
Pretenuring Based on Escape Analysis

Maria Jump
mjump@cs.utexas.edu

Ben Hardekopf
benh@cs.utexas.edu

ABSTRACTOur hypothesis is that esape analysis an estimate lifetimeinformation for dynamially alloated objets. We then usethis information to pretenure those objets that have longlifetimes. This tehnique avoids the ost inurred by a gener-ational opying olletor for opying long-lived objets fromthe nursery into an older generation. This approah is om-pletely new { all past work on pretenuring has involved pro-�ling; our approah instead employs stati analysis.
1. INTRODUCTIONGarbage olletion is a tehnique that automatially re-laims unreahable memory. It inreases programmer pro-dutivity and ode modularity by eliminating the need foroften error-prone expliit memory management. The ostof this tehnique is a measurable amount of performaneand memory overhead. Reduing this overhead is an ativeresearh area [2, 3, 7, 8℄.The generational opying olletor is a widely adoptedtype of garbage olletor. This olletor partitions the heapinto a nursery and some number of older generations [14℄.The memory alloator alloates all objets into the nurs-ery, and the garbage olletor ollets the nursery wheneverit beomes full. Colletion onsists of: (i) identifying rootpointers; (ii) identifying live objets, de�ned as those ob-jets whih are transitively reahable from the root point-ers; (iii) opying the live objets into an older generation;(iv) relaiming the spae vaated by the dead and opiedobjets. The garbage olletor ollets the older generationswhenever they beome full as a result of the opied objets.The rationale for this division is the weak generational hy-pothesis, whih states that \newly-reated objets have amuh lower survival rate than older objets" [11℄. Thereforemost objets in the nursery will have died before the garbageolletor ollets the nursery, and hene do not need to beopied. A large part of the ost of generational opying ol-letors is opying into an older generation those objets thatdid not die [17℄.
Technical Report TR-03-48
Department of Computer Science
The University of Texas at Austin
Austin, TX 78712
.

A reent tehnique that has emerged for reduing the ostof generational opying olletors is pretenuring. The insightbehind this tehnique is that if the ompiler an insert odeto tell the alloator to alloate long-lived objets diretlyinto an older generation without going through the nursery,then the garbage olletor will not have to pay the ost ofopying those objets when it ollets the nursery. In orderto implement this optimization we must be able to identifylong-lived objets. Previous work in pretenuring relies onpro�ling to provide this information [3, 6, 10, 18, 19℄. Pro-�ling requires that the optimizer run the appliation beingoptimized multiple times and gather statistis on observedobjet lifetimes.The goal of our work is to enable pretenuring based onesape analysis, a stati analysis tehnique that determineswhether the lifetime of an objet exeeds its stati sope.Esape analysis is used for optimizations suh as stak allo-ation and synhronization elimination. However its abilityto help predit the lifespan of an objet has not been ex-plored in onnetion with pretenuring.We implement esape analysis in the Jikes RVM dynamioptimizing ompiler. The ompiler uses the esape analysisand several heuristis to determine objet age, ategoriz-ing the objets as short-lived, long-lived, or immortal. Theompiler also uses this ategorization to provide the memoryalloator with pretenuring advie. We measure the e�etive-ness of this advie and the impat it has on memory usageand program exeution time for a range of benhmarks usingan Appel-style generational opying olletor. We ompareour results with the results generated by previous work onpro�le-driven pretenuring [3℄.In Setion 2, we provide a desription of esape analysisand briey outline an esape analysis algorithm. We alsodesribe various known optimizations that are done usingesape analysis. Setion 3 desribes four di�erent heuris-tis that estimate objet age based on the results of esapeanalysis. In Setion 4, we desribe the methodology used.Setion 5 desribes the results of this preliminary report.Finally, in Setions 6 and 7, we onlude and present futureresearh diretions.
2. ESCAPE ANALYSISThere are two ways an objet an esape. An objet oesapes a methodm if the lifetime of o exeeds the runtime ofm. If it does not esape, then o is aptured by m. Similarly,an objet o esapes its alloating thread T if o is aessedby another thread other than T in its lifetime; otherwise ois aptured by T .



Simple esape analysis determines for eah objet whetheror not it esapes the method in whih it was alloated. Moreextensive analysis establishes a mapping from eah objetto its apturing method, if suh a method exists. Thereare a wide variety of algorithms for esape analysis in theliterature [5, 7, 9, 15, 16, 20, 21℄. For this work, we fouson the algorithm given by Whaley and Rinard [21℄. Thisalgorithm has several attrative features whih inuenedour deision { the analysis is interproedural; eah methodan be analyzed independently of its allers; a method anbe analyzed without any methods that it alls; and analysisresults from the skipped methods an be integrated into theanalysis at a later time to give more preise information.These features make the algorithm ideal for use in dynamiompilation.
2.1 An Algorithm for Escape AnalysisThis setion briey outlines the algorithm desribed byWhaley and Rinard [21℄. More details an be found in thereferened doument, inluding detailed pseudo-ode.The basis of the analysis is an abstration alled a points-to esape graph. The graph nodes represent objets; edgesrepresent referenes between objets. The abstration alsoontains information about whih objets esape to othermethods or other threads. The graph maintains a distintionbetween objets and referenes from unanalyzed setions ofthe ode and objets and referenes that are entirely withinthe analyzed setions of ode. This distintion makes learthose objets and referenes for whih omplete informationis available and those for whih it is not. The analysis anompose results from related methods, resulting in a morepreise points-to esape graph.The intraproedural analysis uses a dataow analysis toonstrut the points-to esape graph for a partiular method.It begins by onstruting a graph for the �rst statementof the method, then propagates the points-to esape graphthrough the ontrol-ow graph using the appropriate trans-fer funtions. The transfer funtion for the exit statementof the method generates the �nal analysis results. The al-gorithm then uses a reahability analysis to determine allthose objets in the graph reahable from objets that areknown to exeed the method runtime (e.g. method parame-ters, stati lass variables, method return values) and labelsthose objets as esaping. All other objets are labeled asaptured. The analysis saves the resulting points-to esapegraph whih invoking all sites use.When the analysis enounters a all site, it hooses be-tween skipping the method all (and possibly inorporatingthat method's analysis at a later time) or using interpro-edureal analysis to inorporate that method's analysis im-mediately. The interproedural analysis takes the points-toesape graphs from the urrent method and the set of meth-ods that may be invoked by any method alls and omposesthem using a mapping funtion to produe a new points-toesape graph. The resulting graph ontains more preise in-formation about whih objets esape and where they areaptured.
2.2 Escape Analysis Enabled OptimizationsStak Alloation is an optimization that has been loselytied to esape analysis [5, 7, 8, 9, 21℄. The premise behindthis optimization is that it is heaper to alloate objets onthe stak than on the heap. The end of the method invoa-

tion automatially relaims memory alloated on the stakreduing garbage olletor overhead. Esape analysis deter-mines whether it is safe to alloate an objet on the stak {if an objet esapes a method, then its memory annot berelaimed at the end on the method and it must go on theheap.The main disadvantage of stak alloation is that it mayinrease memory onsumption by retaining objets on thestak after they have beome unreahable. This strategynot only wastes the memory required by the objet itself,but also for any objets in the heap that are reahable fromthe objet on the stak (garbage olletors onservativelyonsider anything on the stak to be alive when doing reah-ability analysis for live objets in the heap). Stak alloa-tion must also be done onservatively in the presene ofloops and reursion beause of the danger of stak over-ow. Experiments with stak alloation have shown that itdoes provide an exeution speedup. However the speedupomes almost solely from improving data loality and notfrom any bene�t to the garbage olletor [4℄. Most stakframes have a lifetime shorter than the period between ol-letions, whih means that the objets on the stak also haveshort lifetimes. If they had been alloated in the heap, theystill would have died before the next olletion and wouldn'thave been opied by the olletor; therefore putting objetson the stak had virtually no e�et on the performane ofthe olletor.Synhronization Elimination is another optimizationthat has been extensively studied with relation to esapeanalysis [5, 7, 16, 21℄. This optimization is most relevant toJava appliations. Java assumes that all objets are poten-tially aessible by multiple threads, and protets aess toeah objet via synhronization routines. Esape analysisan be used to identify objets whih are never aessed bymultiple threads, and the synhronization routines an beomitted for those objets.Exploding Objets refers to replaing an objet by a setof loal variables, one variable per �eld in the objet beingexploded eliminating memory overhead assoiated with theobjet. This optimization an be done for any stakableobjet o if it is possible to inline all methods that take o asan argument and all uses of o are only to read and write�elds of o [8℄. Esape analysis is used to identify stakableobjets.Liveness Auray refers to identifying the root point-ers that the garbage olletor uses to determine whih ob-jets on the heap are still alive. The olletor must be on-servative in identifying root pointers in order to ensure thatlive objets are not prematurely relaimed. Beause of thisonservative identi�ation, the set of root pointers used mayinlude pointers that are atually dead, leading to the ol-letor opying dead objets beause they were inorretlylabeled as live. Hirzel et al. show that using interproedu-ral analysis to improve the auray of identifying live rootpointers an lead to large gains in performane [12℄. Esapeanalysis has the potential to be used for this type of anal-ysis. However a preliminary san of the literature has notfound any referene to this possibility presenting an area forfuture work.
3. PRETENURING ADVICEOur entral hypothesis is that the information provided byesape analysis is useful in determining objet lifetimes, and



hene an furnish aurate pretenuring advie. We an alsointegrate other information, suh as the depth of a proedurein the all graph, to inrease the preision of our analysis.There are three types of advie we an give based on objetlassi�ation:� an objet is short-lived if it will die before the nextnursery olletion;� an objet is long-lived if it would survive the next nurs-ery olletion; and� an objet is immortal if it dies more than halfway be-tween its time of birth and the end of the program.The alloator should alloate short-lived objets into thenursery, long-lived objets into an older generation, and im-mortal objets into a speial partition that is never olleted.When furnishing advie, we an be either onservativeor aggressive. Conservative advie labels objets as short-lived by default, and only promotes objets to long-lived orimmortal status if there is a very good reason to do so. Ag-gressive advie labels objets as long-lived or immortal bydefault, and labels an objet as short-lived only if there is agood reason to believe it will not survive long. Conservativeadvie tends to leave long-lived and immortal objets in thenursery where they will be opied by the olletor; aggressiveadvie minimizes opying but tends to waste spae by label-ing short-lived objets as long-lived or immortal beause theolder spae is olleted less often.The information provided by esape analysis for an objeto an be one or more of the following statements:� o is aptured by its alloating method,� o is aptured by a set of methods M ,� o esapes into a global variable, and� o esapes the alloating thread.Sine esape analysis is stati, ategorizing an objet isequivalent to ategorizing its alloation site { i.e. all objetsalloated at the same site will be given the same advie.While individual objets an only be aptured by a singlemethod, objets reated by a single alloation site may beaptured by a set of methods; the elements of that set areall possible methods whih may apture an objet alloatedat that site.
3.1 Global and Thread Escape HeuristicsHirzel et al. show that there is a strong orrelation be-tween long lifetimes and objets that esape into global vari-ables or esape their alloating thread [13℄. Usually most ofthese objets are immortal, however there are some appli-ations where this orrelation does not hold. An aggressiveapproah an be used to label all objets whih esape intoglobal variables or esape their alloating thread as immor-tal. A more onservative approah an be used to label allsuh objets as long-lived.
3.2 Escape Distance HeuristicTypially, stak frames have a relatively short lifetime.It follows that objets alloated on the stak (i.e. objetsthat do not esape their alloating method) also have shortlifetimes. Hirzel et al. show that there is a orrelation be-tween long lifetimes and objets that esape their alloatingmethod [13℄. These insights are behind this heuristi.For an objet o whih is aptured by a method m 2 M ,de�ne the esape distane ED(o) as the length of the path

between m and o's alloating method in the appliation allgraph.Sine we an determine statially only that o is apturedby a method in M , but not whih method, we must alu-late the lengths of the paths from the alloating method toall the methods in M . There may be a number of possi-ble paths between the methods in the all graph, and thereis no way to determine statially whih path is taken forany partiular objet. We an estimate the atual esapedistane of o using either the longest or shortest possiblepath. Using the longest possible path gives us an aggres-sive estimate, whih we label EDa(o). Using the shortestpossible path gives us a onservative estimate, whih we la-bel ED(o). We de�ne our heuristi in terms of the atualesape distane; whih estimate to use when applying theheuristi is implementation dependent. Our heuristi alsouses two threshold values, Tl and Ti, where Tl � Ti. Theheuristi is de�ned as:For eah objet o, if Tl � ED(o) < Ti, then label o as long-lived. If ED(o) � Ti, then label o as immortal. Otherwiselabel o as short-lived.Inreasing the threshold values make the heuristi moreonservative. Dereasing the threshold values and inludingthe depth of the all graph below the alloating methodin the measure of esape distane make the heuristi moreaggressive.
3.3 Age Estimation HeuristicObjet age is usually alulated in terms of bytes allo-ated. We an estimate the age of an objet o aptured bymethodm 2M by estimating the number of bytes alloatedfrom the time o was alloated to the time it is last used inm.Again we an determine statially only that o is apturedby a method in M , but not whih method. Therefore wemust alulate the age using eah method inM . Sine theremay be a number of paths through the ontrol ow graphthat the appliation ould take between the objet's birth-point and eah possible death-point, we have to either makea onservative estimate age(o) by taking the lowest possiblevalue, or make an aggressive estimate agea(o) by taking thehighest possible value. We have threshold values Ta and Tb,where Ta � Tb. The heuristi is very similar to the esapedistane heuristi:For eah objet o, if Ta � age(o) < Tb, then label o aslong-lived. If age(o) � Tb, then label o as immortal. Other-wise label o as short-lived.
3.4 Connectivity HeuristicIn Hirzel et al., the authors also found that there wasa strong orrelation in lifetimes between objets that wereeither diretly linked or were part of the same strongly on-neted omponent in the appliation's points-to graph { theyall tended to die at the same time [13℄. We an use this re-sult to help re�ne the esape distane and age estimationheuristis de�ned above. Given a set of objets for whihwe have generated pretenuring advie, all of whih are di-retly linked or strongly onneted, this heuristi states thatwe should give the same advie to all of them. We an ei-ther onservatively downgrade the lifetime advie of all theobjets to that of the shortest-lived, or aggressively upgradethe lifetime advie of all the objets to that of the longest-lived.



Con�guration Leaves Thread Global000 nursery nursery nursery001 nursery nursery older002 nursery nursery immortal010 nursery older nursery020 nursery immortal nursery100 older nursery nursery111 older older olderTable 1: Per-Con�guration Mapping of Method ofEsape to Alloation Advie
4. METHODOLOGYEsape analysis allows us to identify alloation sites thatmay produe long-lived objets and to modify the site toalloate diretly into less frequently olleted regions. Ouresape analysis identi�es three ways an objet an esape:global, thread, and leaves. An objet that esapes global doesso through a referene to a stati lass objet. An objetthat esapes thread esapes through a thread. An objetthat leaves esapes in some other way (e.g. being passedto another method). We use this esaping information tomake alloation deisions for a partiular site. Sine wegenerate per-alloation-site advie, we diretly manipulatethe intermediate representation to use the advie.In this preliminary work on esape analysis, we implementonly the intraproedural analysis as desribed by Whaleyand Rinard [21℄. We use the esaping information to pre-tenure objet based on the �ndings of Hirzel, et al. [13℄.Table 1 desribes these experiments. For eah method ofesape, we experiment with pretenuring objets into boththe older and immortal spaes. Additionally, we experimentwith pretenuring all esaping objets.
4.1 The Jikes RVM and the GCTkWe implement esape analysis in the Jikes RVM. TheJikes RVM is a high-performane VM written in Java thatinludes an aggressive optimizing ompiler [1℄. Addition-ally we use the GCTk, a garbage olletor toolkit for theJikes RVM [2℄. It is an eÆient and exible platform forgarbage olletor experimentation that exploits the objetorientation of Java and the JVM-in-Java property of theJikes RVM. We use the Appel-style generational olletorthat uses a well-tuned and fast address-order write barrierand inludes an unolleted region (for immortal objets)implemented for Blakburn et al. [3℄.
4.2 Experimental SettingWe perform our experimental timing runs on a Main-tosh PowerPC G4 with a 933 MHz proessor, 32K on-hipL1 data and instrution ahes, 256KB uni�ed L2 ahe,1MB L3 o�-hip ahe, and 512MB of memory running PPCLinux 2.4.19.We use benhmarks from JVM98 and SPEC2000, hoos-ing those that vigorously exerise the garbage olletor (seeTable 2). We run eah benhmark on a range of heap sizes,ranging from the smallest one in whih the program om-pletes up to three times that size. We exeute the benh-mark �ve times for eah on�guration and pik the bestexeution time (i.e., the one least disturbed by other e�etsin the system).

Benhmark Live Allo Allo/Livejess 5,485,280 511,317,988 93java 12,068,700 647,267,620 54jak 5,810,536 562,055,988 97pseudojbb 30,024,524 620,019,384 21Table 2: Benhmark Charateristis: (Live) is max-imum live size in bytes, (Allo) is total alloation inbytes.
5. RESULTSIn this setion we examine the quality of the advie gener-ated by esape analysis and the exeution speedup resultingfrom following that advie.
5.1 Quality of AdviceWe de�ne the quality of the advie similarly to Blakburnet al. [3℄ where� an objet is short-lived if it will die before the nextnursery olletion;� an objet is long-lived if it would survive the next nurs-ery olletion; and� an objet is immortal if it dies more than halfway be-tween its time of birth and the end of the program.We examine exat objet lifetimes (subsripted with o)and per-site (subsripted with s) deisions for eah objetto establish a level of error in the per site deisions. Thisdivision de�nes nine deision pairs that are further atego-rized:� good advie alloates long-lived objets into longer-lived regions, but not too long-lived (< io; is >, <lo; ls >, < io; ls >);� neutral advie alloates objets into the nursery (<so; ss >, < lo; ss >, < io; ss >); and� bad advie alloates objets into longer-lived regionsthan appropriate (< io; ls >, < lo; is >, < so; is >).Table 3 summarizes the level of error in our lassi�a-tions. It shows that pretenuring the small number globalesaping objets into the older generation (0.13% good vs0.02% bad) is better than pretenuring them into the immor-tal generation (0.06% good vs. 0.09% bad). Objets that areidenti�ed as thread-esaping results in as muh good advieas bad when pretenured into the older generation and over-whelmingly bad advie when pretenuring into the immortalspae. Pretenuring objets that leave generate as muh badadvie (4.82%) as good (3.26%).In Table 4, we summarize the quality of the advie givenper benhmark. It desribes how many objets were allo-ated into the orret generation as a perentage of the totalnumber of objets alloated. It shows pretenuring objetsthat esape globally is a good idea though it may be betterto make these objets long-lived rather than immortal. How-ever, sine the number of globally-esaping objet is so smallompared to the overall number of objets, it is insigni�ant.Additionally, it shows that those objets that our implemen-tation identi�es as thread-esaping are not neessarily longlived whih is ontrary to the work done by Hirzel et al.[13℄. We believe that this is an artifat of our implemen-tation whih uses a very aggressive method for identifying



% good % % neutral % % bad %Con�guration < io; is > < lo; ls > < io; ls > < so; ss > < lo; ss > < io; ss > < lo; is > < so; is > < so; ls >000 0 0 0 78.73 6.81 14.47 0 0 0001 0 .07 .06 78.70 6.74 14.41 0 0 .02002 .06 0 0 78.70 6.74 14.41 .07 .02 0010 0 .83 .44 77.55 5.98 14.03 0 0 1.17020 .44 0 0 77.55 5.98 14.03 .83 1.17 0100 0 1.88 1.38 73.91 4.93 13.08 0 0 4.82111 0 1.93 1.43 73.90 4.87 13.04 0 0 4.83Table 3: Per-Con�guration Pretenuring Deisions Auray (by objet over all benhmarks)202 jess 213 java 228 jak pseudojbbMin 20.02% 31.64% 19.45% 20.17%Max 23.36% 37.86% 25.20% 30.17%Mean 21.60% 33.43% 22.50% 25.52%Table 5: Memory Overhead per Benhmarkthread-esaping objets designed more for synhronizationelimination (for whih it is onservative) than for pretenur-ing. Finally, we show that it is too aggressive to pretenureeverything that esapes beause it inreases the number offull-heap olletions.
5.2 Analysis OverheadWe examine the overhead of our implementation of esapeanalysis in terms of overall runtime and additional memoryrequirements to represent the points-to esape graph. Asexpeted, there is an inrease in both runtime and memorydue to the overhead of reating the points-to esape graph.Memory usage inreases are shown in table 5 and total ex-eution time in �gure 1. Normalized exeution times areshown in �gure 2.Figure 3 shows the total exeution without the ompila-tion overhead. It shows that pretenuring globally-esapingobjets has negligible a�et on overall exeution time dueprimarily to the extremely small number of globally esap-ing objets in the benhmarks we ran. Additionally, it showspretenuring objets that esape thread or leaves inrease theoverall exeution time. This is not unexpeted due to thequality of the advie we generate.
6. CONCLUSIONSEsape analysis in its na��ve implementation is expensivein both spae and time.The quality of advie shows that it is a good idea topretenure objets that esape globally. Generally it is bet-ter to put globally-esaping objets in the long-lived spae.However, sine globally-esaping objets represent suh asmall perentage of total, pretenuring them into the immor-tal spae does not signi�antly e�et memory usage or totalexeution time. No onlusions an be made about the life-times of thread-esaping objets sine our implementationis so aggressive. Its aggressiveness results from its adapta-tion from a non-dataow sensitive lok-removal algorithm.Finally, we onlude it is too aggressive to pretenure all es-aping objets. This is not surprising as it leads to both theolder geneneration �lling up too quikly and to an inreasein the number of full-heap olletions.

7. FUTURE WORKWe plan to examine ways in whih our na��ve implemen-tation an be improved. First we plan to examine how wean improve our implementation to make it more eÆient inboth spae and time. How muh of the analysis overhead anbe eliminated? Can adding interproedural analysis givingus more preise information from whih to make our dei-sions? Additionally an we tweak esape analysis algorithmfor the pretenuring ase? For example, an esape distaneprovide a smarter mehanism for determining lifetimes? Doeither hot-spot analysis and funtion loning provide moreopportunities for pretenuring at a redued ost?We an also ask questions about using this type of al-gorithm to reate build-time advie for libraries and sharedode. Then an appliation in the JIT ould still bene�t fromesape analysis without su�ering the expense.If the ost of performing the analysis remains too high, weplan to amortize the ost by looking for other optimizationsthat an share the information generated from esape analy-sis. Examples of this inlude traditional optimizations suhas synhronization elimination as well as new work suh aswrite-barrier elimination [22℄.
8. ACKNOWLEDGMENTSWe would like to thank Kathryn MKinley for pointingus to this work and for her valuable advie along the way;Steve Blakburn for his experitise and assistane in under-standing the Jikes RVM and previous pretenuring work; andMatthew Hertz for providing valuable information regardingthe handling of traes.
9. REFERENCES[1℄ B. Alpern, C. R. Attanasio, J. J. Barton, M. G.Burke, P.Cheng, J.-D. Choi, A. Cohi, S. J. Fink,D. Grove, M. Hind, S. F. Hummel, D. Lieber,V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,V. C. Sreedhar, H. Srinivasan, and J. Whaley. Thejalapeno virtual mahine. IBM System Journal,39(1):211{238, February 2000.[2℄ S. M. Blakburn, R. Jones, K. S. MKinley, andJ. E. B. Moss. Beltway: Getting around garbageolletion gridlok. In Proeeding of the ACMSIGPLAN 2002 Conferene on ProgrammingLanguage Design and Implementation, pages 153{164.ACM Press, 2002.[3℄ S. M. Blakburn, S. Singhai, M. Hertz, K. S.MKinely, and J. E. B. Moss. Pretenuring for Java. InProeedings of the OOPSLA '01 onferene on Objet



jess java%good% %neutral% %bad% %orret% %good% %neutral% %bad% %orret%000 0 100 0 95.58 0 100 0 89.64001 2.21E-5 99.99 7.37E-6 95.58 1.68E-5 99.72 .28 89.36002 2.21E-5 99.99 7.37E-6 95.58 1.68E-5 99.72 .28 89.36010 .17 85.99 13.83 81.86 .53 96.93 2.55 87.53020 .05 85.99 13.95 81.80 .09 96.93 2.98 87.19100 .20 66.18 33.62 62.08 5.54 81.25 13.22 80.65111 .20 66.18 33.62 62.08 5.54 81.17 13.29 80.58jak pseudojbb%good% %neutral% %bad% %orret% %good% %neutral% %bad% %orret%000 0 100 0 91.91 0 100 0 95.41001 1.25E-3 99.99 7.25E-6 91.91 2.73E-5 99.99 0 95.41002 9.42E-5 99.99 1.17E-3 91.91 1.64E-5 99.99 1.09E-5 95.41010 .32 99.65 .04 92.16 .03 99.49 .48 94.95020 .02 99.65 .33 91.89 .01 99.49 .50 94.94100 .58 89.07 10.35 82.10 1.0 88.17 10.82 85.18111 .58 89.07 10.35 82.10 1.0 88.17 10.82 85.18Table 4: Per-Benhmark Pretenuring Deisions Auray (by objet)Oriented Programming Systems Languages andAppliations, pages 342{352. ACM Press, 2001.[4℄ B. Blanhet. Esape analysis: orretness proof,implementation and experimental results. InProeedings of the 25th ACM SIGPLAN-SIGACTSymposium on Priniples of Programming Languages,pages 25{37. ACM Press, 1998.[5℄ B. Blanhet. Esape analysis for objet-orientedlanguages: Appliation to Java. ACM SIGPLANNoties, 34(10):20{34, 1999.[6℄ P. Cheng, R. Harper, and P. Lee. Generational stakolletion and pro�le-driven pretenuring. InProeedings of the ACM SIGPLAN '98 onferene onProgramming language design and implementation,pages 162{173. ACM Press, 1998.[7℄ J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar,and S. P. Midki�. Esape analysis for Java. InProeedings of the Conferene on Objet-OrientedProgramming Systems, Languages, and Appliations(OOPSLA), pages 1{19, 1999.[8℄ D. Gay and B. Steensgaard. Stak alloating objetsin Java (extended abstrat). Work done at MirosoftResearh.[9℄ D. Gay and B. Steensgaard. Fast esape analysis andstak alloation for objet-based programs. InCompiler Constrution, 9th International Conferene(CC 2000), pages 82{93, 2000.[10℄ T. L. Harris. Dynami adaptive pre-tenuring. InProeedings of the seond international symposium onMemory management, pages 127{136. ACM Press,2000.[11℄ B. Hayes. Using key objet opportunism to ollet oldobjets. In Conferene Proeedings on Objet-OrientedProgramming Systems, Languages, and Appliations,pages 33{46. ACM Press, 1991.[12℄ M. Hirzel, A. Diwan, and A. Hosking. On theusefulness of liveness for garbage olletion and leakdetetion. To appear in ACM Transations onProgramming Languages and Systems, ??:??, 2002.

[13℄ M. Hirzel, J. Henkel, A. Diwan, and M. Hind.Understanding the onnetivity of heap objets. InProeedings of the Third International Symposium onMemory Management, pages 36{49. ACM Press, 2002.[14℄ R. Jones and R. Lins. Garbage Colletion: Algorithmsfor Automati Dynami Memory Management. JohnWiley and Sons, 1996.[15℄ F. Qian and L. Hendren. An adaptive, region-basedalloator for Java. In Proeedings of the ThirdInternational Symposium on Memory Management,pages 127{138. ACM Press, 2002.[16℄ A. Salianu and M. Rinard. Pointer and esapeanalysis for multithreaded programs. In Proeedings ofthe eighth ACM SIGPLAN Symposium on Priniplesand Praties of Parallel Programming, pages 12{23.ACM Press, 2001.[17℄ D. Tarditi and A. Diwan. The full ost of agenerational garbage olletion implementation. InProeedings of the OOPSLA '93 Workshop onMemory Management and Garbage Colletion, pages1{8, September 1993.[18℄ D. Ungar and F. Jakson. Tenuring poliies forgeneration-based storage relamation. In Confereneproeedings on Objet-oriented programming systems,languages and appliations, pages 1{17. ACM Press,1988.[19℄ D. Ungar and F. Jakson. An adaptive tenuring poliyfor generation savengers. ACM Transations onProgramming Languages and Systems (TOPLAS),14(1):1{27, 1992.[20℄ F. Vivien and M. Rinard. Inrementalized pointer andesape analysis. In Proeedings of the ACMSIGPLAN'01 Conferene on Programming LanguageDesign and Implementation, pages 35{46. ACM Press,2001.[21℄ J. Whaley and M. Rinard. Compositional pointer andesape analysis for Java programs. In Proeedings ofthe 1999 ACM SIGPLAN onferene onObjet-oriented programming, systems, languages, andappliations, pages 187{206. ACM Press, 1999.


