Failure Recovery for Structured P2P Networks: Protocol
Design and Performance under Churn

Simon S. Lam and Huaiyu Liu

Abstract sign of protocols to construct and maintain “consistent” neigh-
bor tables for network nodes that may join, leave, and fail con-
Measurement studies indicate a high rate of node dynamicscirrently and frequently is an important foundational issue.
p2p systems. In this paper, we address the question of how higldf interest in this paper is the hypercube routing scheme used
arate of node dynamics can be supportedtoycturedp2p net- to achieve scalable routing in several proposed systems [8, 10,
works. We confine our study to the hypercube routing schema]. Our first objective is the design of a failure recovery proto-
used by several structured p2p systems. To improve system¢etfor nodes to re-establish consistency of their neighbor tables
bustness and facilitate failure recovery, we introduce the pragfter other nodes have failedNeighbor table consistency guar-
erty of K-consistency/X’ > 1, which generalizes consistencyantees the existence of at least one path from any source node to
defined previously. (Consistency guarantees connectivity frainy destination node in the network [7]. Such consistency how-
any node to any other node.) We design and evaluate a failuregger may be broken by the failure of a single node. To increase
covery protocol based upon local information figrconsistent robustness and facilitate the design of failure recovery, we in-
networks. The failure recovery protocol is then integrated withoduceK -consistencyk’ > 1, which generalizesonsistency
a join protocol that has been proved to constidetonsistent previously defined [7]. We design and evaluate a failure recov-
neighbor tables for concurrent joins. The integrated protoc@gy protocol, which includes recovery from voluntary leave as
were evaluated by a set of simulation experiments in whighspecial case, foK-consistent networks. The protocol was
nodes joined a 2000-node network and nodes (both old and néw(nd to be highly effective foiX > 2. From 2,080 simula-
were randomly selected to fail concurrently over 10,000 secortish experiments in which up to 50% of network nodes failed at
of simulated time. In each such “churn” experiment, we tookthe same time, we found that all “recoverable holes” in neigh-
“snapshot” of neighbor tables in the network once every 50 sesor tables due to failed nodes were repaired by our protocol for
onds and evaluated connectivity and consistency measures gyer 2, that is, the neighbor tables recovet§econsistency af-
time as a function of the churn rate, timeout value in failure reger the failures ireveryexperiment for’ > 2. Furthermore, the
covery, ands’. We found our protocols to be effective, efficientyast majority of the holes in neighbor tables were repaired with
and stable for an average node lifetime as low as 8.3 minut&scommunication cost. The protocol uses only local informa-
(the median lifetime measured for Napster and Gnutella was féh at each node and is thus scalable to a large
minutes [11]). Experiment results also show that the averageOur second objective is integration of the failure recovery
routing delay of our protocols increases only slightly even whestotocol with a join protocol that has been proved to construct
the churnrate is greatly increased. K-consistent neighbor tables for an arbitrary number of con-
current joins in the absence of failures and also shown to be
Keywords—Hypercube routing, K-consistency, failure recovery, sus- scalable to a large [7, 3]. Such integration requires extensions
tainable churn rate, peer-to-peer networks to both the failure recovery and join protocols. For a network
with concurrent joins and failures, the failure recovery protocol
needs to distinguish between nodes that are still in the process of
joining, called T-nodes, and nodes that have joined successfully,

Structured peer-to-peer networks are being investigated agaéled S-nodes. The join protocol, on the other hand, needs to be

platform for building large-scale distributed systems [8, 10 1Extended with the ability to invoke failure recovery and to back-
L rgl’ack. Furthermore, when a node is performing failure recovery,

that is, mapping an object ID to a node in the network. For eiF-S replies to some join protocol messages must be delayed. We

ficient routing, each node maintaiti¥log n) pointers to other ran 980 simulation experiments in which the number of concur-
nodes. 1o be ,called neighbor pointers, wherés the number rent joins and failures was up to 50% of the initial network size.

of network nodes. To locate an object, the average number:/X? f(?jufr;d that,_ f?th = 2 I:’gr ptrogtl)colsfct?ontsr':ructed and ”:a_‘”?'
application-level hops required &(logn). Each node stores aned s -consistent neighoor tables after the concurrent jons

: : ; o _ and failures ireveryexperiment.
neighbor pointers in a table, called neighbor table The de Our third objective is to explore how high a rate of node dy-

The authors are with the Department of Computer Sciences, The University of Teld@MICS can be sustained by the mtegrated prOtOCOIS for hyper'
at Austin, Austin, TX 78712-0233 USA (E-maiflam, huaiyg @cs.utexas.edu, Fax: 1-
512-471-8885). Research sponsored by NSF grant no. ANI-0319168 and Texas Advanced
Research Program grant no. 003658-0439-2001. This is an extended version of our papéiWhen a node fails, it becomes silent. We do not consider Byzantine failures in this
in Proceedings of ACM SIGMETRIC3une 2004 [4]. paper.

1 Introduction

cube routing. We performed a number of (relatively) long durdaseb, e.g., a 160-bit ID can be represented by 40 Hex digits
tion experiments, in which nodes joined a 2000-node network(@t= 40, b = 16). Hereafter, we will use:.ID to denote the ID

a given rate, and nodes (both existing and joining nodes) wexrenodez, z[i] theith digit in z.ID, andz[i — 1]...2[0] a suffix
randomly selected to fail concurrently at the same rate. In eaghz.ID. We count digits in an ID from right to left, with the
suchchurn experiment, we took a snapshot of neighbor tabléih digit being theightmostdigit. See Table 1 for notation used
in the network once every 50 simulation seconds and evaluatetbughout this paper.

network connectivity and consistency measures over time as a

function of the churn rate, timeout value in failure recovery,|_\otaton Definition _

. . V,N(V)) a hypercube network:
and K. Our protocols were found to be effective, efficient, and V is the set of nodes in the network,
stable for a churn rate up to 4 joins and 4 failures per second. N (V) is the set of neighbor tables

)

] the sef{0, ...,£ — 1}, Cis a positive integer
the number of digits in a node’s ID
the base of each digit

By Little’s Law, the average lifetime of a node was 8.3 minutes [
: . R d

at this rate. For comparison, the median lifetime measured for
xX

Gnutella and Napster was 60 minutes [11]. 7] thesth digit in . 1D

We also found that, for a given network, its sustainable churn_«[i — 1]...z[0] | suffix of z./D; denotes empty string if = 0
rate is upper bounded by the rate at which new nodes can joi .?”'_tzble g;eit”'?f:r?c";tgﬂteegfwnﬁgi e
the network successfully (become S-nodes). We refer to thi>fw‘ thﬂ n]umber of digits Tn suffi
upper bound as the networljgin capacity. We found that a Nz (i,7) the set of nodes i, j)-entry of . table,
network's join capacity decreases as the network’s failure rate__ e ;:Z%genrgzcé ‘;‘;\}hﬁ j,))'”Eighborso‘c”
increases. For a given failure rate, we found two ways to im cst(yiz', ws) | the Tongest commaon jsufﬁx o andws
prove a network’s join capacity: (i) use the smallest possiblg V] the number of nodes in s&t
timeout value in failure recovery, and (ii) choose a smalter
value. Since improving a network’s join capacity improves its Table 1: Notation

sustainable churn rate, our observation that a smafldtess Given a message with destination node XD, the objec-

redundancy) leads to a higher join capacity is consistent Wif{je of each step in hypercube routing is to forward the message

the conclusion in [1]. Furthermore, we found that a networki%m its current node, say, to a next node, say, such that the

maximum sustainable churn rate increases at least linearly Wé-:hhl‘ﬁx match betweep.ID and-.ID is at least one digit longer
n (the number of network nodes) farfrom 500 to 2000. This

) _ , o than the match between/D andz.ID.? If such a path exists,
validates a conjecture that our protocols’ stability improves @$. gestination is reached (log, n) steps on the average and

the number of S-nodes in the network increases. Experim%gteps in the worst case. wheneis the number of network
results also show that our protocols, by striving to maintsin ;a5 Figure 1 shows an example path for routing from source
consistency, were able to provide pairwise connectivity hlghﬁ[)de 21233 to destination node 032814, d = 5). Note that

than 99.9995% (between S-nodes) at a churn rate of 2 joins 4ad | b of each intermediate node in the path matches 03231 by
2 failures per second for=2000 andk'=3. Furthermore, the av- at least one more suffix digit than its predecessor.

erage routing delay increased only slightly even when the churn
rate was greatly increased. 9 N _ 9

The balance of this paper is organized as follows. In Sec-
tion 2, we present an overview of the hypercube routing scheme
and defineK -consistency. In Section 3, we describe our fail-
ure recovery protocol and present results from 2,080 simulationto implement hypercube routing, each node maintains a
experiments. In Section 4, we present our join protocol thakighbor tablehat hasi levels withb entries at each level. Each
has been proved to construct and maintéirconsistent net- table entry stores link information to nodes whose IDs have the
works for concurrent joins. In Section 5, we describe how tentry’s required suffix, defined as follows. Consider the table in
extend the join and failure recovery protocols to handle concyodex. Therequired suffiXor entry;j atleveli, j € [b], i € [d],
rent joins and failures and present results from 980 simulatiggferred to as the (j)-entry ofx.table, is j - z[i — 1]...z[0]. Any
experiments. In Section 6, we presentresults from long-duratiggde whose ID has this required suffix is said to mpialified

churn experiments in which nodes join and fail continuously. Ifode for the ¢, j)-entry of z.table. Only qualified nodes for a
Section 7, we investigate the routing performance of our prgable entry can be stored in the entry.

tocols under different churn rates. We discuss related work inNote that node: has the required suffix for th@'v@[i])_entry,
Section 8 and conclude in Section 9. i € [d], of its own table. For routing efficiency, we fill each
node’s table such thaY, (i, z[i]).first = z forallz € V, i €

[d]. Figure 2 shows an example neighbor table of node 21233.
The string to the right of each entry is the required suffix for that
. entry. An empty entry indicates that there does not exist a node
2.1 Hypercube routing scheme in the network whose ID has the entry’s required suffix.

In this section, we briefly review the hypercube routing schemeNodes stored in the (j)-entry of z.table are called théi, 5)-
used in PRR [8], Pastry [10], and Tapestry [14]. Consider a de&ighborsof z, denoted byN, (i, j). Ideally, these neighbors

of nOdeS'. Each n,Ode has a unlqu.e ID’ which is a flxgd-lengthzln this paper, we follow PRR [8] and use suffix matching, whereas other systems use
random blnary strlng. A node’s ID is representedatmglts of prefix matching. The choice is arbitrary and conceptually insignificant.

Figure 1: An example hypercube routing path

2 Foundation

are chosen from qualified nodes for the entry according to sopmvides at leasf disjoint paths to every source-destination
proximity criterion [8]. Furthermore, node is said to be a pair with a probability approaching one as the number of nodes
reverse{, j)-neighborof nodey if y is an ¢, j)-neighbor ofz. in the network increases [3].

Each node also keeps track of its reverse-neighbors. The link

information for each neighbor stored in a table entry consists

of the neighbor’s ID and IP address. For clarity, IP addressgs Basic Failure Recovery

are not shown in Figure 2. Hereafter, we will use “neighbor”

or “node” instead of “node’s ID and IP address”

e whenever thﬁ this section, we present a basic failure recovery protocol for
meaning is clear from context.

K-consistent networks and demonstrate its effectiveness. We
consider the “fail-stop” model only, i.e., when a node fails, it

Neighbor table of node 21233 (b=4, d=5) A A X X
becomes silent and stays silent. If some neighbor in a node’s

~ |01233| 10233 | 0233| 31033 033 | 22303 |03 | 01100 |0 table has failed, we assume that the node will detect the fail-
11233 | 11233| 21233 |1233| 03133 |133 | 13113 |13 | 38121 |1 ure after some time, e.g., timeout after sending a periodic probe.
21233 |21233| o~ | 2283 21233 | 233 | 00123 |23 | 12282 |2 Note that the failure of a reverse-neighbor affects neitlier

~ | 31233| 03233 [3233| ~ |33 | 21233 |33 | 21238 |4 consistency nor consistency of a neighbor table. Therefore, if a
level 4 level 3 level 2 level 1 level 0 reverse-neighbor has failed, the reverse-neighbor pointer is sim-

ply deleted without any recovery action. Hence, the protocol
being designed is for recovery from neighbor failures only.
Consider a network of. nodes that satisfie& -consistency
initially. Supposef out of then nodes (chosen randomly) fail
at the same time or within a short time duration. Our objective
Constructing and maintaining consistent neighbor tables is grthis section is to design a protocol for each remaining node to
important design objective for structured peer-to-peer networkepair its neighbor table such that some time afterftffi@lures
Consider a hypercube routing netwotk, A'(V')), whereV de- have occurred, neighbor tables in the remaining f nodes
notes a set of nodes anMd(1) the set of neighbor tables in thesatisfy K -consistency again.
nodes. (Hereafter, we will use “network” instead of “hypercube Suppose a node in the network, sayhas failed and, has
routing network” for brevity.) Consistency was defined in [7] abeen stored in the (j)-entry of the table of node. We say that
follows: A network,(V, N(V)), is consistentif and only if the the failure ofy leaves aolein the ¢, j)-entry of z.table. To
following conditions hold: (i) For every table entry i (V), if maintain K'-consistencyz needs to find aualified substitute
there exists at least one qualified nod&’inthen the entry stores for y, i.e.,x needs to find a qualified nodefor the entry, such
at least one qualified node. (i) If there is no qualified node ithat v has not failed and. is not already stored in the entry.
V for a particular table entry, then that entry must be empty. (it is possible that. fails later andx needs to find a qualified
a consistent network, any source nadean reach any destina-substitute foru.) To determine whether or not the network of
tion nodey using hypercube routing ik steps,k < d. More n — f remaining nodes satisfids-consistency, we distinguish
precisely, there exists a neighbor sequemegh), (uo, ..., u;), betweenrecoverable holeandirrecoverable holes A hole in
k < d, such thatug is z, uy is y, andu,11 € Ny, (4,y[é]), the ¢,)-entry ofz.table isirrecoverable after thef failures if
i€ [k]. a qualified substitute does not exist amongithe f remaining
If nodes may fail frequently in a network, an excellent apaodes.
proach to improve robustness is to store in each table entry mul-The objective of failure recoveris to find a qualified substi-
tiple qualified nodes. For this approach, we generalize the dafte for every recoverable hole in neighbor tables of all remain-
inition of consistency td{-consistency as follows. A network,ing nodes. Irrecoverable holes, on the other hand, cannot possi-
(V,N(V)), is K-consistentif and only if the following con- bly be filled and do not have to be filled for the neighbor tables
ditions hold: (i) For every table entry iV (V), if there exist to satisfy K-consistency. The main difficulty in failure recov-
H qualified nodes i/, H > 0, then the entry stores at leastery is that individual nodes do not have global information and
min(K ,H) qualified nodes. (ii) If there is no qualified node incannot distinguish recoverable from irrecoverable holes. (If the
V for a particular table entry, then that entry must be empty. (Aetwork is not partitioned, a broadcast protocol can be used to
more formal definition is presented in the Appendix of [4].) search all nodes to determine if a hole is recoverable. A broad-
It is easy to see that, fak > 1, K-consistency implies con- cast protocol, of course, is not a scalable approach.)
sistency (in particular, 1-consistency is the same as consistency)lhe recovery process for each hole in a node’s table is de-
Furthermore, for a given set of nodds-consistent neighbor signed to be a sequence of four search steps executed by the
tables exist for any realization of node IDs (recall that IDs ameode based omocal information (its neighbors and reverse-
generated randomly). In Section 4, we will present a join praeighbors). After the entire sequence of steps has been executed
tocol that generatek’-consistent tables for an arbitrary numbeand no qualified substitute is found, the node considers the hole
of concurrent joins to an initially<-consistent network (which to be irrecoverable and the recovery process terminates. The
may be a single node). effectiveness of our failure recovery protocol is evaluated in a
Multiple neighbors stored in each table entry provide alternirge number of simulation experiments. In a simulation experi-
tive paths from a source node to a destination node, and somengit, we can check how fast our failure recovery protocol finds
them are disjoint. We have proved thakaconsistent network a qualified substitute for a recoverable hole. Furthermore, we

Figure 2: An example neighbor table

2.2 K-consistent networks

can check how often our failure recovery protocol terminategenerated topology with a set of routerspodes (end hosts)
correctly when it considers a hole to be irrecoverable (since weere attached randomly to the routers. For the simulations re-

have global information in simulation). ported in Table 2, three topologies were used. The 1000-node
and 2000-node simulations used a topology with 1056 routers.
3.1 Protocol design The 4000-node simulations used a topology with 2112 routers.

The 8000-node simulations used a topology with 8320 routers.

Suppose a node, detects that a neighbar, has failed and left We simulated the sending of a message and the reception of a
a hole in the 4, j)-entry,: € [d], j € [b], in z.table. Letw message as events, but abstracted away queueing delays. The
denote the required suffix of the, §)-entry inz.table. To find end-to-end delay of a message from its source to destination was
a qualified substitute fog with reasonable cost, we propose anodeled as a random variable with mean value proportional to
sequence of four search steps, (a)-(d) below, based upon ntieshortest path length in the underlying network.
2's local information. At the beginning of each step, except step In each simulation, a network of nodes withK -consistent
(a),z sets atimer. If the timer expires and no qualified substitutesighbor tables was first constructed. Then a numbef ran-
for y has been found, thenproceeds to the next step. domly chosen nodes failed. For 1000-node and 8000-node sim-

To determine whether some nodds a qualified substitute ulations, thef nodes failed at the same time. For 2000-node
for y, z needs to know whether has failed. In our protocol, simulations and each specifi€ value, thef nodes failed at the
x makes this decision also based upoeal information More same time for 84 out of the 180 experiments; a Poisson process
specifically,z maintains a list of failed nodes it has detected s@as used to generate failures in the balance of the experiments,
far3 x accepts: as a qualified substitute fgrif u is not on the with half of the experiments at the rate of 1 failure per sec-

list, u has the required suffix, andu & N, (4, j). ond and the other half at the rate of 1 failure every 10 seconds.
Step (a)z deletesy from its table, then searches its neighboror comparison, the timeout value used to determine whether a
and reverse-neighbors to find a qualified substitute/for neighbor has failed was 5 seconds, and the timeout value used

Step (b) = queries each of the remaining neighbors in thie each of the protocol steps (b)-(d) was 20 seconds. Therefore,
(4, j)-entry of its table (if any). In each query,ncludes a copy most failure recovery processes ran concurrently even when the
of nodes inV, (i, 7). When a node, say, receives such a query Poisson rate was slowed to one failure every ten seconds. For
from z, it searches its neighbors and reverse-neighbors to find@®00-node experiments and each spedifivalue, thef nodes
node that has suffix and is not inN,(z, j). If one is found,z failed at the same time in 104 out of the 116 experiments, with
replies tox with the node’s ID (and IP address). a Poisson process at the rate of 1 failure per second used in the

Step (c)z queries each of its neighbors at levéghll entries) balance of the experiments.
including neighbors in thei (j)-entry, using a protocol same as We conducted simulations for different combinationsbpf
the one in step (b). d, K, n and f values. For each network of nodes,n €

Step (d) « queries each one of its neighbors (all levels) inf1000,2000,4000, 80Q0four pairs of §, d) were used, namely:
cluding neighbors at level-using a protocol same as the one irf4,16), (4,64), (16,8), and (16,48)Then, for eachi(d) pair, K
step (b). was varied from 1 to 5. For each,(b, d, K) combination,f

When the timer in step (d) expires and no qualified substitueas varied from).05n to 0.1n, 0.15n, 0.2n, 0.3n, 0.4n, and
has been found; terminates the recovery process and consid:5n (1540 experiments were run fgr= 0.05n to f = 0.2n,
ers the hole left by to be irrecoverable. The earlier a hole isvith approximately the same number of experiments for each;
repaired with a qualified substitute, the less is the communid40 experiments were run fgr= 0.3n to f = 0.5n, with 180
tion overhead incurred. If a hole is repaired in step (a), theredgperiments for each).
no communication overhead. If a hole is repaired in step (b), atTo construct the initialK-consistent networks for simula-
most2(K —1) messages are exchangéd:-1 queriesand{—1 tions, we experimented with four approaches to choose neigh-
replies. If a hole is repaired in step (c), there are at ¢Sk bors for each entry: (i) choosk neighbors randomly from
messages, plus the messages exchanged in step (b). If a hodpiidified nodes, (ii) choos& closest neighbors from quali-
repaired in step (d), approximately<b log, n messages, plus fied nodes, (iii) choosé& neighbors randomly from qualified

the messages in steps (b) and (c), are exchanged. nodes that are within a multiple of the closest neighbor’s dis-
tance, (iv) use our join protocol in Section 4 to construéta
3.2 Simulation experiments consistent network. We conjecture thakaconsistent network

constructed by approach (iii) would be closest to a real network
Methodology To evaluate the performance of our failure rewhose neighbor tables have been optimized by some heuristics.
covery protocol, 2,080 simulation experiments were conductgd shown below, we found that fd > 2, our failure recovery
on our own discrete-event packet-level simuldtdve used the protocol was very effective irrespective of the approach used for
GT_ITM package [13] to generate network topologies. For iitial network construction. (All four approaches were used for
3In implementation, a failed node only needs to stay in the list long enough for all iglﬁerem experiments in the set of 2,080 eXpenmentS')
reverse-neighbors to detect its failure. To keep the list from growing without bauoan Results Table 2 shows a summary of results from 21080
delete nodes that have been in the list for a sufficiently long time. simulation experiments. In a simulation, if all recoverable holes

“These 2,080 experiments together with the 980 experiments to be presented in Sectiarré repaired (thuﬁ(-consistency recovered) at the end of the
required several months of execution time on several workstations. A typical experiment
took several hours to run on a Linux workstation with 2.66 GHz CPU and 2 GB memory. . X . X i
Each simulation experiment for 8,000 nodes= 16, andK > 3 shown in Table 2 took The maximum end-to-end delay in 8000-node simulations was 969 ms.

40 - 72 hours to run. 8In Tapestryb = 16 andd = 40. In Pastryb = 16 andd = 32.

P H [y b,d, K step (a) step (b) step (c) step (d)
simulation, .It is reporded as [gerfect recoveryn Tgble 2. In 465 1 | 0.451554 | 0.451504 | 0.620569 | 0,586
the 2,080 simulation experiments, every simulation&or> 2 2.64,2 | 0668176 0.938131| 0.998077 | 1.000000
finished as a perfect recovery, i.e., every recoverable hole was [4.64.3 | 0.760213 | 0.98974] 0.998774 | 1.000000
. . . : . 4,64,4 | 0.816133 | 0.997837 | 0.999252 | 1.000000
repaired with a qualified _subsutute. Thus]n"rcon_sstent net- 2645 | 0851577 | 0.009126 | 0.099736 | 1.000000
works, for K > 2, our failure recovery protocol is extremely 16,40, 1| 0.453649] 0.453649 0.999093 | 1.000000
effective 16,40, 2 | 0.633784 | 0.932868 | 0.999854 | 1.000000
) 16, 40,3 | 0.716517 | 0.989295| 0.999986 | 1.000000
16,40,4 | 0.77311 | 0.997785| 1.000000]| 1.000000
K,n Number of | Numberof [| K,n Number of | Number of 16,40,5 | 0.823924 | 0.999441 | 1.000000 | 1.000000
simulations | perfect simulations | perfect
recoveries recoveries . . .
71,1000 | 100 51 17,2000 | 180 9% Table 3: Cumulative fraction of recoverable holes repaired
2,1000 | 100 100 2,2000 | 180 180 by the end of each step,= 4000, f = 800
3,1000 | 100 100 3,2000 | 180 180
24,1000 | 100 100 4,2000 | 180 180
5,1000 | 100 100 5,2000 | 180 180 b,d, K Total Irreco- Number of recoverable
14000 | 116 55 1.8000 | 20 14 number | verable holes repaired at each step
2’4000 116 116 2’ 5000 | 20 0 of holes | holes step step step step | notrec-
: . (a) (b) (c) (d) overed
3,4000 | 116 116 3,8000 | 20 20 4641 | 13125 | 1484 | 5257 |0 5464 | 907 | 13
24,4000 | 116 116 4,8000 | 20 20
= 7000 116 116 = 8000 120 5 4,64,2 | 28616 | 3660 16675 | 6737 | 1496 | 48 | O
d d 4,64,3 | 43323 | 5798 28527 | 8613 | 339 26 | 0
))) 4,64,4 | 57462 | 7997 40370 | 8988 | 70 37 | 0
Table 2: Results from 2,080 simulation experimertifts (4,64,5 | 70798 | 10174 | 51626 | 8945 | 37 16 [0
was0.05n, 0.1n, 0.15n, 0.2n, 0.3n, 0.4n or 0.5n) 16,40,1| 29803 | 4442 | 11505 | O 138331 23 | 0
16, 40,2 | 55977 | 8161 30305 | 14301 | 3203 | 7 0
16, 40,3 | 81406 | 9945 51203 | 19493 | 764 1 0
. . 136,40, 4 | 107547 | 10500 | 75028 | 21804 | 215 0 0
Table 3 presents results from ten simulations for a netw 620 51 132257 | 10696 | 100157 | 21336 | 63 o o

with 4,000 nodes and 800 failures, where the initial neighbor
tables were constructed using approach (i), described aboveble 4: Total number of holes, irrecoverable holes, and

The results show the cumulative fraction of recoverable holgscoverable holes repaired at each sieps 4000, f =

that were repaired by the end of each step in the recovery pgof

tocol. For instance, for the simulation with parametees 4,

d = 64 and K = 2, more than 66.8% percent of recoverableoverable holes repaired in step (a) to increase, these repairs are
holes were repaired by the end of step (a), 93.8% were repaipsformed withzerocommunication cost.

by the end of step (b), 99.8% were repaired by the end of stepNevertheless, the communication cost of failure recovery in-
(c), and all were repaired by the end of step (d). From Table &eases withK because the number of irrecoverable holes in-
observe that step (d) in our recovery protocol was rarely usefleases with/<. Note that for each irrecoverable hole, all four
There was a dramatic improvement in the recovery protocokseps of failure recovery are executed.

performance wheik was increased from 1 to 2. Also observe
that the fraction of recoverable holes that were repaired a1‘§r3 Voluntary leaves
each step increases with.) y

Aside from being extremely effective, our failure recovery yoluntary leave can be handled as a special case of node fail-
protocol is also very efficient because recoverable holes [ge if necessary. When a node, sayleaves, it can actively
paired in step (a) incur no communication cost, while each halgorm its reverse-neighbors and neighbors. To each reverse-
repaired in step (b) incurs a communication cost of at mosgighbor,z suggests a possible substitute for itself. When a
2(K — 1) messages. Table 3 shows that, for> 2, the ma- node receives a leave notification framfor each hole left by
jority of recoverable holes were repaired in step (a) and almostit checks whether the substitute providedsbis a qualified
all of them were repaired by the end of step (b). Note that ifQubstitute. If so, the hole is filled with the substitute; otherwise,

recoverable hole is repaired in step (a), its recovery time is (@ilure recovery is initiated for the hole left by
most) zero. The time required for each subsequent step ((b)-(d))

is at most the step’s timeout value. For the timeout value of 20

seconds per step, the average time to repair a recoverable ible JOin Protocol for K-Consistency

was less than 5.88 seconds o116, d=40, andK =3 in Table 3.

For a timeout value of 5 seconds per step, the average timéNe present in this section a join protocol that constructs and

repair a recoverable hole was found to be less than 1.45 secam@éntainskK -consistent neighbor tables for an arbitrary number

for b=16,d=40, andK' =3 from a different set of experiments. of concurrentjoins [3]. In the next section, we will show how to
Table 4 shows the total number of holes, the number of iextend the failure recovery and join protocols to handle concur-

recoverable holes, as well as the number of recoverable halest joins and failures.

repaired at each step for the same simulation experiments showm designing a protocol for nodes to join netwdiik A/(V)),

in Table 3. Observe from Table 4 that whé&nhwas increased, we make the following assumptions: §) # @ and(V, N'(V))

even though the total number of holes increased, the numlera K-consistent network, (i) each joining node, by some

of recoverable holes repaired in step (b) did not increase mutieans, knows a node i initially, (iii) messages between

with K; the number of holes repaired actually declined in step®des are delivered reliably, and (iv) there is no node leave or

(c) and (d). Thus while increasinfj causes the number of re-failure during the joins. Then, the tasks of the join protocol are

to update neighbor tables of nodedirand construct tables for that shares the rightmost digit with it, if such a node exists and
the joining nodes so that some time after the joins, the netwdskan S-node, and requesgtstable from g;. Fromg;.table, x
is K-consistent again. copies level-1 neighbors gf and tries to find;,, and so on.

Each node in the network maintains a state variable namedn statuscopying each time after receiving @pRIyMsq =
status which begins incopying then changes twaiting, noti- checks whether it should change status&iting. Suppose: re-
fying, andin_systemin that order. A node in status_system ceives &CpRIlyMsgrom y. The condition for: to change status
is called anS-node otherwise, it is ar-node Briefly, in sta- towaitingis: (i) there exists an “attach-level” farin the copy
tuscopying a joining node, say., copies neighbor information of y.table included in the reply, or (ii) an attach-level does not
from other nodes to fill in most entries of its table. In statusxist forz and node: is a T-node, where = N, (k, z[k]).first
waiting, z tries to “attach” itself to the network, i.e., to find anandk = |csuf(z.ID,y.ID)|. (A precise definition of attach-
S-nodey, that will store it as a neighbor. In statostifying = level is given in the Appendix of our conference paper [4].) If
seeks and notifies nodes that share a certain suffixavitthich the condition is satisfied, thenchanges status twaiting and
is also a suffix shared by andy. Lastly, when it finds no more sends aloinWaitMsgto y (if case (i) holds) or tou (if case
node to notify,xz changes status tm_systemand becomes an (ii) holds). Otherwiseyx: remains in statusopyingand sends
S-node. aCpRstMsgo u.

Figure 3 presents the state variables of a joining node and thén statuswaiting, the main task ofr is to find an S-node
join protocol messages. Note that each node stores, for e@tlthe network to store: as a neighbor by sending odbin-
neighbor in its table, the neighbor’s state, which canSbie- WaitMsg another task is to copy more neighbors into its table.
dicating that the neighbor is 8-node orT indicating it is a When a nodey, receives aloinWaitMsgfrom x, there are two
T-node. Once a node has becomesanode, the state variablescases. Ify is not an S-node, it stores the message to be pro-
in the second part of the list are no longer needed. cessed after it has become an S-nodgidfan S-node, it checks
whether there exists an attach-levelfdn its table. If an attach-
level exists, say leve}; y storesr into levelyj through levelk,

k = |esuf (z.ID, y.ID)|, and sends doinWaitRlyMs@positive

7, y.table) to z, to inform z that the lowest levek is stored
is level-. Levely is then the attach-level of in the network,
stored byzx in x.att_level. If an attach-level does not exist for
x, y sends a negativ@doinWaitRlyMsgncluding y.table to x.
After receiving the reply (positive or negative),searches the
the copy ofy.table included in the reply for new neighbors to
update its own table. If the reply is negatiwehas to send an-
otherJoinWaitMsg this time tou, v = N, (k, z[k]).first. This
process may be repeated for several times (at thtistes since
each time the receiver shares at least one more digitmiitian
the previous receiver) untit receives a positive reply, which
indicates that: has been stored by an S-node and therefore at-

State variables of a joining node

z.status € {copying waiting, notifying, in_systeny, initially copying
Nz (i,7): the set of {, j)-neighbors ofz, initially empty

z.state(y) € {T, S}, the state of neighbay stored inx.table.

R+ (%, j): the set of reverseé(j)-neighbors ofz, initially empty

z.att_level: an integer, initially 0.

Q- a set of nodes from which waits for replies, initiallyempty
Qn: a set of nodes has sent notifications to, initiallgmpty

Q;: aset of nodes that have sena JoinWaitMsg initially empty
Qsr, Qsn: aset of nodes, initiallempty

Messages exchanged by nodes:

CpRstMsgsent byz to request a copy of receiver's neighbor table.

CpRIyMsgg.table), sent byz in response to £pRstMsg

JoinWaitMsg sent byz to notify receiver of the existence afand request
the receiver to store, whenz. status is waiting.

JoinWaitRlyMsg, ¢, x.table), sent byx in response to doinWaitMsg

whenz.status is in_systemr € {negative, positivg i: an integer.
JoinNotiMsgt, x.table), sent byz to notify receiver of the existence of
whenz.status is notifying 4: an integer.
JoinNotiRlyMsgf, Q, x.table, f), sent byz in response to doinNotiMsg

tached to the network: then changes status notifying
In statusotifying « searches and notifies nodes that share the
rightmost; digits with it, j = x.att_level, so that these nodes

will update their neighbor tables if necessarystarts this pro-
cess by sendingoinNotiMsg which includesj and a copy of
x.table, to its neighbors at level-and higher levels. Eacloin-
NotiMsgserves as a notification as well as a request for a copy of
the receiver’s table. Upon receivingdainNotiMsg a receiver,

z, storese into all (i, z[¢])-entries that are not full wit” neigh-
bors yet, wherg < i < |csuf(z.ID, z.ID)|, searches.table

for new neighbors to updates table, and then replies towith
z.table. From the replyx may find more nodes that share the
rightmost; digits with it and sendloinNotiMsgto these nodes.

Next, we describe the join protocol informally. (A Speciﬁ_MeanWhiIe,x searches the copy oftable for new neighbors to

cation of the protocol in pseudocode and a correctness pri§date its own table. _ _ .
are given in [3].) In statusopying a joining nodez, fills in Whenzx has received replies from all nodes it has notified and

most entries of its table, level by level, as follows. To construgf‘ds no more node to notify,. it changes st.atuimsystema.nd
its table at levek, i € [d], = needs to find an S-node;, that becomes an S-node. It then informs all of its reverse-neighbors,

shares the rightmostdigits with it and send £pRstMsgo g; i.e., nodes that have storedas a neighbor, that it has become

to request a copy af;. table. We assume that each joining nodén S-node. It has delayed processidginWaitMsgrom some
knows a node i/. Let this node beyo for 2. begins withgo. nodes, it should process these messages and reply to these nodes

Fromgg.table, x copies level-0 neighbors gf), finds a node; at this time.

r € {negative, positivg Q: a set of integersf € {true, falsg.
InSysNotiMsgsent byx whenz. status changes tin_system
SpeNotiMsg¢, y), sent or forwarded by a node to inform receiver of the

existence ofy, wherez is the initial sender.
SpeNotiRlyMsg(, y), response to &peNotiMsg
RvNghNotiMsgy, s), sent byz to notify y thatz is a reverse neighbor @f

s e{T, S}.

RvNghNotiRIlyMsg{), sent byz in response to &vNghNotiMsgs = S if

x.status is in_systemotherwises = T'.

Figure 3: State variables and protocol messages

5 Protocol Design for Concurrent JOiNS When a nodey, locates a qualified substitute for a hole in
; x.table using step (a), (b), (c), or (d) of the failure recovery
and Failures protocol, if the qualified substitute is an S-node, thsiils the

In this section we describe how to integrate the basic failure &€ With itand terminates the recovery process. However, if the
covery protocol presented in Section 3 with the basic join protSUi“f'eg substltuted|s a T—node,;aves the T-node in a welutm%]

col presented in Section 4. Such integration requires extensidiis o" the entry and continues the recovery process. Only when
to both protocols. the recovery process terminates at the end of step (d) without

Consider al<-consistent network(V, A'(V)). Suppose a set locating any S-node as a qualified substitute, wiltmove a T-
of new nodesJV’, join the network whi’le a set of nodes. fail node from the entry’s waiting list to fill the hole (provided that

F CVUW andV — F #). Our goal in this section is to de- the list is not empty). Also, because of Rule 1, when a node
sign extended join and failure recovery protocols such that evei2rches among its neighbors and reverse-neighbors to find a
tually the join process of each nodeliii — F terminates and qualified substitute in response to a recovery query from another
(VUW)— F,N((VUW)— F)) is aK -consistent network. In node, it does not select a T-node as long as there are S-nodes that

general, designing a failure recovery protocol to provide perfeébrte qualified.

recovery is an impossible task; for example, consider a scenarigtUl€ 1 €xtends the basic join protocol as follows: Consider a
in which an arbitrary number of nodes inu W fail. On the ”Pde’x’ that dls.clovers.a'new neighbgrfor one of its table en-
other hand, we observed in Section 3 that the basic failure FHES after receiving a join protocol message from another node.
covery protocol achieved perfect recovery férconsistent net- © €an storey in the table entry, if the table entry is not full with
works, for K > 2, in which up to 50% of the nodes failed. This neighbors yet ang is an S-node, according to the following

level of performance, we believe, would be adequate for maﬁ ps,., Firsty checks if t_here exists any vacancy among khe
applications. . Ipts of the entry that is _not a hole for whlch fe}llure. recovery
Design of extended join and failure protocols in this sectidfi IN Progress. If there exists such a vacanci filled into it;
follows the approach in [5] on how to compose modules. Titherwisey (an S-node) is fllleq into a_hole in the entry and the
service provided by a composition of the two protocols herein {§COVEry process for_the hole is terminated. On the other hand,
construction and maintenance ktconsistent neighbor tables.!! € Néw neighboy is a T-node, thery can be stored in the
The extended join protocol is designed with the assumption tiILrY if the total number of neighbors and holes in the entry is
the extended failure recovery protocol provides a “perfect recdgSS thar. Otherwisey (a T-node) is saved in the entry’s wait-
ery” service, that is, for every hole found in the neighbor tabf89 liSt and may be stored into the entry later when the recovery
of a node, the node calls failure recovery and within a boundBEPCeSS of @ hole in the entry terminates.
duration, failure recovery returns with a qualified substitute for Rule 2 Ea_ch n_ode, S-no_de or T-n_ode, cannot reply to
the hole or the conclusion that the hole is irrecoverable at th%PRS,tMSg JoinWaitMsgor JoquuMsg i th.e node has any
time. To avoid circular reasoning [5], we ensure that progress@#90ing recovery process at the time it receives such a message.
the failure recovery protocol does not depend upon progress of'/Nen a nodey, receives &pRstMsgJoinWaitMsgor Join-

the join protocol. Thus in the extensions to be presented, fail¥QUiMsg if @ has at least one recovery process that has not ter-
recovery actions are always executed before join actions. minated,x needs to save the message and process it later. Each
time a recovery process terminateschecks whether there is

) any more recovery process still running. If netcan process
5.1 Protocol extensions the above three types of messages it has saved so far.

For networks with concurrent joins and failures, the failure re- Rul€ 3Wher; ngT—node detects fa|Iuref ofa ni'%htl’orl in its ti’
covery protocol needs to distinguish between nodes that are I it Starts a failure recovery process for each hole left by the

in the process of joining (T-nodes) and nodes that have joinfé'?dl‘g’d nt_aighbor gccording to Rule 0 with the_ fqllo_vv@ng excep-
successfully (S-nodes). The join protocol, on the other harf": which requires the T-node to backtrack in its join process.
Consider a T-node, say: In order to backtrack; keeps a list

needs to be extended with the ability to invoke failure recoverf hich it h i

and to backtrack. Furthermore, when a node is performing faf]f °des. fo. ..., g:), to which it has sent @pRstMsgr aJoin-

ure recovery, its replies to some join protocol messages must gitMsg in Ordef of send!r_lg times. Ba_clgtrgcklng IS req‘.”ed if

delayed. A more detailed description follows. on(_a_of the following conditions holds: (i) is in statuscopymg
We specify extensions to the basic join protocol in Section'¥aiting for aCpRIyMsgfrom g;, and has detected the failure

and basic failure recovery protocol in Section 3.1 as a set §fi: (i) @ IS in statuswaiting, waiting for aJoinWaitRlyMsg

eight rules. Rule 0 extends the basic join protocol with the abﬁr—Om 9i» and ha; detected'the failureqf (i,”) 2, in statusn_ot.i-
finds that it has no live reverse-neighbor left and it is not

ity to invoke failure recovery. Rule 1 is an extension that appli&‘ing’ . >) . . .
to both the basic failure recovery and join protocols. Rules 2 ﬁg(pectlr_lg any moréomN_othIyMsgNhen_ Itreceives a neg_atlve
7 are extensions to the basic join protocol. JoinNotiRlyMsgr when it detects the failure gf, some neigh-

Rule 0 Each node, S-node or T-node, starts an error recovét§! ¥ OF a node from which: is waiting for aJoinNotiRlyMsg

process when it detects a hole in its neighbor table left by afailed! cases (i) and (ii}r has not been attached to 't“he network (no
neighbor. S-node has stored it as a neighbor). In case (tiils detached

Rule 1 In filling a table entry with a qualified node, do notfrom the n_etwork_ and has no prospect of attachment since it is
choose a T-node unless there is no qualified S-node. not expecting doinNotiRlyMsg In each case; backtracks by
Rule 1 extends the basic failure recovery protocol as follow€!eting from its table the failed node(s) it detected, setting its

status tawaiting, and sending doinWaitMsgto g; _; to inform K=1 _ K=23,45
. . n No. of events No. of | No. ofsim. | No. of | No. of sim.
gi—1 about the failed node(s) and request; to storez into (W|+|F) | sim. | w/perfect | sim. | wiperfect
gi—1.table. If g;_1 has also failed, them contactsy; -, and so outcome outcome
. 1600 | 200 (38+162) 16 16 64 64
on. If = backtracks tqy, andgo has also failed, them has t0 o0 200 (110+90) | 16 6 &4 &4
obtain another S-node from the network to start joining from thel600 | 200 (160+40) | 12 12 48 48
L . 1600 | 400 (85+315) 12 10 48 48
beginning again. o o _ [1600 | 400 (204+196) | 12 11 5 5
Rule 4 A T-node must wait until its status itifyingbefore it [1600 [400 (323+77) | 12 2 78 78
can sendRvNghNotiMsgo its neighbors, which will then store| 152 | 899 gfi;‘l‘;‘) o 2 > >
it as a reverse-neighbor. (This is to prevent a T-node from beingsoo [400 (210+190) | 16 15 64 64
selected as a substitute for a hole before it is attached to (800 | 400(324+76) | 12 12 48 48
K 3600 | 800(169+631) | 12 9 48 48
network.) _ _ ' 3600 | 800 (387+413) | 12 11 48 48
Rule 5When a T-node receives a reply with a substitute nog€600 | 548 (400+148) | 12 10 48 48
3200 | 1600 (780+820)| 12 9 48 48

for a hole in its table, if the T-node is in statastifying and
the substitute node should be notifiethen the T-node sends a
JoinNotiMsgto the substitute, even if the substitute is not used
to fill the hole.)
Rule 6 A T-node cannot change statusitasysten(become O Churn Experiments
an S-node) if it has any ongoing failure recovery process.
Rule 7 When a T-node changes statusiriosystemit must Our simulation results in the previous section show that for

inform all its reverse-neighbors (by sendimBysNotiMsl in & = 2, K-consistency was recovered in every experiment some
addition to its neighbors, that it has become an S-node. time after the simultaneous occurrence of massive joins and fail-

ures. Such convergence fo-consistency provides assurance
that our protocols are effective and error-free. For a real sys-
. . tem, however, there may not be any quiescent time period long
5.2 Simulation results enough for neighbor tables to convergeiKeconsistency after

. - . joins and failures. Protocols designed to achi&+eonsistency,
We implemented the extended join and failure recovery proe ~ o 1 ovigeredundancyin neighbor tables to ensure that a

tocols and con.ducteq 980 simuIaFion exper!ments to evalu%%amically changing network is alwayslly connectedi.e.,
them. Each simulation began with Ji-consistent network, there exists at least one path from any node to every other node
.W’N(V»’ of n nodes ¢ = [V]). Then a setv of no_des in the network. In this section, we investigate the impact of node
Jc_)lned ?“d a ser’ O.f rand_omly chpsen_nodes failed dL_mng th% namics on protocol performance. In particular, we address the
simulation. Each simulation was identified by a c_omblnatlon %estion of how high a rate of node dynamics can be sustained
b d, K, n, ap_d|W| + |F| values, wher¢WV| * |F°] is the total by our protocols and, more specifically, what are the limiting
number of join and failure eventsk’ was varied from 110 5, ctors? By “sustaining a rate of node dynamics”, we mean that
g)r;g)t%/?elzléevsa\l/\tljeer: i%%%eg;rggn;:dlggég%g rgigéig?gfﬁ%ﬁ system is able to maintain a large, stable, and connected set
network size 4). For 3200-node and 3600-node simulations,?l nodes under the given rate of node dynamics.
a!l joins_ and .fa'ilures ogcurred at the same time. For 1600—.no &1 Experiment setup
simulations, join and failure events were generated according to
a Poisson process at the rate of 1 event per second in 220 Bxsimulate node dynamics, Poisson processes with ’igs
periments, 1 event every 10 seconds in 180 experiments, 1 evaamd \s,; are used to generate join and failure events, respec-
every 20 seconds in 60 experiments, and 1 event every 100 se®ly. For each join event, a new node (T-node) is given the ID
onds in 60 experimentsK-consistent neighbor tables for theand IP address of a randomly chosen S-node to whom it sends
initial network were constructed using the four approaches de€pRstMsgo begin its join process. For each failure event, an
scribed in Section 3.2. existing node, S-node or T-node, is randomly chosen to fail and
At the end of every simulation, we checked whether the jostay silent. In experiments to be presented in this section, we
processes of all joining nodes that did not fail (nodeBin- ') setAjoim = A = A, which is said to be thehurn rate. Pe-
terminated. We then checked whether the neighbor tables ofradidically in each experiment, we took snapshots of the neigh-
remaining nodes (nodes INU W — F)) satisfy K-consistency. bor tables of all S-nodes. Intuitively, the set of S-nodes is the
Table 5 presents a summary of results of the 980 simulation égere” of the network. The periodic snapshots provide informa-
periments. We observed that, f&r > 2, in everysimulation, tion on network connectivity and indicate whether our protocols
the join processes of all nodes W — F' terminated and the can sustain a large stable core for a particular churn rate over
neighbor tables of all remaining nodes satisfiéetonsistency. the long term. The time from when a new node starts joining
Each such experiment is referred to in Table 5 as a simulatitmwhen it becomes an S-node is said to bgadis duration .
with perfect outcome. Note that each new node can get network services as a “client”
as soon as it has the ID and IP address of an existing S-node.

. However, it cannot provide services to others as a “server” until
Let « denote the T-node in statuetifying andy the substitute node received. The ; _

condition forz to notify y is |csuf (z.ID, y.ID)| > x.att_-level andz has not sent a it has become.an S r_lode.. i X

JoinNotiMsgto y. Each experiment in this section began with 2,000 S-nodes,

Table 5: Results for concurrent joins and failures

whereb = 16, d = 8, and K was 3 or 2. Neighbor tables 2% 2300

2250 2250

in the initial network were constructed using approach (jii) as, 2o 2200
2150 2150

described in Section 3.2. The underlying topology used in th@f 100 100
experiments had 2,112 routers. Of the average end-to-end dg*° 2050

2" 2000 2000 ;38

lays, 23.3% were below 10 ms and 72.2% were below 100 ms, s 1950

1900 1900

Number of nodes

with the largest average value being 596 ms. fitheout value t50 | Number of nodes in network —x— 1850 [Number o nodes nnetvrk —x—
for each step in failure recovery (see Section 3.1) was 10, 5 0r*® ¢ m 400 600 8000 10000 190 T 2000 4000 6000 8000 10000
2 second$. We ran experiments for values afranging from Time (seconds) Time (seconds)

0.25 to 4 joins/second (also failures/second). By Little’s Law, (&) = 0.5, timeout =10 sec (0)x = 0.5, imeout = 5 sec

2300 2300

at a churn rate of = 4, the average lifetime of a node in a % 2250
2000-node network is 8.3 minutés(For comparison, the me- , 2 2%

g 2150 2150

dian node lifetime in Napster and Gnutella was measured to bgzw 2100
. . S 2050 2050

60 minutes [11].) Each experiment ran for 10,000 seconds of 2w 2000
2 1950

simulated time? After 10,000 seconds, no more join or failure 2 *° .

1900

Number of nodes

event was generated, and the experiment continued until all joiniggg Number of nodes in petwork —— 1650 Number of nodes in petwork ——
and failure recovery processes terminated. We took snapshots o 200 400 600 soo0 0000 0 2000 4000 6000 8000 10000

Time (seconds) Time (seconds)

(C)A = 1, timeout = 10 sec (d)A = 1, timeout = 5 sec

2300
2250
2200
2150
2100
2050
2000
1950
1900

1850 Number of nodes in network —»—
1800 Number of S-nodes &

1800
Figure 4 plots the total number of nodes (S-nodes and T-nodes) ° ™ o % oo oo O gy
and the number of S-nodes in the network at each snapshot, for (e =
experiments withA = 0.5, A = 1, and\ = 1.5, andK = 3.

Fluctuations in the curves are mainly due to fluctuations in th&qre 4: Number of nodes and S-nodes in the netwarks 3
Poisson processes for generating join and failure events. The

difference between the two curves of each experinsetie . . Lo .
rate increases), join duration increases. In Figure 5(a), observe

number of T-nodes. Withjoi, = A = A, a stable number . .. :
C .that not only is the mean join duration far= 1 larger than that
of T-nodes over time indicates that our protocols were effectiv ; o
0 ﬂ\ = 0.5, but the tail of the distribution is very much longer.

and stable. Observe that some time after 10,000 seconds,, a . - :
In the absence of failures, join durations of nodes are substan-
T-nodes became S-nodes (the two curves converged). Expgri-

ments illustrated on the left side and the right side of Figure |43IIy shorter. From a_lqlﬁerent_se_t of experiments in which _1000
nodes concurrently join an existing 3000-node network with no

used timeout values of 10 seconds and 5 seconds, respectivfe Y. o ;
) ifure, the average join duration was found to be 1.9 seconds
For the same\, the average number of S-nodes is larger an Hd the 90 percentile value 2.7 seconds.)

the average number of T-nodes is smaller in experiments wit For a given failure rate, the join durations of nodes can be

5-second timeouts than those with 10-second timeouts. This is o .
. L . . reduced by two system parameters, namely: timeout value in
because join duration is much smaller with 5-second timeoyts . .
algure recovery ands. We have already inferred from Figure 4

than with 10-second timeouts, which suggests that the t"m:‘\(fllﬁ'at join duration can be reduced by using a smaller timeout in

value in failure recovery should be as small as possible. ; . Lo -
: . . failure recovery. This point is illustrated explicitly from com-
In general when the failure rate of a network increases, join . S
o . O Jparing the two curves in Figure 5(b), where one curve shows the
duration increases. In our protocol design, to avoid circular rea-

i . . - - umulative distribution fon = 1, K = 3, and 10-second time-
soning, failure recovery actions have priority over join protoca . S

. o . . gut, and the other shows the cumulative distributionXcet 1,
actions. More specifically, when a node has an ongoing failu

; . . . = 3, and 5-second timeout. (Intuitively, using a smaller time-
recovery process, it must wait until the process terminates be- . .
. o) out value reduces the average duration of failure recovery pro-
fore it can reply to certain join protocol messages; moreover, a . . .
. e tesses. As a result, join processes that wait for failure recovery
T-node must wait to change status to an S-node if it has an ongg- . .
. ; . rocesses can terminate faster.) Also observe from Figure 5(c)
ing recovery process. With more failures, there are more ho(gs

of neighbor tables and evaluated connectivity and consistency
measures once every 50 simulation seconds throughout each ex;
periment. We also checked whether a network convergéttto 20
consistency = 3 or 2) at termination and measured the time 150
duration needed for convergence.

2100 |
2050 |
2000
1950

6.2 Results 1900

1850

Number of nodes
Number of nodes

% °
Number of nodes in network %

Number of S-nodes -

1.5, timeout = 10 sec (f)/\ = 1.5, timeout = 5 sec

. . . . or A = 1 and 10-second timeout, reducing thevalue from
in neighbor tables and the join processes of T-nodes will be de- o . ;

) . Co to 2 decreases the mean join duration slightly. However, the
layed longer. Figure 5(a) shows the cumulative distribution ?f.

join duration for different values of. When)\ increases (failure ail of the distribution is substantially shorter féf = 2 than
J ' for K = 3. The tradeoff is that d(-consistent network for a

8The timeout value is used in each failure recovery step to wait for replies. A timeo§tma"erK 01"_fers fewer alternate paths and its connectmty mea-
value of 10 seconds might be unnecessarily long for today’s Internet. sures are slightly lower.
9By Little’s Law, the average node lifetime is/ X (seconds), where is the number of Figure 6(8.) shows results for an experiment with= 2
nodes in the network. ; !
K = 3, and 10-second timeout. Observe that the number of

Each experiment foA = 2 and K = 3 took about twelve days to run on a Linux B . X
workstation with 3.06GHz CPU and 4GB memory. S-nodes declines while the number of T-nodes increases over

q
-

© 1

0.8

o
©

0.8

0.6

o
o

0.6

0.4

I
~

0.4

Cumulative distribution
Cumulative distribution
Cumulative distribution

o
)

0.2 0.2

lambda=1, K=2, 10sec timeout —*—
lambda=1, K=3, 10sec timeout —&-—

flambda=0.5, K=3, 10sec timeout —»— N
ps® lambda=1, K=3, 10sec timeout &~ o &

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Join duration (seconds) Join duration (seconds) Join duration (seconds)

(a) K = 3, timeout =10 sec br=1,K=3 (c) A =1, timeout = 10sec

lambda=1, K=3, 5sec timeout —&—
lambda=1, K=3, 10sec timeout ——&-—

o

Figure 5: Cumulative distribution of join durations

8 7] 8
E % E
e) £ 1800
5 5 5
N 5 1400 2 1600
[[[
£ 3 1200 £ 1400
2 2
| 1000 1200 |
Number of nodes in network —»<— Number of nodes in network —x Number of nodes in network —»<—
1000 Number of S-nodes —-— 800 ‘ Number of S-nodes -—-&-- 1000 Number of S-nodes -~
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time (seconds) Time (seconds) Time (seconds)
(a) K = 3, timeout =10 sec (= 2, timeout =10 sec (cK = 3, timeout =5 sec

Figure 6: Number of nodes and S-nodes in the netwbrek,2, K = 3

time (from O to 10,000 seconds). This behavior indicates that connected, then full connectivity holds (over the set of S-
at a failure rate of 2 nodes/second, the netwojdils capacity nodes at time).

(definition in Section 1) was less than 2 joins per second. As ae K-consistency Same as thd{-consistency definition in
result, the number of T-nodes grows like a queue whose arrival Section 2.2, with/ being the set of S-nodes at time

rate is higher than its service rate. The network’s join capac-e K-consistency-SABuppose there is no more node failure
ity can be increased by reducing the join durations of T-nodes. after timet. If each recoverable hole in the neighbor tables
As shown in Figure 5, the average join duration can be reduced of S-nodes at time can be repaired by the four steps of
substantially by changing the timeout value from 10 seconds to failure recovery, thenk-consistency isatisfiableor K-

5 seconds, or it can be reduced slightly by changihérom 3 consistency-SAT holds.
to 2 (with the variance greatly reduced). We found that either of
these approaches would stabilize the networkifer 2. There- Note that full connectivity in the presence of continuous

sults of another experiment with= 2, K = 2, and 10-second churn is a desired property of any routing infrastructure. Con-
timeout are shown in Figure 6(b), and the results of a third eg'[stency is a stronger property than full Connectivity, aid
periment withA = 2, K’ = 3, and 5-second timeout are shownzonsistency, fors > 2, is even stronger. In any network with
in Figure 6(c). Observe that the number of T-nodes was stalgurn, it is obvious thafs-consistency is most likely not sat-
over time indicating that the network’s join capacity was highgsgfied by the neighbor tables in a snapshot at timbecause
than the join rate. In all three experiments in Figure 6, som@me failure(s) might have occurred just priorttand failure
time after 10,000 seconds, when no more join or failure evegicovery takes time. On the other hand, the neighbor tables at
was generated, all T-nodes became S-nodes, showing that @4 ¢ contain sufficient information for us to check whettér
join protocol worked correctly irrespective of the network’s joirtonsistency is satisfiable at timer not. If K -consistency-SAT
capacity. In both the experiments in Figure 6(b) and Figure 6(plds for every snapshot in an experiment, then we are assured
the network converged t& -consistency at termination (see Tathat our protocols are effective and error-free.
bles 7 and 8). Table 6 presents a summary of results from experiments for
We next examine neighbor tables at each snapshot more cate-— 3 and 10-second timeouts, versus the churn rate (top
fully. For each snapshot at timethe following properties were row). The second and third rows show the number of joins
checked: and failures, respectively, for each experiment. Observe that 3-
consistency-SAT holds for every snapshot in every experiment.
e Percentage of connected S-D pairsFor each source- Each experiment also converged to 3-consistency some time af-
destination pair of S-nodes, if there exists a path (defirter 10,000 seconds, except the one Xoe 2, with the conver-
tion in Section 2.2) from source to destination, then thgence time shown in the 6th row. Since we took a snapshot once
pair is connected. (Both S-nodes and T-nodes can appewery 50 seconds, the convergence time has a granularity of 50
in a path.) seconds. The 7th and 8th rows of Table 6 present the percent-
e Full connectivity If at timet, all S-D pairs of S-nodes are age of snapshots (taken from 0 to 10,000 seconds) for which 1-

10

A (#joins/sec = #failures/sec) 0.25 | 0.5 0.75 1 1.25 1.5 2
number of joins 2413 | 5095 | 7621 10080 12474 15011 19957
number of failures 2473 | 5066 | 7423 9890 12468 14919 19960
% snapshots, 3-consistency-SAT | 100 100 100 100 100 100 100
convergence to 3-consistency at endyes yes yes yes yes yes no
convergence time (seconds) 150 200 400 350 450 400 —

% snapshots, 1-consistency 100 100 99.5 97.5 97.5 88.5 62

% snapshots, full connectivity 100 100 99.5 98 98 98.5 92
average %, connected S-D pairs 100 100 99.99998 | 99.99991 | 99.99993 | 99.99991 | 99.9996

Table 6: Summary of churn experiments= 2000, K = 3, timeout= 10 sec

A 0.25 | 0.5 0.75 1 1.25 15 1.75 2
number of joins 2413 | 5059 | 7621 10080 | 12474 15011 17563 19957
number of failures 2473 | 5066 | 7423 9890 12468 14919 17563 19960
% snapshots, 3-consistency-SAT 100 100 100 100 100 100 100 100
convergence to 3-con. yes yes yes yes yes yes yes yes
convergence time (sec.) 50 150 150 150 150 400 250 350

% snapshots, 1-consistency 100 100 99.5 100 99.5 99 95.5 93

% snapshots, full connectivity | 100 100 99.5 100 99.5 99.5 96.5 95
average connected S-D pairs 100 100 99.99999 | 100 99.99998 | 99.99998 | 99.99993 | 99.9997

Table 7: Summary of churn experiments= 2000, K = 3, timeout= 5 sec

consistency and full connectivity held. Even though these prop-Reducing the value ok is another way to increase the join

erties did not hold for 100% of the snapshots for> 0.75, capacity of a network. There is a tradeoff involved however.

perfection was missed by a very small margin, as shown in t@#oosing a smallef results in less routing redundancy in

last row of Table 6. The average percentage of connected Si€ighbor tables. We conducted experimentsioe 2, timeout

pairs of S-nodes was higher than 99.9996% in every experimentl0 seconds, with equal to 0.5, 1 and 2. The results are sum-
Inthe\ = 2 experimentshown in Table 6, 3-consistency-SAmarized in Table 8. Comparing Table 8 and Table 6, we see that

held at time 10,000 seconds, but the network did not converlpe percentage of snapshots with 1-consistency (also full con-

to 3-consistency at termination. Why? We believe it was due tectivity) was much lower foK = 2 than that forK = 3. The

the very large number of T-nodes at time 10,000 seconds. Naigerage percentage of connected S-D pairs was also lower.

that only S-nodes in neighbor tables are considered in testing

whether 3-consistency holds. 3-consistency (among S-nod E)S . .

was satisfiable at time 10,000 seconds when some qualified s% 3 Maximum sustainable churn rate

stitutes for “irrecoverable holes” were T-nodes. Subsequently,gt, performed experiments with increasing values\db es-

termination when all T-nodes became S-nodes, these previoyglyae the maximum sustainable churn rate as a function of the
irrecoverable holes became recoverable, and 3-consistency;flifla network size) for K& = 2 or 3. For given values of and

not hold because all error recovery processes had already terﬂ”,"our estimate is determined by the largistalue such that
nated by then (the network did satisfy 1-consistency at the engiyer 10,000 seconds (simulated time) of churn, the network was
We conclude that our protocols behaved as intended. Thesejige g recovei -consistency afterwards. Figure 7(a) shows
coverable h.ol_es WI|! get filled over time by the join protoco ,; results from experiments with 5-second timeout &hek 2
when more joins arrive. or 3. Observe that the maximum rate is higher for= 2 than

) 05 1 2 for K = 3.

number of joins 5095 10080 | 19911 Note also that, forn > 500, the maximum rate increases at
number of failures _ 5066 | 9890 | 20017 least linearly as: increases. This observation validates a con-
% snapshots, 2-consistency-SAT | 100 100 100 . , e s

convergence fo 2-consistency at endyes yes ves jecture that our protocols’ stability improves as the number of
convergence time (seconds) 150 150 400 S-nodes increases. However, the conjecture does not hold for
% snapshots, 1-consistency 88 625 | 125 n < 500. This can be explained as follows. Fer< 500 and

% snapshots, full connectivity 91 68.5 27 . . .

average %, connected S-D pairs | 99.9994 | 99.996 | 99.978 b = 16, the number of neighbors stored in each node is a large

fraction ofn and failure recovery is relatively easy to do. As
Table 8: Summary of churn experiments= 2000, K = 2, decreases further, the number of neighbors stored in each node
timeout= 10 sec as a fraction of: increases, and failure recovery becomes even

As discussed above, one way to increase the join capacitye U|e_r. Little’s | lculated therini d
a network is to reduce the timeout value. Table 7 summarizes~>"9Y iie's faw, we calcuiated tinimum average node

results for experiments with timeout value reduced to 5 secorli§ime for €ach maximum rate in Figure 7(a). The results are
(K = 3). Reducing the timeout value provides improvemerﬁ’[resented in Figure 7(b). The trend in each curve suggests that

in every performance measure in the table (provided that thél2" increases beyond 2000 nodes, the minimum average node

is room for improvement). In particular, comparison with Tall€lime is less than 12.1 minutes féf = 3 and 8.3 minutes for

ble 6 shows that convergence time to 3-consistency is short@r,: 2.
percentage of snapshots with full COI”II’](—Z.‘CtIYIty.IS hlgher’ and a'V’“Since the maximum sustainable churn rate is a random variable, our estimate is only a
erage percentage of connected S-D pairs is higher in Table 7sample value of that random variable.

11

as holes declared as irrecoverable by their recovery processes).

0

o

500 1000 1500 2000

§ K=3 —&F— % 1400 | K=3 —8—

; 4| K2 0 o @ 1200 [K2 O Similar to results in Section 3.2, most holes were repaired by

<3 3 1283 steps (a) and (b) (for the distributions shown in Figure 9, more

i, < 600 oo than 86% percent of holes were repaired by the end of step (b)).
5 m 400 | B0 o Recall that holes repaired in step (a) incur no communication

é § 200 cost, while holes repaired in step (b) require uR{d — 1)

g s

0 500 1000 1500 2000 messages. A3 increases, the percentage of holes repaired by
Nerwerk size (m Networke size (m step (a) decreases: the percentage is 56%, 48% and 42% for
@) (b) A =0.25, A = 0.5 andX = 1, respectively. The long tails of
Figure 7: Maximum churn rate (a) and minimum average ”féhe distributions are due to holes found by failure recovery to be
time (b), timeout = 5 sec irrecoverable.

6.4 Protocol overheads 7 Routing Performance under Churn

We next present protocol overheads in the churn experiments as) .

a function of for n = 2000. (Analyses of protocol overheadsEXPeriment results in Section 6 show that our protocols, by
as a function of are presented in Section 7 of [4] and Sectiofit"Ving to maintaink™-consistency, were able to provide pair-

4 of [3], and are omitted herein due to space limitation.) FigV!S€ connecnwt_y_better than 99.9995% (between S-nodes) at a
ure 8 presents cumulative distributions of the number of thr€8Urn rate of 2 joins and 2 failures per second:i62000 and
types of join protocol messages sent by joining nodes whoé’e::”_- (sge Tables 6.ar.1d. 7). This suggests that for each source-
join processes terminated. We are interested in these messggégnatlon node pair, it is almost always the case that there ex-
(as well as their replies) because each such message (or reﬁﬁ?a path of average length(log,) hops, so long as both
may include a copy of a neighbor table and thus can be larg@des are still in the _system. Thus, even at a high churn rate,_lf
in size. Figure 8(a) shows that a large fraction of joining nod&3¢ rate can be sustained by the system, then the average routing
sent a small number dbinNotiMsg(e.g., forA = 1, more than Performance should not degrade much. .
98% of nodes sent less than 26inNotiMsg. However, as\ To validate the above conjecture, we conducted more experi-
becomes larger, the tail of its distribution becomes longer. Fifl€nts to study routing performance under node churn. In partic-

ure 8(b) shows that the number ®PRstMsgand JoinWaitMsg ular, we are interested in the follow performance criteria: When
(combined) sent by each joining node is very small. the churn rate increases, how often will routing succeed? Also,

how much will average routing delay increase?
Experiment setup: We used the same method to generate

1 2 >

: oo node joins and failures and the same underlying topology as the
H Z 07 ones used in Section 6.1. Each experiment in this section began
g g 0 i with 2,000 S-nodes and ran for 3,600 simulation seconds, for
g 20 K = 3 and timeout = 2 sec. We ran experiments for a range of
3 024 bt —o— 3 02 bt —x— churn rates, from\ = 0.125, A = 0.25, and up toA = 8, with

01 mbda=0.5 —X— 0.1 mbda=05 - . . . R

B lamidaz0.25, 0 lamidaz0.25 -+ corresponding median node lifetime equal to 184.84 minutes,

0 20 40 60 80 100 120 140 160 180 2 3 4 5 6 7 8 . .
Number of JoinNotiMsg Number of CPRstMsg and JoinWaitMsg 924 mlnuteS, and dOWﬂ tO 2888 mlnuteS, reSpeCtﬂ?eW
(2) JoinNotiMsg (b) cpRstMsg + JoinwaitMsg In these experiments, each S-node generated routing tests

once every ten secondsFor each routing test, another S-node
Figure 8: Cumulative distribution of join protocol messages seffgS chosen randomly to be the destination. If the destination
by joining nodesk = 3, timeout= 10 sec was eventually reached, the test was recorded as successful; oth-
erwise, it was recorded as unsuccessful. For each successful
routing test, we also recorded the number of hops along the path
from its source to destination, as well as the routing delay. For
each median node lifetime, we calculated the percentage of suc-
cessful routing tests, as well as the average number of hops and
the average routing delay over all successful routing tests.
We experimented with two different routing strategies. A

] a0z straightforward approach is to let the source create one rout-
05 k=05 -5 ing message for each test. Each node along the pathg,say
; ” " o o w0 1 forwards the message to the closest neighbor following the hy-
Number of query messages percube routing scheme. That isaifis theith node along the

path (the source is the Oth node), then it forwards the message

Figure 9: Cumulative distribution of query messages sent for

: _ : _ 12since we generate node churn according to a Poisson process, for a given churn rate,
recovering a holes” = 3, timeout= 10 sec A, the corresponding median node lifetime can be calculated Bs2) /A, wheren is the
. average number of nodes in the system [9].
Flgure 9 presents cumulative distributions of the number o\1‘163T-n0des did not generate routing tests, since their neighbor tables are still under con-

queries for repairing a hole (fOI’ holes that were repaired as wetlction. Failed nodes did not generate routing tests.

Cunul ati ve distri bution

12

to the closest neighbor among all neighbors ir(dts:[i])-entry, neighbor table entry. However, the property/gfconsistency
whereu is the destination node. If the forwarding request timds not defined and thus not enforced in Tapestry. Furthermore,
out (because the neighbor has failedpacktracks and forwards Tapestry’s join and failure recovery protocols are based upon use
the message to another neighbor. We refer to this approacltofa lower-layer Acknowledged Multicast protocol supported by
backtracking. all nodes [2]. Our protocols do not require such reliable multi-
We also evaluated another routing strategy that exploits rogast support and are very different from the Tapestry protocols.
ing redundancy provided b¥ -consistent neighbor tables. In Recently, two other papers also addressing the problem of
this approach, the source sends duplicates of the routing mesdrn in structured p2p networks were published. Li et al. [6]
sage, one to each of the two closest neighbors for the destinaed a single workload to compare the performance of four rout-
tion following the hypercube routing scheme. Each node thiaig algorithms under churn. In their experiments, the churn rate
receives such a message simply forwards the message witheas fixed with the corresponding average node lifetime equal
further duplication, and backtracks if necessary. We refer to ths 60 minutes. Their goal was to study the impact of algorithm
approach asource-duplication and backtracking parameter values on system performance, more specifically, the
Results: Figure 10 summarizes our results, which are plottedadeoff between routing latency and bandwidth overhead.
versus median node lifetime along the horizontal axis. A smaller Rhea et al. [9] identified and evaluated three factors affecting
median node lifetime corresponds to a higher churnrate. HenBg{T performance under churn, namely: reactive versus peri-
in each figure, churn rate increases from right to&ft. odic failure recovery, algorithm for calculating timeout values,
Figure 10(a) shows the percentage of successful routing tesisd proximity neighbor selection. They have also investigated
Figure 10(b) shows the average number of hops from sourtte impact of a wide range of churn rates on average routing
to destination over successful routing tests. In the souradelay (called lookup latency in their paper) as the performance
duplication and backtracking approach, for each routing test, weeasure for several DHTSs.
used the number of hops traveled by the message that arrived &fe have a different set of objectives in this paper. Our first
the destination first. Figure 10(c) shows the average delay owefijective was the design of a failure recovery protocol based
successful routing tests. upon local information for hypercube routing and its integration
Observe from Figure 10(a) that with backtracking only, theith a join protocol to maintaird<-consistency of neighbor ta-
percentage of successful routing is already very close to 100Btes. We use a stronger definition of consistency (for neighbor
With the addition of source-duplication, the success percentagbles) than the consistency definition (for lookups) used in [9].
becomes even closer to 100% (the percentage was in fact 10@%addition to the impact of churn rate on average routing de-
for all median lifetimes greater than or equal to 46.2 minutes)lay, we also evaluated the impact of churn rate on neighbor ta-
Also observe from Figures 10(b) and 10(c), when the mediaite consistency and pairwise node connectivity provided by the
node lifetime decreases (from right to left), the average numbegighbor tables. Furthermore, we explored the notion i
of hops and average routing delay increase very slightly. Eaeglinablechurn rate and found that it is upper bounded by the rate
such increase is due to a small increase in backtracking occatrwhich new nodes can join the network successfully. We refer
rences when node failures become more frequent. In particutarthis upper bound as the join capacity of a network. We found
the average number of hops for all lifetimes of both curves invo ways to improve a network’s join capacity, namely, by us-
Figure 10(b) is within the range of 2.275 to 2.496, and actuallgig the smallest possible timeout value and choosing a smaller
less tharlog,4(2000), which is 2.74. This confirms our con- K value.
jecture that by striving to maintaii-consistency in neighbor We can directly compare Figure 10(c) in this paper 3or
tables, our protocols preserve scalable routing in the hypercudmasistent hypercube routing to Figures 7 and 9 in [9] for Bam-
routing scheme even in the presence of heavy churn. boo and Chord. In each figure, average routing delay is plot-
Lastly, from Figures 10(b) and 10(c), observe that the added versus median node lifetime (same as median session time
tion of source-duplication to backtracking provides only a smaii [9]). Consider and compare the shapes of the average routing
improvement in the average number of hops and routing delagelay graphs (ignore the absolute delay values since different
topologies and link delays were used in different experiments).
Observe that when the median node lifetime decreases, the aver-
8 Related Work age routing delay increases much more significantly for Chord
and also Bamboo than for 3-consistent hypercube routing. We
Among related work, both Pastry [10] and Tapestry [14] maksbnjecture that such performance degradation is due to the dif-
use of hypercube routing. Pastry’s approach for failure recoferent failure recovery strategies used in Bamboo and Chord.
ery is very different from the one in this paper. In addition ton Bamboo, which follows Pastry, neighbors in a node’s leaf set
a neighbor table for hypercube routing, each Pastry node maiine actively maintained while neighbors in the node’s hypercube
tains a leaf set of 32 nearest nodes on the ID ring to improwsuting table are repaired lazily. As stated in [9], “the leaf set al-
resilience. Leaf set membership is actively maintained. Pointésgvs forward progress (in exchange for potentially longer paths)
for hypercube routing, on the other hand, are used as shortdutthe case that the routing table is incomplete.” Thus, when fail-
and repaired lazily. Tapestry’s basic approach for failure recoyres happen more and more frequently during periods of high
ery is similar to ours in that it also stores multiple nodes in ¢éhurn, the average routing delay of Bamboo increases much
more than in a hypercube routing scheme that strives to maintain

Y“These results are plotted such that they can be compared with similar churn experimRnlconSiStenCy of its routing tables Figure 10(b) shows that the
results presented in [9]. Node lifetime herein corresponds to session time in [9]. '

13

100 — S

=
99.95 E/B

as— i - BR— 5 1
B backtracking only, K=3 —H— backtracking only, K=3 ———
45 | source-duplication + backtracking, K=3 3>k source-duplication + backtracking, K=3 -3k
4 0.8

351 06 |

3|

25| F—RR R |

R i

Rout i ng success percentage
8
©
Aver age nunber of hops
Average routing |atency

99.85 2 ozl R
source-duplication + backtracking, K=3 -3 157
998 backtracking only, K=3 ——— 1 o
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Medi an node life time (mnutes) Medi an node life tinme (mnutes) Medi an node life time (mnutes)
(a) Percentage of successful routing (b) Avg. number of hops (c) Avg. delay

Figure 10: Routing experiment results52000,b =16, timeout = 2 sec

average number of hops remains at approxima®lyg, n) for the churn experiments, a lar@é also reduces the join capacity

the entire range of churn rates (node lifetimes). of a network. Thus, for p2p networks with a high churn rate, we
recommend & value of 2 or at most 3. For p2p networks with
a low churn rate X may be 3 or higher (say 4 or 5) if additional

9 Conclusions route redundancy is desired.

Our integrated protocols for join and failure recovery in this
For structured p2p networks that use hypercube routing, we Rper have been implemented in a prototype system named
troduced the property ok -consistency and designed a failureSilk [3].
recovery protocol for -consistent networks. The protocol was
evaluated _with extensive simulations and found _to pe eﬁiqiemeferences
and effective for networks of up to 8,000 nodes in size. Since

our protocol uses local information, we believe that it is scalablé] C. Blake an?(R-IljogriguesiPHi?h ?\ﬁ”aﬁi"\}vy, iCﬁlable St:raqre, dynamic
peer networks: Pick two. rot. o int| Orksnop on ot opics In

to networks larger than 8,000 nodes._ ' . Operating Systems (HotOS-Dlay 2003.

The failure recovery protocol was integrated with a join pro{2] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object

tocol that has been proved to constriciconsistent networks location in a dynamic network. IRroc. of ACM Symposium on Parallel

.. . Algorithms and ArchitecturesAugust 2002.
for concurrent jons and shown analytlca”y to be scalable to S. S. Lam and H. Liu. Silk: a resilient routing fabric for peer-to-peer

largen [3]. From extensive simulations, in which massive joins ~ networks. Technical Report TR-03-13, Dept. of CS, Univ. of Texas at
and failures occurred at the same time, the integrated protocols Austin, May 2003.

intai _ : ; e 1 [4] S.S.Lam and H. Liu. Failure recovery for structured p2p networks: Pro-
maintainedk -consistent neighbor tables after the joins and fail- ™ > "~ design and performance evaluationPhoc. of ACM SIGMETRICS

ures ineveryexperiment. June 2004.
From a set of long-duration churn experiments, our protocol§] S S. Lam and A. U. Shankar. A theory of interfaces and modules |-

were found to be effective, efficient, and stable up to a churn composition theorem|EEE Transactions on Software Engineeriran-
’ ! uary 1994.

rate of 4 joins and 4 failures per second for 2000-node networks| J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek. Comparing the
(with K = 2 and 5-second timeout). By Little’s Law, the aver- performance of distributed hash tables under churnPrirc. of Interna-
P . : _ tional Workshop on Peer-to-Peer Systegrch 2004.

age node I'f_et_'me Was_8'3 minutes. We d'SC_OV_er_ed that eaCh_ n_ H. Liu and S. S. Lam. Neighbor table construction and update in a dy-
work has a join capacity that upper bounds its join rate. The join" namic peer-to-peer network. Proc. of IEEE International Conference
capacity decreases as the failure rate increases. For a given fai%— gn giSFt)rlibuted gogp_uting Systefgs A('%%S)?]y 2%3- _ o _

. . . : 3] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
ure rate, the join capacity can be increased by using the Smaﬁz of replicated objects in a distributed environment.Pioc. of ACM Sym-

est timeout value possible in failure recovery or by choosing a posium on Parallel Algorithms and Architectureline 1997.
smallerK value. [9] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a

We also observed from simulations that our protocols’ stabil- ggg N Proceedings of the USENIX Annual Technical Confergdoae

ity improves as the number of S-nodes increases. More spegifj A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
ically, for 500 < n < 2,000, we found that a network’s maxi- and routing for large-scale peer-to-peer systemsPrbrc. of IFIP/ACM

mum sustainable churn rate increases at least linearly with net- 'Z”ggrl”a“c’”a' Conference on Distributed Systems Platforhsvember

work sizen. The trend in our simulation results suggests that @3] s. Sariou, P. K. Gummadi, and S. D. Gribble. A measurement study of
network size increases beyond 2000 nodes, the minimum aver- peer-to-peer file sharing systems. Rroc. of Multimedia Computing and

P . . - Networking January 2002.
age node lifetime is less than 12.1 minutesfor= 3 and less [12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:

than 8.3 minutes fof{ = 2. A scalable peer-to-peer lookup service for internet applicationgrda.
The storage and communication costs of our protocols were of ACM SIGCOMMAugust 2001.

: : : : : 13] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an inter-
found to increase appro_X|mater linearly with (see Section 7 (23] network.%nProc. of IEEE InfocomMarch 199é.
N [4]) The results in this paper show that the network robuq&4] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-
ness improvement is dramatic whahis increased from 1 to 2. biatowicz. Tapestry: A resilient global-scale overlay for service deploy-
We believe that P2P networks using hypercube routing should Tem"EEE Journal on Selected Areas in Communicatjof. 22(No.1),
.) . ; anuary 2004.
be designed withi > 2. However, a biggeK value results in

higher storage and communication overhead; and as shown in

14

