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Abstract

Congestion control has been performed at a per-flow level
to provide fairness and efficiency in sharing network re-
sources. Better utilization of network resources is achiev-
able if it is known that two different packet flows share
a congested link. Such knowledge can be used to imple-
ment cooperative congestion control or improve the over-
lay topology of a P2P system. Previous techniques to
detect shared congestion have limitations, namely: they
assume a common source or destination node, drop-tail
queueing, or a single point of congestion. We propose
in this paper a novel technique, applicable to any pair
of paths on the Internet, without such limitations. Our
technique employs a signal processing method, wavelet
denoising, to separate queueing delay caused by net-
work congestion from various other delay variations. Our
wavelet-based technique is evaluated through both sim-
ulations and Internet experiments. We show that for
paths with a common synchronization point, our tech-
nique provides faster convergence and higher accuracy
while using fewer packets than previous techniques. Fur-
thermore, we show that our technique is robust and accu-
rate without a synchronization point; more specifically,
it can tolerate a synchronization offset of up to one sec-
ond between two packet flows.

1 Introduction

Congestion control has been performed at a per-flow
level; each flow adjusts its sending rate according to
feedback regarding the congestion status of the network.

∗Research sponsored by National Science Foundation ANI–
0319168 and Texas Advanced Research Program 003658–0439–
2001.

The stability of today’s Internet is mainly due to such
congestion control, especially the additive increase and
multiplicative decrease approach of TCP.

Better utilization of network resources is achievable
with cooperation between flows. For example, Conges-
tion Manager [3] examines all flows of the host where
it resides, and groups flows passing through the same
bottleneck link into a single flow aggregate. By perform-
ing congestion control over flow aggregates, rather than
over each individual flow separately, Congestion Man-
ager could improve fairness and efficiency significantly.

Recent proliferation of overlay systems poses a new
challenge in cooperative congestion control. There are
many applications of overlay systems that would benefit
from cooperative congestion control, including end sys-
tem multicast, file download from multiple servers, and
overlay QoS routing. Such systems usually consist of
a large number of end hosts and unicast flows between
them. Unlike flows controlled by Congestion Manager,
these unicast flows have different source and destination
nodes, but still may interfere with each other by shar-
ing one or more intermediate links. If the system can
tell which flows are sharing a bottleneck link, it can im-
prove overall performance by changing overlay topology
to avoid such interference.

The basic primitive required for cooperative conges-
tion control is to decide whether two flows are sharing a
bottleneck link or not. Techniques for inferring shared
congestion use two kinds of information from feedback:
packet loss and delay. Techniques based on packet loss
assume bursty packet loss [8, 15]. Thus they work well
with drop-tail queues and lossy links. However they are
slow and inaccurate with low loss rate or with other
queueing disciplines such as RED. Techniques based on
delay [11, 15] show more robust behavior in such an en-
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vironment. They are adequate for the case where two
flows have a common source or a common destination.
The major weakness of both kinds of techniques is that
they require a synchronization point, usually at a source.
Thus they cannot be used for general overlay networks.

We propose a novel technique to detect shared conges-
tion between two Internet paths. It is based on a sim-
ple observation: two paths sharing congested links have
high correlation between their one-way delays. However,
measuring correlation in a naive way may be inaccurate
due to random fluctuation of queueing delay and mild
congestion on non-shared links. In our technique, these
interfering delay variations are filtered out with wavelet
denoising, a signal processing method to separate signal
from noise.

We evaluate our technique through extensive simula-
tions and Internet experiments. When two paths have a
common source, for which previous approaches can also
detect shared congestion, our technique shows faster con-
vergence and better accuracy with fewer packets. It takes
at most 10 seconds to reach near 100% accuracy with
both drop-tail and RED queues, while previous tech-
niques take longer or fail. We also show that our tech-
nique maintains its accuracy without a synchronization
point; more specifically, it tolerates a synchronization off-
set between flows of up to one second, which is achievable
on the Internet.

The remainder of this paper is organized as follows.
Section 2 describes our basic technique using cross-
correlation. Section 3 introduces wavelet denoising and
explains how to apply it to our technique. Section 4
addresses implementation issues, and Section 5 presents
results of simulations and Internet experiments. We con-
clude in Section 6.

2 Basic Technique

We first present a basic technique to detect shared con-
gestion using cross-correlation. This technique is effec-
tive when the clocks of the nodes measuring delay are
synchronized and there is only one point of congestion.
With this as a basis, we will develop a general technique
that tolerates a large synchronization offset and allows
multiple points of congestion in Section 3.

2.1 Model

Two paths sharing links on the Internet are illustrated
in Figure 1. Paths X from Xsrc to Xdst and Y from Ysrc

to Ydst are sharing links between S and T . Let the one-
way delay of path X be DX , and that of path Y be DY .
Each of them has two components: dS , the delay from S

Xsrc

Ysrc

Xdst

Ydst

S T

dS

DX

DY

Figure 1: Two paths sharing links

to T , and the remainder denoted by dX or dY .

DX = dS + dX
DY = dS + dY

(1)

A key observation is that the delay of a congested link
has large fluctuations due to queueing delay changes,
while the delay of a link with light load is relatively
stable. A persistently congested link may have stable
delay with its queue always full. However, a measure-
ment study shows that packet loss processes caused by
congestion are better thought of as spikes rather than
persistent congestion periods, and that most spikes are
shorter than 220 ms [19]. It confirms that a congested
link shows large fluctuations in delay. In order to detect
shared congestion, we need to tell whether such fluctua-
tions occur between S and T .

2.2 Cross-correlation

Suppose that paths X and Y in Figure 1 are sharing
one or more congested links between S and T , and that
the other links are lightly loaded. Then, since dX and
dY remain stable, both DX and DY vary as dS changes,
showing strong similarity between them. On the other
hand, if congestion occurs on links other than the links
between S and T , DX and DY become independent.

Our basic technique uses the cross-correlation coeffi-
cient to measure such similarity. Let {Xi} and {Yi} be
one-way delay sequences of paths X and Y , respectively,
assuming Xi and Yi are sampled at the same time. Then
their cross-correlation coefficient XCORXY is defined as
follows.

XCORXY =
∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2 ·
∑n
i=1(Yi − Y )2

(2)

XCORXY is one if both dX and dY are constant and
dS is not constant (shared congestion), and zero if dS is
constant and dX or dY varies independently (no shared
congestion).

One of the properties of the cross-correlation coeffi-
cient is that its value is independent of any constant
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component of {Xi} or {Yi} and dominated by compo-
nents with large fluctuations. It matches well with our
purpose to determine if any of the shared links has large
delay fluctuations. Also note that, due to this property,
no clock synchronization between the source and desti-
nation nodes of paths X and Y is required in measuring
one-way delay between them. However, clock skew may
affect measurement. We assume that the skew is mini-
mized by other means [13].

2.3 Basic technique implementation

The basic technique consists of two stages: sampling and
processing. In the sampling stage, Xsrc sends to Xdst a
sequence of UDP packets with a timestamp, starting at
time t0 with its own clock. Each such UDP packet is
called a probe packet. Probe packets are sent at a con-
stant rate until t0 +T , where T is the probe interval. On
receiving a probe packet, Xdst calculates one-way delay
and sends it with the original timestamp back to Xsrc.
Then Xsrc records the one-way delay together with the
timestamp as a delay sample. Missing samples are inter-
polated from neighboring samples. The sampling stage
ends when the last delay sample from Xdst is received (or
upon timeout if the last probe or the reply to it is lost).
Ysrc and Ydst also collect delay samples in the same way.

In the processing stage, the cross-correlation coeffi-
cient of two sequences of delay samples is computed as
defined in Eq. 2. The actual procedure to gather de-
lay sequences collected by different nodes is application-
dependent. For example, in application-layer multicast,
a common ancestor node of Xsrc and Ysrc in the multicast
tree can gather and process delay sequences.

2.4 Limitations

Applicability of the basic technique is limited because
of its strong requirements. Specifically, it makes two
assumptions that generally do not hold for the Internet.

The first assumption is that the two delay sequences
are synchronized. Ideally, the basic technique expects
packets measuring Xi and Yi to pass through S at the
same time. However, it is unachievable for two reasons:
the delay from Xsrc to S is likely to be different from
the delay from Ysrc to S, and the clocks of Xsrc and Ysrc

are not synchronized. There is no way for an end host
to measure the one-way delay to a router (S) without
support from the network. Although the clocks can be
synchronized loosely by exchanging packets between two
nodes, it may not be accurate enough to apply the basic
correlation technique because it still allows errors up to
half of the round-trip time between the nodes [12]. To
quantify such synchronization errors, we define synchro-
nization offset as the time difference between arrivals of
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Figure 2: Cross-correlation coefficient between two delay
sequences versus synchronization offset

two probe packets at S, one sent by Xsrc at time t with
Xsrc’s clock and the other by Ysrc at time t with Ysrc’s
clock. As the synchronization offset resulting from the
two reasons stated above increases, the delay sequences
collected by the two nodes show less and less correla-
tion. Figure 2 illustrates the average cross-correlation
coefficient over 300 simulations and the corresponding
5th and 95th percentile values, versus synchronization
offset between delay sample sequences from two paths
sharing a congested link. In each simulation, two delay
sample sequences are collected for 100 seconds on the
topology shown in Figure 3 using ns-2.1 The bandwidth
of every link is 1.5 Mb/s, and its delay is chosen ran-
domly between 20 ms and 30 ms for each simulation. The
delay sequences represent one-way delays of two paths,
from Xsrc to Xdst and from Ysrc to Ydst. The congestion
level is controlled by the number of background ON-
OFF flows. The loss rate of the shared link is about
10%, and the other links do not have any loss. (Refer to
Section 4 for ON-OFF flow parameter settings.) With-
out synchronization offset, the cross-correlation between
them is about 0.9. However, the cross-correlation drops
as synchronization offset increases so that a 600 ms syn-
chronization offset results in half of the cross-correlation
without offset.

The second assumption is that queueing delay varia-
tion on non-congested links is close to zero. If such delay
variation is not negligible, it confuses the basic technique
and will give an obscure cross-correlation coefficient not
close to zero or one. Then it is difficult to determine
the threshold to differentiate shared congestion and in-
dependent congestion cases.

In the next section, we propose wavelet denoising to

1http://www.isi.edu/nsnam/ns/
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Figure 3: Simple topology with a common source

enhance the basic technique. It effectively filters out
delay variations in non-congested links and short-term
fluctuations that confuse the basic technique, as well as
negative effects of synchronization offset. With the com-
bination of wavelet denoising and cross-correlation, our
new technique can detect shared congestion for paths
with a large synchronization offset and delays at non-
congested links.

3 Wavelet Denoising

In order to provide efficient solutions to network prob-
lems, various types of signal processing techniques have
been employed for modeling [14] and analysis [1, 4, 10] of
Internet traffic. However, they are mainly used to infer
static or long-term network information from a large set
of data collected over a long time span. In order to ob-
tain dynamic information such as congestion status in a
timely manner, techniques capable of on-line processing
and fast response are required.

In this section, we first examine the time series of
packet delay in a flow and its characteristics. Based
on these characteristics, we introduce a signal process-
ing technique—wavelet denoising [6]—that overcomes
the limitations of the basic cross-correlation technique
in Section 2.4. Wavelet denoising takes the original de-
lay time series, and generates another time series with
reduced interfering fluctuations that might affect cross-
correlation adversely. Finally, we discuss a procedure to
find the wavelet basis that maximizes the effect of the
wavelet denoising technique.

3.1 Nature of delay data in time and fre-
quency domain

Figure 4 demonstrates an example set of time series of
packet delay for a link with two different traffic con-
gestion levels. The source and destination nodes are
connected through a 1.5 Mb/s link on ns-2. The delay
between them was measured using UDP packets as ex-
plained in Section 2.3. The time series in Figure 4-(a) is
the one-way delay under light traffic load (76 ON-OFF
background flows) while the time series in Figure 4-(b)
is the delay under heavy traffic load (92 ON-OFF back-
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Figure 4: Time series of one-way delay of a single-hop
path

ground flows). ON-OFF flow parameter settings are
identical to those described in Section 4. Observe that
the one-way delay with light traffic is noise-like waveform
with smaller amplitude, while the delay with heavy traf-
fic shows an irregular pulse pattern with higher ampli-
tude. Such pulses result from the congestion of network
traffic.
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Figure 5: Power spectral densities of time series of delay
data with light traffic and heavy traffic

The corresponding frequency domain power spectral
densities, normalized to unity area, of the individual
time series are provided in Figure 5. In the frequency
domain, the delay with heavy traffic shows larger ampli-
tude at low frequencies than the delay with light traffic.
Such large amplitude components at low frequencies cor-
respond to the irregular pulses in Figure 4-(b), caused by
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congestion, while others are introduced by the random-
ness of the queue behavior, well-demonstrated in Fig-
ure 4-(a). Therefore, for a proper assessment of network
traffic via delay data, it is necessary to reduce the effects
associated with the randomness of queue behavior which
corrupts the traffic delays in both the time and frequency
domains. In addition, if a synchronization offset is intro-
duced in delay sampling, the measure of network traffic
via delay will be less reliable. Therefore, it is necessary
to introduce a signal processing technique—wavelet anal-
ysis. It provides time and scale localized information of
the signal with O(N) complexity, where N is the num-
ber of delay samples, and thus permits us to mitigate the
interfering effects of queue behavior in real time.

3.2 Wavelet transform and denoising

The wavelet transform is a signal processing technique
that represents a transient or non-stationary signal in
terms of time and scale distribution with light compu-
tational complexity. Therefore, the wavelet transform
is an excellent tool for data compression, analysis, and
denoising [5].

Assume that a signal f(t) is contaminated by an ad-
ditive noise n(t); then the measured data is x(t) =
f(t) + n(t). The measured time series x(t) ∈ L2 can be
represented as an orthonormal expansion with wavelet
basis ψi,j(t) = 2−i/2ψ(2−it− j) as follows [5]:

x(t) =
∞∑

i=−∞

∞∑
j=−∞

Xi
j2
−i/2ψ(2−it− j) (3)

where the wavelet coefficients are calculated from

Xi
j = 〈x, ψi,j〉 =

∫ ∞
−∞

x(t)2−i/2ψ(2−it− j) dt . (4)

Note that double-indexed Xi
j is the discrete wavelet

transform of signal x(t) at scale i and at translation j,
and represents how x(t) is correlated with the i scaled
and j translated basis function.

In order to achieve more robust and reliable assess-
ment results for the delay data from cross-correlation,
the slowly varying congestion information (at high scale)
should be extracted from the delay data, which are cor-
rupted by synchronization offset and random queue be-
havior. Wavelet denoising is a type of nonlinear approx-
imation of the signal f(t) corrupted by a certain type of
noise n(t) based on the wavelet coefficients of the mea-
sured data x(t). The wavelet coefficients for the signal,
x(t) = f(t) + n(t), becomes Xi

j = F ij + N i
j , where the

coefficients are obtained by the inner product operation
in Eq. 4 with the wavelet basis ψi,j as follows:

Xi
j = 〈x, ψi,j〉, F ij = 〈f, ψi,j〉, N i

j = 〈n, ψi,j〉 (5)

From the wavelet coefficients of the signal x(t), the signal
f(t) can be approximated as F̃ by suppressing the noise
part (n(t)) with a nonlinear thresholding function dT . In
this paper, we employ a soft thresholding operation on
dT with following definition [6]:

dT (x) =


x− T if x ≥ T
x+ T if x ≤ −T
0 if |x| < T

(6)

The soft thresholding in the wavelet denoising plays a
key role in the approximation of the traffic congestion
delay data. The dominant low frequency term, which
corresponds to the true traffic congestion information,
will exhibit relatively large wavelet coefficients value at
high scale (low frequency) so that true traffic information
will remain after thresholding operations. Meanwhile,
the high frequency components, which can be assumed
to be the effect of the randomness of queue behavior,
will have relatively small wavelet coefficients at low scale
(high frequency), and is subject to being filtered out by
the thresholding operations. Also, soft thresholding has
the effect of smoothing the transient irregular peaks in
the delay data. In the basic cross correlation technique,
randomly occurred peaks in the delay data could have
a dominant deleterious effect on the cross correlation
value. However, by smoothing these irregular peaks, the
value of the cross correlation will be more robust to the
irregular peaks than without wavelet denoising.

The value of the threshold T is determined by the vari-
ance of the noise σ2 and the number of samples N such
that T = σ

√
2 logeN , as proposed by Donoho [7]. This

threshold value can be adapted for different characteris-
tics of the data and noise, which is called the “selective
wavelet reconstruction” [7]. By applying the threshold
to the wavelet coefficient Xi

j , the signal obtained after
wavelet denoising, F̃ is equivalent to time and scale lo-
calized nonlinear averaging of the measured signal x in
terms of ψi,j as follows:

F̃ =
I−1∑
i=0

J−1∑
j=0

dT (Xi
j)ψi,j (7)

where I and J are chosen to be large enough to ensure
Xi
j < T for all i ≥ I and all j ≥ J . In order to maxi-

mize the effect of wavelet denoising such that F̃ ≈ f(t),
the selection of a proper wavelet basis, which will be dis-
cussed in Section 3.3, is to be considered. The wavelet
basis that is most similar to the time and scale localized
properties of the signal f(t) and most different from n(t)
will maximize the effects of wavelet denoising. After-
ward, the effects of random queue behavior are expected
to be reduced as much as possible by minimizing the
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contributions of the noise, N i
j , in the approximation of

the function F̃ provided in Eq. 7.

3.3 Selection of best basis

The wavelet transform provides time and scale localized
information of the signal; however, the time and scale
resolution of the representation depends on the selec-
tion of a wavelet basis. Hence, in order to get the most
robust and reliable results from wavelet analysis includ-
ing wavelet denoising, selecting the best basis function
for wavelet decomposition is crucial [16]. In this pa-
per, selection of a wavelet basis is confined to within the
Daubechies family of wavelets, which is widely used due
to its simplicity of implementation.

Note that the correlation between a data signal and
wavelet basis is determined by the time and frequency
localized characteristics. Such characteristics of a data
signal and wavelet basis can be represented by the time
and frequency localized moments, which enable the ap-
proximation of the individual time-frequency signal el-
ements as a Gabor logon [18]. Then the trace of the
signal elements on the time-frequency plane will be an
elliptic curve as shown in Figure 6. BS and BB represent
frequency bandwidth of a data signal and wavelet basis,
and TS and TB represent time duration of those two re-
spectively [16]. The figure provides a schematic descrip-
tion of localized time and frequency characteristics for a
data signal and wavelet basis. The dotted curve (rs(θ))
represents the localized time-frequency characteristics of
the data signal, and the solid curve (rb(θ)) represents
those of the wavelet basis. The common area determined
by the two elliptic curves corresponds to the similar-

ity between the data signal and wavelet basis, while the
discrepancy area corresponds to the mismatch between
them. Hence, “signal” (SB) can be defined as the union
of a data signal and wavelet basis, and “noise” (NB) can
be defined as the difference between those two terms as
follows.

SB =
∫ π/2

0

∫ max(rb,rs)

r=0

r dr dθ (8)

NB = NB1 +NB2 =
∫ π/2

0

∫ max(rb,rs)

min(rb,rs)

r dr dθ (9)

Based on (8) and (9), we postulate the following
transient resolution index named “instantaneous SNR”
whose dimension is dB/sec as follows:

ISNR =
1
TB

10 log10

SB
NB

(10)

The index provides a measure of similarity between the
data signal and wavelet basis within the time frame of the
wavelet basis function. In our application, we have two
parts of the data signal to be considered in terms of the
wavelet basis: the slowly varying congestion information
and the interference from synchronization offset and ran-
dom queue behavior. As mentioned in the previous sec-
tion, the randomness of queue behavior can be mitigated
by employing a soft thresholding technique in wavelet
denoising, but synchronization error should be treated
differently. Synchronization error in the delay data can
be interpreted as the difference of the time shifted ver-
sion of delay data and the original one. Therefore, the
synchronization error depends on the characteristics of
the original data, so it could introduce a dominant low
frequency term in the spectrum domain similar to those
introduced by congestion. Hence, the basis ψi,j(t) should
be chosen to maximize the ISNR of f(t) and ψi,j(t), and
minimize the ISNR of n(t) and ψi,j(t), where f(t) is the
delay changes caused by network congestion and n(t)
is the interference caused by the synchronization offset.
Therefore, it suffices to find the basis that maximizes
the difference of the two ISNR’s, which will be referred
as the differential ISNR later. However, since the true
f(t) and n(t) are not available directly, an approxima-
tion is required; we used the delay data of a congested
path with perfect synchronization as f(t), and the dif-
ference between the delay data and its shifted version as
an approximation of n(t) = f(t) − f(t − ∆max), where
∆max is the maximum possible synchronization error (1
second in this paper). More discussion on the maximum
possible synchronization error is presented in Section 4.3.

In Figure 7, we plot the differential ISNR for a set of
Daubechies wavelets 2 through 10. The delay sequences
were obtained by repeating the simulation used to draw
Figure 4-(b) 120 times to approximate f(t), and the in-
terference n(t) is directly computed from f(t). Each
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Figure 7: Differential ISNR between congestion signal
and other noise for Daubechies wavelets

point in Figure 7 is the mean value of the differential
ISNR for the 120 sequences. As shown in the figure,
Daubechies wavelet 6 has the highest differential ISNR,
which implies that it is most correlated with congestion
information and least correlated with the synchroniza-
tion offset. Therefore, the Daubechies wavelet 6 basis
will be employed for wavelet denoising in this paper.

4 Implementation

The procedure of our wavelet-based technique is illus-
trated in Figure 8. The wavelet-based technique has the
same sampling stage as described Section 2.3. After the
sampling stage, two sequences of delay samples, D1(t)
and D2(t), are obtained. In the processing stage, D1(t)
is converted into D̃1(t) and D2(t) into D̃2(t), through
wavelet denoising explained in Section 3.2. The cross-
correlation coefficient XCOR12 is computed from D̃1(t)
and D̃2(t). An (application-dependent) appropriate ac-
tion will be taken based on the XCOR12 value. As in the
basic technique, the procedure to gather delay sequences
for different paths is application-dependent and out of
the scope of this paper.

There are three issues to discuss in implementing the
wavelet-based technique: the delay sampling rate, syn-
chronization offset between delay sequences, and thresh-
old for binary decision. We will discuss each of them in
subsequent sections.

4.1 Sampling rate

There is a trade-off in choosing the sampling rate of a de-
lay sequence. High-rate sampling is more accurate but
incurs a large overhead on the network. On the other

D1(t) D2(t)

D̃1(t) D̃2(t)

XCOR12

Delay

Sampling

for Path 1

Delay

Sampling

for Path 2

Wavelet
Denoising

Wavelet
Denoising

Cross-correlation

Detection

Congestion

Management

Figure 8: Shared congestion detection procedure

hand, low-rate sampling has little overhead while being
slow in convergence. To investigate the effect of sampling
rate on performance, we perform simulations with differ-
ent sampling rates on the topology shown in Figure 3.
The sequence of delay samples for each path is processed
with our wavelet denoising method. To minimize effects
from synchronization offset, we use a topology with a
common source. The source nodes are co-located and
their clocks are synchronized. A full evaluation involv-
ing synchronization offset will be presented in Section 5.
Each link has a bandwidth of 1.5 Mb/s, and Pareto ON-
OFF CBR flows as background traffic. The average ON
and OFF times are selected uniformly between 0.2 and 3
seconds. The CBR rate is selected uniformly between 20
and 40 kb/s, and its Pareto shape parameter is 1.2. To
simulate shared congestion, we put 100 ON-OFF flows
on the shared link, and 60 on the other two links. With
60 flows, no packet loss was observed. The loss rate with
100 flows varies between 2% and 12%. For independent
congestion, we put 60 ON-OFF flows on the shared link,
and 100 on the others.

Given a sampling rate, an experiment is repeated 500
times for each of shared and independent congestion.
Figure 9 plots the cross-correlation coefficient with the
sampling rate of 10 Hz as time elapses. Each curve is the
mean cross-correlation coefficients over 500 experiments,
and a vertical bar represents the interval between the 5th
and 95th percentile values at a specific time.

Figure 10 plots the mean cross-correlation coefficient
over 500 experiments for five different sampling rates.
The behavior consistent over all sampling rates is that
the coefficients converge either to one or to zero as more
and more samples are collected. With all sampling rates
except 1 Hz, the cross-correlation coefficient converges
within 10 seconds. Their variance is also small; after 5
seconds, the interval between the 5th and 95th percentile
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values with shared congestion never overlaps with the
corresponding interval with independent congestion for
every such sampling rate.

Since our technique is implemented in user space, the
granularity of a timer in an operating system kernel
should also be taken into account. Though recent op-
erating systems provide clock rate of 100 Hz, older ones
have only 10 Hz. From the figure, we conclude that a
sampling rate of 10 Hz is fast enough in convergence and
feasible to implement on most operating systems.

4.2 Limiting synchronization offset

There is a synchronization offset in the two sequences
of delay samples collected. However, using simple tech-
niques, the synchronization offset between any two paths
on the Internet can usually be limited to 1 second. In

Figure 1, the synchronization offset of two paths, from
Xsrc to Xdst and from Ysrc to Ydst, is caused by (i) the
difference of the delay from Xsrc to S and the delay from
Ysrc to S, and (ii) the clock difference between Xsrc and
Ysrc. (i) is bounded by the maximum one-way delay on
the network, and (ii) by half the round-trip time between
Xsrc and Ysrc since the clocks in these two nodes can
be synchronized by exchanging packets. So the max-
imum offset is roughly the maximum round-trip time
on the network. Measurement studies including one by
CAIDA2 confirm that round-trip time is less than 1 sec-
ond for the majority of paths on the Internet.

4.3 Threshold for binary decision

Though cross-correlation itself is a reasonable measure
of shared congestion, in situations where a binary an-
swer is preferred, a threshold should be set. Since cross-
correlation converges to one (or zero) for shared (or in-
dependent) congestion as in Figure 10, our technique is
not sensitive to the threshold in such cases. However, be-
cause synchronization offset reduces correlation of paths
sharing a congested link (as shown in Figure 2), it is
still important to investigate an appropriate value for
the threshold.

When cross-correlation coefficients of delay sample se-
quences with shared and independent congestion are
close to each other, two types of errors may occur: false
positive and false negative. The former is the case where
the technique reports shared congestion when there is no
shared congested link, and the latter is the case where
it reports non-shared congestion when there is one or
more congested links shared by two paths. The error
rate of each type can be estimated from distributions of
cross-correlation coefficients for shared and independent
congestion. Then the threshold can be adjusted to mini-
mize the total cost of errors using Bayesian testing. Our
implementation assumes that the cost of false positive
and the cost of false negative are equal, and minimize
the total error rate, which is the sum of the false posi-
tive ratio and the false negative ratio. Actual costs may
differ from application to application.

To determine the best threshold value, we need an es-
timate of the synchronization offset for any two paths
on the Internet. According to measurements by CAIDA,
most paths from the F DNS root server to its customers
have round-trip time less than 300 ms. Considering that
customer hosts of a DNS root server are close to the
server, we take 600 ms as the target synchronization off-
set to optimize the threshold for. More investigation is
needed on the actual distribution of round-trip time, and

2Available at http://www.caida.org/tools/measurement/
skitter/RSSAC/.
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the relationship between the target offset and the accu-
racy of binary decision.
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Figure 11: Cross-correlation coefficient distributions

Figure 11 shows the distributions of cross-correlation
coefficients with 600 ms synchronization offset. The dis-
tributions were obtained from the same delay sequences
used in Section 4.1. We used the delay samples collected
during the first 10 seconds, with the sampling rate of
10 Hz. The left histogram represents the distribution for
independent congestion, and the right one for shared con-
gestion. If we approximate the histograms with normal
distributions, they intersect when the cross-correlation
coefficient (XCOR) is 0.512, which would be the thresh-
old value that minimizes the total error rate. We use
this value as the threshold in later experiments, unless
stated otherwise. We will also investigate the effect of
the threshold on false positive and false negative ratio in
Section 5.2.

5 Performance Evaluation

In simulations, we compare our technique against two
representative techniques: a delay-based approach and a
loss-based one. We briefly summarize them below.

Markovian probing Rubenstein et al. proposed
two techniques using Poisson processes [15]; one is delay-
based and the other is loss-based. Since the delay-based
technique was better in all their simulations, we com-
pare our technique against their delay-based one. This
technique uses a Poisson process with average interval of
40 ms to collect a sequence of delay samples. When two
sequences are obtained for different paths, auto-measure
Ma is computed from the delays of pairs of adjacent
packets in the first delay sequence. Cross-measure Mx is
computed from a new sequence obtained by merging the

two delay sequences. Only adjacent pairs with the pre-
ceding element from the first sequence and the following
element from the second sequence are used in computing
Mx. If Ma < Mx, two paths are sharing a bottleneck.

Bayesian probing A common source sends a packet
pair back to back at 15 Hz. The probability that only the
second packet is lost is computed from packet losses. If
the probability exceeds the threshold (0.4), two paths
are sharing a bottleneck [8, 9].

Since both techniques give us a binary answer, we de-
fine Positive Ratio as a metric to represent accuracy of
each technique.

Positive Ratio =
# of answers indicating shared congestion

# of experiments

If an experimental setup involves shared congestion, Pos-
itive Ratio should be close to one; otherwise, it should be
close to zero. We use 0.512 as the threshold to provide
a binary answer and then compute the Positive Ratio in
the same manner.

We first compare our technique with Markovian prob-
ing and Bayesian probing when paths share a common
source node and have either shared congestion or inde-
pendent congestion only, which are included in the de-
sign space of both techniques. Then we investigate how
they performs in more challenging environments involv-
ing paths not sharing a common source or destination
and multiple points of congestion. Finally, the perfor-
mance of our technique on the Internet is presented.

5.1 Probing with synchronization point

Both Markovian probing and Bayesian probing assume
that there is a common source (or a common destination
for Markovian probing). For such a topology, clocks for
the two paths can be synchronized and two samples can
be merged into one in chronological order. This is a crit-
ical requirement for both techniques. In fact, Bayesian
probing requires the stronger condition that two probe
packets with different destinations must be sent back-to-
back.

Xsrc

Ysrc

Xdst

Ydst

1 2 3
4

6

5

7 8

Figure 12: Topology with a common source

Figure 12 shows a network topology where two paths
share a source node. A similar topology was used in
simulations for Markovian probing [15]. To simulate
both low-multiplexing and high-multiplexing environ-
ments, we use two kinds of background traffic. For a
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Figure 13: Convergence with synchronization point and
drop-tail queues

low-multiplexing environment, a small number of TCP
flows are used to cause congestion, and non-congested
links are left idle. In shared congestion cases, a link is
chosen from links 1 through 3, and 20 TCP flows are
created to traverse the link. In independent congestion
cases, links 1 through 3 are idle, and the other links have
TCP flows, of which the number is chosen uniformly be-
tween 0 and 20.

For a high-multiplexing environment, a large number
of ON-OFF CBR flows are used. Congestion level is
controlled with the number of such flows. For shared
congestion, a link chosen from links 1 through 3 has 100
ON-OFF flows. The number of ON-OFF flows on the
other links is chosen uniformly between 31 and 70. For
independent congestion, links 1 through 3 have ON-OFF
flows between 31 and 70, and the other links between 61
to 100. The same parameter settings of ON-OFF flows
as in Section 4 are used.

Figure 13 plots Positive Ratio of each technique over
500 experiments as time progresses when links are using
drop-tail queues. In the legend, DCW refers to our de-
lay correlation technique with wavelet denoising, and MP
and BP refer to Markovian probing and Bayesian prob-
ing, respectively. In a low-multiplexing environment,

MP is fast in detecting both shared and independent
congestion, while BP is relatively slow in both cases.
DCW is slightly faster than MP for shared congestion,
but as slow as BP for independent congestion. Overall,
every technique works well and reaches accuracy over
90% within 10 seconds. In a high-multiplexing environ-
ment, however, all three techniques are slower in detect-
ing shared congestion than in a low-multiplexing envi-
ronment. For DCW and MP, it is because non-congested
links have small queueing delay fluctuations, which add
noise to delay samples for DCW, and change the order
in the merged samples and decrease cross-measure Mx

for MP. Nevertheless, since DCW removes most noise
through wavelet denoising, its degradation is not as se-
vere as MP’s. BP experiences the most notable degrada-
tion among the three; though it is the fastest for indepen-
dent congestion, its Positive Ratio for shared congestion
is still less than 0.6 after 100 seconds. It is because our
ON-OFF background flows include those with very short
ON/OFF time, while all ON-OFF flows in the simula-
tions of [8] have relatively long ON time—2 seconds. BP
requires the probability that both packets in a packet
pair are lost to be high to detect shared congestion. A
longer ON time means a queue remains full for a long
time causing both packets in the pair to be dropped.
However, it is less likely with short ON time. That leaves
DCW to be the only technique that reaches 90% accu-
racy after 10 seconds in high-multiplexing environment.

Figure 14 presents the same simulation results when
links use RED. DCW and MP show similar performance
as with drop-tail queues. However, BP does not work
at all with RED queues. Its problem with RED was
already pointed out by their authors [8] using ON-OFF
background flows, but the problem is more serious here
because their simulation setup has a higher loss rate and
smaller queues, which means a RED queue’s behavior is
similar to that of a drop-tail queue. Neither DCW nor
MP has such a problem; they maintain performance as
good as with drop-tail queues.

5.2 Probing without synchronization
point

The topology in Figure 15 is an extended version of that
in Figure 12. The paths have different source and desti-
nation nodes. Delay samples collected at different nodes
cannot be synchronized because of two reasons. First,
the clocks of node Xsrc and node Ysrc are not synchro-
nized. Second, delay from Xsrc to S is different from
delay from Ysrc to S.

To investigate the effect of synchronization offset be-
tween two paths, we plot in Figure 16 Positive Ratio with
shared congestion as we increase the synchronization off-
set for both low and high multiplexing scenarios. The
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Figure 14: Convergence with synchronization point and
RED queues

Xsrc

Ysrc

Xdst

Ydst

S

Figure 15: Topology without Synchronization Point

original sets of delay samples are obtained from the two
paths on the topology in Figure 12, and the synchroniza-
tion offset is added to the set of delay samples between
Ysrc and Ydst. Only the overlapping portion between two
sets are used by the techniques investigated. BP is ex-
cluded because it is already known that Positive Ratio
of BP with shared congestion is 0.2 or less even with
10 ms offset [8] due to its requirement that two packets
(for different paths) be sent back-to-back. Because MP
is slower than DCW in Positive Ratio convergence, MP
may exhibit lower performance not because of synchro-
nization offset but because of low accuracy if the number
of delay samples are not large. Thus in this simulation,
detection is made with delay samples belonging to the
first 100 seconds of the overlapping period to ensure that
both DCW and MP have near-100% accuracy. Positive
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Figure 16: Effect of synchronization offset

Ratio drops to zero between 30 ms and 70 ms for MP, and
between 1 sec and 2 sec for DCW. The sharp decrease of
MP happens in the [30 ms, 70 ms] interval because the
average interval between two packets in MP is 40 ms.
Therefore, if the offset exceeds that value, most packets
in a merged sequence are out of order, and the cross-
measure Mx becomes low. Though we plot the results
for drop-tail queues only, the results for RED queues are
similar.

Next, we examine how wavelet denoising helps our
technique in tolerating a large synchronization offset.
The dotted curve and vertical bars crossing it in Fig-
ure 17 are copied from Figure 2, which shows the cross-
correlation coefficients without wavelet denoising. We
process the data used in Figure 2 with our wavelet de-
noising, and plot cross-correlation coefficient versus syn-
chronization offset. The solid curve represents the mean
cross-correlation coefficients, and the vertical bars in-
dicates the 5th and 95th percentile values. Without
wavelet denoising, the cross-correlation of the delay se-
quences decays very fast with increase of synchroniza-
tion offset; with a 600 ms offset, the mean coefficient ap-
proaches the solid line representing the threshold (0.512).
This means that the cross-correlation technique without
denoising is only as good as random decision with the
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Figure 17: The effect of wavelet denoising on synchro-
nization offset

offset. However, the cross-correlation of the delay se-
quences after wavelet denoising is less sensitive to the
synchronization offset so that one can properly deter-
mine the state of congestion even with a fair amount of
synchronization offset between the data. The wavelet
denoising described above results in a smoothing of the
delay data curve in a time- and scale-localized manner
so that evaluation of the cross-correlation after wavelet
denoising becomes a more robust estimation.
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Figure 18: Comparison of receiver operating character-
istic with versus without wavelet denoising

Figure 18 shows the effect of the threshold value on
false positive and false negative ratio using the receiver
operating characteristic (ROC) curves in the presence
of synchronization offset. ROC is a performance test
methodology in terms of probability of detection PD
against the probability of false positive PF [17]. In
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Figure 19: Comparison of receiver operating characteris-
tic performance in synchronization offset with vs. with-
out wavelet denoising

our application, they are defined as follows for a certain
threshold value of cross-correlation TXCOR.

PD = P (XCOR ≥ TXCOR | shared congestion)
PF = P (XCOR ≥ TXCOR | independent congestion)

The performance can be graphically depicted for all pos-
sible values of threshold TXCOR; as we move along an
ROC curve from the lower-left corner to the upper-right
corner, the threshold varies from 1 to -1. The dashed
straight line is the characteristics of the worst case whose
probability of detection PD is linearly proportional to
the false positive probability PF , which is the same as a
random decision maker.

Figure 18 has two ROC curves drawn using the DCW
simulation data for Figure 13. An offset of 600 ms was
added to one of the delay sequences of each experiment.
The dotted curve is an ROC curve before wavelet denois-
ing, and the solid curve is after denoising. Since our tech-
nique converges in 10 seconds as Figures 13 and 14 show,
delay samples for the first 10 seconds were used to com-
pute the cross-correlation coefficient. With wavelet de-
noising, our technique shows an improved curve (higher
detection probability PD with the same false positive
probability PF ) compared with the curve without denois-
ing. Note that the area under the curve called the ROC
area provides a quantitative measure of performance for
comparison of different curves; the area of an ideal curve
is 1, while the area of a random decision maker is 1

2 .
Figure 19 demonstrates the effect of wavelet denois-

ing for different synchronization offsets using the ROC
area of our technique. Two curves show the ROC area
with and without wavelet denoising as the synchroniza-
tion offset increases. With tight synchronization, wavelet
denoising makes little difference. As the offset increases,
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however, the basic technique curve drops to 0.6 at an off-
set of 1 second, becoming close to random decision. On
the other hand, the technique with denoising degrades
smoothly, maintaining 0.8 at the 1 second offset.

5.3 Multiple points of congestion

So far, queueing delay variation on non-congested links
was filtered out with wavelet denoising. However, if non-
congested links have significant queueing delay variation,
or there are more than one point of congestion, the delay
variation on such links cannot be eliminated and makes
shared congestion detection more difficult. In fact, it
is unclear what ‘shared congestion’ should mean under
such conditions. Therefore, instead of deciding whether
a technique detects shared congestion correctly, we inves-
tigate how the technique respond as the degree of shared
congestion changes. One possible metric to represent the
degree of shared congestion is how large the loss rate on
shared links is compared with that on non-shared links.
Hence, we define a new quantity called shared loss rate
ratio. Let the loss rate of the shared portion of two paths
be Lshared, and the loss rate of the non-shared portion
of the first path to be L1 and the second path L2. Then
the shared loss rate ratio is defined as follows.

Ls =
Lshared

Lshared + max(L1, L2)
(11)

If loss occurs only on shared portion, Ls becomes 1, and
if loss occurs only on non-shared portion, Ls becomes 0.
If there is no loss at all, then Ls is defined as 0, indicating
no shared congestion.

In the following simulation, we use the topology in
Figure 3. The number of ON-OFF background flows on
each link is chosen uniformly between 81 and 100, result-
ing in loss rate between 0 and 12%, and delay samples
are collected for 100 seconds. Ls is computed from the
actual loss rates of the links. 1000 experiments are clas-
sified into 10 groups depending on the interval their Ls
belongs to. If Ls of an experiment is in [0, 0.1) then it
is in the first group, if in [0.1, 0.2) then the second, and
so on. If Ls = 1, the experiment is in the same group
as those with Ls in [0.9, 1). Positive Ratio is calculated
over all experiments in the same group. The results for
DCW, MP, and BP are presented in Figure 20.

Positive Ratio of DCW is only about 0.1 when Ls <
0.1, but 0.8 or larger when Ls ≥ 0.3. It means DCW has
a cut-off at Ls = 0.2 differentiating shared and indepen-
dent congestion. MP shows very different behavior. Pos-
itive Ratio is 0 for most intervals, and only 0.1 for the last
one. Since we know that Positive Ratio of MP reaches 1
after 100 seconds if Ls = 1, this indicates that MP an-
swers positively (meaning shared congestion) only when
Ls is very close to 1. In other words, MP always gives
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Figure 20: Positive Ratio with multiple points of conges-
tion

a negative answer if there are multiple points of conges-
tion, regardless of the degree of shared congestion. BP
gives more and more positive answers as Ls increase, but
does not have any sharp increase as DCW has. There-
fore, for those applications requiring a cut-off in shared
congestion detection, DCW is preferred. However, the
preferred cut-off value depends on applications. DCW
can be customized for applications with different needs
on the cut-off value by adjusting the threshold. Some
applications need to determine whether two paths share
all congested links [2], which corresponds to Ls = 1. In
this case, MP would also be a good choice.

5.4 Internet Experiments

We apply our technique to a large-scale network, the
Internet. Six end hosts were used in our Internet exper-
iments. Figure 21 shows their abstract topology. Note
that each hop in the figure may consist of multiple phys-
ical hops. Three hosts, A1, A2, and A3, are located in
North America. The other three hosts, K, T , and H, are
located in Korea, Taiwan, and Hong Kong, respectively.

K

T

H

A1

A2

A3

Figure 21: Experimental topology on the Internet

Delay samples were collected from the paths from A1

to K and from A2 to T between October 28 and Novem-
ber 2, 2003. We can reasonably conclude that there was
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no congested link because no probe packet was lost dur-
ing measurement. In order to create a shared bottleneck,
we opened 40 TCP sessions between H and A3. The loss
rate was about 5% while they are running. Since both
paths experienced a similar loss rate, we conclude that
the congestion occurred on one of the shared links.
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Figure 22: Convergence with Internet traces

Positive Ratio for shared congestion and independent
congestion (or no congestion in this case) is shown in Fig-
ure 22. The delay samples were collected for 15 seconds,
and time is adjusted with measured clock difference be-
tween A1 and A2 by exchanging packets between them.
Each experiment is repeated 100 times to calculate the
Positive Ratio. The result resembles what we obtained
through simulations. The accuracy of our technique ex-
ceeds 80% using the samples for the first 3 seconds, and
reaches 98% after 8 seconds.

6 Conclusion

Network resources are better utilized when multiple flows
cooperate; we can implement cooperative congestion
control and improve the overlay topology of a P2P sys-
tem. However, such cooperation is feasible only when we
can identify flows sharing a congested bottleneck. Tech-
niques proposed previously addressed this problem with
limitations including a common synchronization point
and drop-tail queues. But they are not effective under
other conditions, such as RED queueing, multiple points
of congestion, or paths with different sources and desti-
nations.

We proposed a robust technique that performs well
with various settings. It is based on wavelet denoising
and cross-correlation. The denoising process effectively
removes noise and makes our technique more resilient
to synchronization offset that confuses other techniques.

The proposed technique achieves faster convergence and
broader application than previous ones, using less probe
packets. We believe that many applications constructing
topology in the application layer can benefit from our
technique applying wavelet transform.
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