
A Scalable Distributed Information Management System

Praveen Yalagandula and Mike Dahlin
Department of Computer Sciences
The University of Texas at Austin

Abstract
We present a Scalable Distributed Information Manage-
ment System (SDIMS) thataggregatesinformation about
large-scale networked systems and that can serve as a ba-
sic building block for a broad range of large-scale dis-
tributed applications providing detailed views of nearby
information and summary views of global information.
To serve as a basic building block, a SDIMS should have
four properties: scalability to many nodes and attributes,
flexibility to accommodate a broad range of applications,
support administrative autonomy and isolation, and ro-
bustness to node failures and disconnections. We de-
sign, implement and evaluate a SDIMS that (1) uses tech-
niques from Distributed Hash Table (DHT) literature to
create scalable aggregation trees, (2) provides flexibility
through a simple API that lets applications control prop-
agation of reads and writes, (3) provides autonomy and
isolation through simple augmentations of current DHT
algorithms, and (4) is robust to node and network recon-
figurations through lazy reaggregation, on-demand reag-
gregation, and tunable spatial replication. Through exten-
sive simulations and micro-benchmark experiments, we
observe that our system is an order of magnitude more
scalable than existing approaches, achieves autonomy and
isolation properties at the cost of modestly increased read
latency in comparison to flat DHTs, and gracefully han-
dles failures.

1 Introduction
The goal of this paper is to construct a Scalable Dis-
tributed Information Management System (SDIMS) that
aggregatesinformation about large-scale networked sys-
tems and that can serve as a basic building block for a
broad range of large-scale distributed applications. Mon-
itoring, querying, and reacting to changes in the state
of a distributed system are core components of applica-
tions such as system management [11, 26, 34, 35], service
placement [10, 36], data sharing and caching [19, 23, 27,
31, 37, 33], sensor monitoring and control [16], multicast
tree formation [4, 5, 25, 29, 32], and naming and request
routing [6, 7]. We therefore speculate that a SDIMS in
a networked system would provide a “distributed operat-
ing systems backbone” and facilitate the development and
deployment of new distributed services.

For a large scale information system,hierarchical ag-
gregation is a fundamental abstraction for scalability.
Rather than expose all information to all nodes, hierarchi-
cal aggregation allows a node to access detailed views of
nearby information and summary views of global infor-
mation. In a SDIMS based on hierarchical aggregation,
different nodes can therefore receive different answers to
the query “find a [nearby] node with at least 1 GB of free
memory” or “find a [nearby] copy of file foo.” A hierar-
chical system that aggregates information through reduc-
tion trees [16, 25] allows nodes to access information they
care about while maintaining system scalability.

To be used as a basic building block, a SDIMS should
have four properties. First, the system should accommo-
date large numbers of participating nodes, and it should
allow applications to install and monitor large numbers
of data attributes. Enterprise and global scale systems to-
day might have tens of thousands to millions of nodes and
these numbers will increase as desktop machines give way
to larger numbers of smaller devices. Similarly, we hope
to support many applications and each application may
track several attributes (e.g., the load and free memory of
a system’s machines) or millions of attributes (e.g., which
files are stored on which machines).

Second, the system should haveflexibility to accom-
modate a broad range of applications and attributes. For
example,read-dominatedattributes likenumCPUsrarely
change in value, whilewrite-dominatedattributes like
numProcesseschange quite often. An approach tuned for
read-dominated attributes will suffer from high bandwidth
consumption when applied for write-dominated attributes.
Conversely, an approach tuned for write-dominated at-
tributes may suffer from unnecessary query latency or
imprecision for read-dominated attributes. Therefore, a
SDIMS should provide a flexible mechanism that can ef-
ficiently handle different types of attributes, and leave the
policy decision of tuning read and write propagation to the
application installing an attribute.

Third, an SDIMS should provideautonomy and isola-
tion. In a large computing platform, it is natural to ar-
range nodes in an organizational or an administrative hi-
erarchy (e.g., Figure 1). A SDIMS should support admin-
istrative autonomy so that, for example, a system admin-
istrator can control what information flows out of her ma-

1

chines and what queries may be installed on them. And, a
SDIMS should provide isolation in which queries about a
domain’s information can be satisfied within the domain
so that the system can operate during disconnections and
so that an external observer cannot monitor or affect intra-
domain queries.

Fourth, the system must berobustto node failures and
disconnections. A SDIMS should adapt to reconfigura-
tions in a timely fashion and should also provide mecha-
nisms so that applications can exploit the tradeoff between
the cost of adaptation versus the consistency level in the
aggregated results when reconfigurations occur.

We draw inspiration from two previous works:Astro-
labeandDistributed Hash Tables (DHTs).

Astrolabe [25] is a robust information management
system. Astrolabe provides the abstraction of a single log-
ical aggregation tree that mirrors a system’s administra-
tive hierarchy for autonomy and isolation. It provides a
general interface for installing new aggregation functions
and provides eventual consistency on its data. Astrolabe
is highly robust due to its use of an unstructured gossip
protocol for disseminating information and its strategy of
replicating all aggregated attribute values for a subtree to
all nodes in the subtree. This combination allows any
communication pattern to yield eventual consistency and
allows any node to answer any query using local informa-
tion. This high degree of replication, however, may limit
the system’s ability to accommodate large numbers of at-
tributes. Also, although the approach works well for read-
dominated attributes, an update at one node can eventually
affect the state at all nodes, which may limit the system’s
flexibility to support write-dominated attributes.

Recent research in peer-to-peer structured networks re-
sulted in Distributed Hash Tables (DHTs) [4, 5, 7, 19, 22,
23, 27, 29, 31, 32, 37, 33]—a data structure that scales
with the number of nodes and that distributes the read-
write load for different queries among the participating
nodes. It is interesting to note that although these systems
export a global hash table abstraction, many of them inter-
nally make use of what can be viewed as a scalable system
of aggregation trees to, for example, route a request for a
given key to the right DHT node. Indeed, rather than ex-
port a general DHT interface, Plaxton et al.’s [22] original
application makes use of hierarchical aggregation to allow
nodes to locate nearby copies of objects. It seems appeal-
ing to develop a SDIMS abstraction that exposes this in-
ternal functionality in a general way so that scalable trees
for aggregation can be considered a basic system building
block alongside the distributed hash tables.

At first glance, it might appear obvious that simply
combining DHTs with Astrolabe’s aggregation abstrac-
tion will result in a SDIMS. However, meeting the require-
ments discussed above requires a design to address four
questions: (i) How to scalably map different attributes to

different aggregation trees within a DHT mesh? (ii) How
to provide flexibility in the aggregation to accommodate
different application requirements?, (iii) How to adapt a
global, flat DHT mesh to satisfy the required autonomy
and isolation properties? and (iv) How to provide good
robustness without unstructured gossip and total replica-
tion?

Our key ideas for building a SDIMS using ideas from
DHTs and Astrolabe are as follows.
1. We expose a DHT system’s internal trees as an aggre-

gation abstraction by aggregating an attribute along the
tree corresponding to the attribute type and name. This
approach gives SDIMSscalabilitywith respect to both
nodes and attributes.

2. We provide a flexible API that lets applications control
the propagation of reads and writes and thus trade off
update cost, read latency, replication, and staleness.

3. We augment an existing DHT algorithm to ensurepath
convergenceand path locality properties in order to
achieveautonomyandisolation.

4. We providerobustnessto node and network reconfig-
urations by (a) providing temporal replication through
lazy reaggregation that guarantees eventual consistency
and (b) ensuring that our flexible API allows demand-
ing applications gain additional robustness by either us-
ing tunable spatial replication of data aggregates and/or
performing fast on-demand reaggregation to augment
the underlying lazy reaggregation.
We have built a prototype of SDIMS. Through simu-

lations and micro-benchmark experiments on a number
of department machines and Planet-Lab [21] nodes, we
observe that the prototype achieves scalability with re-
spect to the number of nodes and the number of attributes
through use of its flexible API, inflicts an order of mag-
nitude less maximum node stress when compared to un-
structured gossiping schemes, achieves autonomy and iso-
lation properties at the cost of modestly increased read la-
tency compared to flat DHTs, and gracefully handles node
failures.

This initial study discusses key aspects of an ongo-
ing large system building effort, but it does not address
all issues with constructing a SDIMS. For example, we
believe that our strategies for providing robustness will
mesh well with techniques such assupernodes[17] for
further improving robustness as well as other ongoing
efforts to improve DHTs [24]. Also, although splitting
aggregation among many trees improves scalability for
simple queries, this approach may make complex, and
multi-attribute queries more expensive compared to a sin-
gle tree. Additional work is needed to understand the
significance of this limitation for real workloads and, if
necessary, to adapt query planning techniques from DHT
abstractions [12, 14] to scalable aggregation tree abstrac-
tions.

2

cs

edu
.

....

univ1

ee math

pc1

........

........

com

univ2 univ3 univ4

pc2

........
pc4pc3

........

pc5

........

Fig. 1: Administrative hierarchy

In Section 2, we explain the aggregation abstraction
and the flexible API exported by our system. In Section 3,
we detail the DHT construction that provides autonomy
and isolation properties and explain the data structures and
the behavior of the node. Section 4 addresses the issue
of adaptation to the topological reconfigurations. In Sec-
tion 5, we present the evaluation of our system through
large-scale simulations and microbenchmarks on real net-
works. Section 6 details the related work and Section 7
summarizes our contribution and points out the future re-
search directions.

2 Aggregation Abstraction and
Flexible API

Our system provides a standard aggregation abstraction
via a novel flexible API that allows applications to pro-
vide hints about whether the system should (a) compute
aggregation functions and propagate them to readers on
demand in response to reads, (b) recompute aggregation
functions whenever updates to their input data occur but
propagate them to readers on demand, or (c) recompute
aggregation functions and aggressively propagate the re-
sults through the system when updates occur.

2.1 Aggregation Abstraction
Aggregation is a natural abstraction for a large-scale dis-
tributed information system because aggregation provides
scalability by allowing a node to view detailed informa-
tion about the state near it and progressively coarser-
grained summaries about progressively larger subsets of
a system’s data [25].

Our aggregation abstraction works on the assumption
that nodes is the system are arranged in a tree that com-
plies with the administrative boundaries. As Figure 1 il-
lustrates, each physical node in the system is a leaf of
the tree, and each subtree represents a logical grouping
of nodes. Note that logical groupings can correspond to
administrative domains (e.g., “cs.univ1.edu” or “edu”) or
groupings of nodes within a domain (e.g., 10 workstations
on a LAN in the CS department). We describe how to
form such trees in Section 3.

Each physical node haslocal data stored as a set
of (attributeType;attributeName;value) tuples such as

(configuration, numCPUs, 16), (mcast membership, ses-
sion foo, yes), or (file stored, foo, myIPaddress).

The system associates anaggregation function ftype

with each attribute type, and for each level-i subtreeTi

in the system, the system defines anaggregate value
Vi;type;name for each (attributeType, attributeName) pair
as follows. For a (physical) leaf nodeT0 at level 0,
V0;type;nameis the locally stored value for the attribute type
and name or NULL if no matching tuple exists. Then
the aggregate value for a level-i subtreeTi is the ag-
gregation function for the type computed across the ag-
gregate values of each ofTi ’s k children: Vi;type;name=
ftype(V0

i�1;type;name;V1
i�1;type;name; : : : ;Vk�1

i�1;type;name).
Having aggregation trees that conform with the admin-

istrative hierarchy helps SDIMS provide important auton-
omy, security, and isolation properties [25]. Security and
autonomy are important in that a system administrator
must be able to control what information flows out of her
machines and what queries may be installed on them. The
isolation property ensures that a malicious node in one do-
main cannot observe or affect system behavior in another
domain for computations relating only to the second do-
main.

Although our system allows arbitrary ag-
gregation functions, it is desirable that ag-
gregation functions satisfy the hierarchical
computation property [16]: f (v1; :::;vn) =
f (f (v1; :::;vs1); f (vs1+1; :::;vs2); :::; f (vsk+1; :::;vn)),
wherevi is the value at nodei. For example, the average
operation, defined asavg(v1; :::;vn) = 1=n:∑n

i=0vi , does
not satisfy the property. Instead, if values for such an
attribute are stored as tuples(sum;count) and the function
is defined asavg(v1; :::;vn)= (∑n

i=0vi :sum;∑n
i=0vi :count),

it satisfies the hierarchical computation property. Note
that the applications then have to compute the average
from the aggregate sum and count values.

Finally, note that for a large-scale system, it is difficult
or impossible to insist that the aggregation value returned
by a probe corresponds to the function computed over the
current values at the leaves at the instant of the probe. Sys-
tems, therefore, typically provide only weak consistency
guarantees, such as eventual consistency, to improve re-
sponsiveness and robustness [25].

2.2 Flexible computation
The definition of aggregate values allows considerable
flexibility in how, when, and where they are computed.
In particular, instead of gathering all leaf values at one lo-
cation and recursively evaluating the function to obtain
the global aggregate, this definition allows a system to
perform aggregation on a tree in a distributed fashion for
scalability, and it allows this computation to occur lazily
on reads, eagerly on updates, or using hybrid strategies.

As Figure 2 illustrates, under anUpdate-Localoption,
an update only affects local state. Then, a probe that reads

3

Update
Strategy

On Update On Probe for Global Aggregate Value On Probe for Level-1 Aggregate Value

Update-
Local

Update-
Up

Update-
All

Fig. 2: Flexible API

a level-i aggregate value can be sent up the tree to the is-
suing node’s level-i ancestor and then down the tree to the
leaves. The system can then compute the desired aggre-
gate value at each layer up the tree until the level-i ances-
tor holds the desired value. Finally, the level-i ancestor
can send the result down the tree to the issuing node. Al-
ternately, under anUpdate-Upstrategy, the root of each
subtree maintains the subtree’s current aggregate value,
and when an update occurs, the leaf node updates its local
state and passes the update to its parent, and then each suc-
cessive enclosing subtree updates its aggregate value and
passes the new value to its parent. This strategy satisfies
a leaf’s probe for a level-i aggregate value by sending the
probe up to the level-i ancestor of the leaf and then send-
ing the aggregate value down to the leaf. In anUpdate-All
strategy [25] each level-i node not only maintains the ag-
gregate values for the level-i subtree but also receives and
locally stores copies of all of its ancestors’ level-j (j > i)
aggregation values. So, when an update occurs, changes
are aggregated up the tree, and each new aggregate value
is broadcast to all of a node’s descendants. Under this
strategy, a leaf can satisfy a probe for a level-i aggregate
using purely local data. Finally, notice that other strate-
gies also exist. For example, anUpdate-UpRoot-Down2
strategy (not shown) would aggregate updates up to the
root of a subtree and send a subtree’s aggregate values to
the children and grandchildren of the subtree’s root.

The nature of the attributes that applications install
vary extensively. For example, aread-dominatedattribute
like numCPUsrarely change in value, while awrite-
dominatedattribute likenumProcesseschanges quite of-
ten. An aggregation strategy like Update-All could work
well for read-dominatedattributes but suffer high band-
width consumption when applied forwrite-dominatedat-
tributes. Conversely, an approach like Update-Local could
work well for for write-dominatedattributes but suffer
from unnecessary query latency or imprecision forread-
dominatedattributes.

2.3 Aggregation API
SDIMS provides a flexible API that allows applications
to control the strategy used for computing each attribute
type’s aggregate values for three purposes:

parameter description optional

attrType Attribute Type
aggrfunc Aggregation Function
attrName Attribute Name X
domain Domain restriction (default: none) X
up How far upwards each update is sent

(default: all)
X

down How far downwards each aggregate is
sent (default: none)

X

expTime Expiry Time
Table 1: Arguments for the install operation� To minimize the cumulative cost for both updates and

probes. For example, an attribute type with a large
reads-to-write ratio might be installed as an Update-All
type, and one with a reads-to-write ratio of about one
might be installed as Update-Up type.� To tune probe latencies v. update overheads. Probes
incur different latencies based on how aggressively up-
dates are distributed. For example, an application re-
quiring a very low latency on probes could install its
attribute type as an Update-All type.� To tune robustness against failures v. update overheads.
By propagating aggregated values downwards to more
nodes, the applications can mask network and node re-
configurations by providing multiple redundant loca-
tions where a given aggregate value is stored and by
reducing a probe’s dependencies on network connec-
tivity up the aggregation tree. This issue is discussed in
depth in Section 4.

The API to applications consists of three functions:In-
stall() installs an aggregation function that defines an op-
eration on an attribute type and specifies the update strat-
egy that the function will use,Update()inserts or modi-
fies a node’s local(attributeType;attributeName;value)
tuple (which may trigger aggregation computation and
propagation depending on the function’s update strategy),
andProbe()obtains an aggregate value for a specified sub-
tree.

2.3.1 Install

The Install operation installs an aggregation function in
the system. The arguments for this operation are listed
in Table 1. TheattrTypeargument denotes the type of

4

attributes on which this aggregation function is invoked.
The optionalattrNameargument denotes that the aggre-
gation function be applied only to the particular attribute
with nameattrName. Installed functions are soft state that
must be periodically renewed or they will be garbage col-
lected atexpTime. Finally note that each domain specifies
a security policy that restricts the types of functions that
can be installed by different entities based on the attributes
they access and their scope in time and space [25].

The optionaldomainargument, if present, indicates
that the aggregation function should be installed on all
nodes belonging to the specified domain; if this argument
is absent, then the function is to be installed on all nodes
in the system.

An aggregation function installed with a specificattr-
Nametakes precedence over the aggregation function with
matchingattrTypeand with noattrNamespecified for up-
dates whose name and type both match.

The argumentsup and down specify the strategy for
propagating updates. When an update occurs at a leaf,
the system updates any changed aggregate values for the
level-0 (leaf) through level-up subtrees enclosing the up-
dated leaf. After the root of a level-i subtree computes
a new aggregate value, the system propagates and stores
this value to the subtree’s level-i to level-i�downroots.
At the API level, these arguments can be regarded as hints,
since they suggest a computation strategy but do not affect
the semantics of an aggregation function. In principle, it
would be possible, for example, for a system to dynami-
cally adjust its up/down strategies for a function based on
measured read/write frequency. However, our implemen-
tation always simply follows these directives.

Finally, note that our aggregation function installation
differs from Astrolabe’s by specifying both an attribute
type and attribute name and associating an aggregation
function with a type rather than just specifying an attribute
name and associating a function with a name. Installing a
single function that can operate on many different named
attributes matching a specific type improves scalability
for “sparse attribute types” with a large, sparsely-filled
namespace. For example, to construct a file location ser-
vice, our interface allows us to install a single function
that compute an aggregate value for any named file (e.g.,
the aggregate value for the (function, name) pair for a sub-
tree would be the ID of one node in the subtree that stores
the named file). Conversely, Astrolabe copes with sparse
attributes by having aggregation functions compute sets
or lists and suggests that scalability can be improved by
representing such sets with Bloom filters [2]. Exposing
sparse names within a type provides at least two advan-
tages. First, when the value associated with a name is
updated, only the state associated with that name need be
updated and (potentially) propagated to other nodes. Sec-
ond, for the multiple-tree system we describe in Section 3,

parameter description optional

attrType Attribute Type
attrName Attribute Name
val Value
ts Timestamp X

Table 2: Arguments for the update operation

parameter description optional

attrType Attribute Type
attrName Attribute Name
origNode Originating Node
serNum Serial Number
mode Continuous or One-shot (default: one-

shot)
X

level Level at which aggregate is sought (de-
fault: highest level)

X

up How far up to go and re-fetch the value
(default: install up)

X

down How far down to go and re-aggregate
(default: install down)

X

expTime Expiry Time
Table 3: Arguments for the probe operation

splitting values associated with different names into dif-
ferent aggregation values allows our system to map differ-
ent names to different trees and thereby spread the func-
tion’s logical root node’s load and state across multiple
physical nodes.

2.3.2 Update
The update operation creates a new (attributeType, at-
tributeName, value) tuple or updates the value of an old
tuple at a leaf node. The arguments for the update opera-
tion are shown in Table 2.

As outlined above and described in detail in Sec-
tion 3.2, after a leaf applies an update locally, the update
may trigger re-computation of aggregate values up the tree
and may also trigger propagation of changed aggregate
values down the tree.

2.3.3 Probe
Whereas update propagates the aggregates in the system
according to the specifications of the install operation,
a probe operation collects the aggregated values at the
application-queried levels. The complete argument set for
the probe operation is shown in Table 3. Along with the
attrNameand theattrTypearguments to denote the ag-
gregate value of interest to this probe, alevel argument
specifies the level at which the answers are required.

Whenupanddownarguments are specified in a probe,
a forced re-aggregation is done for the corresponding lev-
els even if the aggregated value is available. Theup
anddownarguments are interpreted as described in Sec-
tion 2.3.1. In Section 4, we explain how applications can
exploit these arguments to perform on-demand fast aggre-
gation during reconfigurations.

3 System Design
This section describes the internal design of the SDIMS
system. As Figure 3 indicates, the design comprises two

5

API

API

update
install
probe

Applications

HDHT Layer

Aggregation Management Layer (AML)

failedChild
newChild
newParent

Fig. 3: Two layer SDIMS design and interfaces.

layers: the Aggregation Management Layer (AML) stores
attribute tuples and calculates and stores aggregate values
and the Hierarchical DHT (HDHT) layer manages the in-
ternal topology of the system. In Section 3.1, we discuss
how we modify DHTs to support the autonomy and iso-
lation properties required by SDIMS and how we map at-
tributes types and names to this collection of trees. We
describe how the HDHT layer constructs a scalable set
of trees by exposing the internal aggregation facilities al-
ready present in many existing DHTs. In Section 3.2, we
discuss in detail the internal operation of each node in
our system. We defer to Section 4 the discussion on how
SDIMS handles network and node reconfigurations.

3.1 Hierarchical DHT for Aggregation
Existing DHTs (Distributed Hash Table) can be viewed as
a mesh formed of several trees. DHT systems assign an
identity to each node (anodeId) that is drawn randomly
from a large space. Keys are also drawn from the same
space and each key is assigned to a live node in the sys-
tem. Each node maintains a routing table with nodeIds
and IP addresses of some other nodes. The DHT proto-
cols use these routing tables to route the packets for a key
k towards the node responsible for that key. Suppose the
node responsible for a keyk is rootk. The paths from all
nodes for a key k form a tree rooted at the noderootk —
sayDHTtreek.

It is straightforward to make use of this internal struc-
ture for aggregation. [22] By aggregating an attribute
along the treeDHTtreek for k =hash(attribute type, at-
tribute name), different attributes will be aggregated along
different trees. In comparison to a scheme where all at-
tributes are aggregated along a single tree, the DHT based
aggregation along multiple trees incurs lower maximum
node stress: whereas in a single aggregation tree ap-
proach, the root and the intermediate nodes pass around
more messages than the leaf nodes, in a DHT-based multi-
tree, each node acts as intermediate aggregation point
for some attributes and as leaf node for other attributes.
Hence, this approach distributes the onus of aggregation
across all nodes.

As noted in Section 2, aggregation trees in SDIMS
should follow the system’s administrative hierarchy. To
conform to these requirements, a HDHT should satisfy
two additional properties:

11100XX... 11101XX...

11011XX...

10111XX...

11000XX...

11010XX..

11110XX..

11011XX..

univ

cs dept

math

key = 11111XXX..

Fig. 4: Example shows why original pastry (solid lines) does
not satisfy the isolation properties. Simple augmentations to
the links maintained (dashed lines) and routing protocol (take
dashed line) make it abiding.

1. Path Locality : Search paths should always be con-
tained in the smallest possible domain.

2. Path Convergence : Search paths for a key from two
different nodes in a domain should converge at a node
in the same domain.
Existing DHTs do not guarantee path convergence. In

the rest of this section we explain how an existing DHT,
Pastry [27], does not satisfy path convergence, and then
we describe a simple modification to Pastry that supports
convergence by introducing a few additional routing links
and a two level locality model that incorporates both ad-
ministrative membership of nodes and network distances
between nodes. We choose Pastry for convenience—the
availability of a public domain implementation. We be-
lieve that similar simple modifications could be applied to
many existing DHT implementations to support path con-
vergence.

3.1.1 Pastry

In Pastry [27], each node maintains a leaf set and a rout-
ing table. The leaf set contains theL immediate clock-
wise and counter-clockwise neighboring nodes in a circu-
lar nodeId space (ring). The routing table supportspre-
fix routing: each node’s routing table contains one row
per hexadecimal digit in the nodeId space and theith row
contains a list of nodes whose nodeIds differ from the cur-
rent node’s nodeId in theith digit with one entry for each
possible digit value. Notice that for a given row and en-
try (viz. digit and value) a noden can choose the entry
from many different alternative destination nodes, espe-
cially for small i where a destination node needs to match
n’s ID in only a few digits to be a candidate for inclusion
in n’s routing table. A system can choose any policy for
selecting among the alternative nodes. A common policy
is to choose a nearby node according to aproximity met-
ric [22] to minimize the network distance for routing a
key. Under this policy, the nodes in a routing table shar-
ing a short prefix will tend to be nearby since there are
many such nodes spread roughly evenly throughout the

6

system due to random nodeId assignment. Pastry is self-
organizing—nodes come and go at will. To maintain Pas-
try’s locality properties, a new node must join with one
that is nearby according to the proximity metric. Pastry
provides a seed discovery protocol that finds such a node
given an arbitrary starting point.

Given a routing topology, to route to an arbitrary desti-
nation key, a node in Pastry forwards a packet to the node
with a nodeId prefix matching the key in at least one more
digit than the current node. If such a node is not known,
the node forwards the packet to a node with an identi-
cal prefix but that is numerically closer to the destination
key in the nodeId space. This process continues until the
destination node appears in the leaf set, after which it is
delivered directly. The expected number of routing steps
is logN, where N is the number of nodes.

Unfortunately, as the solid lines in Figure 4 illustrate,
when Pastry uses network proximity as the locality metric,
it does not satisfy the desired SDIMS properties because
(i) if two nodes with nodeIds match a key in same number
of bits, both of them can route to a third node outside the
domain when routing for that key and (ii) if the network
proximity does not match the domain proximity then there
is little chance that a tree will satisfy the properties. The
second problem can be addressed by simply changing the
proximity metric to declare that any two nodes that match
in i levels of a hierarchical domain are always considered
closer than two nodes that match in fewer thani levels.
However, this solution does not eliminate the first prob-
lem.

3.1.2 Autonomous Pastry

To provide autonomy properties to an aggregating HDHT,
the system’s route table construction algorithm must pro-
vide a single exit point in each domain for any key
and its routing protocol should route keys along intra-
domain paths before routing them along inter-domain
paths. Simple modifications to Pastry’s route table con-
struction and key-routing protocols achieve these goals.
In Figure 4, our algorithm routes towards the node with
nodeId 11101XXX: : : for key 11111XXX: : : (shown by
dashed lines).

In HDHT, each node maintains a separate leaf set for
each domain it is part of, unlike Pastry that maintains a
single leaf set for all the domains. Maintaining a different
leafset for each level increases the number of neighbors
that each node tracks to(2b)� lgbn+c:l from (2b)� lgbn+
c in unmodified Pastry, whereb is the number of bits in a
digit, n is the number of nodes,c is the leafset size, andl
is the number of domain levels.

Each node in HDHT has a routing table. The algo-
rithm for populating the routing table is similar to Pastry
with the following difference: it uses hierarchical domain
proximity as the primary proximity metric (two nodes that
match ini levels of a hierarchical domain are more proxi-

mate than two nodes that match in fewer thani levels of a
domain) and network distance as the secondary proximity
metric (if two pairs of nodes match in the same number of
domain levels, then the pair whose separation by network
distance is smaller is considered more proximate).

Similar to Pastry’s join algorithm [27], a node wish-
ing to join HDHT routes a join request with target key
set to itsnodeId. In Pastry, the nodes in the intermedi-
ate path respond to the node’s request with the pertinent
routing table information and the current root node sends
its leafset. In our algorithm, to enable the joining node
fill its leafsets at all levels, the following two modifica-
tions are done to Pastry’s join protocol: (1) a joining node
chooses a bootstrap node that is closest to it with respect
to the hierarchical domain proximity metric and (2) each
intermediate node sends its leafsets for all domain levels
in which it is the root node. These simple modifications
ensure that the joining node’s leafsets and route table are
properly filled.

The routing algorithm we use in routing for a key at
node withnodeId is shown in the Algorithm 3.1.2. By
routing at the lowest possible domain till the root of that
domain is reached, we ensure that the routing paths con-
form to the Path Convergence property.

Algorithm 1 HDHTroute(key)
1: flipNeigh checkRoutingTable(key) ;
2: l numDomainLevels - 1 ;
3: while (l >= 0) do
4: if (commLevels(flipNeigh, nodeId)== l) then
5: send the key to flipNeigh ; return ;
6: else
7: leafNeigh an entry in leafset[l] closer to key

than nodeId ;
8: if (leafNeigh != null) then
9: send the key to leafNeigh ; return ;

10: end if
11: end if
12: l l �1;
13: end while
14: this node is the root for this key

3.2 Aggregation Data Structures and Oper-
ation

Given the HDHT topology described above, each node
implements an Aggregation Management Layer (AML)
to support the flexible API described in Section 2.3. This
subsection describes the internal state and operation of the
AML layer of a node in the system.

We refer to a tuple store of (attribute type, attribute
name, value) tuples as a Management Information Base
or MIB, following the terminology from Astrolabe [25]
(originally used in the context of SNMP [30]). We refer

7

MIBs
ancestor

From parents

MIBs
ancestor

From parents

local
 MIB

MIB from
child 0X...

MIB from
child 0X...

MIB from
child 11X...

MIB from
child 11X...

reduction MIB
(level 1)

reduction MIB
(level 2)

.......

To parent 101X...

To parent 100X..

MIBs
ancestor

From parents

To parent 11X...

1X.. 1X..

10X..

Node Id: (100110XXX)

−− aggregation functions

To parent 0X...

To parent
1X...

Level 0 Level 1 Level 2

10X..
10X..

Fig. 5: Example illustrating the datastructures and the organiza-
tion of them at a node.

to the pair (attribute type, attribute name) as anattribute
key.

Each physical node in the system acts as several logi-
cal nodes in the HDHT: a node acts as root for all attribute
keys, as a level-1 subtree root for attribute keys whose
hash matches the node’s ID inb bits (whereb is the num-
ber of bits corrected in each step of the HDHT’s key rout-
ing algorithm), as a level-i subtree root for attribute keys
whose has matches the node’s ID inbi bits, and as the
system’s global root for the attribute key for attribute keys
whose hash matches the node in more bits than any other
node.

As Figure 5 illustrates, to support hierarchical aggre-
gation, each logical node corresponding to a level-i sub-
tree root for some attribute keys maintains several MIBs
that store (1)child MIBscontaining raw aggregate values
gathered from children, (2) areduction MIBcontaining
locally aggregated values across this raw information, and
(3) ancestor MIBscontaining aggregate values scattered
down from ancestors. This basic strategy of maintaining
child, reduction, and ancestor MIBs is based on Astro-
labe [25], but our structured propagation strategy chan-
nels information that flows up according to its attribute
key and our flexible propagation strategy only sends child
updatesup and ancestor aggregate resultsdownas far as
specified by the attribute key’s aggregation function. Note
that in the discussion below, for ease of explanation, we
assume that the routing protocol is correcting single bit at
a time (b= 1) in contrast to default Pastry scheme where
the routing protocol tries to correct up to four bits in each
stem (b= 4). Our system, built upon Pastry, does han-
dle multi-bit correcting and is a simple extension to the
scheme described here.

For a given virtual nodeni at level i, eachchild MIB
contains the subset of a leveli�1 child’s reduction MIB
that contains tuples that matchni ’s node ID in i bits and

whoseupaggregation function attribute is at leasti. These
local copies make it easy for a node to recompute a level-i
aggregate value when one child’s inputs changes. Nodes
maintain their child MIBs in stable storage and use a sim-
plified version of the Bayou protocol (sansconflict detec-
tion and resolution) for synchronization after disconnec-
tions [20].

Virtual nodeni at leveli maintains areduction MIBof
tuples with a tuple for each key present in any child MIB
containing the attribute type, attribute name, and output
of the attribute type’s aggregate functions applied to the
children’s tuples.

If a reduction tree hass subtree levels including the
root, virtual nodeni at leveli maintainss� i�1 ancestor
MIBs. Ancestor MIB j (i < j � s) contains level-j ag-
gregate values computed across enclosing subtreej and
propagateddownto level i.

Note that level-0 differs slightly from other levels.
Each level-0 leaf node maintains alocal MIB rather than
maintaining child MIBs and a reduction MIB. This local
MIB stores information about the local node’s state in-
serted by local applications viaupdate()calls.

Along with these MIBs, a node maintains two other
tables—an aggregation function table and an outstanding
probes table. An aggregation function table contains the
aggregation function and installation arguments (see Ta-
ble 1) associated with an attribute type or an attribute type
and name. Note that a function that matches an attribute
key in type and name has precedence over a function that
matches an attribute key in type only. Each aggregate
function is installed on all nodes in a domain’s subtree,
so the aggregate function table can be thought of as a
special case of the ancestor MIB with domain functions
always installedup to a root within a specified domain
anddown to all nodes within the domain. The outstand-
ing probes table maintains temporary information regard-
ing information gathered and outstanding requests for in-
progress probes.

Given these data structures, it is simple to support the
three API functions described in Section 2.3.

The Install operation (see Table 1) installs on a do-
main an aggregation function that acts on a specified at-
tribute type. Execution of an install functionaggrFunc
on attribute typeattrTypeand (optionally) attribute name
attrNameproceeds in two phases: first the install request
is passed up the HDHT tree with the key(attrType, attr-
Name)until reaching the root for that key within the spec-
ified domain. Then, the request is flooded down the tree
and installed on all intermediate and leaf nodes.

Before installing an aggregation function, a node
checks it against its per-domain access control list [25],
and after installing an aggregation function, a node sets a
timer to uninstall the function when it expires.

TheUpdateoperation (see Table 2) creates a new (at-

8

tributeType, attributeName, value) tuple or updates the
value of an old tuple at a leaf. Then, subject to the update
propagation policy specified in theup anddownparam-
eters of the aggregation function associated with the up-
date’s attribute key, the update triggers a two-phase prop-
agation protocol as Figure 2 illustrates. An update opera-
tion invoked at a leaf always updates the local MIB. Then,
if the update changes the local value and if the aggregate
function for the attribute key was installed withup> 0
and if the leaf’s parent for the attribute key is within the
domain to which the installed aggregation function is re-
stricted, the leaf passes the new value up to the appropriate
parent based on the attribute key. Leveli behaves simi-
larly when it receives a changed attribute from leveli�1
below: it first recomputes the level-i aggregate value for
the specified key, stores that value in the level-i reduction
table and then, subject to the function’sup and domain
parameters, passes the updated value to the appropriate
level-i+1 parent based on the attribute key. After a level-
i (i � 1) virtual node has updated its reduction MIB, if
the reduction functiondownargument indicates that ag-
gregate values should be sent down to levelj (j < i), the
node sends the updated value down to all of its leveli�1
children marked as the level-i aggregate for the specified
attribute key. Upon receipt of such a level-i aggregate
value message from a parent from levelj (j � i), a node
stores the value in its level-i ancestor MIB and, subject to
the relevant installed function’sdownparameter, forwards
this level-i aggregate value to its children.

A Probeoperation collects and returns the aggregate
value for a specified attribute key for a specified level of
the tree. As Figure 2 illustrates, the system satisfies a
probe for a level-i aggregate value using a four-phase pro-
tocol that may be short-circuited when updates have previ-
ously propagated results or partial results up or down the
tree. In phase 1, theroute probe phase, the system routes
the probe up the attribute key’s tree to either the root of the
level-i subtree or to a node that stores the requested value
in its level-i ancestor MIB. In the former case, the system
proceeds to phase 2 and in the latter it skips to phase 4. In
phase 2, theprobe scatter phase, each node that receives
a probe request sends it to all of its children unless the
node is a leaf or the node’s reduction MIB already has a
value that matches the probe’s attribute key, in which case
the node initiates phase 3 on behalf of its subtree by for-
warding its local MIB or reduction MIB value up to the
appropriate parent for the attribute key. In phase 3, the
probe aggregation phase, when a node receives input val-
ues for the specified key from each of its children, it exe-
cutes the aggregate function across these values and either
(a) forwards the result to its parent (if its level is less than
i) or (b) initiates phase 4 by forwarding the result to the
child that requested it (if it is at leveli). Finally, phase 4,
theaggregate routing phasethe aggregate value is routed

down to the node that requested it. Note that in the ex-
treme case of a function installed withup= down= 0, a
level-i probe can touch all nodes in a level-i subtree while
in the opposite extreme case of a function installed with
up= down= ALL, probe is a completely local operation
at a leaf.

For probes that include phases 2 (probe scatter) and 3
(probe aggregation), an issue is determining when a node
should stop waiting for its children to respond and send up
its current aggregate value. A node at leveli stops waiting
for its children when one of three conditions occurs: (1)
all children have responded, (2) the HDHT layer signals
one or more reconfiguration events that marks all children
that have not yet responded as unreachable, or (3) a watch-
dog timer for the request fires. The last case accounts for
nodes that participate in the HDHT protocol but that fail
at the AML level.

4 Robustness
In large scale systems, reconfigurations are a norm. Our
two main principles for robustness are to guarantee (i)
read availability – probes complete in a finite time, and (ii)
eventual consistency – updates by a live node will be re-
flected in the answers of the probes in a finite time. During
reconfigurations, a probe might return a stale value due
to two reasons. First, reconfigurations lead to incorrect-
ness in the previous aggregate values. Second, the nodes
needed for aggregation to answer the probe become un-
reachable. Our system also provides two hooks for end-
to-end applications to be robust in the presence of recon-
figurations: (1) On-demand re-aggregation, and (2) appli-
cation controlled replication.

Our system handles reconfigurations at two levels –
adaptation at the HDHT layer to ensure connectivity and
adaptation at the AML layer to ensure access to the data
in SDIMS.

4.1 HDHT Adaptation
Our HDHT layer adaptation algorithm is same as Pastry’s
adaptation algorithm [27] — the leaf sets are repaired as
soon as a reconfiguration is detected and the routing ta-
ble is repaired lazily. Due to redundancy in the leaf sets
and the routing table, the updates can be routed towards
their root nodes successfully even during failures. Also
note that the autonomy and isolation properties satisfied
by our HDHT algorithm ensure that the reconfigurations
in a level i domain do not affect the probes for leveli in
the sibling domains.

4.2 AML Adaptation
Broadly, we use two types of strategies for AML adap-
tations in the face of reconfigurations: (1) Replication in
time, and (2) Replication in space. We first examine repli-
cation in time as this is more basic strategy than the latter.

9

Reconfig

reconfig
notices
DHT

partial
DHT

complete
DHT

ends

Lazy

Time

Data

3 7 81 2 4 5 6starts

Lazy
Data

starts

Lazy
Data

starts

Lazy
Data

repairrepair

reaggr reaggr reaggr reaggr

happens

Fig. 6: Default lazy data re-aggregation timeline

Replication in space is a performance optimization strat-
egy and depends on replication in time when the system
runs out of replicas. We provide two mechanisms as part
of replication in time. First, a lazy re-aggregation is per-
formed where already received updates are propagated to
the new children or new parents in a lazy fashion over
time. Second, applications can reduce the probability of
probe response staleness during such repairs through our
flexible API with appropriate setting of thedownknob.

Lazy Re-aggregation The DHT layer informs the AML
layer about the detected reconfigurations in the network
using the API shown in Figure 3. Here we explain the
behavior of AML layer on the invocation of the API.

OnnewParent(parent, prefix): If there are any probes in
the outstanding-probes table that correspond to this prefix,
then send them to this new parent. Then start transferring
aggregation functions and already existing data lazily in
the background. Any new updates, installs and probes for
this prefix are sent to the parent immediately.

Note that it might be possible for a node to get an up-
date or probe message for an attribute key for which it
does not yet have any aggregation function installed on it
as it might have just joined the system and is still lazily
getting the data and functions from its children. Upon re-
ceiving such a probe or update, AML returns an error if
invoked by a local application. And if the operation is
from a child or a parent, then an explicit request is made
for the aggregation function from that sender.

On failedChild(child, prefix): The AML layer notes
the child as inactive and any probes in the outstanding-
probes table that are waiting for data from this child are
re-evaluated.

On newChild(child, prefix): The AML layer creates
space in its data structures for this child.

Figure 6 shows the timeline for the default lazy re-
aggregation upon reconfiguration. The probes that initi-
ate between points 1 and 2 and that got affected by the
reconfigurations are rescheduled by AML upon detecting
the reconfiguration. Probes that complete or start between
points 2 and 8 may return stale answers.

On-demand Re-aggregation The default lazy aggrega-
tion scheme lazily propagates the old updates in the sys-
tem. By usingup anddownknobs in the Probe API, ap-
plications can force on-demand fast re-aggregation of the
updates to avoid staleness in the face of reconfigurations.
Note that this strategy will be useful only after the DHT

adaptation is completed (Point 6 on the timeline in Fig-
ure 6).

Replication in Space Replication in space is more chal-
lenging in our system than a DHT file location application
because replication in space can be achieved easily in the
latter by just replicating the root node’s contents. In our
system, however, all internal nodes have to be replicated
along with the root.

In our system, applications can control replication us-
ing theupanddownknobs in the Install API; applications
can reduce the latencies and possibly the probability of
stale values by replicating the aggregates. The probabil-
ity of staleness is reduced only if the replicated value is
still valid after the reconfiguration. For example, in a file
location application, an aggregated value is valid as long
the node hosting the file is active, irrespective of the sta-
tus of other nodes in the system. Whereas, an application
that counts the number of machines in a system will suf-
fer from staleness irrespective of replication. However, if
reconfigurations are only transient (like a node temporar-
ily not responding due to a burst of load), the replicated
aggregate closely or correctly resembles the current state.

4.3 Discussion
Reconfigurations are expensive if many attributes are in-
stalled with non-zero up and down values. In the worst
case, when all attributes are installed as Update-ALL and
any change at one node effects aggregates at all levels, a
reconfiguration incursO(N: logN:m) communication cost
wheren is the number of nodes in the system andm is the
number of attributes installed.

Fail-stop failure model During reconfigurations,
probe latency and staleness might get affected in our sys-
tem as the nodes that need to be contacted for aggregates
to answer a probe are unreachable due to the change in
the structure. A gossiping approach like Astrolabe dis-
tributes aggregates to all nodes – incurs communication
overhead upfront before failures – to avoid increased read
latencies and possibly less stale responses during failures.
Our system provides different options that incur differ-
ent overheads on top of basic data reconfiguration cost:
(1) Update-All scheme guarantees same performance as a
gossipping scheme with similar overheads, (2) on-demand
reaggregation incurs increased read latency for a consis-
tent response, and (3) lazy reaggregation incurs no extra
communication cost but might return a stale value.

Handling temporary failures Astrolabe [25] can ef-
fectively handle temporary failures because of the repli-
cation of local MIBs of all nodes and the replication of
aggregate values of a subtree on all nodes in that subtree.
It is currently not possible to achieve similar reliability
in our approach through same mechanisms because: (i)
new root node for a subtree might not belong to that sub-
tree, and (ii) subtree might split into multiple subtrees and

10

