, GSCM+OTR has better MP
scores than MRP+OTR and is much faster than MRP+OTR. Thusujgertree construction GSCM may possibly
return better supertrees in real studies.

In the future, we intend to explore the performance of GSCMther types of dataset decompositions. It would
also be interesting to apply GSCM to a real life supertredysaind compare it to the MRP supertree.
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