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GENERALIZED FINITE ALGORITHMS FOR CONSTRUCTING
HERMITIAN MATRICES WITH PRESCRIBED DIAGONAL AND SPECTRUM

INDERJIT S. DHILLON, ROBERT W. HEATH JR., MATYAS A. SUSTIK AND JOEL A. TROPP

ABSTRACT. In this paper, we present new algorithms that can replace the diagonal entries of a
Hermitian matrix by any set of diagonal entries that majorize the original set without altering
the eigenvalues of the matrix. They perform this feat by applying a sequence of (N — 1) or fewer
plane rotations, where N is the dimension of the matrix. Both the Bendel-Mickey and the Chan-Li
algorithms are special cases of the proposed procedures. Using the fact that a positive semi-definite
matrix can always be factored as X*X, we also provide more efficient versions of the algorithms
that can directly construct factors with specified singular values and column norms. We conclude
with some open problems related to the construction of Hermitian matrices with joint diagonal
and spectral properties.

1. INTRODUCTION

It is sometimes of interest to construct a collection of Hermitian matrices that have specified
diagonal elements and eigenvalues. When all the eigenvalues are non-negative, the problem is es-
sentially equivalent to constructing a collection of rectangular matrices with specified column norms
and singular values. In particular, if a rectangular matrix X has requirements on its singular val-
ues and squared column norms, the Hermitian matrix X*X has a corresponding requirement on its
eigenvalues and diagonal entries.

A specific example of this problem is to construct Hermitian matrices with unit diagonal and
prescribed non-negative eigenvalues [3]. Such matrices are called correlation matrices — Davies
and Higham discuss several applications that require such matrices, ranging from the generation
of test matrices for eigenvalue solvers to the design of statistical experiments [3,7,9]. A related
matrix construction problem has also arisen in connection with wireless communications. It turns
out that dx N matrices, d < N, with d identical non-zero singular values and with prescribed column
norms satisfy a certain “sum capacity” bound and “minimum squared correlation” property that
is important in wireless applications. These matrices only exist if a majorization condition holds,
as discussed in Section 2.1. For an introduction to squared correlation, see the Appendix. Refer
to [20,22,23] for a thorough treatment of how the problem arises in wireless applications.

Two finite step techniques, the Bendel-Mickey [3] and Chan-Li [4] algorithms, are available for
special cases. Both algorithms apply a sequence of plane rotations to an initial matrix that change
its diagonal entries while preserving its spectrum. The Chan-Li algorithm starts with the diagonal
matrix of eigenvalues and can reach a real, symmetric matrix with a specified majorizing diagonal.
On the other hand, the Bendel-Mickey algorithm can start with an arbitrary Hermitian matrix and
transform it to a Hermitian matrix with equal diagonal entries.

In this paper, we present new algorithms that generalize the Chan-Li and Bendel-Mickey proce-
dures so that we can start with an arbitrary Hermitian matrix and change its diagonal entries to
specified values while retaining its original spectrum. The only requirement is that the new diagonal
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elements majorize (in essence, average) the original ones. Thus our generalized algorithms permit us
to construct a class of Hermitian matrices satisfying spectral and diagonal constraints that is richer
than the collection yielded by older algorithms.

We now give a brief outline of the paper. In §2, we provide the necessary background and
summarize previous results. We present our generalized algorithms in §3, and §4 contains some
numerical examples. The Appendix discusses total squared correlation.

2. BACKGROUND AND RELATED WORK

2.1. Majorization. The majorization relation is a partial ordering on vectors that appears in a
striking number of apparently unrelated contexts. Lorenz originally developed the ordering for
econometrics, where he used it to compare the equitability of income distributions [2]. An intuitive
definition is that one vector majorizes another if the former has “more average” entries than the
latter. Let us make this notion precise.

Definition 1. Let a be a real, N-dimensional vector, and denote its k-th smallest component by
a(r)- This number is called the k-th order statistic of a.

Definition 2. Let a and z be real N-dimensional vectors, and suppose that their order statistics
satisfy the following relationships.

a1y < 2(1),
a@) ta@) < 2a) + 22),

ay +a@) + -+ aw_1) < 2a) + et EN-1, and also
a) *a@) + - Faw) = 2q) H2e) o T2

Then we say that z majorizes a, and we write z = a. If each of the inequalities is strict, then =z
strictly majorizes a, and we write z > a.

It is not hard to verify that the majorization relation is reflexive, anti-symmetric, and transitive, so
it defines a partial ordering on RY. An equivalent definition is that z = a if and only if z = M a for
some doubly-stochastic matrix M. Birkhoff’s Theorem states that the collection of doubly-stochastic
matrices of size NV is identical with the convex hull of the permutation matrices having size N. It
follows that those vectors which majorize a fixed vector form a compact, convex set. See [12,16] for
more details.

Majorization plays a role on our stage because it defines the precise relationship between the
diagonal entries and eigenvalues of a Hermitian matrix.

Theorem 3 (Schur-Horn [12]). The diagonal entries of a Hermitian matriz magjorize its eigenvalues.
Conversely, if a = X, then there exists a Hermitian matriz with diagonal entries listed by a and
etgenvalues listed by A.

I. Schur demonstrated the necessity of the majorization condition in 1923, and A. Horn proved the
converse some thirty years later [12]. Horn’s original proof is quite complicated, and a small cottage
industry has grown up to produce simpler, more constructive arguments. See, for example, [4,6,15].
A comprehensive reference on majorization is Marshall and Olkin’s monograph [16].

2.2. Some Posets. First, we define some concepts related to partial orderings, and then we develop
some new partial orderings on Hermitian matrices that are closely related to the matrix construction
problem.

Definition 4. A set S equipped with a partial ordering 3= is called a poset. It is denoted as (S, =).
Two elements a,b € S are comparable if and only if a 3= b or b = a. Any totally ordered subset of a
poset is called a chain. Every pair of elements in a chain is comparable.
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We may equip any poset with the ordering topology, where each basic open set is given by {a #
b: b= a} for some point b. This is the minimal topology in which the ordering is continuous [14].

Observe that vectors are comparable by majorization only when their entries have the same sum.
Let %, denote the set of N-dimensional vectors with trace a. Then each %, is an isolated component
of the poset (RY, >=). Moreover, every %, has a unique majorization-maximal element: the constant
vector with entries a/N. On the other hand, there are no minimal vectors under the majorization
relation; every z succeeds an infinite number of other vectors.

Definition 5. We say that two Hermitian matrices A and B are Schur-Horn equivalent if and only
if they have identical spectra and identical diagonals (up to permutation). We write A = B, and we
use [A] to denote the equivalence classes induced by this relation.

We indicate the collection of Schur-Horn equivalence classes by 7. Notice that the members of
S vary significantly. For example, the Schur-Horn equivalence class of a diagonal matrix is the set
of diagonal matrices with the same entries in permuted order. Meanwhile, the equivalence class of
a matrix with unit diagonal and non-negative eigenvalues A is the set of “correlation matrices” that
have spectrum A [7]. Even though similarity transformations preserve the eigenvalues of a Hermitian
matrix, very few simultaneously preserve the diagonal. Therefore, Schur-Horn equivalence classes are
not stable under most transformations. Exceptions include symmetric permutations and diagonal
similarity transforms.

Definition 6. For any two elements of ./, [A] and [Z], we say that [Z] = [A] if and only if the two
matrices have the same spectrum and diag Z > diag A.

It is not hard to check that this construction yields a well-defined partial ordering on J#. Clearly,
two Schur-Horn equivalence classes are comparable only if their members have the same spectrum.
Suppose that the entries of A € RY already occur in non-decreasing order, viz. \; = Ar) for each
k. Then we may write J4 to denote the elements of 7 with spectrum A. Each 7 forms an
isolated component of the poset (J#,:=), and it has a unique maximal element: the equivalence
class of matrices with eigenvalues A and with a constant diagonal. A significant difference between
majorization and the matrix ordering is that every chain under the matrix ordering has a minimal
element: [diag A], where A lists the (common) eigenvalues of the members of the chain.

2.3. Algorithms. Now we discuss two algorithms which have been proposed for constructing Her-
mitian matrices with diagonal and spectral properties. In the sequel, we use My to denote the set
of complex N x N matrices and My n to denote the set of complex d x IV matrices.

The Bendel-Mickey algorithm produces random (Hermitian) correlation matrices with given spec-
trum [3]. Suppose that A € My is a Hermitian matrix with Tr A = N. If A does not have a unit
diagonal, we can locate two diagonal elements so that a;; < 1 < ag; otherwise, the trace condi-
tion would be violated. It is then possible to construct a real rotation Q in the jk-plane for which
(Q*AQ);; = 1. The transformation A — Q*AQ preserves the conjugate symmetry and the spectrum
of A, but it reduces the number of non-unit diagonal entries by at least one. Therefore, at most
(N — 1) rotations are required before the resulting matrix has a unit diagonal. If the output matrix
is Z, it follows that [Z] > [A]. Indeed, [Z] is the unique j>-maximal element in every chain that
contains [A].

The Chan-Li algorithm, on the other hand, was developed as a constructive proof of the Schur-
Horn Theorem [4]. Suppose that @ = A. The Chan-Li algorithm begins with the diagonal matrix

A= diag A. Then it applies a sequence of (N —1) cleverly chosen (real) plane rotations to generate a

real, symmetric matrix A with the same eigenvalues as /A but with diagonal entries listed by a. Once
again, the output and input satisfy the relationship [A] = [A]. Where the Bendel-Mickey algorithm
starts from any element of a chain and moves to the top, the Chan-Li algorithm starts at the bottom
of a chain and moves upward.

The Bendel-Mickey algorithm is a surjective map from the set of Hermitian matrices with spec-
trum A\ onto the set of correlation matrices with spectrum A. If the initial matrix is chosen uniformly
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at random (which may be accomplished with standard techniques [19]), the result may be construed
as a random correlation matrix. The distribution of the output, however, is unknown [11]. On
the other hand, due to the special form of the initial matrix and the rigid choice of rotations, the
Chan-Li algorithm cannot construct very many distinct matrices with a specified diagonal. It would
be interesting to develop a procedure which can calculate every member of a given equivalence class.
A brief discussion of how to use plane rotations to equalize the diagonal entries of a Hermitian
matrix appears on page 77 of Horn and Johnson [12]. Problems 8.4.1 and 8.4.2 of Golub and van Loan
outline the Bendel-Mickey algorithm [10]. Davies and Higham present a numerically stable version
of the Bendel-Mickey algorithm in their article [7]. Other references on this topic include [13,25].

3. GENERALIZED ALGORITHMS

We propose methods that generalize the Bendel-Mickey and Chan-Li algorithms. Like them, our
techniques use a sequence of (N — 1) or fewer plane rotations to move upward between two points
in a chain. The crux of the matter is the strategy for selecting the planes of rotation. The two
methods we present can be viewed respectively as direct generalizations of the Chan-Li strategy
and the Bendel-Mickey strategy. Unlike the earlier algorithms, these new techniques do not require
ending at the top of a chain like Bendel-Mickey nor starting at the bottom like Chan-Li. Therefore,
our techniques allow the construction of a much larger set of matrices than the Chan-Li algorithm,
while retaining its ability to select the final diagonal entries.

3.1. Generalized Chan-Li. Let z and a be N-dimensional vectors for which z > a. Using induc-
tion on the dimension, we show how to transform a Hermitian matrix with diagonal a and spectrum
A into a Hermitian matrix with diagonal z and spectrum A using a sequence of plane rotations. It
is enough to prove the result when the components of a and z are sorted in ascending order, so we
place that restriction in the sequel.

Suppose first that V = 2 and that A has diagonal a. Since z > a, we have a; < z1 < 22 < as.
We can explicitly construct a real plane rotation @ so that the diagonal of Q*AQ equals z. Recall
that a two-dimensional plane rotation is an orthogonal matrix of the form

c s
o=5 )

where ¢ + s?2 = 1 [10]. The desired plane rotation yields the matrix equation

S | R
—s c¢| a1 az||—s ¢ 221 2o
The equality of the upper-left entries can be stated as

c2a; — 2scReag + s%az = 21.
This equation is quadratic in ¢ = s/e:

(a2 — Zl) t2 — 2tRea21 + (a1 — Zl) = 0, (1)

whence

¢t = Rea21 + \/(Rea21)2 — (0,1 — Zl)(az — Zl) (2)
QA — 21
Notice that the discriminant is non-negative due to the majorization condition. The =+ sign in (2) is
taken to avoid sign cancellations with Re as;. If necessary, we can extract the other root of (1) using
the fact that the product of its roots equals (a3 — 21)/(az — z1). Finally, determine the parameters
of the rotation using

1
c= —— and s =ct. (3)

V14t
Floating-point arithmetic is inexact, so the rotation may not yield (Q*AQ)11 = 2z1. A better im-
plementation sets this entry to z; explicitly. Davies and Higham have shown that this method of
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computing rotations is numerically stable [7]. Since Q is orthogonal, @*AQ preserves the spectrum
of A but replaces its diagonal with z.

Grant us for a moment that we can perform the advertised feat on Hermitian matrices of size
(N —1). Now we consider N-dimensional vectors for which z > a, and suppose that diag A = a.
The majorization condition implies that a1 < 21 < zy < an, so it is always possible to select a least
integer j > 1 so that aj_1 < 21 < a;. Let P, be a permutation matrix for which

diag (P{APy) = (a1,05,02,...,85-1,Qj41,...,aN).

Observe that a; < 21 < a;j and a1 < a1 + a; — 21 < aj. Thus we modify equations (2) and (3) to
construct a two-dimensional plane rotation Q> that sets the upper left entry of

to z;. If we define the rotation

then
* % _ 21 ,U*
PS5 PIAPL Py = [v AN—l] ,
where v is an appropriate vector and Ay _1 is an appropriate sub-matrix with

diag (AN—l) = (a1 +a; — 21,02, -,Q-1,0541, - - .,aN).

In order to apply the induction hypothesis, it remains to check that the vector (z2,zs,...,2nN)
majorizes the diagonal of Ay_;. We accomplish this in three steps. First, recall that a; < z; for

k=2,...,7 — 1. Therefore,
m m
dazm-laz) a
k=2 k=2

foreach m =2,...,7 — 1. The sum on the right-hand side obviously exceeds the sum of the smallest
(m — 1) entries of the vector diag Ay_1, so the first (j — 2) majorization inequalities are in force.
Second, we use the fact that z > a to calculate that, for m = j,..., N,

m m
E Kk = E Rk — 21
k=2 k=1

m Jj—1 m
ZZak—zl :(al—l—aj—zl)—l—Zak—f— Z a.

k=1 k=2 k=j+1
Once again, observe that the sum on the right-hand side exceeds the sum of the smallest (m — 1)
entries of the vector diag Ax_1, so the remaining majorization inequalities are in force. Finally,
rearranging the relation Eszl 2k = Zszl ay, yields Zszz 2z =TrAn_1.

In consequence, the induction furnishes a rotation Qu_; that sets the diagonal of Ay _; equal to
the vector (z2,...,2n). Defining
def ]. 0).=
Py = |: :| ’

0 Qv
we see that conjugating A by the orthogonal matrix P = P; P, P; transforms the diagonal entries of
A to z while retaining the spectrum A.
This proof leads to the following algorithm.

Algorithm 1 (Generalized Chan-Li). Let A be an N x N Hermitian matriz with diagonal a, and
let z be a vector such that z = a, where both a and z are arranged in ascending order. The following
procedure computes a Hermitian matriz with diagonal entries z and eigenvalues equal to that of A.

(1) Set n =1.
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(2) Find the least 7 > n so that aj—1,j—1 < 2n < ajj.

(3) Use a symmetric permutation to set ani1,n+1 equal to aj; while shifting diagonal entries
n+1,...,5 — 1 one place down the diagonal.

(4) Construct a plane rotation Q in the (n,n + 1)-plane using equations (2) and (3) with ap-
propriate modifications.

(5) Replace A by Q*AQ.

(6) Use a symmetric permutation to re-sort the diagonal entries of A in ascending order.

(7) Increment n, and repeat Steps 2-7 while n < N.

This algorithm requires about 12N? floating-point operations if conjugate symmetry is exploited.
It requires the storage of about N (NN + 1)/2 floating-point numbers, including the vector z. It
is conceptually simpler to perform the permutations described in the algorithm, but it can be
implemented without them. The bookkeeping just becomes more laborious. The MATLAB code
in the Appendix demonstrates a simple implementation where such bookkeeping is used instead of
permutations.

3.2. Generalized Bendel-Mickey. Distinct algorithms arise by changing the strategy for selecting
the planes of rotation. Let z and a be N-dimensional vectors for which z > a. As before, we assume
that they are sorted in ascending order, and suppose that A is a Hermitian matrix with diagonal
a. We now exhibit a different method for transforming the diagonal of A to z while preserving its
eigenvalues. It can be viewed as a generalization of the Bendel-Mickey algorithm [3].

Suppose that diagA # z. On account of the majorization relationship, it is possible to select
indices ¢ < j that satisfy two properties: a; < z; < 2; < aj; and ag = z;, for all £ strictly between
tand j. If z; — ai; < aj; — z;, then we construct a plane rotation @ in the (¢,j)-plane such that
(Q*AQ)ii = z;. Otherwise, we find Q such that (Q*AQ);; = z;. Either rotation can be calculated
using appropriate versions of equations (2) and (3). To see that this strategy can be repeated, we
just need to check that z majorizes the diagonal of Q*AQ. In the first case, the plane rotation
transforms a;; to z; and a;; to a;; + aj; — 2;, while the remaining diagonal entries do not change.
Since ai; < z; < 27 < ay + ajj — 2z < aj; the diagonal entries of Q*AQ remain in ascending order.
The first (¢ — 1) majorization conditions are clearly unaffected. Notice that

i—1 i—1
E aee+2¢§223+2i,
=1 =1

which proves the i-th majorization condition. The next (j — ¢ — 1) majorization inequalities follow
in consequence of ayy being equal to z; whenever i < k < j. The rest of the majorization conditions
hold since

i—1 j—1 J J
Zall+zi+ E akk+(aii+ajj—zi)=ZGUSZZZ-
=1 k=it+1 =1 =1

The argument in the case when z; — a;; > a;; — z; is similar. It follows that our rotation strategy
may be applied until diag A = z. This proof leads to the following algorithm.

Algorithm 2 (Generalized Bendel-Mickey). Let A be an N x N Hermitian matriz with diagonal a
and furthermore let z be a vector such that z > a, where both a and z are arranged in ascending
order. The following procedure computes a Hermitian matriz with diagonal entries z and eigenvalues
equal to that of A.

(1) Find ¢ < j for which a;; < z; and z; < a;; and agy, = 23 for i < k < j (in our implementation
we pick the smallest such 7). If no such pair exists, we are either done (z = a) or the
majorization condition is violated.

(2) Construct a plane rotation Q in the (4, j)-plane using equations (2) and (3) with appropriate
modifications to transform a;; to z; in the case z; — a; < ajj — zj or transform aj; to z;
otherwise.
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(3) Replace A by Q*AQ.
(4) Repeat Steps 1-3 until the diagonal is transformed to z.

This algorithm has the same functionality and complexity as Algorithm 1 but it is different in
the plane rotations used. For further comparison we provide a simple MATLAB implementation in
the Appendix.

3.3. One-Sided Algorithms. It is well known that any positive semi-definite matrix A € My
can be expressed as the product X*X where X € My x and d > rank A. With this factorization,
the two-sided transformation A — Q*AQ is equivalent to a one-sided transformation X — XQ. In
consequence, the machinery of Algorithm 1 requires little adjustment to produce these factors.

Algorithm 3 (One-sided generalized Chan-Li). Suppose that z and a are non-negative vectors of
length N with ascending entries. Assume, moreover, that z = a. The following algorithm takes as
input a d X N matriz X whose squared column norms are listed by a and transforms it into a matrix
with the same singular spectrum and with squared column norms listed by z.

(1) Let n = 1.

(2) Find the least j > n so that ||a:j_1||§ <zp < ||avj||§

(3) Move the j-th column of X to the (n + 1)-st column, shifting the displaced columns to the
right.

(4) Form the quantities

Ann = ||a:n||§, An,n+1 = (Tpy1,Tn) and An+1,n+1 = ||wn+1||§

(5) Compute a plane rotation Q in the (n,n + 1)-plane using modified versions of equations (2)
and (3).

(6) Replace X by XQ.

(7) Sort columns (n + 1),..., N in order of increasing norm.

(8) Increment n, and repeat Steps 2—-7 while n < N.

The algorithm requires about 12dN real floating-point operations and storage of N(d + 2) real
floating-point numbers including the desired column norms and the current column norms. As
before, the procedure can be implemented without any permutations.

A similar modification of our generalized Bendel-Mickey algorithm also leads to a one-sided ver-
sion. The latter generalizes the one-sided version proposed by Davies and Higham in [7].

4. ILLUSTRATIVE NUMERICAL EXAMPLES

We illustrate the generalized Chan-Li algorithm by comparing it with the classical algorithm
on two examples. The generalized algorithms can produce a richer set of matrices with prescribed
diagonal entries and eigenvalues, making it possible to find solutions that satisfy additional properties
or better suit the application.

Suppose we want to produce a Hermitian matrix with eigenvalues (1,4,5,7,9) and diagonal
entries (2, 5,6,6,7). This example was presented in the Chan-Li paper [4]; our generalized algorithm
(essentially) yields the same result:

0.7071  —0.9487  0.7746
0 50000 0 0 0
AL =107071 0  6.0000 1.3416 —1.0954
—0.9487 0  1.3416  6.0000  2.4495
0.7746 0  —1.0954 2.4495  7.0000

2.0000 0
0

Notice the sparsity structure in the above matrix. In applications, such as designing matrices for
testing eigenvalue solvers [9], it would be better to produce a more random Hermitian matrix that
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satisfies the diagonal and eigenvalue constraints. The generalized algorithms can be used for this
purpose. We first generate a sequence of six vectors satisfying:

(174757779) =20x21X22X23x24xX 25 = (275767677)'

The z1, z2, 23, 24 vectors are randomly generated as convex combinations of the prescribed zj
and z5 vectors. This construction makes sure that the majorization conditions hold. Five steps of
the generalized Chan-Li algorithm are successively used to transform the diagonal matrix diag (zo)
to have diagonals z1, z5,...,z5. We arrive at the final matrix

2.0000 1.0400 1.4517 —0.6294 —0.3720
1.0400  5.0000 0.3620 —0.2157 1.4731
AL o= | 14517 03620  6.0000 1.6901 —0.6544
—0.6294 —0.2157 1.6901  6.0000 —1.2822
—0.3720 1.4731 —0.6544 —1.2822 7.0000

For the wireless application mentioned in the introduction, the matrices in question must have all
non-zero eigenvalues equal to one. (See the Appendix for more details.) The following example calls
for the generation of matrices with eigenvalues (0,0, 1,1,1) and diagonal (0.4, 0.6,0.6,0.6,0.8). The
Chan-Li algorithm produces

0.4000 —0.4899 0 0 0
—0.4899  0.6000 0 0 0
A =] o 0 0.6000 0.4000 —0.2828
0 0 0.4000 0.6000 0.2828
0 0 —0.2828 0.2828 0.8000

In the wireless application, it is often desirable to have lower variance in the magnitudes of the off-
diagonal entries, which are also known as “cross-correlations”. The generalized Chan-Li algorithm
applied in five steps as described above produces a more desirable matrix:

0.4000 —0.2312 —0.3503 0.1636  0.1926
—0.2312  0.6000 0.1116  0.3955 —0.1331

A L= |—-03503 0.1116 0.6000 —0.1681 0.2768
0.1636  0.3955 —0.1681 0.6000  0.1691
0.1926 —0.1331 0.2768  0.1691  0.8000

Here is an alternate strategy to construct a richer set of Hermitian matrices with prescribed
eigenvalues and diagonal entries. Generate random matrices with the given spectrum and select those
which have a diagonal majorized by the target diagonal. Then apply either one of the generalized
algorithms.

CONCLUSIONS

We have shown that a sequence of (N — 1) rotations is sufficient to replace the original diagonal
of N x N Hermitian matrix with any set of diagonal entries that majorizes the original set, all the
while preserving the spectrum of the matrix. The algorithms we have presented can move up a chain
in the poset of Schur-Horn equivalence classes as given in Definition 5.

An obvious question is whether it is possible to obtain an algorithm that moves down a chain
instead. In other words, is it possible to construct a finite sequence of rotations to replace the diagonal
with a set of entries that majorizes the eigenvalues but not necessarily the original diagonal? Since
the diagonal matrix of eigenvalues lies at the bottom of the chain, it might seem at first glance
that we are attempting to calculate the eigenvalues in finite time. We avoid this paradox since we
assume that the target diagonal is already known, In fact, to get to the bottom of the chain, O(n?)
Givens rotations can be used to reduce the initial matrix to tridiagonal form and then to the desired
diagonal matrix of eigenvalues (these include the application of perfect shifts to the tridiagonal
matrix [8]). Nevertheless, it seems much harder to construct a transformation of a vector into one
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of its predecessors than into one of its successors. Entropy may provide a reasonable explanation:
it is easier to average things together than to un-average them.

Other interesting questions arise. What is the structure of a general Schur-Horn equivalence class

of Hermitian matrices? Is there a procedure to construct every member of a given equivalence class?
Is it possible to define a uniform probability measure on each class and to construct members from a
class uniformly at random? In this paper, we have restricted our attention to finite step algorithms.

Ite

rative algorithms are an alternative, especially for the case of producing Hermitian matrices that

satisfy additional constraints. It would be useful to understand these problems better, and we hope
that other researchers will take interest.
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APPENDIX A. APPENDIX

A.1. Total Squared Correlation. The purpose of this appendix is to provide a short explanation
of the eigenvalue property that motivated us to pursue this work. Let X be a d x N matrix with
fixed column norms. Its total squared correlation is defined by the formula

N
TSC(X) ZIX*X|[p = > [(@m,zn)[’,
m,n=1
where the vectors xi,...,xn indicate the columns of X. Roughly speaking, the total squared

correlation measures how similar these vectors are to each other. Matrices with minimal TSC
are important for code-division multiple access (CDMA) systems. This connection is developed at
length in [1,20], and it serves as the basis for several iterative algorithms [18,21]. Here, we shall
only demonstrate that matrices with minimal TSC have nearly constant singular values and discuss
some implications.

Suppose that the numbers wy, ..., wy represent the squared column norms of X, which are fized,
and write W = 22’:1 wy. We shall use the symbols o1, ..., 0y to denote the d largest singular values
of X.

Proposition 1. Minimizing the total squared correlation of X with the column morms fixed is the

same as minimizing
d

S (03 - W/d)?

k=1
In words, the TSC reaches its minimum when the squared singular values of X are as constant as
possible. A lower bound on the total squared correlation is W2 /d. This bound is attained if and only
if the non-zero singular values of X are identically equal to \/W/d.

If the column norms are identically one, the inequality reduces to a famous result called the Welch
Bound [24]. The necessary and sufficient condition for attainment is due to Massey-Mittelholzer [17].

Proof. The squared Frobenius norm of X can be written in two fundamentally different ways:

N d
2

Y wa=Xllg =) oi.

n=1 k=1
Meanwhile, we can write the TSC as

d
TSC(X) = [X*X|2 = 3 of.
k=1

To complete the first part of the proof, perform the expansion
d d 2w & w2
> (or —W/d)? =) of - = > or+ —
k=1 k=1 k=1
The last two terms of the right-hand side are constant. It follows that minimizing the left-hand
member of the equation is the same as minimizing 02, the total squared correlation.
To produce a lower bound on the TSC, we minimize Zcé over arbitrary positive numbers
c1,...,cq that satisfy the constraint Y c¢i = W. Using the theory of Lagrange multipliers, it is

straightforward to check that the minimum occurs if and only if the numbers ¢3, ..., c are all equal.
According to the sum constraint, they must all equal W/d. It follows that the sum of their squares
equals W?/d. a

The diagonal entries of X*X are equal to the squared column norms of X, and the eigenvalues of
X*X are equal to the squared singular values of X. As discussed in Section 2.1, the numbers must
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always satisfy a majorization condition. In the special case that the non-zero singular values of X
are constant, the majorization relation reduces to a condition on the column norms:

0 <w, <W/d forn=1,...,N.

If this condition fails, the singular values of X cannot be equal, and the lower bound of Proposition
1 cannot be met.

A d x N matrix, d < N, whose d singular values are equal is called a tight frame. Tight frames
provide a natural generalization of unitary matrices, and, as we have seen, they also arise from min-
imizing the TSC. If X is a tight frame, then X*X is a Hermitian matrix whose non-zero eigenvalues
are identical. A Hermitian matrix whose non-zero eigenvalues all equal one is called an orthogonal
projector, so minimizing the TSC is also equivalent to constructing a (scaled) orthogonal projector
with a specified diagonal. For an introduction to tight frames, see [5].
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A.2. Matlab Code. MATLAB code for the generalized Chan-Li algorithm (Algorithm 1):

function [A, Q] = genchanli(A, z);
%GENCHANLI Implements the generalized Chan-Li algorithm.

% [A, Q] = GENCHANLI(A, z) calculates Q and replaces A by
% Q’AQ such that diag(Q’AQ) = z provided that A is a Hermitian
yA matrix and z majorizes diag(A).

% The algorithm operates on the upper triangular part of A, the lower triangular
% part is calculated at the end of the procedure for convenience.

[N, m] = size(A);
z = sort(z);
[d, Perm] = sort(diag(A));
% Now A(Perm(i), Perm(i)) i = 1, 2, ..., N is in ascending order.
if (A(Perm(1), Perm(1)) > z(1))
error (’Majorization condition violated’);

end

if (nargout == 2)
Q = eye(N);

end

for n = 1:N-2
% Find the smallest j > n with:
% A(Perm(j-1), Perm(j-1)) <= z(n) <= A(Perm(j), Perm(j)).

j=n+1;

while (j <= N & z(n) > A(Perm(j), Perm(j)))
i=i+1

end

if (j == N+ 1 | A(Perm(j-1), Perm(j-1)) > z(n))
error (’Majorization condition violated’);
end
% Transform the diagonal entry in row Perm(n) to z(n):
[c, s] = drotug(A, Perm(n), Perm(j), z(n));
A = drotcu(A, Perm(n), Perm(j), c, s, z(n));
if (nargout == 2)
Q = drot(Q, Perm(n), Perm(j), c, s);
end
% A has been changed so we need to update Perm accordingly.
% First find the new place for the j-th element A(Perm(j), Perm(j)):
i=n+1;
while (i < j & A(Perm(i), Perm(i)) < A(Perm(j), Perm(j)))
i=1+1;
end
% A(Perm(j), Perm(j)) needs to move to the ith position:
temp = Perm(j);
Perm(i+1:j) = Perm(i:j-1);
Perm(i) = temp;
% Note that Perm records the order of the diagonal A except the first n
% entries (which have already been processed). In the subsequent iterations
% only Perm(n+1:N) is used.
end
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% The last rotation:
[c, s] = drotug(A, Perm(N-1), Perm(N), z(N-1));
A = drotcu(A, Perm(N-1), Perm(N), c, s, z(N-1));
if (nargout == 2)

Q = drot(Q, Perm(N-1), Perm(N), c, s);
end

% Copy the elements above the diagonal to the other half of the matrix for
% convenience:
for i = 1:N-1
A(i+1:N, i) = A(i, i+1:N)’;
end
MATLAB code for the generalized Bendel-Mickey algorithm (Algorithm 2):

function [A, Q] = genbendelmickey(A, z, tol)
%#GENBENDELMICKEY Implements the generalized Bendel-Mickey algorithm.

% [A, Q] = GENBENDELMICKEY(A, z, tol) calculates Q and replaces A by
% Q’AQ such that diag(Q’AQ) = z provided that A is a Hermitian matrix
yA and z majorizes diag(A) and z and diag(A) are in ascending order.

% The algorithm operates on the upper triangular part of A, the lower
% triangular part is calculated at the end of the procedure for convenience.

[m, N] = size(A);
if (nargout == 2)

Q = eye(lD;
end

% The following tolerance is necessary to ensure that no false reports of
% violations of the majorization condition is generated due to loss of
% precision.
if (nargin == 2)
tol = 2*N*max(abs(z(N)), abs(z(1)))x*eps;
end

% The algorithm attempts to find i < j indices such that the following two
% conditions hold: A(i, i) < z(i) <= z(j) < A(j, j) and A(k, k) = z(k) for
% all i < k < j. A plane rotation in the (i, j) plane transforms A such that
% either A(i, i) or A(j, j) becomes equal to z(i) or z(j) respectively. If
% the majorization condition is satisfied, this step can be repeated until
% diag(A) = z. The first (i, j) pair is separately calculated:
i=0;
j=1;
while (j <= N & z(j) >= A(j, j))

if (z(3) > A5, )

i=173;

j=i+1
end
while (1 <= i & j <= N)
% Decide which diagonal element can be made equal to the corresponding

14
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% z vector element and use a plane rotation for the transformation:
if (z(i) - A, 1) <= A(§, j) - z(3))
[c, s] = drotug(A, i, j, z(i));
A = drotcu(4, i, j, c, s, z(1));
if (nargout == 2)
Q = drot(Q, i, j, c, s);
end
else
[c, s] = drotug(4, j, i, z(j));
A = drotcu(4, j, i, c, s, z(j));
if (nargout == 2)
Q = drot(Q, j, i, c, s);
end
end
% Find the new pair:
while (j <= N & z(j) > A(j, j) - tol)
if (z(3) > AGG, )

i=173;
end
=i+
end
while (i >=1 & z(i) < A(i, 1) + tol)
i=1i-1;
end

end
if (i>11] j<=N
error (’The majorization condition is violated.’);
end
% Copy the elements above the diagonal to the other half of the matrix for
% convenience.
for i = 1:N-1
A(i+1:N, i) = A(i, i+1:N)’;
end

15



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES

Auxiliary functions to calculate and apply plane rotations:

function [c, s] = drotug(A, i, j, =)
%DROTUG Generate a plane rotation for a Hermitian matrix.

% [c, s] = DROTUG(A, i, j, z) calculates the parameters of a plane
% rotation Q such that conjugating with Q transforms A(i, i) to z.
yA The A matrix is assumed to be Hermitian and only its upper triangular
h part is used in the calculation.
al = A(d, 1);
a2 = A(3, 3);
if (i < j)

b = real(A(i, j));
else

b = real(A(j, 1));
end

D=b"2- (al - z)*(a2 - z);
>

if (b > 0) % To avoid cancellations.
t =b + sqrt(D);
else
t =b - sqrt(D);
end
if (a2 == z)
c = 0;
s = 1;
else
= t/(a2 - 2z);
= 1/sqrt(1 + t7°2);
s = cxt;
end;
return;

function A = drot(4, i, j, c, s)

%DROT Apply a plane rotation.

% A = DROT(A, i, j, c, s) replaces A by AQ where the Q plane rotation
YA has parameters [c, s] and acts in the (i, j) plane.

AC:, [i, j1) = ACG:, [i, jD)*[c, s; -s, cl;
return;

function A = drotcu(A, i, j, c, s, z)
#DROTCU Conjugates with a plane rotation.

% A = DROTCU(A, i, j, c, s, z) replaces A by Q‘AQ where the Q plane

h rotation acts in the (i, j) plane and has parameters c¢ and s. The A
h matrix is assumed to be Hermitian and only its upper triangular part
YA is used in the calculation.

[m, N] = size(A);

if (1 < j)

16
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A(1:i-1, [i, j1) = A(1:i-1, [i, jD)*[c, s; -s, cl;

tmp(i+1:j-1) = c*A(i, i+1:j-1) - s*A(i+1:j-1, j)’;

A(i+1:j-1, j) = s*A(d, i+1:j-1)7 + c*xA(i+1l:j-1, j);

A(i, i+1:j-1) = tmp(i+l:j-1);

AC[i, j1, j+1:N) = [c, -s; s, cl*A([i, j1, j+1:N);

A(i, j) = s*xcx(A(d, 1) - A(F, J)) + c”2*%A(i, j) - s~2*A(d, j)’;
else

A(L:j-1, [i, j1) = A(L:j-1, [i, j)*[c, s; -s, c];

tmp(j+1:i-1) = c*A(j+1:i-1, i) - s*A(j, j+1:i-1)’;

AGj, j+1:i-1) = s*A(§+1:i-1, i)’ + c*A(j, j+1:i-1);

A(j+1:i-1, i) = tmp(j+1:i-1)7;

AC[i, j1, i+1:N) = [c, -s; s, cI*A([i, j], i+1:N);

A(j, i) = s*xcx(A(d, 1) - A(G, J)) + c"2*%A(j, 1) - s~2*A(j, 1)’;
end
AGi, 3)
A(i, 1)
return;

A(j, j) + A(i, 1) - z;
z;
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