
Univ of Texas, Dept of Computer Sienes Tehnial Report # TR-03-49GENERALIZED FINITE ALGORITHMS FOR CONSTRUCTINGHERMITIAN MATRICES WITH PRESCRIBED DIAGONAL AND SPECTRUMINDERJIT S. DHILLON, ROBERT W. HEATH JR., M�ATY�AS A. SUSTIK AND JOEL A. TROPPAbstrat. In this paper, we present new algorithms that an replae the diagonal entries of aHermitian matrix by any set of diagonal entries that majorize the original set without alteringthe eigenvalues of the matrix. They perform this feat by applying a sequene of (N � 1) or fewerplane rotations, where N is the dimension of the matrix. Both the Bendel-Mikey and the Chan-Lialgorithms are speial ases of the proposed proedures. Using the fat that a positive semi-de�nitematrix an always be fatored as X�X , we also provide more eÆient versions of the algorithmsthat an diretly onstrut fators with spei�ed singular values and olumn norms. We onludewith some open problems related to the onstrution of Hermitian matries with joint diagonaland spetral properties. 1. IntrodutionIt is sometimes of interest to onstrut a olletion of Hermitian matries that have spei�eddiagonal elements and eigenvalues. When all the eigenvalues are non-negative, the problem is es-sentially equivalent to onstruting a olletion of retangular matries with spei�ed olumn normsand singular values. In partiular, if a retangular matrix X has requirements on its singular val-ues and squared olumn norms, the Hermitian matrix X �X has a orresponding requirement on itseigenvalues and diagonal entries.A spei� example of this problem is to onstrut Hermitian matries with unit diagonal andpresribed non-negative eigenvalues [3℄. Suh matries are alled orrelation matries | Daviesand Higham disuss several appliations that require suh matries, ranging from the generationof test matries for eigenvalue solvers to the design of statistial experiments [3, 7, 9℄. A relatedmatrix onstrution problem has also arisen in onnetion with wireless ommuniations. It turnsout that d�N matries, d < N , with d idential non-zero singular values and with presribed olumnnorms satisfy a ertain \sum apaity" bound and \minimum squared orrelation" property thatis important in wireless appliations. These matries only exist if a majorization ondition holds,as disussed in Setion 2.1. For an introdution to squared orrelation, see the Appendix. Referto [20, 22, 23℄ for a thorough treatment of how the problem arises in wireless appliations.Two �nite step tehniques, the Bendel-Mikey [3℄ and Chan-Li [4℄ algorithms, are available forspeial ases. Both algorithms apply a sequene of plane rotations to an initial matrix that hangeits diagonal entries while preserving its spetrum. The Chan-Li algorithm starts with the diagonalmatrix of eigenvalues and an reah a real, symmetri matrix with a spei�ed majorizing diagonal.On the other hand, the Bendel-Mikey algorithm an start with an arbitrary Hermitian matrix andtransform it to a Hermitian matrix with equal diagonal entries.In this paper, we present new algorithms that generalize the Chan-Li and Bendel-Mikey proe-dures so that we an start with an arbitrary Hermitian matrix and hange its diagonal entries tospei�ed values while retaining its original spetrum. The only requirement is that the new diagonalDate: November 20, 2003.I. Dhillon and M. Sustik are with the Dept. of Comp. Si., The University of Texas at Austin, Austin, TX 78712USA, finderjit|sustikg�s.utexas.edu.R. Heath is with the Dept. of Elet. and Comp. Engr., The University of Texas at Austin, Austin, TX 78712 USA,rheath�ee.utexas.edu.J. Tropp is with the Inst. for Comp. Engr. and Si. (ICES), The University of Texas, Austin, TX 78712 USA,jtropp�ies.utexas.edu. 1



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 2elements majorize (in essene, average) the original ones. Thus our generalized algorithms permit usto onstrut a lass of Hermitian matries satisfying spetral and diagonal onstraints that is riherthan the olletion yielded by older algorithms.We now give a brief outline of the paper. In x2, we provide the neessary bakground andsummarize previous results. We present our generalized algorithms in x3, and x4 ontains somenumerial examples. The Appendix disusses total squared orrelation.2. Bakground and Related Work2.1. Majorization. The majorization relation is a partial ordering on vetors that appears in astriking number of apparently unrelated ontexts. Lorenz originally developed the ordering foreonometris, where he used it to ompare the equitability of inome distributions [2℄. An intuitivede�nition is that one vetor majorizes another if the former has \more average" entries than thelatter. Let us make this notion preise.De�nition 1. Let a be a real, N -dimensional vetor, and denote its k-th smallest omponent bya(k). This number is alled the k-th order statisti of a.De�nition 2. Let a and z be real N -dimensional vetors, and suppose that their order statistissatisfy the following relationships. a(1) � z(1);a(1) + a(2) � z(1) + z(2);...a(1) + a(2) + � � �+ a(N�1) � z(1) + z(2) + � � �+ z(N�1); and alsoa(1) + a(2) + � � �+ a(N) = z(1) + z(2) + � � �+ z(N):Then we say that z majorizes a, and we write z < a. If eah of the inequalities is strit, then zstritly majorizes a, and we write z � a.It is not hard to verify that the majorization relation is reexive, anti-symmetri, and transitive, soit de�nes a partial ordering on RN . An equivalent de�nition is that z < a if and only if z = M a forsome doubly-stohasti matrixM . Birkho�'s Theorem states that the olletion of doubly-stohastimatries of size N is idential with the onvex hull of the permutation matries having size N . Itfollows that those vetors whih majorize a �xed vetor form a ompat, onvex set. See [12,16℄ formore details.Majorization plays a role on our stage beause it de�nes the preise relationship between thediagonal entries and eigenvalues of a Hermitian matrix.Theorem 3 (Shur-Horn [12℄). The diagonal entries of a Hermitian matrix majorize its eigenvalues.Conversely, if a < �, then there exists a Hermitian matrix with diagonal entries listed by a andeigenvalues listed by �.I. Shur demonstrated the neessity of the majorization ondition in 1923, and A. Horn proved theonverse some thirty years later [12℄. Horn's original proof is quite ompliated, and a small ottageindustry has grown up to produe simpler, more onstrutive arguments. See, for example, [4,6,15℄.A omprehensive referene on majorization is Marshall and Olkin's monograph [16℄.2.2. Some Posets. First, we de�ne some onepts related to partial orderings, and then we developsome new partial orderings on Hermitian matries that are losely related to the matrix onstrutionproblem.De�nition 4. A set S equipped with a partial ordering < is alled a poset. It is denoted as (S;<).Two elements a; b 2 S are omparable if and only if a < b or b < a. Any totally ordered subset of aposet is alled a hain. Every pair of elements in a hain is omparable.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 3We may equip any poset with the ordering topology, where eah basi open set is given by fa 6=b : b < ag for some point b. This is the minimal topology in whih the ordering is ontinuous [14℄.Observe that vetors are omparable by majorization only when their entries have the same sum.Let C� denote the set of N -dimensional vetors with trae �. Then eah C� is an isolated omponentof the poset (RN ;<). Moreover, every C� has a unique majorization-maximal element: the onstantvetor with entries �=N . On the other hand, there are no minimal vetors under the majorizationrelation; every z sueeds an in�nite number of other vetors.De�nition 5. We say that two Hermitian matries A and B are Shur-Horn equivalent if and onlyif they have idential spetra and idential diagonals (up to permutation). We write A � B , and weuse [A℄ to denote the equivalene lasses indued by this relation.We indiate the olletion of Shur-Horn equivalene lasses by H . Notie that the members ofH vary signi�antly. For example, the Shur-Horn equivalene lass of a diagonal matrix is the setof diagonal matries with the same entries in permuted order. Meanwhile, the equivalene lass ofa matrix with unit diagonal and non-negative eigenvalues � is the set of \orrelation matries" thathave spetrum � [7℄. Even though similarity transformations preserve the eigenvalues of a Hermitianmatrix, very few simultaneously preserve the diagonal. Therefore, Shur-Horn equivalene lasses arenot stable under most transformations. Exeptions inlude symmetri permutations and diagonalsimilarity transforms.De�nition 6. For any two elements of H , [A℄ and [Z ℄, we say that [Z ℄ < [A℄ if and only if the twomatries have the same spetrum and diagZ < diagA.It is not hard to hek that this onstrution yields a well-de�ned partial ordering onH . Clearly,two Shur-Horn equivalene lasses are omparable only if their members have the same spetrum.Suppose that the entries of � 2 RN already our in non-dereasing order, viz. �k = �(k) for eahk. Then we may write H� to denote the elements of H with spetrum �. Eah H� forms anisolated omponent of the poset (H ;<), and it has a unique maximal element: the equivalenelass of matries with eigenvalues � and with a onstant diagonal. A signi�ant di�erene betweenmajorization and the matrix ordering is that every hain under the matrix ordering has a minimalelement: [diag�℄, where � lists the (ommon) eigenvalues of the members of the hain.2.3. Algorithms. Now we disuss two algorithms whih have been proposed for onstruting Her-mitian matries with diagonal and spetral properties. In the sequel, we use M N to denote the setof omplex N �N matries and M d;N to denote the set of omplex d�N matries.The Bendel-Mikey algorithm produes random (Hermitian) orrelation matries with given spe-trum [3℄. Suppose that A 2 M N is a Hermitian matrix with TrA = N . If A does not have a unitdiagonal, we an loate two diagonal elements so that ajj < 1 < akk; otherwise, the trae ondi-tion would be violated. It is then possible to onstrut a real rotation Q in the jk-plane for whih(Q�AQ)jj = 1. The transformation A 7! Q�AQ preserves the onjugate symmetry and the spetrumof A, but it redues the number of non-unit diagonal entries by at least one. Therefore, at most(N � 1) rotations are required before the resulting matrix has a unit diagonal. If the output matrixis Z , it follows that [Z ℄ < [A℄. Indeed, [Z ℄ is the unique <-maximal element in every hain thatontains [A℄.The Chan-Li algorithm, on the other hand, was developed as a onstrutive proof of the Shur-Horn Theorem [4℄. Suppose that a < �. The Chan-Li algorithm begins with the diagonal matrix� def= diag�. Then it applies a sequene of (N�1) leverly hosen (real) plane rotations to generate areal, symmetri matrix A with the same eigenvalues as � but with diagonal entries listed by a. Oneagain, the output and input satisfy the relationship [A℄ < [�℄. Where the Bendel-Mikey algorithmstarts from any element of a hain and moves to the top, the Chan-Li algorithm starts at the bottomof a hain and moves upward.The Bendel-Mikey algorithm is a surjetive map from the set of Hermitian matries with spe-trum � onto the set of orrelation matries with spetrum �. If the initial matrix is hosen uniformly



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 4at random (whih may be aomplished with standard tehniques [19℄), the result may be onstruedas a random orrelation matrix. The distribution of the output, however, is unknown [11℄. Onthe other hand, due to the speial form of the initial matrix and the rigid hoie of rotations, theChan-Li algorithm annot onstrut very many distint matries with a spei�ed diagonal. It wouldbe interesting to develop a proedure whih an alulate every member of a given equivalene lass.A brief disussion of how to use plane rotations to equalize the diagonal entries of a Hermitianmatrix appears on page 77 of Horn and Johnson [12℄. Problems 8.4.1 and 8.4.2 of Golub and van Loanoutline the Bendel-Mikey algorithm [10℄. Davies and Higham present a numerially stable versionof the Bendel-Mikey algorithm in their artile [7℄. Other referenes on this topi inlude [13, 25℄.3. Generalized AlgorithmsWe propose methods that generalize the Bendel-Mikey and Chan-Li algorithms. Like them, ourtehniques use a sequene of (N � 1) or fewer plane rotations to move upward between two pointsin a hain. The rux of the matter is the strategy for seleting the planes of rotation. The twomethods we present an be viewed respetively as diret generalizations of the Chan-Li strategyand the Bendel-Mikey strategy. Unlike the earlier algorithms, these new tehniques do not requireending at the top of a hain like Bendel-Mikey nor starting at the bottom like Chan-Li. Therefore,our tehniques allow the onstrution of a muh larger set of matries than the Chan-Li algorithm,while retaining its ability to selet the �nal diagonal entries.3.1. Generalized Chan-Li. Let z and a be N -dimensional vetors for whih z < a. Using indu-tion on the dimension, we show how to transform a Hermitian matrix with diagonal a and spetrum� into a Hermitian matrix with diagonal z and spetrum � using a sequene of plane rotations. Itis enough to prove the result when the omponents of a and z are sorted in asending order, so weplae that restrition in the sequel.Suppose �rst that N = 2 and that A has diagonal a. Sine z < a, we have a1 � z1 � z2 � a2.We an expliitly onstrut a real plane rotation Q so that the diagonal of Q�AQ equals z. Reallthat a two-dimensional plane rotation is an orthogonal matrix of the formQ = �  s�s � ;where 2 + s2 = 1 [10℄. The desired plane rotation yields the matrix equation�  s�s �� � a1 a�21a21 a2 ��  s�s � = � z1 z�21z21 ez2 �:The equality of the upper-left entries an be stated as2a1 � 2sRea21 + s2a2 = z1:This equation is quadrati in t def= s=:(a2 � z1) t2 � 2tRea21 + (a1 � z1) = 0; (1)whene t = Re a21 �p(Re a21)2 � (a1 � z1)(a2 � z1)a2 � z1 : (2)Notie that the disriminant is non-negative due to the majorization ondition. The � sign in (2) istaken to avoid sign anellations with Re a21. If neessary, we an extrat the other root of (1) usingthe fat that the produt of its roots equals (a1 � z1)=(a2 � z1). Finally, determine the parametersof the rotation using  = 1p1 + t2 and s = t: (3)Floating-point arithmeti is inexat, so the rotation may not yield (Q�AQ)11 = z1. A better im-plementation sets this entry to z1 expliitly. Davies and Higham have shown that this method of



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 5omputing rotations is numerially stable [7℄. Sine Q is orthogonal, Q�AQ preserves the spetrumof A but replaes its diagonal with z.Grant us for a moment that we an perform the advertised feat on Hermitian matries of size(N � 1). Now we onsider N -dimensional vetors for whih z < a, and suppose that diagA = a.The majorization ondition implies that a1 � z1 � zN � aN , so it is always possible to selet a leastinteger j > 1 so that aj�1 � z1 � aj . Let P1 be a permutation matrix for whihdiag (P�1AP1) = (a1; aj ; a2; : : : ; aj�1; aj+1; : : : ; aN ):Observe that a1 � z1 � aj and a1 � a1 + aj � z1 � aj . Thus we modify equations (2) and (3) toonstrut a two-dimensional plane rotation Q2 that sets the upper left entry ofQ�2 � a1 a�j1aj1 aj �Q2to z1. If we de�ne the rotation P2 def= �Q2 0�0 IN�2� ;then P�2P�1AP1P2 = �z1 v�v AN�1� ;where v is an appropriate vetor and AN�1 is an appropriate sub-matrix withdiag (AN�1) = (a1 + aj � z1; a2; : : : ; aj�1; aj+1; : : : ; aN ):In order to apply the indution hypothesis, it remains to hek that the vetor (z2; z3; : : : ; zN )majorizes the diagonal of AN�1. We aomplish this in three steps. First, reall that ak � z1 fork = 2; : : : ; j � 1. Therefore, mXk=2 zk � (m� 1) z1 � mXk=2 akfor eah m = 2; : : : ; j�1. The sum on the right-hand side obviously exeeds the sum of the smallest(m � 1) entries of the vetor diagAN�1, so the �rst (j � 2) majorization inequalities are in fore.Seond, we use the fat that z < a to alulate that, for m = j; : : : ; N ,mXk=2 zk = mXk=1 zk � z1� mXk=1 ak � z1 = (a1 + aj � z1) + j�1Xk=2 ak + mXk=j+1 ak:One again, observe that the sum on the right-hand side exeeds the sum of the smallest (m � 1)entries of the vetor diagAN�1, so the remaining majorization inequalities are in fore. Finally,rearranging the relationPNk=1 zk =PNk=1 ak yieldsPNk=2 zk = TrAN�1.In onsequene, the indution furnishes a rotation QN�1 that sets the diagonal of AN�1 equal tothe vetor (z2; : : : ; zN). De�ning P3 def= �1 0�0 QN�1� ;we see that onjugating A by the orthogonal matrix P = P1P2P3 transforms the diagonal entries ofA to z while retaining the spetrum �.This proof leads to the following algorithm.Algorithm 1 (Generalized Chan-Li). Let A be an N �N Hermitian matrix with diagonal a, andlet z be a vetor suh that z < a, where both a and z are arranged in asending order. The followingproedure omputes a Hermitian matrix with diagonal entries z and eigenvalues equal to that of A.(1) Set n = 1.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 6(2) Find the least j > n so that aj�1;j�1 � zn � ajj .(3) Use a symmetri permutation to set an+1;n+1 equal to ajj while shifting diagonal entriesn+ 1; : : : ; j � 1 one plae down the diagonal.(4) Construt a plane rotation Q in the (n; n + 1)-plane using equations (2) and (3) with ap-propriate modi�ations.(5) Replae A by Q�AQ.(6) Use a symmetri permutation to re-sort the diagonal entries of A in asending order.(7) Inrement n, and repeat Steps 2{7 while n < N .This algorithm requires about 12N2 oating-point operations if onjugate symmetry is exploited.It requires the storage of about N(N + 1)=2 oating-point numbers, inluding the vetor z. Itis oneptually simpler to perform the permutations desribed in the algorithm, but it an beimplemented without them. The bookkeeping just beomes more laborious. The Matlab odein the Appendix demonstrates a simple implementation where suh bookkeeping is used instead ofpermutations.3.2. Generalized Bendel-Mikey. Distint algorithms arise by hanging the strategy for seletingthe planes of rotation. Let z and a be N -dimensional vetors for whih z < a. As before, we assumethat they are sorted in asending order, and suppose that A is a Hermitian matrix with diagonala. We now exhibit a di�erent method for transforming the diagonal of A to z while preserving itseigenvalues. It an be viewed as a generalization of the Bendel-Mikey algorithm [3℄.Suppose that diagA 6= z. On aount of the majorization relationship, it is possible to seletindies i < j that satisfy two properties: aii < zi � zj < ajj and akk = zk for all k stritly betweeni and j. If zi � aii � ajj � zj , then we onstrut a plane rotation Q in the (i; j)-plane suh that(Q�AQ)ii = zi. Otherwise, we �nd Q suh that (Q�AQ)jj = zj . Either rotation an be alulatedusing appropriate versions of equations (2) and (3). To see that this strategy an be repeated, wejust need to hek that z majorizes the diagonal of Q�AQ. In the �rst ase, the plane rotationtransforms aii to zi and ajj to aii + ajj � zi, while the remaining diagonal entries do not hange.Sine aii < zi � zj � aii + ajj � zi < ajj the diagonal entries of Q�AQ remain in asending order.The �rst (i� 1) majorization onditions are learly una�eted. Notie thati�1X̀=1 a`` + zi � i�1X̀=1 z` + zi;whih proves the i-th majorization ondition. The next (j � i� 1) majorization inequalities followin onsequene of akk being equal to zk whenever i < k < j. The rest of the majorization onditionshold sine i�1X̀=1 a`` + zi + j�1Xk=i+1 akk + (aii + ajj � zi) = jX̀=1 a`` � jX̀=1 z`:The argument in the ase when zi� aii > ajj � zj is similar. It follows that our rotation strategymay be applied until diagA = z. This proof leads to the following algorithm.Algorithm 2 (Generalized Bendel-Mikey). Let A be an N �N Hermitian matrix with diagonal aand furthermore let z be a vetor suh that z < a, where both a and z are arranged in asendingorder. The following proedure omputes a Hermitian matrix with diagonal entries z and eigenvaluesequal to that of A.(1) Find i < j for whih aii < zi and zj < ajj and akk = zk for i < k < j (in our implementationwe pik the smallest suh i). If no suh pair exists, we are either done (z = a) or themajorization ondition is violated.(2) Construt a plane rotation Q in the (i; j)-plane using equations (2) and (3) with appropriatemodi�ations to transform aii to zi in the ase zi � aii � ajj � zj or transform ajj to zjotherwise.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 7(3) Replae A by Q�AQ.(4) Repeat Steps 1{3 until the diagonal is transformed to z.This algorithm has the same funtionality and omplexity as Algorithm 1 but it is di�erent inthe plane rotations used. For further omparison we provide a simple Matlab implementation inthe Appendix.3.3. One-Sided Algorithms. It is well known that any positive semi-de�nite matrix A 2 M Nan be expressed as the produt X �X where X 2 M d;N and d � rankA. With this fatorization,the two-sided transformation A 7! Q�AQ is equivalent to a one-sided transformation X 7! XQ. Inonsequene, the mahinery of Algorithm 1 requires little adjustment to produe these fators.Algorithm 3 (One-sided generalized Chan-Li). Suppose that z and a are non-negative vetors oflength N with asending entries. Assume, moreover, that z < a. The following algorithm takes asinput a d�N matrix X whose squared olumn norms are listed by a and transforms it into a matrixwith the same singular spetrum and with squared olumn norms listed by z.(1) Let n = 1.(2) Find the least j > n so that kxj�1k22 � zn � kxjk22.(3) Move the j-th olumn of X to the (n+ 1)-st olumn, shifting the displaed olumns to theright.(4) Form the quantitiesann = kxnk22 ; an;n+1 = hxn+1;xni and an+1;n+1 = kxn+1k22 :(5) Compute a plane rotation Q in the (n; n+1)-plane using modi�ed versions of equations (2)and (3).(6) Replae X by XQ .(7) Sort olumns (n+ 1); : : : ; N in order of inreasing norm.(8) Inrement n, and repeat Steps 2{7 while n < N .The algorithm requires about 12dN real oating-point operations and storage of N(d + 2) realoating-point numbers inluding the desired olumn norms and the urrent olumn norms. Asbefore, the proedure an be implemented without any permutations.A similar modi�ation of our generalized Bendel-Mikey algorithm also leads to a one-sided ver-sion. The latter generalizes the one-sided version proposed by Davies and Higham in [7℄.4. Illustrative Numerial ExamplesWe illustrate the generalized Chan-Li algorithm by omparing it with the lassial algorithmon two examples. The generalized algorithms an produe a riher set of matries with presribeddiagonal entries and eigenvalues, making it possible to �nd solutions that satisfy additional propertiesor better suit the appliation.Suppose we want to produe a Hermitian matrix with eigenvalues (1; 4; 5; 7; 9) and diagonalentries (2; 5; 6; 6; 7). This example was presented in the Chan-Li paper [4℄; our generalized algorithm(essentially) yields the same result:A(1)ChanLi = 266664 2:0000 0 0:7071 �0:9487 0:77460 5:0000 0 0 00:7071 0 6:0000 1:3416 �1:0954�0:9487 0 1:3416 6:0000 2:44950:7746 0 �1:0954 2:4495 7:0000 377775 :Notie the sparsity struture in the above matrix. In appliations, suh as designing matries fortesting eigenvalue solvers [9℄, it would be better to produe a more random Hermitian matrix that



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 8satis�es the diagonal and eigenvalue onstraints. The generalized algorithms an be used for thispurpose. We �rst generate a sequene of six vetors satisfying:(1; 4; 5; 7; 9) = z0 4 z1 4 z2 4 z3 4 z4 4 z5 = (2; 5; 6; 6; 7):The z1; z2; z3; z4 vetors are randomly generated as onvex ombinations of the presribed z0and z5 vetors. This onstrution makes sure that the majorization onditions hold. Five steps ofthe generalized Chan-Li algorithm are suessively used to transform the diagonal matrix diag (z0)to have diagonals z1; z2; : : : ; z5. We arrive at the �nal matrixA(1)GenChanLi = 266664 2:0000 1:0400 1:4517 �0:6294 �0:37201:0400 5:0000 0:3620 �0:2157 1:47311:4517 0:3620 6:0000 1:6901 �0:6544�0:6294 �0:2157 1:6901 6:0000 �1:2822�0:3720 1:4731 �0:6544 �1:2822 7:0000 377775 :For the wireless appliation mentioned in the introdution, the matries in question must have allnon-zero eigenvalues equal to one. (See the Appendix for more details.) The following example allsfor the generation of matries with eigenvalues (0; 0; 1; 1; 1) and diagonal (0:4; 0:6; 0:6; 0:6; 0:8). TheChan-Li algorithm produesA(2)ChanLi = 266664 0:4000 �0:4899 0 0 0�0:4899 0:6000 0 0 00 0 0:6000 0:4000 �0:28280 0 0:4000 0:6000 0:28280 0 �0:2828 0:2828 0:8000 377775 :In the wireless appliation, it is often desirable to have lower variane in the magnitudes of the o�-diagonal entries, whih are also known as \ross-orrelations". The generalized Chan-Li algorithmapplied in �ve steps as desribed above produes a more desirable matrix:A(2)GenChanLi = 266664 0:4000 �0:2312 �0:3503 0:1636 0:1926�0:2312 0:6000 0:1116 0:3955 �0:1331�0:3503 0:1116 0:6000 �0:1681 0:27680:1636 0:3955 �0:1681 0:6000 0:16910:1926 �0:1331 0:2768 0:1691 0:8000 377775 :Here is an alternate strategy to onstrut a riher set of Hermitian matries with presribedeigenvalues and diagonal entries. Generate randommatries with the given spetrum and selet thosewhih have a diagonal majorized by the target diagonal. Then apply either one of the generalizedalgorithms. ConlusionsWe have shown that a sequene of (N � 1) rotations is suÆient to replae the original diagonalof N �N Hermitian matrix with any set of diagonal entries that majorizes the original set, all thewhile preserving the spetrum of the matrix. The algorithms we have presented an move up a hainin the poset of Shur-Horn equivalene lasses as given in De�nition 5.An obvious question is whether it is possible to obtain an algorithm that moves down a haininstead. In other words, is it possible to onstrut a �nite sequene of rotations to replae the diagonalwith a set of entries that majorizes the eigenvalues but not neessarily the original diagonal? Sinethe diagonal matrix of eigenvalues lies at the bottom of the hain, it might seem at �rst glanethat we are attempting to alulate the eigenvalues in �nite time. We avoid this paradox sine weassume that the target diagonal is already known, In fat, to get to the bottom of the hain, O(n2)Givens rotations an be used to redue the initial matrix to tridiagonal form and then to the desireddiagonal matrix of eigenvalues (these inlude the appliation of perfet shifts to the tridiagonalmatrix [8℄). Nevertheless, it seems muh harder to onstrut a transformation of a vetor into one
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GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 11Appendix A. AppendixA.1. Total Squared Correlation. The purpose of this appendix is to provide a short explanationof the eigenvalue property that motivated us to pursue this work. Let X be a d �N matrix with�xed olumn norms. Its total squared orrelation is de�ned by the formulaTSC(X ) def= kX �Xk2F = NXm;n=1 jhxm;xnij2;where the vetors x1; : : : ;xN indiate the olumns of X . Roughly speaking, the total squaredorrelation measures how similar these vetors are to eah other. Matries with minimal TSCare important for ode-division multiple aess (CDMA) systems. This onnetion is developed atlength in [1, 20℄, and it serves as the basis for several iterative algorithms [18, 21℄. Here, we shallonly demonstrate that matries with minimal TSC have nearly onstant singular values and disusssome impliations.Suppose that the numbers w1; : : : ; wN represent the squared olumn norms of X , whih are �xed,and writeW =PNn=1 wn. We shall use the symbols �1; : : : ; �k to denote the d largest singular valuesof X .Proposition 1. Minimizing the total squared orrelation of X with the olumn norms �xed is thesame as minimizing dXk=1(�2k �W=d)2In words, the TSC reahes its minimum when the squared singular values of X are as onstant aspossible. A lower bound on the total squared orrelation is W 2=d. This bound is attained if and onlyif the non-zero singular values of X are identially equal to pW=d.If the olumn norms are identially one, the inequality redues to a famous result alled the WelhBound [24℄. The neessary and suÆient ondition for attainment is due to Massey-Mittelholzer [17℄.Proof. The squared Frobenius norm of X an be written in two fundamentally di�erent ways:NXn=1wn = kXk2F = dXk=1�2k :Meanwhile, we an write the TSC asTSC(X ) = kX �Xk2F = dXk=1�4k :To omplete the �rst part of the proof, perform the expansiondXk=1(�2k �W=d)2 = dXk=1 �4k � 2Wd dXk=1�2k + W 2d :The last two terms of the right-hand side are onstant. It follows that minimizing the left-handmember of the equation is the same as minimizingP�4k, the total squared orrelation.To produe a lower bound on the TSC, we minimize P 4k over arbitrary positive numbers1; : : : ; d that satisfy the onstraint P 2k = W . Using the theory of Lagrange multipliers, it isstraightforward to hek that the minimum ours if and only if the numbers 21; : : : ; 2d are all equal.Aording to the sum onstraint, they must all equal W=d. It follows that the sum of their squaresequals W 2=d. �The diagonal entries of X �X are equal to the squared olumn norms of X , and the eigenvalues ofX �X are equal to the squared singular values of X . As disussed in Setion 2.1, the numbers must



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 12always satisfy a majorization ondition. In the speial ase that the non-zero singular values of Xare onstant, the majorization relation redues to a ondition on the olumn norms:0 � wn �W=d for n = 1; : : : ; N:If this ondition fails, the singular values of X annot be equal, and the lower bound of Proposition1 annot be met.A d �N matrix, d < N , whose d singular values are equal is alled a tight frame. Tight framesprovide a natural generalization of unitary matries, and, as we have seen, they also arise from min-imizing the TSC. If X is a tight frame, then X �X is a Hermitian matrix whose non-zero eigenvaluesare idential. A Hermitian matrix whose non-zero eigenvalues all equal one is alled an orthogonalprojetor, so minimizing the TSC is also equivalent to onstruting a (saled) orthogonal projetorwith a spei�ed diagonal. For an introdution to tight frames, see [5℄.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 13A.2. Matlab Code. Matlab ode for the generalized Chan-Li algorithm (Algorithm 1):funtion [A, Q℄ = genhanli(A, z);%GENCHANLI Implements the generalized Chan-Li algorithm.% [A, Q℄ = GENCHANLI(A, z) alulates Q and replaes A by% Q'AQ suh that diag(Q'AQ) = z provided that A is a Hermitian% matrix and z majorizes diag(A).% The algorithm operates on the upper triangular part of A, the lower triangular% part is alulated at the end of the proedure for onveniene.[N, m℄ = size(A);z = sort(z);[d, Perm℄ = sort(diag(A));% Now A(Perm(i), Perm(i)) i = 1, 2, ..., N is in asending order.if (A(Perm(1), Perm(1)) > z(1))error('Majorization ondition violated');endif (nargout == 2)Q = eye(N);endfor n = 1:N-2% Find the smallest j > n with:% A(Perm(j-1), Perm(j-1)) <= z(n) <= A(Perm(j), Perm(j)).j = n + 1;while (j <= N & z(n) > A(Perm(j), Perm(j)))j = j + 1;endif (j == N + 1 | A(Perm(j-1), Perm(j-1)) > z(n))error('Majorization ondition violated');end% Transform the diagonal entry in row Perm(n) to z(n):[, s℄ = drotug(A, Perm(n), Perm(j), z(n));A = drotu(A, Perm(n), Perm(j), , s, z(n));if (nargout == 2)Q = drot(Q, Perm(n), Perm(j), , s);end% A has been hanged so we need to update Perm aordingly.% First find the new plae for the j-th element A(Perm(j), Perm(j)):i = n + 1;while (i < j & A(Perm(i), Perm(i)) < A(Perm(j), Perm(j)))i = i + 1;end% A(Perm(j), Perm(j)) needs to move to the ith position:temp = Perm(j);Perm(i+1:j) = Perm(i:j-1);Perm(i) = temp;% Note that Perm reords the order of the diagonal A exept the first n% entries (whih have already been proessed). In the subsequent iterations% only Perm(n+1:N) is used.end



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 14% The last rotation:[, s℄ = drotug(A, Perm(N-1), Perm(N), z(N-1));A = drotu(A, Perm(N-1), Perm(N), , s, z(N-1));if (nargout == 2)Q = drot(Q, Perm(N-1), Perm(N), , s);end% Copy the elements above the diagonal to the other half of the matrix for% onveniene:for i = 1:N-1A(i+1:N, i) = A(i, i+1:N)';endMatlab ode for the generalized Bendel-Mikey algorithm (Algorithm 2):funtion [A, Q℄ = genbendelmikey(A, z, tol)%GENBENDELMICKEY Implements the generalized Bendel-Mikey algorithm.% [A, Q℄ = GENBENDELMICKEY(A, z, tol) alulates Q and replaes A by% Q'AQ suh that diag(Q'AQ) = z provided that A is a Hermitian matrix% and z majorizes diag(A) and z and diag(A) are in asending order.% The algorithm operates on the upper triangular part of A, the lower% triangular part is alulated at the end of the proedure for onveniene.[m, N℄ = size(A);if (nargout == 2)Q = eye(N);end% The following tolerane is neessary to ensure that no false reports of% violations of the majorization ondition is generated due to loss of% preision.if (nargin == 2)tol = 2*N*max(abs(z(N)), abs(z(1)))*eps;end% The algorithm attempts to find i < j indies suh that the following two% onditions hold: A(i, i) < z(i) <= z(j) < A(j, j) and A(k, k) = z(k) for% all i < k < j. A plane rotation in the (i, j) plane transforms A suh that% either A(i, i) or A(j, j) beomes equal to z(i) or z(j) respetively. If% the majorization ondition is satisfied, this step an be repeated until% diag(A) = z. The first (i, j) pair is separately alulated:i = 0;j = 1;while (j <= N & z(j) >= A(j, j))if (z(j) > A(j, j))i = j;endj = j + 1;endwhile (1 <= i & j <= N)% Deide whih diagonal element an be made equal to the orresponding



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 15% z vetor element and use a plane rotation for the transformation:if (z(i) - A(i, i) <= A(j, j) - z(j))[, s℄ = drotug(A, i, j, z(i));A = drotu(A, i, j, , s, z(i));if (nargout == 2)Q = drot(Q, i, j, , s);endelse[, s℄ = drotug(A, j, i, z(j));A = drotu(A, j, i, , s, z(j));if (nargout == 2)Q = drot(Q, j, i, , s);endend% Find the new pair:while (j <= N & z(j) > A(j, j) - tol)if (z(j) > A(j, j))i = j;endj = j + 1;endwhile (i >= 1 & z(i) < A(i, i) + tol)i = i - 1;endendif (i >= 1 | j <= N)error('The majorization ondition is violated.');end% Copy the elements above the diagonal to the other half of the matrix for% onveniene.for i = 1:N-1A(i+1:N, i) = A(i, i+1:N)';end



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 16Auxiliary funtions to alulate and apply plane rotations:funtion [, s℄ = drotug(A, i, j, z)%DROTUG Generate a plane rotation for a Hermitian matrix.% [, s℄ = DROTUG(A, i, j, z) alulates the parameters of a plane% rotation Q suh that onjugating with Q transforms A(i, i) to z.% The A matrix is assumed to be Hermitian and only its upper triangular% part is used in the alulation.a1 = A(i, i);a2 = A(j, j);if (i < j)b = real(A(i, j));elseb = real(A(j, i));endD = b^2 - (a1 - z)*(a2 - z);if (b > 0) % To avoid anellations.t = b + sqrt(D);elset = b - sqrt(D);endif (a2 == z) = 0;s = 1;elset = t/(a2 - z); = 1/sqrt(1 + t^2);s = *t;end;return;funtion A = drot(A, i, j, , s)%DROT Apply a plane rotation.% A = DROT(A, i, j, , s) replaes A by AQ where the Q plane rotation% has parameters [, s℄ and ats in the (i, j) plane.A(:, [i, j℄) = A(:, [i, j℄)*[, s; -s, ℄;return;funtion A = drotu(A, i, j, , s, z)%DROTCU Conjugates with a plane rotation.% A = DROTCU(A, i, j, , s, z) replaes A by Q`AQ where the Q plane% rotation ats in the (i, j) plane and has parameters  and s. The A% matrix is assumed to be Hermitian and only its upper triangular part% is used in the alulation.[m, N℄ = size(A);if (i < j)



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 17A(1:i-1, [i, j℄) = A(1:i-1, [i, j℄)*[, s; -s, ℄;tmp(i+1:j-1) = *A(i, i+1:j-1) - s*A(i+1:j-1, j)';A(i+1:j-1, j) = s*A(i, i+1:j-1)' + *A(i+1:j-1, j);A(i, i+1:j-1) = tmp(i+1:j-1);A([i, j℄, j+1:N) = [, -s; s, ℄*A([i, j℄, j+1:N);A(i, j) = s**(A(i, i) - A(j, j)) + ^2*A(i, j) - s^2*A(i, j)';elseA(1:j-1, [i, j℄) = A(1:j-1, [i, j℄)*[, s; -s, ℄;tmp(j+1:i-1) = *A(j+1:i-1, i) - s*A(j, j+1:i-1)';A(j, j+1:i-1) = s*A(j+1:i-1, i)' + *A(j, j+1:i-1);A(j+1:i-1, i) = tmp(j+1:i-1)';A([i, j℄, i+1:N) = [, -s; s, ℄*A([i, j℄, i+1:N);A(j, i) = s**(A(i, i) - A(j, j)) + ^2*A(j, i) - s^2*A(j, i)';endA(j, j) = A(j, j) + A(i, i) - z;A(i, i) = z;return;


