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t. In this paper, we present new algorithms that 
an repla
e the diagonal entries of aHermitian matrix by any set of diagonal entries that majorize the original set without alteringthe eigenvalues of the matrix. They perform this feat by applying a sequen
e of (N � 1) or fewerplane rotations, where N is the dimension of the matrix. Both the Bendel-Mi
key and the Chan-Lialgorithms are spe
ial 
ases of the proposed pro
edures. Using the fa
t that a positive semi-de�nitematrix 
an always be fa
tored as X�X , we also provide more eÆ
ient versions of the algorithmsthat 
an dire
tly 
onstru
t fa
tors with spe
i�ed singular values and 
olumn norms. We 
on
ludewith some open problems related to the 
onstru
tion of Hermitian matri
es with joint diagonaland spe
tral properties. 1. Introdu
tionIt is sometimes of interest to 
onstru
t a 
olle
tion of Hermitian matri
es that have spe
i�eddiagonal elements and eigenvalues. When all the eigenvalues are non-negative, the problem is es-sentially equivalent to 
onstru
ting a 
olle
tion of re
tangular matri
es with spe
i�ed 
olumn normsand singular values. In parti
ular, if a re
tangular matrix X has requirements on its singular val-ues and squared 
olumn norms, the Hermitian matrix X �X has a 
orresponding requirement on itseigenvalues and diagonal entries.A spe
i�
 example of this problem is to 
onstru
t Hermitian matri
es with unit diagonal andpres
ribed non-negative eigenvalues [3℄. Su
h matri
es are 
alled 
orrelation matri
es | Daviesand Higham dis
uss several appli
ations that require su
h matri
es, ranging from the generationof test matri
es for eigenvalue solvers to the design of statisti
al experiments [3, 7, 9℄. A relatedmatrix 
onstru
tion problem has also arisen in 
onne
tion with wireless 
ommuni
ations. It turnsout that d�N matri
es, d < N , with d identi
al non-zero singular values and with pres
ribed 
olumnnorms satisfy a 
ertain \sum 
apa
ity" bound and \minimum squared 
orrelation" property thatis important in wireless appli
ations. These matri
es only exist if a majorization 
ondition holds,as dis
ussed in Se
tion 2.1. For an introdu
tion to squared 
orrelation, see the Appendix. Referto [20, 22, 23℄ for a thorough treatment of how the problem arises in wireless appli
ations.Two �nite step te
hniques, the Bendel-Mi
key [3℄ and Chan-Li [4℄ algorithms, are available forspe
ial 
ases. Both algorithms apply a sequen
e of plane rotations to an initial matrix that 
hangeits diagonal entries while preserving its spe
trum. The Chan-Li algorithm starts with the diagonalmatrix of eigenvalues and 
an rea
h a real, symmetri
 matrix with a spe
i�ed majorizing diagonal.On the other hand, the Bendel-Mi
key algorithm 
an start with an arbitrary Hermitian matrix andtransform it to a Hermitian matrix with equal diagonal entries.In this paper, we present new algorithms that generalize the Chan-Li and Bendel-Mi
key pro
e-dures so that we 
an start with an arbitrary Hermitian matrix and 
hange its diagonal entries tospe
i�ed values while retaining its original spe
trum. The only requirement is that the new diagonalDate: November 20, 2003.I. Dhillon and M. Sustik are with the Dept. of Comp. S
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GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 2elements majorize (in essen
e, average) the original ones. Thus our generalized algorithms permit usto 
onstru
t a 
lass of Hermitian matri
es satisfying spe
tral and diagonal 
onstraints that is ri
herthan the 
olle
tion yielded by older algorithms.We now give a brief outline of the paper. In x2, we provide the ne
essary ba
kground andsummarize previous results. We present our generalized algorithms in x3, and x4 
ontains somenumeri
al examples. The Appendix dis
usses total squared 
orrelation.2. Ba
kground and Related Work2.1. Majorization. The majorization relation is a partial ordering on ve
tors that appears in astriking number of apparently unrelated 
ontexts. Lorenz originally developed the ordering fore
onometri
s, where he used it to 
ompare the equitability of in
ome distributions [2℄. An intuitivede�nition is that one ve
tor majorizes another if the former has \more average" entries than thelatter. Let us make this notion pre
ise.De�nition 1. Let a be a real, N -dimensional ve
tor, and denote its k-th smallest 
omponent bya(k). This number is 
alled the k-th order statisti
 of a.De�nition 2. Let a and z be real N -dimensional ve
tors, and suppose that their order statisti
ssatisfy the following relationships. a(1) � z(1);a(1) + a(2) � z(1) + z(2);...a(1) + a(2) + � � �+ a(N�1) � z(1) + z(2) + � � �+ z(N�1); and alsoa(1) + a(2) + � � �+ a(N) = z(1) + z(2) + � � �+ z(N):Then we say that z majorizes a, and we write z < a. If ea
h of the inequalities is stri
t, then zstri
tly majorizes a, and we write z � a.It is not hard to verify that the majorization relation is re
exive, anti-symmetri
, and transitive, soit de�nes a partial ordering on RN . An equivalent de�nition is that z < a if and only if z = M a forsome doubly-sto
hasti
 matrixM . Birkho�'s Theorem states that the 
olle
tion of doubly-sto
hasti
matri
es of size N is identi
al with the 
onvex hull of the permutation matri
es having size N . Itfollows that those ve
tors whi
h majorize a �xed ve
tor form a 
ompa
t, 
onvex set. See [12,16℄ formore details.Majorization plays a role on our stage be
ause it de�nes the pre
ise relationship between thediagonal entries and eigenvalues of a Hermitian matrix.Theorem 3 (S
hur-Horn [12℄). The diagonal entries of a Hermitian matrix majorize its eigenvalues.Conversely, if a < �, then there exists a Hermitian matrix with diagonal entries listed by a andeigenvalues listed by �.I. S
hur demonstrated the ne
essity of the majorization 
ondition in 1923, and A. Horn proved the
onverse some thirty years later [12℄. Horn's original proof is quite 
ompli
ated, and a small 
ottageindustry has grown up to produ
e simpler, more 
onstru
tive arguments. See, for example, [4,6,15℄.A 
omprehensive referen
e on majorization is Marshall and Olkin's monograph [16℄.2.2. Some Posets. First, we de�ne some 
on
epts related to partial orderings, and then we developsome new partial orderings on Hermitian matri
es that are 
losely related to the matrix 
onstru
tionproblem.De�nition 4. A set S equipped with a partial ordering < is 
alled a poset. It is denoted as (S;<).Two elements a; b 2 S are 
omparable if and only if a < b or b < a. Any totally ordered subset of aposet is 
alled a 
hain. Every pair of elements in a 
hain is 
omparable.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 3We may equip any poset with the ordering topology, where ea
h basi
 open set is given by fa 6=b : b < ag for some point b. This is the minimal topology in whi
h the ordering is 
ontinuous [14℄.Observe that ve
tors are 
omparable by majorization only when their entries have the same sum.Let C� denote the set of N -dimensional ve
tors with tra
e �. Then ea
h C� is an isolated 
omponentof the poset (RN ;<). Moreover, every C� has a unique majorization-maximal element: the 
onstantve
tor with entries �=N . On the other hand, there are no minimal ve
tors under the majorizationrelation; every z su

eeds an in�nite number of other ve
tors.De�nition 5. We say that two Hermitian matri
es A and B are S
hur-Horn equivalent if and onlyif they have identi
al spe
tra and identi
al diagonals (up to permutation). We write A � B , and weuse [A℄ to denote the equivalen
e 
lasses indu
ed by this relation.We indi
ate the 
olle
tion of S
hur-Horn equivalen
e 
lasses by H . Noti
e that the members ofH vary signi�
antly. For example, the S
hur-Horn equivalen
e 
lass of a diagonal matrix is the setof diagonal matri
es with the same entries in permuted order. Meanwhile, the equivalen
e 
lass ofa matrix with unit diagonal and non-negative eigenvalues � is the set of \
orrelation matri
es" thathave spe
trum � [7℄. Even though similarity transformations preserve the eigenvalues of a Hermitianmatrix, very few simultaneously preserve the diagonal. Therefore, S
hur-Horn equivalen
e 
lasses arenot stable under most transformations. Ex
eptions in
lude symmetri
 permutations and diagonalsimilarity transforms.De�nition 6. For any two elements of H , [A℄ and [Z ℄, we say that [Z ℄ < [A℄ if and only if the twomatri
es have the same spe
trum and diagZ < diagA.It is not hard to 
he
k that this 
onstru
tion yields a well-de�ned partial ordering onH . Clearly,two S
hur-Horn equivalen
e 
lasses are 
omparable only if their members have the same spe
trum.Suppose that the entries of � 2 RN already o

ur in non-de
reasing order, viz. �k = �(k) for ea
hk. Then we may write H� to denote the elements of H with spe
trum �. Ea
h H� forms anisolated 
omponent of the poset (H ;<), and it has a unique maximal element: the equivalen
e
lass of matri
es with eigenvalues � and with a 
onstant diagonal. A signi�
ant di�eren
e betweenmajorization and the matrix ordering is that every 
hain under the matrix ordering has a minimalelement: [diag�℄, where � lists the (
ommon) eigenvalues of the members of the 
hain.2.3. Algorithms. Now we dis
uss two algorithms whi
h have been proposed for 
onstru
ting Her-mitian matri
es with diagonal and spe
tral properties. In the sequel, we use M N to denote the setof 
omplex N �N matri
es and M d;N to denote the set of 
omplex d�N matri
es.The Bendel-Mi
key algorithm produ
es random (Hermitian) 
orrelation matri
es with given spe
-trum [3℄. Suppose that A 2 M N is a Hermitian matrix with TrA = N . If A does not have a unitdiagonal, we 
an lo
ate two diagonal elements so that ajj < 1 < akk; otherwise, the tra
e 
ondi-tion would be violated. It is then possible to 
onstru
t a real rotation Q in the jk-plane for whi
h(Q�AQ)jj = 1. The transformation A 7! Q�AQ preserves the 
onjugate symmetry and the spe
trumof A, but it redu
es the number of non-unit diagonal entries by at least one. Therefore, at most(N � 1) rotations are required before the resulting matrix has a unit diagonal. If the output matrixis Z , it follows that [Z ℄ < [A℄. Indeed, [Z ℄ is the unique <-maximal element in every 
hain that
ontains [A℄.The Chan-Li algorithm, on the other hand, was developed as a 
onstru
tive proof of the S
hur-Horn Theorem [4℄. Suppose that a < �. The Chan-Li algorithm begins with the diagonal matrix� def= diag�. Then it applies a sequen
e of (N�1) 
leverly 
hosen (real) plane rotations to generate areal, symmetri
 matrix A with the same eigenvalues as � but with diagonal entries listed by a. On
eagain, the output and input satisfy the relationship [A℄ < [�℄. Where the Bendel-Mi
key algorithmstarts from any element of a 
hain and moves to the top, the Chan-Li algorithm starts at the bottomof a 
hain and moves upward.The Bendel-Mi
key algorithm is a surje
tive map from the set of Hermitian matri
es with spe
-trum � onto the set of 
orrelation matri
es with spe
trum �. If the initial matrix is 
hosen uniformly
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h may be a

omplished with standard te
hniques [19℄), the result may be 
onstruedas a random 
orrelation matrix. The distribution of the output, however, is unknown [11℄. Onthe other hand, due to the spe
ial form of the initial matrix and the rigid 
hoi
e of rotations, theChan-Li algorithm 
annot 
onstru
t very many distin
t matri
es with a spe
i�ed diagonal. It wouldbe interesting to develop a pro
edure whi
h 
an 
al
ulate every member of a given equivalen
e 
lass.A brief dis
ussion of how to use plane rotations to equalize the diagonal entries of a Hermitianmatrix appears on page 77 of Horn and Johnson [12℄. Problems 8.4.1 and 8.4.2 of Golub and van Loanoutline the Bendel-Mi
key algorithm [10℄. Davies and Higham present a numeri
ally stable versionof the Bendel-Mi
key algorithm in their arti
le [7℄. Other referen
es on this topi
 in
lude [13, 25℄.3. Generalized AlgorithmsWe propose methods that generalize the Bendel-Mi
key and Chan-Li algorithms. Like them, ourte
hniques use a sequen
e of (N � 1) or fewer plane rotations to move upward between two pointsin a 
hain. The 
rux of the matter is the strategy for sele
ting the planes of rotation. The twomethods we present 
an be viewed respe
tively as dire
t generalizations of the Chan-Li strategyand the Bendel-Mi
key strategy. Unlike the earlier algorithms, these new te
hniques do not requireending at the top of a 
hain like Bendel-Mi
key nor starting at the bottom like Chan-Li. Therefore,our te
hniques allow the 
onstru
tion of a mu
h larger set of matri
es than the Chan-Li algorithm,while retaining its ability to sele
t the �nal diagonal entries.3.1. Generalized Chan-Li. Let z and a be N -dimensional ve
tors for whi
h z < a. Using indu
-tion on the dimension, we show how to transform a Hermitian matrix with diagonal a and spe
trum� into a Hermitian matrix with diagonal z and spe
trum � using a sequen
e of plane rotations. Itis enough to prove the result when the 
omponents of a and z are sorted in as
ending order, so wepla
e that restri
tion in the sequel.Suppose �rst that N = 2 and that A has diagonal a. Sin
e z < a, we have a1 � z1 � z2 � a2.We 
an expli
itly 
onstru
t a real plane rotation Q so that the diagonal of Q�AQ equals z. Re
allthat a two-dimensional plane rotation is an orthogonal matrix of the formQ = � 
 s�s 
� ;where 
2 + s2 = 1 [10℄. The desired plane rotation yields the matrix equation� 
 s�s 
�� � a1 a�21a21 a2 �� 
 s�s 
� = � z1 z�21z21 ez2 �:The equality of the upper-left entries 
an be stated as
2a1 � 2s
Rea21 + s2a2 = z1:This equation is quadrati
 in t def= s=
:(a2 � z1) t2 � 2tRea21 + (a1 � z1) = 0; (1)when
e t = Re a21 �p(Re a21)2 � (a1 � z1)(a2 � z1)a2 � z1 : (2)Noti
e that the dis
riminant is non-negative due to the majorization 
ondition. The � sign in (2) istaken to avoid sign 
an
ellations with Re a21. If ne
essary, we 
an extra
t the other root of (1) usingthe fa
t that the produ
t of its roots equals (a1 � z1)=(a2 � z1). Finally, determine the parametersof the rotation using 
 = 1p1 + t2 and s = 
t: (3)Floating-point arithmeti
 is inexa
t, so the rotation may not yield (Q�AQ)11 = z1. A better im-plementation sets this entry to z1 expli
itly. Davies and Higham have shown that this method of
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omputing rotations is numeri
ally stable [7℄. Sin
e Q is orthogonal, Q�AQ preserves the spe
trumof A but repla
es its diagonal with z.Grant us for a moment that we 
an perform the advertised feat on Hermitian matri
es of size(N � 1). Now we 
onsider N -dimensional ve
tors for whi
h z < a, and suppose that diagA = a.The majorization 
ondition implies that a1 � z1 � zN � aN , so it is always possible to sele
t a leastinteger j > 1 so that aj�1 � z1 � aj . Let P1 be a permutation matrix for whi
hdiag (P�1AP1) = (a1; aj ; a2; : : : ; aj�1; aj+1; : : : ; aN ):Observe that a1 � z1 � aj and a1 � a1 + aj � z1 � aj . Thus we modify equations (2) and (3) to
onstru
t a two-dimensional plane rotation Q2 that sets the upper left entry ofQ�2 � a1 a�j1aj1 aj �Q2to z1. If we de�ne the rotation P2 def= �Q2 0�0 IN�2� ;then P�2P�1AP1P2 = �z1 v�v AN�1� ;where v is an appropriate ve
tor and AN�1 is an appropriate sub-matrix withdiag (AN�1) = (a1 + aj � z1; a2; : : : ; aj�1; aj+1; : : : ; aN ):In order to apply the indu
tion hypothesis, it remains to 
he
k that the ve
tor (z2; z3; : : : ; zN )majorizes the diagonal of AN�1. We a

omplish this in three steps. First, re
all that ak � z1 fork = 2; : : : ; j � 1. Therefore, mXk=2 zk � (m� 1) z1 � mXk=2 akfor ea
h m = 2; : : : ; j�1. The sum on the right-hand side obviously ex
eeds the sum of the smallest(m � 1) entries of the ve
tor diagAN�1, so the �rst (j � 2) majorization inequalities are in for
e.Se
ond, we use the fa
t that z < a to 
al
ulate that, for m = j; : : : ; N ,mXk=2 zk = mXk=1 zk � z1� mXk=1 ak � z1 = (a1 + aj � z1) + j�1Xk=2 ak + mXk=j+1 ak:On
e again, observe that the sum on the right-hand side ex
eeds the sum of the smallest (m � 1)entries of the ve
tor diagAN�1, so the remaining majorization inequalities are in for
e. Finally,rearranging the relationPNk=1 zk =PNk=1 ak yieldsPNk=2 zk = TrAN�1.In 
onsequen
e, the indu
tion furnishes a rotation QN�1 that sets the diagonal of AN�1 equal tothe ve
tor (z2; : : : ; zN). De�ning P3 def= �1 0�0 QN�1� ;we see that 
onjugating A by the orthogonal matrix P = P1P2P3 transforms the diagonal entries ofA to z while retaining the spe
trum �.This proof leads to the following algorithm.Algorithm 1 (Generalized Chan-Li). Let A be an N �N Hermitian matrix with diagonal a, andlet z be a ve
tor su
h that z < a, where both a and z are arranged in as
ending order. The followingpro
edure 
omputes a Hermitian matrix with diagonal entries z and eigenvalues equal to that of A.(1) Set n = 1.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 6(2) Find the least j > n so that aj�1;j�1 � zn � ajj .(3) Use a symmetri
 permutation to set an+1;n+1 equal to ajj while shifting diagonal entriesn+ 1; : : : ; j � 1 one pla
e down the diagonal.(4) Constru
t a plane rotation Q in the (n; n + 1)-plane using equations (2) and (3) with ap-propriate modi�
ations.(5) Repla
e A by Q�AQ.(6) Use a symmetri
 permutation to re-sort the diagonal entries of A in as
ending order.(7) In
rement n, and repeat Steps 2{7 while n < N .This algorithm requires about 12N2 
oating-point operations if 
onjugate symmetry is exploited.It requires the storage of about N(N + 1)=2 
oating-point numbers, in
luding the ve
tor z. Itis 
on
eptually simpler to perform the permutations des
ribed in the algorithm, but it 
an beimplemented without them. The bookkeeping just be
omes more laborious. The Matlab 
odein the Appendix demonstrates a simple implementation where su
h bookkeeping is used instead ofpermutations.3.2. Generalized Bendel-Mi
key. Distin
t algorithms arise by 
hanging the strategy for sele
tingthe planes of rotation. Let z and a be N -dimensional ve
tors for whi
h z < a. As before, we assumethat they are sorted in as
ending order, and suppose that A is a Hermitian matrix with diagonala. We now exhibit a di�erent method for transforming the diagonal of A to z while preserving itseigenvalues. It 
an be viewed as a generalization of the Bendel-Mi
key algorithm [3℄.Suppose that diagA 6= z. On a

ount of the majorization relationship, it is possible to sele
tindi
es i < j that satisfy two properties: aii < zi � zj < ajj and akk = zk for all k stri
tly betweeni and j. If zi � aii � ajj � zj , then we 
onstru
t a plane rotation Q in the (i; j)-plane su
h that(Q�AQ)ii = zi. Otherwise, we �nd Q su
h that (Q�AQ)jj = zj . Either rotation 
an be 
al
ulatedusing appropriate versions of equations (2) and (3). To see that this strategy 
an be repeated, wejust need to 
he
k that z majorizes the diagonal of Q�AQ. In the �rst 
ase, the plane rotationtransforms aii to zi and ajj to aii + ajj � zi, while the remaining diagonal entries do not 
hange.Sin
e aii < zi � zj � aii + ajj � zi < ajj the diagonal entries of Q�AQ remain in as
ending order.The �rst (i� 1) majorization 
onditions are 
learly una�e
ted. Noti
e thati�1X̀=1 a`` + zi � i�1X̀=1 z` + zi;whi
h proves the i-th majorization 
ondition. The next (j � i� 1) majorization inequalities followin 
onsequen
e of akk being equal to zk whenever i < k < j. The rest of the majorization 
onditionshold sin
e i�1X̀=1 a`` + zi + j�1Xk=i+1 akk + (aii + ajj � zi) = jX̀=1 a`` � jX̀=1 z`:The argument in the 
ase when zi� aii > ajj � zj is similar. It follows that our rotation strategymay be applied until diagA = z. This proof leads to the following algorithm.Algorithm 2 (Generalized Bendel-Mi
key). Let A be an N �N Hermitian matrix with diagonal aand furthermore let z be a ve
tor su
h that z < a, where both a and z are arranged in as
endingorder. The following pro
edure 
omputes a Hermitian matrix with diagonal entries z and eigenvaluesequal to that of A.(1) Find i < j for whi
h aii < zi and zj < ajj and akk = zk for i < k < j (in our implementationwe pi
k the smallest su
h i). If no su
h pair exists, we are either done (z = a) or themajorization 
ondition is violated.(2) Constru
t a plane rotation Q in the (i; j)-plane using equations (2) and (3) with appropriatemodi�
ations to transform aii to zi in the 
ase zi � aii � ajj � zj or transform ajj to zjotherwise.



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 7(3) Repla
e A by Q�AQ.(4) Repeat Steps 1{3 until the diagonal is transformed to z.This algorithm has the same fun
tionality and 
omplexity as Algorithm 1 but it is di�erent inthe plane rotations used. For further 
omparison we provide a simple Matlab implementation inthe Appendix.3.3. One-Sided Algorithms. It is well known that any positive semi-de�nite matrix A 2 M N
an be expressed as the produ
t X �X where X 2 M d;N and d � rankA. With this fa
torization,the two-sided transformation A 7! Q�AQ is equivalent to a one-sided transformation X 7! XQ. In
onsequen
e, the ma
hinery of Algorithm 1 requires little adjustment to produ
e these fa
tors.Algorithm 3 (One-sided generalized Chan-Li). Suppose that z and a are non-negative ve
tors oflength N with as
ending entries. Assume, moreover, that z < a. The following algorithm takes asinput a d�N matrix X whose squared 
olumn norms are listed by a and transforms it into a matrixwith the same singular spe
trum and with squared 
olumn norms listed by z.(1) Let n = 1.(2) Find the least j > n so that kxj�1k22 � zn � kxjk22.(3) Move the j-th 
olumn of X to the (n+ 1)-st 
olumn, shifting the displa
ed 
olumns to theright.(4) Form the quantitiesann = kxnk22 ; an;n+1 = hxn+1;xni and an+1;n+1 = kxn+1k22 :(5) Compute a plane rotation Q in the (n; n+1)-plane using modi�ed versions of equations (2)and (3).(6) Repla
e X by XQ .(7) Sort 
olumns (n+ 1); : : : ; N in order of in
reasing norm.(8) In
rement n, and repeat Steps 2{7 while n < N .The algorithm requires about 12dN real 
oating-point operations and storage of N(d + 2) real
oating-point numbers in
luding the desired 
olumn norms and the 
urrent 
olumn norms. Asbefore, the pro
edure 
an be implemented without any permutations.A similar modi�
ation of our generalized Bendel-Mi
key algorithm also leads to a one-sided ver-sion. The latter generalizes the one-sided version proposed by Davies and Higham in [7℄.4. Illustrative Numeri
al ExamplesWe illustrate the generalized Chan-Li algorithm by 
omparing it with the 
lassi
al algorithmon two examples. The generalized algorithms 
an produ
e a ri
her set of matri
es with pres
ribeddiagonal entries and eigenvalues, making it possible to �nd solutions that satisfy additional propertiesor better suit the appli
ation.Suppose we want to produ
e a Hermitian matrix with eigenvalues (1; 4; 5; 7; 9) and diagonalentries (2; 5; 6; 6; 7). This example was presented in the Chan-Li paper [4℄; our generalized algorithm(essentially) yields the same result:A(1)ChanLi = 266664 2:0000 0 0:7071 �0:9487 0:77460 5:0000 0 0 00:7071 0 6:0000 1:3416 �1:0954�0:9487 0 1:3416 6:0000 2:44950:7746 0 �1:0954 2:4495 7:0000 377775 :Noti
e the sparsity stru
ture in the above matrix. In appli
ations, su
h as designing matri
es fortesting eigenvalue solvers [9℄, it would be better to produ
e a more random Hermitian matrix that



GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 8satis�es the diagonal and eigenvalue 
onstraints. The generalized algorithms 
an be used for thispurpose. We �rst generate a sequen
e of six ve
tors satisfying:(1; 4; 5; 7; 9) = z0 4 z1 4 z2 4 z3 4 z4 4 z5 = (2; 5; 6; 6; 7):The z1; z2; z3; z4 ve
tors are randomly generated as 
onvex 
ombinations of the pres
ribed z0and z5 ve
tors. This 
onstru
tion makes sure that the majorization 
onditions hold. Five steps ofthe generalized Chan-Li algorithm are su

essively used to transform the diagonal matrix diag (z0)to have diagonals z1; z2; : : : ; z5. We arrive at the �nal matrixA(1)GenChanLi = 266664 2:0000 1:0400 1:4517 �0:6294 �0:37201:0400 5:0000 0:3620 �0:2157 1:47311:4517 0:3620 6:0000 1:6901 �0:6544�0:6294 �0:2157 1:6901 6:0000 �1:2822�0:3720 1:4731 �0:6544 �1:2822 7:0000 377775 :For the wireless appli
ation mentioned in the introdu
tion, the matri
es in question must have allnon-zero eigenvalues equal to one. (See the Appendix for more details.) The following example 
allsfor the generation of matri
es with eigenvalues (0; 0; 1; 1; 1) and diagonal (0:4; 0:6; 0:6; 0:6; 0:8). TheChan-Li algorithm produ
esA(2)ChanLi = 266664 0:4000 �0:4899 0 0 0�0:4899 0:6000 0 0 00 0 0:6000 0:4000 �0:28280 0 0:4000 0:6000 0:28280 0 �0:2828 0:2828 0:8000 377775 :In the wireless appli
ation, it is often desirable to have lower varian
e in the magnitudes of the o�-diagonal entries, whi
h are also known as \
ross-
orrelations". The generalized Chan-Li algorithmapplied in �ve steps as des
ribed above produ
es a more desirable matrix:A(2)GenChanLi = 266664 0:4000 �0:2312 �0:3503 0:1636 0:1926�0:2312 0:6000 0:1116 0:3955 �0:1331�0:3503 0:1116 0:6000 �0:1681 0:27680:1636 0:3955 �0:1681 0:6000 0:16910:1926 �0:1331 0:2768 0:1691 0:8000 377775 :Here is an alternate strategy to 
onstru
t a ri
her set of Hermitian matri
es with pres
ribedeigenvalues and diagonal entries. Generate randommatri
es with the given spe
trum and sele
t thosewhi
h have a diagonal majorized by the target diagonal. Then apply either one of the generalizedalgorithms. Con
lusionsWe have shown that a sequen
e of (N � 1) rotations is suÆ
ient to repla
e the original diagonalof N �N Hermitian matrix with any set of diagonal entries that majorizes the original set, all thewhile preserving the spe
trum of the matrix. The algorithms we have presented 
an move up a 
hainin the poset of S
hur-Horn equivalen
e 
lasses as given in De�nition 5.An obvious question is whether it is possible to obtain an algorithm that moves down a 
haininstead. In other words, is it possible to 
onstru
t a �nite sequen
e of rotations to repla
e the diagonalwith a set of entries that majorizes the eigenvalues but not ne
essarily the original diagonal? Sin
ethe diagonal matrix of eigenvalues lies at the bottom of the 
hain, it might seem at �rst glan
ethat we are attempting to 
al
ulate the eigenvalues in �nite time. We avoid this paradox sin
e weassume that the target diagonal is already known, In fa
t, to get to the bottom of the 
hain, O(n2)Givens rotations 
an be used to redu
e the initial matrix to tridiagonal form and then to the desireddiagonal matrix of eigenvalues (these in
lude the appli
ation of perfe
t shifts to the tridiagonalmatrix [8℄). Nevertheless, it seems mu
h harder to 
onstru
t a transformation of a ve
tor into one
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essors than into one of its su

essors. Entropy may provide a reasonable explanation:it is easier to average things together than to un-average them.Other interesting questions arise. What is the stru
ture of a general S
hur-Horn equivalen
e 
lassof Hermitian matri
es? Is there a pro
edure to 
onstru
t every member of a given equivalen
e 
lass?Is it possible to de�ne a uniform probability measure on ea
h 
lass and to 
onstru
t members from a
lass uniformly at random? In this paper, we have restri
ted our attention to �nite step algorithms.Iterative algorithms are an alternative, espe
ially for the 
ase of produ
ing Hermitian matri
es thatsatisfy additional 
onstraints. It would be useful to understand these problems better, and we hopethat other resear
hers will take interest.A
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GENERALIZED ALGORITHMS TO CONSTRUCT HERMITIAN MATRICES 11Appendix A. AppendixA.1. Total Squared Correlation. The purpose of this appendix is to provide a short explanationof the eigenvalue property that motivated us to pursue this work. Let X be a d �N matrix with�xed 
olumn norms. Its total squared 
orrelation is de�ned by the formulaTSC(X ) def= kX �Xk2F = NXm;n=1 jhxm;xnij2;where the ve
tors x1; : : : ;xN indi
ate the 
olumns of X . Roughly speaking, the total squared
orrelation measures how similar these ve
tors are to ea
h other. Matri
es with minimal TSCare important for 
ode-division multiple a

ess (CDMA) systems. This 
onne
tion is developed atlength in [1, 20℄, and it serves as the basis for several iterative algorithms [18, 21℄. Here, we shallonly demonstrate that matri
es with minimal TSC have nearly 
onstant singular values and dis
usssome impli
ations.Suppose that the numbers w1; : : : ; wN represent the squared 
olumn norms of X , whi
h are �xed,and writeW =PNn=1 wn. We shall use the symbols �1; : : : ; �k to denote the d largest singular valuesof X .Proposition 1. Minimizing the total squared 
orrelation of X with the 
olumn norms �xed is thesame as minimizing dXk=1(�2k �W=d)2In words, the TSC rea
hes its minimum when the squared singular values of X are as 
onstant aspossible. A lower bound on the total squared 
orrelation is W 2=d. This bound is attained if and onlyif the non-zero singular values of X are identi
ally equal to pW=d.If the 
olumn norms are identi
ally one, the inequality redu
es to a famous result 
alled the Wel
hBound [24℄. The ne
essary and suÆ
ient 
ondition for attainment is due to Massey-Mittelholzer [17℄.Proof. The squared Frobenius norm of X 
an be written in two fundamentally di�erent ways:NXn=1wn = kXk2F = dXk=1�2k :Meanwhile, we 
an write the TSC asTSC(X ) = kX �Xk2F = dXk=1�4k :To 
omplete the �rst part of the proof, perform the expansiondXk=1(�2k �W=d)2 = dXk=1 �4k � 2Wd dXk=1�2k + W 2d :The last two terms of the right-hand side are 
onstant. It follows that minimizing the left-handmember of the equation is the same as minimizingP�4k, the total squared 
orrelation.To produ
e a lower bound on the TSC, we minimize P 
4k over arbitrary positive numbers
1; : : : ; 
d that satisfy the 
onstraint P 
2k = W . Using the theory of Lagrange multipliers, it isstraightforward to 
he
k that the minimum o

urs if and only if the numbers 
21; : : : ; 
2d are all equal.A

ording to the sum 
onstraint, they must all equal W=d. It follows that the sum of their squaresequals W 2=d. �The diagonal entries of X �X are equal to the squared 
olumn norms of X , and the eigenvalues ofX �X are equal to the squared singular values of X . As dis
ussed in Se
tion 2.1, the numbers must
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ondition. In the spe
ial 
ase that the non-zero singular values of Xare 
onstant, the majorization relation redu
es to a 
ondition on the 
olumn norms:0 � wn �W=d for n = 1; : : : ; N:If this 
ondition fails, the singular values of X 
annot be equal, and the lower bound of Proposition1 
annot be met.A d �N matrix, d < N , whose d singular values are equal is 
alled a tight frame. Tight framesprovide a natural generalization of unitary matri
es, and, as we have seen, they also arise from min-imizing the TSC. If X is a tight frame, then X �X is a Hermitian matrix whose non-zero eigenvaluesare identi
al. A Hermitian matrix whose non-zero eigenvalues all equal one is 
alled an orthogonalproje
tor, so minimizing the TSC is also equivalent to 
onstru
ting a (s
aled) orthogonal proje
torwith a spe
i�ed diagonal. For an introdu
tion to tight frames, see [5℄.
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ode for the generalized Chan-Li algorithm (Algorithm 1):fun
tion [A, Q℄ = gen
hanli(A, z);%GENCHANLI Implements the generalized Chan-Li algorithm.% [A, Q℄ = GENCHANLI(A, z) 
al
ulates Q and repla
es A by% Q'AQ su
h that diag(Q'AQ) = z provided that A is a Hermitian% matrix and z majorizes diag(A).% The algorithm operates on the upper triangular part of A, the lower triangular% part is 
al
ulated at the end of the pro
edure for 
onvenien
e.[N, m℄ = size(A);z = sort(z);[d, Perm℄ = sort(diag(A));% Now A(Perm(i), Perm(i)) i = 1, 2, ..., N is in as
ending order.if (A(Perm(1), Perm(1)) > z(1))error('Majorization 
ondition violated');endif (nargout == 2)Q = eye(N);endfor n = 1:N-2% Find the smallest j > n with:% A(Perm(j-1), Perm(j-1)) <= z(n) <= A(Perm(j), Perm(j)).j = n + 1;while (j <= N & z(n) > A(Perm(j), Perm(j)))j = j + 1;endif (j == N + 1 | A(Perm(j-1), Perm(j-1)) > z(n))error('Majorization 
ondition violated');end% Transform the diagonal entry in row Perm(n) to z(n):[
, s℄ = drotug(A, Perm(n), Perm(j), z(n));A = drot
u(A, Perm(n), Perm(j), 
, s, z(n));if (nargout == 2)Q = drot(Q, Perm(n), Perm(j), 
, s);end% A has been 
hanged so we need to update Perm a

ordingly.% First find the new pla
e for the j-th element A(Perm(j), Perm(j)):i = n + 1;while (i < j & A(Perm(i), Perm(i)) < A(Perm(j), Perm(j)))i = i + 1;end% A(Perm(j), Perm(j)) needs to move to the ith position:temp = Perm(j);Perm(i+1:j) = Perm(i:j-1);Perm(i) = temp;% Note that Perm re
ords the order of the diagonal A ex
ept the first n% entries (whi
h have already been pro
essed). In the subsequent iterations% only Perm(n+1:N) is used.end
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, s℄ = drotug(A, Perm(N-1), Perm(N), z(N-1));A = drot
u(A, Perm(N-1), Perm(N), 
, s, z(N-1));if (nargout == 2)Q = drot(Q, Perm(N-1), Perm(N), 
, s);end% Copy the elements above the diagonal to the other half of the matrix for% 
onvenien
e:for i = 1:N-1A(i+1:N, i) = A(i, i+1:N)';endMatlab 
ode for the generalized Bendel-Mi
key algorithm (Algorithm 2):fun
tion [A, Q℄ = genbendelmi
key(A, z, tol)%GENBENDELMICKEY Implements the generalized Bendel-Mi
key algorithm.% [A, Q℄ = GENBENDELMICKEY(A, z, tol) 
al
ulates Q and repla
es A by% Q'AQ su
h that diag(Q'AQ) = z provided that A is a Hermitian matrix% and z majorizes diag(A) and z and diag(A) are in as
ending order.% The algorithm operates on the upper triangular part of A, the lower% triangular part is 
al
ulated at the end of the pro
edure for 
onvenien
e.[m, N℄ = size(A);if (nargout == 2)Q = eye(N);end% The following toleran
e is ne
essary to ensure that no false reports of% violations of the majorization 
ondition is generated due to loss of% pre
ision.if (nargin == 2)tol = 2*N*max(abs(z(N)), abs(z(1)))*eps;end% The algorithm attempts to find i < j indi
es su
h that the following two% 
onditions hold: A(i, i) < z(i) <= z(j) < A(j, j) and A(k, k) = z(k) for% all i < k < j. A plane rotation in the (i, j) plane transforms A su
h that% either A(i, i) or A(j, j) be
omes equal to z(i) or z(j) respe
tively. If% the majorization 
ondition is satisfied, this step 
an be repeated until% diag(A) = z. The first (i, j) pair is separately 
al
ulated:i = 0;j = 1;while (j <= N & z(j) >= A(j, j))if (z(j) > A(j, j))i = j;endj = j + 1;endwhile (1 <= i & j <= N)% De
ide whi
h diagonal element 
an be made equal to the 
orresponding
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tor element and use a plane rotation for the transformation:if (z(i) - A(i, i) <= A(j, j) - z(j))[
, s℄ = drotug(A, i, j, z(i));A = drot
u(A, i, j, 
, s, z(i));if (nargout == 2)Q = drot(Q, i, j, 
, s);endelse[
, s℄ = drotug(A, j, i, z(j));A = drot
u(A, j, i, 
, s, z(j));if (nargout == 2)Q = drot(Q, j, i, 
, s);endend% Find the new pair:while (j <= N & z(j) > A(j, j) - tol)if (z(j) > A(j, j))i = j;endj = j + 1;endwhile (i >= 1 & z(i) < A(i, i) + tol)i = i - 1;endendif (i >= 1 | j <= N)error('The majorization 
ondition is violated.');end% Copy the elements above the diagonal to the other half of the matrix for% 
onvenien
e.for i = 1:N-1A(i+1:N, i) = A(i, i+1:N)';end
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tions to 
al
ulate and apply plane rotations:fun
tion [
, s℄ = drotug(A, i, j, z)%DROTUG Generate a plane rotation for a Hermitian matrix.% [
, s℄ = DROTUG(A, i, j, z) 
al
ulates the parameters of a plane% rotation Q su
h that 
onjugating with Q transforms A(i, i) to z.% The A matrix is assumed to be Hermitian and only its upper triangular% part is used in the 
al
ulation.a1 = A(i, i);a2 = A(j, j);if (i < j)b = real(A(i, j));elseb = real(A(j, i));endD = b^2 - (a1 - z)*(a2 - z);if (b > 0) % To avoid 
an
ellations.t = b + sqrt(D);elset = b - sqrt(D);endif (a2 == z)
 = 0;s = 1;elset = t/(a2 - z);
 = 1/sqrt(1 + t^2);s = 
*t;end;return;fun
tion A = drot(A, i, j, 
, s)%DROT Apply a plane rotation.% A = DROT(A, i, j, 
, s) repla
es A by AQ where the Q plane rotation% has parameters [
, s℄ and a
ts in the (i, j) plane.A(:, [i, j℄) = A(:, [i, j℄)*[
, s; -s, 
℄;return;fun
tion A = drot
u(A, i, j, 
, s, z)%DROTCU Conjugates with a plane rotation.% A = DROTCU(A, i, j, 
, s, z) repla
es A by Q`AQ where the Q plane% rotation a
ts in the (i, j) plane and has parameters 
 and s. The A% matrix is assumed to be Hermitian and only its upper triangular part% is used in the 
al
ulation.[m, N℄ = size(A);if (i < j)
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, s; -s, 
℄;tmp(i+1:j-1) = 
*A(i, i+1:j-1) - s*A(i+1:j-1, j)';A(i+1:j-1, j) = s*A(i, i+1:j-1)' + 
*A(i+1:j-1, j);A(i, i+1:j-1) = tmp(i+1:j-1);A([i, j℄, j+1:N) = [
, -s; s, 
℄*A([i, j℄, j+1:N);A(i, j) = s*
*(A(i, i) - A(j, j)) + 
^2*A(i, j) - s^2*A(i, j)';elseA(1:j-1, [i, j℄) = A(1:j-1, [i, j℄)*[
, s; -s, 
℄;tmp(j+1:i-1) = 
*A(j+1:i-1, i) - s*A(j, j+1:i-1)';A(j, j+1:i-1) = s*A(j+1:i-1, i)' + 
*A(j, j+1:i-1);A(j+1:i-1, i) = tmp(j+1:i-1)';A([i, j℄, i+1:N) = [
, -s; s, 
℄*A([i, j℄, i+1:N);A(j, i) = s*
*(A(i, i) - A(j, j)) + 
^2*A(j, i) - s^2*A(j, i)';endA(j, j) = A(j, j) + A(i, i) - z;A(i, i) = z;return;


