A Scalable Distributed Information Management System

Praveen Yalagandula and Mike Dahlin
Department of Computer Sciences
The University of Texas at Austin

Abstract For a large scale information systehigerarchical ag-

We present a Scalable Distributed Information Managedregationis a fundamental abstraction for scalability.
ment System (SDIMS) thatggregatesnformation about ~ Rather than expose all information to all nodes, hierarchi-
large-scale networked systems and that can serve as a l§&l aggregation allows a node to access detailed views of
sic building block for a broad range of large-scale dis-nearby information and summary views of global infor-
tributed applications providing detailed views of nearbymation. In a SDIMS based on hierarchical aggregation,
information and summary views of global information. different nodes can therefore receive different answers to
To serve as a basic building block, a SDIMS should havéhe query “find a [nearby] node with at least 1 GB of free
four properties: scalability to many nodes and attributesmemory” or “find a [nearby] copy of file foo.” A hierar-
flexibility to accommodate a broad range of applicationschical system that aggregates information through reduc-
support administrative autonomy and isolation, and rolion trees [16, 25] allows nodes to access information they
bustness to node failures and disconnections. We dé&are about while maintaining system scalability.

sign, implement and evaluate a SDIMS that (1) uses tech- To be used as a basic building block, a SDIMS should
niques from Distributed Hash Table (DHT) literature to have four properties. First, the system should accommo-
create scalable aggregation trees, (2) provides fleyibilitdate large numbers of participating nodes, and it should
through a simple API that lets applications control prop-allow applications to install and monitor large numbers
agation of reads and writes, (3) provides autonomy andf data attributes. Enterprise and global scale systems to-
isolation through simple augmentations of current DHTday might have tens of thousands to millions of nodes and
algorithms, and (4) is robust to node and network reconthese numbers will increase as desktop machines give way
figurations through lazy reaggregation, on-demand reado larger numbers of smaller devices. Similarly, we hope
gregation, and tunable spatial replication. Through extento support many applications and each application may
sive simulations and micro-benchmark experiments, w&ack several attributes (e.g., the load and free memory of
observe that our system is an order of magnitude mora System’s machines) or millions of attributes (e.qg., which
scalable than existing approaches, achieves autonomy afilgs are stored on which machines).

isolation properties at the cost of modestly increased read Second, the system should halexibility to accom-
latency in comparison to flat DHTs, and gracefully han-modate a broad range of applications and attributes. For

dles failures. exampleread-dominateattributes likenumCPUgarely
. change in value, whilevrite-dominatedattributes like
1 Introduction numProcesseshange quite often. An approach tuned for

The goal of this paper is to construct a Scalable Disfead-dominated attributes will suffer from high bandwidth
tributed Information Management System (SDIMS) thatconsumption when applied for write-dominated attributes.
aggregatesnformation about large-scale networked sys-Conversely, an approach tuned for write-dominated at-
tems and that can serve as a basic building block for &ibutes may suffer from unnecessary query latency or
broad range of large-scale distributed applications. Monimprecision for read-dominated attributes. Therefore, a
itoring, querying, and reacting to changes in the stat&DIMS should provide a flexible mechanism that can ef-
of a distributed system are core components of applicdiciently handle different types of attributes, and leave th
tions such as system management[11, 26, 34, 35], servig@licy decision of tuning read and write propagation to the
placement [10, 36], data sharing and caching [19, 23, 2@&pplication installing an attribute.

31, 37, 33], sensor monitoring and control [16], multicast Third, an SDIMS should providautonomy and isola-
tree formation [4, 5, 25, 29, 32], and naming and requedion. In a large computing platform, it is natural to ar-
routing [6, 7]. We therefore speculate that a SDIMS inrange nodes in an organizational or an administrative hi-
a networked system would provide a “distributed operaterarchy (e.g., Figure 1). A SDIMS should support admin-
ing systems backbone” and facilitate the development anidtrative autonomy so that, for example, a system admin-
deployment of new distributed services. istrator can control what information flows out of her ma-

chines and what queries may be installed on them. And, different aggregation trees within a DHT mesh? (ii) How
SDIMS should provide isolation in which queries about ato provide flexibility in the aggregation to accommodate
domain’s information can be satisfied within the domaindifferent application requirements?, (iii) How to adapt a
so that the system can operate during disconnections agibbal, flat DHT mesh to satisfy the required autonomy
so that an external observer cannot monitor or affect intraand isolation properties? and (iv) How to provide good

domain queries.

robustness without unstructured gossip and total replica-

Fourth, the system must bebustto node failures and tion?

disconnections. A SDIMS should adapt to reconfigura-

Our key ideas for building a SDIMS using ideas from

tions in a timely fashion and should also provide mechaDHTs and Astrolabe are as follows.

nisms so that applications can exploit the tradeoff betweéeh
the cost of adaptation versus the consistency level in the
aggregated results when reconfigurations occur.

We draw inspiration from two previous work#istro-
labeandDistributed Hash Tables (DHTS)

Astrolabe [25] is a robust information management?-
system. Astrolabe provides the abstraction of a single log-
ical aggregation tree that mirrors a system’s administra-
tive hierarchy for autonomy and isolation. It provides &3.
general interface for installing new aggregation funciion
and provides eventual consistency on its data. Astrolabe
is highly robust due to its use of an unstructured gossi

We expose a DHT system'’s internal trees as an aggre-
gation abstraction by aggregating an attribute along the
tree corresponding to the attribute type and name. This
approach gives SDIMScalability with respect to both
nodes and attributes.

We provide a flexible API that lets applications control
the propagation of reads and writes and thus trade off
update cost, read latency, replication, and staleness.

We augment an existing DHT algorithm to enspath
convergenceand path locality properties in order to
achieveautonomyandisolation

R we providerobustnesso node and network reconfig-

protocol for disseminating information and its strategy of -
replicating all aggregated attribute values for a subtoee t
all nodes in the subtree. This combination allows any
communication pattern to yield eventual consistency and
allows any node to answer any query using local informa-
tion. This high degree of replication, however, may limit
the system'’s ability to accommodate large numbers of at- the underlying lazy reaggregation.

tributes. Also, although the approach works well for read- We have built a prototype of SDIMS. Through simu-
dominated attributes, an update at one node can eventually:)« and micro-benchmark experiments on a number

affe_ct_ t_he state at all n_odes, W_hiCh may I_imit the system'g¢ department machines and Planet-Lab [21] nodes, we
flexibility to support write-dominated attributes. observe that the prototype achieves scalability with re-
Recent research in peer-to-peer structured networks rgpect to the number of nodes and the number of attributes
sulted in Distributed Hash Tables (DHTs) [4, 5, 7, 19, 22 through use of its flexible API, inflicts an order of mag-
23, 27, 29, 31, 32, 37, 33]—a data structure that scalegjtude less maximum node stress when compared to un-
with the number of nodes and that distributes the readstructured gossiping SchemeS, achieves autonomy and iso-
write load for different queries among the participating|ation properties at the cost of modestly increased read la-

nodes. Itis interesting to note that although these systemgncy compared to flat DHTs, and gracefully handles node
export a global hash table abstraction, many of them intetgjjyres.

na”y make use of what can be viewed as a scalable system This initial Study discusses key aspects of an ongo-

of aggregation trees to, for example, route a request for @g large system building effort, but it does not address
given key to the right DHT node. Indeed, rather than exq]| jssues with constructing a SDIMS. For example, we
port a general DHT interface, Plaxton et al.’s [22] originalpelieve that our strategies for providing robustness will
application makes use of hierarchical aggregation to allowhesh well with techniques such aapernode$17] for
nodes to locate nearby copies of objects. It seems appealrther improving robustness as well as other ongoing
ing to develop a SDIMS abstraction that exposes this ingfforts to improve DHTs [24]. Also, although splitting
ternal functionality in a general way so that scalable treegggregation among many trees improves scalability for
for aggregation can be considered a basic system buildirgmp|e queries, this approach may make complex, and
block alongside the distributed hash tables. multi-attribute queries more expensive compared to a sin-

At first glance, it might appear obvious that simply gle tree. Additional work is needed to understand the
combining DHTs with Astrolabe’s aggregation abstrac-significance of this limitation for real workloads and, if
tion will resultin a SDIMS. However, meeting the require- necessary, to adapt query planning techniques from DHT
ments discussed above requires a design to address fabrstractions [12, 14] to scalable aggregation tree abstrac
guestions: (i) How to scalably map different attributes totions.

urations by (a) providing temporal replication through
lazy reaggregation that guarantees eventual consistency
and (b) ensuring that our flexible API allows demand-
ing applications gain additional robustness by either us-
ing tunable spatial replication of data aggregates and/or
performing fast on-demand reaggregation to augment

edu ' (configuration, numCPUs, 16), (mcast membership, ses-
* sion foo, yes)or (file stored, foo, mylPaddress)
"""" The system associates aggregation function tjpe
------- with each attribute type, and for each levedubtreeT;
univs U in the system, the system defines aggregate value
math Vi typename for each (attributeType, attributeName) pair
\ as follows. For a (physical) leaf nod® at level O,
-------- 9 @ - Vo.typenameiS the locally stored value for the attribute type
e ° o and name or NULL if no matching tuple exists. Then
Fig. 1: Administrative hierarchy the aggregate value for a leviekubtreeT; is the ag-
gregation function for the type computed across the ag-
In Section 2, we explain the aggregation abstractiogyregate values of each @f's k children: Vi typename =
and the flexible API exported by our system. In Section 3’ftype(\4(lltypgname\4£1typename = v\/ik:lltypename)-
we detail the DHT construction that provides autonomy ~ Haying aggregation trees that conform with the admin-
and isolation properties and explain the data structurés anstrative hierarchy helps SDIMS provide important auton-
the behavior of the node. Section 4 addresses the isségny, security, and isolation properties [25]. Security and
of adaptation to the topological reconfigurations. In Secaytonomy are important in that a system administrator
tion 5, we present the evaluation of our system througlinyst be able to control what information flows out of her
large-scale simulations and microbenchmarks on real nefnachines and what queries may be installed on them. The
works. Section 6 details the related work and Section Tsplation property ensures that a malicious node in one do-
summarizes our contribution and points out the future remain cannot observe or affect system behavior in another

univ2

search directions. domain for computations relating only to the second do-
main.
2 Aggregation Abstraction and Although our system allows arbitrary ag-
. gregation functions, it is desirable that ag-
Flexible API gregation functions satisfy the hierarchical
Our system provides a standard aggregation abstractigomputation property [16]: f(Vi,.o,Vn) =

via a novel flexible API that allows applications to pro- f(F(Vey ey Vi)y T (Vs 1y ey Vy)y ooey T (Vi 2y oey Vi),

vide hints about whether the system should (a) comput@herey; is the value at node For example, the average
aggregation functions and propagate them to readers @peration, defined agvg(vy,...,Vn) = 1/n. 31 ovi, does
demand in response to reads, (b) recompute aggregatig@t satisfy the property. Instead, if values for such an
functions whenever updates to their input data occur bujttribute are stored as tuplésim count) and the function
propagate them to readers on demand, or (c) recompuiedefined agvg(vi, ...,Vn) = (3 oVi.sum 1, vi.count),
aggregation functions and aggressively propagate the r@-satisfies the hierarchical computation property. Note
sults through the system when updates occur. that the applications then have to compute the average
. . from the aggregate sum and count values.

2.1 Aggregation Abstraction Finally, note that for a large-scale system, it is difficult
Aggregation is a natural abstraction for a large-scale disor impossible to insist that the aggregation value returned
tributed information system because aggregation providesy a probe corresponds to the function computed over the
scalability by allowing a node to view detailed informa- current values at the leaves at the instant of the probe. Sys-
tion about the state near it and progressively coarsetems, therefore, typically provide only weak consistency
grained summaries about progressively larger subsets gfiarantees, such as eventual consistency, to improve re-

a system’s data [25]. sponsiveness and robustness [25].
Our aggregation abstraction works on the assumption

that nodes is the system are arranged in a tree that cod-2 Flexible computation
plies with the administrative boundaries. As Figure 1 il-The definition of aggregate values allows considerable
lustrates, each physical node in the system is a leaf dfexibility in how, when, and where they are computed.
the tree, and each subtree represents a logical groupimg particular, instead of gathering all leaf values at one lo
of nodes. Note that logical groupings can correspond tgation and recursively evaluating the function to obtain
administrative domains (e.g., “cs.univl.edu” or “edu”) orthe global aggregate, this definition allows a system to
groupings of nodes within a domain (e.g., 10 workstationperform aggregation on a tree in a distributed fashion for
on a LAN in the CS department). We describe how toscalability, and it allows this computation to occur lazily
form such trees in Section 3. on reads, eagerly on updates, or using hybrid strategies.
Each physical node halecal data stored as a set As Figure 2 illustrates, under aspdate-Locabption,
of (attributeTypeattributeNamevalue tuples such as an update only affects local state. Then, a probe that reads

Update On Update On Probe for Global Aggregate Value On Probe for Level-1 Aggregate Value
Strategy
Update- m /{\z\ m /(‘\7\2 m;
Local

KN Xon KA
Update- 7 % R
Up

O @ PN
Update- A NEA) .
All

Fig. 2: Flexible API
a leveli aggregate value can be sent up the tree to the isk_parameter | description | optional |

suing node’s level-ancestor and then down the tree to the amTﬂ{’Pe ﬁ“fibU‘etTypi]
leaves. The system can then compute the desired aggre-239-11¢ | “iddregation Function

. ; I attrName Attribute Name X

gate value at each layer up the tree until the lé\aices- domain Domain restriction (default: none) X

tor holds the desired value. Finally, the levedncestor up How far upwards each update is sent X
can send the result down the tree to the issuing node. Al (default: all) _

down How far downwards each aggregatelis X

ternately, under atUpdate-Upstrategy, the root of each sent (default: none)
subtree maintains the subtree’s current aggregate value,expTime | Expiry Time

and when an update occurs, the leaf node updates its local Table 1: Arguments for the install operation
state and passes the update to its parent, and then each suc-

cessive enclosing subtree updates its aggregate value airg minimize the cumulative cost for both updates and
passes the new value to its parent. This strategy satisfiesprobes' For example, an attribute type with a large
a leaf’s probe for a levelaggregate value by sending the reads-to-write ratio might be installed as an Update-All
probe up to the levelancestor of the leaf and then send- type, and one with a reads-to-write ratio of about one
ing the aggregate value down to the leaf. Ingrdate-All might be installed as Update-Up type.

strategy [25] each levelnode not only maintains the ag- _

gregate values for the levebubtree but also receives and ® TO tune probe latencies v. update overheads. Probes
locally stores copies of all of its ancestors’ levielj > i) incur different latencies based on how aggressively up-
aggregation values. So, when an update occurs, changesiates are distributed. For example, an application re-
are aggregated up the tree, and each new aggregate valudUiring a very low latency on probes could install its

is broadcast to all of a node’s descendants. Under this attribute type as an Update-All type.

strategy, a leaf can satisfy a probe for a levaljgregate o To tune robustness against failures v. update overheads.
using purely local data. Finally, notice that other strate- By propagating aggregated values downwards to more
gies also exist. For example, alpdate-UpRoot-Down2 nodes, the applications can mask network and node re-
strategy (not shown) would aggregate updates up to the configurations by providing multiple redundant loca-
root of a subtree and send a subtree’s aggregate values tatjons where a given aggregate value is stored and by

the children and grandchildren of the subtree’s root. reducing a probe’s dependencies on network connec-
The nature of the attributes that applications install tivity up the aggregation tree. This issue is discussed in

vary extensively. For exampleyaead-dominateattribute depth in Section 4.

like numCPUsrarely change in value, while write- The API to applications consists of three functiolrs:

dominatedattribute likenumProcesseshanges quite of- gi4)|() installs an aggregation function that defines an op-
ten. An aggregation strategy like Update-All could work gration on an attribute type and specifies the update strat-
W_eII for read-do_mmatechttnbu?es but_suffer r_ugh band- egy that the function will useJpdate()inserts or modi-
width consumption when applied fanite-dominatedt- fies 4 node’s locafattribute TypeattributeNamevalue)
tributes. Conversely,.an approachI|ke_Update—LocaI coul%me (which may trigger aggregation computation and
work well for for write-dominatedattributes but suffer propagation depending on the function’s update strategy),

from unnecessary query latency or imprecisionrégad- andProbe()obtains an aggregate value for a specified sub-
dominatedattributes. tree.

2.3 Aggregation API 231 Ingall

SDIMS provides a flexible API that allows applications The Install operation installs an aggregation function in
to control the strategy used for computing each attribut¢he system. The arguments for this operation are listed
type’s aggregate values for three purposes: in Table 1. TheattrTypeargument denotes the type of

attributes on which this aggregation function is invoked. |_parameter | description | optional |
The optionalattrNameargument denotes that the aggre- agrllype ﬁgf!guie Lype
gation function be applied only to the particular attribute | 2 o e oue Name

val Value
with nameattrName Installed functions are soft state that | s Timestamp X
must be periodically renewed or they will be garbage col- Table 2: Arguments for the update operation
lected atexpTime Finally note that each domain specifies [parameter | description [optional |

a security policy that restricts the types of functions that

} 3 o > attrType Attribute Type
can be installed by different entities based on the atiebut | attrName | Attribute Name
they access and their scope in time and space [25]. origNode | Originating Node
. . . - serNum Serial Number

The optlonaldo_maln argument, if present, indicates | mode Continuous or One-shot (default: ong- X
that the aggregation function should be installed on all shot)
nodes belonging to the specified domain; if this argument level 'f-e"lf'ﬁtwhh"i*} ag@{)’EQate is sought (dg- X
. . . . ault: nighest leve
is absent, then the function is to be installed on all nodes up How far up to go and re-fetch the value X
in the system. (default: install up)

An aggregation function installed with a specifittr- down (Hd‘;"f‘;z"’l‘tr ?:i‘;’;’;‘”tgo%;’n;"”d re-aggregate X
Namet_akes precedence_ overthe aggregatn_)r_\ function with expTime | Expiry Time
matchingattrTypeand with noattrNamespecified for up- Table 3: Arguments for the probe operation

dates whose name and type both match.

The argumentsip and down specify the strategy for splitting values associated with different names into dif-
propagating updates. When an update occurs at a ledérent aggregation values allows our system to map differ-
the system updates any changed aggregate values for thiet names to different trees and thereby spread the func-
level-0 (leaf) through leveltp subtrees enclosing the up- tion’s logical root node’s load and state across multiple
dated leaf. After the root of a levélsubtree computes physical nodes.

a new aggregate value, :the system prppagates and sto?iz Update

this value to the subtree’s leveto leveli — downroots. i _

Atthe API level, these arguments can be regarded as hints '€ UPdate operation creates a new (attributeType, at-
since they suggest a computation strategy but do not affeffPuteName, value) tuple or updates the value of an old

the semantics of an aggregation function. In principle, jfuple at a leaf node. The arguments for the update opera-

would be possible, for example, for a system to dynami:[ion are sh_own in Table 2.) i o
As outlined above and described in detail in Sec-

cally adjust its up/down strategies for a function based on)
measured read/write frequency. However, our implemertion 3.2, after a leaf applies an update locally, the update
tation always simply follows these directives. may trigger re-computation of aggregate values up the tree
and may also trigger propagation of changed aggregate

Finally, note that our aggregation function mstaIIatlonvalues down the tree.

differs from Astrolabe’s by specifying both an attribute

type and attribute name and associating an aggregati@3-3 Probe

function with a type rather than just specifying an attrébut Whereas update propagates the aggregates in the system
name and associating a function with a name. Installing according to the specifications of the install operation,
single function that can operate on many different named probe operation collects the aggregated values at the
attributes matching a specific type improves scalabilityapplication-queried levels. The complete argument set for
for “sparse attribute types” with a large, sparsely-filledthe probe operation is shown in Table 3. Along with the
namespace. For example, to construct a file location seattrNameand theattrType arguments to denote the ag-
vice, our interface allows us to install a single functiongregate value of interest to this probelezel argument
that compute an aggregate value for any named file (e.gspecifies the level at which the answers are required.

the aggregate value for the (function, name) pair for a sub- Whenupanddownarguments are specified in a probe,
tree would be the ID of one node in the subtree that stores forced re-aggregation is done for the corresponding lev-
the named file). Conversely, Astrolabe copes with sparsels even if the aggregated value is available. Tipe
attributes by having aggregation functions compute setanddownarguments are interpreted as described in Sec-
or lists and suggests that scalability can be improved btion 2.3.1. In Section 4, we explain how applications can
representing such sets with Bloom filters [2]. Exposingexploit these arguments to perform on-demand fast aggre-
sparse names within a type provides at least two advamation during reconfigurations.

tages. First, when the value associated with a name i .

updated, only the state associated with that name need éé SyStem Desgn

updated and (potentially) propagated to other nodes. Sethis section describes the internal design of the SDIMS
ond, for the multiple-tree system we describe in Section 3system. As Figure 3 indicates, the design comprises two

Applications update

] instal
LAPI | probe

Aggregation Management Layer (AML

o] newParent
AP | newchild

H DHT Layer failedChild

11011XX...
11000XX..

Fig. 3: Two layer SDIMS design and interfaces.

11010XX.

cs dept

layers: the Aggregation Management Layer (AML) stores
attribute tuples and calculates and stores aggregatesvalue =~ = HHPOX- — o
and the Hierarchical DHT (HDHT) layer manages the in-Fig- 4: Example shows why original pastry (solid lines) does
ternal topology of the system. In Section 3.1, we discus ot §at|sfy the |§olat|on properties. Simple augmentatiom
how we modify DHTS to support the autonomy and iso-t e Ilnks_ malntalne_d (d_a;hed lines) and routing protocaket
. . . dashed line) make it abiding.

lation properties required by SDIMS and how we map at-
tributes types and names to this collection of trees. We _

describe how the HDHT layer constructs a scalable st Path Locality : Search paths should always be con-

of trees by exposing the internal aggregation facilities al t@ined in the smallest possible domain.
ready present in many existing DHTs. In Section 3.2, w@. Path Convergence : Search paths for a key from two

discuss in detail the internal operation of each node in different nodes in a domain should converge at a node
our system. We defer to Section 4 the discussion on how in the same domain.

SDIMS handles network and node reconfigurations. Existing DHTs do not guarantee path convergence. In
the rest of this section we explain how an existing DHT,
3.1 Hierarchical DHT for Aggregation Pastry [27], does not satisfy path convergence, and then

Existing DHTs (Distributed Hash Table) can be viewed as'c describe a 5|_mple qulflcat|0n o F_’gstry that_sup_ports
. convergence by introducing a few additional routing links
a mesh formed of several trees. DHT systems assign an

identity to each node (aodeld that is drawn randomly and a two level locality model that incorporates both ad-

ministrative membership of nodes and network distances
from a large space. Keys are also drawn from the samg .
etween nodes. We choose Pastry for convenience—the

space and each key is assigned to a live node in the Syz‘?i_/ailability of a public domain implementation. We be-

tem. Each node maintains a routing table with nOdeIdﬁeve that similar simple modifications could be applied to
and IP addresses of some other nodes. The DHT proto- P P

cols use these routing tables to route the packets for a k [nany existing DHT implementations to support path con-

e
k towards the node responsible for that key. Suppose th\gﬁrgence.

node responsible for a keyis root,. The paths from all 3.1.1 Pastry

nodes for a key k form a tree rooted at the noot®ty — | pPastry [27], each node maintains a leaf set and a rout-
sayDHTtreg. ing table. The leaf set contains theimmediate clock-

It is straightforward to make use of this internal struc-wise and counter-clockwise neighboring nodes in a circu-
ture for aggregation. [22] By aggregating an attributelar nodeld spacerifig). The routing table supporisre-
along the treeDHTtreg for k =hash(attribute type, at- fix routing: each node’s routing table contains one row
tribute name)different attributes will be aggregated along per hexadecimal digit in the nodeld space anditheow
different trees. In comparison to a scheme where all aicontains a list of nodes whose nodelds differ from the cur-
tributes are aggregated along a single tree, the DHT basednt node’s nodeld in thigh digit with one entry for each
aggregation along multiple trees incurs lower maximunpossible digit value. Notice that for a given row and en-
node stress: whereas in a single aggregation tree afry (viz. digit and value) a noda can choose the entry
proach, the root and the intermediate nodes pass aroufidm many different alternative destination nodes, espe-
more messages than the leaf nodes, in a DHT-based multally for smalli where a destination node needs to match
tree, each node acts as intermediate aggregation poifk ID in only a few digits to be a candidate for inclusion
for some attributes and as leaf node for other attributesn n's routing table. A system can choose any policy for
Hence, this approach distributes the onus of aggregatiogelecting among the alternative nodes. A common policy
across all nodes. is to choose a nearby node according foreximity met-

As noted in Section 2, aggregation trees in SDIMSric [22] to minimize the network distance for routing a
should follow the system’s administrative hierarchy. Tokey. Under this policy, the nodes in a routing table shar-
conform to these requirements, a HDHT should satisfyng a short prefix will tend to be nearby since there are
two additional properties: many such nodes spread roughly evenly throughout the

system due to random nodeld assignment. Pastry is selfrate than two nodes that match in fewer thésvels of a
organizing—nodes come and go at will. To maintain Pasdomain) and network distance as the secondary proximity
try’s locality properties, a new node must join with one metric (if two pairs of nodes match in the same number of
that is nearby according to the proximity metric. Pastrydomain levels, then the pair whose separation by network
provides a seed discovery protocol that finds such a noddistance is smaller is considered more proximate).
given an arbitrary starting point. Similar to Pastry’s join algorithm [27], a node wish-
Given a routing topology, to route to an arbitrary desti-ing to join HDHT routes a join request with target key
nation key, a node in Pastry forwards a packet to the nodeet to itsnodeld In Pastry, the nodes in the intermedi-
with a nodeld prefix matching the key in at least one morete path respond to the node’s request with the pertinent
digit than the current node. If such a node is not knownrouting table information and the current root node sends
the node forwards the packet to a node with an identiits leafset. In our algorithm, to enable the joining node
cal prefix but that is numerically closer to the destinatiorfill its leafsets at all levels, the following two modifica-
key in the nodeld space. This process continues until thigons are done to Pastry’s join protocol: (1) a joining node
destination node appears in the leaf set, after which it ishooses a bootstrap node that is closest to it with respect
delivered directly. The expected number of routing stepso the hierarchical domain proximity metric and (2) each
is logN, where N is the number of nodes. intermediate node sends its leafsets for all domain levels
Unfortunately, as the solid lines in Figure 4 illustrate,in which it is the root node. These simple modifications
when Pastry uses network proximity as the locality metricensure that the joining node’s leafsets and route table are
it does not satisfy the desired SDIMS properties becauggroperly filled.
(i) if two nodes with nodelds match a key in same number The routing algorithm we use in routing for a key at
of bits, both of them can route to a third node outside thenode withnodeldis shown in the Algorithm 3.1.2. By
domain when routing for that key and (ii) if the network routing at the lowest possible domain till the root of that
proximity does not match the domain proximity then theredomain is reached, we ensure that the routing paths con-
is little chance that a tree will satisfy the properties. Theform to the Path Convergence property.
second problem can be addressed by simply changing the
proximity metric to declare that any two nodes that matchAlgorithm 1 HDHTroute(key)
in i levels of a hierarchical domain are always considered. flipNeigh < checkRoutingTable(key) ;

closer than two nodes that match in fewer thdavels. 2. | « numDomainLevels- 1 :

However, this solution does not eliminate the first prob- 3. while (| >=0)do

lem. 4: if (commLevels(flipNeigh, nodeld¥=1) then
312 AutonomousPastry Z elsseend the key to flipNeigh ; return ;

To provide autonomy properties to an aggregating HDHT, 7 leafNeigh« an entry in leafsel] closer to key
the system’s route table construction algorithm must pro- than nodeld :

vide a single exit point in each domain for any key . if (IeafNeigh,!: null) then

and its routing protocol should route keys along intra- 4 send the key to leafNeigh ; return :
domain paths before routing them along inter-domain, . end if ’ ’
paths. Simple modifications to Pastry’s route table con-;. gnqif

struction and key-routing protocols achieve these goals;,. | _|_1.

In Figure 4, our algorithm routes towards the node with ;5. o4 while ’

nodeld 1110XXX... for key 1111XXX... (shown by
dashed lines).
In HDHT, each node maintains a separate leaf set for
each domain it is part of, unlike Pastry that maintains .
single leaf set for all the domains. Maintaining a dif'ferenta?"2 Aggregatlon Data Structures and Oper-
leafset for each level increases the number of neighbors ~ ation
that each node tracks (@) xIg, n+c.l from (2°) xIlgy,n+ Given the HDHT topology described above, each node
¢ in unmodified Pastry, whefeis the number of bits ina implements an Aggregation Management Layer (AML)
digit, nis the number of nodes,is the leafset size, arld to support the flexible API described in Section 2.3. This
is the number of domain levels. subsection describes the internal state and operatioe of th
Each node in HDHT has a routing table. The algo-AML layer of a node in the system.
rithm for populating the routing table is similar to Pastry We refer to a tuple store of (attribute type, attribute
with the following difference: it uses hierarchical domain name, value) tuples as a Management Information Base
proximity as the primary proximity metric (two nodes that or MIB, following the terminology from Astrolabe [25]
match ini levels of a hierarchical domain are more proxi- (originally used in the context of SNMP [30]). We refer

14: this node is the root for this key

Ffowmn‘s To parent 101X.. whoseupaggregation function attribute is at leasthese
ﬂ To parent 100X local copies make it easy for a node to recompute a level-
@ @——$ """" aggregate value when one child’s inputs changes. Nodes

Node Id: (100110XXX)

@ —- aggregation functions

ancestor faciton M maintain their child MIBs in stable storage and use a sim-
To parent 11X... plified version of the Bayou protocaénsconflict detec-
Frowmm NX" tion and resolution) for synchronization after disconnec-
-~ 1o tions [20].
@ _ @ Virtual noden; at leveli maintains aeduction MIBof
To parent 0x... eSO ARG M i 19... chid 19x.. tuples with a tuple for each key present in any child MIB

containing the attribute type, attribute name, and output
of the attribute type’s aggregate functions applied to the

From parents

@ children’s tuples.
ancestor 1ocal MIB from MIB from If a reduction tree has subtree levels including the
MiBs MIB child 0X..._child OX... root, virtual noden; at leveli maintainss— i — 1 ancestor
Level O Level 1 Level 2 MIBs. Ancestor MIBj (i < j < s) contains level} ag-
Fig. 5: Example illustrating the datastructures and theuoiza- gregate values computed across enclosing suljtiaesd
tion of them at a node. propagatediownto leveli.

Note that level-O differs slightly from other levels.

to the pair (attribute type, attribute name) asadimibute ~ Each level-0 leaf node maintaindacal MIB rather than
key. maintaining child MIBs and a reduction MIB. This local

Each physical node in the system acts as several IogM|B stores information about the local node’s state in-
cal nodes in the HDHT: a node acts as root for all attributé€rted by local applications vigpdate()calls.
keys, as a level-1 subtree root for attribute keys whose Along with these MIBs, a node maintains two other
hash matches the node’s IDlirbits (whereb is the num- tables—an aggregation function table and an outstanding
ber of bits corrected in each step of the HDHT's key rout-probes table. An aggregation function table contains the
ing algorithm), as a levelsubtree root for attribute keys aggregation function and installation arguments (see Ta-
whose has matches the node’s IDhhbits, and as the ble 1) associated with an attribute type or an attribute type
system’s global root for the attribute key for attribute &ey and name. Note that a function that matches an attribute

whose hash matches the node in more bits than any othk@y in type and name has precedence over a function that
node. matches an attribute key in type only. Each aggregate

As Figure 5 illustrates, to support hierarchical aggre_func:tion is installed on _aII nodes in a domain’s subtree,
gation, each logical node corresponding to a lévakb- SO th_e aggregate function table can be thogght of_as a
tree root for some attribute keys maintains several MIBSPecial case of the ancestor MIB with domain functions
that store (Lxhild MIBscontaining raw aggregate values aWays installedup to a root within a specified domain
gathered from children, (2) eduction MIBcontaining gnddownto all nodgs wlthln the domam. The .outstand-
locally aggregated values across this raw information, an{f'd Probes table maintains temporary information regard-
(3) ancestor MIBscontaining aggregate values scatteredn9 information gathered and outstanding requests for in-
downfrom ancestors. This basic strategy of maintainingPf@9ress probes.
child, reduction, and ancestor MIBs is based on Astro- Given these data structures, it is simple to support the
labe [25], but our structured propagation strategy chanthree API functions described in Section 2.3.
nels information that flows up according to its attribute The Install operation (see Table 1) installs on a do-
key and our flexible propagation strategy only sends childnain an aggregation function that acts on a specified at-
updatesup and ancestor aggregate resultsvnas far as tribute type. Execution of an install functiaaggrFunc
specified by the attribute key’s aggregation function. Noteon attribute typettrTypeand (optionally) attribute name
that in the discussion below, for ease of explanation, wettrNameproceeds in two phases: first the install request
assume that the routing protocol is correcting single bit ais passed up the HDHT tree with the k@ftrType, attr-
atime p = 1) in contrast to default Pastry scheme wherdName)until reaching the root for that key within the spec-
the routing protocol tries to correct up to four bits in eachified domain. Then, the request is flooded down the tree
stem p = 4). Our system, built upon Pastry, does han-and installed on all intermediate and leaf nodes.
dle multi-bit correcting and is a simple extension to the Before installing an aggregation function, a node
scheme described here. checks it against its per-domain access control list [25],

For a given virtual nodey; at leveli, eachchild MIB and after installing an aggregation function, a node sets a
contains the subset of a leviet 1 child’s reduction MIB timer to uninstall the function when it expires.
that contains tuples that matckis node ID ini bits and The Updateoperation (see Table 2) creates a new (at-

tributeType, attributeName, value) tuple or updates thelown to the node that requested it. Note that in the ex-
value of an old tuple at a leaf. Then, subject to the updatreme case of a function installed wittp = down= 0, a
propagation policy specified in thep anddownparam- leveld probe can touch all nodes in a levedubtree while
eters of the aggregation function associated with the upn the opposite extreme case of a function installed with
date’s attribute key, the update triggers a two-phase propp = down= ALL, probe is a completely local operation
agation protocol as Figure 2 illustrates. An update operaat a leaf.

tion invoked at a leaf always updates the local MIB. Then, For probes that include phases 2 (probe scatter) and 3
if the update changes the local value and if the aggregai@robe aggregation), an issue is determining when a node
function for the attribute key was installed wittp > 0 should stop waiting for its children to respond and send up
and if the leaf’s parent for the attribute key is within theits current aggregate value. A node at levabps waiting
domain to which the installed aggregation function is refor its children when one of three conditions occurs: (1)
stricted, the leaf passes the new value up to the appropriaédl children have responded, (2) the HDHT layer signals
parent based on the attribute key. Lei/élehaves simi- one or more reconfiguration events that marks all children
larly when it receives a changed attribute from leivell that have not yet responded as unreachable, or (3) a watch-
below: it first recomputes the levelggregate value for dog timer for the request fires. The last case accounts for
the specified key, stores that value in the leweduction nodes that participate in the HDHT protocol but that fail
table and then, subject to the functionip anddomain at the AML level.

parameters, passes the updated value to the appropriate

leveld + 1 parent based on the attribute key. After a level-

i (i > 1) virtual node has updated its reduction MIB, if 4 Robustness] .

the reduction functiomlown argument indicates that ag- ' large scale systems, reconfigurations are a norm. Our
gregate values should be sent down to lgv@l < i), the ~ tWo main principles for robustness are to guarantee (i)
node sends the updated value down to all of its level read avallablllt_y— probes complete in a_f|n|te tlme,_and (ii)
children marked as the levelhggregate for the specified €ventual consistency — updates by a live node will be re-
attribute key. Upon receipt of such a levehggregate flected.inthe_ answers of the probesin a finite time. During
value message from a parent from leydlj < i), a node reconfigurations, a probe mlght re_turn a stale yalue due
stores the value in its levélancestor MIB and, subject to 0 two reasons. First, reconfigurations lead to incorrect-

the relevantinstalled functiondownparameter, forwards NeSs in the previous aggregate values. Second, the nodes
this leveli aggregate value to its children. needed for aggregation to answer the probe become un-

reachable. Our system also provides two hooks for end-

A Probe operation collects and returns the aggregaté0-end applications to be robust in the presence of recon-
value for a specified attribute key for a specified level offigurations: (1) On-demand re-aggregation, and (2) appli-
the tree. As Figure 2 illustrates, the system satisfies ation controlled replication.
probe for a level-aggregate value using a four-phase pro- Our system handles reconfigurations at two levels —
tocol that may be short-circuited when updates have prevadaptation at the HDHT layer to ensure connectivity and
ously propagated results or partial results up or down thadaptation at the AML layer to ensure access to the data
tree. In phase 1, theute probe phasehe system routes in SDIMS.
the probe up the attribute key’s tree to either the root of the .
leveld subtree or to a node that stores the requested valu%l HDHT Adaptation
in its leveld ancestor MIB. In the former case, the systemOur HDHT layer adaptation algorithm is same as Pastry’s
proceeds to phase 2 and in the latter it skips to phase 4. Roaptation algorithm [27] — the leaf sets are repaired as
phase 2, th@robe scatter phaseach node that receives soon as a reconfiguration is detected and the routing ta-
a probe request sends it to all of its children unless théle is repaired lazily. Due to redundancy in the leaf sets
node is a leaf or the node’s reduction MIB already has @nd the routing table, the updates can be routed towards
value that matches the probe’s attribute key, in which cas#eir root nodes successfully even during failures. Also
the node initiates phase 3 on behalf of its subtree by fomote that the autonomy and isolation properties satisfied
warding its local MIB or reduction MIB value up to the by our HDHT algorithm ensure that the reconfigurations
appropriate parent for the attribute key. In phase 3, thé a leveli domain do not affect the probes for leveh
probe aggregation phasehen a node receives input val- the sibling domains.
ues for the specified key from each of its children, it exe- .
cutes the aggregate function across these values and eitfe? AML Adaptation
(a) forwards the result to its parent (if its level is lesstha Broadly, we use two types of strategies for AML adap-
i) or (b) initiates phase 4 by forwarding the result to thetations in the face of reconfigurations: (1) Replication in
child that requested it (if it is at levé). Finally, phase 4, time, and (2) Replication in space. We first examine repli-
theaggregate routing phasthe aggregate value is routed cation in time as this is more basic strategy than the latter.

L Lazy L.
e Data oy LazyDats adaptation is completed (Point 6 on the timeline in Fig-
[cager , Saig | Leader ends’ ure 6)
R e e . '
Time
Reconfig DHT DHT. DHT
happens NOfices partial - complete Replicationin Space Replication in space is more chal-

lenging in our system than a DHT file location application
because replication in space can be achieved easily in the
latter by just replicating the root node’s contents. In our
Replication in space is a performance optimization stratsystem, however, all internal nodes have to be replicated
egy and depends on replication in time when the systeralong with the root.
runs out of replicas. We provide two mechanisms as part |n our system, applications can control replication us-
of replication in time. First, a lazy re-aggregation is per-ing theupanddownknobs in the Install API; applications
formed where already received updates are propagated¢an reduce the latencies and possibly the probability of
the new children or new parents in a lazy fashion ovestale values by replicating the aggregates. The probabil-
time. Second, applications can reduce the probability oty of staleness is reduced only if the replicated value is
probe response staleness during such repairs through ostfll valid after the reconfiguration. For example, in a file
flexible API with appropriate setting of trdownknob. location application, an aggregated value is valid as long
the node hosting the file is active, irrespective of the sta-
Lazy Re-aggregation The DHT layerinformsthe AML tus of other nodes in the system. Whereas, an application
layer about the detected reconfigurations in the networihat counts the number of machines in a system will suf-
using the API shown in Figure 3. Here we explain thefer from staleness irrespective of replication. Howewer, i
behavior of AML layer on the invocation of the API. reconfigurations are only transient (like a node temporar-
OnnewParent(parent, prefix)f there are any probesin ily not responding due to a burst of load), the replicated
the outstanding-probes table that correspond to this prefiaggregate closely or correctly resembles the current state
then send them to this new parent. Then start transferring
aggregation functions and already existing data lazily id.3 Discussion

the background. Any new updates, installs and probes fqgeconfigurations are expensive if many attributes are in-
this prefix are sent to the parentimmediately. stalled with non-zero up and down values. In the worst
Note that it might be possible for a node to get an upcase, when all attributes are installed as Update-ALL and
date or probe message for an attribute key for which itny change at one node effects aggregates at all levels, a
does not yet have any aggregation function installed on iteconfiguration incur®(N.logN.m) communication cost
as it might have just joined the system and is still lazilywheren is the number of nodes in the system ani the
getting the data and functions from its children. Upon renumber of attributes installed.
ceiving such a probe or update, AML returns an error if Fajl-stop failure model During reconfigurations,
invoked by a local application. And if the operation is probe latency and staleness might get affected in our sys-
from a child or a parent, then an explicit request is madgem as the nodes that need to be contacted for aggregates
for the aggregation function from that sender. to answer a probe are unreachable due to the change in
On failedChild(child, prefix) The AML layer notes the structure. A gossiping approach like Astrolabe dis-
the child as inactive and any probes in the outstandingributes aggregates to all nodes — incurs communication
probes table that are waiting for data from this child areoverhead upfront before failures — to avoid increased read

Fig. 6: Default lazy data re-aggregation timeline

re-evaluated. latencies and possibly less stale responses during failure
On newChild(child, prefix) The AML layer creates Our system provides different options that incur differ-
space in its data structures for this child. ent overheads on top of basic data reconfiguration cost:

Figure 6 shows the timeline for the default lazy re-(1) Update-All scheme guarantees same performance as a
aggregation upon reconfiguration. The probes that initigossipping scheme with similar overheads, (2) on-demand
ate between points 1 and 2 and that got affected by theeaggregation incurs increased read latency for a consis-
reconfigurations are rescheduled by AML upon detectingent response, and (3) lazy reaggregation incurs no extra
the reconfiguration. Probes that complete or start betweetpmmunication cost but might return a stale value.
points 2 and 8 may return stale answers. Handling temporary failures Astrolabe [25] can ef-

fectively handle temporary failures because of the repli-
On-demand Re-aggregation The default lazy aggrega- cation of local MIBs of all nodes and the replication of
tion scheme lazily propagates the old updates in the sysggregate values of a subtree on all nodes in that subtree.
tem. By usingup anddownknobs in the Probe API, ap- It is currently not possible to achieve similar reliability
plications can force on-demand fast re-aggregation of thim our approach through same mechanisms because: (i)
updates to avoid staleness in the face of reconfigurationsew root node for a subtree might not belong to that sub-
Note that this strategy will be useful only after the DHT tree, and (ii) subtree might split into multiple subtreed an

10

