Pretenuring Based on Escape Analysis

Maria Jump
mjump@cs.utexas.edu

ABSTRACT

Our hypothesis is that escape analysis can estimate lifetime
information for dynamically allocated objects. We then use
this information to pretenure those objects that have long
lifetimes. This technique avoids the cost incurred by a gener-
ational copying collector for copying long-lived objects from
the nursery into an older generation. This approach is com-
pletely new — all past work on pretenuring has involved pro-
filing; our approach instead employs static analysis.

1. INTRODUCTION

Garbage collection is a technique that automatically re-
claims unreachable memory. It increases programmer pro-
ductivity and code modularity by eliminating the need for
often error-prone explicit memory management. The cost
of this technique is a measurable amount of performance
and memory overhead. Reducing this overhead is an active
research area [2, 3, 7, 8].

The generational copying collector is a widely adopted
type of garbage collector. This collector partitions the heap
into a nursery and some number of older generations [14].
The memory allocator allocates all objects into the nurs-
ery, and the garbage collector collects the nursery whenever
it becomes full. Collection consists of: (i) identifying root
pointers; (ii) identifying live objects, defined as those ob-
jects which are transitively reachable from the root point-
ers; (iii) copying the live objects into an older generation;
(iv) reclaiming the space vacated by the dead and copied
objects. The garbage collector collects the older generations
whenever they become full as a result of the copied objects.
The rationale for this division is the weak generational hy-
pothesis, which states that “newly-created objects have a
much lower survival rate than older objects” [11]. Therefore
most objects in the nursery will have died before the garbage
collector collects the nursery, and hence do not need to be
copied. A large part of the cost of generational copying col-
lectors is copying into an older generation those objects that
did not die [17].

Technical Report TR-03-48
Department of Computer Science
The University of Texas at Austin
Austin, TX 78712

Ben Hardekopf
benh@cs.utexas.edu

A recent technique that has emerged for reducing the cost
of generational copying collectors is pretenuring. The insight
behind this technique is that if the compiler can insert code
to tell the allocator to allocate long-lived objects directly
into an older generation without going through the nursery,
then the garbage collector will not have to pay the cost of
copying those objects when it collects the nursery. In order
to implement this optimization we must be able to identify
long-lived objects. Previous work in pretenuring relies on
profiling to provide this information [3, 6, 10, 18, 19]. Pro-
filing requires that the optimizer run the application being
optimized multiple times and gather statistics on observed
object lifetimes.

The goal of our work is to enable pretenuring based on
escape analysis, a static analysis technique that determines
whether the lifetime of an object exceeds its static scope.
Escape analysis is used for optimizations such as stack allo-
cation and synchronization elimination. However its ability
to help predict the lifespan of an object has not been ex-
plored in connection with pretenuring.

We implement escape analysis in the Jikes RVM dynamic
optimizing compiler. The compiler uses the escape analysis
and several heuristics to determine object age, categoriz-
ing the objects as short-lived, long-lived, or immortal. The
compiler also uses this categorization to provide the memory
allocator with pretenuring advice. We measure the effective-
ness of this advice and the impact it has on memory usage
and program execution time for a range of benchmarks using
an Appel-style generational copying collector. We compare
our results with the results generated by previous work on
profile-driven pretenuring [3].

In Section 2, we provide a description of escape analysis
and briefly outline an escape analysis algorithm. We also
describe various known optimizations that are done using
escape analysis. Section 3 describes four different heuris-
tics that estimate object age based on the results of escape
analysis. In Section 4, we describe the methodology used.
Section 5 describes the results of this preliminary report.
Finally, in Sections 6 and 7, we conclude and present future
research directions.

2. ESCAPE ANALYSIS

There are two ways an object can escape. An object o
escapes a method m if the lifetime of 0 exceeds the runtime of
m. If it does not escape, then o is captured by m. Similarly,
an object o escapes its allocating thread T if o is accessed
by another thread other than 7" in its lifetime; otherwise o
is captured by T'.

Simple escape analysis determines for each object whether
or not it escapes the method in which it was allocated. More
extensive analysis establishes a mapping from each object
to its capturing method, if such a method exists. There
are a wide variety of algorithms for escape analysis in the
literature [5, 7, 9, 15, 16, 20, 21]. For this work, we focus
on the algorithm given by Whaley and Rinard [21]. This
algorithm has several attractive features which influenced
our decision — the analysis is interprocedural; each method
can be analyzed independently of its callers; a method can
be analyzed without any methods that it calls; and analysis
results from the skipped methods can be integrated into the
analysis at a later time to give more precise information.
These features make the algorithm ideal for use in dynamic
compilation.

2.1 An Algorithm for Escape Analysis

This section briefly outlines the algorithm described by
Whaley and Rinard [21]. More details can be found in the
referenced document, including detailed pseudo-code.

The basis of the analysis is an abstraction called a points-
to escape graph. The graph nodes represent objects; edges
represent references between objects. The abstraction also
contains information about which objects escape to other
methods or other threads. The graph maintains a distinction
between objects and references from unanalyzed sections of
the code and objects and references that are entirely within
the analyzed sections of code. This distinction makes clear
those objects and references for which complete information
is available and those for which it is not. The analysis can
compose results from related methods, resulting in a more
precise points-to escape graph.

The intraprocedural analysis uses a dataflow analysis to
construct the points-to escape graph for a particular method.
It begins by constructing a graph for the first statement
of the method, then propagates the points-to escape graph
through the control-flow graph using the appropriate trans-
fer functions. The transfer function for the exit statement
of the method generates the final analysis results. The al-
gorithm then uses a reachability analysis to determine all
those objects in the graph reachable from objects that are
known to exceed the method runtime (e.g. method parame-
ters, static class variables, method return values) and labels
those objects as escaping. All other objects are labeled as
captured. The analysis saves the resulting points-to escape
graph which invoking call sites use.

When the analysis encounters a call site, it chooses be-
tween skipping the method call (and possibly incorporating
that method’s analysis at a later time) or using interpro-
cedureal analysis to incorporate that method’s analysis im-
mediately. The interprocedural analysis takes the points-to
escape graphs from the current method and the set of meth-
ods that may be invoked by any method calls and composes
them using a mapping function to produce a new points-to
escape graph. The resulting graph contains more precise in-
formation about which objects escape and where they are
captured.

2.2 Escape Analysis Enabled Optimizations

Stack Allocation is an optimization that has been closely
tied to escape analysis [5, 7, 8, 9, 21]. The premise behind
this optimization is that it is cheaper to allocate objects on
the stack than on the heap. The end of the method invoca-

tion automatically reclaims memory allocated on the stack
reducing garbage collector overhead. Escape analysis deter-
mines whether it is safe to allocate an object on the stack —
if an object escapes a method, then its memory cannot be
reclaimed at the end on the method and it must go on the
heap.

The main disadvantage of stack allocation is that it may
increase memory consumption by retaining objects on the
stack after they have become unreachable. This strategy
not only wastes the memory required by the object itself,
but also for any objects in the heap that are reachable from
the object on the stack (garbage collectors conservatively
consider anything on the stack to be alive when doing reach-
ability analysis for live objects in the heap). Stack alloca-
tion must also be done conservatively in the presence of
loops and recursion because of the danger of stack over-
flow. Experiments with stack allocation have shown that it
does provide an execution speedup. However the speedup
comes almost solely from improving data locality and not
from any benefit to the garbage collector [4]. Most stack
frames have a lifetime shorter than the period between col-
lections, which means that the objects on the stack also have
short lifetimes. If they had been allocated in the heap, they
still would have died before the next collection and wouldn’t
have been copied by the collector; therefore putting objects
on the stack had virtually no effect on the performance of
the collector.

Synchronization Elimination is another optimization
that has been extensively studied with relation to escape
analysis [, 7, 16, 21]. This optimization is most relevant to
Java applications. Java assumes that all objects are poten-
tially accessible by multiple threads, and protects access to
each object via synchronization routines. Escape analysis
can be used to identify objects which are never accessed by
multiple threads, and the synchronization routines can be
omitted for those objects.

Exploding Objects refers to replacing an object by a set
of local variables, one variable per field in the object being
exploded eliminating memory overhead associated with the
object. This optimization can be done for any stackable
object o if it is possible to inline all methods that take o as
an argument and all uses of o are only to read and write
fields of o [8]. Escape analysis is used to identify stackable
objects.

Liveness Accuracy refers to identifying the root point-
ers that the garbage collector uses to determine which ob-
jects on the heap are still alive. The collector must be con-
servative in identifying root pointers in order to ensure that
live objects are not prematurely reclaimed. Because of this
conservative identification, the set of root pointers used may
include pointers that are actually dead, leading to the col-
lector copying dead objects because they were incorrectly
labeled as live. Hirzel et al. show that using interprocedu-
ral analysis to improve the accuracy of identifying live root
pointers can lead to large gains in performance [12]. Escape
analysis has the potential to be used for this type of anal-
ysis. However a preliminary scan of the literature has not
found any reference to this possibility presenting an area for
future work.

3. PRETENURING ADVICE

Our central hypothesis is that the information provided by
escape analysis is useful in determining object lifetimes, and

hence can furnish accurate pretenuring advice. We can also
integrate other information, such as the depth of a procedure
in the call graph, to increase the precision of our analysis.
There are three types of advice we can give based on object
classification:

e an object is short-lived if it will die before the next
nursery collection;

e an object is long-lived if it would survive the next nurs-
ery collection; and

e an object is immortal if it dies more than halfway be-
tween its time of birth and the end of the program.

The allocator should allocate short-lived objects into the
nursery, long-lived objects into an older generation, and im-
mortal objects into a special partition that is never collected.

When furnishing advice, we can be either conservative
or aggressive. Conservative advice labels objects as short-
lived by default, and only promotes objects to long-lived or
immortal status if there is a very good reason to do so. Ag-
gressive advice labels objects as long-lived or immortal by
default, and labels an object as short-lived only if there is a
good reason to believe it will not survive long. Conservative
advice tends to leave long-lived and immortal objects in the
nursery where they will be copied by the collector; aggressive
advice minimizes copying but tends to waste space by label-
ing short-lived objects as long-lived or immortal because the
older space is collected less often.

The information provided by escape analysis for an object
o can be one or more of the following statements:

e 0 is captured by its allocating method,
e 0 is captured by a set of methods M,
® 0 escapes into a global variable, and

e o escapes the allocating thread.

Since escape analysis is static, categorizing an object is
equivalent to categorizing its allocation site —i.e. all objects
allocated at the same site will be given the same advice.
While individual objects can only be captured by a single
method, objects created by a single allocation site may be
captured by a set of methods; the elements of that set are
all possible methods which may capture an object allocated
at that site.

3.1 Global and Thread Escape Heuristics

Hirzel et al. show that there is a strong correlation be-
tween long lifetimes and objects that escape into global vari-
ables or escape their allocating thread [13]. Usually most of
these objects are immortal, however there are some appli-
cations where this correlation does not hold. An aggressive
approach can be used to label all objects which escape into
global variables or escape their allocating thread as immor-
tal. A more conservative approach can be used to label all
such objects as long-lived.

3.2 EscapeDistance Heuristic

Typically, stack frames have a relatively short lifetime.
It follows that objects allocated on the stack (i.e. objects
that do not escape their allocating method) also have short
lifetimes. Hirzel et al. show that there is a correlation be-
tween long lifetimes and objects that escape their allocating
method [13]. These insights are behind this heuristic.

For an object o which is captured by a method m € M,
define the escape distance ED(o) as the length of the path

between m and o’s allocating method in the application call
graph.

Since we can determine statically only that o is captured
by a method in M, but not which method, we must calcu-
late the lengths of the paths from the allocating method to
all the methods in M. There may be a number of possi-
ble paths between the methods in the call graph, and there
is no way to determine statically which path is taken for
any particular object. We can estimate the actual escape
distance of o using either the longest or shortest possible
path. Using the longest possible path gives us an aggres-
sive estimate, which we label ED,(0). Using the shortest
possible path gives us a conservative estimate, which we la-
bel ED.(0). We define our heuristic in terms of the actual
escape distance; which estimate to use when applying the
heuristic is implementation dependent. Our heuristic also
uses two threshold values, 77 and T;, where 77 < T;. The
heuristic is defined as:

For each object o, if T} < ED(0) < Tj, then label o as long-
lived. If ED(0) > Tj, then label o as immortal. Otherwise
label o as short-lived.

Increasing the threshold values make the heuristic more
conservative. Decreasing the threshold values and including
the depth of the call graph below the allocating method
in the measure of escape distance make the heuristic more
aggressive.

3.3 AgeEstimation Heuristic

Object age is usually calculated in terms of bytes allo-
cated. We can estimate the age of an object o captured by
method m € M by estimating the number of bytes allocated
from the time o was allocated to the time it is last used in
m.

Again we can determine statically only that o is captured
by a method in M, but not which method. Therefore we
must calculate the age using each method in M. Since there
may be a number of paths through the control flow graph
that the application could take between the object’s birth-
point and each possible death-point, we have to either make
a conservative estimate age.(0) by taking the lowest possible
value, or make an aggressive estimate ageq(0) by taking the
highest possible value. We have threshold values T, and T,
where T, < Tj. The heuristic is very similar to the escape
distance heuristic:

For each object o, if T, < age(o) < Ty, then label o as
long-lived. If age(o) > T}, then label o as immortal. Other-
wise label o as short-lived.

3.4 Connectivity Heuristic

In Hirzel et al., the authors also found that there was
a strong correlation in lifetimes between objects that were
either directly linked or were part of the same strongly con-
nected component in the application’s points-to graph — they
all tended to die at the same time [13]. We can use this re-
sult to help refine the escape distance and age estimation
heuristics defined above. Given a set of objects for which
we have generated pretenuring advice, all of which are di-
rectly linked or strongly connected, this heuristic states that
we should give the same advice to all of them. We can ei-
ther conservatively downgrade the lifetime advice of all the
objects to that of the shortest-lived, or aggressively upgrade
the lifetime advice of all the objects to that of the longest-
lived.

| Configuration | Leaves | Thread | Global |

000 nursery | nursery nursery
001 nursery | nursery older
002 nursery | nursery | immortal
010 nursery older nursery
020 nursery | immortal | nursery
100 older nursery nursery
111 older older older

Table 1: Per-Configuration Mapping of Method of
Escape to Allocation Advice

4. METHODOLOGY

Escape analysis allows us to identify allocation sites that
may produce long-lived objects and to modify the site to
allocate directly into less frequently collected regions. Our
escape analysis identifies three ways an object can escape:
global, thread, and leaves. An object that escapes global does
so through a reference to a static class object. An object
that escapes thread escapes through a thread. An object
that leaves escapes in some other way (e.g. being passed
to another method). We use this escaping information to
make allocation decisions for a particular site. Since we
generate per-allocation-site advice, we directly manipulate
the intermediate representation to use the advice.

In this preliminary work on escape analysis, we implement
only the intraprocedural analysis as described by Whaley
and Rinard [21]. We use the escaping information to pre-
tenure object based on the findings of Hirzel, et al. [13].
Table 1 describes these experiments. For each method of
escape, we experiment with pretenuring objects into both
the older and immortal spaces. Additionally, we experiment
with pretenuring all escaping objects.

41 TheldikesRVM and the GCTk

We implement escape analysis in the Jikes RVM. The
Jikes RVM is a high-performance VM written in Java that
includes an aggressive optimizing compiler [1]. Addition-
ally we use the GCTKk, a garbage collector toolkit for the
Jikes RVM [2]. It is an efficient and flexible platform for
garbage collector experimentation that exploits the object
orientation of Java and the JVM-in-Java property of the
Jikes RVM. We use the Appel-style generational collector
that uses a well-tuned and fast address-order write barrier
and includes an uncollected region (for immortal objects)
implemented for Blackburn et al. [3].

4.2 Experimental Setting

We perform our experimental timing runs on a Macin-
tosh PowerPC G4 with a 933 MHz processor, 32K on-chip
L1 data and instruction caches, 256 KB unified L2 cache,
1MB L3 off-chip cache, and 512MB of memory running PPC
Linux 2.4.19.

We use benchmarks from JVM98 and SPEC2000, choos-
ing those that vigorously exercise the garbage collector (see
Table 2). We run each benchmark on a range of heap sizes,
ranging from the smallest one in which the program com-
pletes up to three times that size. We execute the bench-
mark five times for each configuration and pick the best
execution time (i.e., the one least disturbed by other effects
in the system).

[Benchmark | Live | Alloc | Alloc/Live |
jess 5,485,280 | 511,317,988 93
javac 12,068,700 | 647,267,620 54
jack 5,810,536 | 562,055,988 97
pseudojbb 30,024,524 | 620,019,384 21

Table 2: Benchmark Characteristics: (Live) is max-
imum live size in bytes, (Alloc) is total allocation in
bytes.

5. RESULTS

In this section we examine the quality of the advice gener-
ated by escape analysis and the execution speedup resulting
from following that advice.

5.1 Quality of Advice

We define the quality of the advice similarly to Blackburn
et al. [3] where

e an object is short-lived if it will die before the next
nursery collection;

e an object is long-lived if it would survive the next nurs-
ery collection; and

e an object is immortal if it dies more than halfway be-
tween its time of birth and the end of the program.

We examine exact object lifetimes (subscripted with o)
and per-site (subscripted with s) decisions for each object
to establish a level of error in the per site decisions. This
division defines nine decision pairs that are further catego-
rized:

e good advice allocates long-lived objects into longer-
lived regions, but not too long-lived (< 40,15 >, <
lo,ls >, < io,ls >),

e neutral advice allocates objects into the nursery (<
S0y 8s >, < lo, 85 >, < i9,8s >); and

e bad advice allocates objects into longer-lived regions
than appropriate (< io,ls >, < lo,1s >, < So,1s >).

Table 3 summarizes the level of error in our classifica-
tions. It shows that pretenuring the small number global
escaping objects into the older generation (0.13% good vs
0.02% bad) is better than pretenuring them into the immor-
tal generation (0.06% good vs. 0.09% bad). Objects that are
identified as thread-escaping results in as much good advice
as bad when pretenured into the older generation and over-
whelmingly bad advice when pretenuring into the immortal
space. Pretenuring objects that leave generate as much bad
advice (4.82%) as good (3.26%).

In Table 4, we summarize the quality of the advice given
per benchmark. It describes how many objects were allo-
cated into the correct generation as a percentage of the total
number of objects allocated. It shows pretenuring objects
that escape globally is a good idea though it may be better
to make these objects long-lived rather than immortal. How-
ever, since the number of globally-escaping object is so small
compared to the overall number of objects, it is insignificant.
Additionally, it shows that those objects that our implemen-
tation identifies as thread-escaping are not necessarily long
lived which is contrary to the work done by Hirzel et al.
[13]. We believe that this is an artifact of our implemen-
tation which uses a very aggressive method for identifying

% good % % neutral % % bad %
Configuration | <i,is > | <lo,ls > | <o, ls > | < 50,85 > | <lo,5s > | <lo,85 > | <loyis > | < So,1s > | < So,ls >
000 0 0 0 78.73 6.81 14.47 0 0 0
001 0 .07 .06 78.70 6.74 14.41 0 0 .02
002 .06 0 0 78.70 6.74 14.41 .07 .02 0
010 0 .83 44 77.55 5.98 14.03 0 0 1.17
020 44 0 0 77.55 5.98 14.03 .83 1.17 0
100 0 1.88 1.38 73.91 4.93 13.08 0 0 4.82
111 0 1.93 1.43 73.90 4.87 13.04 0 0 4.83

Table 3: Per-Configuration Pretenuring Decisions Accuracy (by object over all benchmarks)

| | -202_jess | 213_javac | -228_jack | pseudojbb |

Min 20.02% 31.64% 19.45% 20.17%
Max 23.36% 37.86% 25.20% 30.17%
Mean | 21.60% 33.43% 22.50% 25.52%

Table 5: Memory Overhead per Benchmark

thread-escaping objects designed more for synchronization
elimination (for which it is conservative) than for pretenur-
ing. Finally, we show that it is too aggressive to pretenure
everything that escapes because it increases the number of
full-heap collections.

5.2 AnalysisOverhead

We examine the overhead of our implementation of escape
analysis in terms of overall runtime and additional memory
requirements to represent the points-to escape graph. As
expected, there is an increase in both runtime and memory
due to the overhead of creating the points-to escape graph.
Memory usage increases are shown in table 5 and total ex-
ecution time in figure 1. Normalized execution times are
shown in figure 2.

Figure 3 shows the total execution without the compila-
tion overhead. It shows that pretenuring globally-escaping
objects has negligible affect on overall execution time due
primarily to the extremely small number of globally escap-
ing objects in the benchmarks we ran. Additionally, it shows
pretenuring objects that escape thread or leaves increase the
overall execution time. This is not unexpected due to the
quality of the advice we generate.

6. CONCLUSIONS

Escape analysis in its naive implementation is expensive
in both space and time.

The quality of advice shows that it is a good idea to
pretenure objects that escape globally. Generally it is bet-
ter to put globally-escaping objects in the long-lived space.
However, since globally-escaping objects represent such a
small percentage of total, pretenuring them into the immor-
tal space does not significantly effect memory usage or total
execution time. No conclusions can be made about the life-
times of thread-escaping objects since our implementation
is so aggressive. Its aggressiveness results from its adapta-
tion from a non-dataflow sensitive lock-removal algorithm.
Finally, we conclude it is too aggressive to pretenure all es-
caping objects. This is not surprising as it leads to both the
older geneneration filling up too quickly and to an increase
in the number of full-heap collections.

7. FUTURE WORK

We plan to examine ways in which our naive implemen-
tation can be improved. First we plan to examine how we
can improve our implementation to make it more efficient in
both space and time. How much of the analysis overhead can
be eliminated? Can adding interprocedural analysis giving
us more precise information from which to make our deci-
sions? Additionally can we tweak escape analysis algorithm
for the pretenuring case? For example, can escape distance
provide a smarter mechanism for determining lifetimes? Do
either hot-spot analysis and function cloning provide more
opportunities for pretenuring at a reduced cost?

We can also ask questions about using this type of al-
gorithm to create build-time advice for libraries and shared
code. Then an application in the JIT could still benefit from
escape analysis without suffering the expense.

If the cost of performing the analysis remains too high, we
plan to amortize the cost by looking for other optimizations
that can share the information generated from escape analy-
sis. Examples of this include traditional optimizations such
as synchronization elimination as well as new work such as
write-barrier elimination [22].

8. ACKNOWLEDGMENTS

We would like to thank Kathryn McKinley for pointing
us to this work and for her valuable advice along the way;
Steve Blackburn for his experitise and assistance in under-
standing the Jikes RVM and previous pretenuring work; and
Matthew Hertz for providing valuable information regarding
the handling of traces.

9. REFERENCES

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G.
Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
jalapeno virtual machine. IBM System Journal,
39(1):211-238, February 2000.

[2] S. M. Blackburn, R. Jones, K. S. McKinley, and
J. E. B. Moss. Beltway: Getting around garbage
collection gridlock. In Proceeding of the ACM
SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 153—-164.
ACM Press, 2002.

[3] S. M. Blackburn, S. Singhai, M. Hertz, K. S.
McKinely, and J. E. B. Moss. Pretenuring for Java. In
Proceedings of the OOPSLA 01 conference on Object

[4]

[5]

[7]

(8]

[10]

[11]

[12]

jess javac
%good% | %neutral% | %bad% | %correct% | %good% | %neutral% | %bad% | %correct%
000 0 100 0 95.58 0 100 0 89.64
001 2.21e-5 99.99 | 7.37e-6 95.58 1.68e-5 99.72 .28 89.36
002 2.21e-5 99.99 | 7.37e-6 95.58 1.68e-5 99.72 .28 89.36
010 17 85.99 13.83 81.86 .53 96.93 2.55 87.53
020 .05 85.99 13.95 81.80 .09 96.93 2.98 87.19
100 .20 66.18 33.62 62.08 5.54 81.25 13.22 80.65
111 .20 66.18 33.62 62.08 5.54 81.17 13.29 80.58
jack pseudojbb
%good% | %neutral% | %bad% | %correct% | %good% | %neutral% | %bad% | %correct%
000 0 100 0 91.91 0 100 0 95.41
001 1.25e-3 99.99 | 7.258-6 91.91 2.73e-5 99.99 0 95.41
002 9.42-5 99.99 | 1.17=-3 91.91 1.64e-5 99.99 | 1.09e-5 95.41
010 .32 99.65 .04 92.16 .03 99.49 .48 94.95
020 .02 99.65 .33 91.89 .01 99.49 .50 94.94
100 .b8 89.07 10.35 82.10 1.0 88.17 10.82 85.18
111 .b8 89.07 10.35 82.10 1.0 88.17 10.82 85.18

Table 4: Per-Benchmark Pretenuring Decisions Accuracy (by object)

Oriented Programming Systems Languages and
Applications, pages 342-352. ACM Press, 2001.

B. Blanchet. Escape analysis: correctness proof,
implementation and experimental results. In
Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 25—-37. ACM Press, 1998.

B. Blanchet. Escape analysis for object-oriented
languages: Application to Java. ACM SIGPLAN
Notices, 34(10):20-34, 1999.

P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN ’98 conference on
Programming language design and tmplementation,
pages 162-173. ACM Press, 1998.

J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar,
and S. P. Midkiff. Escape analysis for Java. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), pages 1-19, 1999.

D. Gay and B. Steensgaard. Stack allocating objects
in Java (extended abstract). Work done at Microsoft
Research.

D. Gay and B. Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In
Compiler Construction, 9th International Conference
(CC 2000), pages 82-93, 2000.

T. L. Harris. Dynamic adaptive pre-tenuring. In
Proceedings of the second international symposium on
Memory management, pages 127-136. ACM Press,
2000.

B. Hayes. Using key object opportunism to collect old
objects. In Conference Proceedings on Object-Oriented
Programming Systems, Languages, and Applications,
pages 33-46. ACM Press, 1991.

M. Hirzel, A. Diwan, and A. Hosking. On the
usefulness of liveness for garbage collection and leak
detection. To appear in ACM Transactions on
Programming Languages and Systems, 77:77, 2002.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Hirzel, J. Henkel, A. Diwan, and M. Hind.
Understanding the connectivity of heap objects. In
Proceedings of the Third International Symposium on
Memory Management, pages 36—49. ACM Press, 2002.
R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John
Wiley and Sons, 1996.

F. Qian and L. Hendren. An adaptive, region-based
allocator for Java. In Proceedings of the Third
International Symposium on Memory Management,
pages 127-138. ACM Press, 2002.

A. Salcianu and M. Rinard. Pointer and escape
analysis for multithreaded programs. In Proceedings of
the eighth ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, pages 12-23.
ACM Press, 2001.

D. Tarditi and A. Diwan. The full cost of a
generational garbage collection implementation. In
Proceedings of the OOPSLA ’93 Workshop on
Memory Management and Garbage Collection, pages
1-8, September 1993.

D. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation. In Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 1-17. ACM Press,
1988.

D. Ungar and F. Jackson. An adaptive tenuring policy
for generation scavengers. ACM Transactions on
Programming Languages and Systems (TOPLAS),
14(1):1-27, 1992.

F. Vivien and M. Rinard. Incrementalized pointer and
escape analysis. In Proceedings of the ACM
SIGPLAN’01 Conference on Programming Language
Design and Implementation, pages 35—-46. ACM Press,
2001.

J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the 1999 ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 187-206. ACM Press, 1999.

