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ABSTRACTOur hypothesis is that es
ape analysis 
an estimate lifetimeinformation for dynami
ally allo
ated obje
ts. We then usethis information to pretenure those obje
ts that have longlifetimes. This te
hnique avoids the 
ost in
urred by a gener-ational 
opying 
olle
tor for 
opying long-lived obje
ts fromthe nursery into an older generation. This approa
h is 
om-pletely new { all past work on pretenuring has involved pro-�ling; our approa
h instead employs stati
 analysis.
1. INTRODUCTIONGarbage 
olle
tion is a te
hnique that automati
ally re-
laims unrea
hable memory. It in
reases programmer pro-du
tivity and 
ode modularity by eliminating the need foroften error-prone expli
it memory management. The 
ostof this te
hnique is a measurable amount of performan
eand memory overhead. Redu
ing this overhead is an a
tiveresear
h area [2, 3, 7, 8℄.The generational 
opying 
olle
tor is a widely adoptedtype of garbage 
olle
tor. This 
olle
tor partitions the heapinto a nursery and some number of older generations [14℄.The memory allo
ator allo
ates all obje
ts into the nurs-ery, and the garbage 
olle
tor 
olle
ts the nursery wheneverit be
omes full. Colle
tion 
onsists of: (i) identifying rootpointers; (ii) identifying live obje
ts, de�ned as those ob-je
ts whi
h are transitively rea
hable from the root point-ers; (iii) 
opying the live obje
ts into an older generation;(iv) re
laiming the spa
e va
ated by the dead and 
opiedobje
ts. The garbage 
olle
tor 
olle
ts the older generationswhenever they be
ome full as a result of the 
opied obje
ts.The rationale for this division is the weak generational hy-pothesis, whi
h states that \newly-
reated obje
ts have amu
h lower survival rate than older obje
ts" [11℄. Thereforemost obje
ts in the nursery will have died before the garbage
olle
tor 
olle
ts the nursery, and hen
e do not need to be
opied. A large part of the 
ost of generational 
opying 
ol-le
tors is 
opying into an older generation those obje
ts thatdid not die [17℄.
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A re
ent te
hnique that has emerged for redu
ing the 
ostof generational 
opying 
olle
tors is pretenuring. The insightbehind this te
hnique is that if the 
ompiler 
an insert 
odeto tell the allo
ator to allo
ate long-lived obje
ts dire
tlyinto an older generation without going through the nursery,then the garbage 
olle
tor will not have to pay the 
ost of
opying those obje
ts when it 
olle
ts the nursery. In orderto implement this optimization we must be able to identifylong-lived obje
ts. Previous work in pretenuring relies onpro�ling to provide this information [3, 6, 10, 18, 19℄. Pro-�ling requires that the optimizer run the appli
ation beingoptimized multiple times and gather statisti
s on observedobje
t lifetimes.The goal of our work is to enable pretenuring based ones
ape analysis, a stati
 analysis te
hnique that determineswhether the lifetime of an obje
t ex
eeds its stati
 s
ope.Es
ape analysis is used for optimizations su
h as sta
k allo-
ation and syn
hronization elimination. However its abilityto help predi
t the lifespan of an obje
t has not been ex-plored in 
onne
tion with pretenuring.We implement es
ape analysis in the Jikes RVM dynami
optimizing 
ompiler. The 
ompiler uses the es
ape analysisand several heuristi
s to determine obje
t age, 
ategoriz-ing the obje
ts as short-lived, long-lived, or immortal. The
ompiler also uses this 
ategorization to provide the memoryallo
ator with pretenuring advi
e. We measure the e�e
tive-ness of this advi
e and the impa
t it has on memory usageand program exe
ution time for a range of ben
hmarks usingan Appel-style generational 
opying 
olle
tor. We 
ompareour results with the results generated by previous work onpro�le-driven pretenuring [3℄.In Se
tion 2, we provide a des
ription of es
ape analysisand brie
y outline an es
ape analysis algorithm. We alsodes
ribe various known optimizations that are done usinges
ape analysis. Se
tion 3 des
ribes four di�erent heuris-ti
s that estimate obje
t age based on the results of es
apeanalysis. In Se
tion 4, we des
ribe the methodology used.Se
tion 5 des
ribes the results of this preliminary report.Finally, in Se
tions 6 and 7, we 
on
lude and present futureresear
h dire
tions.
2. ESCAPE ANALYSISThere are two ways an obje
t 
an es
ape. An obje
t oes
apes a methodm if the lifetime of o ex
eeds the runtime ofm. If it does not es
ape, then o is 
aptured by m. Similarly,an obje
t o es
apes its allo
ating thread T if o is a

essedby another thread other than T in its lifetime; otherwise ois 
aptured by T .



Simple es
ape analysis determines for ea
h obje
t whetheror not it es
apes the method in whi
h it was allo
ated. Moreextensive analysis establishes a mapping from ea
h obje
tto its 
apturing method, if su
h a method exists. Thereare a wide variety of algorithms for es
ape analysis in theliterature [5, 7, 9, 15, 16, 20, 21℄. For this work, we fo
uson the algorithm given by Whaley and Rinard [21℄. Thisalgorithm has several attra
tive features whi
h in
uen
edour de
ision { the analysis is interpro
edural; ea
h method
an be analyzed independently of its 
allers; a method 
anbe analyzed without any methods that it 
alls; and analysisresults from the skipped methods 
an be integrated into theanalysis at a later time to give more pre
ise information.These features make the algorithm ideal for use in dynami

ompilation.
2.1 An Algorithm for Escape AnalysisThis se
tion brie
y outlines the algorithm des
ribed byWhaley and Rinard [21℄. More details 
an be found in thereferen
ed do
ument, in
luding detailed pseudo-
ode.The basis of the analysis is an abstra
tion 
alled a points-to es
ape graph. The graph nodes represent obje
ts; edgesrepresent referen
es between obje
ts. The abstra
tion also
ontains information about whi
h obje
ts es
ape to othermethods or other threads. The graph maintains a distin
tionbetween obje
ts and referen
es from unanalyzed se
tions ofthe 
ode and obje
ts and referen
es that are entirely withinthe analyzed se
tions of 
ode. This distin
tion makes 
learthose obje
ts and referen
es for whi
h 
omplete informationis available and those for whi
h it is not. The analysis 
an
ompose results from related methods, resulting in a morepre
ise points-to es
ape graph.The intrapro
edural analysis uses a data
ow analysis to
onstru
t the points-to es
ape graph for a parti
ular method.It begins by 
onstru
ting a graph for the �rst statementof the method, then propagates the points-to es
ape graphthrough the 
ontrol-
ow graph using the appropriate trans-fer fun
tions. The transfer fun
tion for the exit statementof the method generates the �nal analysis results. The al-gorithm then uses a rea
hability analysis to determine allthose obje
ts in the graph rea
hable from obje
ts that areknown to ex
eed the method runtime (e.g. method parame-ters, stati
 
lass variables, method return values) and labelsthose obje
ts as es
aping. All other obje
ts are labeled as
aptured. The analysis saves the resulting points-to es
apegraph whi
h invoking 
all sites use.When the analysis en
ounters a 
all site, it 
hooses be-tween skipping the method 
all (and possibly in
orporatingthat method's analysis at a later time) or using interpro-
edureal analysis to in
orporate that method's analysis im-mediately. The interpro
edural analysis takes the points-toes
ape graphs from the 
urrent method and the set of meth-ods that may be invoked by any method 
alls and 
omposesthem using a mapping fun
tion to produ
e a new points-toes
ape graph. The resulting graph 
ontains more pre
ise in-formation about whi
h obje
ts es
ape and where they are
aptured.
2.2 Escape Analysis Enabled OptimizationsSta
k Allo
ation is an optimization that has been 
loselytied to es
ape analysis [5, 7, 8, 9, 21℄. The premise behindthis optimization is that it is 
heaper to allo
ate obje
ts onthe sta
k than on the heap. The end of the method invo
a-

tion automati
ally re
laims memory allo
ated on the sta
kredu
ing garbage 
olle
tor overhead. Es
ape analysis deter-mines whether it is safe to allo
ate an obje
t on the sta
k {if an obje
t es
apes a method, then its memory 
annot bere
laimed at the end on the method and it must go on theheap.The main disadvantage of sta
k allo
ation is that it mayin
rease memory 
onsumption by retaining obje
ts on thesta
k after they have be
ome unrea
hable. This strategynot only wastes the memory required by the obje
t itself,but also for any obje
ts in the heap that are rea
hable fromthe obje
t on the sta
k (garbage 
olle
tors 
onservatively
onsider anything on the sta
k to be alive when doing rea
h-ability analysis for live obje
ts in the heap). Sta
k allo
a-tion must also be done 
onservatively in the presen
e ofloops and re
ursion be
ause of the danger of sta
k over-
ow. Experiments with sta
k allo
ation have shown that itdoes provide an exe
ution speedup. However the speedup
omes almost solely from improving data lo
ality and notfrom any bene�t to the garbage 
olle
tor [4℄. Most sta
kframes have a lifetime shorter than the period between 
ol-le
tions, whi
h means that the obje
ts on the sta
k also haveshort lifetimes. If they had been allo
ated in the heap, theystill would have died before the next 
olle
tion and wouldn'thave been 
opied by the 
olle
tor; therefore putting obje
tson the sta
k had virtually no e�e
t on the performan
e ofthe 
olle
tor.Syn
hronization Elimination is another optimizationthat has been extensively studied with relation to es
apeanalysis [5, 7, 16, 21℄. This optimization is most relevant toJava appli
ations. Java assumes that all obje
ts are poten-tially a

essible by multiple threads, and prote
ts a

ess toea
h obje
t via syn
hronization routines. Es
ape analysis
an be used to identify obje
ts whi
h are never a

essed bymultiple threads, and the syn
hronization routines 
an beomitted for those obje
ts.Exploding Obje
ts refers to repla
ing an obje
t by a setof lo
al variables, one variable per �eld in the obje
t beingexploded eliminating memory overhead asso
iated with theobje
t. This optimization 
an be done for any sta
kableobje
t o if it is possible to inline all methods that take o asan argument and all uses of o are only to read and write�elds of o [8℄. Es
ape analysis is used to identify sta
kableobje
ts.Liveness A

ura
y refers to identifying the root point-ers that the garbage 
olle
tor uses to determine whi
h ob-je
ts on the heap are still alive. The 
olle
tor must be 
on-servative in identifying root pointers in order to ensure thatlive obje
ts are not prematurely re
laimed. Be
ause of this
onservative identi�
ation, the set of root pointers used mayin
lude pointers that are a
tually dead, leading to the 
ol-le
tor 
opying dead obje
ts be
ause they were in
orre
tlylabeled as live. Hirzel et al. show that using interpro
edu-ral analysis to improve the a

ura
y of identifying live rootpointers 
an lead to large gains in performan
e [12℄. Es
apeanalysis has the potential to be used for this type of anal-ysis. However a preliminary s
an of the literature has notfound any referen
e to this possibility presenting an area forfuture work.
3. PRETENURING ADVICEOur 
entral hypothesis is that the information provided byes
ape analysis is useful in determining obje
t lifetimes, and



hen
e 
an furnish a

urate pretenuring advi
e. We 
an alsointegrate other information, su
h as the depth of a pro
edurein the 
all graph, to in
rease the pre
ision of our analysis.There are three types of advi
e we 
an give based on obje
t
lassi�
ation:� an obje
t is short-lived if it will die before the nextnursery 
olle
tion;� an obje
t is long-lived if it would survive the next nurs-ery 
olle
tion; and� an obje
t is immortal if it dies more than halfway be-tween its time of birth and the end of the program.The allo
ator should allo
ate short-lived obje
ts into thenursery, long-lived obje
ts into an older generation, and im-mortal obje
ts into a spe
ial partition that is never 
olle
ted.When furnishing advi
e, we 
an be either 
onservativeor aggressive. Conservative advi
e labels obje
ts as short-lived by default, and only promotes obje
ts to long-lived orimmortal status if there is a very good reason to do so. Ag-gressive advi
e labels obje
ts as long-lived or immortal bydefault, and labels an obje
t as short-lived only if there is agood reason to believe it will not survive long. Conservativeadvi
e tends to leave long-lived and immortal obje
ts in thenursery where they will be 
opied by the 
olle
tor; aggressiveadvi
e minimizes 
opying but tends to waste spa
e by label-ing short-lived obje
ts as long-lived or immortal be
ause theolder spa
e is 
olle
ted less often.The information provided by es
ape analysis for an obje
to 
an be one or more of the following statements:� o is 
aptured by its allo
ating method,� o is 
aptured by a set of methods M ,� o es
apes into a global variable, and� o es
apes the allo
ating thread.Sin
e es
ape analysis is stati
, 
ategorizing an obje
t isequivalent to 
ategorizing its allo
ation site { i.e. all obje
tsallo
ated at the same site will be given the same advi
e.While individual obje
ts 
an only be 
aptured by a singlemethod, obje
ts 
reated by a single allo
ation site may be
aptured by a set of methods; the elements of that set areall possible methods whi
h may 
apture an obje
t allo
atedat that site.
3.1 Global and Thread Escape HeuristicsHirzel et al. show that there is a strong 
orrelation be-tween long lifetimes and obje
ts that es
ape into global vari-ables or es
ape their allo
ating thread [13℄. Usually most ofthese obje
ts are immortal, however there are some appli-
ations where this 
orrelation does not hold. An aggressiveapproa
h 
an be used to label all obje
ts whi
h es
ape intoglobal variables or es
ape their allo
ating thread as immor-tal. A more 
onservative approa
h 
an be used to label allsu
h obje
ts as long-lived.
3.2 Escape Distance HeuristicTypi
ally, sta
k frames have a relatively short lifetime.It follows that obje
ts allo
ated on the sta
k (i.e. obje
tsthat do not es
ape their allo
ating method) also have shortlifetimes. Hirzel et al. show that there is a 
orrelation be-tween long lifetimes and obje
ts that es
ape their allo
atingmethod [13℄. These insights are behind this heuristi
.For an obje
t o whi
h is 
aptured by a method m 2 M ,de�ne the es
ape distan
e ED(o) as the length of the path

between m and o's allo
ating method in the appli
ation 
allgraph.Sin
e we 
an determine stati
ally only that o is 
apturedby a method in M , but not whi
h method, we must 
al
u-late the lengths of the paths from the allo
ating method toall the methods in M . There may be a number of possi-ble paths between the methods in the 
all graph, and thereis no way to determine stati
ally whi
h path is taken forany parti
ular obje
t. We 
an estimate the a
tual es
apedistan
e of o using either the longest or shortest possiblepath. Using the longest possible path gives us an aggres-sive estimate, whi
h we label EDa(o). Using the shortestpossible path gives us a 
onservative estimate, whi
h we la-bel ED
(o). We de�ne our heuristi
 in terms of the a
tuales
ape distan
e; whi
h estimate to use when applying theheuristi
 is implementation dependent. Our heuristi
 alsouses two threshold values, Tl and Ti, where Tl � Ti. Theheuristi
 is de�ned as:For ea
h obje
t o, if Tl � ED(o) < Ti, then label o as long-lived. If ED(o) � Ti, then label o as immortal. Otherwiselabel o as short-lived.In
reasing the threshold values make the heuristi
 more
onservative. De
reasing the threshold values and in
ludingthe depth of the 
all graph below the allo
ating methodin the measure of es
ape distan
e make the heuristi
 moreaggressive.
3.3 Age Estimation HeuristicObje
t age is usually 
al
ulated in terms of bytes allo-
ated. We 
an estimate the age of an obje
t o 
aptured bymethodm 2M by estimating the number of bytes allo
atedfrom the time o was allo
ated to the time it is last used inm.Again we 
an determine stati
ally only that o is 
apturedby a method in M , but not whi
h method. Therefore wemust 
al
ulate the age using ea
h method inM . Sin
e theremay be a number of paths through the 
ontrol 
ow graphthat the appli
ation 
ould take between the obje
t's birth-point and ea
h possible death-point, we have to either makea 
onservative estimate age
(o) by taking the lowest possiblevalue, or make an aggressive estimate agea(o) by taking thehighest possible value. We have threshold values Ta and Tb,where Ta � Tb. The heuristi
 is very similar to the es
apedistan
e heuristi
:For ea
h obje
t o, if Ta � age(o) < Tb, then label o aslong-lived. If age(o) � Tb, then label o as immortal. Other-wise label o as short-lived.
3.4 Connectivity HeuristicIn Hirzel et al., the authors also found that there wasa strong 
orrelation in lifetimes between obje
ts that wereeither dire
tly linked or were part of the same strongly 
on-ne
ted 
omponent in the appli
ation's points-to graph { theyall tended to die at the same time [13℄. We 
an use this re-sult to help re�ne the es
ape distan
e and age estimationheuristi
s de�ned above. Given a set of obje
ts for whi
hwe have generated pretenuring advi
e, all of whi
h are di-re
tly linked or strongly 
onne
ted, this heuristi
 states thatwe should give the same advi
e to all of them. We 
an ei-ther 
onservatively downgrade the lifetime advi
e of all theobje
ts to that of the shortest-lived, or aggressively upgradethe lifetime advi
e of all the obje
ts to that of the longest-lived.



Con�guration Leaves Thread Global000 nursery nursery nursery001 nursery nursery older002 nursery nursery immortal010 nursery older nursery020 nursery immortal nursery100 older nursery nursery111 older older olderTable 1: Per-Con�guration Mapping of Method ofEs
ape to Allo
ation Advi
e
4. METHODOLOGYEs
ape analysis allows us to identify allo
ation sites thatmay produ
e long-lived obje
ts and to modify the site toallo
ate dire
tly into less frequently 
olle
ted regions. Oures
ape analysis identi�es three ways an obje
t 
an es
ape:global, thread, and leaves. An obje
t that es
apes global doesso through a referen
e to a stati
 
lass obje
t. An obje
tthat es
apes thread es
apes through a thread. An obje
tthat leaves es
apes in some other way (e.g. being passedto another method). We use this es
aping information tomake allo
ation de
isions for a parti
ular site. Sin
e wegenerate per-allo
ation-site advi
e, we dire
tly manipulatethe intermediate representation to use the advi
e.In this preliminary work on es
ape analysis, we implementonly the intrapro
edural analysis as des
ribed by Whaleyand Rinard [21℄. We use the es
aping information to pre-tenure obje
t based on the �ndings of Hirzel, et al. [13℄.Table 1 des
ribes these experiments. For ea
h method ofes
ape, we experiment with pretenuring obje
ts into boththe older and immortal spa
es. Additionally, we experimentwith pretenuring all es
aping obje
ts.
4.1 The Jikes RVM and the GCTkWe implement es
ape analysis in the Jikes RVM. TheJikes RVM is a high-performan
e VM written in Java thatin
ludes an aggressive optimizing 
ompiler [1℄. Addition-ally we use the GCTk, a garbage 
olle
tor toolkit for theJikes RVM [2℄. It is an eÆ
ient and 
exible platform forgarbage 
olle
tor experimentation that exploits the obje
torientation of Java and the JVM-in-Java property of theJikes RVM. We use the Appel-style generational 
olle
torthat uses a well-tuned and fast address-order write barrierand in
ludes an un
olle
ted region (for immortal obje
ts)implemented for Bla
kburn et al. [3℄.
4.2 Experimental SettingWe perform our experimental timing runs on a Ma
in-tosh PowerPC G4 with a 933 MHz pro
essor, 32K on-
hipL1 data and instru
tion 
a
hes, 256KB uni�ed L2 
a
he,1MB L3 o�-
hip 
a
he, and 512MB of memory running PPCLinux 2.4.19.We use ben
hmarks from JVM98 and SPEC2000, 
hoos-ing those that vigorously exer
ise the garbage 
olle
tor (seeTable 2). We run ea
h ben
hmark on a range of heap sizes,ranging from the smallest one in whi
h the program 
om-pletes up to three times that size. We exe
ute the ben
h-mark �ve times for ea
h 
on�guration and pi
k the bestexe
ution time (i.e., the one least disturbed by other e�e
tsin the system).

Ben
hmark Live Allo
 Allo
/Livejess 5,485,280 511,317,988 93java
 12,068,700 647,267,620 54ja
k 5,810,536 562,055,988 97pseudojbb 30,024,524 620,019,384 21Table 2: Ben
hmark Chara
teristi
s: (Live) is max-imum live size in bytes, (Allo
) is total allo
ation inbytes.
5. RESULTSIn this se
tion we examine the quality of the advi
e gener-ated by es
ape analysis and the exe
ution speedup resultingfrom following that advi
e.
5.1 Quality of AdviceWe de�ne the quality of the advi
e similarly to Bla
kburnet al. [3℄ where� an obje
t is short-lived if it will die before the nextnursery 
olle
tion;� an obje
t is long-lived if it would survive the next nurs-ery 
olle
tion; and� an obje
t is immortal if it dies more than halfway be-tween its time of birth and the end of the program.We examine exa
t obje
t lifetimes (subs
ripted with o)and per-site (subs
ripted with s) de
isions for ea
h obje
tto establish a level of error in the per site de
isions. Thisdivision de�nes nine de
ision pairs that are further 
atego-rized:� good advi
e allo
ates long-lived obje
ts into longer-lived regions, but not too long-lived (< io; is >, <lo; ls >, < io; ls >);� neutral advi
e allo
ates obje
ts into the nursery (<so; ss >, < lo; ss >, < io; ss >); and� bad advi
e allo
ates obje
ts into longer-lived regionsthan appropriate (< io; ls >, < lo; is >, < so; is >).Table 3 summarizes the level of error in our 
lassi�
a-tions. It shows that pretenuring the small number globales
aping obje
ts into the older generation (0.13% good vs0.02% bad) is better than pretenuring them into the immor-tal generation (0.06% good vs. 0.09% bad). Obje
ts that areidenti�ed as thread-es
aping results in as mu
h good advi
eas bad when pretenured into the older generation and over-whelmingly bad advi
e when pretenuring into the immortalspa
e. Pretenuring obje
ts that leave generate as mu
h badadvi
e (4.82%) as good (3.26%).In Table 4, we summarize the quality of the advi
e givenper ben
hmark. It des
ribes how many obje
ts were allo-
ated into the 
orre
t generation as a per
entage of the totalnumber of obje
ts allo
ated. It shows pretenuring obje
tsthat es
ape globally is a good idea though it may be betterto make these obje
ts long-lived rather than immortal. How-ever, sin
e the number of globally-es
aping obje
t is so small
ompared to the overall number of obje
ts, it is insigni�
ant.Additionally, it shows that those obje
ts that our implemen-tation identi�es as thread-es
aping are not ne
essarily longlived whi
h is 
ontrary to the work done by Hirzel et al.[13℄. We believe that this is an artifa
t of our implemen-tation whi
h uses a very aggressive method for identifying



% good % % neutral % % bad %Con�guration < io; is > < lo; ls > < io; ls > < so; ss > < lo; ss > < io; ss > < lo; is > < so; is > < so; ls >000 0 0 0 78.73 6.81 14.47 0 0 0001 0 .07 .06 78.70 6.74 14.41 0 0 .02002 .06 0 0 78.70 6.74 14.41 .07 .02 0010 0 .83 .44 77.55 5.98 14.03 0 0 1.17020 .44 0 0 77.55 5.98 14.03 .83 1.17 0100 0 1.88 1.38 73.91 4.93 13.08 0 0 4.82111 0 1.93 1.43 73.90 4.87 13.04 0 0 4.83Table 3: Per-Con�guration Pretenuring De
isions A

ura
y (by obje
t over all ben
hmarks)202 jess 213 java
 228 ja
k pseudojbbMin 20.02% 31.64% 19.45% 20.17%Max 23.36% 37.86% 25.20% 30.17%Mean 21.60% 33.43% 22.50% 25.52%Table 5: Memory Overhead per Ben
hmarkthread-es
aping obje
ts designed more for syn
hronizationelimination (for whi
h it is 
onservative) than for pretenur-ing. Finally, we show that it is too aggressive to pretenureeverything that es
apes be
ause it in
reases the number offull-heap 
olle
tions.
5.2 Analysis OverheadWe examine the overhead of our implementation of es
apeanalysis in terms of overall runtime and additional memoryrequirements to represent the points-to es
ape graph. Asexpe
ted, there is an in
rease in both runtime and memorydue to the overhead of 
reating the points-to es
ape graph.Memory usage in
reases are shown in table 5 and total ex-e
ution time in �gure 1. Normalized exe
ution times areshown in �gure 2.Figure 3 shows the total exe
ution without the 
ompila-tion overhead. It shows that pretenuring globally-es
apingobje
ts has negligible a�e
t on overall exe
ution time dueprimarily to the extremely small number of globally es
ap-ing obje
ts in the ben
hmarks we ran. Additionally, it showspretenuring obje
ts that es
ape thread or leaves in
rease theoverall exe
ution time. This is not unexpe
ted due to thequality of the advi
e we generate.
6. CONCLUSIONSEs
ape analysis in its na��ve implementation is expensivein both spa
e and time.The quality of advi
e shows that it is a good idea topretenure obje
ts that es
ape globally. Generally it is bet-ter to put globally-es
aping obje
ts in the long-lived spa
e.However, sin
e globally-es
aping obje
ts represent su
h asmall per
entage of total, pretenuring them into the immor-tal spa
e does not signi�
antly e�e
t memory usage or totalexe
ution time. No 
on
lusions 
an be made about the life-times of thread-es
aping obje
ts sin
e our implementationis so aggressive. Its aggressiveness results from its adapta-tion from a non-data
ow sensitive lo
k-removal algorithm.Finally, we 
on
lude it is too aggressive to pretenure all es-
aping obje
ts. This is not surprising as it leads to both theolder geneneration �lling up too qui
kly and to an in
reasein the number of full-heap 
olle
tions.

7. FUTURE WORKWe plan to examine ways in whi
h our na��ve implemen-tation 
an be improved. First we plan to examine how we
an improve our implementation to make it more eÆ
ient inboth spa
e and time. How mu
h of the analysis overhead 
anbe eliminated? Can adding interpro
edural analysis givingus more pre
ise information from whi
h to make our de
i-sions? Additionally 
an we tweak es
ape analysis algorithmfor the pretenuring 
ase? For example, 
an es
ape distan
eprovide a smarter me
hanism for determining lifetimes? Doeither hot-spot analysis and fun
tion 
loning provide moreopportunities for pretenuring at a redu
ed 
ost?We 
an also ask questions about using this type of al-gorithm to 
reate build-time advi
e for libraries and shared
ode. Then an appli
ation in the JIT 
ould still bene�t fromes
ape analysis without su�ering the expense.If the 
ost of performing the analysis remains too high, weplan to amortize the 
ost by looking for other optimizationsthat 
an share the information generated from es
ape analy-sis. Examples of this in
lude traditional optimizations su
has syn
hronization elimination as well as new work su
h aswrite-barrier elimination [22℄.
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