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Abstract

Measurement studies indicate a high rate of node dynamics in
p2p systems. In this paper, we address the question of how high
a rate of node dynamics can be supported bystructuredp2p net-
works. We confine our study to the hypercube routing scheme
used by several structured p2p systems. To improve system ro-
bustness and facilitate failure recovery, we introduce the prop-
erty of K-consistency, K ≥ 1, which generalizes consistency
defined previously. (Consistency guarantees connectivity from
any node to any other node.) We design and evaluate a failure re-
covery protocol based upon local information forK-consistent
networks. The failure recovery protocol is then integrated with
a join protocol that has been proved to constructK-consistent
neighbor tables for concurrent joins. The integrated protocols
were evaluated by a set of simulation experiments in which
nodes joined a 2000-node network and nodes (both old and new)
were randomly selected to fail concurrently over 10,000 seconds
of simulated time. In each such “churn” experiment, we took a
“snapshot” of neighbor tables in the network once every 50 sec-
onds and evaluated connectivity and consistency measures over
time as a function of the churn rate, timeout value in failure re-
covery, andK. We found our protocols to be effective, efficient,
and stable for an average node lifetime as low as 8.3 minutes
(the median lifetime measured for Napster and Gnutella was 60
minutes [11]). Experiment results also show that the average
routing delay of our protocols increases only slightly even when
the churn rate is greatly increased.

Keywords— Hypercube routing, K-consistency, failure recovery, sus-
tainable churn rate, peer-to-peer networks

1 Introduction

Structured peer-to-peer networks are being investigated as a
platform for building large-scale distributed systems [8, 10, 12,
14]. The primary function of these networks is object location,
that is, mapping an object ID to a node in the network. For ef-
ficient routing, each node maintainsO(log n) pointers to other
nodes, to be called neighbor pointers, wheren is the number
of network nodes. To locate an object, the average number of
application-level hops required isO(log n). Each node stores
neighbor pointers in a table, called itsneighbor table. The de-
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sign of protocols to construct and maintain “consistent” neigh-
bor tables for network nodes that may join, leave, and fail con-
currently and frequently is an important foundational issue.

Of interest in this paper is the hypercube routing scheme used
to achieve scalable routing in several proposed systems [8, 10,
14]. Our first objective is the design of a failure recovery proto-
col for nodes to re-establish consistency of their neighbor tables
after other nodes have failed.1 Neighbor table consistency guar-
antees the existence of at least one path from any source node to
any destination node in the network [7]. Such consistency how-
ever may be broken by the failure of a single node. To increase
robustness and facilitate the design of failure recovery, we in-
troduceK-consistency, K ≥ 1, which generalizesconsistency
previously defined [7]. We design and evaluate a failure recov-
ery protocol, which includes recovery from voluntary leave as
a special case, forK-consistent networks. The protocol was
found to be highly effective forK ≥ 2. From 2,080 simula-
tion experiments in which up to 50% of network nodes failed at
the same time, we found that all “recoverable holes” in neigh-
bor tables due to failed nodes were repaired by our protocol for
K ≥ 2, that is, the neighbor tables recoveredK-consistency af-
ter the failures ineveryexperiment forK ≥ 2. Furthermore, the
vast majority of the holes in neighbor tables were repaired with
no communication cost. The protocol uses only local informa-
tion at each node and is thus scalable to a largen.

Our second objective is integration of the failure recovery
protocol with a join protocol that has been proved to construct
K-consistent neighbor tables for an arbitrary number of con-
current joins in the absence of failures and also shown to be
scalable to a largen [7, 3]. Such integration requires extensions
to both the failure recovery and join protocols. For a network
with concurrent joins and failures, the failure recovery protocol
needs to distinguish between nodes that are still in the process of
joining, called T-nodes, and nodes that have joined successfully,
called S-nodes. The join protocol, on the other hand, needs to be
extended with the ability to invoke failure recovery and to back-
track. Furthermore, when a node is performing failure recovery,
its replies to some join protocol messages must be delayed. We
ran 980 simulation experiments in which the number of concur-
rent joins and failures was up to 50% of the initial network size.
We found that, forK ≥ 2, our protocols constructed and main-
tainedK-consistent neighbor tables after the concurrent joins
and failures ineveryexperiment.

Our third objective is to explore how high a rate of node dy-
namics can be sustained by the integrated protocols for hyper-

1When a node fails, it becomes silent. We do not consider Byzantine failures in this
paper.
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cube routing. We performed a number of (relatively) long dura-
tion experiments, in which nodes joined a 2000-node network at
a given rate, and nodes (both existing and joining nodes) were
randomly selected to fail concurrently at the same rate. In each
suchchurn experiment, we took a snapshot of neighbor tables
in the network once every 50 simulation seconds and evaluated
network connectivity and consistency measures over time as a
function of the churn rate, timeout value in failure recovery,
andK. Our protocols were found to be effective, efficient, and
stable for a churn rate up to 4 joins and 4 failures per second.
By Little’s Law, the average lifetime of a node was 8.3 minutes
at this rate. For comparison, the median lifetime measured for
Gnutella and Napster was 60 minutes [11].

We also found that, for a given network, its sustainable churn
rate is upper bounded by the rate at which new nodes can join
the network successfully (become S-nodes). We refer to this
upper bound as the network’sjoin capacity. We found that a
network’s join capacity decreases as the network’s failure rate
increases. For a given failure rate, we found two ways to im-
prove a network’s join capacity: (i) use the smallest possible
timeout value in failure recovery, and (ii) choose a smallerK
value. Since improving a network’s join capacity improves its
sustainable churn rate, our observation that a smallerK (less
redundancy) leads to a higher join capacity is consistent with
the conclusion in [1]. Furthermore, we found that a network’s
maximum sustainable churn rate increases at least linearly with
n (the number of network nodes) forn from 500 to 2000. This
validates a conjecture that our protocols’ stability improves as
the number of S-nodes in the network increases. Experiment
results also show that our protocols, by striving to maintainK-
consistency, were able to provide pairwise connectivity higher
than 99.9995% (between S-nodes) at a churn rate of 2 joins and
2 failures per second forn=2000 andK=3. Furthermore, the av-
erage routing delay increased only slightly even when the churn
rate was greatly increased.

The balance of this paper is organized as follows. In Sec-
tion 2, we present an overview of the hypercube routing scheme
and defineK-consistency. In Section 3, we describe our fail-
ure recovery protocol and present results from 2,080 simulation
experiments. In Section 4, we present our join protocol that
has been proved to construct and maintainK-consistent net-
works for concurrent joins. In Section 5, we describe how to
extend the join and failure recovery protocols to handle concur-
rent joins and failures and present results from 980 simulation
experiments. In Section 6, we present results from long-duration
churn experiments in which nodes join and fail continuously. In
Section 7, we investigate the routing performance of our pro-
tocols under different churn rates. We discuss related work in
Section 8 and conclude in Section 9.

2 Foundation

2.1 Hypercube routing scheme

In this section, we briefly review the hypercube routing scheme
used in PRR [8], Pastry [10], and Tapestry [14]. Consider a set
of nodes. Each node has a unique ID, which is a fixed-length
random binary string. A node’s ID is represented byd digits of

baseb, e.g., a 160-bit ID can be represented by 40 Hex digits
(d = 40, b = 16). Hereafter, we will usex.ID to denote the ID
of nodex, x[i] theith digit in x.ID , andx[i − 1]...x[0] a suffix
of x.ID . We count digits in an ID from right to left, with the
0th digit being therightmostdigit. See Table 1 for notation used
throughout this paper.

Notation Definition
〈V,N (V )〉 a hypercube network:

V is the set of nodes in the network,
N (V ) is the set of neighbor tables

[`] the set{0, ...,` − 1}, ` is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] theith digit in x.ID
x[i − 1]...x[0] suffix of x.ID ; denotes empty string ifi = 0
x.table the neighbor table of nodex
j · ω digit j concatenated with suffixω
|ω| the number of digits in suffixω
Nx(i, j) the set of nodes in(i, j)-entry ofx.table,

also referred as the(i, j)-neighborsof x
Nx(i, j).first the first node inNx(i, j)
csuf (ω1 , ω2 ) the longest common suffix ofω1 andω2

|V | the number of nodes in setV

Table 1: Notation

Given a message with destination node ID,z.ID, the objec-
tive of each step in hypercube routing is to forward the message
from its current node, sayx, to a next node, sayy, such that the
suffix match betweeny.ID andz.ID is at least one digit longer
than the match betweenx.ID andz.ID .2 If such a path exists,
the destination is reached inO(logb n) steps on the average and
d steps in the worst case, wheren is the number of network
nodes. Figure 1 shows an example path for routing from source
node 21233 to destination node 03231 (b = 4, d = 5). Note that
the ID of each intermediate node in the path matches 03231 by
at least one more suffix digit than its predecessor.

21233 0323133121 13331 30231

Figure 1: An example hypercube routing path

To implement hypercube routing, each node maintains a
neighbor tablethat hasd levels withb entries at each level. Each
table entry stores link information to nodes whose IDs have the
entry’s required suffix, defined as follows. Consider the table in
nodex. Therequired suffixfor entryj at leveli, j ∈ [b], i ∈ [d],
referred to as the (i, j)-entry ofx.table , is j ·x[i−1]...x[0]. Any
node whose ID has this required suffix is said to be aqualified
node for the (i, j)-entry ofx.table. Only qualified nodes for a
table entry can be stored in the entry.

Note that nodex has the required suffix for the (i, x[i])-entry,
i ∈ [d], of its own table. For routing efficiency, we fill each
node’s table such thatNx(i, x[i]).first = x for all x ∈ V , i ∈
[d]. Figure 2 shows an example neighbor table of node 21233.
The string to the right of each entry is the required suffix for that
entry. An empty entry indicates that there does not exist a node
in the network whose ID has the entry’s required suffix.

Nodes stored in the (i, j)-entry ofx.table are called the(i, j)-
neighborsof x, denoted byNx(i, j). Ideally, these neighbors

2In this paper, we follow PRR [8] and use suffix matching, whereas other systems use
prefix matching. The choice is arbitrary and conceptually insignificant.
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are chosen from qualified nodes for the entry according to some
proximity criterion [8]. Furthermore, nodex is said to be a
reverse(i, j)-neighborof nodey if y is an (i, j)-neighbor ofx.
Each node also keeps track of its reverse-neighbors. The link
information for each neighbor stored in a table entry consists
of the neighbor’s ID and IP address. For clarity, IP addresses
are not shown in Figure 2. Hereafter, we will use “neighbor”
or “node” instead of “node’s ID and IP address” whenever the
meaning is clear from context.
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133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233  ( b=4, d=5)

Figure 2: An example neighbor table

2.2 K-consistent networks

Constructing and maintaining consistent neighbor tables is an
important design objective for structured peer-to-peer networks.
Consider a hypercube routing network,〈V,N (V )〉, whereV de-
notes a set of nodes andN (V ) the set of neighbor tables in the
nodes. (Hereafter, we will use “network” instead of “hypercube
routing network” for brevity.) Consistency was defined in [7] as
follows: A network,〈V,N (V )〉, is consistentif and only if the
following conditions hold: (i) For every table entry inN (V ), if
there exists at least one qualified node inV , then the entry stores
at least one qualified node. (ii) If there is no qualified node in
V for a particular table entry, then that entry must be empty. In
a consistent network, any source nodex can reach any destina-
tion nodey using hypercube routing ink steps,k ≤ d. More
precisely, there exists a neighbor sequence (path), (u0, ..., uk),
k ≤ d, such thatu0 is x, uk is y, andui+1 ∈ Nui(i, y[i]),
i ∈ [k].

If nodes may fail frequently in a network, an excellent ap-
proach to improve robustness is to store in each table entry mul-
tiple qualified nodes. For this approach, we generalize the def-
inition of consistency toK-consistency as follows. A network,
〈V,N (V )〉, is K-consistent if and only if the following con-
ditions hold: (i) For every table entry inN (V ), if there exist
H qualified nodes inV , H ≥ 0, then the entry stores at least
min(K,H) qualified nodes. (ii) If there is no qualified node in
V for a particular table entry, then that entry must be empty. (A
more formal definition is presented in the Appendix of [4].)

It is easy to see that, forK ≥ 1, K-consistency implies con-
sistency (in particular, 1-consistency is the same as consistency).
Furthermore, for a given set of nodes,K-consistent neighbor
tables exist for any realization of node IDs (recall that IDs are
generated randomly). In Section 4, we will present a join pro-
tocol that generatesK-consistent tables for an arbitrary number
of concurrent joins to an initiallyK-consistent network (which
may be a single node).

Multiple neighbors stored in each table entry provide alterna-
tive paths from a source node to a destination node, and some of
them are disjoint. We have proved that aK-consistent network

provides at leastK disjoint paths to every source-destination
pair with a probability approaching one as the number of nodes
in the network increases [3].

3 Basic Failure Recovery

In this section, we present a basic failure recovery protocol for
K-consistent networks and demonstrate its effectiveness. We
consider the “fail-stop” model only, i.e., when a node fails, it
becomes silent and stays silent. If some neighbor in a node’s
table has failed, we assume that the node will detect the fail-
ure after some time, e.g., timeout after sending a periodic probe.
Note that the failure of a reverse-neighbor affects neitherK-
consistency nor consistency of a neighbor table. Therefore, if a
reverse-neighbor has failed, the reverse-neighbor pointer is sim-
ply deleted without any recovery action. Hence, the protocol
being designed is for recovery from neighbor failures only.

Consider a network ofn nodes that satisfiesK-consistency
initially. Supposef out of then nodes (chosen randomly) fail
at the same time or within a short time duration. Our objective
in this section is to design a protocol for each remaining node to
repair its neighbor table such that some time after thef failures
have occurred, neighbor tables in the remainingn − f nodes
satisfyK-consistency again.

Suppose a node in the network, sayy, has failed andy has
been stored in the (i, j)-entry of the table of nodex. We say that
the failure ofy leaves ahole in the (i, j)-entry ofx.table. To
maintainK-consistency,x needs to find aqualified substitute
for y, i.e.,x needs to find a qualified nodeu for the entry, such
that u has not failed andu is not already stored in the entry.
(It is possible thatu fails later andx needs to find a qualified
substitute foru.) To determine whether or not the network of
n − f remaining nodes satisfiesK-consistency, we distinguish
betweenrecoverable holesand irrecoverable holes. A hole in
the (i, j)-entry ofx.table is irrecoverable after thef failures if
a qualified substitute does not exist among then− f remaining
nodes.

Theobjective of failure recoveryis to find a qualified substi-
tute for every recoverable hole in neighbor tables of all remain-
ing nodes. Irrecoverable holes, on the other hand, cannot possi-
bly be filled and do not have to be filled for the neighbor tables
to satisfyK-consistency. The main difficulty in failure recov-
ery is that individual nodes do not have global information and
cannot distinguish recoverable from irrecoverable holes. (If the
network is not partitioned, a broadcast protocol can be used to
search all nodes to determine if a hole is recoverable. A broad-
cast protocol, of course, is not a scalable approach.)

The recovery process for each hole in a node’s table is de-
signed to be a sequence of four search steps executed by the
node based onlocal information (its neighbors and reverse-
neighbors). After the entire sequence of steps has been executed
and no qualified substitute is found, the node considers the hole
to be irrecoverable and the recovery process terminates. The
effectiveness of our failure recovery protocol is evaluated in a
large number of simulation experiments. In a simulation experi-
ment, we can check how fast our failure recovery protocol finds
a qualified substitute for a recoverable hole. Furthermore, we
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can check how often our failure recovery protocol terminates
correctly when it considers a hole to be irrecoverable (since we
have global information in simulation).

3.1 Protocol design

Suppose a node,x, detects that a neighbor,y, has failed and left
a hole in the (i, j)-entry, i ∈ [d], j ∈ [b], in x.table. Let ω
denote the required suffix of the (i, j)-entry inx.table. To find
a qualified substitute fory with reasonable cost, we propose a
sequence of four search steps, (a)-(d) below, based upon node
x’s local information. At the beginning of each step, except step
(a),x sets a timer. If the timer expires and no qualified substitute
for y has been found, thenx proceeds to the next step.

To determine whether some nodeu is a qualified substitute
for y, x needs to know whetheru has failed. In our protocol,
x makes this decision also based uponlocal information. More
specifically,x maintains a list of failed nodes it has detected so
far.3 x acceptsu as a qualified substitute fory if u is not on the
list, u has the required suffixω, andu 6∈ Nx(i, j).

Step (a)x deletesy from its table, then searches its neighbors
and reverse-neighbors to find a qualified substitute fory.

Step (b) x queries each of the remaining neighbors in the
(i, j)-entry of its table (if any). In each query,x includes a copy
of nodes inNx(i, j). When a node, sayz, receives such a query
from x, it searches its neighbors and reverse-neighbors to find a
node that has suffixω and is not inNx(i, j). If one is found,z
replies tox with the node’s ID (and IP address).

Step (c)x queries each of its neighbors at level-i (all entries)
including neighbors in the (i, j)-entry, using a protocol same as
the one in step (b).

Step (d) x queries each one of its neighbors (all levels) in-
cluding neighbors at level-i, using a protocol same as the one in
step (b).

When the timer in step (d) expires and no qualified substitute
has been found,x terminates the recovery process and consid-
ers the hole left byy to be irrecoverable. The earlier a hole is
repaired with a qualified substitute, the less is the communica-
tion overhead incurred. If a hole is repaired in step (a), there is
no communication overhead. If a hole is repaired in step (b), at
most2(K−1) messages are exchanged,K−1 queries andK−1
replies. If a hole is repaired in step (c), there are at most2Kb
messages, plus the messages exchanged in step (b). If a hole is
repaired in step (d), approximately2Kb logb n messages, plus
the messages in steps (b) and (c), are exchanged.

3.2 Simulation experiments

Methodology To evaluate the performance of our failure re-
covery protocol, 2,080 simulation experiments were conducted
on our own discrete-event packet-level simulator.4 We used the
GT ITM package [13] to generate network topologies. For a

3In implementation, a failed node only needs to stay in the list long enough for all its
reverse-neighbors to detect its failure. To keep the list from growing without bound,x can
delete nodes that have been in the list for a sufficiently long time.

4These 2,080 experiments together with the 980 experiments to be presented in Section 5
required several months of execution time on several workstations. A typical experiment
took several hours to run on a Linux workstation with 2.66 GHz CPU and 2 GB memory.
Each simulation experiment for 8,000 nodes,b = 16, andK ≥ 3 shown in Table 2 took
40 - 72 hours to run.

generated topology with a set of routers,n nodes (end hosts)
were attached randomly to the routers. For the simulations re-
ported in Table 2, three topologies were used. The 1000-node
and 2000-node simulations used a topology with 1056 routers.
The 4000-node simulations used a topology with 2112 routers.
The 8000-node simulations used a topology with 8320 routers.
We simulated the sending of a message and the reception of a
message as events, but abstracted away queueing delays. The
end-to-end delay of a message from its source to destination was
modeled as a random variable with mean value proportional to
the shortest path length in the underlying network.5

In each simulation, a network ofn nodes withK-consistent
neighbor tables was first constructed. Then a number,f , of ran-
domly chosen nodes failed. For 1000-node and 8000-node sim-
ulations, thef nodes failed at the same time. For 2000-node
simulations and each specificK value, thef nodes failed at the
same time for 84 out of the 180 experiments; a Poisson process
was used to generate failures in the balance of the experiments,
with half of the experiments at the rate of 1 failure per sec-
ond and the other half at the rate of 1 failure every 10 seconds.
For comparison, the timeout value used to determine whether a
neighbor has failed was 5 seconds, and the timeout value used
in each of the protocol steps (b)-(d) was 20 seconds. Therefore,
most failure recovery processes ran concurrently even when the
Poisson rate was slowed to one failure every ten seconds. For
4000-node experiments and each specificK value, thef nodes
failed at the same time in 104 out of the 116 experiments, with
a Poisson process at the rate of 1 failure per second used in the
balance of the experiments.

We conducted simulations for different combinations ofb,
d, K, n and f values. For each network ofn nodes,n ∈
{1000,2000,4000, 8000}, four pairs of (b, d) were used, namely:
(4,16), (4,64), (16,8), and (16,40).6 Then, for each (b, d) pair,K
was varied from 1 to 5. For each (n, b, d, K) combination,f
was varied from0.05n to 0.1n, 0.15n, 0.2n, 0.3n, 0.4n, and
0.5n (1540 experiments were run forf = 0.05n to f = 0.2n,
with approximately the same number of experiments for each;
540 experiments were run forf = 0.3n to f = 0.5n, with 180
experiments for each).

To construct the initialK-consistent networks for simula-
tions, we experimented with four approaches to choose neigh-
bors for each entry: (i) chooseK neighbors randomly from
qualified nodes, (ii) chooseK closest neighbors from quali-
fied nodes, (iii) chooseK neighbors randomly from qualified
nodes that are within a multiple of the closest neighbor’s dis-
tance, (iv) use our join protocol in Section 4 to construct aK-
consistent network. We conjecture that aK-consistent network
constructed by approach (iii) would be closest to a real network
whose neighbor tables have been optimized by some heuristics.
As shown below, we found that forK ≥ 2, our failure recovery
protocol was very effective irrespective of the approach used for
initial network construction. (All four approaches were used for
different experiments in the set of 2,080 experiments.)

Results Table 2 shows a summary of results from 2,080
simulation experiments. In a simulation, if all recoverable holes
are repaired (thusK-consistency recovered) at the end of the

5The maximum end-to-end delay in 8000-node simulations was 969 ms.
6In Tapestry,b = 16 andd = 40. In Pastry,b = 16 andd = 32.
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simulation, it is recorded as aperfect recoveryin Table 2. In
the 2,080 simulation experiments, every simulation forK ≥ 2
finished as a perfect recovery, i.e., every recoverable hole was
repaired with a qualified substitute. Thus inK-consistent net-
works, forK ≥ 2, our failure recovery protocol is extremely
effective.

K, n Number of Number of K, n Number of Number of
simulations perfect simulations perfect

recoveries recoveries
1,1000 100 51 1, 2000 180 96
2,1000 100 100 2, 2000 180 180
3,1000 100 100 3, 2000 180 180
4,1000 100 100 4, 2000 180 180
5,1000 100 100 5, 2000 180 180

1,4000 116 65 1, 8000 20 14
2,4000 116 116 2, 8000 20 20
3,4000 116 116 3, 8000 20 20
4,4000 116 116 4, 8000 20 20
5,4000 116 116 5, 8000 20 20

Table 2: Results from 2,080 simulation experiments (f
was0.05n, 0.1n, 0.15n, 0.2n, 0.3n, 0.4n or 0.5n)

Table 3 presents results from ten simulations for a network
with 4,000 nodes and 800 failures, where the initial neighbor
tables were constructed using approach (iii), described above.
The results show the cumulative fraction of recoverable holes
that were repaired by the end of each step in the recovery pro-
tocol. For instance, for the simulation with parametersb = 4,
d = 64 andK = 2, more than 66.8% percent of recoverable
holes were repaired by the end of step (a), 93.8% were repaired
by the end of step (b), 99.8% were repaired by the end of step
(c), and all were repaired by the end of step (d). From Table 3,
observe that step (d) in our recovery protocol was rarely used.
There was a dramatic improvement in the recovery protocol’s
performance whenK was increased from 1 to 2. Also observe
that the fraction of recoverable holes that were repaired after
each step increases withK.

Aside from being extremely effective, our failure recovery
protocol is also very efficient because recoverable holes re-
paired in step (a) incur no communication cost, while each hole
repaired in step (b) incurs a communication cost of at most
2(K − 1) messages. Table 3 shows that, forK ≥ 2, the ma-
jority of recoverable holes were repaired in step (a) and almost
all of them were repaired by the end of step (b). Note that if a
recoverable hole is repaired in step (a), its recovery time is (al-
most) zero. The time required for each subsequent step ((b)-(d))
is at most the step’s timeout value. For the timeout value of 20
seconds per step, the average time to repair a recoverable hole
was less than 5.88 seconds forb=16,d=40, andK=3 in Table 3.
For a timeout value of 5 seconds per step, the average time to
repair a recoverable hole was found to be less than 1.45 seconds
for b=16,d=40, andK=3 from a different set of experiments.

Table 4 shows the total number of holes, the number of ir-
recoverable holes, as well as the number of recoverable holes
repaired at each step for the same simulation experiments shown
in Table 3. Observe from Table 4 that whenK was increased,
even though the total number of holes increased, the number
of recoverable holes repaired in step (b) did not increase much
with K; the number of holes repaired actually declined in steps
(c) and (d). Thus while increasingK causes the number of re-

b, d, K step (a) step (b) step (c) step (d)
4, 64, 1 0.451594 0.451594 0.920969 0.998883
4, 64, 2 0.668176 0.938131 0.998077 1.000000
4, 64, 3 0.760213 0.98974 0.998774 1.000000
4, 64, 4 0.816133 0.997837 0.999252 1.000000
4, 64, 5 0.851577 0.999126 0.999736 1.000000

16, 40, 1 0.453649 0.453649 0.999093 1.000000
16, 40, 2 0.633784 0.932868 0.999854 1.000000
16, 40, 3 0.716517 0.989295 0.999986 1.000000
16, 40, 4 0.77311 0.997785 1.000000 1.000000
16, 40, 5 0.823924 0.999441 1.000000 1.000000

Table 3: Cumulative fraction of recoverable holes repaired
by the end of each step,n = 4000, f = 800

b, d, K Total Irreco- Number of recoverable
number verable holes repaired at each step
of holes holes step step step step not rec-

(a) (b) (c) (d) overed

4, 64, 1 13125 1484 5257 0 5464 907 13
4, 64, 2 28616 3660 16675 6737 1496 48 0
4, 64, 3 43323 5798 28527 8613 339 46 0
4, 64, 4 57462 7997 40370 8988 70 37 0
4, 64, 5 70798 10174 51626 8945 37 16 0

16, 40, 1 29803 4442 11505 0 13833 23 0
16, 40, 2 55977 8161 30305 14301 3203 7 0
16, 40, 3 81406 9945 51203 19493 764 1 0
16, 40, 4 107547 10500 75028 21804 215 0 0
16, 40, 5 132257 10696 100157 21336 68 0 0

Table 4: Total number of holes, irrecoverable holes, and
recoverable holes repaired at each step,n = 4000, f =
800

coverable holes repaired in step (a) to increase, these repairs are
performed withzerocommunication cost.

Nevertheless, the communication cost of failure recovery in-
creases withK because the number of irrecoverable holes in-
creases withK. Note that for each irrecoverable hole, all four
steps of failure recovery are executed.

3.3 Voluntary leaves

A voluntary leave can be handled as a special case of node fail-
ure if necessary. When a node, sayx, leaves, it can actively
inform its reverse-neighbors and neighbors. To each reverse-
neighbor,x suggests a possible substitute for itself. When a
node receives a leave notification fromx, for each hole left by
x, it checks whether the substitute provided byx is a qualified
substitute. If so, the hole is filled with the substitute; otherwise,
failure recovery is initiated for the hole left byx.

4 Join Protocol for K-consistency

We present in this section a join protocol that constructs and
maintainsK-consistent neighbor tables for an arbitrary number
of concurrent joins [3]. In the next section, we will show how to
extend the failure recovery and join protocols to handle concur-
rent joins and failures.

In designing a protocol for nodes to join network〈V,N (V )〉,
we make the following assumptions: (i)V 6= ∅ and〈V,N (V )〉
is a K-consistent network, (ii) each joining node, by some
means, knows a node inV initially, (iii) messages between
nodes are delivered reliably, and (iv) there is no node leave or
failure during the joins. Then, the tasks of the join protocol are
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to update neighbor tables of nodes inV and construct tables for
the joining nodes so that some time after the joins, the network
is K-consistent again.

Each node in the network maintains a state variable named
status, which begins incopying, then changes towaiting, noti-
fying, and in systemin that order. A node in statusin system
is called anS-node; otherwise, it is aT-node. Briefly, in sta-
tuscopying, a joining node, sayx, copies neighbor information
from other nodes to fill in most entries of its table. In status
waiting, x tries to “attach” itself to the network, i.e., to find an
S-node,y, that will store it as a neighbor. In statusnotifying, x
seeks and notifies nodes that share a certain suffix withx, which
is also a suffix shared byx andy. Lastly, when it finds no more
node to notify,x changes status toin systemand becomes an
S-node.

Figure 3 presents the state variables of a joining node and the
join protocol messages. Note that each node stores, for each
neighbor in its table, the neighbor’s state, which can beS in-
dicating that the neighbor is aS-node orT indicating it is a
T -node. Once a node has become anS-node, the state variables
in the second part of the list are no longer needed.

State variables of a joining nodex:

x.status ∈ {copying, waiting, notifying, in system}, initially copying.
Nx(i, j): the set of (i, j)-neighbors ofx, initially empty.
x.state(y) ∈ {T, S}, the state of neighbory stored inx.table.
Rx(i, j): the set of reverse(i, j)-neighbors ofx, initially empty.

x.att level : an integer, initially 0.
Qr: a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx aJoinWaitMsg, initially empty.
Qsr, Qsn: a set of nodes, initiallyempty.

Messages exchanged by nodes:

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x.table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx and request

the receiver to storex, whenx.status is waiting.
JoinWaitRlyMsg(r, i, x.table), sent byx in response to aJoinWaitMsg,

whenx.status is in system. r ∈ {negative, positive}, i: an integer.
JoinNotiMsg(i, x.table), sent byx to notify receiver of the existence ofx,

whenx.status is notifying. i: an integer.
JoinNotiRlyMsg(r, Q, x.table, f ), sent byx in response to aJoinNotiMsg.

r ∈ {negative, positive}, Q: a set of integers,f ∈ {true, false}.
InSysNotiMsg, sent byx whenx.status changes toin system.
SpeNotiMsg(x, y), sent or forwarded by a node to inform receiver of the

existence ofy, wherex is the initial sender.
SpeNotiRlyMsg(x, y), response to aSpeNotiMsg.
RvNghNotiMsg(y, s), sent byx to notify y thatx is a reverse neighbor ofy,

s ∈ {T, S}.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg, s = S if

x.status is in system; otherwises = T .

Figure 3: State variables and protocol messages

Next, we describe the join protocol informally. (A specifi-
cation of the protocol in pseudocode and a correctness proof
are given in [3].) In statuscopying, a joining node,x, fills in
most entries of its table, level by level, as follows. To construct
its table at level-i, i ∈ [d], x needs to find an S-node,gi, that
shares the rightmosti digits with it and send aCpRstMsgto gi

to request a copy ofgi.table. We assume that each joining node
knows a node inV . Let this node beg0 for x. x begins withg0.
Fromg0.table, x copies level-0 neighbors ofg0, finds a nodeg1

that shares the rightmost digit with it, if such a node exists and
is an S-node, and requestsg1.table from g1. Fromg1.table, x
copies level-1 neighbors ofg1 and tries to findg2, and so on.

In statuscopying, each time after receiving aCpRlyMsg, x
checks whether it should change status towaiting. Supposex re-
ceives aCpRlyMsgfrom y. The condition forx to change status
to waiting is: (i) there exists an “attach-level” forx in the copy
of y.table included in the reply, or (ii) an attach-level does not
exist forx and nodeu is a T-node, whereu = Ny(k, x[k]).first
andk = |csuf (x .ID , y.ID)|. (A precise definition of attach-
level is given in the Appendix of our conference paper [4].) If
the condition is satisfied, thenx changes status towaiting and
sends aJoinWaitMsgto y (if case (i) holds) or tou (if case
(ii) holds). Otherwise,x remains in statuscopyingand sends
aCpRstMsgto u.

In statuswaiting, the main task ofx is to find an S-node
in the network to storex as a neighbor by sending outJoin-
WaitMsg; another task is to copy more neighbors into its table.
When a node,y, receives aJoinWaitMsgfrom x, there are two
cases. Ify is not an S-node, it stores the message to be pro-
cessed after it has become an S-node. Ify is an S-node, it checks
whether there exists an attach-level forx in its table. If an attach-
level exists, say level-j, y storesx into level-j through level-k,
k = |csuf (x .ID , y.ID)|, and sends aJoinWaitRlyMsg(positive,
j, y.table) to x, to inform x that the lowest levelx is stored
is level-j. Level-j is then the attach-level ofx in the network,
stored byx in x.att level . If an attach-level does not exist for
x, y sends a negativeJoinWaitRlyMsgincluding y.table to x.
After receiving the reply (positive or negative),x searches the
the copy ofy.table included in the reply for new neighbors to
update its own table. If the reply is negative,x has to send an-
otherJoinWaitMsg, this time tou, u = Ny(k, x[k]).first . This
process may be repeated for several times (at mostd times since
each time the receiver shares at least one more digit withx than
the previous receiver) untilx receives a positive reply, which
indicates thatx has been stored by an S-node and therefore at-
tached to the network.x then changes status tonotifying.

In statusnotifying, x searches and notifies nodes that share the
rightmostj digits with it, j = x.att level , so that these nodes
will update their neighbor tables if necessary.x starts this pro-
cess by sendingJoinNotiMsg, which includesj and a copy of
x.table, to its neighbors at level-j and higher levels. EachJoin-
NotiMsgserves as a notification as well as a request for a copy of
the receiver’s table. Upon receiving aJoinNotiMsg, a receiver,
z, storesx into all (i, x[i])-entries that are not full withK neigh-
bors yet, wherej ≤ i ≤ |csuf (x .ID , z .ID)|, searchesx.table
for new neighbors to updatez’s table, and then replies tox with
z.table. From the reply,x may find more nodes that share the
rightmostj digits with it and sendJoinNotiMsgto these nodes.
Meanwhile,x searches the copy ofz.table for new neighbors to
update its own table.

Whenx has received replies from all nodes it has notified and
finds no more node to notify, it changes status toin systemand
becomes an S-node. It then informs all of its reverse-neighbors,
i.e., nodes that have storedx as a neighbor, that it has become
an S-node. Ifx has delayed processingJoinWaitMsgfrom some
nodes, it should process these messages and reply to these nodes
at this time.
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5 Protocol Design for Concurrent Joins
and Failures

In this section we describe how to integrate the basic failure re-
covery protocol presented in Section 3 with the basic join proto-
col presented in Section 4. Such integration requires extensions
to both protocols.

Consider aK-consistent network,〈V,N (V )〉. Suppose a set
of new nodes,W , join the network while a set of nodes,F , fail,
F ⊂ V ∪ W andV − F 6= ∅. Our goal in this section is to de-
sign extended join and failure recovery protocols such that even-
tually the join process of each node inW − F terminates and
〈(V ∪W )−F,N ((V ∪W )−F )〉 is aK-consistent network. In
general, designing a failure recovery protocol to provide perfect
recovery is an impossible task; for example, consider a scenario
in which an arbitrary number of nodes inV ∪ W fail. On the
other hand, we observed in Section 3 that the basic failure re-
covery protocol achieved perfect recovery forK-consistent net-
works, forK ≥ 2, in which up to 50% of the nodes failed. This
level of performance, we believe, would be adequate for many
applications.

Design of extended join and failure protocols in this section
follows the approach in [5] on how to compose modules. The
service provided by a composition of the two protocols herein is
construction and maintenance ofK-consistent neighbor tables.
The extended join protocol is designed with the assumption that
the extended failure recovery protocol provides a “perfect recov-
ery” service, that is, for every hole found in the neighbor table
of a node, the node calls failure recovery and within a bounded
duration, failure recovery returns with a qualified substitute for
the hole or the conclusion that the hole is irrecoverable at that
time. To avoid circular reasoning [5], we ensure that progress of
the failure recovery protocol does not depend upon progress of
the join protocol. Thus in the extensions to be presented, failure
recovery actions are always executed before join actions.

5.1 Protocol extensions

For networks with concurrent joins and failures, the failure re-
covery protocol needs to distinguish between nodes that are still
in the process of joining (T-nodes) and nodes that have joined
successfully (S-nodes). The join protocol, on the other hand,
needs to be extended with the ability to invoke failure recovery
and to backtrack. Furthermore, when a node is performing fail-
ure recovery, its replies to some join protocol messages must be
delayed. A more detailed description follows.

We specify extensions to the basic join protocol in Section 4
and basic failure recovery protocol in Section 3.1 as a set of
eight rules. Rule 0 extends the basic join protocol with the abil-
ity to invoke failure recovery. Rule 1 is an extension that applies
to both the basic failure recovery and join protocols. Rules 2 to
7 are extensions to the basic join protocol.

Rule 0Each node, S-node or T-node, starts an error recovery
process when it detects a hole in its neighbor table left by a failed
neighbor.

Rule 1 In filling a table entry with a qualified node, do not
choose a T-node unless there is no qualified S-node.

Rule 1 extends the basic failure recovery protocol as follows:

When a node,x, locates a qualified substitute for a hole in
x.table using step (a), (b), (c), or (d) of the failure recovery
protocol, if the qualified substitute is an S-node, thenx fills the
hole with it and terminates the recovery process. However, if the
qualified substitute is a T-node,x saves the T-node in a waiting
list for the entry and continues the recovery process. Only when
the recovery process terminates at the end of step (d) without
locating any S-node as a qualified substitute, willx remove a T-
node from the entry’s waiting list to fill the hole (provided that
the list is not empty). Also, because of Rule 1, when a node
searches among its neighbors and reverse-neighbors to find a
qualified substitute in response to a recovery query from another
node, it does not select a T-node as long as there are S-nodes that
are qualified.

Rule 1 extends the basic join protocol as follows: Consider a
node,x, that discovers a new neighbor,y, for one of its table en-
tries after receiving a join protocol message from another node.
x can storey in the table entry, if the table entry is not full with
K neighbors yet andy is an S-node, according to the following
steps. First,x checks if there exists any vacancy among theK
“slots” of the entry that is not a hole for which failure recovery
is in progress. If there exists such a vacancy,y is filled into it;
otherwise,y (an S-node) is filled into a hole in the entry and the
recovery process for the hole is terminated. On the other hand,
if the new neighbory is a T-node, theny can be stored in the
entry if the total number of neighbors and holes in the entry is
less thanK. Otherwise,y (a T-node) is saved in the entry’s wait-
ing list and may be stored into the entry later when the recovery
process of a hole in the entry terminates.

Rule 2 Each node, S-node or T-node, cannot reply to
CpRstMsg, JoinWaitMsgor JoinNotiMsg, if the node has any
ongoing recovery process at the time it receives such a message.

When a node,x, receives aCpRstMsg, JoinWaitMsgor Join-
NotiMsg, if x has at least one recovery process that has not ter-
minated,x needs to save the message and process it later. Each
time a recovery process terminates,x checks whether there is
any more recovery process still running. If not,x can process
the above three types of messages it has saved so far.

Rule 3 When a T-node detects failure of a neighbor in its ta-
ble, it starts a failure recovery process for each hole left by the
failed neighbor according to Rule 0 with the following excep-
tion, which requires the T-node to backtrack in its join process.

Consider a T-node, sayx. In order to backtrack,x keeps a list
of nodes, (g0, ...,gi), to which it has sent aCpRstMsgor aJoin-
WaitMsg, in order of sending times. Backtracking is required if
one of the following conditions holds: (i)x is in statuscopying,
waiting for aCpRlyMsgfrom gi, and has detected the failure
of gi; (ii) x is in statuswaiting, waiting for aJoinWaitRlyMsg
from gi, and has detected the failure ofgi; (iii) x, in statusnoti-
fying, finds that it has no live reverse-neighbor left and it is not
expecting any moreJoinNotiRlyMsgwhen it receives a negative
JoinNotiRlyMsgor when it detects the failure ofgi, some neigh-
bory, or a node from whichx is waiting for aJoinNotiRlyMsg.

In cases (i) and (ii),x has not been attached to the network (no
S-node has stored it as a neighbor). In case (iii),x is detached
from the network and has no prospect of attachment since it is
not expecting aJoinNotiRlyMsg. In each case,x backtracks by
deleting from its table the failed node(s) it detected, setting its
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status towaiting, and sending aJoinWaitMsgto gi−1 to inform
gi−1 about the failed node(s) and requestgi−1 to storex into
gi−1.table. If gi−1 has also failed, thenx contactsgi−2, and so
on. If x backtracks tog0 andg0 has also failed, thenx has to
obtain another S-node from the network to start joining from the
beginning again.

Rule 4A T-node must wait until its status isnotifyingbefore it
can sendRvNghNotiMsgto its neighbors, which will then store
it as a reverse-neighbor. (This is to prevent a T-node from being
selected as a substitute for a hole before it is attached to the
network.)

Rule 5When a T-node receives a reply with a substitute node
for a hole in its table, if the T-node is in statusnotifying and
the substitute node should be notified,7 then the T-node sends a
JoinNotiMsgto the substitute, even if the substitute is not used
to fill the hole.

Rule 6 A T-node cannot change status toin system(become
an S-node) if it has any ongoing failure recovery process.

Rule 7 When a T-node changes status toin system, it must
inform all its reverse-neighbors (by sendingInSysNotiMsg), in
addition to its neighbors, that it has become an S-node.

5.2 Simulation results

We implemented the extended join and failure recovery pro-
tocols and conducted 980 simulation experiments to evaluate
them. Each simulation began with aK-consistent network,
〈V,N (V )〉, of n nodes (n = |V |). Then a setW of nodes
joined and a setF of randomly chosen nodes failed during the
simulation. Each simulation was identified by a combination of
b, d, K, n, and|W | + |F | values, where|W | + |F | is the total
number of join and failure events.K was varied from 1 to 5,
(b, d) values were chosen from (4,16),(4,64), (16,8) and (16,40),
and three values, 1600, 3200 and 3600, were used for the initial
network size (n). For 3200-node and 3600-node simulations,
all joins and failures occurred at the same time. For 1600-node
simulations, join and failure events were generated according to
a Poisson process at the rate of 1 event per second in 220 ex-
periments, 1 event every 10 seconds in 180 experiments, 1 event
every 20 seconds in 60 experiments, and 1 event every 100 sec-
onds in 60 experiments.K-consistent neighbor tables for the
initial network were constructed using the four approaches de-
scribed in Section 3.2.

At the end of every simulation, we checked whether the join
processes of all joining nodes that did not fail (nodes inW −F )
terminated. We then checked whether the neighbor tables of all
remaining nodes (nodes inV ∪W − F ) satisfyK-consistency.
Table 5 presents a summary of results of the 980 simulation ex-
periments. We observed that, forK ≥ 2, in everysimulation,
the join processes of all nodes inW − F terminated and the
neighbor tables of all remaining nodes satisfiedK-consistency.
Each such experiment is referred to in Table 5 as a simulation
with perfect outcome.

7Let x denote the T-node in statusnotifying andy the substitute node received. The
condition forx to notify y is |csuf (x .ID, y.ID)| ≥ x.att level andx has not sent a
JoinNotiMsgto y.

K = 1 K = 2, 3, 4, 5
n No. of events No. of No. of sim. No. of No. of sim.

(|W | + |F |) sim. w/ perfect sim. w/ perfect
outcome outcome

1600 200 (38+162) 16 16 64 64
1600 200 (110+90) 16 16 64 64
1600 200 (160+40) 12 12 48 48
1600 400 (85+315) 12 10 48 48
1600 400 (204+196) 12 11 48 48
1600 400 (323+77) 12 12 48 48
1600 800 (386+414) 24 22 96 96
3600 400 (81+319) 16 13 64 64
3600 400 (210+190) 16 15 64 64
3600 400 (324+76) 12 12 48 48
3600 800 (169+631) 12 9 48 48
3600 800 (387+413) 12 11 48 48
3600 548 (400+148) 12 10 48 48
3200 1600 (780+820) 12 9 48 48

Table 5: Results for concurrent joins and failures

6 Churn Experiments

Our simulation results in the previous section show that for
K ≥ 2, K-consistency was recovered in every experiment some
time after the simultaneous occurrence of massive joins and fail-
ures. Such convergence toK-consistency provides assurance
that our protocols are effective and error-free. For a real sys-
tem, however, there may not be any quiescent time period long
enough for neighbor tables to converge toK-consistency after
joins and failures. Protocols designed to achieveK-consistency,
K ≥ 2, provideredundancyin neighbor tables to ensure that a
dynamically changing network is alwaysfully connected, i.e.,
there exists at least one path from any node to every other node
in the network. In this section, we investigate the impact of node
dynamics on protocol performance. In particular, we address the
question of how high a rate of node dynamics can be sustained
by our protocols and, more specifically, what are the limiting
factors? By “sustaining a rate of node dynamics”, we mean that
the system is able to maintain a large, stable, and connected set
of S-nodes under the given rate of node dynamics.

6.1 Experiment setup

To simulate node dynamics, Poisson processes with ratesλjoin

andλfail are used to generate join and failure events, respec-
tively. For each join event, a new node (T-node) is given the ID
and IP address of a randomly chosen S-node to whom it sends
a CpRstMsgto begin its join process. For each failure event, an
existing node, S-node or T-node, is randomly chosen to fail and
stay silent. In experiments to be presented in this section, we
setλjoin = λfail = λ, which is said to be thechurn rate. Pe-
riodically in each experiment, we took snapshots of the neigh-
bor tables of all S-nodes. Intuitively, the set of S-nodes is the
“core” of the network. The periodic snapshots provide informa-
tion on network connectivity and indicate whether our protocols
can sustain a large stable core for a particular churn rate over
the long term. The time from when a new node starts joining
to when it becomes an S-node is said to be itsjoin duration .
Note that each new node can get network services as a “client”
as soon as it has the ID and IP address of an existing S-node.
However, it cannot provide services to others as a “server” until
it has become an S-node.

Each experiment in this section began with 2,000 S-nodes,
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whereb = 16, d = 8, andK was 3 or 2. Neighbor tables
in the initial network were constructed using approach (iii) as
described in Section 3.2. The underlying topology used in the
experiments had 2,112 routers. Of the average end-to-end de-
lays, 23.3% were below 10 ms and 72.2% were below 100 ms,
with the largest average value being 596 ms. Thetimeout value
for each step in failure recovery (see Section 3.1) was 10, 5 or
2 seconds.8 We ran experiments for values ofλ ranging from
0.25 to 4 joins/second (also failures/second). By Little’s Law,
at a churn rate ofλ = 4, the average lifetime of a node in a
2000-node network is 8.3 minutes.9 (For comparison, the me-
dian node lifetime in Napster and Gnutella was measured to be
60 minutes [11].) Each experiment ran for 10,000 seconds of
simulated time.10 After 10,000 seconds, no more join or failure
event was generated, and the experiment continued until all join
and failure recovery processes terminated. We took snapshots
of neighbor tables and evaluated connectivity and consistency
measures once every 50 simulation seconds throughout each ex-
periment. We also checked whether a network converged toK-
consistency (K = 3 or 2) at termination and measured the time
duration needed for convergence.

6.2 Results

Figure 4 plots the total number of nodes (S-nodes and T-nodes)
and the number of S-nodes in the network at each snapshot, for
experiments withλ = 0.5, λ = 1, andλ = 1.5, andK = 3.
Fluctuations in the curves are mainly due to fluctuations in the
Poisson processes for generating join and failure events. The
difference between the two curves of each experimentis the
number of T-nodes. Withλjoin = λfail = λ, a stable number
of T-nodes over time indicates that our protocols were effective
and stable. Observe that some time after 10,000 seconds, all
T-nodes became S-nodes (the two curves converged). Experi-
ments illustrated on the left side and the right side of Figure 4
used timeout values of 10 seconds and 5 seconds, respectively.
For the sameλ, the average number of S-nodes is larger and
the average number of T-nodes is smaller in experiments with
5-second timeouts than those with 10-second timeouts. This is
because join duration is much smaller with 5-second timeouts
than with 10-second timeouts, which suggests that the timeout
value in failure recovery should be as small as possible.

In general when the failure rate of a network increases, join
duration increases. In our protocol design, to avoid circular rea-
soning, failure recovery actions have priority over join protocol
actions. More specifically, when a node has an ongoing failure
recovery process, it must wait until the process terminates be-
fore it can reply to certain join protocol messages; moreover, a
T-node must wait to change status to an S-node if it has an ongo-
ing recovery process. With more failures, there are more holes
in neighbor tables and the join processes of T-nodes will be de-
layed longer. Figure 5(a) shows the cumulative distribution of
join duration for different values ofλ. Whenλ increases (failure

8The timeout value is used in each failure recovery step to wait for replies. A timeout
value of 10 seconds might be unnecessarily long for today’s Internet.

9By Little’s Law, the average node lifetime isn/λ (seconds), wheren is the number of
nodes in the network.

10Each experiment forλ = 2 andK = 3 took about twelve days to run on a Linux
workstation with 3.06GHz CPU and 4GB memory.
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Figure 4: Number of nodes and S-nodes in the network,K = 3

rate increases), join duration increases. In Figure 5(a), observe
that not only is the mean join duration forλ = 1 larger than that
of λ = 0.5, but the tail of the distribution is very much longer.
(In the absence of failures, join durations of nodes are substan-
tially shorter. From a different set of experiments in which 1000
nodes concurrently join an existing 3000-node network with no
failure, the average join duration was found to be 1.9 seconds
and the 90 percentile value 2.7 seconds.)

For a given failure rate, the join durations of nodes can be
reduced by two system parameters, namely: timeout value in
failure recovery andK. We have already inferred from Figure 4
that join duration can be reduced by using a smaller timeout in
failure recovery. This point is illustrated explicitly from com-
paring the two curves in Figure 5(b), where one curve shows the
cumulative distribution forλ = 1, K = 3, and 10-second time-
out, and the other shows the cumulative distribution forλ = 1,
K = 3, and 5-second timeout. (Intuitively, using a smaller time-
out value reduces the average duration of failure recovery pro-
cesses. As a result, join processes that wait for failure recovery
processes can terminate faster.) Also observe from Figure 5(c)
for λ = 1 and 10-second timeout, reducing theK value from
3 to 2 decreases the mean join duration slightly. However, the
tail of the distribution is substantially shorter forK = 2 than
for K = 3. The tradeoff is that aK-consistent network for a
smallerK offers fewer alternate paths and its connectivity mea-
sures are slightly lower.

Figure 6(a) shows results for an experiment withλ = 2,
K = 3, and 10-second timeout. Observe that the number of
S-nodes declines while the number of T-nodes increases over
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Figure 6: Number of nodes and S-nodes in the network,λ = 2, K = 3

time (from 0 to 10,000 seconds). This behavior indicates that
at a failure rate of 2 nodes/second, the network’sjoin capacity
(definition in Section 1) was less than 2 joins per second. As a
result, the number of T-nodes grows like a queue whose arrival
rate is higher than its service rate. The network’s join capac-
ity can be increased by reducing the join durations of T-nodes.
As shown in Figure 5, the average join duration can be reduced
substantially by changing the timeout value from 10 seconds to
5 seconds, or it can be reduced slightly by changingK from 3
to 2 (with the variance greatly reduced). We found that either of
these approaches would stabilize the network forλ = 2. The re-
sults of another experiment withλ = 2, K = 2, and 10-second
timeout are shown in Figure 6(b), and the results of a third ex-
periment withλ = 2, K = 3, and 5-second timeout are shown
in Figure 6(c). Observe that the number of T-nodes was stable
over time indicating that the network’s join capacity was higher
than the join rate. In all three experiments in Figure 6, some
time after 10,000 seconds, when no more join or failure event
was generated, all T-nodes became S-nodes, showing that our
join protocol worked correctly irrespective of the network’s join
capacity. In both the experiments in Figure 6(b) and Figure 6(c),
the network converged toK-consistency at termination (see Ta-
bles 7 and 8).

We next examine neighbor tables at each snapshot more care-
fully. For each snapshot at timet, the following properties were
checked:

• Percentage of connected S-D pairs. For each source-
destination pair of S-nodes, if there exists a path (defini-
tion in Section 2.2) from source to destination, then the
pair is connected. (Both S-nodes and T-nodes can appear
in a path.)

• Full connectivity. If at time t, all S-D pairs of S-nodes are

connected, then full connectivity holds (over the set of S-
nodes at timet).

• K-consistency. Same as theK-consistency definition in
Section 2.2, withV being the set of S-nodes at timet.

• K-consistency-SAT. Suppose there is no more node failure
after timet. If each recoverable hole in the neighbor tables
of S-nodes at timet can be repaired by the four steps of
failure recovery, thenK-consistency issatisfiableor K-
consistency-SAT holds.

Note that full connectivity in the presence of continuous
churn is a desired property of any routing infrastructure. Con-
sistency is a stronger property than full connectivity, andK-
consistency, forK ≥ 2, is even stronger. In any network with
churn, it is obvious thatK-consistency is most likely not sat-
isfied by the neighbor tables in a snapshot at timet, because
some failure(s) might have occurred just prior tot and failure
recovery takes time. On the other hand, the neighbor tables at
timet contain sufficient information for us to check whetherK-
consistency is satisfiable at timet or not. IfK-consistency-SAT
holds for every snapshot in an experiment, then we are assured
that our protocols are effective and error-free.

Table 6 presents a summary of results from experiments for
K = 3 and 10-second timeouts, versus the churn rate (top
row). The second and third rows show the number of joins
and failures, respectively, for each experiment. Observe that 3-
consistency-SAT holds for every snapshot in every experiment.
Each experiment also converged to 3-consistency some time af-
ter 10,000 seconds, except the one forλ = 2, with the conver-
gence time shown in the 6th row. Since we took a snapshot once
every 50 seconds, the convergence time has a granularity of 50
seconds. The 7th and 8th rows of Table 6 present the percent-
age of snapshots (taken from 0 to 10,000 seconds) for which 1-
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λ (#joins/sec = #failures/sec) 0.25 0.5 0.75 1 1.25 1.5 2
number of joins 2413 5095 7621 10080 12474 15011 19957
number of failures 2473 5066 7423 9890 12468 14919 19960

% snapshots, 3-consistency-SAT 100 100 100 100 100 100 100
convergence to 3-consistency at endyes yes yes yes yes yes no
convergence time (seconds) 150 200 400 350 450 400 —

% snapshots, 1-consistency 100 100 99.5 97.5 97.5 88.5 62
% snapshots, full connectivity 100 100 99.5 98 98 98.5 92
average %, connected S-D pairs 100 100 99.99998 99.99991 99.99993 99.99991 99.9996

Table 6: Summary of churn experiments,n = 2000, K = 3, timeout= 10 sec
λ 0.25 0.5 0.75 1 1.25 1.5 1.75 2
number of joins 2413 5059 7621 10080 12474 15011 17563 19957
number of failures 2473 5066 7423 9890 12468 14919 17563 19960

% snapshots, 3-consistency-SAT 100 100 100 100 100 100 100 100
convergence to 3-con. yes yes yes yes yes yes yes yes
convergence time (sec.) 50 150 150 150 150 400 250 350

% snapshots, 1-consistency 100 100 99.5 100 99.5 99 95.5 93
% snapshots, full connectivity 100 100 99.5 100 99.5 99.5 96.5 95
average connected S-D pairs 100 100 99.99999 100 99.99998 99.99998 99.99993 99.9997

Table 7: Summary of churn experiments,n = 2000, K = 3, timeout= 5 sec

consistency and full connectivity held. Even though these prop-
erties did not hold for 100% of the snapshots forλ ≥ 0.75,
perfection was missed by a very small margin, as shown in the
last row of Table 6. The average percentage of connected S-D
pairs of S-nodes was higher than 99.9996% in every experiment.

In theλ = 2 experiment shown in Table 6, 3-consistency-SAT
held at time 10,000 seconds, but the network did not converge
to 3-consistency at termination. Why? We believe it was due to
the very large number of T-nodes at time 10,000 seconds. Note
that only S-nodes in neighbor tables are considered in testing
whether 3-consistency holds. 3-consistency (among S-nodes)
was satisfiable at time 10,000 seconds when some qualified sub-
stitutes for “irrecoverable holes” were T-nodes. Subsequently, at
termination when all T-nodes became S-nodes, these previously
irrecoverable holes became recoverable, and 3-consistency did
not hold because all error recovery processes had already termi-
nated by then (the network did satisfy 1-consistency at the end).
We conclude that our protocols behaved as intended. These re-
coverable holes will get filled over time by the join protocol
when more joins arrive.

λ 0.5 1 2
number of joins 5095 10080 19911
number of failures 5066 9890 20017

% snapshots, 2-consistency-SAT 100 100 100
convergence to 2-consistency at endyes yes yes
convergence time (seconds) 150 150 400

% snapshots, 1-consistency 88 62.5 12.5
% snapshots, full connectivity 91 68.5 27
average %, connected S-D pairs 99.9994 99.996 99.978

Table 8: Summary of churn experiments,n = 2000, K = 2,
timeout= 10 sec

As discussed above, one way to increase the join capacity of
a network is to reduce the timeout value. Table 7 summarizes
results for experiments with timeout value reduced to 5 seconds
(K = 3). Reducing the timeout value provides improvement
in every performance measure in the table (provided that there
is room for improvement). In particular, comparison with Ta-
ble 6 shows that convergence time to 3-consistency is shorter,
percentage of snapshots with full connectivity is higher, and av-
erage percentage of connected S-D pairs is higher in Table 7.

Reducing the value ofK is another way to increase the join
capacity of a network. There is a tradeoff involved however.
Choosing a smallerK results in less routing redundancy in
neighbor tables. We conducted experiments forK = 2, timeout
= 10 seconds, withλ equal to 0.5, 1 and 2. The results are sum-
marized in Table 8. Comparing Table 8 and Table 6, we see that
the percentage of snapshots with 1-consistency (also full con-
nectivity) was much lower forK = 2 than that forK = 3. The
average percentage of connected S-D pairs was also lower.

6.3 Maximum sustainable churn rate

We performed experiments with increasing values ofλ to es-
timate the maximum sustainable churn rate as a function of the
initial network size (n) for K = 2 or 3. For given values ofn and
K, our estimate is determined by the largestλ value such that
after 10,000 seconds (simulated time) of churn, the network was
able to recoverK-consistency afterwards.11 Figure 7(a) shows
our results from experiments with 5-second timeout andK = 2
or 3. Observe that the maximum rate is higher forK = 2 than
for K = 3.

Note also that, forn ≥ 500, the maximum rate increases at
least linearly asn increases. This observation validates a con-
jecture that our protocols’ stability improves as the number of
S-nodes increases. However, the conjecture does not hold for
n < 500. This can be explained as follows. Forn < 500 and
b = 16, the number of neighbors stored in each node is a large
fraction ofn and failure recovery is relatively easy to do. Asn
decreases further, the number of neighbors stored in each node
as a fraction ofn increases, and failure recovery becomes even
easier.

Using Little’s law, we calculated theminimum average node
lifetime for each maximum rate in Figure 7(a). The results are
presented in Figure 7(b). The trend in each curve suggests that
asn increases beyond 2000 nodes, the minimum average node
lifetime is less than 12.1 minutes forK = 3 and 8.3 minutes for
K = 2.

11Since the maximum sustainable churn rate is a random variable, our estimate is only a
sample value of that random variable.
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Figure 7: Maximum churn rate (a) and minimum average life-
time (b), timeout = 5 sec

6.4 Protocol overheads

We next present protocol overheads in the churn experiments as
a function ofλ for n = 2000. (Analyses of protocol overheads
as a function ofK are presented in Section 7 of [4] and Section
4 of [3], and are omitted herein due to space limitation.) Fig-
ure 8 presents cumulative distributions of the number of three
types of join protocol messages sent by joining nodes whose
join processes terminated. We are interested in these messages
(as well as their replies) because each such message (or reply)
may include a copy of a neighbor table and thus can be large
in size. Figure 8(a) shows that a large fraction of joining nodes
sent a small number ofJoinNotiMsg(e.g., forλ = 1, more than
98% of nodes sent less than 20JoinNotiMsg). However, asλ
becomes larger, the tail of its distribution becomes longer. Fig-
ure 8(b) shows that the number ofCPRstMsgandJoinWaitMsg
(combined) sent by each joining node is very small.
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Figure 9 presents cumulative distributions of the number of
queries for repairing a hole (for holes that were repaired as well

as holes declared as irrecoverable by their recovery processes).
Similar to results in Section 3.2, most holes were repaired by
steps (a) and (b) (for the distributions shown in Figure 9, more
than 86% percent of holes were repaired by the end of step (b)).
Recall that holes repaired in step (a) incur no communication
cost, while holes repaired in step (b) require up to2(K − 1)
messages. Asλ increases, the percentage of holes repaired by
step (a) decreases: the percentage is 56%, 48% and 42% for
λ = 0.25, λ = 0.5 andλ = 1, respectively. The long tails of
the distributions are due to holes found by failure recovery to be
irrecoverable.

7 Routing Performance under Churn

Experiment results in Section 6 show that our protocols, by
striving to maintainK-consistency, were able to provide pair-
wise connectivity better than 99.9995% (between S-nodes) at a
churn rate of 2 joins and 2 failures per second forn=2000 and
K=3. (see Tables 6 and 7). This suggests that for each source-
destination node pair, it is almost always the case that there ex-
ists a path of average lengthO(logb n) hops, so long as both
nodes are still in the system. Thus, even at a high churn rate, if
the rate can be sustained by the system, then the average routing
performance should not degrade much.

To validate the above conjecture, we conducted more experi-
ments to study routing performance under node churn. In partic-
ular, we are interested in the follow performance criteria: When
the churn rate increases, how often will routing succeed? Also,
how much will average routing delay increase?

Experiment setup: We used the same method to generate
node joins and failures and the same underlying topology as the
ones used in Section 6.1. Each experiment in this section began
with 2,000 S-nodes and ran for 3,600 simulation seconds, for
K = 3 and timeout = 2 sec. We ran experiments for a range of
churn rates, fromλ = 0.125, λ = 0.25, and up toλ = 8, with
corresponding median node lifetime equal to 184.84 minutes,
92.4 minutes, and down to 2.888 minutes, respectively.12

In these experiments, each S-node generated routing tests
once every ten seconds.13 For each routing test, another S-node
was chosen randomly to be the destination. If the destination
was eventually reached, the test was recorded as successful; oth-
erwise, it was recorded as unsuccessful. For each successful
routing test, we also recorded the number of hops along the path
from its source to destination, as well as the routing delay. For
each median node lifetime, we calculated the percentage of suc-
cessful routing tests, as well as the average number of hops and
the average routing delay over all successful routing tests.

We experimented with two different routing strategies. A
straightforward approach is to let the source create one rout-
ing message for each test. Each node along the path, sayx,
forwards the message to the closest neighbor following the hy-
percube routing scheme. That is, ifx is theith node along the
path (the source is the 0th node), then it forwards the message

12Since we generate node churn according to a Poisson process, for a given churn rate,
λ, the corresponding median node lifetime can be calculated asn(ln 2)/λ, wheren is the
average number of nodes in the system [9].

13T-nodes did not generate routing tests, since their neighbor tables are still under con-
struction. Failed nodes did not generate routing tests.
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to the closest neighbor among all neighbors in its(i, u[i])-entry,
whereu is the destination node. If the forwarding request times
out (because the neighbor has failed),x backtracks and forwards
the message to another neighbor. We refer to this approach as
backtracking.

We also evaluated another routing strategy that exploits rout-
ing redundancy provided byK-consistent neighbor tables. In
this approach, the source sends duplicates of the routing mes-
sage, one to each of the two closest neighbors for the destina-
tion following the hypercube routing scheme. Each node that
receives such a message simply forwards the message without
further duplication, and backtracks if necessary. We refer to this
approach assource-duplication and backtracking.

Results:Figure 10 summarizes our results, which are plotted
versus median node lifetime along the horizontal axis. A smaller
median node lifetime corresponds to a higher churn rate. Hence,
in each figure, churn rate increases from right to left.14

Figure 10(a) shows the percentage of successful routing tests.
Figure 10(b) shows the average number of hops from source
to destination over successful routing tests. In the source-
duplication and backtracking approach, for each routing test, we
used the number of hops traveled by the message that arrived at
the destination first. Figure 10(c) shows the average delay over
successful routing tests.

Observe from Figure 10(a) that with backtracking only, the
percentage of successful routing is already very close to 100%.
With the addition of source-duplication, the success percentage
becomes even closer to 100% (the percentage was in fact 100%
for all median lifetimes greater than or equal to 46.2 minutes).

Also observe from Figures 10(b) and 10(c), when the median
node lifetime decreases (from right to left), the average number
of hops and average routing delay increase very slightly. Each
such increase is due to a small increase in backtracking occur-
rences when node failures become more frequent. In particular,
the average number of hops for all lifetimes of both curves in
Figure 10(b) is within the range of 2.275 to 2.496, and actually
less thanlog16(2000), which is 2.74. This confirms our con-
jecture that by striving to maintainK-consistency in neighbor
tables, our protocols preserve scalable routing in the hypercube
routing scheme even in the presence of heavy churn.

Lastly, from Figures 10(b) and 10(c), observe that the addi-
tion of source-duplication to backtracking provides only a small
improvement in the average number of hops and routing delay.

8 Related Work

Among related work, both Pastry [10] and Tapestry [14] make
use of hypercube routing. Pastry’s approach for failure recov-
ery is very different from the one in this paper. In addition to
a neighbor table for hypercube routing, each Pastry node main-
tains a leaf set of 32 nearest nodes on the ID ring to improve
resilience. Leaf set membership is actively maintained. Pointers
for hypercube routing, on the other hand, are used as shortcuts
and repaired lazily. Tapestry’s basic approach for failure recov-
ery is similar to ours in that it also stores multiple nodes in a

14These results are plotted such that they can be compared with similar churn experiment
results presented in [9]. Node lifetime herein corresponds to session time in [9].

neighbor table entry. However, the property ofK-consistency
is not defined and thus not enforced in Tapestry. Furthermore,
Tapestry’s join and failure recovery protocols are based upon use
of a lower-layer Acknowledged Multicast protocol supported by
all nodes [2]. Our protocols do not require such reliable multi-
cast support and are very different from the Tapestry protocols.

Recently, two other papers also addressing the problem of
churn in structured p2p networks were published. Li et al. [6]
used a single workload to compare the performance of four rout-
ing algorithms under churn. In their experiments, the churn rate
was fixed with the corresponding average node lifetime equal
to 60 minutes. Their goal was to study the impact of algorithm
parameter values on system performance, more specifically, the
tradeoff between routing latency and bandwidth overhead.

Rhea et al. [9] identified and evaluated three factors affecting
DHT performance under churn, namely: reactive versus peri-
odic failure recovery, algorithm for calculating timeout values,
and proximity neighbor selection. They have also investigated
the impact of a wide range of churn rates on average routing
delay (called lookup latency in their paper) as the performance
measure for several DHTs.

We have a different set of objectives in this paper. Our first
objective was the design of a failure recovery protocol based
upon local information for hypercube routing and its integration
with a join protocol to maintainK-consistency of neighbor ta-
bles. We use a stronger definition of consistency (for neighbor
tables) than the consistency definition (for lookups) used in [9].
In addition to the impact of churn rate on average routing de-
lay, we also evaluated the impact of churn rate on neighbor ta-
ble consistency and pairwise node connectivity provided by the
neighbor tables. Furthermore, we explored the notion of asus-
tainablechurn rate and found that it is upper bounded by the rate
at which new nodes can join the network successfully. We refer
to this upper bound as the join capacity of a network. We found
two ways to improve a network’s join capacity, namely, by us-
ing the smallest possible timeout value and choosing a smaller
K value.

We can directly compare Figure 10(c) in this paper for3-
consistent hypercube routing to Figures 7 and 9 in [9] for Bam-
boo and Chord. In each figure, average routing delay is plot-
ted versus median node lifetime (same as median session time
in [9]). Consider and compare the shapes of the average routing
delay graphs (ignore the absolute delay values since different
topologies and link delays were used in different experiments).
Observe that when the median node lifetime decreases, the aver-
age routing delay increases much more significantly for Chord
and also Bamboo than for 3-consistent hypercube routing. We
conjecture that such performance degradation is due to the dif-
ferent failure recovery strategies used in Bamboo and Chord.
In Bamboo, which follows Pastry, neighbors in a node’s leaf set
are actively maintained while neighbors in the node’s hypercube
routing table are repaired lazily. As stated in [9], “the leaf set al-
lows forward progress (in exchange for potentially longer paths)
in the case that the routing table is incomplete.” Thus, when fail-
ures happen more and more frequently during periods of high
churn, the average routing delay of Bamboo increases much
more than in a hypercube routing scheme that strives to maintain
K-consistency of its routing tables. Figure 10(b) shows that the
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Figure 10: Routing experiment results,n=2000,b =16, timeout = 2 sec

average number of hops remains at approximatelyO(logb n) for
the entire range of churn rates (node lifetimes).

9 Conclusions

For structured p2p networks that use hypercube routing, we in-
troduced the property ofK-consistency and designed a failure
recovery protocol forK-consistent networks. The protocol was
evaluated with extensive simulations and found to be efficient
and effective for networks of up to 8,000 nodes in size. Since
our protocol uses local information, we believe that it is scalable
to networks larger than 8,000 nodes.

The failure recovery protocol was integrated with a join pro-
tocol that has been proved to constructK-consistent networks
for concurrent joins and shown analytically to be scalable to a
largen [3]. From extensive simulations, in which massive joins
and failures occurred at the same time, the integrated protocols
maintainedK-consistent neighbor tables after the joins and fail-
ures ineveryexperiment.

From a set of long-duration churn experiments, our protocols
were found to be effective, efficient, and stable up to a churn
rate of 4 joins and 4 failures per second for 2000-node networks
(with K = 2 and 5-second timeout). By Little’s Law, the aver-
age node lifetime was 8.3 minutes. We discovered that each net-
work has a join capacity that upper bounds its join rate. The join
capacity decreases as the failure rate increases. For a given fail-
ure rate, the join capacity can be increased by using the small-
est timeout value possible in failure recovery or by choosing a
smallerK value.

We also observed from simulations that our protocols’ stabil-
ity improves as the number of S-nodes increases. More specif-
ically, for 500 ≤ n ≤ 2, 000, we found that a network’s maxi-
mum sustainable churn rate increases at least linearly with net-
work sizen. The trend in our simulation results suggests that as
network size increases beyond 2000 nodes, the minimum aver-
age node lifetime is less than 12.1 minutes forK = 3 and less
than 8.3 minutes forK = 2.

The storage and communication costs of our protocols were
found to increase approximately linearly withK (see Section 7
in [4]). The results in this paper show that the network robust-
ness improvement is dramatic whenK is increased from 1 to 2.
We believe that P2P networks using hypercube routing should
be designed withK ≥ 2. However, a biggerK value results in
higher storage and communication overhead; and as shown in

the churn experiments, a largeK also reduces the join capacity
of a network. Thus, for p2p networks with a high churn rate, we
recommend aK value of 2 or at most 3. For p2p networks with
a low churn rate,K may be 3 or higher (say 4 or 5) if additional
route redundancy is desired.

Our integrated protocols for join and failure recovery in this
paper have been implemented in a prototype system named
Silk [3].
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